25.12.2012 Views

Introduction to Micropile Design 101 - Arizona Ram Jack

Introduction to Micropile Design 101 - Arizona Ram Jack

Introduction to Micropile Design 101 - Arizona Ram Jack

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Introduction</strong> <strong>to</strong> <strong>Micropile</strong> <strong>Design</strong> <strong>101</strong><br />

1


Presentation for<br />

<strong>Arizona</strong> <strong>Ram</strong> <strong>Jack</strong> Seminar<br />

<strong>Introduction</strong> <strong>to</strong> micropile analysis,<br />

design, and construction with<br />

TITAN <strong>Micropile</strong>s<br />

January 15, 2010<br />

2


Agenda<br />

• <strong>Introduction</strong> <strong>to</strong> Con-Tech Systems Ltd<br />

• TITAN Injection Bore (IBO) Anchor System<br />

• Corrosion Protection<br />

• <strong>Micropile</strong> <strong>Design</strong><br />

• <strong>Micropile</strong> Geotechnical Capacity<br />

• <strong>Micropile</strong> Structural Capacity<br />

• Sample <strong>Design</strong> Calculation for TITAN <strong>Micropile</strong><br />

• <strong>Micropile</strong> Testing<br />

• Installation Equipment<br />

• The ADSC<br />

• References<br />

3


Give up?<br />

4


Polish!!<br />

5


This presentation is made by Con-Tech Systems Ltd<br />

Josef (Joe) Alter<br />

Sales and Engineering Manager<br />

Southwest Region USA<br />

Con-Tech Systems Ltd<br />

24424 Manzanita Drive<br />

Descanso, CA 91916<br />

TEL: 619-659-9931 FAX: 619-659-9932 CELL: 619-894-2616<br />

For a more detailed list of products and systems,<br />

please refer <strong>to</strong> our Web Site:<br />

www.contechsystems.com/cts-cd<br />

6


CORPORATE OFFICE & CANADIAN PLANT<br />

7


CTS Warehouses and Offices<br />

Descanso, CA<br />

in North America<br />

New Port<br />

Richey, FL<br />

8


<strong>Micropile</strong> Definition<br />

• A micropile is a small-diameter (typically less than<br />

300 mm (12 in.)), drilled and grouted nondisplacement<br />

pile that is typically reinforced.<br />

• A micropile is constructed by drilling a borehole,<br />

placing steel reinforcement, and grouting the hole.<br />

• <strong>Micropile</strong>s can withstand relatively significant axial<br />

loads and moderate lateral loads.<br />

• <strong>Micropile</strong>s are installed by methods that cause<br />

minimal disturbance <strong>to</strong> adjacent structures, soil,<br />

and the environment.<br />

• They can be installed where access is restrictive<br />

and in all soil types and ground conditions.<br />

9


Where <strong>to</strong> Consider <strong>Micropile</strong>s<br />

• project has restricted access or is located in a<br />

remote area;<br />

• required support system needs <strong>to</strong> be in close<br />

pile proximity <strong>to</strong> existing structures;<br />

• ground and drilling conditions are difficult (e.g.,<br />

karstic areas, uncontrolled fills, boulders);<br />

• pile driving would result in soil liquefaction;<br />

• vibration or noise needs <strong>to</strong> be minimized;<br />

• hazardous or contaminated spoil material will be<br />

generated during construction; and<br />

• adaptation of support system <strong>to</strong> existing<br />

structure is required.<br />

10


Typical <strong>Micropile</strong> Construction<br />

Sequence Using Casing<br />

11


Construction Type Classification<br />

12


TITAN Injection Bore Anchor<br />

System and Components<br />

13


CTS/TITAN CTS/TITAN IBO IBO System System<br />

The Flushing/Stabilizing Grout is injected<br />

through the inside of the hollow Titan bar and<br />

exits through the venturi holes in the Drill-Bit.<br />

Flushing/Stabilizing Grout stabilizes the<br />

borehole and flushes the cuttings out of the<br />

hole.<br />

The hollow bars with a typical length of 3m<br />

are coupled and drilled <strong>to</strong> required depth.<br />

After reaching the final depth, the pressure<br />

injection continuous.<br />

With the continuous Injection stage,<br />

Injection stage, the<br />

flushing grout will be replaced with a richer<br />

grout.<br />

15


Typical cross<br />

section of an<br />

exhumed IBO®<br />

Micro-Pile<br />

1- Hollow Bar<br />

2- Final Grout W/C 0.45<br />

3- Flushing grout W/C 0.7 Soil Cement mix<br />

