26.12.2012 Views

MPLS-TP: Where Are We? - IEEE Boston Section

MPLS-TP: Where Are We? - IEEE Boston Section

MPLS-TP: Where Are We? - IEEE Boston Section

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>MPLS</strong>-<strong>TP</strong>: <strong>Where</strong> <strong>Are</strong> <strong>We</strong>?<br />

Andrew G. Malis, PMTS<br />

Verizon Communications<br />

March 6, 2012<br />

OFC/NFOEC<br />

1


• Introduction to <strong>MPLS</strong> & <strong>MPLS</strong>-<strong>TP</strong><br />

• <strong>MPLS</strong>-<strong>TP</strong> Functionality<br />

• <strong>MPLS</strong>-<strong>TP</strong> Deployment Scenarios<br />

• <strong>MPLS</strong>-<strong>TP</strong> Standardization Status<br />

• <strong>MPLS</strong>-<strong>TP</strong> Interoperability Testing<br />

Agenda<br />

2


• Multi-Protocol Label Switching<br />

What is <strong>MPLS</strong>?<br />

• Defined by Internet Engineering Task Force<br />

(IETF) beginning in 1998<br />

• A combination of:<br />

– A forwarding mechanism (label switching)<br />

– Connection (LSP - label switched path) establishment<br />

protocols (LDP, RSVP-TE)<br />

– Defined mappings onto Layer 2 technologies (PPP/<br />

POS, Ethernet, ATM, Frame Relay)<br />

– OAM (Operations, Administration, and Maintenance)<br />

– Data path protection (fast reroute)<br />

3


IP<br />

Packet<br />

LER<br />

<strong>MPLS</strong> Label Forwarding Example<br />

Label 1<br />

IP<br />

Packet<br />

Label-Switched Path<br />

(LSP)<br />

LSR<br />

Label 2<br />

IP<br />

Packet<br />

Label 3<br />

IP<br />

Packet<br />

IP Forwarding LABEL SWITCHING<br />

IP Forwarding<br />

LSR<br />

LER<br />

IP<br />

Packet<br />

4


• IP Traffic Engineering<br />

• Layer 3/IP Virtual Private Networks<br />

IP/<strong>MPLS</strong> Applications<br />

• Pseudowires to transport layer 1 and layer 2 services<br />

(Ethernet, Frame Relay, ATM, TDM) over IP networks<br />

• Layer 2 VPNs (esp. Ethernet aka Virtual Private LAN<br />

Service)<br />

• Service provider network convergence<br />

• Widely used by almost every major IP service provider in<br />

the world for one more of these applications<br />

• Has created billions of dollars in revenue for service<br />

providers annually<br />

5


What is <strong>MPLS</strong>-<strong>TP</strong>?<br />

• <strong>MPLS</strong>-<strong>TP</strong> (<strong>MPLS</strong> Transport Profile) was created as a result of<br />

the majority of traffic in today’s networks being packet based<br />

(primarily IP and Ethernet), rather than circuit (TDM) based.<br />

• It is a subset (or profile) of <strong>MPLS</strong> (Multiprotocol Label<br />

Switching) that is suitable for use in packet-based optical<br />

transport networks.<br />

– Doesn’t use some IP/<strong>MPLS</strong> features that are unnecessary in a transport<br />

