25.12.2012 Views

Phytoplankton diversity and succession in the Iyagbe ... - EuroJournals

Phytoplankton diversity and succession in the Iyagbe ... - EuroJournals

Phytoplankton diversity and succession in the Iyagbe ... - EuroJournals

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

European Journal of Scientific Research<br />

ISSN 1450-216X Vol.43 No.1 (2010), pp.61-74<br />

© <strong>EuroJournals</strong> Publish<strong>in</strong>g, Inc. 2010<br />

http://www.eurojournals.com/ejsr.htm<br />

<strong>Phytoplankton</strong> <strong>diversity</strong> <strong>and</strong> <strong>succession</strong> <strong>in</strong> <strong>the</strong><br />

<strong>Iyagbe</strong> lagoon, Lagos<br />

Onyema, I.C<br />

Department of Mar<strong>in</strong>e Sciences, University of Lagos, Akoka, Lagos<br />

E-mail: iconyema@gmail.com<br />

Abstract<br />

The phytoplankton <strong>diversity</strong> <strong>and</strong> <strong>succession</strong> <strong>in</strong> <strong>the</strong> <strong>Iyagbe</strong> lagoon was <strong>in</strong>vestigated<br />

for 24 consecutive months (Oct., 2004 – Sept., 2006). <strong>Phytoplankton</strong> <strong>diversity</strong> was clearly<br />

higher <strong>in</strong> <strong>the</strong> dry than wet season. Seven major algal groups - <strong>the</strong> Bacillariophyceae,<br />

Cyanophyceae, Euglenophyceae, Chlorophyceae, D<strong>in</strong>ophyceae, Chrysophyceae <strong>and</strong><br />

Rhodophyceae were represented. The diatoms (Bacillariophyceae) were <strong>the</strong> more important<br />

group <strong>in</strong> terms of <strong>diversity</strong> with <strong>the</strong> centric forms record<strong>in</strong>g a higher number of species<br />

than <strong>the</strong> pennate forms. Whereas d<strong>in</strong>oflagellates (D<strong>in</strong>ophyceae) recorded more species <strong>in</strong><br />

<strong>the</strong> dry season <strong>and</strong> at stations proximate to <strong>the</strong> Lagos habour, <strong>the</strong> euglenoids<br />

(Euglenophyceae), chrysophytes (Chrysophyceae) <strong>and</strong> most green algae (Chlorophyceae)<br />

were more common <strong>in</strong> <strong>the</strong> wet season <strong>and</strong> at stations fur<strong>the</strong>r <strong>in</strong>l<strong>and</strong> <strong>and</strong> away from <strong>the</strong><br />

Lagos habour. Notable species recorded <strong>in</strong> <strong>the</strong> dry season were Cosc<strong>in</strong>odiscus radiatus,<br />

Parabelius delognei, Cosc<strong>in</strong>odiscus centralis, Cosc<strong>in</strong>odiscus centralis, Skeletonema<br />

coastatum, Cosc<strong>in</strong>odiscus radiatus, Bacillaria paxillifer, Act<strong>in</strong>optychus splendens,<br />

Cosc<strong>in</strong>odiscus marg<strong>in</strong>atus <strong>and</strong> Thalassionema nizschoides, whereas Aulocoseira granulata<br />

var. augustissima, Aulocoseura granulata, Aulocoseira granulata var. augustissima f.<br />

spiralis, Aulocoseira varians, Microcystis aureg<strong>in</strong>osa, Aulocoseira granulata var. curvata,<br />

Gonatozygon sp., Fragillaria construens, Spirogyra africanum <strong>and</strong> Synura uvella were<br />

reported <strong>in</strong> <strong>the</strong> wet season. Outcomes of bio-<strong>in</strong>dices variations were reflections of <strong>the</strong><br />

degree of occurrence <strong>and</strong> abundance of species l<strong>in</strong>ked to seasons operat<strong>in</strong>g <strong>in</strong> <strong>the</strong> region.<br />

Keywords: Microalgae, phytoplankton, <strong>diversity</strong>, <strong>Iyagbe</strong> lagoon, south-western Nigeria.<br />

1. Introduction<br />

The Nigerian coastal environment <strong>in</strong>cludes fresh, brackish <strong>and</strong> mar<strong>in</strong>e aquatic ecosystems. Whereas<br />

estuaries <strong>and</strong> creeks are common <strong>in</strong> <strong>the</strong> Niger Delta area, lagoons only occur <strong>in</strong> South-western Nigeria<br />

due to <strong>the</strong> alignment of <strong>the</strong> coastl<strong>in</strong>e <strong>in</strong> this region to <strong>the</strong> dom<strong>in</strong>ant South westerlies w<strong>in</strong>ds at<br />

approximately 45 o (Hill <strong>and</strong> Webb, 1958; Onyema 2009a). Presently, <strong>the</strong>re are 10 lagoons <strong>in</strong> Southwestern<br />

Nigeria with <strong>the</strong> Apese lagoon be<strong>in</strong>g <strong>the</strong> more recent addition <strong>and</strong> <strong>the</strong> only true closed lagoon<br />

<strong>in</strong> <strong>the</strong> region (Onyema, 2009b, c). These lagoons are <strong>the</strong> Yewa, Badagry, Ologe, <strong>Iyagbe</strong>, Lagos,<br />

Kuramo, Apese, Epe, Lekki <strong>and</strong> Mah<strong>in</strong> lagoons (Onyema, 2009b).<br />

<strong>Iyagbe</strong> lagoon until recently was not clearly familiar as a lagoon but referred to <strong>in</strong> some<br />

literature as Badagry creek(s) (FAO, 1969; Kusemiju, 1988; Onyema, 2009a). However, Webb (1958)<br />

recognized it as a lagoon <strong>and</strong> reported explicitly on its probable mode of formation, hydrology <strong>and</strong><br />

sediment type characteristics (Onyema, 2008). The formation of <strong>the</strong> Gu<strong>in</strong>ea coast lagoons <strong>in</strong> South-


<strong>Phytoplankton</strong> <strong>diversity</strong> <strong>and</strong> <strong>succession</strong> <strong>in</strong> <strong>the</strong> <strong>Iyagbe</strong> lagoon, Lagos 62<br />

western Nigeria is evidently dependent on <strong>the</strong> movement of s<strong>and</strong> along <strong>the</strong> coast <strong>in</strong> a west-east<br />

direction form<strong>in</strong>g a prograd<strong>in</strong>g barrier (Webb, 1958; Hill <strong>and</strong> Webb, 1958; Onyema, 2008, 2009a, b,<br />

c).<br />

Like <strong>the</strong> Lagos lagoon, <strong>the</strong> <strong>Iyagbe</strong> lagoon receives <strong>in</strong>flow of tidal seawater via <strong>the</strong> Lagos<br />

Harbour <strong>and</strong> this is especially prom<strong>in</strong>ent <strong>in</strong> <strong>the</strong> dry season. In <strong>the</strong> wet season however <strong>and</strong> as distance<br />

from <strong>the</strong> harbour <strong>in</strong>creases, fresh(er) water conditions are recorded. The area is covered largely by<br />

luxuriant mangrove systems especially <strong>in</strong> areas of modicum or no significant noticeable human<br />

activities. Mangrove biosystems are known to be nutrient rich, shallow, sheltered <strong>and</strong> productive<br />

systems that serve as breed<strong>in</strong>g, nursery <strong>and</strong> feed<strong>in</strong>g grounds for aquatic organisms (Nwankwo <strong>and</strong><br />

Gaya, 1996). The phytoplankton are an important member of this comm<strong>in</strong>uty especially <strong>in</strong> relation to<br />

trophic relationship (Emmanuel <strong>and</strong> Onyema, 2007; Onyema, 2007).<br />

At present, <strong>the</strong>re is no publication on <strong>the</strong> <strong>diversity</strong> <strong>and</strong> <strong>succession</strong>s of phytoplankton species <strong>in</strong><br />

<strong>the</strong> <strong>Iyagbe</strong> lagoon. This study aims at document<strong>in</strong>g <strong>the</strong> trends <strong>and</strong> pattern of micro-algal <strong>succession</strong> <strong>in</strong><br />

<strong>the</strong> lagoon.<br />

2. Materials <strong>and</strong> Methods<br />

2.1. Description of Study Site<br />

Lagos State is an African megacity <strong>and</strong> is located <strong>in</strong> south-western Nigeria on <strong>the</strong> West Coast of<br />

Africa. Lagos is located with<strong>in</strong> latitudes 6° 23N <strong>and</strong> 6°41N <strong>and</strong> longitudes 2°42E <strong>and</strong> 3°42E <strong>and</strong> is<br />

undoubtedly <strong>the</strong> commercial nerve-centre of Nigeria. Lagos has been described as <strong>the</strong> city of aquatic<br />

splendour as a result of <strong>the</strong> significant coverage due to wetl<strong>and</strong> areas (Onyema, 2009b). The <strong>Iyagbe</strong><br />

lagoon (Fig 1) is located <strong>in</strong> Lagos state, Nigeria <strong>and</strong> is one of <strong>the</strong> 10 lagoons <strong>in</strong> South-western Nigeria.<br />

It is chiefly made up of <strong>the</strong> Porto-Novo <strong>and</strong> Badagry creeks. O<strong>the</strong>r creeks <strong>in</strong> <strong>the</strong> immediate region<br />

<strong>in</strong>clude <strong>the</strong> Tamoro, Elete, Festac, Light house <strong>and</strong> T<strong>in</strong> can Isl<strong>and</strong> creeks. The <strong>Iyagbe</strong> lagoon is<br />

centered about <strong>the</strong> town of <strong>Iyagbe</strong> (Webb, 1958) <strong>and</strong> is shallower <strong>in</strong> <strong>the</strong> Badagry than Porto-Novo<br />

creek arm. The lagoon like <strong>the</strong> Lagos lagoon is open via <strong>the</strong> Lagos harbor enroute to <strong>the</strong> sea (S<strong>and</strong>ison,<br />

