26.12.2012 Views

Nickel-Catalyzed Reactions - Master Chimie

Nickel-Catalyzed Reactions - Master Chimie

Nickel-Catalyzed Reactions - Master Chimie

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Rhodium-<strong>Catalyzed</strong> Carbon-Carbon<br />

Bond Forming <strong>Reactions</strong> of<br />

Organometallic Compounds<br />

University of Marseille<br />

November 2008<br />

Mark Lautens<br />

Mark Scott, Nai-Wen Tseng


Outline<br />

• General introduction into transition-metal processes<br />

• Stoichiometric reactions with Rh<br />

� Organometallic reactions with Rh<br />

� Structural properties of Rh complexes<br />

� Other reactions with Rh(I) complexes<br />

• Catalytic reactions with Rh<br />

� 1,4-addition processes<br />

� 1,2-addition processes<br />

� Addition to unactivated alkenes and alkynes<br />

2


Typical Transition<br />

Metal-Mediated Processes<br />

While Ni, Pd, Pt under transmetallation at one point in a catalytic cycle,<br />

Rh(I) allows for two possible points of transmetallation in the cycle.<br />

3


Stoichiometric <strong>Reactions</strong> with Rhodium:<br />

Reaction with Organometallics<br />

Similar transmetallation reactions are<br />

possible for Rh(II) and Rh(III) species<br />

Solvent used is important as well. Price found that competing transmetallation to solvent<br />

can occur – likely via a C-H activation process:<br />

Keim, W. J. Organomet. Chem. 1967, 8, P25. Darensbourg, D. J.; Grötsch, G.; Wiergreffe, P.; Rheingold, A. L. Inorg. Chem.<br />

1987, 26, 3827. Krug, C.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 1674.<br />

Price, R. T.; Andersen, R. A.; Muetterties, E. L. J. Organomet. Chem. 1989, 376, 407.<br />

4


Structural Properties of<br />

Aryl-Rhodium Complexes<br />

Ortho substituents bearing lone pairs can<br />

chelate to Rh, stabilizing the complex (X-ray proof):<br />

Phenyl group exists orthogonal to the square plane to<br />

minimize steric interactions. Ortho substituents<br />

prevent coordination of vacant sites<br />

→ can impact reaction progress<br />

Dahlenburg, L.; Yardimciolu, A.; Hock, N. Inorg. Chim. Acta. 1984, 89, 213. Hay-Motherwell, R. S.; Koschmieder, S. U.;<br />

Wilkinson, G.; Hussain-Bates, B.; Hursthouse, M. B. J. Chem. Soc., Dalton Trans. 1991, 2821. Boyd, S. E.; Field, L. D.;<br />

Hambley, T. W.; Partidge, M. G. Organometallics 1993, 12, 1720. Yamamoto, M.; Onitsuka, K.; Takahashi, S.<br />

Organometallics 2000, 19, 4669. Jones, R. A.; Wilkinson, G. J. Chem. Soc., Dalton Trans. 1979, 472.<br />

5


<strong>Reactions</strong> of Rhodium-Aryl Complexes:<br />

Protolytic Cleavage<br />

In particular, aryl-Rh (and Ir) bonds are succeptable to protolytic cleavage.<br />

Occurs via OA/RE sequence:<br />

Observed spectroscopically!!<br />

Protodemetallation can also occur via a similar pathway using H 2<br />

Boyd, S. E.; Field, L. D.; Hambley, T. W.; Partidge, M. G. Organometallics 1993, 12, 1720.<br />

Arpac, E.; Mirzael, F.; Yardimcioglu, A.; Dahlenburg, L. Z. Anorg. Allg. Chem. 1984, 519, 148.<br />

Keim, W. J. Organomet. Chem. 1968, 14, 179.<br />

6


<strong>Reactions</strong> of Rhodium-Aryl Complexes:<br />

Migratory Insertion <strong>Reactions</strong> (1)<br />

Keim reported the migratory insertion of CO:<br />

CO 2 has also been used:<br />

Keim, W. J. Organomet. Chem. 1969, 19, 161. Darensbourg, D. J.; Grötsch, G.; Wiergreffe, P.; Rheingold, A. L. Inorg. Chem. 1987, 26,<br />

3827.<br />

Kolomnikov, L. S.; Gusev, A. O.; Belopotapova, T. S.; Grigoryam, M. Kh.; Lysyak, T. V.; Struchkov, Yu. T.; Vol’pin, M. E. J. Organomet.<br />

Chem. 1974, 69, C10.<br />

7


<strong>Reactions</strong> of Rhodium-Aryl Complexes:<br />

Migratory Insertion <strong>Reactions</strong> (2)<br />

Insertion into other carbonyl containing compounds have been reported:<br />

Krug, C.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 1674.<br />

8


<strong>Reactions</strong> of Rhodium-Aryl Complexes:<br />

C-C Formation via a Change in Oxidation State<br />

Hegedus, L. S.; Lo, S. M.; Bloss, D. E. J. Am. Chem. Soc. 1973, 95, 3040.<br />

Hegedus, L. S.; Kendall, P. M.; Lo, S. M.; Sheats, J. R. J. Am. Chem. Soc. 1975, 97, 5448.<br />