context, primarily native IP line-rate forwarding and features used to<br />

optimize IP routing over <strong>MPLS</strong> LSPs<br />

• Because it brings statistical packet switching to the transport<br />

layer of the network, it provides a much more efficient<br />

transport of packet traffic than the traditional mapping of<br />

packets into TDM transport circuits.<br />

• It enables optimization of packet transport to reduce overall<br />

network cost, allowing a more economical and efficient<br />

network infrastructure<br />

6


<strong>MPLS</strong>-<strong>TP</strong> Objectives<br />

• Enables <strong>MPLS</strong> to be deployed in a transport network and<br />

operated in a similar manner to existing transport<br />

technologies<br />

• Enables packet-based transport services with a similar<br />

degree of predictability, reliability and OAM to that found<br />

in TDM-based transport networks<br />

• Enables connection-oriented optical packet transport<br />

based on widely-deployed <strong>MPLS</strong> protocols, with<br />

transport-grade performance and operation similar to<br />

existing transport networks; ensures compatibility with IP/<br />

<strong>MPLS</strong><br />

7


Data Mobile Voice<br />

Services &<br />

Applications<br />

§� Multiple layers, separate single<br />

function networks<br />

§� Complicated service and network<br />

transformation<br />

§� Multiple single services<br />

§� Circuit-based transport<br />

IP and Ethernet Services Drive<br />

Network Transformation<br />

Multiple Legacy Networks Converged Infrastructure<br />

IP FR/ATM TDM PSTN<br />

E thernet<br />

POS<br />

ATM<br />

SONET/SDH<br />

WDM<br />

OSS / BSS OSS / BSS OSS / BSS<br />

Services &<br />

Applications<br />

SONET/SDH<br />

Services &<br />

Applications<br />

Wireline and<br />

Wireless<br />

Access<br />

Services and Applications<br />

OSS / BSS<br />

Multi-Services<br />

Aggregation<br />

and Core<br />

§� Converged multi-function network<br />

§� Easily enables service and network<br />

transformation<br />

§� Multi-service convergence<br />

§� Packet-enabled transport<br />

• Network Layers<br />

L2, IP,<br />

<strong>MPLS</strong><br />

Packet<br />

Transport<br />

ETH, OTN<br />

Flexible<br />

Services<br />

Intelligent<br />

scaling and<br />

Traffic<br />

Engineering<br />

OSS: Operation Support System<br />

BSS: Business Support System<br />

8


<strong>MPLS</strong>-<strong>TP</strong> Network Model<br />

Connec&on Oriented, pre-­‐determined working path and protect path.<br />

Transport Tunnel 1:1 protec&on, switching triggered by in-­‐band OAM.<br />

Op&ons with NMS for sta&c provisioning, or dynamic control plane for rou&ng and signaling.<br />

9


• Introduction to <strong>MPLS</strong> & <strong>MPLS</strong>-<strong>TP</strong><br />

• <strong>MPLS</strong>-<strong>TP</strong> Functionality<br />

• <strong>MPLS</strong>-<strong>TP</strong> Deployment Scenarios<br />

• <strong>MPLS</strong>-<strong>TP</strong> Standardization Status<br />

• <strong>MPLS</strong>-<strong>TP</strong> Interoperability Testing<br />

Agenda<br />

10


ECMP<br />

MP2P LDP<br />

PHP<br />

<strong>MPLS</strong>-<strong>TP</strong> Compared With IP/<strong>MPLS</strong><br />

IP/<strong>MPLS</strong> in L3<br />

networks<br />

<strong>MPLS</strong><br />

<strong>MPLS</strong> Transport Profile<br />

Subset to meet transport<br />

network operational<br />

requirements<br />

• <strong>MPLS</strong>/PWE3 architecture<br />

• <strong>MPLS</strong> forwarding<br />

• G<strong>MPLS</strong>/PWE3 control plane<br />

Additional<br />

functionality based<br />

on transport<br />

requirements (next<br />

page)<br />

11


Additional Functionality Based on<br />

Transport Requirements<br />

Transport-like OAM<br />

• In-band OAM channels<br />

• Performance monitoring for SLA verification<br />

• Tandem connections and multi-level operation<br />

• Wire-speed operation<br />

• Alarms and AIS<br />

Transport-like Resilience<br />

• Sub-50ms protection switching<br />

• Linear protection<br />

• Ring protection<br />

•Shared Mesh protection<br />

Addi&onal<br />

func&onality<br />

Transport- like Operation<br />

• Operation through NMS or<br />

control plane<br />

• Static provisioning<br />

• Traffic Engineering rules<br />

Addi$onal features for standard IP/<strong>MPLS</strong> routers & Op$cal Packet Transport equipment;<br />