1966).<br />

Figure 1: Parts of lyagbe Lagoon, Porto-Novo <strong>and</strong> Badagry Creeks Show<strong>in</strong>g Sampl<strong>in</strong>g Sites


63 Onyema, I.C<br />

Two dist<strong>in</strong>ct seasons namely <strong>the</strong> wet (May – October) <strong>and</strong> <strong>the</strong> dry (November – April)<br />

(Nwankwo, 2004b) are experienced <strong>in</strong> this region (Onyema, 2009c). In <strong>the</strong> area, dense ra<strong>in</strong> forest zone<br />

vegetation followed by littoral mangrove assemblages is <strong>the</strong> common ripar<strong>in</strong>e community type. Some<br />

common organisms found <strong>in</strong> <strong>the</strong> area <strong>in</strong>clude amphipods, polychaetes, isopods, barnacles, oysters,<br />

periw<strong>in</strong>kles, nematodes, fiddler crabs, sea cucumbers, mangrove crabs, mudskippers <strong>and</strong> shrimps<br />

among o<strong>the</strong>rs. O<strong>the</strong> species are Rhizophora racemosa, R. harrisoni, Avicennia germ<strong>in</strong>ans, Phoenix<br />

recl<strong>in</strong>ata, Raphia hookeri, Elaeis gu<strong>in</strong>eensis, Acrotiscum aureum <strong>and</strong> Cocos nucifera. Faunal forms<br />

associated with <strong>the</strong> stilt roots of Rhizophora <strong>in</strong>clude Balanus pallidus, Chthamalus (arthropods),<br />

Mercierella enigmatica (Serpulid worm) <strong>and</strong> Gryphaea gasar (Bivalve). The mudskipper,<br />

Periopthalmus koelreuteri, several species of crabs whish <strong>in</strong>clude Sesarma huzardi, Uca tangeri,<br />

molluscs such as Tympanotonus fuscatus var. radula, Pachymelania <strong>and</strong> Littor<strong>in</strong>a spp (periw<strong>in</strong>kles)<br />

<strong>and</strong> an array of birds that feed on exposed fauna at low tide <strong>in</strong> <strong>the</strong> very shallow parts of <strong>the</strong> lagoon<br />

system. The lagoon deposits are varied <strong>and</strong> are reflected <strong>in</strong> <strong>the</strong> pattern <strong>and</strong> type of vegetation <strong>in</strong> <strong>the</strong><br />

region (Webb, 1958). A similar description of study site has been provided by Onyema (2008).<br />

Selection of stations for this study were based on <strong>the</strong>ir importance as confluence po<strong>in</strong>ts <strong>and</strong><br />

po<strong>in</strong>ts were <strong>the</strong> effect of anthropogenic stressors would be more likely felt. Additionally, <strong>the</strong> stations<br />

covered <strong>the</strong> entire length of <strong>the</strong> lagoon area.<br />

Table 1: G.P.S. location <strong>and</strong> station name of sampled areas <strong>in</strong> <strong>the</strong> <strong>Iyagbe</strong> lagoon<br />

Station No. Station name G.P.S. locations<br />

Station 1 Calabash Isl<strong>and</strong> Latitude 6 o 25 1 .987 N, Longitude 3 o 23 1 .400 E<br />

Station 2 T<strong>in</strong>-can Isl<strong>and</strong> Latitude 6 o 25 1 .833 N, Longitude 3 o 21 1 .532 E<br />

Station 3 Ibafon Latitude 6 o 25 1 .964 N, Longitude 3 o 19 1 .244 E<br />

Station 4 Imore Latitude 6 o 25 1 .755 N, Longitude 3 o 19 1 .915 E<br />

Station 5 Ito-ogba Latitude 6 o 25 1 .409 N, Longitude 3 o 14 1 .624 E<br />

Station 6 Abule-oshun Latitude 6 o 26 1 .134 N, Longitude 3 o 13 1 .224 E<br />

Station 7 Idiagbon / Igbolobi Latitude 6 o 26 1 .214 N, Longitude 3 o 11 1 .826 E<br />

Station 8 <strong>Iyagbe</strong> Latitude 6 o 25 1 .603 N, Longitude 3 o 11 1 .990 E<br />

Station 9 Agbaja Latitude 6 o 24 1 .473 N, Longitude 3 o 12 1 .744 E<br />

Station 10 Ikare Latitude 6 o 24 1 .632 N, Longitude 3 o 13 1 .705 E<br />

Station 11 Ilashe Latitude 6 o 24 1 .676 N, Longitude 3 o 16 1 .938 E<br />

Station 12 Idimangoro Latitude 6 o 24 1 .717 N, Longitude 3 o 19 1 .307 E<br />

2.2. Collection of phytoplankton samples.<br />

<strong>Phytoplankton</strong> sample were collected on each occasion <strong>and</strong> station with a 55μm mesh size st<strong>and</strong>ard<br />

plankton net towed from a motorized boat for 5m<strong>in</strong>s at low speed (


<strong>Phytoplankton</strong> <strong>diversity</strong> <strong>and</strong> <strong>succession</strong> <strong>in</strong> <strong>the</strong> <strong>Iyagbe</strong> lagoon, Lagos 64<br />

Community Structure Analysis<br />

For biological data analysis, <strong>the</strong> follow<strong>in</strong>g <strong>diversity</strong> <strong>in</strong>dices were used. Species Richness Index (d),<br />

Menh<strong>in</strong>ick’s Index (D), Shannon <strong>and</strong> We<strong>in</strong>er <strong>diversity</strong> <strong>in</strong>dex (Hs), Species Equitability (j) <strong>and</strong><br />

Coefficient of Similarity (S) (Ogbeibu, 2005).<br />

3. Results<br />

3.1. The phytoplankton flora of <strong>the</strong> <strong>Iyagbe</strong> lagoon.<br />

Seven major algal groups were represented <strong>in</strong> <strong>the</strong> micro-flora of <strong>the</strong> sampled areas with<strong>in</strong> <strong>the</strong> <strong>Iyagbe</strong><br />

lagoon. These were <strong>the</strong> Bacillariophyceae, Cyanophyceae, Euglenophyceae, Chlorophyceae,<br />

D<strong>in</strong>ophyceae, Chrysophyceae <strong>and</strong> Rhodophyceae. The Rhodophyceae was represented by a s<strong>in</strong>gle<br />

species (Batrachospermum sp.). Presented below are notable species, trends <strong>and</strong> <strong>the</strong>ir percentage<br />

frequency of ocuurence for <strong>the</strong> different groups <strong>and</strong> species of algae. Table 2 shows a summary of<br />

dom<strong>in</strong>ant species <strong>and</strong> <strong>the</strong>ir most frequent associates <strong>in</strong> <strong>the</strong> <strong>Iyagbe</strong> lagoon (Abundance per ml). Fig. 3<br />

shows <strong>the</strong> occurrence of <strong>the</strong> most dom<strong>in</strong>ant species <strong>in</strong> <strong>the</strong> <strong>Iyagbe</strong> lagoon <strong>in</strong> terms of numbers.<br />

Bacillariophyceae<br />

The bacillariophyceae were <strong>the</strong> predom<strong>in</strong>ant group at all stations for <strong>the</strong> duration of <strong>the</strong> study <strong>in</strong> terms<br />

of phytoplankton species <strong>diversity</strong>. The <strong>diversity</strong> of species were more discernable <strong>in</strong> <strong>the</strong> dry season<br />

than <strong>in</strong> <strong>the</strong> wet season. 90 diatom species were recorded with <strong>the</strong> centric forms be<strong>in</strong>g more important<br />

than <strong>the</strong> pennate forms <strong>in</strong> terms of <strong>diversity</strong>. With regard to species <strong>and</strong> <strong>the</strong>ir percentage frequency of<br />

ocuurence, Cosc<strong>in</strong>odiscus centralis (3.45 – 50%), Cosc<strong>in</strong>odiscus eccentricus (6 - 50%), Cosc<strong>in</strong>odiscus<br />

radiatus (2 - 50%), Cosc<strong>in</strong>odiscus marg<strong>in</strong>atus (2.56 – 80.36%), Cosc<strong>in</strong>odiscus l<strong>in</strong>eatus (1.09 –<br />

10.71%), Act<strong>in</strong>optychus splendens (0.85 - 25%), Skeletonema coastatum (2 – 33.33%), Aulacoseira<br />

granulata var. augustissima (2.0 - 50%), Aulocoseira granulata var. angustissima f. curvata (5.71%),<br />

Aulacoseira granulata var. augustissima f. spiralis (1.57 – 68.75%), Odontella regia (2 – 8.57%) <strong>and</strong><br />

Odontella s<strong>in</strong>ensis (4.26 – 10.34%) were <strong>the</strong> more abundant <strong>and</strong> frequently occurr<strong>in</strong>g centric species<br />

that occurred <strong>in</strong> <strong>the</strong> lagoon. With regards to <strong>the</strong> pennate diatoms important members <strong>in</strong>cluded Synedra<br />

crystall<strong>in</strong>a (2.13 – 64.29%), Synedra ulna (0.85 – 6.25%), Thalassionema longissima (1.21 – 26.09%),<br />

Thalassionema fraunfeldii (2.0 – 5.98%), Thalassionema nitzschioides (2.13 – 31.25%), Parabelius<br />

delognei (12.77 – 44.44%) <strong>and</strong> Bacillaria paxillifer (11.96 – 66.67%).<br />

Chlorophyceae<br />

10 species of green algae which <strong>in</strong>cluded Akistrodesmus sp (2.86 – 24.04%), Cladophora glomerata<br />

(0.72 - 16.67%), Gonatozygon monotaenium (2.33 - 51.35%), Gonotozygon sp. (18.92%), Microspora<br />

flocca (6.25 - 8.97%), Straurastrum paradoxum var. c<strong>in</strong>gulum (3.45%), Pediastrum simplex (0.23%),<br />

Spirogyra africana (0.91 – 33.33%), Scenedesmus obliquus (3.49%) <strong>and</strong> Scenedesmus quadriqauda<br />

(0.91 – 1.52%) were reported for <strong>the</strong> study lagoon.<br />

D<strong>in</strong>ophyceae<br />

The d<strong>in</strong>oflagellates were represented by three specie only, namely - Ceratium macroceros (1.27%),<br />

Ceratium tripos (1.79%) <strong>and</strong> Perid<strong>in</strong>ium africana (5%). Fur<strong>the</strong>rmore <strong>the</strong>se species occurred only <strong>in</strong> <strong>the</strong><br />

dry season <strong>and</strong> <strong>in</strong> stations that were proximate to <strong>the</strong> Lagos habour (i.e Stations 1 <strong>and</strong> 2).


