26.12.2012 Views

Delta Function - Gauge-Institute

Delta Function - Gauge-Institute

Delta Function - Gauge-Institute

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

The <strong>Delta</strong> <strong>Function</strong><br />

H. Vic Dannon<br />

vic0@comcast.net<br />

September, 2010<br />

Abstract The Dirac <strong>Delta</strong> <strong>Function</strong>, the idealization of an<br />

impulse in Radar circuits, is a Hyper-Real function which<br />

definition and analysis require Infinitesimal Calculus, and<br />

Infinite Hyper-reals.<br />

The controversy surrounding the Leibnitz Infinitesimals derailed<br />

the development of the Infinitesimal Calculus, and the <strong>Delta</strong><br />

<strong>Function</strong> could not be defined and investigated properly.<br />

For instance, it is labeled a “Generalized <strong>Function</strong>” although it<br />

generalizes no function.<br />

Dirac’s intuitive definition by <strong>Delta</strong>’s sampling property<br />

x =∞<br />

∫<br />

x =−∞<br />

δ(<br />

xdx ) = 1,<br />

that avoids specifying δ(0)<br />

, remains the main definition of the<br />

delta function, although the <strong>Delta</strong> <strong>Function</strong> is not Riemann<br />

integrable in the Calculus of Limits, and is not Lebesgue<br />

integrable in Measure Theory.<br />

In fact, in the Calculus of Limits, only the Cauchy Principal Value<br />

1


<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

Integral of the <strong>Delta</strong> <strong>Function</strong> exists, and it equals zero.<br />

Only in Infinitesimal Calculus, can the <strong>Delta</strong> <strong>Function</strong> be defined,<br />

differentiated, and integrated.<br />

Infinitesimal Calculus allows us to resolve open problems such as<br />

What is δ(0)<br />

?<br />

How is xδ( x)<br />

defined at x = 0 ?<br />

How is the <strong>Delta</strong> <strong>Function</strong> the derivative of a Step <strong>Function</strong>?<br />

How do we integrate the <strong>Delta</strong> <strong>Function</strong>?<br />

2<br />

What is δ (x)<br />

?<br />

2<br />

What is δ ( x)<br />

?<br />

3<br />

What is δ(<br />

x ) ?<br />

3<br />

What is δ ( x)<br />

?<br />

The <strong>Delta</strong> <strong>Function</strong> enables us to define the Fourier Transform<br />

with minimal requirements on the transformed function.<br />

Keywords: Infinitesimal, Infinite-Hyper-Real, Hyper-Real,<br />

Cardinal, Infinity. Non-Archimedean, Non-Standard Analysis,<br />

Calculus, Limit, Continuity, Derivative, Integral,<br />

2000 Mathematics Subject Classification 26E35; 26E30;<br />

26E15; 26E20; 26A06; 26A12; 03E10; 03E55; 03E17; 03H15;<br />

46S20; 97I40; 97I30.<br />

2


<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

Contents<br />

Introduction<br />

1. Hyper-real Line<br />

2. <strong>Delta</strong> <strong>Function</strong> Definition<br />

3. <strong>Delta</strong> <strong>Function</strong> Plots<br />

4. <strong>Delta</strong> <strong>Function</strong> Properties<br />

5. <strong>Delta</strong> Sequence<br />

6. <strong>Delta</strong> Sequence<br />

n 1<br />

δ n(<br />

x)<br />

=<br />

2 2 cosh nx<br />

−nx<br />

n( x) ne ( x)<br />

[0, )<br />

δ χ =<br />

∞<br />

7. Primitive of <strong>Delta</strong> <strong>Function</strong><br />

8.<br />

9.<br />

10.<br />

δ(())<br />

fx<br />

n<br />

δ(<br />

x )<br />

n n<br />

δ( x − ( dx)<br />

)<br />

11. Integral of<br />

δ(<br />

x)<br />

12. The Principal Value Derivative of <strong>Delta</strong>: The Dipole <strong>Function</strong><br />

13. 2 nd Principal Value Derivative of <strong>Delta</strong>: the 4-Pole <strong>Function</strong><br />

14. Higher Principal Value Derivatives of <strong>Delta</strong><br />

References<br />

3


<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

Introduction<br />

0.1 Cauchy, Poisson, and Riemann<br />

Cauchy (1816), and Poisson (1815) derived the Fourier Integral<br />

Theorem by using the sifting property of the <strong>Delta</strong> <strong>Function</strong>.<br />

By Fourier Integral Theorem<br />

Denoting<br />

k =∞ ⎛ ξ=∞<br />

⎞<br />

1 ⎜ ⎟ − ξ<br />

f ( x) = f( ξ) e ξ<br />

⎟<br />

⎜ ⎟<br />

2π<br />

⎜ ⎟<br />

k =−∞ ⎜ ⎟<br />

⎝ξ=−∞ ⎠⎟<br />

ik ikx<br />

∫ ∫ d e dk<br />

ξ=∞<br />

⎛ k =∞ ⎞<br />

⎜ 1<br />

⎟<br />

−ik( ξ−x)<br />

= f () ξ ⎜ e dk<br />

⎟<br />

∫ ⎜ ⎟ ξ<br />

⎜ 2π<br />

∫ ⎟d<br />

⎟<br />

ξ=−∞<br />

⎜⎝ k =−∞ ⎠⎟<br />

1<br />

2π<br />

k =∞<br />

∫<br />

k =−∞<br />

−ik( ξ−x) δξ<br />

e dk ≡ ( −x<br />

) ,<br />

the <strong>Delta</strong> <strong>Function</strong> is the Fourier Transform of the constant<br />

function 1,<br />

And Fourier Integral theorem states the sifting property for the<br />

<strong>Delta</strong> <strong>Function</strong><br />

ξ=∞<br />

∫<br />

f ( x) = f(<br />

ξδξ ) ( −x)<br />

d ξ.<br />

ξ=−∞<br />

In the derivation of his Zeta <strong>Function</strong>, Riemann (1859) uses this<br />

sifting property repeatedly, without using a function notation for<br />

4


<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

k =∞<br />

1 −ik( −x)<br />

the integral<br />

2π<br />

∫<br />

k =−∞<br />

e ξ<br />

dk<br />

that represents the <strong>Delta</strong> function<br />

δξ− ( x)<br />

. The derivations are in [Dan4, p.84, p.90, p.97].<br />

The derivations were not supplied by Riemann. Riemann’s 1859<br />

paper, as well as much of Riemann’s published writings, outlines<br />

ideas, and states results without proof.<br />

In particular, the representation of <strong>Delta</strong> that follows from the<br />

Fourier Integral Theorem does not hold in the Calculus of Limits.<br />

Indeed,<br />

and the integral<br />

diverges.<br />

−ik( ξ−x)<br />

ξ = x ⇒ e = 1,<br />

1<br />

2π<br />

k =∞<br />

∫<br />

k =−∞<br />

−ik( ξ−x)<br />

e dk<br />

Avoiding the singularity at ξ = x does not recover the Theorem,<br />

because without the singularity the integral equals zero.<br />

Thus, the Fourier Integral Theorem cannot be written in the<br />

Calculus of Limits.<br />

In other words, the indeterminate nature of singularities in the<br />

Calculus of Limits does not allow the Fourier Integral Theorem to<br />

hold.<br />

5


<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

0.2 Dirac<br />

The <strong>Delta</strong> <strong>Function</strong> can be realized as a Radar transmission<br />