enhanced interoperability between service rou$ng and op$cal transport<br />

12


Data Plane<br />

OAM<br />

– <strong>MPLS</strong> Forwarding<br />

– Connection-oriented Unidirectional and<br />

Bidirectional P2P and P2MP LSPs<br />

– Pseudowires to carry L2/L1 services (Ethernet,<br />

ATM, FR, Emulated TDM and SONET)<br />

– In-band OAM channel (GACH)<br />

– Connectivity Check (CC): proactive (ext. BFD)<br />

– Connectivity Verification (CV): reactive (ext. LSP<br />

Ping)<br />

– Alarm Suppression and Fault Indication with AIS,<br />

RDI, and Client Fault Indication (CFI)<br />

– Performance monitoring, proactive and reactive<br />

<strong>MPLS</strong>-<strong>TP</strong> Functionality<br />

Control Plane<br />

– NMS provisioning option<br />

– G<strong>MPLS</strong> control plane option<br />

– PW control plane option<br />

Resiliency<br />

– Sub-50ms protection switch over<br />

without c/p<br />

– 1:1, 1+1, 1:N path protection<br />

– Linear protection<br />

– Ring protection<br />

– Shared Mesh protection<br />

13


Why not just use Ethernet-based<br />

Transport?<br />

• <strong>MPLS</strong>-<strong>TP</strong> over GFP framing is more efficient on the wire than Ethernet<br />

framing<br />

• <strong>MPLS</strong>-<strong>TP</strong> uses an infinitely hierarchical label stack, which allows multilayer<br />

operation with clean separation between layers<br />

• <strong>MPLS</strong>-<strong>TP</strong> allows both static configuration of connections and<br />

dynamically signaled paths using the G<strong>MPLS</strong> control plane<br />

• <strong>MPLS</strong>-<strong>TP</strong> allows bandwidth to be reserved to connections, supports a<br />

rich set of QoS parameters, and includes 50ms restoration from outages<br />

• For Verizon and many other ISPs, <strong>MPLS</strong>-<strong>TP</strong> allows a graceful migration<br />

from the current IP/<strong>MPLS</strong> over SONET/SDH backbone, which uses<br />

<strong>MPLS</strong> Traffic Engineering (<strong>MPLS</strong>-TE) with a dynamic control plane to<br />

set up <strong>MPLS</strong> connections (label-switched paths, aka LSPs)<br />

• <strong>MPLS</strong>-<strong>TP</strong> LSPs can be unidirectional or bi-directional, and can be<br />

routed using a link-state routing protocol in the network elements, or via<br />

an offline network planning system<br />

14


• Introduction to <strong>MPLS</strong> & <strong>MPLS</strong>-<strong>TP</strong><br />

• <strong>MPLS</strong>-<strong>TP</strong> Functionality<br />

• <strong>MPLS</strong>-<strong>TP</strong> Deployment Scenarios<br />

• <strong>MPLS</strong>-<strong>TP</strong> Standardization Status<br />

• <strong>MPLS</strong>-<strong>TP</strong> Interoperability Testing<br />

Agenda<br />

15


Scenario 1: Dynamic <strong>MPLS</strong>-<strong>TP</strong> over OTN/DWDM<br />

• <strong>MPLS</strong>-<strong>TP</strong> provides transport services for many client networks<br />

• Ethernet services (native and Ethernet/<strong>MPLS</strong>) network: Inter-switch/router links, Ethernet tunnels transport<br />

• IP <strong>MPLS</strong> services network: Inter-outer IP links transport<br />

• Enterprises: Leased line replacement<br />

• Ethernet pseudowires over <strong>MPLS</strong>-<strong>TP</strong> LSPs will be used for backbone router interconnection<br />

• Islands of a client services network form a contiguous domain (e.g., IGP domain)<br />

• Client-transport network interface is a UNI<br />

16


Scenario 2: TDM Replacement with <strong>MPLS</strong>-<br />

<strong>TP</strong> Aggregation and Access<br />

17


• Introduction to <strong>MPLS</strong> & <strong>MPLS</strong>-<strong>TP</strong><br />

• <strong>MPLS</strong>-<strong>TP</strong> Functionality<br />

• <strong>MPLS</strong>-<strong>TP</strong> Deployment Scenarios<br />

• <strong>MPLS</strong>-<strong>TP</strong> Standardization Status<br />

• <strong>MPLS</strong>-<strong>TP</strong> Interoperability Testing<br />

Agenda<br />

18


History<br />

• <strong>MPLS</strong> standardized in the Internet Engineering Task Force<br />

beginning in 1998, and still continuing new features and extensions<br />

• Around 2006, ITU-T Study Group 15 (where SONET/SDH, OTN, and<br />

optical transport networks are standardized) began working on<br />

packet-based transport switching based on <strong>MPLS</strong> labels, called T-<br />

<strong>MPLS</strong> (aka G.8114).<br />

• Unfortunately, T-<strong>MPLS</strong> had some technical flaws and was in<br />

incompatible with IETF <strong>MPLS</strong>; also violated the IETF’s <strong>MPLS</strong><br />

change process<br />

• In late 2007, the IETF leadership began working with SG15<br />

leadership to “fix” T-<strong>MPLS</strong> and make it compatible with IETF <strong>MPLS</strong>.<br />