Schwartz, J.; Hart, D. W.; Holden, J. L. J. Am. Chem. Soc. 1972, 94, 9269.<br />

9


Catalytic 1,4-Addition to Activated Alkenes with<br />

Organoboron Nucleophiles<br />

Miyaura first reported:<br />

Later, an asymmetric variant was disclosed by Hayashi:<br />

Acrylates, α,β-unsaturated amides, alkenylphosphonates and nitroalkene<br />

acceptors can also be used.<br />

Sakai, M.; Hayashi, H.; Miyaura, N. Organometallics 1997, 16, 4229. Takaya, Y.; Ogasawara, M.; Hayashi, T.; Sakai, M. J. Am. Chem. Soc. 1998, 120,<br />

5579. Senda, T.; Ogasawara, M.; Hayashi, T. J. Org. Chem. 2001, 66, 6852. Hayashi, T.; Senda, T.; Takaya, Y.; Ogasawara, M. J. Am. Chem. Soc.,<br />

1999, 121, 11591. Hayashi, T.; Senda, T.; Ogasawara, M. J. Am. Chem. Soc. 2000, 122, 10716.<br />

10


Catalytic Cycle for Rhodium-<strong>Catalyzed</strong><br />

1,4-Addition<br />

Hayashi, T.; Takahashi, M.; Takaya, Y.; Ogasawara, M. J. Am. Chem. Soc. 2002, 124, 5052.<br />

11


Rhodium-catalyzed 1,4-Addition:<br />

Reaction to Heteroaromatic Alkenes<br />

Role of ortho nitrogen atom:<br />

Lautens, M.; Roy, A.; Fukuoka, K.; Fagnou, K.; Martin-Matute, B. J. Am. Chem. Soc. 2001, 123, 5358.<br />

12


Rhodium-<strong>Catalyzed</strong> 1,4-Addition with<br />

Organostannane and Organosilane Nucleophiles<br />

Oi reported the use of organostannanes:<br />

Mori reported the use of organosilanes:<br />

Heck products could be obtained by tuning the reaction conditions.<br />

Oi, S.; Moro, M.; Ono, S.; Inoue, Y. Chem. Lett 1998, 83. Oi, S.; Moro, M.; Ito, H.; Honma, Y.; Miyano, S.; Inoue, Y.<br />

Tetrahedron 2002, 58, 91. Mori, A.; Danda, Y.; Fujii, T.; Hirabayashi, K.; Osakada, K. J. Am. Chem. Soc. 2001, 123, 10774.<br />

Huang, T.-S.; Li, C.-J. Chem. Commun. 2001, 2348.<br />

13


Rhodium-<strong>Catalyzed</strong> 1,4-Addition with<br />

Organostannane and Organosilane Nucleophiles<br />

Mori, A.; Danda, Y.; Fujii, T.; Hirabayashi, K.; Osakada, K. J. Am. Chem. Soc. 2001, 123, 10774.<br />

Huang, T.-S.; Li, C.-J. Chem. Commun. 2001, 2348.<br />

14


Rhodium-catalyzed 1,2-Addition<br />

Reaction with Organoboron Nucleophiles<br />

First report by Miyaura:<br />

Recently, asymmetric variant by Feringa:<br />

Reaction with imine substrate:<br />

Sasai, M.; Ueda, M.; Miyaura, N. Angew. Chem., Int. Ed. Engl. 1998, 37, 3279. Ueda, M.; Miyaura, N. J. Org. Chem. 2000,<br />

65, 4450. Jagt, R. B. C.; Toullec, P. Y.; de Vries, J. G.; Feringa, B. L.; Minnaard, A. J. Org. Biomol. Chem. 2006, 4, 773. Ueda,<br />

M.; Miyaura, N. J. Organomet. Chem. 2000, 595, 31. Ueda, M.; Miyaura, N. Synlett 2000, 1637.<br />

15


Rhodium-<strong>Catalyzed</strong> 1,2-Addition:<br />

Catalytic Cycle<br />

Sasai, M.; Ueda, M.; Miyaura, N. Angew. Chem., Int. Ed. Engl. 1998, 37, 3279. Ueda, M.; Miyaura, N. J. Org. Chem. 2000,<br />

65, 4450. Jagt, R. B. C.; Toullec, P. Y.; de Vries, J. G.; Feringa, B. L.; Minnaard, A. J. Org. Biomol. Chem. 2006, 4, 773. Ueda,<br />

M.; Miyaura, N. J. Organomet. Chem. 2000, 595, 31. Ueda, M.; Miyaura, N. Synlett 2000, 1637.<br />