65 Onyema, I.C<br />

Table 2: Summary of dom<strong>in</strong>ant species <strong>and</strong> <strong>the</strong>ir most frequent associates <strong>in</strong> <strong>the</strong> <strong>Iyagbe</strong> lagoon from Oct.,<br />

2004 – Sept., 2006 (Abundance per ml).<br />

Dom<strong>in</strong>ant Species Associated Species<br />

Oct., 2004 Gonatozygon monotaenium<br />

(285)<br />

Aulocoseira granulata var. augustissima (125), Gonatozygon sp. (75),<br />

Fragillaria construens (55) Spirogyra africanum (55), Synura uvella<br />

(25)<br />

Act<strong>in</strong>optychus splendens (65), Cosc<strong>in</strong>odiscus l<strong>in</strong>eutus (45),<br />

Nov., 2004 Aulocoseira granulata var.<br />

augustissima (85)<br />

Cosc<strong>in</strong>odiscus centralis (15), Cosc<strong>in</strong>odiscus eccentricus (15).<br />

Dec., 2004 Aulocoseira granulata var. Act<strong>in</strong>optychus splendens (505), Cosc<strong>in</strong>odiscus marg<strong>in</strong>atus (600),<br />

augustissima (24,200) Bacillaria paxillifer (250), Pleurosigma angulatum (150).<br />

Jan., 2005 Parabelius delognei (155) Bacillaria paxillifer (105), Cyclotella menigh<strong>in</strong>iana (100), Podosira<br />

tenobro (75), Cosc<strong>in</strong>odiscus l<strong>in</strong>eatus (30).<br />

Feb., 2005 Cosc<strong>in</strong>odiscus radiatus (800) Aulocoseira granulata var. augustissima (405), Parabelius delognei<br />

(275), Thalassionema nizschoides (110).<br />

Mar., 2005 Parabelius delognei (250) Cosc<strong>in</strong>odiscus radiatus (55), Fragillaria oceanica (25), Cosc<strong>in</strong>odiscus<br />

centralis (30), Cosc<strong>in</strong>odiscus eccentricus (25).<br />

Apr., 2005 Paraelicus delognei (190) Cosc<strong>in</strong>odiscus centralis (90), Cosc<strong>in</strong>odiscus radiatus (85),<br />

May, 2005 Parabelius delognei (250)<br />

Cosc<strong>in</strong>odiscus magniatum (40), Aulocoseira moniloormis (80).<br />

Syndra crystall<strong>in</strong>a (155), Cosc<strong>in</strong>odiscus centralis (150), Biddulphia<br />

leavis (125), Cosc<strong>in</strong>odiscus eccentricus (65).<br />

Jun., 2005 Aulocoseira granulata var. Act<strong>in</strong>optychus splendens (40), Parabelieus delognei (40), Cosc<strong>in</strong>odiscus<br />

augustissima (60)<br />

centralis (40), Anabaena constricta (30).<br />

Jul., 2005 Act<strong>in</strong>optychus splendens (650) Aulocoseura granulata (460), Aulocoseira granulata var. augustissima<br />

f. spiralis (225), Cosc<strong>in</strong>odiscus centralis (100), Aulocoseira granulata<br />

(66)<br />

Aug., 2005 Aulocoseira granulata var. Aulocoseira granulata var. augustissima f. spiralis (240) Aulocoseira<br />

augustissima f. spiralis (240) granulata var. augustissima (66), Aulocoseira varians (45),<br />

Sept., 2005 Act<strong>in</strong>optychus splendens (80)<br />

Act<strong>in</strong>optychus splendens (40), Lyngbya limnetica (20).<br />

Aulocoseira granulata var. augustissima (70), Aulocoseira granulata<br />

(40), Aulocoseira granulata var. augustissima f. spiralis (30),<br />

Aulocoseira varians (25).<br />

Oct., 2005 Aulocoseira granulata var.<br />

augustissima (195)<br />

Act<strong>in</strong>optychus splendens (125), Aulocoseira granulata (55), Aulocoseira<br />

granulata var. augustissima f. spiralis (30).<br />

Nov., 2005 Act<strong>in</strong>optychus splendens (525) Aulocoseira granulata var. augustissima (65), Bacillria paxillifer (60),<br />

Aulocoseira granulata var augustissima f. spiralis (60), Cosc<strong>in</strong>odiscus<br />

mag<strong>in</strong>atus (40).<br />

Dec., 2005 Cosc<strong>in</strong>odiscus centralis<br />

(3250)<br />

Cosc<strong>in</strong>odiscus radiatus (1100), Cosc<strong>in</strong>odiscus eccentricus (95),<br />

Bacillaria paxillifer (70), Cosc<strong>in</strong>odiscus gigas (60).<br />

Jan., 2006 Cosc<strong>in</strong>odiscus centralis (425) Cosc<strong>in</strong>odiscus radiatus (140), Parabelius delognei (100), Bacillaria<br />

paxillifer (60), Cyclotella menegh<strong>in</strong>iana (50).<br />

Feb., 2006 Cosc<strong>in</strong>odiscus centralis<br />

(2315)<br />

Parabelius delognei (300), Cosc<strong>in</strong>odiscus mag<strong>in</strong>atus (100), Aulocoseira<br />

granulata var. angustissima (80), Anabaena torulosa (75).<br />

Mar., 2006 Parabelius delognei (175) Cosc<strong>in</strong>odiscus eccentricus (110), Cosc<strong>in</strong>odiscus radiatus (80),<br />

Cyclotella striata (60), Thalassionema fraunfeldii (65).<br />

Apr., 2006 Skeletonema coastatum (450) Thalassionema fraunfeldii (226), Oscillatoria sancta (200), Aulocoseira<br />

nummulaides (80), Asterionella jopanica (135).<br />

May, 2006 Akistrodesmus sp. (1750) Microcystis aureg<strong>in</strong>osa (200), Cosc<strong>in</strong>odiscus radiatus (180), Bacillaria<br />

paxilifer (105), Synedra crystall<strong>in</strong>a (105).


<strong>Phytoplankton</strong> <strong>diversity</strong> <strong>and</strong> <strong>succession</strong> <strong>in</strong> <strong>the</strong> <strong>Iyagbe</strong> lagoon, Lagos 66<br />

Jun., 2006 Microcystis aureg<strong>in</strong>osa (105) Aulocoseira granulata var. augustissima (55), Cosc<strong>in</strong>odiscus centralis<br />

(35), Cosc<strong>in</strong>odiscus eccentricus (30), Campylodiscus clypeus (15)<br />

Jul., 2006 Act<strong>in</strong>optychus splendens (175) Cosc<strong>in</strong>odi.scus centralis (100), Cosc<strong>in</strong>odiscus radiatus (60),<br />

Aug., 2006 Act<strong>in</strong>optychus splendens (535)<br />

Aulocoseira granulata (70), Aulocoseira granulata var. augustissima<br />

(40)<br />

Bacillaria paxillifer (145), Skeletonema coastatum (105), Pleurosima<br />

augulatum (35), Achan<strong>the</strong>s longipes (35).<br />

Sept., 2006 Aulocoseira granulata var.<br />

augustissima (275)<br />

Act<strong>in</strong>optychus splendens (210), Bacillaria paxillifer (60), Aulocoseira<br />

granulata var. curvata (35).<br />

Euglenophyceae<br />

Euglena acus (2.78%), Phacus acum<strong>in</strong>atus (3.03%), Phacus curvicauda (1.92%) <strong>and</strong> Trachelomonas<br />

hispida (0.45 - 3.02%) were <strong>the</strong> euglenoids that occurred. They were reported only <strong>in</strong> <strong>the</strong> wet season<br />

<strong>and</strong> moreso <strong>in</strong> more <strong>in</strong>l<strong>and</strong> stations of <strong>the</strong> lagoon fur<strong>the</strong>r from <strong>the</strong> Lagos habour (especially at stations<br />

7 <strong>and</strong> 8).<br />

Chrysophyceae<br />

The chrysophytes recorded two species namely Chrysoteppanoshaera globulifera (2.5 - 8.08%) <strong>and</strong><br />

Synura uvella (2.41 - 3.03%) for <strong>the</strong> duration of <strong>the</strong> study. Similarly, <strong>the</strong>y were reported only <strong>in</strong> <strong>the</strong><br />

wet season <strong>and</strong> <strong>in</strong> more <strong>in</strong>l<strong>and</strong> stations of <strong>the</strong> lagoon (especially at stations 7 <strong>and</strong> 8).<br />

Rhodophyceae<br />

Batrachospermum sp. (1.08 - 13.41%) was <strong>the</strong> only red algae recorded for <strong>the</strong> study.<br />

3.2. Community Structure Analysis (Table 3a <strong>and</strong> b)<br />

Values for Species Richness Index (d) varied between 0 <strong>and</strong> 0.266, Menh<strong>in</strong>ick’s Index (D), 0 - 1.01,<br />

Shannon <strong>and</strong> Wiener <strong>diversity</strong> <strong>in</strong>dex (Hs) 0 - 1.20, Species Equitability (j) 0 - 1.07, Species <strong>diversity</strong><br />

(S) 1 – 17, Abundance (N), 0 – 4400 <strong>in</strong>dividuals per ml, Log of Species <strong>diversity</strong> (Log S) 0.3 – 1.17<br />

<strong>and</strong> Log of Abundance (Log N) was between1.0 <strong>and</strong> 3.37. For <strong>in</strong>stance, species <strong>diversity</strong> was higher <strong>in</strong><br />

<strong>the</strong> second year of study than <strong>the</strong> first (Table 3a <strong>and</strong> b).