Pulse. A Radar Transmission has to be pulsed because a<br />

continuous wave train will not allow us to measure the time<br />

interval τ between transmission and reception, and determine the<br />

range of the target by<br />

r = cτ.<br />

1<br />

2<br />

Thus, a transmission lasts very short time. Then, the Radar<br />

system converts into a receiver for the reflected signal. This<br />

process of transmitting and receiving repeats thousands of time<br />

per second, in order to follow a moving target.<br />

The Radar pulse envelops a carrier wave of very short wavelength.<br />

Radar carrier waves went down from centimeters to micrometers<br />

of light wavelength.<br />

1<br />

Since the illuminating power dissipation is proportional to 2 r<br />

, the<br />

short electromagnetic wave-train has an electric field that seems<br />

nearly infinite, although the pulse power is finite.<br />

Dirac (1930) was familiar with Radar Pulses when he defined the<br />

<strong>Delta</strong> <strong>Function</strong> in [Dirac, p.71] through the sifting property,<br />

and<br />

x =∞<br />

∫<br />

x =−∞<br />

δ(<br />

xdx ) = 1,<br />

6


<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

δ ( x)<br />

= 0,<br />

for all x ≠ 0 .<br />

Dirac definition left open the question of the nearly infinite<br />

amplitude at x = 0 . That is, δ(0)<br />

was left undefined.<br />

Then, the sifting property does not hold.<br />

Indeed, since δ (0) is infinite, the integration of δ(<br />

x)<br />

has to skip<br />

the point x = 0 , and only the Cauchy Principal Value of the<br />

x =∞<br />

∫<br />

integral δ(<br />

xdx ) may exist. Then,<br />

x =−∞<br />

1 ⎛ x =−<br />

n<br />

x =∞ ⎞<br />

⎟<br />

⎜<br />

lim<br />

⎜ ⎟<br />

δ( xdx ) δ(<br />

xdx ) ⎟ 0<br />

→∞ ⎜ + ⎟ =<br />

⎜ ⎟<br />

⎜⎝x=−∞ x = ⎠⎟<br />

n<br />

x =∞<br />

in contradiction to δ(<br />

xdx ) = 1.<br />

∫<br />

x =−∞<br />

0.3 Laurent Schwartz<br />

∫ ∫ ,<br />

Laurent Schwartz presents his <strong>Delta</strong> Distribution as follows<br />

[Schwartz, p. 82]<br />

⎧ 0, x < 0<br />

Let Y = ⎪<br />

⎨ .<br />

⎪<br />

⎪⎩<br />

1, x > 0<br />

Then, for any ϕ(<br />

x)<br />

infinitely differentiable, that<br />

vanishes at ∞ , and at −∞,<br />

7<br />

1<br />

n


<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

x=∞ x=∞<br />

∫ ∫<br />

Y '( x) ϕ( x) dx =− Y( x) ϕ'(<br />

x) dx<br />

x=−∞ x=−∞<br />

Thus,<br />

x =∞<br />

∫<br />

=− ϕ'( xdx ) =−ϕ(<br />

x)<br />

x = 0<br />

= ϕ(0)<br />

x =∞<br />

= ∫ δ( x) ϕ(<br />

x) dx<br />

x =−∞<br />

Y ' = δ .<br />

ϕ(0) = ∫ δ( x) ϕ(<br />

x) dx<br />

x =∞<br />

x = 0<br />

Since Yx ( ) is not defined at x = 0 , Y '(0) is not defined, and the<br />

conclusion Y ' = δ , avoids δ(0)<br />

.<br />

That is, Schwartz’ Definition is as incomplete as Dirac’s.<br />

Furthermore, the equality<br />

x =∞<br />

x =−∞<br />

is the definition of the <strong>Delta</strong> <strong>Function</strong> by its sifting property that<br />

does not hold.<br />

Since δ(0)<br />

is not defined, the integration has to skip the point<br />

x = 0 , and the integral is the Cauchy Principal Value Integral<br />

8


<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

1 ⎛ x =−<br />

n<br />

x =∞ ⎞<br />

⎟<br />

⎜<br />

lim<br />

⎜ ⎟<br />

⎜ δ( x) ϕ( x) dx δ( x) ϕ(<br />

x) dx ⎟ 0<br />

→∞ ⎜ + ⎟ =<br />

⎜ ∫ ∫<br />

⎟<br />

⎜⎝x=−∞ x =<br />

⎠⎟<br />

n<br />

Like the Dirac <strong>Delta</strong>, the Schwartz <strong>Delta</strong> avoids δ(0)<br />

, and<br />

postulates the sifting property.<br />

0.4 <strong>Delta</strong> Sequence<br />

Attempts to get back to the singular <strong>Delta</strong> <strong>Function</strong>, replaced the<br />

<strong>Delta</strong> <strong>Function</strong> by a <strong>Delta</strong> Sequence of functions that converge to<br />

the <strong>Delta</strong> <strong>Function</strong>. For instance,<br />

= 1 1 = [ , ] ⎨<br />

2n 2n<br />

⎪⎪⎩<br />

δn( x) nχ ( x)<br />

−<br />

1<br />

n<br />

⎧⎪<br />

⎪nx<br />

, ∈− [ ,<br />

0, otherwise<br />

Then, the delta <strong>Function</strong> is defined as the limit<br />

δ( x) = lim δ ( x)<br />

.<br />

n→∞<br />

1 1<br />

2n 2n<br />

The sequential approach is reviewed in [Mikusinski], and is used<br />

in Mathematical Physics texts.<br />

However, the <strong>Delta</strong> Sequence contradicts Dirac’s definition.<br />

Indeed, as n →∞,<br />

δ(0) = lim δ (0) = lim n = ∞.<br />

n<br />

n<br />

n→∞ n→∞<br />

Then, the integration of δ( x)<br />

has to skip the point x = 0 .<br />

9<br />

]<br />

.


<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

That is, only the Cauchy Principal Value of the integral<br />

x =∞<br />

∫<br />

x =−∞<br />

δ(<br />

xdx )<br />

may exist. The Principal Value is<br />

1 ⎛ x =−<br />

n<br />

x =∞ ⎞<br />

⎟<br />

⎜<br />

lim<br />

⎜ ⎟<br />

δ( xdx ) δ(<br />

xdx ) ⎟ 0<br />

→∞ ⎜ + ⎟ =<br />

⎜ ⎟<br />

⎜⎝x=−∞ x = ⎠⎟<br />

n<br />

x =∞<br />

∫<br />

∫ ∫ .<br />

That is, the sifting δ ( xdx ) = 1,<br />

is not preserved for the limit<br />

x =−∞<br />

of the <strong>Delta</strong> sequence, δ( x) = lim δ ( x)<br />

.�<br />

n<br />

n→∞<br />

0.5 The Hyper-real <strong>Delta</strong> <strong>Function</strong><br />

The above attempts failed because the <strong>Delta</strong> <strong>Function</strong> is a hyper-<br />

real function. A function from the hyper-reals into the hyper-<br />

reals.<br />

By resolving the problem of the infinitesimals [Dan2], we obtained<br />

the Infinite Hyper-reals that are strictly smaller than ∞ , and can<br />

serve to supply the value of the <strong>Delta</strong> <strong>Function</strong> at the singularity.<br />