4- Ground improvement<br />

1<br />

4<br />

2<br />

3<br />

16


Steel<br />

Hollow TITAN Bar Rod Size<br />

Area Ultimate Yield<br />

Dout/Din<br />

in 2<br />

Load Capacity Nominal<br />

Dia.<br />

kips kips in<br />

mm mm 2<br />

kN kN mm<br />

30/16 0.59 49.5 40.5 1.18<br />

382 220 180 30<br />

30/14 0.61 58.5 49.5 1.18<br />

395 260 220 30<br />

30/11 0.69 72.0 58.5 1.18<br />

446 320 260 30<br />

40/20 1.13 121.2 96.7 1.57<br />

726 539 430 40<br />

40/16 1.36 148.4 118.1 1.57<br />

879 660 525 40<br />

52/26 2.07 208.9 164.2 2.05<br />

1337 929 730 52<br />

73/53 2.53 260.9 218.1 2.87<br />

1631 1160 970 73<br />

103/78 4.88 513.2 404.8 4.06<br />

3146 2282 1800 103<br />

103/51 8.53 778.1 618.4 4.06<br />

5501 3460 2750 103<br />

130/60 14.79 1785.5 1180.6 5.12<br />

9540 7940 5250 130


CTS/TITAN Hollow Bar System<br />

Drill Bit<br />

Hollow Titan Bar<br />

Centraliser<br />

Coupling<br />

Bearing Plate<br />

Hex Nut<br />

Pipe Sleeve<br />

18


Clay Bit:<br />

Cross Cut Bit:<br />

But<strong>to</strong>n Bit:<br />

Carbide-Bit:<br />

Carbide But<strong>to</strong>n Bit:<br />

Carbide Step Bit:<br />

Drill Bit Selection<br />

Clay, sand-mixed Ground without<br />

Boulders < 50 S.P.T<br />

Dense Sand with Gravel and small<br />

Boulders > 50 S.P.T<br />

Weathered Rock, Phylit, Slate,<br />

Shale; strength < 70 MPa<br />

Dolomit, Granite, Sands<strong>to</strong>ne;<br />

strength 70-150 MPa<br />

Reinforced Concrete or Rock,<br />

strength > 70 MPa<br />

For controlled directional drilling<br />

(<strong>to</strong>lerance < 2% of the length)<br />

19


Drill Bit Selection Chart<br />

20


Full strength<br />

Couplers, <strong>to</strong> develop<br />

the ultimate strength<br />

of the bar<br />

21


Centralizers<br />

<strong>to</strong> allow for<br />

grout<br />

passage<br />

22


Spherical hex nuts,<br />

2 nuts for tension/compression piles,<br />

(bearing plate with <strong>to</strong>p and bot<strong>to</strong>m nut)<br />

23


Double nut and<br />

plate connection<br />

<strong>to</strong> grade beam<br />

24


Corrosion Protection<br />

• Epoxy Coating<br />

• Metalizing<br />

• Sacrificial steel<br />

25


Sacrificial Steel Method<br />

TITAN 40/20 hollow bar over 60 years<br />

Allowable <strong>Design</strong> Load: 72.7 kips<br />

• No Ground Aggression:<br />

6.8% Loss = 72.7 kips * 0.932 = 67.8 kips<br />

• Mild Ground Aggression:<br />

11.2% Loss = 72.7 kips * 0.888 = 64.6 kips<br />

• Aggressive Ground Aggression:<br />

18.4% Loss = 72.7 kips * 0.816 = 59.3 kips<br />

26


Sacrificial<br />

Steel<br />

Method<br />

27


TITAN Hollow bar Micro Pile<br />

D ><br />

Grout cover<br />

min. 20 mm<br />

d<br />

Drill Bit Diameter<br />

Natural Soil<br />

Stabilized and<br />

densified Soil<br />

Drill Bit<br />

Hollow Bar<br />

Soil/Cement mix<br />

2,0 x d for medium <strong>to</strong> coarse gravel<br />

1,5 x d for sand und sandy gravel<br />

1,2 x d for cohesive soil (clay)<br />

1,0 x d for weathered sands<strong>to</strong>ne, Phylit, slate<br />

28


<strong>Micropile</strong> <strong>Design</strong><br />

29


<strong>Micropile</strong> <strong>Design</strong><br />

30


<strong>Micropile</strong> <strong>Design</strong><br />

31


<strong>Micropile</strong> Structural Capacity


STRUCTURAL DESIGN OF MICROPILE<br />

UNCASED LENGTH<br />

From FHWA <strong>Design</strong> Guidelines<br />

34


Structural <strong>Design</strong> of Uncased<br />

Compression<br />

Pile (IBC)<br />

[ ]<br />

P ( 0.<br />

33f<br />

'<br />

× A ) + ( 0.<br />

4F<br />

× A )<br />

= c−allowable<br />

c−grout<br />

grout y−bar<br />

Tension<br />

P ×<br />

t−allowable<br />

= 0.<br />

6 Fy−bar<br />

A<br />

bar<br />

bar<br />

35


Load Test Structural Capacity<br />

[ ]<br />

P ( 0.<br />

85 f<br />

'<br />

× A ) + ( f × A )<br />

ult−compression<br />

ult −tension<br />

= c−grout<br />

grout y−bar<br />

[ ] f A<br />

P ×<br />

= y−bar<br />

bar<br />

bar<br />

36


<strong>Micropile</strong> Geotechnical Capacity


Geotechnical Capacity (ASD)<br />

α bond = grout <strong>to</strong> ground ultimate bond strength<br />

FS = fac<strong>to</strong>r of safety applied <strong>to</strong> the ultimate<br />

