27.12.2012 Views

Inorganic Microporous Membranes for Gas Separation in Fossil Fuel ...

Inorganic Microporous Membranes for Gas Separation in Fossil Fuel ...

Inorganic Microporous Membranes for Gas Separation in Fossil Fuel ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Mitglied der Helmholtz-Geme<strong>in</strong>schaft<br />

<strong>Inorganic</strong> <strong>Microporous</strong> <strong>Membranes</strong> <strong>for</strong> <strong>Gas</strong> <strong>Separation</strong> <strong>in</strong><br />

<strong>Fossil</strong> <strong>Fuel</strong> Power Plants<br />

George van der Donk


Schriften des Forschungszentrums Jülich<br />

Reihe Energie & Umwelt / Energy & Environment Band / Volume 8


Forschungszentrum Jülich GmbH<br />

Institut für Energie<strong>for</strong>schung (IEF)<br />

Werkstoffsynthese und Herstellungsverfahren (IEF-1)<br />

<strong>Inorganic</strong> <strong>Microporous</strong> <strong>Membranes</strong><br />

<strong>for</strong> <strong>Gas</strong> <strong>Separation</strong> <strong>in</strong><br />

<strong>Fossil</strong> <strong>Fuel</strong> Power Plants<br />

George van der Donk<br />

Schriften des Forschungszentrums Jülich<br />

Reihe Energie & Umwelt / Energy & Environment Band / Volume 8<br />

ISSN 1866-1793 ISBN 978-3-89336-525-8


Bibliographic <strong>in</strong><strong>for</strong>mation published by the Deutsche Nationalbibliothek.<br />

The Deutsche Nationalbibliothek lists this publication <strong>in</strong> the Deutsche<br />

Nationalbibliografie; detailed bibliographic data are available <strong>in</strong> the<br />

Internet at http://dnb.d-nb.de.<br />

Publisher Forschungszentrum Jülich GmbH<br />

and Distributor: Zentralbibliothek, Verlag<br />

D-52425 Jülich<br />

phone:+49 2461 61-5368 · fax:+49 2461 61-6103<br />

e-mail: zb-publikation@fz-juelich.de<br />

Internet: http://www.fz-juelich.de/zb<br />

Cover Design: Grafische Medien, Forschungszentrum Jülich GmbH<br />

Pr<strong>in</strong>ter: Grafische Medien, Forschungszentrum Jülich GmbH<br />

Copyright: Forschungszentrum Jülich 2008<br />

Schriften des Forschungszentrums Jülich<br />

Reihe Energie & Umwelt / Energy & Environment Band / Volume 8<br />

D 294 (Diss., Bochum, Univ., 2007)<br />

ISSN 1866-1793<br />

ISBN 978-3-89336-525-8<br />

The complete volume is freely available on the Internet on the Jülicher Open Access Server<br />

(JUWEL) at http://www.fz-juelich.de/zb/juwel<br />

Neither this book nor any part may be reproduced or transmitted <strong>in</strong> any <strong>for</strong>m or by any means,<br />

electronic or mechanical, <strong>in</strong>clud<strong>in</strong>g photocopy<strong>in</strong>g, microfilm<strong>in</strong>g, and record<strong>in</strong>g, or by any<br />

<strong>in</strong><strong>for</strong>mation storage and retrieval system, without permission <strong>in</strong> writ<strong>in</strong>g from the publisher.


List of Abbreviations<br />

Ac Acetyl Acetonate<br />

ADA 1-am<strong>in</strong>o Adamant<strong>in</strong>e<br />

AKP30 Alum<strong>in</strong>a powder from the Japanese company Sumitomo<br />

ATSB Alum<strong>in</strong>um-Tri-Sec-Butoxide<br />

BCY BaCe0.8Y0.2O3-δ<br />

BET Brunauer, Emmet and Teller<br />

BJH Barret, Joyner and Halenda<br />

BM-1 Ball Milled sample 1<br />

C10(-NH2) Decylam<strong>in</strong>e<br />

C16(-NH2) Cetylam<strong>in</strong>e<br />

Ca Caproic acid<br />

CCS Carbon Capture and Storage<br />

CTA+ Cetyltrimethylammonium<br />

CVD Chemical Vapour Deposition<br />

D1H Dodecasil 1h zeolite type<br />

DDR Deca-dodecasil 3R<br />

DEA Diethanolam<strong>in</strong>e<br />

DIPA Diisopropanolam<strong>in</strong>e<br />

dk<strong>in</strong><br />

K<strong>in</strong>etic diameter<br />

dlayer<br />

Layer thickness<br />

DLS Dynamic Light Scatter<strong>in</strong>g<br />

DOH Dodecasil 1h code by International Zeolite Association<br />

dpore<br />

Pore diameter<br />

DTA Differential Thermal Analysis<br />

EDX Energy-dispersive X-ray analysis<br />

EN Ethylenediam<strong>in</strong>e<br />

EO Ethylene oxide<br />

ETS-4 Engelhard Titano-Silicates zeolite type<br />

Exo Exothermic direct<strong>in</strong>g <strong>in</strong> Differential Thermal Analysis plot<br />

F127 Pluronic F127<br />

FAU Faujasite zeolite type<br />

FER Ferrierite zeolite type<br />

HIP(-1) Hot Isostatic Pressure (sample 1)<br />

HK-SF Horvath-Kawazoe modified by Saito-Foley<br />

HR-TEM High Resolution Transmission Electron Microscopy<br />

ICP-OES Inductively Coupled Plasma - Atomic Emission Spectrometer<br />

IPCC Intergovernmental Panel on Climate Change<br />

ISO International Organization <strong>for</strong> Standardization<br />

i


IUPAC International Union of Pure and Applied Chemistry<br />

IZA International Zeolite Association<br />

LTA L<strong>in</strong>de zeolite Type A<br />

MEP Melanophlogite Zeolite type<br />

MFI Mobile Five<br />

MIEC Mixed ionic electronic conductor<br />

MOR Mordenite zeolite type<br />

MTN Dodecasil-3C Zeolite type<br />

NON Zeolite type<br />

PO Propylene oxide<br />

ppm Parts per million<br />

PTFE Polytetrafluoroethylene (Teflon)<br />

PVA Poly(v<strong>in</strong>yl-alcohol)<br />

RPM Rotations per m<strong>in</strong>ute<br />

SAXS Small Angle X-ray Scatter<strong>in</strong>g<br />

SBET<br />

Specific surface area by Brunauer, Emmet and Teller<br />

SDA’s Structure Direct<strong>in</strong>g Agents<br />

SEM Scann<strong>in</strong>g Electron Microscopy<br />

SGT Sigma 2 zeolite type<br />

SIMS Secondary Ion Mass Spectroscopy<br />

SOD Sodalite zeolite type<br />

TEOS Tetraethyloxysilane<br />

TGA Thermogravimetric analysis<br />

Ti-1 Titanium doped dodecasil 1H sample 1<br />

TMOS Tetramethyloxysilane<br />

XPS X-ray Photoelectron Spectroscopy<br />

XRD X-ray Diffraction<br />

YSZ Yttria Stabilised Zirconia<br />

ZSM-5 Zeolite Socony Mobile no. 5 synthesised by (Exxon) Mobile<br />

ii


Summary<br />

CO2 capture and storage might have an important role <strong>in</strong> stabilis<strong>in</strong>g the global concentration<br />

of CO2. Power plants are primary candidates <strong>for</strong> CO2 capture and storage because they have<br />

great potential (up to 45% of CO2 emission reduction <strong>in</strong> the year 2050 compared to 2005).<br />

<strong>Inorganic</strong> membranes (Zeolites or TiO2-ZrO2) are candidates <strong>for</strong> separat<strong>in</strong>g H2 from CO2<br />

(precombustion) or CO2 from the flue gas (ma<strong>in</strong>ly N2) at the End-of-Pipe (postcombustion) <strong>in</strong><br />

fossil fuel power plants.<br />

All-silica Dodecasil 1H (DOH) zeolite type was selected <strong>for</strong> the hydrothermal stability<br />

and possible ability to separate H2 from other gasses under precombustion concept conditions.<br />

The DOH crystal size can be synthesised to th<strong>in</strong> hexagonal plates with sizes <strong>in</strong> the order of 10<br />

µm. This crystal size is too large <strong>for</strong> membrane <strong>for</strong>mation or to act as seeds <strong>for</strong> the layer<br />

<strong>for</strong>mation, by means of secondary growth of DOH nuclei.<br />

The removal of the complete structure direct<strong>in</strong>g agent (SDA) content from the pores <strong>in</strong> the<br />

DOH structure could not be obta<strong>in</strong>ed through calc<strong>in</strong>ation <strong>in</strong> air <strong>for</strong> extended periods at<br />

elevated temperatures. Quasi SDA-free DOH, with a high crystall<strong>in</strong>ity, was obta<strong>in</strong>ed after<br />

calc<strong>in</strong>ation at 900ºC <strong>for</strong> 5 hours when the atmospheric pressure was <strong>in</strong>creased twice to 50<br />

MPa <strong>for</strong> 30 m<strong>in</strong>.<br />

The prepared all-silica DOH, that is quasi SDA-free, might present hydrothermal stable<br />

microporous material with pores that are <strong>in</strong>accessible <strong>for</strong> CO2 and accessible to H2.<br />

Polymeric Y2O3 or TiO2 mixed ZrO2 sols are synthesised <strong>for</strong> the preparation of<br />

ultramicroporous powders and th<strong>in</strong> films on γ-Al2O3 <strong>in</strong>termediate layers supported by α-<br />

Al2O3 disks as potential gas separation membranes. Two routes have been selected be<strong>in</strong>g the<br />

Ketone- and the Am<strong>in</strong>e-approach based on the precursor modifiers.<br />

8 mol% yttria stabilised zirconia (8YSZ) calc<strong>in</strong>ed at 450ºC is microporous with a BET<br />

specific surface area of ~50 m 2 /g. 8YSZ layers might <strong>for</strong>m microporous layers with low<br />

permeability. 30-50 nm th<strong>in</strong> cubic 8YSZ films, prepared by the Ketone-approach, show He<br />

and N2 transport by Knudsen diffusion due to defects or to the too large pores <strong>in</strong> the f<strong>in</strong>al<br />

membrane layer.<br />

As expected from the l<strong>in</strong>ear polymeric Am<strong>in</strong>e-Sols, the amorphous b<strong>in</strong>ary TiO2-ZrO2<br />

materials are microporous between 400 and 500ºC. The highest BET specific surface area of<br />

~200 m 2 /g with an estimated pore size of ~1.0 nm (gas physisorption) is obta<strong>in</strong>ed <strong>for</strong> the<br />

Ti0.5Zr0.5O2 calc<strong>in</strong>ed at 500ºC us<strong>in</strong>g the Am<strong>in</strong>e-approach. The crystallisation temperature of<br />

orthorhombic Ti0.5Zr0.5O2 is between 550 and 600ºC which is ~250ºC higher than that of<br />

s<strong>in</strong>gle oxides.<br />

20-60 nm th<strong>in</strong>, homogeneous films can be prepared from TiO2, ZrO2 and b<strong>in</strong>ary oxides on γ-<br />

Al2O3 membranes us<strong>in</strong>g calc<strong>in</strong>ation temperatures <strong>in</strong> the range of 400 to 600ºC. H2/CO2<br />

permselectivity higher than the Knudsen factor is observed <strong>for</strong> Ti0.5Zr0.5O2 films calc<strong>in</strong>ed at<br />

500 and 600ºC. These films can conta<strong>in</strong> a pore size distribution of ~0.3 to ~0.5 nm <strong>in</strong><br />

diameter which is comparable to state of the art SiO2 membranes. The maximal He permeance<br />

of 1·10 -7 mol/m 2 sPa and a maximal permselectivity of He/N2 =14 or H2/CO2=6 values are<br />

lower than state of the art SiO2 membranes but higher than TiO2-ZrO2 membranes published<br />

iii


<strong>in</strong> literature. These results fulfil the primary aim of achiev<strong>in</strong>g gas separation membranes from<br />

TiO2-ZrO2 material. However, the permeability and permselectivity of these membranes<br />

should be <strong>in</strong>creased <strong>for</strong> applications <strong>in</strong> power plants.<br />

The micropores <strong>in</strong> Ti0.5Zr0.5O2 membranes are stable <strong>for</strong> at least 1500 hours. Steam test results<br />

<strong>in</strong> reversible pore block<strong>in</strong>g without layer delam<strong>in</strong>ation or destruction while ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g the<br />

permselectivity. This evidence <strong>in</strong>dicates that Ti0.5Zr0.5O2 membranes can be alternatives to<br />

SiO2 membranes <strong>for</strong> precombustion applications.<br />

iv


Zusammenfassung<br />

Die Abtrennung und anschließende Speicherung von anthropogen erzeugtem CO2 wird im<br />

H<strong>in</strong>blick auf die Stabilisierung der globalen CO2-Konzentration künftig e<strong>in</strong>e bedeutende<br />

Rolle e<strong>in</strong>nehmen. <strong>Fossil</strong>e Kraftwerke bieten dafür e<strong>in</strong> enormes Potential. Im Vergleich zu<br />

2005 könnten die CO2-Emissionen bis 2050 um 45% gesenkt werden. Anorganische<br />

Membranen (z.B.: aus Zeolithen oder TiO2-ZrO2) eignen sich pr<strong>in</strong>zipiell, H2 von CO2 vor der<br />

Verbrennung (precombustion) oder CO2 vom stickstoffhaltigen Abgas nach der Verbrennung<br />

(postcombustion) im fossilen Kraftwerk abzutrennen.<br />

Der Silika Dodecasil 1H Zeolith (DOH) wurde aufgrund se<strong>in</strong>er hydrothermalen<br />

Stabilität und se<strong>in</strong>er Fähigkeit, H2 von anderen <strong>Gas</strong>en unter den Bed<strong>in</strong>gungen des<br />

Precombustion-Verfahrens zu trennen, ausgewählt. Die DOH-Kristalle konnten als dünne<br />

sechseckige Platten <strong>in</strong> der Größenordnung von 10 µm synthetisiert werden. Sie waren jedoch<br />

zu groß für die Membranbildung oder um als Kristallkeime für die Schichtbildung durch das<br />

sekundäre Wachstum von DOH-Keimen zu fungieren.<br />

Die komplette Abspaltung des Templates von den Poren der DOH-Struktur konnte durch die<br />