16


Rhodium-<strong>Catalyzed</strong> 1,2-Addition with<br />

Organostannane nucleophiles<br />

Asymmetric variant by Hayashi:<br />

Oi, S.; Moro, A.; Inoue, Y. Chem. Commun. 1997, 1621. Hayashi, T.; Ishigedani, M. J. Am. Chem. Soc. 2000, 122, 976.<br />

Hayashi, T.; Ishigedani, M. Tetrahedron 2001, 57, 2589.<br />

17


Rhodium-catalyzed 1,2-Addition<br />

with Organoboron Nucleophiles<br />

How Rh-H re-enters the catalytic cycle remains unknown.<br />

Oi, S.; Moro, A.; Inoue, Y. Chem. Commun. 1997, 1621. Hayashi, T.; Ishigedani, M. J. Am. Chem. Soc. 2000, 122, 976.<br />

Hayashi, T.; Ishigedani, M. Tetrahedron 2001, 57, 2589.<br />

18


Rhodium-<strong>Catalyzed</strong> 1,2-Addition<br />

with Organosilane Nucleophiles<br />

Role of added fluoride in the catalytic cycle:<br />

Oi, S.; Moro, A.; Inoue, Y. Organometallics 2001, 20, 1036.<br />

19


<strong>Reactions</strong> with Unactivated Alkenes<br />

Non-styrenic alkenes were low yielding<br />

due to competing olefin isomerization<br />

Lautens, M.; Roy, A.; Fukuoka, K.; Fagnou, K.; Martin-Matute, B. J. Am. Chem. Soc. 2001, 123, 5358.<br />

20


<strong>Reactions</strong> with Unactivated Alkenes:<br />

Mechanism<br />

Reaction is believed to occur via a Heck-type process:<br />

Lautens, M.; Roy, A.; Fukuoka, K.; Fagnou, K.; Martin-Matute, B. J. Am. Chem. Soc. 2001, 123, 5358.<br />

21


<strong>Reactions</strong> with Unactivated Alkenes (2)<br />

Rh can also be used to add boronic acids to unactivated oxabicycles.<br />

Murakami first reported:<br />

Simultaneously, an asymmetric variant was disclosed:<br />

Murakami, M.; Igawa, H. Chem. Commun. 2002, 390.<br />

Lautens, M.; Dockendorff, C.; Fagnou, K.; Malicki, A. Org. Lett. 2002, 4, 1311.<br />

22


<strong>Reactions</strong> with Unactivated Alkenes (2)<br />

Murakami, M.; Igawa, H. Chem. Commun. 2002, 390.<br />

Lautens, M.; Dockendorff, C.; Fagnou, K.; Malicki, A. Org. Lett. 2002, 4, 1311.<br />

23


<strong>Reactions</strong> with Unactivated Alkynes<br />

Hayashi reported an interesting mechanistic observation:<br />

Hayashi, T.; Inoue, K.; Taniguchi, N.; Ogasawara, M. J. Am. Chem. Soc. 2001, 123, 9918.<br />

24


<strong>Reactions</strong> with Unactivated Alkynes:<br />

Mechanism<br />

Based on these observations:<br />

Hayashi, T.; Inoue, K.; Taniguchi, N.; Ogasawara, M. J. Am. Chem. Soc. 2001, 123, 9918.<br />

25


Rhodium-<strong>Catalyzed</strong> Ullman-type Couplings<br />

Larock reported the use organomercurials to prepare dienes and biaryls:<br />

In the presence of CO:<br />

Organobismuths have also been used by Uemura to prepare ketones<br />

Larock, R. C.; Bernhardt, J. C. J. Org. Chem. 1977, 42, 1680. Heck, R. F. J. Am. Chem. Soc. 1968, 90, 5546. Larock, R. C.;<br />

Hershberger, S. S. J. Org. Chem. 1980, 45, 3840. Uemura et al. Chem. Commun 1992, 453 and Bull. Chem. Soc. Jpn.<br />

1995, 68, 950.<br />

26


Rhodium-<strong>Catalyzed</strong> Ullman-type Couplings:<br />

Mechanisms<br />

Larock, R. C.; Bernhardt, J. C. J. Org. Chem. 1977, 42, 1680.<br />

Heck, R. F. J. Am. Chem. Soc. 1968, 90, 5546.<br />

Larock, R. C.; Hershberger, S. S. J. Org. Chem. 1980, 45, 3840.<br />

27


Rhodium-<strong>Catalyzed</strong> Ketone Formation<br />

with Boronic Acids<br />

Frost reported the formation of ketones with Ac 2 O:<br />

Other boronic acid sources have also been used (e.g. Ph 4 BNa)<br />

Frost, C. G.; Wadsworth, K. J. Chem. Commun. 2001, 2316.<br />

Oguma, K.; Miura, M.; Satoh, T.; Nomura, M. J. Organomet. Chem. 2002, 648, 297.<br />