The result was an <strong>MPLS</strong>-<strong>TP</strong> joint project begun in early 2008. G.<br />

8114 was killed, and a new process began where the SG15 would<br />

generate <strong>MPLS</strong>-<strong>TP</strong> requirements, while the IETF would generate<br />

protocol specifications based on ITU-T requirements<br />

19


<strong>MPLS</strong>-<strong>TP</strong> Standardization Process<br />

(Agreement between IETF and ITU-T SG 15)<br />

• IETF developing a set of <strong>MPLS</strong>-<strong>TP</strong> specifications with requirements from SG15<br />

• SG15 produces updated recommendations to replace G.8114 that largely refer to<br />

IETF RFCs<br />

OAM<br />

(<strong>MPLS</strong> WG)<br />

Requirements<br />

(ITU-T)<br />

Transport Profile Architectural Framework<br />

(IETF <strong>MPLS</strong> WG)<br />

Pseudowires<br />

(PWE3 WG)<br />

Survivability<br />

(<strong>MPLS</strong> WG)<br />

Control Plane<br />

(CCAMP WG)<br />

Network Management<br />

(<strong>MPLS</strong> WG)<br />

20


General<br />

Description Focus <strong>Are</strong>a IETF RFC or WG documents<br />

JWT document JWT Report on <strong>MPLS</strong>-<strong>TP</strong> Architectural<br />

Considerations<br />

IAB document Uncoordinated Protocol Dev.<br />

Considered Harmful<br />

First milestone on <strong>MPLS</strong>-<strong>TP</strong> Joint<br />

work by IETF/ITU-T<br />

RFC 5317<br />

Inter-SDO coordination RFC 5704<br />

General <strong>MPLS</strong>-<strong>TP</strong> Terminology Terminology draft-ietf-mpls-tp-rosetta-stone<br />

Requirements<br />

IETF <strong>MPLS</strong>-<strong>TP</strong> General Definitions<br />

Requirements and Frameworks<br />

Description and Focus <strong>Are</strong>a IETF RFC or WG documents<br />

General <strong>MPLS</strong>-<strong>TP</strong> Requirements. RFC 5654<br />

<strong>MPLS</strong>-<strong>TP</strong> OAM Requirements RFC 5860<br />

<strong>MPLS</strong>-<strong>TP</strong> Network Management Requirements RFC 5951<br />

Frameworks <strong>MPLS</strong>-<strong>TP</strong> Architecture Framework RFC 5921<br />

<strong>MPLS</strong>-<strong>TP</strong> Network Management Framework RFC 5950<br />

<strong>MPLS</strong>-<strong>TP</strong> OAM Architecture Framework RFC 6371<br />

<strong>MPLS</strong>-<strong>TP</strong> Survivability Framework RFC 6372<br />

<strong>MPLS</strong>-<strong>TP</strong> Control Plane Framework RFC 6373<br />

<strong>MPLS</strong>-<strong>TP</strong> OAM Analysis draft-ietf-mpls-tp-oam-analysis<br />

21


<strong>MPLS</strong>-<strong>TP</strong> Protocols for Forwarding and Protection<br />

Function IETF RFC or WG documents<br />

Data Plane <strong>MPLS</strong>-<strong>TP</strong> Identifiers conformant to existing<br />

ITU and compatible with existing IP/<strong>MPLS</strong><br />

<strong>MPLS</strong> Label Stack Entry:<br />

"EXP" renamed to "Traffic Class"<br />

IETF <strong>MPLS</strong>-<strong>TP</strong> Data Plane,<br />

Protection Definitions<br />

<strong>MPLS</strong> Generic Associated Channel for In-band<br />

OAM and control<br />

In-Band Data Communication for the <strong>MPLS</strong>-<br />

<strong>TP</strong><br />

RFC 6370<br />

RFC 5462<br />

RFC 5586<br />

RFC 5718<br />

<strong>MPLS</strong> <strong>TP</strong> Data Plane Architecture RFC 5960<br />

<strong>MPLS</strong>-<strong>TP</strong> UNI-NNI RFC 6215<br />

Protection <strong>MPLS</strong>-<strong>TP</strong> Linear Protection RFC 6378<br />