Kalz<strong>in</strong>ierung an Luft bei erhöhten Temperaturen und über längere Zeiträume nicht erreicht<br />

werden. Nahezu template-freie DOH-Kristalle mit e<strong>in</strong>er Käfigbelegung von nur 1% und e<strong>in</strong>er<br />

hohen Kristall<strong>in</strong>ität konnten nach e<strong>in</strong>er Kalz<strong>in</strong>ierung bei 900ºC mit e<strong>in</strong>er Haltezeit von 5<br />

Stunden und e<strong>in</strong>er zweimaligen Druckbehandlung von 50 MPa für 30 M<strong>in</strong>uten hergestellt<br />

werden.<br />

Nahezu template-freie Silika DOH-Kristalle wurden hergestellt, um hydrothermal stabile und<br />

mikroporöse Materialen zu erhalten, welche Poren aufweisen, die für CO2 unzugänglich s<strong>in</strong>d,<br />

die H2 jedoch passieren kann.<br />

Polymere Y2O3/ZrO2-Sole oder TiO2/ZrO2-Sole wurden für die Herstellung von<br />

ultramikroporösen Pulvern und dünnen Filmen auf γ-Al2O3-Zwischenschichten, die von α-<br />

Al2O3-Membranscheiben getragen werden, als potenzielle <strong>Gas</strong>trennungsmembranen<br />

synthetisiert. Dazu s<strong>in</strong>d zwei Sol-Gel-Routen verwendet worden: abhängig von den<br />

Additiven, die die Metallalkohole modifizieren, wurde entweder die Keton- oder die Am<strong>in</strong>-<br />

Route für die Herstellung gewählt.<br />

Aus Yttrium-stabilisiertem Zirkonoxid (8YSZ), das bei 450ºC kalz<strong>in</strong>iert wurde, ist e<strong>in</strong><br />

mikroporöses Pulver mit e<strong>in</strong>er spezifischen BET-Oberfläche von ~50 m 2 /g hergestellt<br />

worden. 8YSZ-Schichten könnten daher mikroporös se<strong>in</strong> und e<strong>in</strong>e niedrigere Durchlässigkeit<br />

aufweisen. 30-50 nm dicke kubische 8YSZ-Schichten, die mit Hilfe der Keton-Route<br />

hergestellt wurden, zeigten e<strong>in</strong>en He- und N2- Transport gemäβ Knudsen-Diffusion, da<br />

Defekte oder zu große Poren <strong>in</strong> der endgültigen Membranschicht vorhanden waren.<br />

Wie erwartet, waren die aus l<strong>in</strong>earen polymeren Am<strong>in</strong>-Solen hergestellten b<strong>in</strong>ären TiO2-ZrO2<br />

Materialien zwischen 400 und 500ºC amorph und mikroporös. Die höchste spezifische BET-<br />

Oberfläche von ~200 m 2 /g mit e<strong>in</strong>er geschätzten Porengröße (gas physisorption) von ~1.0 nm<br />

wurde beim Ti0.5Zr0.5O2-Pulver erreicht, das bei 500ºC mit Hilfe der Am<strong>in</strong>-Route hergestellt<br />

wurde. Die Kristallisationstemperatur des orthorhombischen Ti0.5Zr0.5O2-Pulvers lag zwischen<br />

v


550 und 600ºC, und damit ~250ºC höher als die Kristallisationstemperatur der e<strong>in</strong>zelnen<br />

Oxide.<br />

Aus TiO2-, ZrO2- und b<strong>in</strong>äre Oxidsolen konnten 20-60 nm dünne homogene Filme auf γ-<br />

Al2O3-Membranen bei Kalz<strong>in</strong>ierungstemperaturen zwischen 400 bis 600ºC synthetisiert<br />

werden. Bei Ti0.5Zr0.5O2-Filmen, die bei 500 und 600ºC kalz<strong>in</strong>iert wurden, lag die H2/CO2-<br />

Permselektivität oberhalb des Knudsen Faktors. Es wurde e<strong>in</strong>e Porengrößenverteilung mit<br />

e<strong>in</strong>em Durchmesser von ~0.3 bis ~0.5 nm bestimmt, die mit den weit entwickelten SiO2-<br />

Membranen, die allerd<strong>in</strong>gs <strong>in</strong> Wasserdampfatmosphären degradieren, vergleichbar s<strong>in</strong>d. Die<br />

maximale He-Permeabilität betrug 1·10 -7 mol/m 2 sPa und die maximale Permselektivität<br />

He/N2=14 und H2/CO2=6. Diese s<strong>in</strong>d niedriger als die Selektivitäten von referierten SiO2-<br />

Membranen, jedoch höher als die <strong>in</strong> der Literatur angegebenen Selektivitäten von TiO2-ZrO2-<br />

Membranen. Diese Ergebnisse belegen, dass das Hauptziel, Membranen aus TiO2-ZrO2 zur<br />

<strong>Gas</strong>trennung herzustellen, erreicht wurde. Allerd<strong>in</strong>gs ist für die Anwendung im Kraftwerk<br />

noch e<strong>in</strong>e deutliche Steigerung von Permselektivität und Permeabilität er<strong>for</strong>derlich.<br />

Die Mikroporen <strong>in</strong> den Ti0.5Zr0.5O2-Membranen wiesen e<strong>in</strong>e Stabilität von m<strong>in</strong>destens 1500<br />

Stunden auf. Ergebnisse von Dampftests zeigten e<strong>in</strong>e umkehrbare Porenblockierung ohne<br />

Schichtabplatzung oder Zerstörung bei gleichbleibender Permselektivität. Aus den<br />

Untersuchungen geht hervor, dass Ti0.5Zr0.5O2-Membranen vielversprechende Alternativen zu<br />

SiO2-Membranen für Anwendungen zur <strong>Gas</strong>trennung im Precombustion-Verfahren se<strong>in</strong><br />

können.<br />

vi


Content<br />

Content<br />

CONTENT......................................................................................................................... 1<br />

1 INTRODUCTION AND AIMS .................................................................................... 3<br />

1.1 GLOBAL WARMING AND CO2 EMISSIONS...................................................................................... 3<br />

1.2 POWER PLANT AND GAS SEPARATION CONCEPTS.......................................................................... 4<br />

1.3 OBJECT AND OUTLINE OF THIS THESIS .......................................................................................... 5<br />

2 THEORETICAL BACKGROUND ............................................................................. 7<br />

2.1 INORGANIC GAS SEPARATION MEMBRANES .................................................................................. 7<br />

2.1.1 Dense metallic and ceramic membranes ................................................................................ 8<br />

2.1.2 <strong>Microporous</strong> <strong>in</strong>organic membranes...................................................................................... 13<br />

2.2 ZEOLITE MEMBRANES ................................................................................................................ 14<br />

2.2.1 Zeolite membrane material synthesis ................................................................................... 15<br />

2.2.2 Zeolite membrane preparation methods ............................................................................... 16<br />

2.2.3 State of the art zeolite membranes........................................................................................ 20<br />

2.2.4 Selection of zeolite types....................................................................................................... 21<br />

2.3 SOL-GEL DERIVED MEMBRANES ................................................................................................. 24<br />

2.3.1 Sol-Gel chemistry ................................................................................................................. 24<br />

2.3.2 Sol-Gel membrane preparation methods.............................................................................. 26<br />

2.3.3 State of the art Sol-Gel derived membranes ......................................................................... 27<br />

2.3.4 Selection of Sol-Gel derived membrane material ................................................................. 29<br />

2.4 MICROPOROUS MEMBRANE CHARACTERISATION METHODS ....................................................... 31<br />

2.4.1 Morphology .......................................................................................................................... 31<br />

2.4.2 Mass transport...................................................................................................................... 32<br />

3 EXPERIMENTAL....................................................................................................... 37<br />

3.1 SUPPORTS AND INTERMEDIATE LAYERS ..................................................................................... 37<br />

3.1.1 Support <strong>for</strong>mation................................................................................................................. 37<br />

3.1.2 Intermediate layer material characterisation and layer <strong>for</strong>mation ...................................... 38<br />

3.2 SYNTHESIS OF ZEOLITE MATERIAL AND MEMBRANE PREPARATION............................................ 39<br />

3.2.1 Hydrothermal zeolite syntheses ............................................................................................ 39<br />

3.2.2 SDA removal from dodecasil-1H by post synthesis treatments ............................................ 40<br />

3.2.3 Dodecasil-1H layer <strong>for</strong>mation.............................................................................................. 41<br />

3.3 SOL-GEL DERIVED TIO2, ZRO2 AND BINARY OXIDE MEMBRANES............................................... 42<br />

3.3.1 Polymeric TiO2, ZrO2 and b<strong>in</strong>ary oxide sol synthesis........................................................... 42<br />

3.3.2 Dry<strong>in</strong>g and s<strong>in</strong>ter<strong>in</strong>g of TiO2, ZrO2 and b<strong>in</strong>ary oxide bulk material .................................... 44<br />

3.3.3 <strong>Microporous</strong> TiO2, ZrO2 and b<strong>in</strong>ary oxide membrane preparation ..................................... 44<br />

3.4 CHARACTERISATION FOR MICROPOROUS MATERIALS AND MEMBRANES .................................... 45<br />

3.4.1 <strong>Microporous</strong> material characterisation................................................................................ 45<br />

3.4.2 <strong>Microporous</strong> membrane characterisation ............................................................................ 47<br />

4 RESULTS AND DISCUSSION .................................................................................. 50<br />

4.1 SUPPORTS AND INTERMEDIATE LAYERS ..................................................................................... 50<br />

1


1 Introduction and aims<br />

4.2 ZEOLITE MATERIALS AND LAYERS ............................................................................................. 53<br />

4.2.1 Deca-dodecasil-3R synthesis ................................................................................................ 53<br />

4.2.2 Structure direct<strong>in</strong>g agent free Dodecasil-1H synthesis ........................................................ 54<br />

4.2.3 Dodecasil-1H layer characterisation ................................................................................... 66<br />

4.3 SOL-GEL DERIVED MEMBRANES................................................................................................. 70<br />

4.3.1 Polymeric sol characterisation............................................................................................. 70<br />

4.3.2 Microstructure properties of membrane material ................................................................ 75<br />

4.3.3 Sol-Gel derived membrane characterisation........................................................................ 96<br />

4.3.4 <strong>Gas</strong> permeation................................................................................................................... 106<br />

5 CONCLUSIONS AND RECOMMENDATIONS................................................... 110<br />

6 REFERENCES........................................................................................................... 114<br />

2


1 Introduction and aims<br />

1 Introduction and aims<br />

1.1 Global warm<strong>in</strong>g and CO2 emissions<br />

Studies of Antarctica’s ice cores have concluded that the global temperature and<br />

concentration of CO2 <strong>in</strong> the atmosphere are coupled over the last 650.000 years. This<br />

<strong>in</strong>dicates that the global temperature is <strong>in</strong>fluenced by the concentration of CO2. The<br />

Intergovernmental Panel on Climate Change (IPCC) reported that the concentration of<br />

CO2 <strong>in</strong> the atmosphere <strong>in</strong>creased from approximately 280 ppm <strong>in</strong> the pre <strong>in</strong>dustrial era to<br />

an average of 381 ppm <strong>in</strong> 2006: a 36% <strong>in</strong>crease. This concentration has not been<br />

exceeded <strong>in</strong> the last 420,000 years. 1<br />

The concentration of CO2, which is measured at Mauna Loa (Hawaii), is <strong>in</strong>creas<strong>in</strong>g<br />

approximately 1% per year. Simulation models predict a concentration of CO2 of 600<br />

ppm by the year 2050. This concentration of CO2 <strong>in</strong>crease is believed to be based on the<br />

supply of primary energy dom<strong>in</strong>ated by fossil fuels. Stabilis<strong>in</strong>g the CO2 concentration<br />

between 450-750 ppm requires persistent actions <strong>in</strong> order to reduce the emissions of CO2<br />

such as conservation and energy efficiency, coal to gas substitution, renewable energy,<br />

nuclear energy and CO2 capture and storage as <strong>in</strong>dicated <strong>in</strong> the Figure 1 published by<br />

IPCC. Clearly, CO2 capture and storage might play a dom<strong>in</strong>ant role <strong>in</strong> stabilis<strong>in</strong>g the<br />

global concentration of CO2.<br />

Emissions of CO2 orig<strong>in</strong>ate from a number of different sources. It is believed that the<br />

human activity <strong>for</strong>ms a major part of these emissions of CO2. The human activity<br />

contribution consists ma<strong>in</strong>ly of combustion of fossil fuels used <strong>in</strong> power plants to<br />

generate energy, transportation, combustion of biomass, and residential and commercial<br />

build<strong>in</strong>gs. Significant CO2 emissions are also found <strong>in</strong> <strong>in</strong>dustrial processes, <strong>for</strong> <strong>in</strong>stance<br />

<strong>for</strong> the production of cement, iron, steel and hydrogen. The total CO2 emission<br />

orig<strong>in</strong>at<strong>in</strong>g from the use of fossil fuel is estimated at 25-28 GtCO2/y <strong>in</strong> the year 2000<br />

(maximal 84 GtCO2/y <strong>in</strong> 2050), of which more than 60% can be attributed to large scale<br />

stationary emission sources. Power plants are primary candidates <strong>for</strong> CO2 capture and<br />

storage due to their great potential: up to 45% emission reduction of CO2 can be achieved<br />

<strong>in</strong> this sector alone <strong>in</strong> the year 2050. In addition, many of the coal based power plants <strong>in</strong><br />

Germany and elsewhere are depreciated and need to be renewed <strong>in</strong> the com<strong>in</strong>g decades.<br />

3


1 Introduction and aims<br />

Year<br />

Figure 1 Mitigation potentials as part of the CO2 emissions based on M<strong>in</strong>iCAM model. This is one of<br />

many models and is based on s<strong>in</strong>gle scenarios and does not convey the full scale uncerta<strong>in</strong>ties. 1<br />

1.2 Power plant and gas separation concepts<br />

The reduction and capture of the CO2 emissions poses great technical and economical<br />

problems, especially <strong>for</strong> the so-called ‘end of pipe’ solutions. Among the biggest<br />

challenges, and the general aim of this thesis, is the need to concentrate and purify the<br />

CO2 present <strong>in</strong> the exist<strong>in</strong>g exhaust gasses. It is favourable to concentrate CO2 at high<br />

pressures on the production side to reduce transportation and storage costs.<br />

The vast majority of large scale emission sources such as power plants, generate diluted<br />