28


Secondary Alkyl Halides in Transition Metal<br />

<strong>Catalyzed</strong> Cross-Coupling <strong>Reactions</strong><br />

University of Marseille<br />

November 2008<br />

Mark Lautens, Alena Rudolph<br />

University of Toronto<br />

Angew. Chem. Mini-Review, 2008


The last three decades have seen huge advances in cross-coupling reactions of aryl and alkeny electrophiles with<br />

organometallic reagents :<br />

Suzuki:<br />

Hiyama:<br />

Stille:<br />

Sonogashira:<br />

Transition Metal <strong>Catalyzed</strong> Cross-Coupling<br />

<strong>Reactions</strong> – An Introduction<br />

Metal-<strong>Catalyzed</strong> Cross-Coupling <strong>Reactions</strong> (Eds: A. De Meijere, F. Diederich), 2 nd ed., WILEY-VCH, Weinheim, 2004.<br />

2


Transition Metal <strong>Catalyzed</strong> Cross-Coupling<br />

<strong>Reactions</strong> – An Introduction<br />

For sp 2 -hybridized carbon electrophiles:<br />

<strong>Reactions</strong> of C(sp 2 )-X electrophiles are well<br />

developed:<br />

• Ease of oxidative addition of the metal to the<br />

C(sp 2 )-X bond.<br />

• <strong>Reactions</strong> are selective due to the lack of βhydride<br />

elimination pathways.<br />

Metal-<strong>Catalyzed</strong> Cross-Coupling <strong>Reactions</strong> (Eds: A. De Meijere, F. Diederich), 2 nd ed., WILEY-VCH, Weinheim, 2004.<br />

3


Transition Metal <strong>Catalyzed</strong> Cross-Coupling<br />

<strong>Reactions</strong> of Alkyl Electrophiles<br />

For sp 3 -hybridized carbon electrophiles:<br />

Challenges associated with metal-catalyzed cross-coupling<br />

reactions of β-hydrogen-containing alkyl halides:<br />

• Slow oxidative addition (C(sp 3 )-X bond is more electron<br />

rich).<br />

• Rapid intramolecular β-hydride elimination and<br />

hydrodehalogenation vs. intermolecular transmetallation.<br />

• Many methods have now been developed with primary<br />

alkyl halides.<br />

• Secondary alkyl halides are more sterically encumbered.<br />

• Methods for the coupling of secondary alkyl halides have dramatically increased over the last 5 years<br />

• <strong>Nickel</strong>, iron, cobalt catalysis is common – radical mechanisms.<br />

• Palladium is much more difficult – two-electron redox process.<br />

For recent reviews see: A. C. Frisch, M. Beller, Angew. Chem. Int. Ed. 2005, 44, 674-688; M. R. Netherton, G. C. Fu in Topics in Organometallic<br />

Chemistry: Palladium in Organic Synthesis (Ed.: J. Tsuji), Springer, New York, 2005, pp. 85-108.<br />

4


Cross-Coupling <strong>Reactions</strong> of Primary Alkyl<br />

Electrophiles – A Brief Overview<br />

Most success is with palladium:<br />

• Seminal report by Suzuki, 1992<br />

• Further progress by Fu:<br />

Suzuki coupling can also be<br />

accomplished with boronic<br />

acids: J. H. Kirchhoff, M. R.<br />

Netherton, I. D. Hills, G. C.<br />

Fu, J. Am. Chem. Soc.<br />

2002, 124, 13662.<br />

T. Ishiyama, S. Abe, N. Miyaura, A. Suzuki, Chem. Lett. 1992, 691-694; M. R. Netherton, C. Dai, K. Neuschütz, G. C. Fu, J. Am. Chem. Soc.<br />

2001, 123, 10099; J. H. Kirchhoff, C. Dai, G. C. Fu, Angew. Chem. Int. Ed. 2002, 41, 1945; M. R. Netherton, G. C. Fu, Angew. Chem. Int. Ed.<br />

2002, 41, 3910.<br />

5


Cross-Coupling <strong>Reactions</strong> of Primary Alkyl<br />

Electrophiles – A Brief Overview<br />

• Use of bulky, electron-rich phosphine ligands, or NHC’s is important in most methodologies.<br />

• Some other succuessful Pd-catalyzed coupling reactions of primary alkyl halides:<br />

• Negishi, J. Am. Chem. Soc. 2003, 125, 12527.<br />

• Coupling of organozirconium reagents, J. Am. Chem. Soc. 2004, 126, 82.<br />

• Stille, J. Am. Chem. Soc. 2003, 125, 3718; Angew. Chem. Int. Ed. 2003, 42, 5079.<br />

• Hiyama, J. Am. Chem. Soc. 2003, 125, 5616.<br />

• Kumada, Angew. Chem. Int. Ed. 2002, 41, 4056.<br />

• Sonogashira, J. Am. Chem. Soc. 2003, 125, 13642.<br />

• For a complete overview, see: M. R. Netherton, G. C. Fu in Topics in Organometallic Chemistry: Palladium in Organic<br />