67 Onyema, I.C<br />

Figure 2: Occurrence of <strong>the</strong> most dom<strong>in</strong>ant species <strong>in</strong> <strong>the</strong> lyagbe lagoon <strong>in</strong> terms of numbers (Oct., 2004-<br />

Sept., 2006)<br />

900<br />

800<br />

700<br />

600<br />

Abundance per ml.<br />

500<br />

400<br />

300<br />

200<br />

100<br />

Dec., 2004 Aulocoseira granulata var. angustissima **<br />

*multiplied by 10<br />

**multiplied by 100<br />

0<br />

Jan., 2005 Parabelius delognei<br />

Feb., 2005 Cosc<strong>in</strong>odiscus radiatus<br />

Mar., 2005 Parabelius delognei<br />

Apr., 2005 Parabelius delognei<br />

May 2005 Parabelius delognei<br />

Jun., 2005 Aulocoseira granulata var. angustissima<br />

Jul., 2005 Act<strong>in</strong>optycus splendens<br />

Aug., 2005 Aulocoseira granulata var. angustissima<br />

Sept., 2005 Act<strong>in</strong>optycus splendens<br />

Oct., 2005 Aulocoseira granulata var. angustissima<br />

Nov. 2005 Aulocoseira granulata var. angustissima<br />

Dec., 2005 Cosc<strong>in</strong>odiscus centralis *<br />

Jan., 2006 Cosc<strong>in</strong>odiscus centralis<br />

Feb., 2006 Cosc<strong>in</strong>odiscus centralis *<br />

Mar., 2006 Parabelius delognei<br />

Apr., 2006 Skeletonema coastatum<br />

May 2006 Akistrodesmus sp *<br />

Jun., 2006 Microcystis aureg<strong>in</strong>osa<br />

Jul., 2006 Act<strong>in</strong>optycus splendens<br />

Aug., 2006 Act<strong>in</strong>optycus splendens<br />

Sept., 2006 Aulocoseira granulata var. angustissima<br />

Oct., 2006 Gonatozygon monotaenium<br />

Nov. 2006 Aulocoseira granulata var. angustissima


<strong>Phytoplankton</strong> <strong>diversity</strong> <strong>and</strong> <strong>succession</strong> <strong>in</strong> <strong>the</strong> <strong>Iyagbe</strong> lagoon, Lagos 68<br />

Table 3a: Range of phytoplankton community composition parameters for <strong>the</strong> <strong>Iyagbe</strong> lagoon (Oct., 04 – Sept., 05).<br />

Oct-04 Nov-04 Dec-04 Jan-05 Feb-05 Mar-05 Apr-05 May-05 Jun-05 Jul-05 Aug-05 Sep-05<br />

Species richness <strong>in</strong>dex (d) 0.2 - 1.09 0 - 1.65 0 - 6.12 0 - 2.33 0 - 2.0 0.26-2.13 0.33 - 1.58 0.65 - 2.66 0 - 1.74 0.51 - 2.32 0 - 1.3 0 - 0.78<br />

Menhnick's (D) 0 - 0.75 0.25 - 0.63 0.04 - 0.48 0.16 - 0.87 0.05 - 0.64 0.26 - 1.05 0.35 – 0.8 0.29 - 0.95 0.32 - 0.96 0.3 - 1.12 0.22 - 0.68 0 - 0.65<br />

Shannon-Wiener's Index (Hs) 0.29 - 0.65 0 - 0.89 0 - 0.56 0 - 0.84 0 - 1.0 0.22 - 0.97 0.3 - 0.88 0.3 - 1.0 0 - 0.78 0.35 - 1.20 0 - 0.73 0 - 0.61<br />

Equitability (j) 0.48 - 0.98 0 - 1.0 0 - 0.72 0 - 1.0 0 - 0.95 0.39 - 0.98 0.59 - 1.0 0.24 - 0.93 0 - 1.0 0.37 - 1.10 0 - 0.98 0 - 1.0<br />

Species <strong>diversity</strong> 2 - 6 1 - 11 1 - 8 1 - 10 1 - 13 2 - 11 2 - 10 4 - 17 1 - 12 3 - 13 1 - 8 0 - 5<br />

Abundance 30 - 360 10 - 590 110 - 25280 5 - 245 80 - 930 15 - 300 20 - 295 55 - 585 5 - 175 80 - 920 5 - 320 0 - 170<br />

Log of Species <strong>diversity</strong> 0.3 - 0.78 0 - 1.04 0 - 0.9 0 - 1.0 0 - 1.11 0.3 - 0.95 0.3 - 1.0 0.6 - 1.23 0 - 0.95 0.48 - 1.11 0 - 0.9 0 - 0.7<br />

Log Abundance 1.48 - 2.56 1.0 - 2.77 2.04 - 4.4 0 - 2.34 1.9 - 2.97 1.18 - 2.48 1.3 - 2.47 1.74 - 2.77 0.7 - 2.24 1.7 - 2.98 0.7 - 2.51 0 - 2.51<br />

Table 3b: Range of phytoplankton community composition parameters for <strong>the</strong> <strong>Iyagbe</strong> lagoon (Oct., 05 – Sept., 06).<br />

Oct-05 Nov-05 Dec-05 Jan-06 Feb-06 Mar-06 Apr-06 May-06 Jun-06 Jul-06 Aug-06 Sep-06<br />

Species richness <strong>in</strong>dex (d) 0.82 - 2.35 0.44 - 1.85 0.26 - .14 0.6 - 1.4 0.21 - 2.61 0.71 - 2.47 0.37 - 2.22 0.49 - 1.81 0.21 - 0.67 0.73 - 1.77 0.33 - 1.67 0.67 - 2.48<br />

Menhnick's (D) 0.3 – 1.01 0.3 - 0.77 0.06 - .41 0.16 - 0.63 0.1 - 0.79 0.09 - 1.23 0.2 - 0.85 0.31 - 0.81 0.32 - 0.77 0.36 - 0.92 0.27 - 0.89 0.36 – 1.3<br />

Shannon-Wiener's Index (Hs) 0.3 - 0.81 0.21 - 0.81 0.1 - 0.66 0.36 - 0.76 0.03 - 0.82 0.49 - 1.02 0.32 - 1.02 0.32 - 0.91 0.08 - 3.01 0.52 - 0.91 0.22 - 0.76 0.23 - 1.01<br />

Equitability (j) 0.51 - 0.84 0.44 – 1.0 0.21 - 0.88 0.6 - 3.0 0.07 - 0.79 0.7 - 0.95 0.32 - 1.07 0.28 - 0.92 0.27 - 1.18 0.68 - 0.94 0.58 – 1.0 0.2 - 0.98<br />

Species <strong>diversity</strong> 5 - 13 3 - 9 3 - 11 2 - 9 2 - 17 4 - 12 3 - 16 3 - 14 2 - 4 4 - 11 2 - 10 4 - 13<br />

Abundance 75 - 555 15 - 180 205 - 4400 40 - 610 50 - 237 70 - 340 115 - 859 60 - 2205 10 - 110 50 - 340 15 - 885 45 - 635<br />

Log of Species <strong>diversity</strong> 0.7 - 1.17 0.48 - 0.96 0.48 - 1.04 0.48 - 0.95 0.3 - 1.23 0.6 - 1.08 0.47 - 1.20 0.48 - 1.15 0.3 - 0.6 0.6 - 1.04 0.3 - 1.0 0.6 - 1.11<br />

Log Abundance 1.88 - 2.74 1.18 - 2.26 2.31 - 3.64 1.81 - 2.79 1.7 - 3.37 1.85 - 2.53 2.06 - 2.93 1.78 - 3.34 1.0 - 2.04 1.7 - 2.53 1.18 - 2.95 1.65 – 2.8<br />

Table 4: Similarity Index (j) comb<strong>in</strong>ations for stations <strong>in</strong> <strong>the</strong> <strong>Iyagbe</strong> lagoon (Oct., 2004 – Sept., 2006).<br />

2004 2005 2006<br />

Stations Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov Dec. Jan. Feb Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov.<br />

1 Versus 2 0.33 0.25 0.20 0.80 0.20 0.46 0.22 0.75 0.00 0.00 0.00 0.57 0.55 0.17 0.21 0.12 0.32 0.47 0.80 0.70 0.67 0.25 0.35 0.86<br />

2 Versus 3 0.33 0.50 0.40 0.50 0.25 0.55 0.00 0.57 0.00 0.00 0.50 0.80 0.80 0.17 0.35 0.21 0.35 0.50 0.80 0.67 0.40 0.30 0.35 0.67<br />

3 Versus 4 0.44 0.57 0.44 0.80 0.40 0.46 0.00 0.40 0.00 0.00 0.50 0.50 0.36 0.22 0.40 0.56 1.00 0.59 1.00 0.25 0.5 0.13 0.60 0.67<br />

4 Versus 5 0.25 0.00 0.40 0.00 0.29 0.67 0.00 0.75 0.46 0.86 0.36 0.00 0.44 0.15 0.11 0.21 0.57 0.56 0.40 0.59 0.00 0.12 0.42 0.60<br />

5 Versus 6 0.50 0.00 0.22 0.22 0.20 0.24 0.43 0.62 0.75 0.86 0.44 0.62 0.40 0.33 0.35 0.42 0.42 0.47 0.00 0.80 0.17 0.53 0.53 0.55<br />