CO2 flues, typically less than 15% (ma<strong>in</strong> components are H2O and N2). High<br />

concentration of CO2, namely more than 90%, is required <strong>in</strong> order to be cost effective and<br />

to be able to liquefy gaseous CO2. Up to now, there are no large (>500MW) power plants<br />

equipped with methods to capture CO2. CO2 capture can be per<strong>for</strong>med by scrubb<strong>in</strong>g the<br />

flue gas with an organic solvent. <strong>Membranes</strong> are good candidates <strong>for</strong> CO2 capture due to<br />

their relatively low energy consumption. 2 Several CO2 capture concepts <strong>for</strong> fossil power<br />

plants are discussed <strong>for</strong> future power supply. 1-4<br />

1. Postcombustion capture<br />

In postcombustion capture, CO2 is captured after the combustion process, conventionally<br />

through the use of chemical solvents (e.g. am<strong>in</strong>e scrubb<strong>in</strong>g). This exist<strong>in</strong>g technology<br />

operates at relatively low temperatures (~100ºC) and low exhaust gas CO2 concentration<br />

(


1 Introduction and aims<br />

Candidate materials <strong>in</strong>clude polymer (organic) membranes as well as ceramic (<strong>in</strong>organic)<br />

membrane systems with tailored properties and operational characteristics.<br />

2. Precombustion capture<br />

<strong>Gas</strong>ification processes of fossil fuel with a subsequent CO-shift reaction offer high<br />

potential <strong>for</strong> CO2-removal. The CO-shift reaction results <strong>in</strong> the <strong>for</strong>mation of CO2 and H2<br />

(180-550ºC 1 ). If H2 can be cont<strong>in</strong>uously removed from the gas mixture, CO2 can easily<br />

be separated and stored. H2 can be used <strong>for</strong> generat<strong>in</strong>g electricity <strong>in</strong> gas turb<strong>in</strong>es and fuel<br />

cells, and <strong>for</strong> the production of chemicals and synthetic fuels based on fossils and<br />

biomass. Physical absorption <strong>for</strong> H2/CO2 separation (net efficiency losses approx. 10 %<br />

po<strong>in</strong>ts) will be the major compet<strong>in</strong>g technology <strong>for</strong> molecular siev<strong>in</strong>g (porous ceramic<br />

membranes) or proton conduct<strong>in</strong>g membranes.<br />

3. Oxyfuel combustion processes<br />

Combustion of fossil fuels and biomass <strong>in</strong> pure O2 results <strong>in</strong> <strong>for</strong>mation of CO2 and H2O<br />

as combustion products. H2O can easily be separated from the combustion gas by<br />

condensation at low temperatures. Conventional O2-production by air liquefaction<br />

requires high <strong>in</strong>vestment costs and results <strong>in</strong> a significant efficiency drop of about 10 %<br />

po<strong>in</strong>ts <strong>for</strong> a power plant. Membrane systems offer a high potential <strong>for</strong> the supply of pure<br />

oxygen <strong>for</strong> combustion processes while provid<strong>in</strong>g a drop <strong>in</strong> efficiency penalties. High<br />

temperature (>800ºC) ceramic membrane systems with both ionic and electronic<br />

conductivity are attractive materials due to the high selectivity of these systems <strong>for</strong><br />

oxygen separation.<br />

1.3 Object and outl<strong>in</strong>e of this thesis<br />

Object of this thesis<br />

<strong>Inorganic</strong> membranes are promis<strong>in</strong>g candidates <strong>for</strong> the gas separation <strong>in</strong> the above<br />

mentioned power plant concepts to capture CO2. Mixed oxygen ion and electronic<br />

conductive membranes have potential <strong>for</strong> the oxyfuel process (O2/N2 separation) and<br />

microporous <strong>in</strong>organic membranes have high prospects <strong>for</strong> both pre- and postcombustion<br />

concepts. <strong>Microporous</strong> <strong>in</strong>organic membranes will be the topic of this thesis.<br />

The general aim is to prepare <strong>in</strong>organic microporous hydrothermal stable membranes <strong>for</strong><br />

separat<strong>in</strong>g power plant gasses such as H2/CO2 or CO2/N2. These aims can be subdivided<br />

<strong>in</strong>to:<br />

5


1 Introduction and aims<br />

Selection of membrane material<br />

The selection of the membrane materials must fulfil the requirements of chemical,<br />

mechanical and hydrothermal stability <strong>in</strong> comb<strong>in</strong>ation with high permeation of one of<br />

the species and a high separation factor.<br />

o Zeolite material with narrow pore size distributions will be selected <strong>for</strong> the<br />

separation of H2/CO2 or CO2/N2. All silica pore free dodecasil 1H and decadodecasil<br />

3R zeolite types may fulfil this role. The focus on zeolites <strong>in</strong> this thesis<br />

is ma<strong>in</strong>ly on the material research.<br />

o Sol-gel derived TiO2 and ZrO2 materials can be alternatives to state of the art<br />

SiO2 membranes <strong>for</strong> both pre- and postcombustion applications.<br />

Preparation of sol-gel derived membranes<br />

The primary aim of these sol-gel derived TiO2 and ZrO2 materials is to prepare<br />

functional membrane layers with significant permselectivity <strong>for</strong> the above mentioned<br />

applications.<br />

Characterisation of membranes<br />

Characterisation of the Sol-gel derived membranes will be studied through gas<br />

permeance measurements. The membrane permeability setup must be designed and<br />

build-up to study the s<strong>in</strong>gle gas permeation and selectivity per<strong>for</strong>mance. The<br />

hydrothermal stability must be <strong>in</strong>vestigated <strong>in</strong> order to evaluate the applicability of such<br />

membranes <strong>for</strong> pre- and postcombustion CO2 capture.<br />

Outl<strong>in</strong>e<br />

In Chapter 2 “Theoretical background”, the <strong>in</strong>organic gas separation membranes are<br />

discussed. These <strong>in</strong>organic membranes are subdivided <strong>in</strong> to dense and porous membranes<br />

based on the transport mechanism. The selection of the membrane materials is based on<br />

the properties of microporous membranes found <strong>in</strong> literature. This is followed by the<br />

characterisation methods to study microporous materials and membranes. In Chapter 3<br />

“Experimental”, the material synthesis, the membrane preparation and the<br />

characterisation procedures of the equipment are described. Chapter 4 “Results and<br />

discussion” conta<strong>in</strong>s chemical and physical properties of the selected zeolites and sol-gel<br />

based materials, the microstructural properties of membrane layers and membrane<br />

permeation per<strong>for</strong>mance. The aims will be correlated with the f<strong>in</strong>al results and the future<br />

prospective is given <strong>in</strong> Chapter 5 “Conclusions and recommendations”.<br />

6


2 Theoretical background<br />

2 Theoretical background<br />

<strong>Membranes</strong> are semi-permeable barriers which are able to selectively transport different<br />

species. The selectivity is a measure of the different transport abilities of the species. <strong>Gas</strong><br />

separation membranes <strong>in</strong>hibit the transport of favour gas molecules where others are<br />

either blocked or have a lower transport flux. The most common gas separation<br />

membranes can be dist<strong>in</strong>guished by the choice of membrane material:<br />

o Organic polymer membranes<br />

o Ceramic or metallic membranes<br />

Organic polymer membranes can be applied <strong>in</strong> power plants <strong>for</strong> the capture of CO2. In<br />

the future, highly efficient power plants <strong>in</strong> comb<strong>in</strong>ation with high temperature separation<br />

technology <strong>for</strong> CO2 capture will be preferred. Ceramic or metallic membranes may fulfil<br />

this role.<br />

This chapter conta<strong>in</strong>s a literature study on the state-of-the-art ceramic or metallic gas<br />

separation membranes. Review of this literature is important <strong>for</strong> understand<strong>in</strong>g the<br />

restrictions and possibilities of promis<strong>in</strong>g gas separation membranes <strong>for</strong> the previously<br />

mentioned power plant concepts. Crystall<strong>in</strong>e (page 14) and sol-gel derived (page 24)<br />

microporous ceramic membranes are the focus of this thesis. F<strong>in</strong>ally, mass transport <strong>in</strong><br />

microporous membranes is outl<strong>in</strong>ed.<br />

2.1 <strong>Inorganic</strong> gas separation membranes<br />

Three types of <strong>in</strong>organic membranes <strong>for</strong> gas separation applications can be dist<strong>in</strong>guished:<br />

o Dense ceramic membranes<br />

o Dense metallic membranes<br />

o Molecular siev<strong>in</strong>g membranes<br />

Dense ceramic membranes such as mixed ionic electronic conductive membranes are<br />

candidates <strong>for</strong> oxygen production from air with high selectivity due to their ability to<br />

transport oxygen ions and electrons at elevated temperatures <strong>in</strong> the range of 600-1000ºC.<br />

Dense ceramic protonic membranes are able to separate H2 from other gasses at<br />

temperatures between 500 and ~800ºC.<br />

Dense metallic membranes are able to separate H2 from other gasses <strong>in</strong> a temperature<br />

range of 300-600ºC. The operat<strong>in</strong>g temperatures of ceramic and metallic protonic<br />

conductors match the typical re<strong>for</strong>m<strong>in</strong>g reaction temperatures <strong>in</strong> the precombustion<br />

concept at 180-550ºC.<br />

7


2 Theoretical background<br />

The development of molecular siev<strong>in</strong>g membranes started about 50 years ago as a<br />

separat<strong>in</strong>g agent <strong>for</strong> 235 UF6 and 238 UF6 <strong>for</strong> nuclear fuel enrichment. 5 S<strong>in</strong>ce then, a number<br />

of other applications have emerged such as liquid-solid and liquid-liquid separation,<br />

pervaporation and f<strong>in</strong>ally gas separation, generally determ<strong>in</strong>ed by the pore size of the<br />

selective layer. <strong>Microporous</strong> ceramic can be used as molecular sieve membranes and<br />

might have high prospects <strong>in</strong> the post and precombustion concepts provided that both the<br />

membrane permeability and permselectivity are substantial <strong>in</strong> order to m<strong>in</strong>imise<br />

efficiency penalties <strong>in</strong> power plants.<br />

2.1.1 Dense metallic and ceramic membranes<br />

Dense membranes are gastight layers. The first group of dense <strong>in</strong>organic membranes<br />

studied <strong>in</strong> the past decade <strong>for</strong> gas separation is the metallic membrane type; primarily<br />

palladium alloy membranes <strong>for</strong> hydrogen (H2/CO2) separation. The latest development <strong>in</strong><br />

this field is the study of supported th<strong>in</strong> metallic membranes, as th<strong>in</strong> as a few tenths of<br />

microns. 6 The most extensively studied group of dense membranes <strong>in</strong>cludes the oxygen<br />

ionic conductive and mixed oxygen ionic and electronic conductive ceramic membranes. 6<br />

In the early 1980s, a third group of dense membranes emerged from high temperature<br />

hydrogen semi permeable dense ceramic membranes. These membranes are based on<br />

proton-conduct<strong>in</strong>g ceramics.<br />

2.1.1.1 Dense metallic membranes<br />

The hydrogen transport properties of dense metallic membranes such as silver doped<br />

palladium (Pd/Ag) membranes are determ<strong>in</strong>ed by many factors. The factors can be<br />

hydrogen transport to the metal membrane, adsorption of hydrogen on the surface,<br />

splitt<strong>in</strong>g of hydrogen to be <strong>in</strong>corporated <strong>in</strong>to the lattice of the metallic membrane<br />

material, bulk diffusion of the protons and counter electrons, regeneration of the<br />

hydrogen molecules, desorption of the hydrogen and f<strong>in</strong>ally diffusion from the membrane<br />

which is extensively discussed <strong>in</strong> the article of Bredesen et al. 7<br />

There are several methods used to coat th<strong>in</strong> metallic films on porous metallic or ceramic<br />

supports: electroless plat<strong>in</strong>g, chemical and physical vapour deposition or sputter<strong>in</strong>g. All<br />

these methods can be used to obta<strong>in</strong> good quality, th<strong>in</strong> Pd/Ag membranes with hydrogen<br />

to helium (or nitrogen) permselectivity.<br />

Pex et al. 8 and Pan et al. 9 prepared palladium based membranes on alum<strong>in</strong>a supports<br />

(see Table 1). Others prepared th<strong>in</strong> palladium 10 or palladium nickel 11 layers on sta<strong>in</strong>lesssteel<br />

porous substrates, which offer high hydrogen permeance <strong>in</strong> comb<strong>in</strong>ation with<br />

excellent permselectivities. A sandwich structure based on a dense vanadium layer and a<br />

th<strong>in</strong> porous palladium layer on both sides resulted <strong>in</strong> even higher permselectivitiy. 12<br />

8


2 Theoretical background<br />

Despite the good permeability and permselectivity of these membranes upscal<strong>in</strong>g to a<br />

plant is rarely accomplished. Generally, these membranes suffer from hydrogen<br />

embrittlement, which occurs as a result of crystal trans<strong>for</strong>mation between α- and β-phases<br />

<strong>in</strong> hydrogen atmosphere at temperatures below 295°C, 13,14 and poor stabilities <strong>in</strong><br />

atmospheres conta<strong>in</strong><strong>in</strong>g: CO, S, Cl and H2O. This can lead to complete deterioration of<br />

the structure. Furthermore, the raw materials, namely palladium and vanadium, are<br />

expensive.<br />

Table 1 <strong>Gas</strong> permeance, permselectivity and thickness of some the state of the art metallic membranes<br />

Permeance <strong>in</strong><br />

mol/m 2 ·s·Pa x10 -8<br />

H2 N2 H2/ N2<br />

Permselectivity Thickness (µm) Reference<br />

100 [8]* 0.33 300 3-5<br />

87 0.087 1000 3<br />

1750 1.09 1600 1<br />

1970 0.42 4700 0,5<br />

1400 0.03 50000 0.5/40/0.5<br />

* H2 permeance converted <strong>in</strong> m 3 /m 2 hbar<br />

2.1.1.2 Oxygen ionic conductive membranes<br />

Dense ionic conductive ceramic membranes derive their capability <strong>for</strong> oxygen separation<br />

from the presence of oxygen vacancies <strong>in</strong> the material crystal lattice. The presence of<br />

oxygen vacancies enables ionic oxygen to be selectively transported through the lattice<br />

via a hopp<strong>in</strong>g mechanism <strong>in</strong> the presence of an oxygen chemical potential as the driv<strong>in</strong>g<br />