The attempts to get by with Calculus restricted to the real line,<br />

deprived Calculus of its full power. In Infinitesimal Calculus,<br />

[Dan3], we differentiate over a jump discontinuity of a step<br />

function, and obtain the <strong>Delta</strong> <strong>Function</strong>. We can integrate over a<br />

singularity, and obtain a finite value.<br />

10<br />

n<br />

1<br />

n


<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

Here, we present the <strong>Delta</strong> <strong>Function</strong>, and the properties of the<br />

<strong>Delta</strong> <strong>Function</strong> in Infinitesimal Calculus.<br />

In particular, we resolve open problems such as<br />

What is δ(0)<br />

?<br />

How is xδ( x)<br />

defined at x = 0 ?<br />

How is the <strong>Delta</strong> <strong>Function</strong> the derivative of a Step <strong>Function</strong>?<br />

How do we integrate the <strong>Delta</strong> <strong>Function</strong>?<br />

2<br />

What is δ (x)<br />

?<br />

2<br />

What is δ ( x)<br />

?<br />

3<br />

What is δ(<br />

x ) ?<br />

3<br />

What is δ ( x)<br />

?<br />

11


<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

1.<br />

Hyper-real Line<br />

Each real number α can be represented by a Cauchy sequence of<br />

rational numbers, ( r1, r2, r3,...) so that rn α . →<br />

The constant sequence ( ααα , , ,...) is a constant hyper-real.<br />

In [Dan2] we established that,<br />

1. Any totally ordered set of positive, monotonically decreasing<br />

to zero sequences ( ι , ι , ι ,...) constitutes a family of<br />

infinitesimal hyper-reals.<br />

1 2 3<br />

2. The infinitesimals are smaller than any real number, yet<br />

strictly greater than zero.<br />

1 1 1<br />

3. Their reciprocals ( , , ,...<br />

ι1 ι2 ι ) are the infinite hyper-reals.<br />

3<br />

4. The infinite hyper-reals are greater than any real number,<br />

yet strictly smaller than infinity.<br />

5. The infinite hyper-reals with negative signs are smaller<br />

than any real number, yet strictly greater than −∞.<br />

6. The sum of a real number with an infinitesimal is a<br />

non-constant hyper-real.<br />

7. The Hyper-reals are the totality of constant hyper-reals, a<br />

family of infinitesimals, a family of infinitesimals with<br />

12


<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

negative sign, a family of infinite hyper-reals, a family of<br />

infinite hyper-reals with negative sign, and non-constant<br />

hyper-reals.<br />

8. The hyper-reals are totally ordered, and aligned along a<br />

line: the Hyper-real Line.<br />

9. That line includes the real numbers separated by the non-<br />

constant hyper-reals. Each real number is the center of an<br />

interval of hyper-reals, that includes no other real number.<br />

10. In particular, zero is separated from any positive real<br />

by the infinitesimals, and from any negative real by the<br />

infinitesimals with negative signs, −dx<br />

.<br />

11. Zero is not an infinitesimal, because zero is not strictly<br />

greater than zero.<br />

12. We do not add infinity to the hyper-real line.<br />

13. The infinitesimals, the infinitesimals with negative<br />

signs, the infinite hyper-reals, and the infinite hyper-reals<br />

with negative signs are semi-groups with<br />

respect to addition. Neither set includes zero.<br />

14. The hyper-real line is embedded in � , and is not<br />

homeomorphic to the real line. There is no bi-continuous<br />

one-one mapping from the hyper-real onto the real line.<br />

13<br />


<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

15. In particular, there are no points on the real line that<br />

can be assigned uniquely to the infinitesimal hyper-reals, or<br />

to the infinite hyper-reals, or to the non-constant hyper-<br />

reals.<br />

16. No neighbourhood of a hyper-real is homeomorphic to<br />

n<br />

an � ball. Therefore, the hyper-real line is not a manifold.<br />

17. The hyper-real line is totally ordered like a line, but it<br />

is not spanned by one element, and it is not one-dimensional.<br />

14


<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

2.<br />

<strong>Delta</strong> <strong>Function</strong> Definition<br />

2.1 Domain and Range<br />

The <strong>Delta</strong> <strong>Function</strong> is a hyper-real function defined from the<br />

hyper-real line into the set of two hyper-reals<br />

⎧ ⎪ 1 ⎫⎪<br />

⎨0, ⎪<br />

⎬.<br />

⎪ ⎪⎩ dx ⎪ ⎪⎭<br />

The hyper-real 0 is the sequence 0, 0, 0,... .<br />

The infinite hyper-real 1<br />

dx<br />

depends on our choice of dx . We will<br />

usually choose the family of infinitesimals that is spanned by the<br />

1<br />

n<br />

sequences 1<br />

n , 2<br />

1 , 3 n<br />

,… It is a semigroup with respect to<br />

vector addition, and includes all the scalar multiples of the<br />

generating sequences that are non-zero. That is, the family<br />

includes infinitesimals with negative sign.<br />

Therefore, 1<br />

dx<br />

will mean the sequence n .<br />

Alternatively, we may choose the family spanned by the sequences<br />

1<br />

1<br />

1<br />

2 n<br />

2 n , 2<br />

2 n , 3<br />

,… Then, 1<br />

dx will mean the sequence 2n .<br />

Once we determined the basic infinitesimal dx , we will use it in<br />

the Infinite Riemann Sum that defines an Integral in<br />

15


<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

Infinitesimal Calculus.<br />

2.2 The <strong>Delta</strong> <strong>Function</strong> is strictly smaller than<br />

Proof: Since dx > 0,<br />

1<br />

dx


<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

⎧⎪ 1, x ∈ ⎡− , ⎤<br />

=<br />

⎥⎦ ⎨ is the sequence<br />

dx ⎪⎪⎩<br />

0, otherwise<br />

dx dx<br />

1<br />

2.4 δ(<br />

x)<br />

⎪ ⎢⎣<br />

2 2<br />

where dx = in<br />

.<br />

⎧⎪∈ ⎡<br />

−<br />

⎨<br />

⎪<br />

⎪⎩<br />

0, otherwise<br />

1<br />

in in<br />

⎪ , x ,<br />

n i ⎢<br />

⎣ 2 2 ⎥<br />

⎦<br />

Namely, as a hyper-real function the value of <strong>Delta</strong> at the<br />

