25.12.2012 Views

Ligaments & Tendons - Wings

Ligaments & Tendons - Wings

Ligaments & Tendons - Wings

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Roles in the Body<br />

(and fibrocartilage)<br />

Joint<br />

Capsule<br />

http://adam.about.com/encyclopedia/19089.htm


Description<br />

�� Soft connective tissue composed of<br />

densely packed collagen fibers<br />

�� White<br />

�� Relatively inelastic<br />

�� Mechanical properties vary with shape and<br />

structural organization<br />

Simon, SR. Orthopaedic Basic Science. Science.<br />

Ohio: American Academy of Orthopaedic Surgeons; 1994.


Structure<br />

�� Connective tissues are characterized by<br />

sparse cellularity distributed within an<br />

extracellular matrix<br />

�� Cells in tendons and ligaments are<br />

called fibroblasts


Comparison<br />

<strong>Ligaments</strong> <strong>Tendons</strong><br />

% of collagen Lower Lower Higher Higher<br />

% of ground<br />

substance<br />

Higher Higher Lower Lower<br />

Organization More More random random Organized Organized<br />

Orientation<br />

Weaving Weaving<br />

pattern pattern<br />

Simon, SR. Orthopaedic Basic Science. Science.<br />

Ohio: American Academy of Orthopaedic Surgeons; 1994.<br />

Long Long axis axis<br />

direction direction


Composition<br />

COMPONENT LIGAMENT TENDON<br />

Cellular Cellular Materials: Materials:<br />

Fibroblasts 20% 20%<br />

Extracellular::<br />

Extracellular<br />

Water 60-80% 60 80% 60-80% 60 80%<br />

Solids 20-40% 20 40% 20-40% 20 40%<br />

Collagen 70-80% 70 80% Slightly higher<br />

Type I 90% 95-99% 95 99%<br />

Type III 10% 1-5% 5%<br />

Ground<br />

substance<br />

20-30% 20 30% Slightly lesser<br />

Elastin Up to 2X collagen Scarce


Tensile<br />

Strength<br />

Elastic<br />

Modulus<br />

Strength<br />

Ligament Tendon<br />

Less than Tendon; Varies 50 to 150 MPa<br />

Meniscofemoral (355 ± 234 MPa<br />

Anterolateral bundle of PCL (294 ± 115MPa)<br />

Posterior bundle of PCL (150 ± 69MPa)<br />

*Wide ranges of mechanical properties are largely due to location location<br />

and age<br />

http://ttb.eng.wayne.edu/~grimm/BME5370/Lect5Out.html<br />

http://dahweb.engr.ucdavis.edu/dahweb/126site/chp5.pdf<br />

1,200 – 1,800 MPa


Biomechanical Behavior<br />

�� Measured material property values vary<br />

due to:<br />

�� Location<br />

�� Varying degrees of crimp<br />

�� Use: Mobilization/Immobilization<br />

�� Aging<br />

�� Pregnancy<br />

�� Diabetes<br />

�� NSAID use<br />

�� Hemodialysis


Viscoelastic Responses<br />

�� Tissue response to load dependent on:<br />

�� Magnitude of load<br />

�� Duration of load<br />

�� Prior loading<br />

�� Affected by movement of water<br />

�� Resistance to compressive force due to water trapped<br />

in proteoglycans<br />

�� Contributes to sustained or cyclic responses to stress<br />

�� Types of Response<br />

�� Creep<br />

�� Stress-Relaxation<br />

Stress Relaxation<br />

�� Hysteresis<br />

http://www.tendinosis.org/injury.html


http://ttb.eng.wayne.edu/~grimm/ME518/L5A3.html<br />

http://www.orthoteers.co.uk/Nrujp~ij33lm/Orthconntiss.htm<br />

Creep<br />

�� Time dependent elongation of<br />

a tissue when subjected to a<br />

constant stress<br />

��Example: Example:<br />

��<strong>Tendons</strong>: <strong>Tendons</strong>: in an isometric<br />

contraction, the tendon will<br />

lengthen slightly and more<br />

muscle fibers will be recruited in<br />

order to maintain the position of<br />

the limb<br />

��<strong>Ligaments</strong>: <strong>Ligaments</strong>: joints will loosen<br />