<strong>for</strong>ce. This reaction is presented <strong>in</strong> equation (1), with the Kröger-V<strong>in</strong>k notation.<br />

O 2V 2O 4h •<br />

••<br />

+ ↔ + (1)<br />

2 O<br />

x<br />

O<br />

In practical terms, dense membranes only transport oxygen ions at elevated temperatures,<br />

typically above 800°C, with ideally, 100% selectivity when gas leakage is excluded.<br />

S<strong>in</strong>ce the charged oxygen ions are transported, the charge must be compensated with<br />

electron counter-transport to ma<strong>in</strong>ta<strong>in</strong> the charge neutrality. The charge can be<br />

transported externally as Figure 2-A suggests and one refers to an ion conduct<strong>in</strong>g<br />

material or oxygen pump. The membrane is called a mixed ionic electronic conductor<br />

(MIEC) when both oxygen ions and electrons are transported through the same<br />

membrane material (see Figure 2-B). The oxygen flux can be presented by the simplified<br />

Wagner equation (2). 15<br />

9<br />

8<br />

9<br />

10<br />

11<br />

12


2 Theoretical background<br />

pO2′′<br />

RT<br />

j = − ∫ t σ d ln pO<br />

(2)<br />

O2 2 e ion<br />

16F<br />

L pO2′<br />

2<br />

Thus, the oxygen flux (jO2) through dense ceramic membranes is dependent on the<br />

temperature (T), thickness (L), the electronic conductivity (σe; te= σe/[σe+σion]) and ionic<br />

conductivity (σion) of the membrane material and the oxygen partial pressure gradient<br />

(∆pO2) over the membrane. 16<br />

pO’2<br />

e<br />

A<br />

O 2-<br />

A B<br />

pO’’2<br />

10<br />

pO’2<br />

O 2-<br />

pO’’2<br />

Figure 2 Dense membrane concepts. A): oxygen pump. b): Mixed ionic and electronic conductor 16 .<br />

The most promis<strong>in</strong>g materials <strong>for</strong> oxygen separation and methane re<strong>for</strong>m<strong>in</strong>g membranes<br />

are the acceptor-doped perovskite-type oxides with the general <strong>for</strong>mula La1-xAxByO3-δ<br />

(A = Sr, Ba and B = Fe, Cu, Ni, Cr, Co). These compounds show high electronic and<br />

ionic conductivity. The highest oxygen flux has been obta<strong>in</strong>ed by Vente et al. 17,18 <strong>for</strong> a<br />

strontium barium iron doped cobaltate at 900˚C, see Table 2. The highest oxygen flux<br />

found <strong>in</strong> literature has been obta<strong>in</strong>ed with an oxygen partial pressure at the feed side of<br />

1 bar and a membrane thickness of only 0.2 mm, whereas the other results are based on<br />

membranes thicker than 1 mm. If the oxygen flux is normalised by the thickness than<br />

Mert<strong>in</strong>s et al. 19 measured the highest oxygen flux with atmospheric air at the feed side.<br />

The flux of the membrane reported by Mert<strong>in</strong>s et al. 19 is obta<strong>in</strong>ed by us<strong>in</strong>g methane as a<br />

sweep gas <strong>in</strong> comb<strong>in</strong>ation with a Ni-catalyst <strong>for</strong> methane re<strong>for</strong>m<strong>in</strong>g application.<br />

Decreas<strong>in</strong>g the thickness would improve the bulk diffusion. The oxygen transport will be<br />

rate determ<strong>in</strong>ed by the oxygen surface exchange 20 <strong>for</strong> membranes with a thickness less<br />

than 500 µm. Th<strong>in</strong> La1-xSrxCo1-yFeyO3-δ films supported on tailored ceramic substrates<br />

can be prepared 21 . Fluxes between 1 and 30 ml/cm 2 ·m<strong>in</strong> can be expected. 7<br />

2e -


2 Theoretical background<br />

Table 2 Oxygen permeation (j(O2)), thickness (d) and temperature (T) of various oxygen conductive<br />

membranes. The flux is normalised <strong>for</strong> membranes with a thickness of more 500 µm to a thickness of<br />

1000 µm assum<strong>in</strong>g that the bulk diffusion is rate determ<strong>in</strong>ed.<br />

Membrane material<br />

j(O2)<br />

normalised<br />

j(O2) T D Feed-<br />

Side<br />

ml/(m<strong>in</strong>·cm 2 ) °C mm<br />

11<br />

Sweep-<br />

side<br />

La0.2Sr0.8Fe0.8Co0.1Cr0.1O3-δ 5.47 5.47 800 1 Air He/CH4<br />

(Ni cat.)<br />

SrCo0.8Fe0.2O3 1.6 1.1 900 1.5 Air He<br />

SrCo0.33Fe0.66O3 3.37 2.73 1000 1.2 Air He<br />

SrCo0.66Fe0.33O3 2.79 2.79 1000 1 Air He/air<br />

SrCo0.66Fe0.33O3 4.11 4.11 1000 1 Air He/air<br />

Ba0.5Sr0.5Co0.8Fe0.2O3 3.1 900 0.2 p(O2) = 0.2 atm He<br />

Ba0.5Sr0.5Co0.8Fe0.2O3 13.3 1000 0.2 p(O2)= 1.0 atm He<br />

Ba0.5Sr0.5Co0.8Fe0.2O3 2 1.35 900 1.5 Air He<br />

2.1.1.3 Dense protonic conductive membranes<br />

The hydrogen transport through dense ceramic protonic membrane materials is similar to<br />

the oxygen ion transport. The oxygen vacancies <strong>in</strong> mixed electronic and protonic<br />

conductors are <strong>in</strong> equilibrium with water vapour, see equation (3) and (4) below:<br />

•• 1<br />

x •<br />

VO + O2 ↔ OO + 2h<br />

2<br />

(3)<br />

x<br />

H O V O 2OH<br />

•<br />

••<br />

+ + ↔ (4)<br />

2<br />

O O O<br />

The OHO • is an <strong>in</strong>terstitial proton that associates strongly with a neighbour<strong>in</strong>g oxygen<br />

ion. Protons can also be <strong>for</strong>med <strong>in</strong> the lattice of the membrane material when H2 gas is <strong>in</strong><br />

equilibrium (5) with the oxides:<br />

2O + H ↔ 2OH + 2e′<br />

(5)<br />

x<br />

•<br />

O 2<br />

O<br />

The hydrogen transport through these membranes is dependent on many factors such as<br />

the mobility of the <strong>in</strong>terstitial proton as a function of the hydrogen partial pressures<br />

gradient. 24<br />

L<strong>in</strong> et al. 6,25 studied the hydrogen permeance of strontium thulium doped ceria (see<br />

Table 3). Balachandran et al. 26 and Meulenberg et al. 27 prepared BaCe0.8Y0.2O3-δ (BCY)<br />

based membranes and found similar results as L<strong>in</strong> et al. 6 Eltron U.S. 28 produced a<br />

strontium iron cobaltate with a reasonable hydrogen permeation. Balachandran et al. 26<br />

Ref<br />

19<br />

22<br />

23<br />

23<br />

23<br />

18<br />

18<br />

22


2 Theoretical background<br />

proved that the electronic conductivity of BCY based membranes is <strong>in</strong>sufficient <strong>for</strong> future<br />

gas separation. The electronic conductivity can be <strong>in</strong>creased, thereby <strong>in</strong>creas<strong>in</strong>g the<br />

hydrogen flux by dispers<strong>in</strong>g a metal powder (Pd/Ni) <strong>in</strong>to the ceramic (BCY) matrix to<br />

<strong>for</strong>m a cermet. In a later stage, Balachandran et al. 29 claimed an extremely high hydrogen<br />

permeance of 1.3·10 -5 mol/cm 2 ·s <strong>for</strong> a strontium iron cobaltate cermet with a thickness of<br />

only 20 µm. Generally, state of the art proton conductors are the Sr- and Ba- based<br />

perovkites. However, the stability towards CO2 and H2O at elevated temperatures must be<br />

improved <strong>for</strong> <strong>in</strong>dustrial applications. 30-33<br />

Table 3 Hydrogen permeance and thickness of the state of the art hydrogen conduct<strong>in</strong>g membranes.<br />

Material H2 Permeation Temperature Thickness Ref.<br />

mol/cm 2 ·s x10 -8 (ml/cm 2 ·m<strong>in</strong>) [˚C]<br />

SrCe0.95Tm0.05O3-δ 2.98 0.04 900 16mm<br />

SrCe0.95Tm0.05O3-δ 9.37 0.13 900 150 µm<br />

BaCe0.8Y0.2O3-δ 3.60 0.05 - -<br />

SrFeCo0.5O3 7.44 0.1 - 2 mm<br />

SrFeCo0.5O3 1300 17 900 20 µm<br />

SrCe0.85Yb0.05O3 1100 15 1000 100 µm<br />

12<br />

24<br />

29,34,35<br />

26<br />

28<br />

29<br />

31


2 Theoretical background<br />

2.1.2 <strong>Microporous</strong> <strong>in</strong>organic membranes<br />

Porous <strong>in</strong>organic materials are classified by pore size as stated by the International Union<br />

of Pure and Applied Chemistry, 36 listed <strong>in</strong> Table 4. <strong>Microporous</strong> membranes can<br />

function as molecular sieves due to size exclusion <strong>in</strong> order to separate the power plant<br />

gasses such as H2/CO2 or N2/CO2 based on the k<strong>in</strong>etic diameter (see Table 5).<br />

Table 4 IUPAC 36 pore size classification<br />

Structure sublevel Pore size<br />

Macroporous >50 nm<br />

Mesoporous 2-50 nm<br />

<strong>Microporous</strong> Supermicroporous 0.7-2 nm<br />

Ultramicroporous


2 Theoretical background<br />

2.2 Zeolite membranes<br />

The Swedish m<strong>in</strong>eralogist Cronstedt found a new type of m<strong>in</strong>eral <strong>in</strong> 1756 and named it<br />

zeolite. Zeo-lite is derived from a Greek word and means boil<strong>in</strong>g stone. It seemed that the<br />

new m<strong>in</strong>eral desorbs water at high temperatures. S<strong>in</strong>ce then, many natural and <strong>in</strong>dustrial<br />

zeolites have been found and synthesised. <strong>Microporous</strong> zeolites are crystall<strong>in</strong>e<br />

(alum<strong>in</strong>o)silicates * and can be used <strong>for</strong> adsorption, catalysis and ion-exchange. In<br />

general, zeolites have higher chemical and thermal stability than microporous amorphous<br />

silica.<br />

The zeolite structure is <strong>for</strong>med from a three dimensional network of SiO4 and AlO4<br />

tetrahedra. These tetrahedra are connected to each other through shared oxygen atoms<br />

and <strong>for</strong>m channel or cage-like structures. These voids have well-def<strong>in</strong>ed r<strong>in</strong>gs (pore<br />

open<strong>in</strong>g) sizes and shapes. A selection of zeolite structures is listed <strong>in</strong> Table 6. 38 More<br />

than 130 zeolite framework types are approved and published on the <strong>in</strong>ternet site of the<br />

International Zeolite Association. 39 The zeolites can be subdivided based on their largest<br />

pore aperture. The pore aperture is a w<strong>in</strong>dow with a certa<strong>in</strong> amount of neighbour<strong>in</strong>g<br />

tetrahedral centres that share an oxygen atom. A zeolite with 12 tetrahedra centres is<br />

referred as 12-r<strong>in</strong>g. The path of the lowest resistance <strong>for</strong> transported species is<br />

determ<strong>in</strong>ed by the pore aperture and <strong>in</strong>terconnectivity of pores <strong>for</strong>m<strong>in</strong>g channels of<br />

different dimensionality.<br />

Table 6 Structural characteristics and properties of different zeolite types and zeolite related materials.<br />

Code Zeolite type [Si]/[Al] R<strong>in</strong>g Channel system Pore size Å (x-y)<br />

SGT Sigma 2 70-∞ 6 0D ~2.8<br />

DOH Dodecasil 1H ∞ 6 0D ~2.8<br />

SOD Sodalite 1-∞ 6 0D 2.2-2.8<br />

DDR Deca-dodecasil 3R ∞ 8 2D 3.6-4.4<br />

ETS-4 - 3-4<br />

LTA Zeolite A 1-∞ 8 3D 3.8-4.3<br />

FER Ferrierite - 10 2D 5.2·5.4<br />

MFI Silicalite-1 ∞ 10 3D<br />

5.2·5.7<br />

ZSM-5 10-1000 10 3D<br />

FAU Zeolite X 1-1.5 12 3D 7.4<br />

Zeolite Y >1.5 12 3D 7.4<br />

MOR Mordenite - 8/12 2D 4.0-7.0<br />

Breck 40 outl<strong>in</strong>ed the properties of several zeolite structures <strong>in</strong>clud<strong>in</strong>g the <strong>in</strong>dividual pore<br />

size, shape and <strong>in</strong>terconnectivity. The pore sizes vary between 2-12 Å and the chemical<br />

composition (e.g. the Si/Al ratio) can determ<strong>in</strong>e the hydrophilic, hydrophobic, acidic, and<br />

basic properties of the zeolite. 38<br />

* The largest number of zeolites is represented by alum<strong>in</strong>osilicates. Alum<strong>in</strong>ogermanates, gallophosphates<br />

or silicoalum<strong>in</strong>ophosphates belong to this group as well and are documented at www.iza-structure.org.<br />

14


2 Theoretical background<br />

Poly-crystall<strong>in</strong>e zeolite material can <strong>for</strong>m a membrane layer useful <strong>in</strong> separat<strong>in</strong>g different<br />

species via micropore diffusion. Poly-crystall<strong>in</strong>e zeolite membranes are promis<strong>in</strong>g<br />

candidates <strong>for</strong> separat<strong>in</strong>g gasses under the harsh conditions associated with power plants<br />

due to their chemical and thermal stability. In general, zeolite membranes can act as<br />

molecular sieves <strong>for</strong> gasses due to their well-def<strong>in</strong>ed pore size. At present, zeolite<br />

membranes are applied <strong>in</strong> the field of pervaporation.<br />

2.2.1 Zeolite membrane material synthesis<br />

Zeolites are crystallised from nutrients at relatively moderate temperatures and mild<br />

pressures. This process is hereafter referred as hydrothermal synthesis and is<br />

schematically drawn <strong>in</strong> Figure 3. The result<strong>in</strong>g zeolite structure is dependent upon the<br />

hydrothermal conditions, such as the reactant concentrations and nature, the pH, the<br />

presence of structure direct<strong>in</strong>g agents or templates (hereafter referred as SDA),<br />

temperature, reaction time etc. The most important factors affect<strong>in</strong>g the zeolite synthesis<br />

are the gel composition and the reaction conditions.<br />

The precursor mixture or gel composition is generally a mixture of alum<strong>in</strong>ium and silicon<br />

sources, <strong>in</strong>clud<strong>in</strong>g a base and a solvent. SDA can be added <strong>in</strong> order to assist <strong>in</strong> crystal<br />