Synthesis (Ed.: J. Tsuji), Springer, New York, 2005, pp. 85-108.<br />

6


Advances with nickel:<br />

Cross-Coupling <strong>Reactions</strong> of Primary Alkyl<br />

Electrophiles – A Brief Overview<br />

• Seminal report by Knochel in 1995:<br />

• Double bond is important for cross-coupling:<br />

• Ni(II)-olefin complex is more amenable to transmetallation-reductive elimination.<br />

• π-acidity of olefin removes electron density from Ni, facilitates reductive elimination.<br />

A. Devasagayaraj, T. Stüdemann, P. Knochel, Angew. Chem. Int. Ed. Engl. 1995, 34, 2723-2725; R. Giovannini, T. Stüdemann, A. Devasagayaraj, G.<br />

Dussin, P. Knochel, J. Org. Chem. 1999, 64, 3544-3553; R. Giovannini, T. Stüdemann, G. Dussin, P. Knochel, Angew. Chem. Int. Ed. Engl. 1998, 37,<br />

2387-2390; R. Giovannini, P. Knochel, J. Am. Chem. Soc. 1998, 120, 11186-11187.<br />

7


Cross-Coupling <strong>Reactions</strong> of Primary Alkyl<br />

Electrophiles – A Brief Overview<br />

• Further studies lead to the development of methods that did not require a pendant olefin on the alkyl halide:<br />

• For an overview, including Ni-catalyzed Suzuki, Hiyama and Kumada couplings of priamary alkyl halides, see: M. R.<br />

Netherton, G. C. Fu, Adv. Synth. Catal. 2004, 346, 1525-1532.<br />

A. Devasagayaraj, T. Stüdemann, P. Knochel, Angew. Chem. Int. Ed. Engl. 1995, 34, 2723-2725; R. Giovannini, T. Stüdemann, A. Devasagayaraj, G.<br />

Dussin, P. Knochel, J. Org. Chem. 1999, 64, 3544-3553; R. Giovannini, T. Stüdemann, G. Dussin, P. Knochel, Angew. Chem. Int. Ed. Engl. 1998, 37,<br />

2387-2390; R. Giovannini, P. Knochel, J. Am. Chem. Soc. 1998, 120, 11186-11187.<br />

8


1) Negishi Coupling<br />

2) Hiyama Coupling<br />

<strong>Reactions</strong> of Secondary Alkyl Halides:<br />

<strong>Nickel</strong>-<strong>Catalyzed</strong> <strong>Reactions</strong><br />

J. Zhou, G. C. Fu, J. Am. Chem. Soc. 2003, 125, 14726-14727; N. A. Strotman, S. Sommer, G. C. Fu, Angew.Chem. Int. Ed. 2007, 46,<br />

3556-3558.<br />

9


3) Suzuki Coupling<br />

<strong>Nickel</strong>-<strong>Catalyzed</strong> <strong>Reactions</strong><br />

F. González-Bobes, G. C. Fu, J. Am. Chem. Soc. 2006, 128, 5360-5361.<br />

10


4) Stille Coupling<br />

<strong>Nickel</strong>-<strong>Catalyzed</strong> <strong>Reactions</strong><br />

• Reagent preparation is easy!<br />

D. A. Powell, T. Maki, G. C. Fu, J. Am. Chem. Soc. 2005, 127, 510-511.<br />

11


5) Asymmetric Variants – reactions are stereoconvergent.<br />

• Negishi:<br />

<strong>Nickel</strong>-<strong>Catalyzed</strong> <strong>Reactions</strong><br />

• Ni(II) systems are insensitive to moisture and oxygen.<br />

C. Fischer, G. C. Fu, J. Am. Chem. Soc. 2005, 127, 4594-4595; F. O. Arp, G. C. Fu, J. Am. Chem. Soc. 2005, 127, 10482-10483; S. Son, G. C.<br />

Fu, J. Am. Chem. Soc. 2008, 130, 2756-2757.<br />

12


<strong>Nickel</strong>-<strong>Catalyzed</strong> <strong>Reactions</strong><br />

• Asymmetric Negishi reaction #2:<br />

F. O. Arp, G. C. Fu, J. Am. Chem. Soc. 2005, 127, 10482-10483.<br />

13


<strong>Nickel</strong>-<strong>Catalyzed</strong> <strong>Reactions</strong><br />

• Asymmetric Negishi reaction #3:<br />

• <strong>Reactions</strong> of allylic chlorides occur preferentially at the least sterically hindered carbon and at the γ-position for<br />

conjugated systems.<br />

S. Son, G. C. Fu, J. Am. Chem. Soc. 2008, 130, 2756-2757.<br />

14


<strong>Nickel</strong>-<strong>Catalyzed</strong> <strong>Reactions</strong><br />