6 Versus 7 0.53 0.53 0.10 0.55 0.14 0.38 0.18 0.75 0.86 0.67 0.57 0.56 0.62 0.80 0.50 0.40 0.38 0.50 0.80 0.67 0.47 0.48 0.40 0.80<br />

7 Versus 8 0.38 0.40 0.11 0.12 0.15 0.46 0.00 0.63 0.55 0.29 0.60 0.50 0.40 0.60 0.29 0.00 0.54 0.24 0.00 0.50 0.47 0.57 0.44 0.67<br />

8 Versus 9 0.71 0.44 0.44 0.20 0.40 0.35 0.29 0.53 0.60 0.80 0.55 0.25 0.43 0.50 0.67 0.43 0.32 0.36 0.00 0.71 0.53 0.38 0.60 0.57<br />

9 Versus 10 0.57 0.57 0.27 0.31 0.46 0.38 0.20 0.67 0.33 0.50 0.57 0.57 0.25 0.57 0.33 0.22 0.75 0.63 0.00 0.67 0.71 0.42 0.31 0.50<br />

10 Versus 11 0.55 0.00 0.22 0.29 0.33 0.40 0.00 0.67 0.50 1.00 0.67 0.40 0.20 0.29 0.40 0.40 0.75 0.25 0.33 0.40 0.44 0.45 0.53 0.62<br />

11 Versus 12 0.55 0.00 0.36 0.68 0.13 0.36 0.00 0.50 0.50 0.67 0.57 0.00 0.50 0.50 1.00 0.00 0.67 0.53 0.67 0.50 0.33 0.35 0.38 0.86<br />

12 Versus 1 0.36 0.50 0.20 0.33 0.20 0.18 0.00 0.22 0.00 0.50 0.00 0.33 0.44 0.20 0.29 0.33 0.13 0.33 1.00 0.31 0.29 0.00 0.32 0.57<br />

11 Versus 2 0.33 0.00 0.36 0.40 0.25 0.27 0.00 0.43 0.00 0.00 0.22 0.00 0.33 0.00 0.15 0.22 0.27 0.14 0.57 0.53 0.36 0.29 0.14 0.86<br />

10 Versus 3 0.36 0.00 0.12 0.33 0.20 0.62 0.00 0.21 0.18 0.00 0.40 0.00 0.15 0.44 0.22 0.13 0.80 0.43 0.50 0.31 0.17 0.29 0.33 0.50<br />

9 Versus 4 0.33 0.57 0.57 0.17 0.50 0.38 0.00 0.43 0.50 0.29 0.40 0.40 0.67 0.29 0.29 0.30 0.67 0.42 0.00 0.53 0.44 0.29 0.40 0.67<br />

8 Versus 5 0.60 0.00 0.29 0.13 0.22 0.18 0.44 0.38 0.40 0.40 0.33 0.55 0.47 0.29 0.22 0.31 0.33 0.60 0.80 0.38 0.16 0.42 0.29 0.50


69 Onyema, I.C<br />

4. Discussion<br />

The physico-chemical parameters of <strong>the</strong> <strong>Iyagbe</strong> lagoon has been reported to exhibited seasonal changes<br />

that were closely related to <strong>the</strong> distributive pattern of ra<strong>in</strong>fall of <strong>the</strong> region (Onyema, <strong>and</strong> Nwankwo,<br />

2009). Accord<strong>in</strong>g to Brown <strong>and</strong> Kusemiju (2002), ra<strong>in</strong>fall pattern <strong>in</strong> <strong>the</strong> tropics creates <strong>the</strong> dry <strong>and</strong> wet<br />

season experienced <strong>in</strong> West Africa. These seasonal differences determ<strong>in</strong>e sal<strong>in</strong>ity <strong>in</strong> coastal waters <strong>and</strong><br />

hence <strong>the</strong> distribution of aquatic species. Brown <strong>and</strong> Oyenekan (1998) are of <strong>the</strong> view that sal<strong>in</strong>ity<br />

gradient <strong>in</strong> <strong>the</strong> Lagos lagoon for <strong>in</strong>stance was more pronounced <strong>in</strong> <strong>the</strong> dry season than wet season.<br />

Environmental gradients l<strong>in</strong>ked to seasons were similar <strong>in</strong> <strong>the</strong> <strong>Iyagbe</strong> <strong>and</strong> Lagos lagoons (Onyema <strong>and</strong><br />

Nwankwo, 2009). Fur<strong>the</strong>rmore, hydrological conditions <strong>and</strong> plankton spectrum <strong>in</strong> <strong>the</strong> Lagos lagoon<br />

has been reported to be governed by <strong>the</strong> sal<strong>in</strong>ity <strong>and</strong> associated environmental gradients (Akpata et al.<br />

1993; Onyema et al. 2003). Similarly for <strong>the</strong> <strong>Iyagbe</strong> lagoon, Onyema <strong>and</strong> Nwankwo (2009) reported<br />

<strong>the</strong> effect of a cont<strong>in</strong>uum of variations l<strong>in</strong>ked to ra<strong>in</strong>fall events <strong>in</strong> <strong>the</strong> wet season <strong>and</strong> tidal seawater<br />

<strong>in</strong>cursion from <strong>the</strong> Lagos habour which is prom<strong>in</strong>ent <strong>in</strong> <strong>the</strong> dry season.<br />

The phytoplankton of <strong>the</strong> <strong>Iyagbe</strong> lagoon was dom<strong>in</strong>ated by diatoms throughout <strong>the</strong> study.<br />

Similar f<strong>in</strong>d<strong>in</strong>gs have been reported by Nwankwo (1988, 1996a), Nwankwo <strong>and</strong> Ak<strong>in</strong>soji (1989),<br />

Onyema et al. (2003, 2007, 2008) for <strong>the</strong> Lagos lagoon <strong>and</strong> environs. Erondo <strong>and</strong> Ch<strong>in</strong>dah also (1991)<br />

also recorded a phytoplankton community dom<strong>in</strong>ated by diatoms which constituted more than 85% of<br />

<strong>the</strong> total phytoplankton population. In <strong>the</strong> <strong>Iyagbe</strong> lagoon phytoplankton <strong>diversity</strong> was generally higher<br />

dur<strong>in</strong>g <strong>the</strong> dry season than <strong>the</strong> wet (ra<strong>in</strong>y) season <strong>and</strong> vise versa with regard to phytoplankton densities.<br />

Specifically, blooms of Aulacosiera granulata var. angustissima was reported <strong>in</strong> <strong>the</strong> wet season.<br />

Moreso micro-algal dynamics differed measurably <strong>in</strong> <strong>the</strong> two annual cycles probably <strong>in</strong> response to<br />

variations <strong>in</strong> <strong>the</strong> water chemistry regime dur<strong>in</strong>g <strong>the</strong> two years of study. Hence, <strong>the</strong> effect of<br />

meteorological forc<strong>in</strong>gs cannot be dispensed with as controll<strong>in</strong>g factors <strong>in</strong> <strong>the</strong> availability of nutrients<br />

<strong>and</strong> flood situations that significantly determ<strong>in</strong>e phytoplankton <strong>diversity</strong> <strong>and</strong> <strong>succession</strong> (Onyema,<br />

2008).<br />

The reason for an observed reduced <strong>diversity</strong> <strong>in</strong> <strong>the</strong> phytoplankton spectrum of <strong>the</strong> Iyabge<br />

lagoon as compared to <strong>the</strong> Lagos lagoon (Nwankwo, 1988; Nwankwo et al., 2003, Onyema et al.,<br />

2003) may be as a result of <strong>the</strong> high levels of chemicals <strong>and</strong> toxic contam<strong>in</strong>ants that cont<strong>in</strong>ually f<strong>in</strong>d<br />

<strong>the</strong>ir way <strong>in</strong> to <strong>the</strong> lagoon system <strong>in</strong> this area hence reduc<strong>in</strong>g <strong>diversity</strong>. Habour related chemical <strong>and</strong> oil<br />

related <strong>in</strong>put are known to have deleterious effects on aquatic biota <strong>in</strong> <strong>the</strong> region (Chukwu, 2002;<br />

Onyema et. al., 2006). The Lagos lagoon is arguably more impacted by organic pollution than <strong>the</strong><br />

<strong>Iyagbe</strong> lagoon area (Onyema et al., 2003), even though o<strong>the</strong>r waste types impact both lagoons.<br />

Accord<strong>in</strong>g to Nwankwo (1984), <strong>the</strong> occurrence of pennate forms dur<strong>in</strong>g <strong>the</strong> ra<strong>in</strong>y season <strong>in</strong> <strong>the</strong><br />

Lagos lagoon suggests <strong>the</strong>ir dislodgement from <strong>the</strong> substratum probably dur<strong>in</strong>g high water discharge,<br />

while tidal <strong>in</strong>flow probably accounted for <strong>the</strong> appearance of some mar<strong>in</strong>e forms <strong>in</strong> <strong>the</strong> plankton at <strong>the</strong><br />

same period. The reports of Suriella ovata, S. striatula, S. splendida, Cymbella aff<strong>in</strong>is, <strong>and</strong> Amphora<br />

ovalis dur<strong>in</strong>g <strong>the</strong> survey may be slight reflections of possible stirr<strong>in</strong>g of <strong>the</strong> lagoon phytobenthic<br />

community <strong>in</strong>to <strong>the</strong> plankton. Accord<strong>in</strong>g to Onyema et. al. (2003) frequently occurr<strong>in</strong>g pennate forms<br />

<strong>in</strong> <strong>the</strong> plankton samples from <strong>the</strong> Lagos lagoon was a likely reflection of <strong>the</strong> mix<strong>in</strong>g of <strong>the</strong> shallow<br />

lagoon <strong>and</strong> phytobenthic community by tides <strong>and</strong> flood waters at different seasons. Nwankwo <strong>and</strong><br />