D b<br />

L b<br />

bond strength<br />

= diameter of the drill hole<br />

= bond length<br />

38


Grout <strong>to</strong> Ground<br />

Adhesion Strength<br />

39


Ultimate Bond Stress for Rock <strong>to</strong><br />

Grout as Recommended by PTI<br />

40


Ultimate Bond Stress for Cohesionless<br />

Soils <strong>to</strong> Grout as Recommended by PTI<br />

41


Ultimate Bond Stress for Cohesive Soils<br />

<strong>to</strong> Grout as Recommended by PTI<br />

42


Sample <strong>Micropile</strong> <strong>Design</strong><br />

43


Bond Stress for TITAN Anchors as<br />

Recommended by ISCHEBECK<br />

44


Sample <strong>Micropile</strong> <strong>Design</strong><br />

2<br />

2<br />

45


Sample <strong>Micropile</strong> <strong>Design</strong><br />

46


Summary<br />

The hollow bar, used as both drill rod and<br />

grout conduit, is left in the ground as<br />

reinforcing steel <strong>to</strong> transmit compressive,<br />

tensile, and lateral forces.<br />

Hollow bars have a larger section<br />

modulus than solid bars.<br />

With the continuous tremi-grout injection,<br />

100% grout cover and therefore excellent<br />

corrosion protection is accomplished,<br />

similar <strong>to</strong> reinforcing steel in concrete.<br />

49


<strong>Micropile</strong> Testing Procedures and<br />

Guidelines<br />

50


<strong>Micropile</strong> Load Tests<br />

There are four types of test loading:<br />

•compression test<br />

•uplift or tension test<br />

•lateral-load test<br />

•<strong>to</strong>rsion-load test<br />

51


Test Procedures for Ground Anchors<br />

•American Society for Testing and Materials ASTM<br />

D1143/D1143M-07. Standard test methods for deep<br />

foundations under static axial compressive load.<br />

•American Society for Testing and Materials ASTM<br />

D3689-07. Standard test methods for deep foundations<br />

under static axial tensile load.<br />

•PTI. (2004). Recommendations for prestressed rock and<br />

soil anchors. Post-Tensioning Institute, Phoenix, AZ.<br />

52


Schematic of Compression Load Test Arrangement<br />

(ASTM D1143/D1143M-07)<br />

53


Schematic of Tension Load Test Arrangement (ASTM D3689)<br />

54


Schematic of Lateral Load Test Arrangement (ASTM D3966)<br />

55


<strong>Micropile</strong> Tension Test<br />

56


<strong>Micropile</strong> and Anchor Testing<br />

57


Exhumed TITAN Anchors<br />

58


TITAN<br />

Anchor<br />

Drilled<br />

Through<br />

Boulder<br />

59


Injection Bore Strengths - Titan<br />

• Fully supported hole during drilling<br />

• Jetting action <strong>to</strong> over ream hole –<br />

uniformly or in isolated areas<br />

• Penetration of the grout beyond the bit<br />

diameter or cut hole limit<br />

• Readily adaptable length and injection<br />

process <strong>to</strong> meet site variability conditions<br />

• Somewhat self adjusting <strong>to</strong> variable soil<br />

conditions<br />

63


Equipment For Grouting and Drilling<br />

64


VS 100<br />

65


Water gauge with holding tank


Neat Water/Cement Grout Mix:<br />

Potable Water<br />

Cement Type I, II or III<br />

Drilling and Flushing - W/C = 0.7-1.0<br />

Final Grout - W/C = 0.45<br />