with time, decreasing the<br />

possibility of injury


http://ttb.eng.wayne.edu/~grimm/ME518/L5A3.html<br />

http://www.orthoteers.co.uk/Nrujp~ij33lm/Orthconntiss.htm<br />

Stress-Relaxation<br />

Stress Relaxation<br />

�� Time dependent decrease in<br />

applied stress required to<br />

maintain a constant elongation<br />

��Example: Example:<br />

��<strong>Tendons</strong>: <strong>Tendons</strong>: in an isotonic<br />

contraction, the stress will<br />

decrease with time<br />

��<strong>Ligaments</strong>: <strong>Ligaments</strong>: joints will loosen<br />

with time, decreasing the<br />

possibility of injury


Hysteresis<br />

�� Energy lost within the tissue between<br />

loading and unloading<br />

�� Response of tissue becomes more repeatable<br />

�� Subsequent use of same force results in<br />

greater deformation


silver.neep.wisc.edu/ ~lakes/linksLec3.html<br />

<strong>Ligaments</strong>


Anterior Cruciate<br />

Ligament<br />

Lateral Collateral<br />

Ligament<br />

Posterior Cruciate Ligament<br />

Medial Collateral Ligament<br />

Anterior View of Knee


Click for more<br />

detail<br />

Medial meniscus<br />

www.ma.psu.edu/~pt/renee384/anatomy.htm<br />

Posterior View of Knee<br />

Posterior View: Right knee in extension<br />

Posterior cruciate ligament<br />

Anterior cruciate ligament<br />

Lateral meniscus


Lateral meniscus<br />

Superior View of Knee<br />

Posterior cruciate ligament<br />

Medial meniscus<br />

Anterior cruciate ligament


�� No molecular bonds between<br />

fascicles<br />

�� Free to slide relative to each<br />

other<br />

�� Orientations:<br />

�� Branching & Interwoven<br />

�� Spirally wound: Ex ACL<br />

�� Parallel<br />

�� Direct connection between<br />

bones: Ex Collateral<br />

<strong>Ligaments</strong><br />

�� Smaller diameter fibers than in<br />

tendons<br />

Structure<br />

http://dahweb.engr.ucdavis.edu/dahweb/126site/chp4.pdf http://silver.neep.wisc.edu/~lakes/BME601Fr.html<br />

Simon, SR. Orthopaedic Basic Science. Science.<br />

Ohio: American Academy of Orthopaedic Surgeons; 1994.