singularity is the infinite hyper-real 1<br />

dx<br />

infinite vector with countably many components.<br />

17<br />

which is a sequence, an<br />


<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

3.<br />

<strong>Delta</strong> <strong>Function</strong> Plots<br />

3.1 <strong>Delta</strong> Plot for dx =<br />

If<br />

1<br />

n<br />

1 i n = , <strong>Delta</strong> is the infinite Hyper-Real number,<br />

n<br />

δ χ χ χ<br />

( x) = ( x),2 ( x),3 ( x),...<br />

[ −1,1] [ − , ] [ − , ]<br />

1 1 1 1<br />

2 2 3 3<br />

We plot in Maple the 10 th component with<br />

Similarly, we use<br />

18


<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

to plot an the 100 th component of <strong>Delta</strong><br />

3.2 <strong>Delta</strong> with<br />

We use<br />

1<br />

2 n dx = is<br />

χ[ − , ] [ − , ] [ − , ]<br />

δ χ χ<br />

( x) = 2 ( x), 4 ( x),8<br />

( x ),...<br />

to plot the 4 th component of <strong>Delta</strong><br />

1 1 1 1 1 1<br />

4 4 8 8 16 16<br />

19


<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

Similarly, we use<br />

to plot the 6 th component of <strong>Delta</strong>,<br />

20


<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

4.<br />

<strong>Delta</strong> <strong>Function</strong> Properties<br />

4.1<br />

xδ ( x)<br />

= 0<br />

Proof: x ≠ 0 ⇒ δ ( x)<br />

= 0 ⇒ xδ ( x)<br />

= 0.<br />

4.2<br />

4.3<br />

x =<br />

0<br />

⇒<br />

0<br />

xδ( x)<br />

= 0 δ(0)<br />

= = 0,<br />

since dx > 0.<br />

dx<br />

1<br />

( x x ) ( x)<br />

δ − 0 ≡ χ⎡x0− dx, x dx ⎤<br />

dx ( x<br />

2 0+<br />

−<br />

2<br />

0)<br />

⎢⎣ ⎥⎦<br />

n<br />

=<br />

That is, δ (0) spikes to<br />

4.4<br />

1<br />

dx<br />

0 , dx<br />

dx 2 0 2<br />

χ⎡ − + ⎤<br />

⎢⎣ ⎥⎦<br />

( )<br />

x x x<br />

n 1<br />

δ ( x) = ( x)<br />

, n = 2, 3,...<br />

( )<br />

dx, dx<br />

n<br />

dx 2 2 χ⎡−⎤ ⎢⎣ ⎥⎦<br />

1<br />

( ) n<br />

dx<br />

, which is greater than 1<br />

dx .<br />

1 1<br />

(, xy) ≡ ()() x y = [ dx, dx () x ()<br />

] dy dy y<br />

−<br />

dx [ , ]<br />

2 2 dy −<br />

2 2<br />

δ δ δ χ χ<br />

21


<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

5.<br />

<strong>Delta</strong> Sequence<br />

1<br />

δ n( x) = n<br />

2cosh<br />

Depending on the choice of the infinitesimal dx = in<br />

, there are<br />

2<br />

nx<br />

many <strong>Delta</strong> Sequences that lead to the <strong>Delta</strong> <strong>Function</strong>, δ(<br />

x)<br />

.<br />

5.1 Each<br />

1<br />

δ n( x) = n<br />

2cosh<br />

2<br />

nx<br />

� has the sifting property<br />

� is continuous<br />

� peaks at x = 0 to δ (0) =<br />

n<br />

x =∞<br />

∫<br />

x =−∞<br />

n<br />

2<br />

x =∞ x =∞<br />

∫<br />

δ ( xdx ) = 1<br />

1 tanhnx 1<br />

= = 1 −( − 1) = 1.�<br />

2 2cosh nx 2n2 Proof: n dx n<br />

( )<br />

x =−∞<br />

n<br />

x =−∞<br />

The sequence represents the hyper-real <strong>Delta</strong> <strong>Function</strong><br />

5.2 If<br />

in<br />

2<br />

= ,<br />

n<br />

1 2 3<br />

δ ( x)<br />

= , , ,...<br />

2 2 2<br />

2 cosh x 2 cosh 2x 2 cosh 3x<br />

22


<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

plots in Maple, the 50 th component,<br />

plots in Maple the 200 th component,<br />

23


<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

6.<br />

<strong>Delta</strong> Sequence<br />

6.1 Each<br />

−nx<br />

δ ( x) = ne χ<br />

n<br />

−nx<br />

n( x) ne ( )<br />

[0, )<br />

δ χ = x<br />

∞<br />

[0, ∞)<br />

� has the sifting property<br />

x =∞<br />

∫<br />

x =−∞<br />

� is continuous hyper-real function<br />

� peaks at x = 0 to δ (0) =<br />

x=∞ x=∞<br />

Proof: −nxχ[0, ∞)<br />

−nx<br />

x=−∞ x=<br />

0<br />

n<br />

n<br />

δ ( xdx ) = 1<br />

e<br />

ne ( x) dx = ne dx = n = 1<br />

−n<br />

n<br />

−nx<br />

x =∞<br />

∫ ∫ .�<br />

x = 0<br />

The sequence represents the hyper-real <strong>Delta</strong> <strong>Function</strong><br />

6.2 If<br />

in<br />

1<br />

= ,<br />

n<br />

−x −2x −3x<br />

[0, ∞) [0, ∞) [0, ∞)<br />

δ( x) = e χ ,2 e χ , 3 e χ ,...<br />

24


<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

plots in Maple the 100 th component,<br />

plots in Maple the 200 th component,<br />

25


<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

7.<br />

Primitive of <strong>Delta</strong> <strong>Function</strong><br />

δ(<br />

x)<br />

7.1 is the derivative of<br />

⎧⎪− ⎪ 1, x < 0<br />

gx ( ) = ⎪<br />

⎨ 0, x=<br />

0<br />

⎪<br />

⎪⎩<br />

1, x > 0<br />

Proof: At the jump over [ −dx, 0] , from −1 to 0,<br />

for any dx ,<br />

g(0) −g(0 −dx) 0 −( −1)<br />

1<br />

= =<br />

dx dx dx<br />

Therefore, the left derivative at x = 0 is<br />

1<br />

g '(0 − ) = .<br />

dx<br />

At the jump over [0 , dx]<br />

, from 0 to 1, for any dx ,<br />

g(0 + dx) −g(0) 1 −0<br />

1<br />

= =<br />

dx dx dx<br />

Therefore, the right derivative at x = 0 is<br />

1<br />

g '(0 + ) = .<br />

dx<br />

26


<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

Since the right and left derivatives are equal, the derivative at<br />

x = 0 is<br />

1<br />

g '(0) = = δ(0)<br />

. �<br />

dx<br />

Since at x ≠ 0 , g'( x ) = 0 , we have,<br />

1<br />

g'( x)<br />

=<br />

⎣<br />

− ,<br />

⎦ . �<br />

dx dx<br />

dx 2 2<br />

χ ⎡ ⎤<br />

⎢ ⎥<br />

⎧0, x ≤ 0<br />

7.2 δ(<br />

x)<br />

is the Principal Value derivative of hx ( ) = ⎪<br />

⎨<br />

⎪<br />

⎪⎩<br />

1, x > 0<br />

Proof: For any dx ,<br />

h(0) −h( −dx)<br />

0<br />

= = 0 ⇒ h '(0 − ) = 0 .<br />

dx dx<br />

hdx ( ) −h(0) 1−0 1<br />

= =<br />

dx dx dx<br />

1<br />

⇒ h '(0 + ) = .<br />

dx<br />

hx x = 0 �<br />

Therefore, ( ) has no derivative at .<br />

But since<br />

h( dx) −h( −dx) 2 2 1−0 1<br />

= = ,<br />

dx dx dx<br />

hx ( ) x = 0<br />

The principal value derivative of at is<br />

p.v. h '(0)<br />

1<br />

= . �<br />

dx<br />

1<br />

Since at x ≠ 0 , p.v. h'( x ) = 0 , we have, p.v. h'( x)<br />

dx , dx<br />

dx 2 2<br />

χ = ⎡− ⎤<br />

⎢⎣ ⎥⎦<br />

.�<br />

27


<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

8.<br />

δ (()) fx<br />

8.1<br />

1<br />

δ( ax) = δ(<br />

x)<br />

a<br />

Proof: δ( ax) adx = δ( ax) d( ax) = 1 = δ(<br />

x) dx .<br />

We divide both sides by adx , and put a , because the <strong>Delta</strong>’s on<br />