minimum strength at 28 days = 3,000 PSI.<br />

67


Obermann VS-63<br />

High speed high<br />

shear-colloidal<br />

mixer with two<br />

mixers, one for<br />

the thinner<br />

flushing grout<br />

and one for the<br />

final grout.<br />

Water/cement<br />

dosing system<br />

and double<br />

plunger pump;<br />

68


The use of an<br />

au<strong>to</strong>matic logging<br />

system for<br />

measurement,<br />

recording and<br />

documentation of<br />

grout volume and<br />

pressure is also<br />

recommended.<br />

69


The ADSC<br />

• International Scope;<br />

– headquartered in Dallas, Texas<br />

• 9 Regional US Chapters<br />

• Extensive membership list, significant<br />

annual operating budget with a farreaching<br />

agenda<br />

• Representing the Drilled Shaft, Anchored<br />

Earth Retention and <strong>Micropile</strong> construction<br />

technologies.<br />

70


Work of the ADSC includes<br />

– Establishing standards & specifications for the<br />

industries it serves<br />

– Promoting ethical practice<br />

– Conducting design, construction and inspection<br />

seminars, worldwide<br />

– Developing technical materials<br />

– Funding and conducting research<br />

– Providing a forum for technology transfer<br />

– Stimulating industry growth<br />

– Interfacing with corresponding industries and<br />

agencies (FHWA, OSHA, DOTs, etc.)<br />

71


Available thru the ADSC<br />

• Network of Experienced and Proven Contrac<strong>to</strong>rs,<br />

<strong>Design</strong> Professionals and Material Suppliers!<br />

• Training Opportunities<br />

– Regional seminars,<br />

– Videos and other media<br />

– <strong>Design</strong>, Safety, Personnel Training Materials<br />

• Technical Resources<br />

– On-Line Technical Library<br />

– Technical Papers<br />

– <strong>Design</strong> Manuals<br />

– Foundation Drilling Magazine<br />

– Specifications<br />

72


<strong>Micropile</strong> <strong>Design</strong> and<br />

Construction Reference<br />

Manual, 2005, FHWA<br />

NHI-05-039<br />

Standard industry<br />

reference with<br />

detailed examples of<br />

micropile design and<br />

applications<br />

References<br />

73


Soil Nail <strong>Design</strong> and<br />

Construction State-ofthe-Practice,<br />

April, 2006<br />

FHWA Review and<br />

Assessment of Hollow<br />

Core Soil Nails for<br />

Transportation Projects<br />

74


ADSC-IAF Document<br />

Buckling of <strong>Micropile</strong>s<br />

Provides guidelines for<br />

Buckling calculations<br />

of micropiles<br />

75


PTI. (2004).<br />

Recommendations<br />

for prestressed<br />

rock and soil<br />

anchors. Post-<br />

Tensioning<br />

Institute. Phoenix,<br />

AZ.<br />

76


A His<strong>to</strong>ry of<br />

<strong>Micropile</strong>s and<br />

Early Applications<br />

from the Inven<strong>to</strong>r<br />

77


Web Resources<br />

• http://www.fhwa.dot.gov/engineering/geotech<br />

/library_listing.cfm<br />

• http://www.dfi.org/<br />

• http://www.adsc-iafd.com<br />

78


Questions<br />

Comments<br />

Observations<br />

79


Thank You for Your Attention<br />

80

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!