<strong>for</strong>mation. The most common alum<strong>in</strong>ium sources are sodiumalum<strong>in</strong>ate, alum<strong>in</strong>iumnitrate<br />

or alum<strong>in</strong>iumphosphate.<br />

15


2 Theoretical background<br />

Sta<strong>in</strong>less Steel<br />

Autoclave<br />

<strong>Gas</strong>tight<br />

Hydrothermal crystallisation


2 Theoretical background<br />

membranes (Figure 4). The supported zeolite membranes are by far the most extensively<br />

studied. The most <strong>in</strong>vestigated support material is α-alum<strong>in</strong>a. Sta<strong>in</strong>less Steel, γ-alum<strong>in</strong>a<br />

and titania are examples of other support materials suitable <strong>for</strong> zeolite membranes. 43,44<br />

A B C<br />

Figure 4 Schematic draw<strong>in</strong>g of polymer – zeolite composite membrane (A), self supported zeolite membrane<br />

(B) and a (α-Al2O3) supported zeolite membrane (C).<br />

Ideal zeolite membranes are gastight directly after the hydrothermal crystallisation. A<br />

common nitrogen permeation test is applied to test the gas tightness. Zeolite membranes<br />

must be activated, or <strong>in</strong> more detail, the water and organics, such as structure direct<strong>in</strong>g<br />

agents (SDA’s), must be removed <strong>in</strong> order to obta<strong>in</strong> an open and <strong>in</strong>terconnected<br />

microporous structure. Remov<strong>in</strong>g these SDA’s can be done via:<br />

o Chemical leach<strong>in</strong>g<br />

o Ion exchange techniques which is applicable <strong>for</strong> the larger pore zeolites (e.g. 12r<strong>in</strong>g)<br />

o Thermal treatment at specified temperatures, heat<strong>in</strong>g rate, atmosphere and<br />

duration. The heat<strong>in</strong>g rate and cool<strong>in</strong>g rate can be key factors <strong>for</strong> remov<strong>in</strong>g SDA<br />

without destroy<strong>in</strong>g the zeolite layers due to different expansion coefficient of<br />

templated and template free zeolite structures<br />

o Low temperature ozone treatment. 43<br />

The thermal expansion coefficient difference of the membrane layer and support can<br />

cause stress, undesired cracks and peel<strong>in</strong>g off. Porous <strong>in</strong>termediate layers or th<strong>in</strong> zeolite<br />

layers with randomly ordered crystals are recommended <strong>in</strong> order to reduce the thermal<br />

stresses.<br />

The preparation methods <strong>for</strong> different supported zeolite membranes are known and<br />

<strong>in</strong>clude (a) <strong>in</strong> situ hydrothermal synthesis <strong>in</strong> the presence of a substrate, (b) “dry or wet<br />

gel conversion method” and (c) the application of two stage (phase) secondary growth<br />

methods. The seeds <strong>in</strong> the secondary growth methods can be colloidal zeolites that are<br />

deposited by dip coat<strong>in</strong>g, sp<strong>in</strong> coat<strong>in</strong>g or sputter<strong>in</strong>g 38 .<br />

17


2 Theoretical background<br />

In situ hydrothermal synthesis<br />

The most widely reported and successful route to prepare zeolite membranes is <strong>in</strong> situ<br />

hydrothermal synthesis on a substrate. The substrate is immersed <strong>in</strong>to the zeolite<br />

precursor mixture which is conta<strong>in</strong>ed <strong>in</strong> an autoclave, and then heated <strong>for</strong> a<br />

predeterm<strong>in</strong>ed time, see Figure 5. Both, nucleation and growth of the zeolite crystals,<br />

occurs on the support surface.<br />

Figure 5 Schematic arrangement <strong>for</strong> the <strong>in</strong>-situ hydrothermal synthesis of a zeolite membrane. The support<br />

<strong>for</strong> the zeolite film is immersed <strong>in</strong> the precursor mixture with<strong>in</strong> the autoclave dur<strong>in</strong>g the hydrothermal<br />

synthesis.<br />

These synthesis routes are used <strong>for</strong> many zeolite types. However, there is little scope <strong>for</strong><br />

the control of the microstructure of the f<strong>in</strong>al films. Intercrystal defects can be difficult to<br />

avoid when us<strong>in</strong>g <strong>in</strong> situ growth routes and this limits the applications <strong>in</strong> gas separation. 45<br />

The gel compositions, which result <strong>in</strong> zeolite layers, usually are less concentrated than<br />

the optimal composition <strong>for</strong> mak<strong>in</strong>g powders. 43<br />

Synthesis routes <strong>in</strong> which the zeolite is <strong>for</strong>med with<strong>in</strong> the pores of the support are studied<br />

<strong>in</strong> order to overcome the problems of the defects and to <strong>in</strong>crease the strength.<br />

The preferential nucleation and growth is dependent on many factors such as time and<br />

temperature. Generally, the growth is slow at low temperatures and is observed mostly<br />

with<strong>in</strong> the pores. Fast growth and the <strong>for</strong>mation of an outer layer occur at higher<br />

temperatures (190 °C). Several processes have been studied to m<strong>in</strong>imise the amount of<br />

layer defects such as Chemical vapour deposition (CVD) and microwave heat<strong>in</strong>g. 45<br />

18


2 Theoretical background<br />

Dry or wet gel conversion method<br />

This method is based on deposition of amorphous alum<strong>in</strong>o-silicate gel on the support.<br />

The crystallisation is <strong>in</strong>itiated us<strong>in</strong>g the vapour of am<strong>in</strong>es such as triethylam<strong>in</strong>e,<br />

ethylenediam<strong>in</strong>e and water. The process is called ‘steam-assisted crystallisation’ if the<br />

dry gel conta<strong>in</strong>s structure direct<strong>in</strong>g agents (SDA). Vapour Phase Transport is the<br />

term<strong>in</strong>ology used when the gel composition is SDA-free. However, many zeolite layers<br />

present cracks, which can be expla<strong>in</strong>ed by the large volume shr<strong>in</strong>kage from the gel state<br />

to the zeolite layer.<br />

Secondary growth<br />

Seed<strong>in</strong>g the membrane <strong>in</strong>itially can be beneficial due to the decoupl<strong>in</strong>g of the nucleation<br />

and the growth processes to obta<strong>in</strong> a controlled microstructure (Figure 6). Generally, the<br />

seeds are synthesised at lower temperatures than the classical recipes <strong>in</strong> order to <strong>for</strong>m<br />

smaller crystals. 43 The seed size can vary between 50 to 2000 nm. Depend<strong>in</strong>g on the<br />

temperature, <strong>in</strong>duction period and gel composition, the seed synthesis time can be very<br />

long (up to several months). 43 Commercial zeolite crystals can be gr<strong>in</strong>ded to acquire<br />

small seeds 200 nm <strong>in</strong> size.<br />

Figure 6 Schematic draw<strong>in</strong>g of secondary grown zeolite membrane layer<br />

There are several methods <strong>for</strong> attach<strong>in</strong>g seeds to the surface of the support. By (i)<br />

chang<strong>in</strong>g the pH of the solution <strong>for</strong> match<strong>in</strong>g the zeta potentials of alum<strong>in</strong>a support and<br />

zeolitic seeds. Seeds (ii) can be rubbed <strong>in</strong>to the support with help of cationic polymers.<br />

As an alternative to seed rubb<strong>in</strong>g, colloidal zeolite particles, which achieve a greater<br />

control of the membrane microstructure, can be deposited on the supports. The<br />

attachment can be improved by heat<strong>in</strong>g the seeded supports to 150-200ºC <strong>in</strong> order to<br />

condensate the hydroxyl groups.<br />

The use of sols with nanosized primary build<strong>in</strong>g units followed by a secondary growth<br />

process were firstly studied by Tsapatsis et al. 46 The substrate is deposited (e.g. by dip<br />

coat<strong>in</strong>g) with nanosized zeolitic nuclei and these zeolite sols are connected<br />

hydrothermally. This process can result <strong>in</strong> a zeolite membrane with a thickness of about<br />

200 nm.<br />

Another (iii) recent zeolite seeds preparation method is the use of laser ablation. The<br />

deposit<strong>in</strong>g of zeolite seeds is prepared by us<strong>in</strong>g pulsed laser deposition and followed by<br />

hydrothermal growth of the layer. 38<br />

19


2 Theoretical background<br />

2.2.3 State of the art zeolite membranes<br />

Despite their large pore size of 0.74 nm, the 12-r<strong>in</strong>g Faujasite (FAU, see Figure 7)<br />

zeolite type can be selective <strong>for</strong> small gasses due to competitive adsorption. Ion-exchange<br />

with alkali metals such as cesium <strong>in</strong>creased the CO2 permeability of the FAU membrane<br />

while N2 permeance rema<strong>in</strong>ed unchanged. A maximal CO2/N2 permselectivity of 149 was<br />

obta<strong>in</strong>ed with a CO2 permeance of ~0.8·10 -6 mol/m 2 ·s·Pa us<strong>in</strong>g an equimolar CO2 and N2<br />

feed, 47,48 see Table 7. This selectivity is predom<strong>in</strong>antly determ<strong>in</strong>ed by preferential CO2<br />

adsorption. The def<strong>in</strong>ition of permeance and permselectivity is given at the end of this<br />

chapter.<br />

The most <strong>in</strong>tensively studied zeolite membrane material is the 10-r<strong>in</strong>g MFI (Mobile Five,<br />

see Figure 7). So far, there are no MFI membranes, with H2/CO2 permselectivities<br />

significantly higher than the Knudsen factor, were found <strong>in</strong> literature. The low<br />

permselectivity can be expla<strong>in</strong>ed by the large pore aperture (0.51x0.55 nm) compared to<br />

the k<strong>in</strong>etic diameters of 0.289 and 0.33 nm <strong>for</strong> H2 and CO2 respectively.<br />

Table 7 <strong>Gas</strong> permeance and permselectivities of MFI and FAU-type zeolite membranes<br />

Permeation rate <strong>in</strong> mol/m 2 ·s·Pa x10 -8 Permselectivity Ref.<br />

H2 CO2 O2 N2 H2/CO2 CO2/N2<br />

MFI 260 19 13.7<br />

27 15 1.8<br />

330 121 121 2.73 1.0<br />

74 23<br />

32<br />

700<br />

56<br />

12 7 4.0 2.67 3.0<br />

10 1.0 10<br />

65.6 2.6 25.5<br />

FAU 80 0.5 149<br />

* Based on a sta<strong>in</strong>less steel support<br />

# Permselectivity based on a b<strong>in</strong>ary equimolar CO2/N2 feed<br />

Tsapatsis et al. 54 studied the 10-r<strong>in</strong>g ETS-4 type zeolites (titaniasilicate as chemical<br />

composition) <strong>for</strong> the use of molecular sieves. ETS-4 collapses near 200°C to an<br />

amorphous phase due to the loss of structural water cha<strong>in</strong>s present along the channel<br />

system. The thermal stability of ETS-4 can be improved via ion exchange of e.g. Na<br />

aga<strong>in</strong>st Sr. The amorphous phase of Sr-ETS-4 is obta<strong>in</strong>ed at temperatures above 350 °C.<br />

This type of zeolite is stable upon exposure to moist air <strong>for</strong> at least two weeks. 55 The unit<br />

cell dimension of ETS-4 becomes smaller as the temperature <strong>in</strong>creases due to<br />

dehydration. The contraction of the unit cell dimensions shows a clear correlation with<br />

20<br />

2*<br />

2<br />

49<br />

50<br />

46<br />

51<br />

52<br />

12<br />

53<br />

47,48#


2 Theoretical background<br />

the material’s adsorption capacity <strong>for</strong> various gas molecules. Kuznicki et al. 55 claimed<br />

even that ETS-4 can be tuned to penetrate or absorb oxygen and to exclude nitrogen <strong>in</strong>to<br />

the crystal cages, result<strong>in</strong>g <strong>in</strong> an oxygen-selective adsorbent.<br />

Known 8-r<strong>in</strong>g zeolite type membranes are Zeolite Type A (LTA, L<strong>in</strong>de Type A, Figure<br />

7) and deca-dodecasil 3R. The Si/Al ratio <strong>for</strong> zeolite (Type) A is 1-3.7. Recently,<br />

hydrophobic all-silica zeolite A was prepared by us<strong>in</strong>g a supramolecular organic<br />

structure-direct<strong>in</strong>g agent. 56 Guan et al. 57 prepared alum<strong>in</strong>osilicate LTA zeolite<br />

membranes with rather low permselectivity of 7.5 <strong>for</strong> H2/N2. Hedlund et al. 58,59 prepared<br />

ultra th<strong>in</strong> layers of 200 nm or less of LTA.<br />

The low H2/CO2 permselectivity of LTA membranes can be expla<strong>in</strong>ed by the possibility<br />

that both H2 and CO2 can enter the pores and by the fact that <strong>in</strong>tercrystall<strong>in</strong>e pores may<br />

be present as a result of poor poly-crystallisation. This drawback is less critical <strong>for</strong><br />

pervaporation applications. Nowadays, the Japanese company NGK prepares<br />

commercially available LTA and DDR membranes.<br />

2.2.4 Selection of zeolite types<br />

A B C<br />

Figure 7 Zeolite frameworks of MFI (A), LTA (B) and FAU (C).<br />

Lab scale zeolite membranes offer good gas separation factors predom<strong>in</strong>antly determ<strong>in</strong>ed<br />

by the sorption properties and less by molecular siev<strong>in</strong>g. This is ma<strong>in</strong>ly due to the<br />

presence of <strong>in</strong>tercrystall<strong>in</strong>e pores (larger than 2 nm) as a result of poor polycrystallisation.<br />