both sides are positive.�<br />

8.2 If ξ 1 is the only zero of f ( x ) , and f '( ξ1) ≠ 0,<br />

1<br />

(()) ( )<br />

Then, δ fx = δ x−ξ<br />

1<br />

f '( ξ1)<br />

Proof: δ(()) f x = δ(<br />

f() x − f(<br />

ξ ) )<br />

For x − ξ = infinitesimal ,<br />

By 8.1,<br />

1<br />

1<br />

( f '( )( x ) )<br />

= δ ξ − ξ<br />

1<br />

1 1<br />

1<br />

= δ( x − ξ1)<br />

.�<br />

f '( ξ )<br />

28


<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

8.3 If ξ1, ξ 2 are the only zeros of f ( x ) , and f '( ξ1), f '( ξ2) ≠ 0<br />

1 1<br />

(()) ( ) ( )<br />

Then, δ fx = δ x− ξ1 + δ x−ξ2<br />

f '( ξ1) f '( ξ2)<br />

Proof: δ δ( ξ ) δ(<br />

( f ( x)) = f( x) − f( ) + f( x) − f(<br />

ξ )<br />

1 2<br />

If x − ξ1<br />

= infinitesimal , f ( x) − f( ξ1) = f '( ξ1)(<br />

x −ξ1)<br />

If x − ξ2<br />

= infinitesimal , f ( x) − f( ξ2) = f '( ξ2)(<br />

x −ξ2)<br />

Either way,<br />

( ) (<br />

δ( f ( x)) = δ f '( ξ )( x − ξ ) + δ f '( ξ )( x −ξ )<br />

1 1 2<br />

1 1<br />

= δ( x − ξ ) + δ( x −ξ<br />

) .�<br />

f '( ξ ) f '( ξ )<br />

1 2<br />

1 2<br />

2 2 1 1<br />

8.4 δ( x − a ) = δ( x − a) + δ(<br />

x + a)<br />

2 a 2 a<br />

1 1<br />

δ ( x −a)( x − b) = δ(<br />

x − a) + δ ( x + a)<br />

a −b b −a<br />

8.5 ( )<br />

8.6 If 1 are the only zeros of<br />

,... ξ ξ n<br />

f ( x ) , and f '( ξ1),.., f '( ξn) ≠ 0<br />

1 1<br />

Then, δ(()) fx = δ( x− ξ1) + ... + δ(<br />

x−<br />

ξn)<br />

f '( ξ ) f '( ξ )<br />

1<br />

29<br />

)<br />

n<br />

2<br />

)