<strong>MPLS</strong>-<strong>TP</strong> MIB Management<br />

Function IETF RFC or WG documents<br />

Management <strong>MPLS</strong>-<strong>TP</strong> MIB management overview draft-ietf-mpls-tp-mib-management-overview<br />

22


Proactive FM OAM<br />

Functions<br />

On demand FM<br />

OAM Functions<br />

Proactive PM OAM<br />

Functions<br />

and<br />

On demand PM<br />

OAM<br />

Functions<br />

IETF <strong>MPLS</strong>-<strong>TP</strong> OAM (FM and PM)<br />

Definitions<br />

<strong>MPLS</strong>-<strong>TP</strong> Fault Management (FM) OAM Functions<br />

OAM Functions Protocol Definitions IETF WG documents<br />

<strong>MPLS</strong>-<strong>TP</strong> Identifiers conformant to existing<br />

ITU and compatible with existing IP/<strong>MPLS</strong><br />

Identifiers RFC 6370<br />

Remote Defect Indication (RDI) Bidirectional Forwarding Detection<br />

(BFD) extensions<br />

RFC 6428<br />

Alarm Indication Signal (AIS) AIS message under G-Ach RFC 6427<br />

Link Down Indication (LDI) Flag in AIS message<br />

Lock Report (LKR) LKR message under G-Ach<br />

Config <strong>MPLS</strong>-<strong>TP</strong> OAM using LSP Ping LSP-Ping draft-ietf-mpls-lsp-ping-mpls-tpoam-conf<br />

Continuity Verification (CV) LSP Ping and BFD Extensions RFC 6426<br />

Loopback (LBM/LBR) 1) In-band Loopback in G-Ach<br />

or 2) LSP Ping extensions<br />

Lock Instruct (LI) In-band Lock messages in G-ACh<br />

<strong>MPLS</strong>-<strong>TP</strong> Performance Management (PM) OAM Functions<br />

RFC 6436<br />

OAM Functions Protocol definitions IETF WG documents<br />

Packet loss measurement (LM) LM and DM query messages RFC 6374<br />

RFC 6375<br />

Packet delay measurement (DM) LM and DM query messages<br />

Throughput measurement Supported by LM<br />

Delay Variation measurement Supported by DM<br />

23


Controversy and Politics<br />

• The joint project continued well for about a year<br />

• However, some vendors one large mobile operator had already<br />

implemented and deployed a pre-standard version of G.8114/T-<strong>MPLS</strong><br />

– Primary difference from IETF <strong>MPLS</strong>-<strong>TP</strong> is the OAM<br />

– IETF <strong>MPLS</strong>-<strong>TP</strong> OAM based on existing <strong>MPLS</strong> constructs<br />

– G.8114/T-<strong>MPLS</strong> OAM based on Ethernet OAM (Y.1731), cannot support full<br />

range of <strong>MPLS</strong>-<strong>TP</strong> requirements and functionality, but works in this<br />

particular deployment<br />

– These vendors and operator continued to push for Y.1731-based OAM to be<br />

an option for <strong>MPLS</strong>-<strong>TP</strong>, supported by their governments at ITU-T<br />

– ITU-T decided to produce two <strong>MPLS</strong>-<strong>TP</strong> OAM specifications, G.8113.1 for<br />

Y.1731-based OAM and G.8113.2 for IETF-based OAM<br />

– IETF’s official position is that one OAM is sufficient and an optional second<br />

OAM is technically unnecessary, makes equipment and network<br />

deployments more complex, and introduces a new interworking function<br />

• Mismatch in IETF and ITU-T processes haven’t helped the controversy<br />

• You may have seen dueling press releases and articles at Light Reading<br />

on the controversy<br />

24


Recommendations In Progress in<br />

ITU-T SG 15<br />

• ITU-T Recommendations in progress:<br />

– G.8110.1, <strong>MPLS</strong>-<strong>TP</strong> architecture<br />

– G.8113.1, Y.1731-based OAM for <strong>MPLS</strong>-<strong>TP</strong><br />

– G.8113.2, IETF-based OAM for <strong>MPLS</strong>-<strong>TP</strong><br />

– G.8121, <strong>MPLS</strong>-<strong>TP</strong> network element functional modeling<br />