Nevertheless, zeolite membranes are promis<strong>in</strong>g candidates <strong>for</strong> CO2<br />

capture.<br />

In this study, zeolite types are selected <strong>for</strong> the pre and postcombustion concept. Sorption<br />

properties of H2, CO2 and N2 are less pronounced at elevated temperatures. There<strong>for</strong>e the<br />

zeolite types are selected primarily as molecular sieves. These requirements exclude<br />

zeolite types with 10 or more r<strong>in</strong>gs (Figure 8).<br />

21


2 Theoretical background<br />

The additional requirement <strong>for</strong> membranes <strong>in</strong> the pre and postcombustion concept is<br />

hydrothermal stability. Generally, hydrophobic zeolites can be stable up to elevated<br />

temperatures <strong>in</strong> humid conditions due to their high Si/Al ratio.<br />

The zeolite types fulfill<strong>in</strong>g these requirements are the 6-r<strong>in</strong>gs MEP, NON, MTN, SOD,<br />

SGT and DOH. The only known all silica 8-r<strong>in</strong>g zeolite type membrane is deca-dodecasil<br />

3R (DDR). Recently, all silica zeolite Type A have been prepared. 56 In this thesis, the<br />

all-silica clathrasils DOH and DDR have been selected. DOH has not been studied <strong>for</strong> the<br />

purpose of separat<strong>in</strong>g gasses. To the best of our knowledge, no all-silica 6-r<strong>in</strong>g zeolite,<br />

with significant permselectivity, membranes have been published up to now.<br />

MFI<br />

LTA<br />

DDR<br />

DOH<br />

2 3 4 5 6<br />

H 2 CO 2 N 2<br />

Pore aperture <strong>in</strong> Å<br />

Figure 8 Pore aperture of zeolite types compared to the k<strong>in</strong>etic diameters of H2, CO2 and N2.<br />

2.2.4.1 Synthesis of small DDR crystal<br />

Only a few authors have published on the synthesis of deca-dodecasil 3R (possess<strong>in</strong>g the<br />

zeolite framework type DDR-Figure 9). The name deca-dodecasil 3R orig<strong>in</strong>ates from<br />

dodecahedra and decahedra as structural build<strong>in</strong>g units <strong>for</strong>m<strong>in</strong>g three layers, which are<br />

rhombohedrally stacked. Gies et al. 60 were the first to develop this zeolite structure. Den<br />

Exter et al. 44 showed the difficulties of prepar<strong>in</strong>g this type of structure. The company<br />

NGK 61,62 published and patented 63 this zeolite structure as membrane material. Even<br />

Exxon Mobil is actively work<strong>in</strong>g on this material. 64 Recently, van den Berg 65 studied this<br />

material <strong>for</strong> the use of hydrogen storage. 1-am<strong>in</strong>o adamantane (hereafter referred as<br />

ADA) is the most frequent structure direct<strong>in</strong>g agent (SDA) that results successfully <strong>in</strong> all<br />

silica s<strong>in</strong>gle phase DDR structure. DDR-type membranes with an aperture of 0.36·0.44<br />

nm possess a relatively high CO2/CH4 selectivity (equimolar feed) due to preferential<br />

absorption. The permeance of CO2 is higher than the permeance of He or H2 <strong>for</strong> this 5-10<br />

µm th<strong>in</strong> DDR type membrane. 62 Significant CO2/H2 permselectivity might be obta<strong>in</strong>ed<br />

from this zeolite structure.<br />

22


2 Theoretical background<br />

Figure 9 Deca-dodecasil 3R (DDR) structure 66 Figure 10 Dodecasil 1H (DOH) structure 66<br />

2.2.4.2 Synthesis of small SDA-free DOH crystals<br />

The all silica zeolite type Dodecasil 1H 67 (possess<strong>in</strong>g the zeolite framework type DOH-<br />

Figure 10) 68 with a pore aperture of ~2.8 Å 44 might be a promis<strong>in</strong>g membrane material<br />

<strong>for</strong> separat<strong>in</strong>g hydrogen at elevated temperatures. The name dodecasil 1H orig<strong>in</strong>ates from<br />

dodecahedra as the structural build<strong>in</strong>g units <strong>for</strong>m<strong>in</strong>g layers which are hexagonally<br />

stacked.<br />

Only a few groups have studied DOH as a potential candidate <strong>for</strong> gas separation. The<br />

research group of Gies 69,70 was among the first to study this zeolite type. Grebner et al.<br />

71-74 and den Exter 66 studied this zeolite material <strong>for</strong> several applications. DOH zeolites<br />

can be synthesised with SDA’s only. The most common are 1-am<strong>in</strong>o adamant<strong>in</strong>e (ADA),<br />

piperid<strong>in</strong>e and 1-adamantyl trimethylammonium bromide 71-73 <strong>in</strong> aqueous solutions or the<br />

metal organic salts 75 [Co(C5H4Me)2]PF6 or [Fe(C6H6)(C5H5)2]PF6 <strong>in</strong> solvent free<br />

systems. After synthesis the templates occupy pores <strong>in</strong> the zeolite structure and, hence,<br />

have to be removed. DOH zeolite material is stable at elevated temperatures, <strong>for</strong> <strong>in</strong>stance<br />

up to temperature of 900ºC, while still trapp<strong>in</strong>g some of the SDA. 71-73 In contrast, ADA<br />

from deca-dodecasil 3R is removed at 450°C, 44 but 700ºC is preferred. 63<br />

DOH as membrane materials must be prepared template free and these crystals should be<br />

prepared as small crystals <strong>in</strong> order to <strong>for</strong>m th<strong>in</strong> layers. Small crystals might be prepared<br />

from a homogeneous gel <strong>for</strong> short crystallisation times or by means of ag<strong>in</strong>g. The number<br />

of crystals can be enhanced by decoupl<strong>in</strong>g the nucleation from crystal growth by means<br />

of ag<strong>in</strong>g the gel composition at moderate temperatures be<strong>for</strong>e apply<strong>in</strong>g the common<br />

crystallisation temperature.<br />

Synthesis<strong>in</strong>g SDA-free DOH might be possible by us<strong>in</strong>g seeds and SDA free gel<br />

compositions as Grebner et al. claimed. 71-73 Post synthesis treatment to remove the<br />

template can be achieved via conventional calc<strong>in</strong>ation <strong>for</strong> extended periods or calc<strong>in</strong>ation<br />

of smaller crystals to shorten the transport path length of oxygen or combusted organics.<br />

23


2 Theoretical background<br />

2.3 Sol-gel derived membranes<br />

<strong>Microporous</strong> <strong>in</strong>itial amorphous derived membranes, particularly microporous silica<br />

membranes, have been studied <strong>in</strong>tensively <strong>in</strong> the last decades. Silica membranes can be<br />

prepared via:<br />

o Chemical vapour <strong>in</strong>filtration or deposition<br />

o Sol-gel techniques<br />

Chemical vapour deposited silica membranes are prepared start<strong>in</strong>g from gaseous silica<br />

precursors that either <strong>in</strong>filtrate or deposit a silica layer <strong>in</strong> or on top of meso or<br />

macroporous supports. This method can reach high permselectivities but is generally<br />

coupled with a significant decrease of permeability due to the effect of pore block<strong>in</strong>g.<br />

Sol-gel derived silica membranes offer high H2 permeance 1-2·10 -6 mol/m 2 sPa <strong>in</strong><br />

comb<strong>in</strong>ation with reasonable permselectivities (terms are expla<strong>in</strong>ed on page 36).<br />

However, the stability of silica membranes <strong>in</strong> humid conditions at elevated temperatures<br />

is poor.<br />

First, the synthesis of sols is discussed, followed by the common preparation methods of<br />

microporous sol-gel derived membranes. An overview of these membranes is given <strong>in</strong><br />

section 2.3.3 followed by the selection of the promis<strong>in</strong>g sol-gel derived microporous<br />

materials <strong>in</strong> section 2.3.4.<br />

2.3.1 Sol-Gel chemistry<br />

The sol-gel process is one of the most appropriate methods <strong>for</strong> the preparation of<br />

mesoporous and microporous layers. There are two sol-gel routes, polymeric and<br />

colloidal (Figure 11). Different steps <strong>in</strong>volved <strong>in</strong> the process determ<strong>in</strong>e the porous<br />

structure, even at the very first stage of precursor synthesis. The first step <strong>in</strong> sol-gel<br />

process is the preparation of a sol us<strong>in</strong>g molecular precursors. There are two types of<br />

precursors, metal organics (preferentially metal alkoxides) and metal salts. Clusters or<br />

colloids are <strong>for</strong>med at the sol stage by condensation reaction. The chemistry of the sol<br />

<strong>for</strong>mation is well documented by Livage et al. 76 Depend<strong>in</strong>g on conditions, nearly l<strong>in</strong>ear<br />

polymeric structures (hereafter referred as polymeric sols) and dense colloidal particles<br />

(colloidal sols) can be prepared. These clusters and colloids collide at the f<strong>in</strong>al stage to<br />

<strong>for</strong>m a gel.<br />

24


2 Theoretical background<br />

Figure 11 Schematic draw<strong>in</strong>g of the colloidal and polymeric sol-gel technique 77<br />

The particle size of polymeric sols may be <strong>in</strong> the range of 2-20 nm whereas colloidal sols<br />

have particle sizes up to 1000 nm <strong>in</strong> diameter. Polymeric sols are prepared by add<strong>in</strong>g<br />

small amounts of water to keep the hydrolysis reaction slow, equation (6). The water can<br />

be added <strong>in</strong> a controlled method by:<br />

i) slowly add<strong>in</strong>g a high ratio alcohol/water solution,<br />

ii) <strong>in</strong> situ production of H2O by an esterification reaction,<br />

iii) dissolv<strong>in</strong>g an alkal<strong>in</strong>e base or<br />

iv) add<strong>in</strong>g a hydrated salt <strong>in</strong>to the alkoxide solution <strong>in</strong> alcohol.<br />

The catalyst can be applied to enhance the condensation reactions. Precursor modification<br />

or stabilisation is another method used to modify the precursors <strong>in</strong> order to reduce the<br />

hydrolysation rate. Ketones, am<strong>in</strong>es and carboxylic acids can stabilise the precursor and<br />

thereby decrease the hydrolysis reaction. Common precursor modifiers are acetyl acetone<br />

78,79 and diethanolam<strong>in</strong>e 78-83 <strong>for</strong> titania and zirconia polymeric sols.<br />

25


2 Theoretical background<br />

Colloidal sols are prepared with excessive amounts of water. Most applied sols are<br />

synthesised by us<strong>in</strong>g a metal alkoxide. The metal alkoxide is hydrolysed. The <strong>for</strong>med<br />

metal hydroxides are reacted <strong>in</strong> the alcohol condensation reaction which is usually<br />

occurr<strong>in</strong>g <strong>in</strong> parallel to the water condensation reaction. These reactions (6)-(8) may<br />

occur simultaneously.<br />

hydrolysis<br />

≡ Si − OR + H 2 O ←⎯⎯<br />

⎯ → ≡ Si − OH + ROH<br />

(6)<br />

alcohol condensation<br />

≡ Si − OR + HO − Si ≡ ←⎯⎯⎯<br />

⎯⎯<br />

→ ≡ Si − O − Si + ROH ≡<br />

water condensation<br />

≡ Si − OH + HO − Si ≡ ←⎯⎯⎯<br />

⎯<br />

→ ≡ Si − O − Si ≡ H O<br />

(8)<br />

2.3.2 Sol-Gel membrane preparation methods<br />

Sol-gel derived microporous membranes are based on a graded structure. Macroporous<br />

substrates can be alum<strong>in</strong>a, porous sta<strong>in</strong>less steel and titania. 84 In contrast to zeolite<br />

membranes, see also page 16, an (mesoporous) <strong>in</strong>termediate layer is required to i) prepare<br />

a low roughness surface <strong>for</strong> the microporous layer and ii) avoid<strong>in</strong>g <strong>in</strong>filtration <strong>in</strong>to the<br />

support<strong>in</strong>g layer (Figure 12). Metastable γ-Al2O3 is the most widely used material <strong>for</strong><br />

<strong>in</strong>termediate layers.<br />

<strong>Microporous</strong> dpore < 2 nm<br />

Mesoporous 2< dpore > 50 nm<br />

Macroporous dpore > 50 nm<br />

Figure 12 Left, schematic build-up of an asymmetric <strong>in</strong>organic porous membrane and right the schematic<br />

overview of the sol-gel process. Multilayers are prepared by repeat<strong>in</strong>g the last 3 steps.<br />

Micro and mesoporous membranes are <strong>for</strong>med at the sol stage. The most common<br />

coat<strong>in</strong>g methods are dip or sp<strong>in</strong> coat<strong>in</strong>g. Many factors have an <strong>in</strong>fluence on the<br />

microstructural properties of the f<strong>in</strong>al layer. The most important factors are the gelation,<br />

viscosity and the properties of the support. The support may have a significant <strong>in</strong>fluence<br />

26<br />

2<br />

Sol<br />

Coat<strong>in</strong>g<br />

Dry<strong>in</strong>g<br />

Fired<br />

(7)


2 Theoretical background<br />

due to its capillary pressure drop <strong>in</strong> comb<strong>in</strong>ation with its hydrophobicity. These<br />

properties are described by Bhave. 5<br />

F<strong>in</strong>ally, the membrane is <strong>for</strong>med by a thermal treatment. First, the gel layer is dried at<br />

low temperatures (


2 Theoretical background<br />

hydrophobic membranes. They reported generally low permeabilities <strong>in</strong> comb<strong>in</strong>ation with<br />

reasonable permselectivities. Similar study is per<strong>for</strong>med by Yoshida et al. 96 who claimed<br />

to have produced relatively hydrothermal stable silica/zirconia membranes. The highest<br />

hydrogen permeance of silica based membranes is published by Oyama et al. 97 (Table 8).<br />

However, the H2/CO2 permselectivity is rather low. This permselectivity can be <strong>in</strong>creased<br />

to 4300 [-] by a silica chemical vapour deposition layer <strong>in</strong> comb<strong>in</strong>ation with reasonable<br />

permeability.<br />

Silica membranes, as published by de Vos, 87 showed a decrease of permselectivity after<br />

exposure to mild humid conditions at elevated temperatures. The hydrothermal stability<br />

could be <strong>in</strong>creased by chang<strong>in</strong>g the hydrophobicity of the functional silica layer us<strong>in</strong>g<br />

methyl groups calc<strong>in</strong>ed <strong>in</strong> oxygen-poor atmosphere. However, the <strong>in</strong>crease of<br />

hydrothermal stability was coupled with a decrease of permselectivity. The decrease of<br />

permselectivity of these silica membranes might be based partly on the poor adhesion<br />

between the α-Al2O3 support and the γ-Al2O3 <strong>in</strong>termediate layer.<br />