Ak<strong>in</strong>soji (1989), Onyema <strong>and</strong> Nwankwo (2006) <strong>and</strong> Onyema et. al. (2007) are also of similar views <strong>in</strong><br />

<strong>the</strong>re study of shallow coastal water bodies <strong>in</strong> south-western Nigeria. The presence of known mar<strong>in</strong>e<br />

forms like Amphora alata, Asterionella japonica, Ditylum brightwellii, Melosira moniliformis, M.<br />

nummuloides, Triceratium favus <strong>and</strong> <strong>the</strong> various species of Cosc<strong>in</strong>odiscus, Odontella, Chaetoceros,<br />

Rhizosolenia, Leptocyl<strong>in</strong>dricus, Thalassosira <strong>and</strong> Thalassionema fur<strong>the</strong>r confirms <strong>the</strong> <strong>in</strong>cursion of<br />

seawater to <strong>the</strong> lagoon. These species are commonly found <strong>in</strong> <strong>the</strong> sea area of Lagos lagoon (Nwankwo<br />

<strong>and</strong> Onyema, 2003; Nwankwo et al., 2004). This <strong>in</strong>flow is more discernable <strong>in</strong> <strong>the</strong> dry season as<br />

fur<strong>the</strong>r reflected by <strong>the</strong> phytoplankton spectrum <strong>and</strong> water chemistry characteristics (Nwankwo, 1988,<br />

1996a, 1998b, 2004a, Nwankwo <strong>and</strong> Ak<strong>in</strong>soji, 1992, Onyema et. al. 2003).


<strong>Phytoplankton</strong> <strong>diversity</strong> <strong>and</strong> <strong>succession</strong> <strong>in</strong> <strong>the</strong> <strong>Iyagbe</strong> lagoon, Lagos 70<br />

The more frequently occurr<strong>in</strong>g species encountered throughout a study by Kadiri (1999) of<br />

phytoplankton <strong>in</strong> coastal water of Nigeria was Act<strong>in</strong>optychus splendens. Kadiri (2007) has also<br />

reported taxonomic details of this species <strong>in</strong> <strong>the</strong> region. This species had a good distribution <strong>in</strong> <strong>the</strong><br />

<strong>Iyagbe</strong> lagoon. Accord<strong>in</strong>g to Kadiri (1999) Act<strong>in</strong>optychus splendens, Aulacoseira granulata <strong>and</strong><br />

Aulacoseira granulata var. angustissima f. curvata had a wide distribution <strong>in</strong> <strong>the</strong> area studied.<br />

Accord<strong>in</strong>g to <strong>the</strong> same author, <strong>the</strong> prom<strong>in</strong>ence of A. granulata <strong>in</strong> all <strong>the</strong> coastal states studied, add to<br />

<strong>the</strong> impressive array of evidence attest<strong>in</strong>g to <strong>the</strong> cosmopolitan nature of <strong>the</strong> species. Its prevalence has<br />

been reported <strong>in</strong> o<strong>the</strong>r coastal waters <strong>in</strong> Nigeria – (Lagos lagoon Fox 1957, Nwankwo, 1988, 1996a,<br />

Kadiri, 1999; Onyema et al. 2003; Eleiyele reservoir, Imevbore, 1968; River Niger Eaton, 1966; River<br />

Oshun, Egborge, 1973, 1974; Warri River, Opute, 1990).<br />

The record of Trichodesmium thiebautii, <strong>the</strong> only true mar<strong>in</strong>e cyanobacteria (Desikachary,<br />

1959) is noteworthy. Accord<strong>in</strong>g to Nwankwo et al., (2003) Trichodesmium thiebautii bloom off <strong>the</strong><br />

coastal waters of south-western Nigeria <strong>and</strong> is not an annual event <strong>and</strong> seems to be favoured by high<br />

surface water temperatures <strong>and</strong> low nutrient levels. Fur<strong>the</strong>r to this, Dugale et. al. (1964) has reported<br />

massive blooms of T. thiebautii clogg<strong>in</strong>g fish<strong>in</strong>g nets <strong>and</strong> reduc<strong>in</strong>g fish catch for <strong>the</strong> Arabian sea.<br />

Accord<strong>in</strong>g to Siver (2003), with regards to <strong>the</strong> chrysophytes, <strong>the</strong> synurophyceae are<br />

euplanktonic <strong>in</strong> nature <strong>and</strong> occur almost exclusively <strong>in</strong> freshwater habitat. Fur<strong>the</strong>rmore, <strong>the</strong> authors are<br />

of <strong>the</strong> op<strong>in</strong>ion that <strong>the</strong> most diverse floras of scaled chrysophytes are typically found <strong>in</strong> slightly acidic<br />

condition. Wujek et al. (2004) have recently listed new records of chrysophytes for Nigeria from <strong>the</strong><br />

Lekki lagoon <strong>and</strong> this <strong>in</strong>cluded Synura uvella encounted <strong>in</strong> this study but not Chrysoteppanoshaera<br />

globulifera.<br />

Aulacoseira granulata var. angustissima <strong>and</strong> Microcystis aerug<strong>in</strong>osa bloom <strong>in</strong> <strong>the</strong> wet season<br />

may be <strong>in</strong>dication of a number of situations. Nwankwo (1998) <strong>and</strong> Onyema et al. (2003) are of <strong>the</strong><br />

view that high densities of Aulacoseira granulata <strong>and</strong> Aulacoseira granulata var. augustissima<br />

recorded for <strong>in</strong>stance <strong>in</strong> <strong>the</strong> Lagos lagoon <strong>in</strong> <strong>the</strong> wet season were possibly recruited from <strong>the</strong> eastern<br />

extremes of <strong>the</strong> Lagos lagoon system known to be fresh all through <strong>the</strong> year. It is also possible that for<br />

<strong>the</strong> <strong>Iyagbe</strong> lagoon <strong>the</strong>se species are recruited from <strong>the</strong> Ologe lagoon through <strong>the</strong> Elete creek <strong>and</strong> <strong>the</strong><br />

Yewa <strong>and</strong> Badadry lagoons that are located to <strong>the</strong> west of <strong>the</strong> <strong>Iyagbe</strong> lagoon.<br />

It was also possible that reduced phytoplankton <strong>diversity</strong> <strong>and</strong> counts at some po<strong>in</strong>ts especially<br />

<strong>in</strong> <strong>the</strong> dry season may be due to graz<strong>in</strong>g effects of phytoplankton elements by shoals of planktivorous<br />

fishes <strong>in</strong> <strong>the</strong> coastal waters. Subrahmanyan (1959) suggested a similar situation <strong>in</strong> studies of <strong>the</strong><br />

phytoplankton of <strong>the</strong> West Coast of India. It is possible to <strong>in</strong>fere from this study that variations <strong>in</strong> <strong>the</strong><br />

<strong>in</strong>tensity of <strong>the</strong> ma<strong>in</strong> peak of production of phytoplankton of <strong>the</strong> <strong>Iyagbe</strong> lagoon vary from year to year.<br />

A similar feature has been recorded by Nwankwo (1984) for <strong>the</strong> Lagos lagoon, Wimpenny (1966) for<br />

<strong>the</strong> Yorkshire <strong>and</strong> Dogger Bank <strong>and</strong> Subrahmanyan (1959) for <strong>the</strong> West Coast of India.<br />

With regard to <strong>the</strong> biotic distribution <strong>and</strong> community structure of phytoplankton species of <strong>the</strong><br />

<strong>Iyagbe</strong> lagoon, it is also possible that <strong>the</strong>se quantitative fluctuations are due likely to bloom<strong>in</strong>g <strong>and</strong><br />

dom<strong>in</strong>ance of different species of diatoms dur<strong>in</strong>g periods concerned. With regard to similarity <strong>in</strong>dex<br />

(d), stations close to each o<strong>the</strong>r were more similar <strong>and</strong> this semblance was more especially after a<br />

change <strong>in</strong> season (ra<strong>in</strong>y or dry) has set <strong>in</strong>. With<strong>in</strong> <strong>the</strong> <strong>Iyagbe</strong> lagoon, stations were also very dissimilar<br />

at <strong>the</strong> start <strong>and</strong> peak of <strong>the</strong> ra<strong>in</strong>y season. Higher similarities <strong>in</strong> stations were more ovoius at periods<br />

around November <strong>and</strong> December for <strong>the</strong> dry season <strong>and</strong> July <strong>and</strong> August for <strong>the</strong> wet season <strong>in</strong> <strong>the</strong><br />

annual cycle.<br />

Some very low <strong>in</strong>dices values at <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g <strong>and</strong> end of <strong>the</strong> ra<strong>in</strong>y season may be as a result of<br />

sharp drop or rise <strong>in</strong> sal<strong>in</strong>ity which could have elim<strong>in</strong>ated some species. For <strong>in</strong>stance accord<strong>in</strong>g to<br />

Nwankwo (1996, 2004b) <strong>the</strong>re are four ecologically important periods <strong>in</strong> <strong>in</strong> <strong>the</strong> Nigeria coastal waters<br />

ow<strong>in</strong>g to <strong>the</strong> distributive pattern of ra<strong>in</strong>fall. The preponderance of very few species primarily<br />

Aulocoseira <strong>and</strong> Microcystis species <strong>in</strong> <strong>the</strong> wet season <strong>and</strong> Cosc<strong>in</strong>odiscus, Act<strong>in</strong>optycus, Odontella <strong>and</strong><br />

Parabelius species <strong>in</strong> <strong>the</strong> dry season probably accounted for low equitability values (j) <strong>in</strong> some months.<br />

In <strong>the</strong> phytoplankton spectrum, periods of low <strong>diversity</strong> <strong>in</strong>dices usually had strong dom<strong>in</strong>ance by a few<br />

species. Stations close toge<strong>the</strong>r recorded higher similarity <strong>in</strong>dex values than stations fur<strong>the</strong>r apart.