• Asymmetric Suzuki reaction:<br />

• Asymmetric Suzuki coupling requires a homobenzylic bromide for good enantioselectivity.<br />

B. Saito, G. C. Fu, J. Am. Chem. Soc. 2008, 130, 6694-6695.<br />

15


<strong>Nickel</strong>-<strong>Catalyzed</strong> <strong>Reactions</strong><br />

• Asymmetric Hiyama Coupling:<br />

• Ligand, fluoride activator and organosilane all important for achieving high enantioselectivity.<br />

• Reaction is sensitive to the steric bulk of the ester group and the alkyl group.<br />

X. Dai, N. A. Strotman, G. C. Fu, J. Am. Chem. Soc. 2008, 130, 3302-3303.<br />

16


<strong>Nickel</strong>-<strong>Catalyzed</strong> <strong>Reactions</strong><br />

<strong>Nickel</strong>-catalyzed reaction of secondary alkyl halides are generally thought to proceed by radical mechanisms.<br />

• Reaction of both exo- and endo-2-bromonorbornane give the exo-product as the major one, suggesting that both<br />

substrates produce the same planar intermediate.<br />

• Intramolecular cyclization occurs before cross-coupling. These reactions give the same cis/trans selectivity regardless of<br />

coupling partner, or ligand used in the reaction. It is also the same cis/trans selectivity observed under known radical<br />

conditions.<br />

J. Zhou, G. C. Fu, J. Am. Chem. Soc. 2004, 126, 1340-1341; F. González-Bobes, G. C. Fu, J. Am. Chem. Soc. 2006, 128, 5360-5361; D. A. Powell, G. C. Fu, J.<br />

Am. Chem. Soc. 2004, 126, 7788-7789; D. A. Powell, T. Maki, G. C. Fu, J. Am. Chem. Soc. 2005, 127, 510-511; G. Pandey, K. S. S. P. Rao, D. K. Palit, J. P.<br />

Mittal, J. Org. Chem. 1998, 63, 3968-3978; V. B. Phapale, E. Buñuel, M. García-Iglesias, D. J. Cárdenas, Angew. Chem. Int. Ed. 2007, 46, 8790-8795.<br />

17


Proposed catalytic cycle:<br />

<strong>Nickel</strong>-<strong>Catalyzed</strong> <strong>Reactions</strong><br />

• Density functional theory calculations show that a traditional two-electron redox mechanism is energetically unfavourable.<br />

Ni(II)-alkyl cation bound<br />

to a reduced terpyridine<br />

lignad, containing a<br />

single unpaired electron.<br />

The unpaired electron is<br />

mostly ligand-bound.<br />

Fast reductive<br />

elimination of the alkyl<br />

groups gives the coupled<br />

product.<br />

Reduction of the alkyl<br />

halide via single electron<br />

transfer from the ligand<br />

to give an alkyl radical<br />

Oxidative addition of the<br />

alkyl radical occurs to<br />

give a Ni(III) dialkyl<br />

radical. If the ligand is<br />

chiral, enantioselective<br />

addition of the radical<br />

may take place to afford<br />

a chiral product.<br />

G. D. Jones, J. L. Martin, C. McFarland, O. R. Allen, R. E. Hall, A. D. Haley, R. J. Brandon, T. Konovalova, P. J. Desrochers, P. Pulay, D. A. Vicic, J.<br />

Am. Chem. Soc. 2006, 128, 13175-13183; X. Lin, D. L. Phillips, J. Org. Chem. 2008, 73, 3680-3688.<br />

18


1) Kumada Coupling<br />

With aryl Grignards:<br />

With alkenyl Grignards:<br />

Iron-<strong>Catalyzed</strong> <strong>Reactions</strong><br />

A variety of conditions have<br />

been developed for the ironc<br />

a t a l y z e d c o u p l i n g o f<br />

secondary alkyl halides with<br />

aryl Grignard reagents. A<br />

summary can be found in<br />

the following Mini-Review:<br />

A. Rudolph, M. Lautens,<br />

Angew. Chem. Int. Ed., DOI:<br />

anie.200803611, in press.<br />

The reaction did not affect<br />

the Z/E ratio of the starting<br />

alkenylmagnesium bromides,<br />

as the same ratio was found<br />

in the coupled products.<br />

M. Nakamura, K. Matsuo, S. Ito, E. Nakamura, J. Am. Chem. Soc. 2004, 126, 3686-3687; G. Cahiez, C. Duplais, A. Moyeux, Org. Lett. 2007, 9,<br />