<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

8.7 If ξ1, ξ 2,..<br />

. are zeros of f ( x ) , and f '( ξ1), f '( ξ2),... ≠ 0<br />

8.8<br />

1 1<br />

Then, δ( fx ( )) = δ( x− ξ1) + δ(<br />

x−ξ<br />

n ) + ...<br />

f '( ξ ) f '( ξ )<br />

1<br />

δ(sin x) = ... + δ( x + 2 π) + δ( x + π) + δ( x) + δ( x − π) + δ( x − 2 π)<br />

+ ...<br />

Proof: The zeros of si n x are ... −2 π, −π,<br />

0, π,2 π,...<br />

and cos( nπ ) = 1.�<br />

30<br />

n


<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

9.<br />

n<br />

δ ( x )<br />

9.1<br />

Proof:<br />

1<br />

( x ) = ( x),<br />

2xdx<br />

2 δ χ⎡−xdx, xdx ⎤<br />

⎣ ⎦<br />

2 δ = χ (<br />

2<br />

) (<br />

2<br />

2<br />

⎡ d x d x ) ⎤<br />

dx ( ) ⎢−, ⎥<br />

⎢ 2 2<br />

⎣ ⎦⎥<br />

2<br />

x ><br />

1<br />

( x ) ( x)<br />

1<br />

( )<br />

2xdx<br />

χ = ⎡ ⎤ ,<br />

⎢−⎥ (<br />

2<br />

) (<br />

2 x<br />

d x d x )<br />

,<br />

2 2<br />

⎢⎣ ⎦⎥<br />

where to ensure dx ( ) > 0,<br />

we must have<br />

x > 0 .<br />

The amplitude and domain of the δ(<br />

x ) spike depend on x .<br />

For instance,<br />

9.2<br />

1<br />

2xdx<br />

χ⎡ xdx, xdx ⎤<br />

⎣<br />

−<br />

⎦ x = =<br />

( x) δ(<br />

x)<br />

9.3 −xdx,<br />

xdx<br />

( ) 2 ( ) 2<br />

dx<br />

2 2 dx dx<br />

xdx x<br />

,<br />

2 ( dx)<br />

−<br />

2 2<br />

1<br />

2<br />

χ⎡ ⎤ χ⎡<br />

⎤<br />

1 1<br />

2<br />

( x) = ( x)<br />

≤ δ ( x)<br />

⎣ ⎦ = ⎢ ⎥<br />

⎢⎣ ⎥⎦<br />

31<br />

2<br />

0


<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

1<br />

( x ) ( x)<br />

n<br />

9.4 =<br />

(<br />

n<br />

) (<br />

n<br />

n d x d x )<br />

dx ( ) − ,<br />

2 2<br />

δ χ⎡ ⎤<br />

⎢ ⎥<br />

⎢⎣ ⎦⎥<br />

1<br />

= ( x)<br />

, x > 0<br />

−<br />

⎡ x dx x dx⎤<br />

⎣⎢ ⎦⎥<br />

n n 1 1<br />

1<br />

, n n<br />

n nx dx 2 2 χ − −<br />

−<br />

The amplitude and domain of the ( ) spike depend on x .<br />

n<br />

δ x<br />

For instance,<br />

9.5<br />

1<br />

χ⎡ n n−1 n 1 , n −<br />

− x dx x dx⎤<br />

1<br />

⎣ 2 2 ⎦ = 1<br />

n<br />

n−1<br />

⎢ ⎥<br />

nx dx<br />

( x) = δ(<br />

x)<br />

x 1 ( ) n−<br />

32


<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

10.<br />

n n<br />

δ( x − ( dx)<br />

)<br />

2 dx 2 While x − ( ) is infinitesimally close to ,<br />

different from δ(<br />

x ) .<br />

2 2<br />

10.1 ( )<br />

2<br />

2<br />

dx 1 dx 1 dx<br />

δ x − ( ) = δ(<br />

x − ) + δ ( x + )<br />

2 dx 2 dx 2<br />

Proof: By 8.4, since dx > 0.�<br />

10.1 has two positive spikes. For instance,<br />

10.2<br />

2<br />

2 2<br />

x ( x ( dx)<br />

2 )<br />

⎡ 1 1 ⎤ 1 1<br />

⎢ δ( x − ) + δ( x + ) ⎥ = δ(<br />

− ) + (<br />

⎢<br />

⎣dx dx ⎥<br />

⎦ dx dx<br />

δ<br />

dx dx dx dx<br />

2 2 2<br />

2<br />

x = 0<br />

)<br />

δ − is<br />

1 1<br />

= χ 2 [ −dx,0]<br />

( x) + χ 2 [0, dx ] ( x)<br />

.<br />

( dx) ( dx)<br />

Similarly, ( has three positive spikes.<br />

3 3<br />

δ x − ( dx)<br />

)<br />

2 2<br />

3 3 1<br />

i π 2i<br />

π<br />

10.3 δ 3 3<br />

( x ( dx) ) 2 ( δ( x dx) δ( x e dx ) δ(<br />

x e dx ) )<br />

− = − + − + − .<br />

3( dx)<br />

3 3<br />

Proof: x − ( dx)<br />

has the three zeros<br />

33


<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

Since<br />

x1= dx<br />

,<br />

2<br />

f '( x ) = 3x<br />

, and since<br />

2<br />

i<br />

2<br />

3<br />

π<br />

x = e dx,<br />

and<br />

3<br />

2 2 2<br />

2i<br />

2<br />

3<br />

π<br />

x = e dx.<br />

x2 = x3 = ( dx<br />

) , by 6.6 we obtain<br />

2 2<br />

3 3 1<br />

i π 2i<br />

π<br />

3 3<br />

( x ( dx) ) 2 ( ( x dx) ( x e dx ) ( x e dx ) )<br />

δ − = δ − + δ − + δ − . �<br />

3( dx)<br />

n n ( x ( dx)<br />

)<br />

δ − has n positive spikes.<br />

1<br />

2π 2<br />

n n<br />

( n−1)<br />

π<br />

10.4 δ( x − ( dx) ) =<br />

1 ( δ( x − dx) + δ n ( x − e dx ) + ... + δ<br />

n<br />

n<br />

( x − e dx<br />

−<br />

) )<br />

n<br />

n<br />

ndx ( )<br />

Proof: x − ( dx)<br />

has the n zeros<br />

Since<br />

x = dx<br />

,<br />

1<br />

n 1<br />

f '( x) nx − = , and since<br />

by 6.6 we obtain<br />

2<br />

i<br />

2<br />

n<br />

π<br />

( n−1) i<br />

n<br />

2π<br />

x = e dx,…,<br />

x = e dx.<br />

n<br />

n−1 n−1 n−1<br />

n<br />

x1 = ... = x = ( dx ) ,<br />

1<br />

2π 2<br />

n n<br />

( n−1)<br />

π<br />

( x ( dx) ) 1 ( ( x dx) n ( x e dx ) ...<br />

n<br />

n<br />

( x e dx<br />

−<br />

) )<br />

δ − = δ − + δ − + + δ − . �<br />

ndx ( )<br />

34


<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

11.<br />

Integral of<br />

δ(<br />

x)<br />

11.1 Integral of a Hyper-real <strong>Function</strong><br />

Let f () x be a hyper-real function on the interval [ ab , ] .<br />

f () x may take infinite hyper-real values, and need not be<br />

bounded.<br />

At each<br />

a ≤ x ≤b,<br />

there is a rectangle with base dx dx<br />

[ x − , x + ], height f () x , and area<br />

2<br />

2<br />

f ( xdx. )<br />

We form the Integration Sum of all the areas for the x ’s that<br />

start at x = a,<br />

and end at x = b,<br />

∑<br />

x∈[ a, b]<br />

f ( xdx ) .<br />

If for any infinitesimal dx , the Integration Sum has the same<br />

hyper-real value, then f () x is integrable over the interval [ ab , ] .<br />

Then, we call the Integration Sum the integral of f () x from x = a,<br />

to x = b,<br />

and denote it by<br />

35


<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

x= b<br />

∫<br />

x= a<br />

f ( xdx ) .<br />

If the hyper-real is infinite, then it is the integral over [ ab , ] ,<br />

If the hyper-real is finite,<br />

x= b<br />

∫ fxdx ( ) = real part of the hyper-real . �<br />

x= a<br />

11.2 The countability of the Integration Sum<br />

In [Dan1], we established the equality of all positive infinities:<br />

We proved that the number of the Natural Numbers,<br />

Card� , equals the number of Real Numbers, 2 , and<br />

Card�<br />

Card � =<br />

we have<br />

2 Card�<br />

2<br />

Card�<br />

Card� = ( Card�)<br />

= .... = 2 = 2 = ... ≡ ∞.<br />

In particular, we demonstrated that the real numbers may be<br />

well-ordered.<br />

Consequently, there are countably many real numbers in the<br />

interval [ ab , ] , and the Integration Sum has countably many terms.<br />

While we do not sequence the real numbers in the interval, the<br />

summation takes place over countably many f ( xdx. )<br />

The Lower Integral is the Integration Sum where f ( x ) is replaced<br />

36


<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

by its lowest value on each interval<br />

11.3<br />

∑<br />

x∈[ a, b]<br />

dx dx<br />

2 2<br />

[ x − , x + ]<br />

dx dx<br />

2 2<br />

⎛ ⎞<br />

⎜ inf f ( t) ⎟<br />

⎜ ⎟dx<br />

⎜⎜⎝ ⎟<br />

x− ≤t≤ x+<br />

⎠⎟<br />

The Upper Integral is the Integration Sum where f ( x ) is replaced<br />

by its largest value on each interval<br />

11.4<br />

∑<br />

x∈[ a, b]<br />

dx dx<br />

2 2<br />

[ x − , x + ]<br />

dx dx<br />

2 2<br />

⎛ ⎞<br />

⎜ ⎟<br />

⎜ sup f ( t) ⎟<br />

⎜ ⎟dx<br />

⎜ ⎟<br />

⎝x− ≤t≤ x+<br />

⎠⎟<br />

If the integral is a finite hyper-real, we have<br />

11.5 A hyper-real function has a finite integral if and only if its<br />

upper integral and its lower integral are finite, and differ by an<br />

infinitesimal.<br />

x =∞<br />

11.6 δ(<br />

xdx ) = 1.<br />

∫<br />

x =−∞<br />

Proof: The only term in the integration Sum is 1<br />

dx = 1.<br />

dx<br />

Both the upper integral, and the lower integral are equal to<br />

1<br />

dx = 1.<br />

�<br />

dx<br />

37


<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

12.<br />

The Principal Value Derivative of<br />

<strong>Delta</strong>: the Dipole <strong>Function</strong><br />

We have seen in 2.3 that<br />

at<br />

for<br />

at<br />

Here, we show<br />

dx<br />

x =− , δ( x)<br />

jumps from 0 to<br />

2<br />

x ∈ ⎡− ⎤<br />

dx dx<br />

⎢⎣ ,<br />

2 2 ⎥⎦<br />

,<br />

dx<br />

x = , δ(<br />

x)<br />

drops from<br />

2<br />

1<br />

dx ,<br />

1<br />

δ ( x)<br />

= . In particular,<br />

dx<br />

1<br />

dx<br />

to . 0<br />

� in 12.1, that δ(<br />

x)<br />

has no derivative at<br />

Principal Value Derivative over the jump at<br />

Positive Impulse <strong>Function</strong>.<br />

� in 12.2, that δ(<br />

x)<br />

has no derivative at<br />

Principal Value Derivative over the jump at<br />

Negative Impulse <strong>Function</strong>.<br />

We sum up 12.1, and 12.2. in 12.3.<br />

38<br />

1<br />

δ (0) =<br />

dx<br />

1 x =− dx , but the<br />

2<br />

1 x =− dx , is a<br />

2<br />

x = dx,<br />

but the<br />

1<br />

2<br />

x = dx,<br />

is a<br />

1<br />

2


<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

Namely, δ( x)<br />

has no derivative at x = 0 , but the Principal Value<br />

Derivative over the two jumps is a Dipole <strong>Function</strong>.<br />

That Dipole function is a positive Impulse <strong>Function</strong> followed by a<br />