• .1 and .2 versions to correspond with both OAM types<br />

– G.8131, <strong>MPLS</strong>-<strong>TP</strong> protection<br />

– G.8151, <strong>MPLS</strong>-<strong>TP</strong> network element management<br />

• These documents are for the most part expected to complete by YE<br />

2012<br />

• G.8113.1 is currently written using an “experimental” <strong>MPLS</strong> OAM<br />

codepoint; ITU-T has requested an official permanent codepoint<br />

allocation. This request is at the heart of the disagreement between<br />

the two organizations, and continues to be discussed<br />

25


Current Status<br />

§� Some 20 IETF RFCs published; initial round of work largely complete<br />

§� Some additional features (e.g. shared mesh protection) still in progress<br />

§� ITU-T SG15 continues to standardize it’s own Y.1731-based OAM as an optional<br />

alternative to IETF <strong>MPLS</strong>-based OAM<br />

26


• Introduction to <strong>MPLS</strong> & <strong>MPLS</strong>-<strong>TP</strong><br />

• <strong>MPLS</strong>-<strong>TP</strong> Functionality<br />

• <strong>MPLS</strong>-<strong>TP</strong> Deployment Scenarios<br />

• <strong>MPLS</strong>-<strong>TP</strong> Standardization Status<br />

• <strong>MPLS</strong>-<strong>TP</strong> Interoperability Testing<br />

Agenda<br />

27


<strong>MPLS</strong>-<strong>TP</strong> Function Functional Verification Interoperability<br />

LSPs and PW encapsulation G-Ach/GAL encapsulation<br />

Control Word (CW) inclusion<br />

LSPs and PW establishment Static label assignment<br />

Dynamic provisioning<br />

OAM: Continuity Check (CC) &<br />

Connectivity Verification (CV)<br />

On-demand Alarm Generation<br />

and Fault Notification<br />

Automatic Protection Switching<br />

(APS)<br />

<strong>MPLS</strong>-<strong>TP</strong> and <strong>MPLS</strong><br />

Interworking<br />

OAM message generation @ various<br />

intervals<br />

Failure detection<br />

On-demand LSP connectivity verification<br />

Alarm generation and detection<br />

Generation of AIS/LDI/LCK/PW Status<br />

Auto generation of RDI<br />

CCCV Pause/Resume<br />

Ingress, Egress and Transit Node<br />

Different protection modes<br />

OAM status translation<br />

CW handling<br />

<strong>MPLS</strong>-<strong>TP</strong> Functional and<br />

Interoperability Testing<br />

Message exchange (correct encoding and<br />

interpretation)<br />

Label switching<br />

Interoperability of static SS-PW<br />

and dynamic SS-PW<br />

Label space compatible<br />

OAM message exchange<br />

CC/CV sessions established<br />

Ping encoding follows G-ACh Channel Type<br />

+ Echo or G-ACh Channel Type + IP/UDP/<br />

Echo?<br />

Alarm encoding and interpretation<br />

AIS suppression state<br />

Alarm propagation<br />

PSC interoperability<br />

Switchover time measurements per LSP/<br />

PW<br />

End to end service verification<br />

MS-PW (mix of <strong>MPLS</strong>-<strong>TP</strong> and IP/<strong>MPLS</strong><br />

segments)<br />

28


Example Test Case: Protection<br />

Switching<br />

DUT is responsible for detecting<br />

failures and forcing switchover<br />

Egress PE:<br />

1. Respond to manual<br />

switchover command<br />

2. Terminate <strong>MPLS</strong>-<strong>TP</strong> OAM<br />

3. Terminate BFD<br />

4. Terminate Traffic<br />

5. Simulate CC/CV error and<br />

trigger DUT to switchover<br />

6. Simulate link failure and<br />

Key use cases to test:<br />

trigger DUT to switchover<br />

1. <strong>MPLS</strong>-<strong>TP</strong> OAM interoperability<br />

2. BFD Interoperability<br />

3. PSC interoperability<br />

4. Validate APS commands and performance<br />

5. Per LSP or PW Switchover time measurement based on traffic loss<br />

6. < 50 ms switchover time in various protection mode<br />

29


Protection Switching Test Results<br />

30


§� Performance Verification and Benchmarks<br />

• Can <strong>MPLS</strong>-<strong>TP</strong> deliver carrier grade services?<br />