3253-3254.<br />

19


Iron-<strong>Catalyzed</strong> <strong>Reactions</strong><br />

• Mechanism(s) of iron-catalyzed reacitons remain elusive.<br />

• It has been postulated that highly-reduced iron-magnesium clusters [Fe(MgX) 2 ] n containing an Fe(-II) centre are the<br />

catalytically active species.<br />

• To test this hypothesis, Fürstner used a well-defined Fe(-II) complex to see if it would act as a catalyst in the Kumada<br />

coupling of secondary alkyl halides.<br />

• Fe(-II) is a highly active coupling catalyst.<br />

• Cross-coupling out-competes nucleophilic attack of the Grignard reagent on functional groups such as ketones, esters,<br />

chlorides and nitriles.<br />

• All known oxidation states of iron were tested (+3, +2, +1, 0, -2). All are catalytically competent, but Fe(-II) is the most<br />

active.<br />

R. Martin, A. Fürstner, Angew.Chem. Int. Ed. 2004, 43, 3955-3957; A. Fürstner, R. Martin, H. Krause, G. Seidel, R. Goddard, C. W. Lehmann, J.<br />

Am. Chem. Soc. 2008, 130, 8773-8787.<br />

20


2) Negishi Coupling<br />

Iron-<strong>Catalyzed</strong> <strong>Reactions</strong><br />

T h e p r e s e n c e o f a<br />

magnesium salt from the<br />

preparation of the diorganozinc<br />

reagent is required for<br />

conversion.<br />

Mechanistic details:<br />

• Proof for radical mechanisms:<br />

• Reaction of chiral secondary alkyl halides lead to racemic coupled products.<br />

• Reaction of exo- and endo-2-bromonorbornane lead to the exo-coupled product as the major one (see Ni-cat rxns).<br />

• Reaction of substrates with a pendant olefin undergo intramolecular cyclization prior to coupling (see Ni-cat rxns).<br />

• Reaction of (bromomethyl)cyclopropane leads to the ring-opened product:<br />

M. Nakamura, S. Ito, K. Matsuo, E. Nakamura, Synlett 2005, 1794-1798; M. Nakamura, K. Matsuo, S. Ito, E. Nakamura, J. Am. Chem. Soc.<br />

2004, 126, 3686-3687; R. Martin, A. Fürstner, Angew.Chem. Int. Ed. 2004, 43, 3955-3957.<br />

21


Iron-<strong>Catalyzed</strong> <strong>Reactions</strong><br />

• Further studies by Fürstner and co-workers show that carbon─carbon bond formation can occur by more than one<br />

mechanism.<br />

• Redox couples of the formal oxidation states Fe(I)/Fe(III), Fe(0)/Fe(II) and Fe(-II)/Fe(0) are all possible.<br />

• All three manifolds are interconnected, making it difficult to determine the dominant redox cycle.<br />

A. Fürstner, R. Martin, H. Krause, G. Seidel, R. Goddard, C. W. Lehmann, J. Am. Chem. Soc. 2008, 130, 8773-8787.<br />

22


1) Kumada Coupling<br />

With allyl Grignards:<br />

With aryl Grignards:<br />

Cobalt-<strong>Catalyzed</strong> <strong>Reactions</strong><br />

• The coupling of aryl Grignard reagents is more efficient with a diamine ligand (3) than a phosphine ligand (complete within<br />

15 minutes).<br />

• Some functional group compatibility such as an ester moiety in the alkyl halide, is observed.<br />

T. Tsuji, H. Yorimitsu, K. Oshima, Angew.Chem. Int. Ed. 2002, 41, 4137-4139; H. Ohmiya, H. Yorimitsu, K. Oshima, J. Am. Chem. Soc. 2006,<br />

128, 1886-1889.<br />

23


Cobalt-<strong>Catalyzed</strong> <strong>Reactions</strong><br />

H. Ohmiya, H. Yorimitsu, K. Oshima, J. Am. Chem. Soc. 2006, 128, 1886-1889.<br />

Substrates bearing a pendant olefin undergo<br />

intramolecular cyclization prior to coupling (a<br />

radical mechanism is operative).<br />

Phenylation of some cyclic derivatives display<br />

some enantioselectivity with a chiral ligand,<br />

indicating that it might be possible to develop<br />

asymmetric processes from racemic starting<br />

materials.<br />

Phenylations of Ueno-Stork acetals proceeds<br />

with high diastereoselectivity. No evidence for<br />

β-alkoxy elimination (radical mechanism is<br />

operative).<br />

24


2) Heck-Type Coupling<br />

With styrene derivatives:<br />

With terminal olefins,<br />

Intramolecular:<br />

Cobalt-<strong>Catalyzed</strong> <strong>Reactions</strong><br />

• The addition of Me 3 SiCH 2 MgBr is required for conversion, but it is not incorporated in the final product. Other trialkylsilylmethyl<br />

Grignard reagents work, but alkyl or phenyl Grignard reagents do not.<br />

• The Grignard reagent may coordinate to the catalyst, making it more electron rich.<br />

• The reaction is tolerant of some functional groups due to the low reactivity of Me 3 SiCH 2 MgBr.<br />

Y. Ikeda, T. Nakamura, H. Yorimitsu, K. Oshima, J. Am. Chem. Soc. 2002, 124, 6514-6515; T. Fujioka, T. Nakamura, H. Yorimitsu, K. Oshima,<br />