negative Impulse function.<br />

Both the positive, and the negative impulses have jumps far<br />

greater than the jump of the generating delta function.<br />

12.1 The Principal Value Derivative of <strong>Delta</strong> at<br />

δ(<br />

x)<br />

has no derivative at<br />

dx<br />

x =− .<br />

2<br />

The Principal Value Derivative of δ(<br />

x)<br />

at<br />

1<br />

Impulse function χ[ − dx,0].<br />

2<br />

( dx)<br />

Proof: The left derivative of δ(<br />

x)<br />

at x =− dx<br />

is<br />

( −dx) − ( −dx) 1 −0<br />

2<br />

dx 2<br />

= =<br />

− dx + dx dx<br />

2<br />

( dx)<br />

2 2<br />

δ δ<br />

The right derivative of δ(<br />

x)<br />

at x =− dx<br />

is<br />

δ(0) −δ( − ) −<br />

= = 0 .<br />

0 −− ( )<br />

1<br />

2<br />

dx 1 1<br />

2 dx dx<br />

dx dx<br />

2 2<br />

x =− dx<br />

1<br />

2<br />

1 x =− dx , is the Positive<br />

2<br />

Since the left and right derivatives are unequal, δ(<br />

x)<br />

has no<br />

derivative at<br />

x =− dx .�<br />

1<br />

2<br />

39<br />

1<br />

2


<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

The Principal Value Derivative at<br />

x =− dx<br />

is<br />

1<br />

δ(0) −δ( −dx)<br />

− 0<br />

dx 1<br />

= =<br />

0 −− ( dx) dx ( dx)<br />

It is the Positive Impulse <strong>Function</strong><br />

1<br />

1<br />

2<br />

2<br />

( dx) 2<br />

.<br />

χ[ − dx,0]<br />

.�<br />

12.2 The Principal Value Derivative of <strong>Delta</strong> at<br />

δ(<br />

x)<br />

has no derivative at<br />

x = dx.<br />

The Principal Value Derivative of δ(<br />

x)<br />

at<br />

Impulse <strong>Function</strong><br />

1<br />

[0, dx]<br />

2<br />

( dx) χ − .<br />

Proof: The Left Derivative of δ(<br />

x)<br />

at x = dx<br />

is<br />

1<br />

2<br />

( dx)<br />

−<br />

2<br />

(0) 1 − 1<br />

dx dx 0<br />

dx<br />

2<br />

dx<br />

2<br />

dx<br />

δ δ<br />

1<br />

2<br />

x =<br />

dx<br />

2<br />

x = dx,<br />

is the Negative<br />

1<br />

2<br />

= = = 0 .<br />

The Right Derivative of δ(<br />

x)<br />

at x = dx<br />

is<br />

( dx)<br />

− ( dx)<br />

0− 1<br />

2<br />

dx 2<br />

= = −<br />

dx − dx dx<br />

2<br />

( dx)<br />

2 2<br />

δ δ<br />

Since the Left and Right Derivatives are unequal, δ(<br />

x)<br />

has no<br />

derivative at<br />

x = dx.�<br />

1<br />

2<br />

40<br />

1<br />

2<br />

.


<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

The Principal Value Derivative at<br />

x = dx<br />

is<br />

1<br />

δ( dx)<br />

− δ(0) 0 −<br />

dx 1<br />

= = − .<br />

dx) dx 2 ( dx)<br />

It is the Negative Impulse <strong>Function</strong><br />

1<br />

2<br />

1<br />

[0, dx]<br />

2 ( dx) χ − .�<br />

12.3 The Principal Value Derivative of <strong>Delta</strong> at<br />

δ( x)<br />

has no derivative at x = 0 .<br />

The Principal Value Derivative of δ ( x)<br />

, p.v.D δ(<br />

x)<br />

is the Dipole <strong>Function</strong><br />

1 1<br />

Dipole( x) = χ[ −dx,0] − χ[0,<br />

dx]<br />

.<br />

2 2<br />

( dx) ( dx)<br />

Proof: The Left Derivative of δ( x)<br />

at x = 0 is<br />

1<br />

δ(0) −δ( −dx)<br />

− 0<br />

dx 1<br />

= =<br />

dx dx ( dx)<br />

The Right Derivative of δ( x)<br />

at x = 0 is<br />

1<br />

δ( dx)<br />

− δ(0) 0 −<br />

dx 1<br />

= = − .<br />

dx dx 2 ( dx)<br />

2<br />

x =<br />

Since the left and right derivatives are unequal, δ(<br />

x)<br />

has no<br />

derivative at x = 0 .�<br />

The Principal Value Derivative of δ(<br />

x)<br />

is<br />

41<br />

0


<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

δ( x + dx) −δ( x − dx)<br />

2 2 1 dx 1 dx<br />

= δ( x + ) − δ(<br />

x − ).<br />

dx dx 2 dx 2<br />

It is the Dipole <strong>Function</strong><br />

If<br />

1 dx = , this is the sequence<br />

n<br />

1 1<br />

χ[ −dx,0] − χ[0,<br />

dx]<br />

.�<br />

2 2<br />

( dx) ( dx)<br />

2 1 2 1<br />

χ χ<br />

n n<br />

Dipole( x) = n [ − ,0] − n [0, ] .<br />

Then, a Maple plot of the 10 th component of Dipole( x)<br />

is<br />

42


<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

13.<br />

The 2 nd Principal Value Derivative<br />

of <strong>Delta</strong>: the 4-Pole <strong>Function</strong><br />

The 2 nd Principal Value Derivative of δ(<br />

x)<br />

is the 4-pole <strong>Function</strong><br />

1<br />

2<br />

13.1 (p.v.D) δ( x) = ( δ( x + dx) − 2 δ( x) + δ(<br />

x − dx)<br />

)<br />

Proof:<br />

2<br />

( dx)<br />

1 3dx dx dx dx dx 3dx<br />

= { χ[ − , − ] −2 χ[ − , ] + χ[<br />

, ] } .<br />

3 2 2 2 2 2 2<br />

( dx)<br />

Dipole( x + ) −Dipole( x −<br />

(p.v.D) δ(<br />

x)<br />

=<br />

dx<br />

dx dx<br />

2 2 2<br />

1<br />

= + − + − )<br />

2<br />

( dx)<br />

) `<br />

( δ( x dx) 2 δ( x) δ(<br />

x dx )<br />

1 3dx dx dx dx dx 3dx<br />

= { χ[ − , − ] −2 χ[ − , ] + χ[<br />

, ] } .�<br />

3 2 2 2 2 2 2<br />

( dx)<br />

The 4-pole <strong>Function</strong> has four Impulse <strong>Function</strong>s<br />

1<br />

� a Positive Impulse δ ( x + dx)<br />

centered at x =−d<br />

x,<br />

2<br />

( dx)<br />

43


<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

If<br />

1<br />

� two Negative Impulses − 2 δ(<br />

x)<br />

centered at x = 0 ,<br />

2<br />

( dx)<br />

1<br />

� a Positive Impulse δ( x − dx)<br />

centered at x = dx<br />

.<br />

2<br />

( dx)<br />

1 dx = , this is the sequence<br />

n<br />

3 3 1 3 1 1 3 1 3<br />

χ χ<br />

2n 2n 2n 2n 2n 2n<br />

4 pole( x) = n [ − , − ] − 2 n [ − , ] + n χ[<br />

, ]<br />

Then, a Maple plot of a component of 4 pole( x)<br />

is<br />

The x axis units are 1<br />

n<br />

3<br />

. The y axis units are n .<br />

44<br />

.