Table 8 Permeance, permselectivity, pore size (dpore) and layer thickness (dlayer) of silica membranes<br />

Permeation <strong>in</strong> mol/m 2 ·s·Pa x10 -8 [m 3 /m 2 ·h·bar] Permselectivity dpore (nm)/ Ref<br />

H2 CO2 O2 N2 H2/CO2 CO2/N2 O2/N2 dlayer (µm)<br />

200 [16] 50 10 1 4 50 10 -/0.03<br />

87 *<br />

60 1.0 1 70 -/0.03<br />

87 #<br />

60 10 10 10 7 1 -/0.03<br />

87 &<br />

- 100 20 5 4.3-5/0.05<br />

93<br />

10 0.3 0.06 7.0·10 -3 7 42.9 8.57 0.35/-<br />

95 $<br />

45 0.45 -/-<br />

96<br />

20 4.65·10 -3 4300 -/0.01-10 97 †<br />

2000 628 4.7 -/0.01-10<br />

130 90 17 1.44 5.29 0.35/<br />

1 Silica membrane calc<strong>in</strong>ed at 400ºC.<br />

# Silica membrane calc<strong>in</strong>ed at 600ºC.<br />

& Methylated silica membrane calc<strong>in</strong>ed at 400ºC<br />

$ Silica membrane doped with zirconia<br />

† Silica layer applied by means of CVD<br />

A delam<strong>in</strong>ation between the crystall<strong>in</strong>e phases was observed by Nijmeijer et al. 99 after<br />

exposure to pre combustion mimicked by us<strong>in</strong>g hydrothermal conditions. The<br />

hydrothermal stability of the γ-Al2O3 <strong>in</strong>termediate layer could be improved by dop<strong>in</strong>g the<br />

γ-Al2O3 with La2O3 <strong>in</strong> comb<strong>in</strong>ation with phosphate bond<strong>in</strong>g between the α-Al2O3 support<br />

and the γ-Al2O3 <strong>in</strong>termediate layer. Replac<strong>in</strong>g the γ-Al2O3 by other mesoporous materials<br />

such as titania 82,100-102 or zirconia 82,103 is recommended <strong>for</strong> further studies.<br />

28<br />

97<br />

98


2 Theoretical background<br />

2.3.3.2 <strong>Microporous</strong> transition metal oxide membranes<br />

In contrast to sol-gel derived non-transition silica membranes, the <strong>for</strong>mation of<br />

microporous transition titania or (yttria stabilized) zirconia is difficult due to the fast and<br />

hard to control hydrolysis and condensation reactions of Ti or Zr-precursors. 81 The fast<br />

reactivity can be a result of the larger charge density of Zr or Ti compared with Si 76 or<br />

by the heterogeneousity of the commercially purchased alkoxide precursors. 80,81 Several<br />

groups have reported the synthesis of microporous YSZ (yttria doped zirconia) 78,81,83,104-<br />

111 or titania 78,82,83,100-102,104,112,113 materials, however they were not successful <strong>in</strong><br />

produc<strong>in</strong>g membranes with a significantly larger permselectivity than the Knudsen factor<br />

<strong>for</strong> the gasses H2, N2, CO2 and CH4 as a result of the pore sizes of ~0.9 nm and larger. 114<br />

2.3.4 Selection of Sol-Gel derived membrane material<br />

<strong>Microporous</strong> sol-gel derived silica membranes are found nowadays <strong>in</strong>dustrial <strong>in</strong><br />

pervaporation applications. Lab scale sol-gel derived membranes offer good gas<br />

separation factors which is ma<strong>in</strong>ly based on the molecular siev<strong>in</strong>g compared with<br />

sorption properties. Good prospects are there<strong>for</strong>e envisaged <strong>for</strong> applications such as<br />

dehydrogenation of hydrocarbons, coal gasification, the postcombustion concept and the<br />

water-gas shift process <strong>in</strong> the precombustion concept.<br />

Modified sol-gel derived non-transition metal oxide silica membranes have not found<br />

their way <strong>in</strong>to the large scale gas separation. An alternative method to obta<strong>in</strong><br />

hydrothermal stable microporous membranes is to develop non-silica sol-gel derived<br />

materials with the follow<strong>in</strong>g requirements:<br />

o Separative to H2 from CO2 or CO2 from N2 by means of molecular siev<strong>in</strong>g<br />

o Defect free microporous layers<br />

o Comparable permeabilities to silica membranes<br />

o Stable <strong>in</strong> hydrothermal conditions<br />

2.3.4.1 <strong>Microporous</strong> transition metal oxide membranes<br />

Sol-gel derived microporous crystall<strong>in</strong>e titania membranes are commercially today<br />

available with a pore size of 0.9 nm. 101 Sol-gel derived microporous crystall<strong>in</strong>e (yttria<br />

doped) zirconia material is prepared at lab scale. Both, titania and zirconia, sol-gel<br />

derived transition metal oxide materials are be<strong>in</strong>g <strong>in</strong>creas<strong>in</strong>gly studied due to a more<br />

controllable sol-gel synthesis us<strong>in</strong>g precursor modifiers. 78-80,82,83,110,115<br />

Crystall<strong>in</strong>e materials are desirable due to their expected thermal and chemical stability.<br />

However, state of the art silica layers are amorphous and conta<strong>in</strong> pore sizes <strong>in</strong> the range<br />

of 0.5 nm, whereas the titania and zirconia materials tend to crystallise at lower<br />

temperatures and might have larger particles than their silica counterparts, result<strong>in</strong>g <strong>in</strong><br />

larger pores. It is known that a mixture of titania and zirconia has a higher crystallisation<br />

29


2 Theoretical background<br />

temperature, thereby ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g its amorphous phase rather than the correspond<strong>in</strong>g<br />

s<strong>in</strong>gle oxides 83,112,113,116 . Structur<strong>in</strong>g microporous material might be beneficial <strong>for</strong><br />

<strong>in</strong>creas<strong>in</strong>g the porosity and there<strong>for</strong>e the permeability.<br />

2.3.4.2 Structur<strong>in</strong>g microporous metal oxides<br />

The structur<strong>in</strong>g of metal oxides (yttria doped) zirconia or titania with long cha<strong>in</strong> primary<br />

am<strong>in</strong>es as structure direct<strong>in</strong>g agents (SDA) at <strong>in</strong>termediate temperatures might <strong>for</strong>m high<br />

permeable and selective membranes. Knowles and Hudson 117 prepared high surface area<br />

(~300 m 2 /g) calc<strong>in</strong>ed structured zirconia with the addition of alkyltrimethylammonium<br />

halides to the zirconia sols. The distance between zirconia particles turns out to be<br />

l<strong>in</strong>early dependent on the cha<strong>in</strong> length of these SDA’s. The potential of these SDA’s as<br />

pore <strong>for</strong>mers on stabilized zirconia has been reported 118 and offers <strong>in</strong>terest<strong>in</strong>g prospects.<br />

Recently, block copolymers have been <strong>in</strong>creas<strong>in</strong>gly used to organize structured<br />

composite solids, because the architectures of the amphiphilic block copolymers can be<br />

adjusted to control the <strong>in</strong>teraction between the <strong>in</strong>organic and organic species <strong>in</strong> the sols.<br />

Stucky 119 and Hon 120 <strong>in</strong>tensively studied these structured zirconia’s with the use of these<br />

non-toxic SDA’s with <strong>in</strong>terest<strong>in</strong>g properties. BASF’s Pluronic P-123 (EO20PO70EO20) <strong>in</strong><br />

ZrO2 and F127 (EO106PO70EO106) <strong>in</strong> 4YSZ (where EO is ethylene oxide and PO is<br />

propylene oxide) are used as SDA’s and resulted <strong>in</strong> surface areas of 90 and 150 m 2 /g,<br />

respectively.<br />

30


2 Theoretical background<br />

2.4 <strong>Microporous</strong> membrane characterisation methods<br />

Ultramicroporous membranes have pores with dimensions similar to those of small<br />

molecules (pores


2 Theoretical background<br />

The pore sizes <strong>in</strong> materials produce a certa<strong>in</strong> shape of isotherm, which can be subdivided<br />

<strong>in</strong>to groups based on the pore size and adsorbate-adsorbent <strong>in</strong>teraction 121 , see Figure 14.<br />

Isotherm Type I presents microporous materials show<strong>in</strong>g a sharp <strong>in</strong>crease of adsorbed<br />

volume at low relative pressures and is referred as micropore fill<strong>in</strong>g. At higher relative<br />

pressures a plateau occurs. No monolayer <strong>for</strong>mation is obta<strong>in</strong>ed due to the comparable<br />

size of the adsorbed gas k<strong>in</strong>etic diameter and the pore diameter (dk<strong>in</strong>~dpore). A monolayer<br />

is <strong>for</strong>med (po<strong>in</strong>t 1 <strong>in</strong> Figure 14) followed by multilayer <strong>for</strong>mation <strong>in</strong> mesoporous<br />

materials presented by isotherm type IV (po<strong>in</strong>t 2 <strong>in</strong> Figure 14). Adsorbent dense material<br />

obta<strong>in</strong><strong>in</strong>g mono and multilayers is schematically drawn <strong>in</strong> isotherm type II.<br />

Adsorped volume →<br />

Relative pressure →<br />

Figure 14 isotherms based on the pore size and adsorbate-adsorbent <strong>in</strong>teraction. 121<br />

2.4.2 Mass transport<br />

<strong>Microporous</strong> membranes usually comprise a stack of layers of different materials, as is<br />

depicted schematically <strong>in</strong> Figure 15. The th<strong>in</strong> top layer provides the membrane with its<br />

selective features, whereas the other layers essentially provide mechanical strength.<br />

Transport<strong>in</strong>g of molecules through the stack of layers is <strong>in</strong>fluenced by all layers present,<br />

which essentially <strong>for</strong>m a series of resistances to the transport. Multicomponent mixtures<br />

mass transport can be further <strong>in</strong>fluenced by mutual <strong>in</strong>teractions between the different<br />

components presented by Benes. 91,122 In this section, emphasis will be on the transport of<br />

s<strong>in</strong>gle gasses. The permeance is the flux divided by the applied pressure difference over<br />

the layer. The permeance depends, amongst other th<strong>in</strong>gs, on the nature of the gas, the<br />

pore morphology and the applied conditions.<br />

32


2 Theoretical background<br />

Figure 15 Flux resistance <strong>in</strong> each layer <strong>in</strong>clud<strong>in</strong>g defects <strong>in</strong> the functional membrane layer and <strong>in</strong> the optional<br />

<strong>in</strong>termediate layer<br />

Sol-gel derived microporous membrane mass transport is predom<strong>in</strong>antly micropore<br />

diffusion. Mass transport <strong>in</strong> zeolite membranes is a comb<strong>in</strong>ation of micropore diffusion<br />

and <strong>in</strong>tercrystall<strong>in</strong>e diffusion. <strong>Microporous</strong> membranes exhibit<strong>in</strong>g the Knudsen<br />

permselectivity can be a result of mesoporous defects. Macroporous defects such as<br />

defects <strong>in</strong> the <strong>in</strong>termediate layer or <strong>in</strong>tercrystall<strong>in</strong>e pores can be identified by observ<strong>in</strong>g<br />

the contribution of viscous flow. A simplified overview of transport mechanisms is<br />

outl<strong>in</strong>ed <strong>in</strong> Table 10 and will be discussed below.<br />

Table 10 Transport mechanisms of gasses <strong>in</strong> different porous media. 38<br />

Transport<br />

mechanism<br />

Pore size and classification 36 Selectivity<br />

Viscous Flow > 20 nm Non-selective<br />

Knudsen Diffusion 2-100 nm<br />

33<br />

=<br />

M<br />

M<br />

2 α ; M1


2 Theoretical background<br />

size, (viscous) properties of the transported species, activity of the pore or particle wall,<br />

applied pressure and temperature, texture and microstructure of the supports such as the<br />

connectivity of the pores, the porosity, the concentration and the connectivity of the<br />

defects, and the thickness of the support and support<strong>in</strong>g layers.<br />

Viscous flow<br />

Viscous flow occurs when mutual gas molecule <strong>in</strong>teractions are more frequent than<br />

molecule-wall collisions. Convective flow of the gas molecules occurs when a pressure<br />

gradient is applied over the membrane. This transport mechanism is referred as viscous<br />

flow due to the dom<strong>in</strong>ant transport factor relat<strong>in</strong>g to the collisions between the gas<br />

molecules as a function of their viscosity η. The flux can be described us<strong>in</strong>g the modified<br />

Poiseuille type law, 45 as seen <strong>in</strong> equation (9).<br />

2<br />

ε r P dP<br />

N = −<br />

(9)<br />

τ 8η<br />

RT dz<br />

The term N is the molar flux <strong>in</strong> mol/m 2 s, r is the pore radius <strong>in</strong> m, P is the pressure <strong>in</strong> Pa,<br />

R is the gas constant, and T is the gas temperature <strong>in</strong> K. The geometric factors are the<br />

porosity ε and the tortuosity τ, <strong>in</strong> which the latter can present a ratio of the effective<br />

distance that the species travels per membrane thickness. No significant gas selectivity<br />

can be obta<strong>in</strong>ed us<strong>in</strong>g viscous flow.<br />

Knudsen diffusion<br />

Knudsen diffusion occurs <strong>in</strong> the regime where the mean free path length of the gas is<br />

largely compared to the pore size, which is typical <strong>in</strong> mesoporous materials. 45 The<br />

molecule-wall collisions are more frequent than the gas molecule <strong>in</strong>teractions. Knudsen<br />

diffusion is dependent on the molar mass (M <strong>in</strong> kg/mol) of the gas species (Table 10) and<br />

the thickness of the membrane layer (L <strong>in</strong> m), see equation (10) (valid <strong>for</strong> ideal gasses <strong>in</strong><br />

cyl<strong>in</strong>drical pores).<br />

ε 2 r 8<br />

N = − ∆P<br />

(10)<br />

τ 3 L πMRT<br />

Defects contribution<br />

Intercrystall<strong>in</strong>e defects <strong>in</strong> zeolite membranes and defects <strong>in</strong> sol-gel derived membrane<br />

layers can be large. The comb<strong>in</strong>ation of both transport mechanisms where the gas<br />

molecule to molecule collisions are <strong>in</strong> the same order of magnitude as the gas molecule to<br />