71 Onyema, I.C<br />

There were differences <strong>in</strong> <strong>the</strong> assemblages that existed between <strong>the</strong> phytoplankton spectra of<br />

<strong>the</strong> seaward part of <strong>the</strong> lagoon <strong>and</strong> those fur<strong>the</strong>r <strong>in</strong>l<strong>and</strong>. Whereas a typical mar<strong>in</strong>e flora existed for most<br />

months <strong>in</strong> <strong>the</strong> stations closer to <strong>the</strong> harbour (sea) especially <strong>in</strong> <strong>the</strong> dry season a low brackish /<br />

freshwater community existed <strong>in</strong> areas more <strong>in</strong>l<strong>and</strong> from <strong>the</strong> harbour especially <strong>in</strong> <strong>the</strong> wet season.<br />

Acknowledgement<br />

The author is grateful to <strong>the</strong> department of Mar<strong>in</strong>e Sciences, University of Lagos for logistics support<br />

<strong>and</strong> use of its facilities.<br />

References<br />

[1] Akpata, T.V.I.; Oyenekan, J.A. <strong>and</strong> Nwankwo, D.I. 1993. Impact of organic pollution on <strong>the</strong><br />

Bacterial, Plankton <strong>and</strong> Benthic Population of Lagos Lagoon, Nigeria. International Journal of<br />

Ecology <strong>and</strong> Environmental Science. 19: 73-82.<br />

[2] Bettrons, D.A.S. <strong>and</strong> Castrejon, E.S. 1999. Structure of benthic diatom assemblages from a<br />

mangrove environment <strong>in</strong> a Mexican subtropical lagoon. Biotropica. 31(1): 48 – 70.<br />

[3] Brown, C.A. <strong>and</strong> Oyenekan, J.A. 1998. Temporal variability <strong>in</strong> <strong>the</strong> structure of benthic<br />

macrofauna communities of <strong>the</strong> Lagos lagoon <strong>and</strong> harbour, Nigeria. Pol. Arch. Hydrobiol.<br />

45(1): 45 – 54.<br />

[4] Brown, C.A. <strong>and</strong> Kusemiju, K. 2002. The abundance <strong>and</strong> distribution of Capitella capitata<br />

Fabricus <strong>in</strong> <strong>the</strong> Western Part of <strong>the</strong> Lagos lagoon, Nigeria. Journal of Scientific Research <strong>and</strong><br />

Development. 7: 69 – 76.<br />

[5] Chukwu, L.O. 2002. Ecological effects of human <strong>in</strong>duced stressors on coastal ecosystems <strong>in</strong><br />

southwestern Nigeria. PIM 2002 Conference: The ocean <strong>in</strong> <strong>the</strong> New economy. Held <strong>in</strong> Cape<br />

Town, South Africa between 8 – 14, December, 2002. 61 – 70.<br />

[6] Chukwu, L. O. <strong>and</strong> Nwankwo, D. I. 2004. The impact of l<strong>and</strong> based pollution on <strong>the</strong> hydrochemistry<br />

<strong>and</strong> macrobenthic community of a tropical West African Creek. The Ekologia. 2 (1-<br />

2): 1 – 9.<br />

[7] Desikachary, T.V. 1959. Cyanophyta. Indian Council of Agric. Research, New Delhi, 686pp.<br />

[8] Dugale, R.C., Goer<strong>in</strong>g, J.J. <strong>and</strong> Rul<strong>the</strong>r, J.H. 1964. High nitrogen fixation rates <strong>in</strong> <strong>the</strong> Sargasso<br />

sea <strong>and</strong> <strong>the</strong> Arabian sea Limnol oceanoer. 9: 507-510.<br />

[9] Egborge, A.B.M. 1973. A prelim<strong>in</strong>ary checklist of <strong>the</strong> phytoplankton of Oshun River, Nigeria.<br />

Freshwater Biology. 4: 569 – 572.<br />

[10] Egborge, A.B.M. 1974. The seasonal variation <strong>and</strong> distribution of phytoplankton of Oshun<br />

River, Nigeria. Freshwater Biology. 4: 177 – 191.<br />

[11] Egborge, A.M.B. 1979. The effect of impoundment on <strong>the</strong> phytoplabnkton of <strong>the</strong> river Oshun,<br />

Nigeria. Nedwigia. 31(&2): 407 – 418.<br />

[12] Egborge, A.M.B. 1988. Water hyac<strong>in</strong>th – Biological museum. Proceed<strong>in</strong>gs of <strong>the</strong> <strong>in</strong>ternational<br />

on water Hyayac<strong>in</strong>th, Lagos 7 – 12 August, 1988. 52 – 70.<br />

[13] Emmanuel, B.E. <strong>and</strong> Onyema, I.C. 2007. The plankton <strong>and</strong> fishes of a tropical creek <strong>in</strong> southwestern<br />

Nigeria. Turkish Journal of Fisheries <strong>and</strong> Aquatic Sciences. 7(2): 105 – 114.<br />

[14] Erondu, E. S. <strong>and</strong> Ch<strong>in</strong>dah, A. C. 1991. Physico-chemical <strong>and</strong> plankton changes <strong>in</strong> a tidal fresh<br />

water station of <strong>the</strong> New Calabar River, South-eastern Nigeria. Environment <strong>and</strong> Ecology. 9<br />

(3): 561-570<br />

[15] Fox, M. 1957. A first list of mar<strong>in</strong>e algae from Nigeria. Journal of Limnological Society of<br />

Botany London. LV(365): 615-631.<br />

[16] Hendey, N.I. 1958. Mar<strong>in</strong>e diatoms from West African Ports. Journal of Royal Microscopic<br />

Society. 77: 28-88.


<strong>Phytoplankton</strong> <strong>diversity</strong> <strong>and</strong> <strong>succession</strong> <strong>in</strong> <strong>the</strong> <strong>Iyagbe</strong> lagoon, Lagos 72<br />

[17] Hendey, N.I. 1964. An <strong>in</strong>troductory account of <strong>the</strong> smaller algae of British coastal waters. Part<br />

5. Bacillariophyceae (diatoms) London. N.M.S.O. 317pp.<br />

[18] Hill, M.B. <strong>and</strong> Webb, J.E. (1958). The ecology of Lagos lagoon II. The topography <strong>and</strong><br />

physical features of <strong>the</strong> Lagos harbour <strong>and</strong> Lagos lagoon. Philosophical Transaction of Royal<br />

Society, London. 241: 307-417.<br />

[19] Imevbore, A.M.A. (1968). Planktonic algae of Eleiyele Reservoir, Nigeria. Journal of Science,<br />

Nigeria. 2: 85-90.<br />

[20] Kadiri, M.O. 1999. <strong>Phytoplankton</strong> distribution <strong>in</strong> some coastal waters of Nigeria. Nigeria<br />

Journal of Botany.12 (1): 51 – 62.<br />

[21] Kadiri, M.O. 2007. Diatoms from Nigeria: SEM exam<strong>in</strong>ation of some taxa. Algological Studies.<br />

123: 17 -33.<br />

[22] Kusemiju, K. 1988. Strategies for effective management of water hyac<strong>in</strong>th <strong>in</strong> <strong>the</strong> creeks <strong>and</strong><br />

lagoons of south-western Nigeria. Proceed<strong>in</strong>gs of <strong>the</strong> <strong>in</strong>ternational on water Hyayac<strong>in</strong>th, Lagos<br />

7 – 12 August, 1988. 39 – 45.<br />

[23] Nwankwo, D.I. 1984. Seasonal changes of phytoplankton of Lagos lagoon <strong>and</strong> <strong>the</strong> adjacent sea<br />

<strong>in</strong> relation to environmental factors. Ph.D. Thesis, University of Lagos. 447pp.<br />

[24] Nwankwo, D.I. 1986. <strong>Phytoplankton</strong> of a sewage disposal site <strong>in</strong> Lagos lagoon, Nigeria 1. The<br />

algae. Nigerian Journal of Biological Sciences. 1: 89-91.<br />

[25] Nwankwo, D.I. 1988. A prelim<strong>in</strong>ary checklist of planktonic algae <strong>in</strong> Lagos lagoon Nigeria.<br />

Nigeria. Journal of Botanica l Applied Sciences. 2: 73-85.<br />

[26] Nwankwo, D.I. 1990. Contribution to <strong>the</strong> Diatom flora of Nigeria. Diatoms of Lagos lagoon<br />

<strong>and</strong> <strong>the</strong> adjacent sea. Nigerian Journal of Botany. 3: 53-70.<br />

[27] Nwankwo, D.I. 1996. <strong>Phytoplankton</strong> <strong>diversity</strong> <strong>and</strong> <strong>succession</strong> <strong>in</strong> Lagos lagoon, Nigeria. Archiv<br />

Fur Hydrobiologie. 135(4): 529-542.<br />

[28] Nwankwo, D.I. 1998. The <strong>in</strong>fluence of sawmill wood wastes on Diatom population at Okobaba<br />

Lagos, Nigeria. Nigeria Journal of Botany. 11: 16-24.<br />

[29] Nwankwo, D.I. 2004a. A Practical Guide to <strong>the</strong> study of algae. JAS Publishers, Lagos. Nigeria.<br />

84pp.<br />

[30] Nwankwo, D.I. 2004b. The Microalgae: Our <strong>in</strong>dispensable allies <strong>in</strong> aquatic monitor<strong>in</strong>g <strong>and</strong><br />

bio<strong>diversity</strong> susta<strong>in</strong>ability. University of Lagos Press. Inaugural lecture seris. 44pp.<br />

[31] Nwankwo, D.I. <strong>and</strong> Ak<strong>in</strong>soji, A. 1988. Periphyton algae of a eutrophic creek <strong>and</strong> <strong>the</strong>ir possible<br />

use as <strong>in</strong>dicator. Nigerian Journal of Botany. 1: 47-54.<br />

[32] Nwankwo, D.I. <strong>and</strong> Ak<strong>in</strong>soji, A. 1989. The Benthic Algal Community of a Sawdust Deposition<br />