<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

14.<br />

Higher Principal Value<br />

Derivatives of <strong>Delta</strong><br />

14.1 The 3 rd Principal Value Derivative of δ(<br />

x)<br />

,<br />

If<br />

is the 8-pole <strong>Function</strong><br />

3<br />

(p.v.D) δ(<br />

x)<br />

1<br />

8 pole( x) = ( χ[ −2 dx, −dx] −3 χ[ − dx,0] + 3 χ[0, dx] − χ[<br />

dx,2 dx]<br />

) .<br />

4 ( dx)<br />

1 dx = , this is the sequence<br />

n<br />

4 2 1 4 1 4<br />

χ χ χ 1 1 2<br />

n n n n n n<br />

8 pole( x) = n [ − , − ] − 3 n [ − ,0] + 3 n [0, ] − n [ , ]<br />

4 χ<br />

Then, a Maple plot of a component of 8 pole( x)<br />

is<br />

The x axis units are 1<br />

n<br />

4<br />

. The y axis units are n .<br />

45<br />

.


<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

14.2 The 4 th Principal Value Derivative of δ(<br />

x)<br />

, (p.v.D) δ(<br />

x)<br />

If<br />

is the 16-pole <strong>Function</strong><br />

1 5dx3dx 3dx<br />

dx<br />

16 pole( x)<br />

= ( χ[ − , − ] − 4 χ[<br />

− , − ] +<br />

5 2 2 2 2<br />

( dx)<br />

1 dx = , this is the sequence<br />

n<br />

( 5 5<br />

+6 χ[ − , ] − 4 χ[ , ] + χ[<br />

, ] .<br />

5 3 3 1<br />

χ χ<br />

2n 2n 2n 2<br />

dx dx dx 3dx 3dx 5dx<br />

2 2 2 2 2 2<br />

16 pole( x) = n [ − , − ] −4 n [ − , − ] +<br />

5 1 1 5 1 3 5 3 5<br />

χ χ χ<br />

2n 2n 2n 2n 2n 2n<br />

+6 n [ − , ] − 4 n [ , ] + n [ , ] .<br />

Then, a Maple plot of a component of 16 pole( x)<br />

is<br />

The x axis units are 1<br />

n<br />

5<br />

. The y axis units are n .<br />

46<br />

4<br />

)<br />

)


<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

Using the Binomial coefficients,<br />

k x<br />

14.3 The k th Principal Value Derivative of δ ( x)<br />

, (p .v.D) δ(<br />

) is<br />

k<br />

2 pole( x)<br />

=<br />

If<br />

k−1 dx k−1<br />

pole x + − pole x + dx<br />

2 2<br />

2 ( ) 2 (<br />

dx<br />

1 ⎛ ⎛k⎞ =<br />

⎜<br />

χ[ , ]<br />

⎟<br />

⎜ − − −<br />

⎜ ⎟χ[<br />

− , −<br />

k+<br />

1<br />

( dx)<br />

⎜<br />

⎜<br />

⎜ ⎜1 ⎟<br />

⎝ ⎜⎝<br />

⎠⎟<br />

( k+ 1) dx ( k−1) dx ( k−1) dx ( k−3) dx<br />

2 2 2 2<br />

⎛k⎞ ( k−1) dx ( k−3) dx k ( k− 1) dx ( k+ 1) dx<br />

+<br />

⎜ ⎟<br />

⎜ ⎟<br />

⎜<br />

χ[ , ] ... ( 1) χ[<br />

, ]<br />

2<br />

⎟ − − + + −<br />

2 2 2 2 ) .<br />

⎜⎝ ⎠⎟<br />

1 dx = , this is the sequence<br />

n<br />

1 ( k 1) ( k 1) n<br />

k+ + − k+<br />

1<br />

( n−1) dx ( n−3) dx<br />

n χ[ , ] n χ[<br />

, ]<br />

2n 2n 1 2 2<br />

⎛ ⎞ − − −<br />

⎜ ⎟<br />

⎜ ⎟<br />

⎜ ⎟ − −<br />

⎜⎝ ⎠⎟<br />

⎛k⎞ k+ 1 k 1 k 3 k 1 k 1 k 1<br />

n<br />

⎜ ⎟ − − k+<br />

− +<br />

+ ⎜<br />

χ[ , ] ... ( 1) n χ[<br />

, ]<br />

2<br />

⎟ − − + + −<br />

⎜⎝ ⎟ 2n 2n 2n 2n<br />

⎠<br />

47<br />

)<br />

+<br />

]+<br />

)


<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

References<br />

[Dan1] Dannon, H. Vic, “Well-Ordering of the Reals, Equality of all Infinities,<br />

and the Continuum Hypothesis” in <strong>Gauge</strong> <strong>Institute</strong> Journal of math and<br />

Physics, Vol.6 No 2, May 2010;<br />

[Dan2] Dannon, H. Vic, “Infinitesimals” in <strong>Gauge</strong> <strong>Institute</strong> Journal of math<br />

and Physics, Vol.6 No 4, November 2010;<br />

[Dan3] Dannon, H. Vic, “Infinitesimal Calculus” in <strong>Gauge</strong> <strong>Institute</strong> Journal<br />

of Math and Physics, Vol.7 No 1, February 2011;<br />

[Dan4] Dannon, H. Vic, “Riemann’s Zeta <strong>Function</strong>: the Riemann Hypothesis<br />

Origin, the Factorization Error, and the Count of the Primes”, in <strong>Gauge</strong><br />

<strong>Institute</strong> Journal of Math and Physics, Vol.5 No 4, November 2009;<br />

[Dirac] Dirac, P. A. M. The Principles of Quantum Mechanics, Second Edition,<br />

Oxford Univ press, 1935.<br />

[Hen] Henle, James M., and Kleinberg Eugene M., Infinitesimal Calculus,<br />

MIT Press 1979.<br />

[Hosk] Hoskins, R. F., Standard and Nonstandard Analysis, Ellis Horwood,<br />

1990.<br />

[Keis] Keisler, H. Jerome, Elementary calculus, An Infinitesimal Approach,<br />

Second Edition, Prindle, Weber, and Schmidt, 1986, pp. 905-912<br />

[Laug] Laugwitz, Detlef, “Curt Schmieden’s approach to infinitesimals-an eye-<br />

opener to the historiography of analysis” Technische Universitat Darmstadt,<br />

Preprint Nr. 2053, August 1999<br />

[Mikusinski] Mikusinski, J. and Sikorski, R., “The elementary theory of<br />

distributions”, Rosprawy Matematyczne XII, Warszawa 1957.<br />

48


<strong>Gauge</strong> <strong>Institute</strong> Journal, Volume 8, No. 1, February 2012 H. Vic Dannon<br />

[Rand] Randolph, John, “Basic Real and Abstract Analysis”, Academic Press,<br />

1968.<br />

[Riemann] Riemann, Bernhard, “On the Representation of a <strong>Function</strong> by a<br />

Trigonometric Series”.<br />

(1) In “Collected Papers, Bernhard Riemann”, translated from<br />

the 1892 edition by Roger Baker, Charles Christenson, and<br />

Henry Orde, Paper XII, Part 5, Conditions for the existence of a<br />

definite integral, pages 231-232, Part 6, Special Cases, pages<br />

232-234. Kendrick press, 2004<br />

(2) In “God Created the Integers” Edited by Stephen Hawking,<br />

Part 5, and Part 6, pages 836-840, Running Press, 2005.<br />

[Schwartz] Schwartz, Laurent, Mathematics for the Physical Sciences,<br />

Addison-Wesley, 1966.<br />

[Temp] Temple, George, 100 Years of Mathematics, Springer-Verlag, 1981.<br />

pp. 19-24.<br />

49

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!