§� Scale: service scale of LSP/PW<br />

§� Reliability: protection switching, recovery sub 50ms<br />

§� CoS: deliver service levels to meet SLAs<br />

§� Performance: traffic forwarding, low latency, low delay variation (jitter)<br />

§� Management: OAM (active and on demand) and MIB support<br />

• Support static provisioning via NMS<br />

• Support dynamic provisioning<br />

Additional <strong>Are</strong>as For Testing<br />

• Scalability Test Case :<br />

What is the maximum PW/<br />

LSP capacity?<br />

31


<strong>MPLS</strong>-<strong>TP</strong> Public Interop Testing<br />

<strong>MPLS</strong> 2010 Conference Public Interoperability Demo (October 2010)<br />

• <strong>MPLS</strong>-<strong>TP</strong> static LSP establishment<br />

• <strong>MPLS</strong>-<strong>TP</strong> data plane verification<br />

• Exchange BFD CC messages<br />

• Use of BFD CC to identify failures<br />

• Functionality of protection modes<br />

First multi-vendor standards-based <strong>MPLS</strong>-<strong>TP</strong> interoperability testing<br />

32


<strong>MPLS</strong>-<strong>TP</strong> Public Interop Testing<br />

§� <strong>MPLS</strong> and Ethernet World Congress (Feb 2011) Public<br />

Multi-Vendor Interoperability Test and Public Showcase<br />

Test validates interworking between transport domains<br />

33


Cisco & Ixia Demo in Verizon Lab:<br />

Sub-50 msec Failover (March 2011)<br />

34


was tested. For some test areas, results from Isocore<br />

spring LEC event are also presented to demonstrate the<br />

evolving implementations as standards become stable,<br />

<strong>MPLS</strong>-<strong>TP</strong> being one of the classic examples.<br />

Figure 2 shows the comprehensive setup highlighting<br />

the roles played by all participating nodes and logical<br />

representation of the network physical topology.<br />

<strong>MPLS</strong>-<strong>TP</strong> Public Interop Testing<br />

<strong>MPLS</strong> 2011 Conference Public Interoperability Demo (October 2011)<br />

Figure 2: Logical Representation of <strong>MPLS</strong>2011 Demo<br />

Network<br />

• Statically provisioned co-routed<br />

LSPs<br />

• Linear Protection<br />

• <strong>MPLS</strong>-<strong>TP</strong> OAM - including BFD<br />

connectivity check (CC) and LSP<br />

Ping using ACH<br />

• BGP based multicast VPN (BGPmVPN)<br />

• <strong>MPLS</strong> services over 100G<br />

connections<br />

35


!"#$%&!'#(%)*+%,&)*%"-%&./"#"-)0&)"1+!2%-*3).'4#5%6!!<br />

)*+-+% &0+% &7)"'#-% '8% &% /".% ,'"#)% .+1"7+% &!'#(% )*+<br />

,&)*5% 9)% -+#.-% &% -"(#&!% )+!!"#(% )*+% +#.,'"#)% 4*"7*<br />

.+8+7)% "-% .+)+7)+.:% -'% )*&)% )*+% +#.,'"#)% "-% "//+.";<br />

&)+!2%#')"8"+.%&


• IETF Documents<br />

<strong>MPLS</strong>-<strong>TP</strong> Resources<br />

– <strong>MPLS</strong>-<strong>TP</strong> Requirements: http://datatracker.ietf.org/doc/rfc5654/<br />

– <strong>MPLS</strong>-<strong>TP</strong> OAM Requirements: http://datatracker.ietf.org/doc/rfc5860/<br />

– <strong>MPLS</strong>-<strong>TP</strong> Framework: http://datatracker.ietf.org/doc/rfc5921/<br />

– <strong>MPLS</strong>-<strong>TP</strong> Data Plane Architecture:<br />

http://datatracker.ietf.org/doc/rfc5960/<br />

• Isocore Public Reports: http://www.isocore.com/<br />

• EANTC Public Reports: http://www.eantc.de/<br />

• Light Reading <strong>MPLS</strong>-<strong>TP</strong> Briefing Center:<br />

http://www.lightreading.com/mplstp/<br />

– <strong>MPLS</strong>-<strong>TP</strong> News & Analysis<br />

– Whitepaper and <strong>We</strong>binar Archive: <strong>MPLS</strong>-<strong>TP</strong> in Next-Generation<br />

Transport Networks (July 2011)<br />

37


Questions?<br />

38

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!