Org. Lett. 2002, 4, 2257-2259.<br />

25


Cobalt-<strong>Catalyzed</strong> <strong>Reactions</strong><br />

Four equiv of Grignard reagent (relative to<br />

Co) are necessary to afford the catalytically<br />

active species (and an equiv of biphenyl).<br />

Complex A is a 17-electron<br />

complex, active for a single<br />

electron transfer to the substrate.<br />

K. Wakabayashi, H. Yorimitsu, K. Oshima, J. Am. Chem. Soc. 2001, 123, 5374-5375; b) H. Ohmiya, K. Wakabayashi, H. Yorimitsu, K. Oshima,<br />

Tetrahedron 2006, 62, 2207-2213; W. Affo, H. Ohmiya, T. Fujioka, Y. Ikeda, T. Nakamura, H. Yorimitsu, K. Oshima, Y. Imamura, T. Mizuta, K.<br />

Miyoshi, J. Am. Chem. Soc. 2006, 128, 8068-8077.<br />

26


Palladium-<strong>Catalyzed</strong> <strong>Reactions</strong><br />

• Fu has shown that the oxidative addition of Pd(P(t-Bu) 2 Me) 2 to primary alkyl electrophiles proceeds through a two-electron<br />

redox process via an S N 2 mechanism.<br />

• As such, the oxidative addition of Pd is sensitive to the steric bulk of the electrophile.<br />

Entry R-Br k rel ΔG ǂ<br />

1 1.0 19.5<br />

2 0.19 20.3<br />

3 0.054 21.0<br />

4 24.0 [A]<br />

[A] Extrapolated from a reaction run at 60 °C.<br />

• The energy barrier to oxidative addition of Pd to a secondary alkyl halide is much higher than that of a primary alkyl<br />

halide.<br />

I. D. Hills, M. R. Netherton, G. C. Fu, Angew. Chem. Int. Ed. 2003, 42, 5749-5752<br />

27


1) Sonogashira Coupling<br />

Palladium-<strong>Catalyzed</strong> <strong>Reactions</strong><br />

• The use of enantioenriched substrates leads to completely racemic product.<br />

G. Altenhoff, S. Würtz, F. Glorius, Tetrahedron Lett. 2006, 47, 2925-2928.<br />

28


2) Catellani Reaction<br />

Palladium-<strong>Catalyzed</strong> <strong>Reactions</strong><br />

A. Rudolph, N. Rackelmann, M. Lautens, Angew. Chem. Int. Ed. 2007, 46, 1485-1488.<br />

• The use of enantio-enriched<br />

substrates gives the desired<br />

products with inversion of<br />

configuration at the stereocentre,<br />

with minimal erosion of ee.<br />

29


3) Suzuki Coupling<br />

Palladium-<strong>Catalyzed</strong> <strong>Reactions</strong><br />

N. Rodríguez, C. Ramírez de Arellano, G. Asensio, M. Medio-Simón, Chem. Eur. J. 2007, 13, 4223-4229.<br />

• The reaction proceeds<br />

with inversion of<br />

configuration at the<br />

chiral centre.<br />

• In a diastereomeric mixture of<br />

bromo sulfoxides, on the cisisomer<br />

undergoes Suzuki<br />

coupling, while the trans-isomer<br />

is unreactive.<br />

• This result may pave the way<br />

for the development of an<br />

asymmetric process via the<br />

resolution of racemic starting<br />

materials.<br />

30


Summary and Conclusions<br />

• <strong>Nickel</strong>, iron, cobalt and more recently palladium show excellent activity towards secondary electrophiles.<br />

• Reports on other transition metals such as zinc, copper, silver and zirconium are beginning to appear in<br />

the literature.<br />

• Asymmetric transformations on racemic starting materials have been demonstrated, as well as<br />

stereospecific processes.<br />

• Radical mechanisms are common, two-electron redox processes are more difficult.<br />

• More active catalyst systems need to be developed.<br />

• Need to expand on the range of nucleophilic coupling partners that may be used – increase functional<br />

group compatibility.<br />

• Increasing the repertoire of transformations available, particularly asymmetric ones, would be particularly<br />

useful in the synthesis of complex molecules or natural products.<br />

Reports on other transition metals - with Zn: a) C. Studte, B. Breit, Angew. Chem. Int. Ed. 2008, 47, 5531-5535; with Cu: b) M. Sai, H. Someya, H. Yorimitsu, K.<br />

Oshima, Org. Lett. 2008, 10, 2545-2547; with Ag: c) H. Someya, H. Ohmiya, H. Yorimitsu, K. Oshima, Org. Lett. 2008, 10, 969-971; with Zr: d) J. Terao, S. A.<br />

Begum, A. Oda, N. Kambe, Synlett 2005, 1783-1786.<br />

31

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!