Crimping<br />

�� Orientation of collagen in ligaments<br />

�� Allows elongation of fibers before tensile stresses are experienced<br />

experienced


Functions<br />

�� Transmit load from bone to bone<br />

�� Hold the skeleton together<br />

�� Flexible but plastic<br />

�� Provide stability at joints<br />

�� Maintain joint congruency<br />

�� Limit freedom of movement<br />

�� Prevent excessive motion by being a static restraint<br />

�� Occasionally act as a positional bend/strain sensor<br />

�� Mediate motions between opposing fibrocartilage surfaces


Degrees of Freedom<br />

�� Potentially 6 degrees of freedom in all joints<br />

�� 3-plane plane rotation<br />

o Flexion-extension<br />

Flexion extension<br />

o Abduction-adduction<br />

Abduction adduction<br />

o Internal-external<br />

Internal external<br />

�� 3 -plane plane translation<br />

o Medial-lateral<br />

Medial lateral<br />

o Compression-distraction<br />

Compression distraction<br />

o Anterior-posterior<br />

Anterior posterior


Primary Restraint*<br />

Knee Flex Maximal Stretch Anterior Cruciate<br />

Posterior Cruciate<br />

Medial Collateral<br />

anterior tibial<br />

translation<br />

anterior tibial<br />

translation<br />

Valgus forces<br />

internal tibia rotation<br />

@Knee flexion<br />

of (°) (<br />

30 - 45<br />

90<br />

0<br />

10-60 10 60<br />

Lateral Collateral varus forces 0<br />

*No peer-reviewed peer reviewed documentation to support this information


Mechanical Behavior<br />

3a<br />

Human cadaveric<br />

ACL in knee joint


Region 1<br />

“Toe Toe”<br />

Region 2<br />

Region 3<br />

Region 3a<br />

Tensile Response Curve<br />

Crimp: low stiffness; change in slope as collegen fibers<br />

straighten; ligaments become more stiff as more fibers<br />

are recruited<br />

Linear Region: slope = stiffness/Elastic Modulus<br />

Elastic: higher stiffness<br />

Less linear behavior; deformation is permanent<br />

(tearing, stretch); Area of Microfailure;<br />

Microfailure<br />

Ultimate Load: where failure occurs (N)<br />

Energy absorbed to failure: area under the curve<br />

(Nmm Nmm)<br />

Region 4 Ligament ruptures<br />

Region 5<br />

Ligament may appear intact; Fibers to slide under low<br />

loads


Stress Vs. Strain<br />

�� More relevant method of expressing Force vs.<br />

Deformation behavior<br />

�� Region descriptions same as Force vs. Deformation curve<br />

�� Stress (N/mm 2 ) = load per cross-sectional cross sectional area of<br />

sample<br />

�� Strain = percentage change in length


Injuries<br />

�� Occur most frequently during athletic activities<br />

�� Knee injuries<br />

�� ACL<br />

�� Partial or complete tear of ligament caused by quick changes in direction,<br />

slowing down while running, landing a jump, direct contact<br />

�� Symptoms include delayed pain and swelling<br />

�� PCL<br />

�� Sprain of ligament due to overstretching, impact to the front of the knee,<br />

misstep<br />

�� MCL<br />

�� Diagnosis<br />

�� Press gently at knee cap to feel for fluid at the joint<br />

�� X-ray ray<br />

�� MRI<br />

http://orthoinfo.aaos.org/fact/thr_report.cfm?Thread_ID<br />

http:// orthoinfo.aaos.org/fact/thr_report.cfm?Thread_ID=157&topcategory=Knee<br />

=157&topcategory=Knee<br />

http://hcd2.bupa.co.uk/fact_sheets/mosby_factsheets/Knee_ligament_injuries.html<br />

http://hcd2.bupa.co.uk/fact_sheets/mosby_factsheets/Knee_ligament_injuries.html


�� RICE<br />

Healing<br />

�� Rest, Ice, Compression, Elevation<br />

�� Physical therapy<br />

�� Strengthening exercises<br />

�� Range of motion tests<br />

�� Braces<br />

�� Crutches<br />

�� Surgery<br />

http://orthoinfo.aaos.org/fact/thr_report.cfm?Thread_ID<br />

http:// orthoinfo.aaos.org/fact/thr_report.cfm?Thread_ID=157&topcategory=Knee<br />

=157&topcategory=Knee<br />

http://hcd2.bupa.co.uk/fact_sheets/mosby_factsheets/Knee_ligament_injuries.html<br />

http://hcd2.bupa.co.uk/fact_sheets/mosby_factsheets/Knee_ligament_injuries.html


http://12.31.13.115/hwdb/images/hwstd/medical/orthoped/n5550876.jpg


Structure<br />

�� Long cylindrical structures<br />

�� Tightly packed longitudinally running collagen<br />

fibers<br />

�� Nuclei and sparse cytoplasm of fibrocytes<br />

compressed almost flat between them<br />

�� Relatively avascular<br />

�� Slow to heal from trauma injuries<br />

http://adam.about.com/encyclopedia/19089.htm


Attachment<br />

�� Each muscle has two tendons:<br />

�� Proximal: Myotendinous Junction (MTJ)<br />

�� The point of union with a muscle: origin<br />

�� Distal: Osteotendinous Junction (OTJ)<br />

�� The point of union with a bone: insertion


Function<br />

�� Force transmission between muscle and bone<br />

�� Sustain high tensile stresses<br />

�� Conserve substantial muscular energy during<br />

locomotion<br />

�� Energy storage capacity<br />

�� Enables the muscle belly to be at a convenient<br />

distance from joint<br />

�� Satisfies kinematic and damping requirements


Function<br />

�� Withstand tensile forces while retaining<br />

flexibility


Structure<br />

�� Orientations:<br />

�� Parallel to direction of tensile force<br />

�� Larger collagen fibers than in ligaments


Structure of <strong>Tendons</strong>


Collagen Fibers


In Vitro Tensile Test<br />

�� Tissue is elongated to failure<br />

�� Prescribed rate<br />

�� Changes in force are recorded<br />

�� The force is plotted against time<br />

�� Time axis is proportional to elongation<br />

�� Constant strain rate


Response to Tensile Forces<br />

�� Highest tensile strength of any soft tissue<br />

�� Schematic load-elongation load elongation curve with 3 distinct<br />

regions of response to tensile loading:


Mechanical Behavior<br />

Energy absorbed to<br />

failure: area under the<br />

curve


Region 1:<br />

“Toe Toe” Region<br />

Region 2:<br />

Linear<br />

Response<br />

Region 3<br />

Region 4:<br />

Macroscopic<br />

Failure<br />

Mechanical Behavior<br />

Collagen fibers straighten (less prominent than in ligaments<br />

because fibers begin more aligned); Continued elongation stiffens stiffens<br />

tissue<br />

Slope represents stiffness; Micro failure occurs at the end;<br />

Elastic recovery at stresses less than 4%<br />

Corresponds to strains of 3-8% 3 8%<br />

Crosslinks fail; Collagen fibers slide past one another; irreversible<br />

changes such as tearing or permanent stretching occurs<br />

Tensile failure of the fibers<br />

Shear failure between the fibers<br />

Once maximum load is surpassed<br />

�� Complete failure occurs rapidly<br />

�� Fibers recoil and blossom<br />

�� Tangled bud at ruptured end<br />

�� Loses Load supporting ability


Mechanical Properties (Cont’d) (Cont d)<br />

�� Greater cross-sectional cross sectional area<br />

�� Larger loads can be applied prior to failure<br />

�� Increased tissue strength<br />

�� Increased Stiffness<br />

�� Longer tissue fibers<br />

�� Greater fiber elongation before failure<br />

�� Decreased tissue stiffness<br />

�� Unaltered tissue strength


Injuries<br />

�� Overuse<br />

�� Spontaneous Rupture<br />

�� Dislocation<br />

�� Thermal Injuries<br />

�� Other Injuries


�� Regeneration<br />

Healing<br />

New tissue identical to normal tissue<br />

�� Structurally<br />

�� New tissue identical to normal tissue<br />

�� Functionally<br />

Soft tissue injury healing<br />

�� Scar repair<br />

�� Soft tissue injury healing<br />

Repair by connective tissue<br />

�� Inferior structural properties<br />

�� Repair by connective tissue<br />

Inferior functional properties<br />

�� Or by their combination<br />

�� Inferior functional properties


Healing Process<br />

�� Inflammation phase<br />

�� From the first day of injury to the fourth<br />

through seventh day<br />

�� Proliferative phase<br />

�� From the seventh through twenty-first twenty first day<br />

�� Maturation or remodeling phase<br />

�� From three weeks to one year


The End


Anterior Cruciate Ligament


ACL: Location


ACL: Flexion<br />

AA--AA’’ –– Anteromedial Anteromedial band band<br />

BB--BB’’ –– Intermediate Intermediate component<br />

component<br />

CC--CC’’ –– Posterolateral aspect aspect of of ligament<br />

ligament


ACL<br />

�� Located between the femur and tibia at the<br />

center of the knee<br />

�� Origin from lateral femoral condyle<br />

�� Insert into the surface of tibial plateau<br />

�� Intracapsular<br />

�� Extrasynovial<br />

Consists of two bundles<br />

�� Anteromedial<br />

�� Posterolateral<br />

�� Consists of two bundles<br />

�� Blood supply originates primarily from femoral<br />

side<br />

http://www.amershamhealth.com/medcyclopaedia/medical/volume%20III%201/CRUCIATE%20LIGAMENT.ASP