Site <strong>in</strong> Lagos Lagoon. International Journal of Ecology <strong>and</strong> Environmental Sciences. 15: 197-<br />

204.<br />

[33] Nwankwo, D.I. <strong>and</strong> Onyema., I.C. 2003. A checklist of planktonic algae off Lagos coast.<br />

Journal of Scientific Research Development.9: 75 – 82.<br />

[34] Nwankwo, D.I., Onyema, I.C. <strong>and</strong> Adesalu, T.A. 2003. A survey of harmful algae <strong>in</strong> coastal<br />

waters of south-western Nigeria. Journal of Nigerian Environmental Society. 1(2): 241 – 246.<br />

[35] Nwankwo, D.I., Onyema., I.C, Labiran, C.O., Otuorumo, O.A.; Onadipe, E.I.;, Ebulu, M.O. <strong>and</strong><br />

Emubaiye, N. 2004. Notes on <strong>the</strong> observations of brown water discolouration off <strong>the</strong> light<br />

house beach, Lagos, Nigeria. Discovery <strong>and</strong> <strong>in</strong>novation. 16 (3). 111 – 116.<br />

[36] Ogbeibu, A.E. 2005. Biostatistics: A practical approach to reseach <strong>and</strong> data h<strong>and</strong>l<strong>in</strong>g. M<strong>in</strong>dex<br />

Publish<strong>in</strong>g Company limited, Ben<strong>in</strong> city, Nigeria.264pp.<br />

[37] Onyema, I.C. 2007. Mudflat microalgae of a tropical bay <strong>in</strong> Lagos, Nigeria. Asian Journal of<br />

Microbiology, Biotechnology <strong>and</strong> Environmental Sciences. 9 (4): 877 – 883.<br />

[38] Onyema, I.C. 2008. <strong>Phytoplankton</strong> biomass <strong>and</strong> <strong>diversity</strong> at <strong>the</strong> <strong>Iyagbe</strong> lagoon Lagos, Nigeria.<br />

University of Lagos, Akoka. Department of Mar<strong>in</strong>e Sciences. 266pp<br />

[39] Onyema, I.C. 2009a. Notes on <strong>the</strong> existence of an additional lagoon <strong>in</strong> South-western Nigeria:<br />

Apẹsẹ Lagoon. Journal of American Science. 5(4):151-156.


73 Onyema, I.C<br />

[40] Onyema, I.C. 2009b. The Water Chemistry, <strong>Phytoplankton</strong> Biomass (Chlorophyll a),<br />

Episammic <strong>and</strong> Periphytic Algae of <strong>the</strong> Apese Lagoon, Lagos. Report <strong>and</strong> Op<strong>in</strong>ion. 1(5): 31 –<br />

40.<br />

[41] Onyema, I.C. 2009c. Pollution <strong>and</strong> <strong>the</strong> ecology of coastal waters of Nigeria Dolps <strong>and</strong> Bolps<br />

Investment Limited, Lagos, Nigeria. 216pp.<br />

[42] Onyema, I.C. <strong>and</strong> Nwankwo, D.I. 2006. The epipelic assemblage of a polluted estuar<strong>in</strong>e creek<br />

<strong>in</strong> Lagos, Nigeria. Pollution Research. 25(3): 459 - 468.<br />

[43] Onyema, I.C. <strong>and</strong> Nwankwo, D.I. 2009b. Chlorophyll a dynamics <strong>and</strong> environmental factors <strong>in</strong><br />

a tropical estuar<strong>in</strong>e lagoon. Academia Arena. 1(1) : 18 – 30.<br />

[44] Onyema, I.C., Otudeko, O.G. <strong>and</strong> Nwankwo, D.I. (2003). The distribution <strong>and</strong> composition of<br />

plankton around a sewage disposal site at Iddo, Nigeria. Journal of Scientific Research<br />

Development.7: 11-26.<br />

[45] Onyema, I.C., Nwankwo, D.I. <strong>and</strong> Oduleye, T. 2006. Diatoms <strong>and</strong> d<strong>in</strong>oflagellates of an<br />

estuar<strong>in</strong>e creek <strong>in</strong> Lagos. Journal of Scientific Research Development. 10: 73 – 82.<br />

[46] Onyema, I.C., Nwankwo, D.I., Owolabi, K.O. 2008. Temporal <strong>and</strong> spatial changes <strong>in</strong> <strong>the</strong><br />

phytoplankton dynamics at <strong>the</strong> Tarkwa-bay jetty <strong>in</strong> relation to environmental characteristics.<br />

Ecology, Environment <strong>and</strong> Conservation. 14(4): 1 – 9.<br />

[47] Onyema, 1.C., Okpara, C.U., Ogbebor, C.I. Otudeko, O. <strong>and</strong> Nwankwo, D.I. 2007.<br />

Comparative studies of <strong>the</strong> water chemistry characteristics <strong>and</strong> temporal plankton variations at<br />

two polluted sites along <strong>the</strong> Lagos lagoon, Nigeria. Ecology, Environment <strong>and</strong> Conservation.<br />

13: 1 – 12.<br />

[48] Opute, F.I. 1990. <strong>Phytoplankton</strong> flora of <strong>the</strong> Warri/Forcados Estuary of Sou<strong>the</strong>rn Nigeria.<br />

Hydrobiologia. 208: 101 – 109.<br />

[49] Palmer, M.C. 1969. A composite rat<strong>in</strong>g of algae tolerat<strong>in</strong>g organic pollution. Journal of<br />

Phycology. 5: 78-82.<br />

[50] Patrick, R. 1973. Use of algae especially diatoms <strong>in</strong> <strong>the</strong> assessment of water quality. In:<br />

Biological methods for <strong>the</strong> assessment of water quality. (ASTM STP 528). American Cociety<br />

foe Test<strong>in</strong>g <strong>and</strong> Materials, pp 76 – 95.<br />

[51] Patrick, R. <strong>and</strong> Reimer, C.W. 1966. The diatoms of <strong>the</strong> United States exclusive of Alaska <strong>and</strong><br />

Hawaii (Vol. 1). Monogr. Acad. Nat. Sci. Philadelphia. 686pp.<br />

[52] Patrick, R. <strong>and</strong> Reimer, C.W. 1975. The diatoms of <strong>the</strong> United States exclusive of Alaska <strong>and</strong><br />

Hawaii (Vol. 2, part 1). Monogr. Acad. Nat. Sci. Philadelphia. 213pp.<br />

[53] Rosowski, J.R. 2003. Photosyn<strong>the</strong>tic Euglenoids. In: Freshwater Algae of North America.<br />

Ecology <strong>and</strong> Classification, Wehr, J.D. <strong>and</strong> Sheath, R.G. (Eds). Academic Press, New York. pp<br />

383 – 422.<br />

[54] S<strong>and</strong>ison, E.E. 1966. The effect of sal<strong>in</strong>ity fluctuation on <strong>the</strong> life of Balanus pallidus strusburi<br />

(Darw<strong>in</strong>) <strong>in</strong> Lagos Habour, Nigeria. Journal of Animal Ecology. 35: 365 – 378.<br />

[55] S<strong>and</strong>ison, E.E. <strong>and</strong> Hill, M.B. 1966. The distribution of Balanus pallidus Strusburi (Darw<strong>in</strong>),<br />

Gryphaea gasar (Adanson) Dautzenbergi, Mercierella enigmatica farvel <strong>and</strong> Hydroides<br />

unc<strong>in</strong>ata (Philippi) <strong>in</strong> relation to sal<strong>in</strong>ity <strong>in</strong> Lagos Harbour <strong>and</strong> adjacent creek. Journal of<br />

Animal Ecology. 38: 235-258.<br />

[56] Smith, G.M. 1950. The fresh-water algae of <strong>the</strong> United States. McGraw-Hill, London.719pp<br />

[57] Siver, P.A. 2003. Synurophyte algae. In: Freshwater Algae of North America. Ecology <strong>and</strong><br />

Classification. Wehr, J.D. <strong>and</strong> Sheath, R.G. (Eds). Academic Press, New York. pp 523 - 558.<br />

[58] Subrahmanyan, R. 1959. Studies of <strong>the</strong> phytoplankton of <strong>the</strong> West Coast of India. Proceed<strong>in</strong>gs<br />

of <strong>the</strong> Indian Academy of Sciences. 50: 113-252.<br />

[59] Vanl<strong>and</strong><strong>in</strong>gham, S.L. 1982. Guide to <strong>the</strong> identification <strong>and</strong> environmental requirements <strong>and</strong><br />

pollution tolerance of freshwater blue-green algae (cyanophyta). U.S. Environmental Protection<br />

Agency, EPA – 60.<br />

[60] Webb, J.E. 1958. The Ecology of Lagos lagoon. 1: The lagoons of <strong>the</strong> Gu<strong>in</strong>ea Coast.<br />

Philosophical Transaction Royal Society London. Ser B: 241-283.


<strong>Phytoplankton</strong> <strong>diversity</strong> <strong>and</strong> <strong>succession</strong> <strong>in</strong> <strong>the</strong> <strong>Iyagbe</strong> lagoon, Lagos 74<br />

[61] Wimpenny, R.S. 1966. The plankton of <strong>the</strong> sea. Faber <strong>and</strong> Faber Limited, London. 426pp.<br />

[62] Whitford, L.A. <strong>and</strong> Schmacher, G.H. 1973. A manual of freshwater algae. Sparks press Raeigh.<br />

324pp.<br />

[63] Wujek, D.E., Adesalu, T.A. <strong>and</strong> Nwankwo, D.I. 2004. Silica-scaled Chrysophyceae <strong>and</strong><br />

Synurophyceae (Chrysophyta) from Nigeria. II. Lake Lekki. Tropical Freshwater Biology.<br />

12/13: 99 – 103.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!