Posterior Cruciate Ligament:<br />

Location


PCL: Flexion<br />

A-A’ – Small band<br />

B-B’ – Bulk of the ligament<br />

C-C’ – Anterior meniscofemoral ligament


�� Location<br />

PCL<br />

�� Origin: Medial femoral condyle<br />

�� Insert: Posterior cortical surface of tibia in the sagittal<br />

midline<br />

�� Intimately associated with posterior capsule<br />

�� Covered by Synovium<br />

�� Less susceptible to vascular injury than ACL<br />

�� Blood supply comes from middle geniculate<br />

artery<br />

�� Spiral shape permits tibiofemoral rotation


Medial Collateral Ligament


MCL<br />

�� Primary stabilizer of the medial aspect<br />

�� Location<br />

�� Origin: Medial femoral condyle at the<br />

adductor tubercle<br />

�� Fans out in anterior and posterior directions<br />

�� Insert: Medial side of tibia<br />

�� Has both superficial and deep layer<br />

�� Visually appears like a sailboat


�� Deep Layer<br />

MCL (Cont’d) (Cont d)<br />

�� Originates at adductor tubercle<br />

�� Separates distally<br />

�� Above the joint line<br />

�� Inserts into the medial meniscus<br />

�� Holds the fibro cartilage in place<br />

�� Along the inferior meniscal margin<br />

�� Blends into superficial layer<br />

�� Inserts into the medial tibial diaphysis<br />

�� Has generous blood supply


Lateral Collateral Ligament


Ligament of Humphrey


Ligament of Wrisberg


Other Injuries<br />

�� Tendon Avulsions<br />

�� Tendon Strains<br />

�� Partial Tendon ruptures<br />

�� Lacerations<br />

�� Tendon division<br />

�� Foreign bodies in <strong>Tendons</strong><br />

�� Bite Injuries and Acupunture induced<br />

complications


Tendon Composition


Joint Rotations


Knee Translations


�� Fibrocartilage<br />

(n.) (n.) A kind of<br />

cartilage with a<br />

fibrous matrix and<br />

approaching fibrous<br />

connective tissue in<br />

structure<br />

Fibrocartilage<br />

http://www.kumc.edu/instruction/medicine/anatomy/histoweb/cart/cart12.htm<br />

http://www.brainydictionary.com/words/fi/fibrocartilage164589.html


Fibroblasts<br />

�� Any cell or corpuscle from which connective<br />

tissue is developed<br />

�� Oriented longitudinally with respect to tissue<br />

�� Ovoid or spindle shaped<br />

http://www.digitalnaturopath.com/cond/C136641.html


Fibroblasts<br />

��Secrete Secrete and absorb matrix<br />

elements<br />

��Components:<br />

Components:<br />

��Collagen Collagen<br />

��Proteoglycans<br />

Proteoglycans<br />

��Elastin Elastin (recoil)<br />

��Fibronectin Fibronectin (cell-to (cell to-cell cell<br />

adhesion and migration)


Joint Capsule<br />

�� Fluid sac at joints that holds joints together<br />

�� Creates skeletal system for synovial membrane<br />

�� <strong>Ligaments</strong> or tendons thicken the exterior<br />

�� Protects cartilage, muscles, connective tissue<br />

�� Difficult to identify ligaments and tendons from capsule<br />

in the body<br />

http://physicaltherapy.about.com/cs/disabilities/l/aa111700f.htm<br />

http://web1.tch.harvard.edu/cfapps/A2ZtopicDisplay.cfm?Topic=Anatomy%20of%20a%20Joint


Collagen<br />

�� Different Types:<br />

I>>>III>>V,VI,X,XII<br />

�� Collagen Type I is fibrillar<br />

�� Made up of three<br />

polypeptide chains<br />

�� 2α 1<br />

�� 1α 2<br />

�� Chains are left-handed<br />

left handed<br />

helixes but are wound<br />

together in a right-handed<br />

right handed<br />

helix<br />

http://www.accessexcellence.org/RC/VL/GG/collagen_Elastin.html<br />

http://en.wikipedia.org/wiki/Collagen


�� Hydrogen bonds form<br />

between glycines<br />

(interchain interchain) ) and prolines<br />

and hydroxyprolines<br />

(interchain interchain)<br />

�� Cross-links Cross links between<br />

collagen molecules “head head-<br />

to-tail to tail” and staggered in<br />

parallel<br />

Collagen


�� Hydrogen bonds and<br />

cross-links cross links contribute<br />

to the stability of<br />

each molecule and<br />

aggregation at the<br />

fibril level<br />

�� Result: Structures<br />

extremely resistant<br />

to tensile forces<br />

http://www.orthoteers.co.uk/Nrujp~ij33lm/Orthconntiss.htm<br />

Collagen


Additional Pictures

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!