34


2 Theoretical background<br />

wall <strong>in</strong>teraction is often referred as transition flow and is presented <strong>in</strong> equation (11). The<br />

first term <strong>in</strong> equation (11) orig<strong>in</strong>ates from the viscous flow and the second from the<br />

Knudsen diffusion equation. Both contributions can be identified from experimental data<br />

(12).<br />

N = −<br />

2 ( Ar P + Br)<br />

ε dP<br />

τ dz<br />

⎛ 1 ⎞ 2 8<br />

A = ⎜ ⎟ B =<br />

(12)<br />

⎝ 8ηRT<br />

⎠ 3 πMRT<br />

The α-Al2O3 support with γ-Al2O3 <strong>in</strong>termediate layer show gas transport predom<strong>in</strong>antly<br />

by Knudsen diffusion as reported by Benes et al. 91<br />

Micropore diffusion<br />

Several research groups 45,91,122,124 have studied the gas transport <strong>in</strong> microporous media<br />

such as the well-def<strong>in</strong>ed pore size MFI zeolite type membranes and amorphous sol-gel<br />

derived silica membranes. The transport mechanisms <strong>in</strong> microporous membranes are a<br />

function of the pore size, (condensable) properties of the transported species, activity of<br />

the pore wall, applied temperature, texture and microstructure of the microporous layer<br />

such as the connectivity of the pores, the porosity, the concentration and the connectivity<br />

of the defects, and the thickness of the layers.<br />

The s<strong>in</strong>gle gas flux <strong>in</strong> microporous membranes is based on diffusion where the gas<br />

molecule pore wall <strong>in</strong>teraction is more frequent than the gas molecules <strong>in</strong>teraction. The<br />

diffusion flux (N <strong>in</strong> mol/m 2 s) is determ<strong>in</strong>ed by the concentration of the gas and the<br />

mobility of the gas to hop from one void (hereafter referred as the pore) to the<br />

neighbour<strong>in</strong>g pore. This theory of irreversible thermodynamics, where the flux of s<strong>in</strong>gle<br />

gas ‘i' is proportional to the gradient <strong>in</strong> its chemical potential <strong>for</strong> microporous<br />

membranes, is thoroughly outl<strong>in</strong>ed by Benes. 122 The mass transport <strong>in</strong> microporous<br />

membranes follows the Henry regime at high temperatures with relatively low pressure<br />

and results <strong>in</strong> the follow<strong>in</strong>g equation (13):<br />

~<br />

D<br />

N = ∆<br />

L<br />

( T ) K(<br />

T )<br />

P<br />

∆P represents the pressure difference over the membrane. L is the thickness of the<br />

membrane layer. D ( T )<br />

~<br />

35<br />

(11)<br />

(13)<br />

is the concentration <strong>in</strong>dependent s<strong>in</strong>gle component chemical<br />

diffusion coefficient and is related to the mobility of the gas component. K(T) is the<br />

Henry coefficient. The diffusion flux is a thermally activated process described by an


2 Theoretical background<br />

Arrhenius type function 122 present<strong>in</strong>g the activation energy to hop from one pore to the<br />

neighbour<strong>in</strong>g unoccupied pore and the isosteric heat of sorption, respectively.<br />

Equation (14) is based on the follow<strong>in</strong>g assumptions and is suitable <strong>for</strong> sol-gel derived<br />

microporous membranes:<br />

o The gas molecule position <strong>in</strong> the pore is balanced by the Van der Waals and<br />

repulsive <strong>for</strong>ces<br />

o Only one gas molecule can occupy a pore<br />

o Mass transport occurs only <strong>in</strong> the direction perpendicular to the membrane layer<br />

o No external <strong>for</strong>ces (like electromagnetic) are applied on the gas molecules<br />

o Temperature <strong>in</strong> every pore is similar<br />

o The microporous membrane material obeys the Henry isotherm.<br />

The permeance is the ratio of the flux and the applied pressure difference (∆P), result<strong>in</strong>g<br />

<strong>in</strong> equation (14). The permselectivity (Fα) is the ratio between the permeance F of gas ‘i’<br />

and gas ‘j’ equation (15).<br />

~<br />

N D(<br />

T ) K(<br />

T )<br />

F = =<br />

∆P<br />

L<br />

(14)<br />

Fi<br />

F α =<br />

F<br />

(15)<br />

j<br />

36


3 Experimental<br />

3 Experimental<br />

The material synthesis and layer preparation methods are outl<strong>in</strong>ed <strong>in</strong> this chapter. First,<br />

the support and the support<strong>in</strong>g membrane layer <strong>for</strong>mation are discussed. Next, the<br />

preparation of zeolite materials, post treatments and zeolite layer <strong>for</strong>mations are<br />

described. In section 3.3 the sol-gel synthesis and the coat<strong>in</strong>g steps are outl<strong>in</strong>ed. The last<br />

section <strong>in</strong>cludes the characterisation techniques used to study the bulk material and the<br />

microporous membranes.<br />

3.1 Supports and <strong>in</strong>termediate layers<br />

3.1.1 Support <strong>for</strong>mation<br />

Macroporous supports are the basis of graded porous membranes. Macroporous α-Al2O3<br />

discs were prepared by colloidal filtration of ultra pure alum<strong>in</strong>a powder (AKP30<br />

Sumitomo Chemical Co., Tokyo, Japan) <strong>in</strong> HNO3. Alum<strong>in</strong>a powder was mixed with<br />

equal amounts of grams of 0.02 M HNO3 by ultrasonic vibration <strong>for</strong> 14 m<strong>in</strong> at 200 Watt<br />

(Model 450 Sonifier, Branson Ultrasonics Corp., Danbury, CT). This suspension was<br />

sieved with a 200 µm metal filter. Next, the mixture was filtrated by a Schleicher &<br />

Schuell 800 nm membrane sieve us<strong>in</strong>g a vacuum pump <strong>for</strong> 3 to 5 hours. After dry<strong>in</strong>g<br />

overnight, a ‘green’ substrate was obta<strong>in</strong>ed (Figure 16).<br />

AKP30<br />

Suspension<br />

HNO 3<br />

S<strong>in</strong>ter oven<br />

1100ºC 1100ºC 2h +2ºC/m<strong>in</strong><br />

powder<br />

mixture<br />

Ultrasonic<br />

Gr<strong>in</strong>d <strong>in</strong> 36Øx2.4d<br />

<strong>in</strong> mm<br />

37<br />

Polish<br />

filter<br />

Vacuum filitration filitration<br />

Vacuum >3h<br />

Dry<strong>in</strong>g > 12h 12h<br />

Figure 16 Schematic draw<strong>in</strong>g of support <strong>for</strong>mation by means of vacuum filtration


3 Experimental<br />

F<strong>in</strong>ally, the substrates were s<strong>in</strong>tered at 1100°C <strong>for</strong> 2 hours with a heat<strong>in</strong>g and cool<strong>in</strong>g rate<br />

of 2°C/m<strong>in</strong>. Fired substrates were then gr<strong>in</strong>ded <strong>in</strong>to dimensions of 36 mm Ø and 2.0-2.4<br />

mm thickness. The surface roughness was decreased by polish<strong>in</strong>g to avoid p<strong>in</strong>hole <strong>in</strong> the<br />

membrane layers. First, the α-Al2O3 supports were roughly polished with a 74 µm<br />

diamond <strong>in</strong> a metal polish<strong>in</strong>g plate (Ecomet 4 Buehler, Germany) with a pressure of 12.5-<br />

25 kPa <strong>for</strong> 15 m<strong>in</strong>utes. This step was repeated with a 30 µm diamond <strong>in</strong> a paraff<strong>in</strong> plate<br />

with identical pressure and duration. The polished supports were ultrasonically cleaned <strong>in</strong><br />

ethanol and fired at 800ºC <strong>for</strong> 2 hours with a heat<strong>in</strong>g and cool<strong>in</strong>g ramp of 2ºC/m<strong>in</strong>. This<br />

resulted <strong>in</strong> a vague mirror like disc with a thickness <strong>in</strong> the range of 1.90-2.35 mm.<br />

3.1.2 Intermediate layer material characterisation and layer <strong>for</strong>mation<br />

0.5 M Boehmite sols were coated on the supports under clean-room conditions. Boehmite<br />

sols were prepared by react<strong>in</strong>g 0.5 mol of alum<strong>in</strong>um-tri-sec-butoxide (ATSB; 97% purity,<br />

Aldrich) with 70 mol H2O at >90ºC. The ATSB was added drop wise under argon-gas<br />

flow to avoid premature hydrolysis. The temperature of the reaction mixture was kept<br />

>80°C to avoid the <strong>for</strong>mation of bayerite (Al(OH)3). After the ATSB was added, the<br />

mixture was kept at 90°C <strong>for</strong> 1 h to evaporate the <strong>for</strong>med butanol. The mixture was<br />

subsequently cooled to 60°C. The acidity was adjusted with 1 M HNO3 (E. Merck,<br />

Darmstadt, Germany) to a pH of 2.8 to break down and prevent agglomeration. 5 Dur<strong>in</strong>g<br />

the synthesis, the sol was stirred vigorously. The peptized mixture was refluxed <strong>for</strong> 20 h<br />

at 90°C, result<strong>in</strong>g <strong>in</strong> a 0.5 M Boehmite sol with a clear white/blue appearance. These sols<br />

rema<strong>in</strong>ed stable <strong>for</strong> several weeks.<br />

The Boehmite sol coat<strong>in</strong>g <strong>in</strong> clean-room conditions was per<strong>for</strong>med by dip or sp<strong>in</strong> coat<strong>in</strong>g.<br />

The dip coat<strong>in</strong>g procedures were similar as those reported by Nijmeijer et al. A dipcoat<strong>in</strong>g<br />

solution of 0.5 M Boehmite sol and 3 wt% poly(v<strong>in</strong>yl-alcohol) (hereafter referred<br />

as PVA, Aldrich) <strong>in</strong> 0.05 M HNO3 with a 2/3 volume ratio was stirred carefully to<br />

prevent air bubbles. PVA acted as a dry<strong>in</strong>g chemical controll<strong>in</strong>g additive and was<br />

dissolved <strong>in</strong> 0.05 M HNO3 to avoid agglomeration of the Boehmite particles <strong>in</strong> the<br />

Boehmite sol/PVA mixture. Both solutions were filtered with 800 nm filters (Model<br />

FP030/50, Green Rim, Schleicher and Schuell GmbH, Dassel, Germany) to avoid large<br />

agglomerates.<br />

The polished and cleaned surface of α-Al2O3 supports were coated by br<strong>in</strong>g<strong>in</strong>g it <strong>in</strong><br />

contact with the Boehmite sol <strong>for</strong> a certa<strong>in</strong> time, us<strong>in</strong>g an automated dedicated dipcoat<strong>in</strong>g<br />

apparatus that <strong>in</strong>cludes electronic height adjustment (Nima technologies UK)<br />

under clean-room conditions, see Figure 17. The fixation of the support was per<strong>for</strong>med<br />

by mechanical clips or by a vacuum position<strong>in</strong>g system.<br />

Sp<strong>in</strong> coat<strong>in</strong>g procedures are per<strong>for</strong>med similarly. An excessive amount of Boehmite sol<br />

was applied on the polished surface of α-Al2O3 supports, which is fixed by an <strong>in</strong>tegrated<br />

38


3 Experimental<br />

vacuum sample holder of the sp<strong>in</strong>-coater (Delta+80 7 equipment SÜSS Microtec).<br />

Evaporation between zero and 60 seconds was per<strong>for</strong>med be<strong>for</strong>e rotat<strong>in</strong>g at 500-5000<br />

RPM.<br />

After the membranes were dip or sp<strong>in</strong>-coated, they were dried at 40ºC <strong>in</strong> a relative<br />

humidity of 60% (climate chamber) and fired <strong>in</strong> air at temperatures of 600°C <strong>for</strong> 3 h with<br />

a heat<strong>in</strong>g/cool<strong>in</strong>g rate of 1°C/m<strong>in</strong> to obta<strong>in</strong> the γ-phase of Al2O3. Unsupported γ-Al2O3<br />

bulk membrane material was obta<strong>in</strong>ed <strong>for</strong> gas physisorption and XRD characterisation by<br />

dry<strong>in</strong>g the dip-coat<strong>in</strong>g solutions and subsequently fir<strong>in</strong>g the dried gels at the abovementioned<br />

conditions.<br />

Figure 17 A) Nima technology rotational dip coater and B) SÜSS Microtec sp<strong>in</strong> coater<br />

3.2 Synthesis of zeolite material and membrane preparation<br />

The synthesis of the selected zeolite materials of deca-dodecasil-3R (DDR) and<br />

dodecasil-1H (DOH) are outl<strong>in</strong>ed <strong>in</strong> this section. The synthesis of DDR zeolite is<br />

described as well as the synthesis and post-treatments of pure DOH zeolite. F<strong>in</strong>ally, the<br />

<strong>for</strong>mation of DOH layers is presented.<br />

3.2.1 Hydrothermal zeolite syntheses<br />

A B<br />

Deca dodecasil-3R synthesis<br />

DDR small crystals were synthesised accord<strong>in</strong>g to the published recipes. 44,60 The recipe<br />

of Gies 60 was reproduced by dissolv<strong>in</strong>g the structure direct<strong>in</strong>g agent (SDA)<br />

1-adamantaneam<strong>in</strong>e (ADA, Aldrich) <strong>in</strong> a basic solution of ethylenediam<strong>in</strong>e (EN, Aldrich)<br />

<strong>in</strong> water. The tetramethyloxysilane (TMOS, Aldrich) was slowly hydrolysed by drop<br />

wise addition <strong>in</strong>to the aqueous solution. Another approach, described by Tomita et al. 62<br />

and den Exter et al., 44 was used. Namely, dissolv<strong>in</strong>g ADA <strong>in</strong> EN followed by rapid<br />

addition of deionised water. This mixture was heated <strong>for</strong> 1 hour at 95ºC after be<strong>in</strong>g<br />

shaken <strong>for</strong> 1 hour at RT to dissolve the ADA completely. TMOS at 0ºC was added <strong>in</strong> the<br />

39


3 Experimental<br />

ice cooled solution to decrease the hydrolysis rate of the silica precursor. ADA was kept<br />

dissolved by heat<strong>in</strong>g the f<strong>in</strong>al solution at 95ºC and pour<strong>in</strong>g this hot solution <strong>in</strong>to a Teflon<br />

l<strong>in</strong>er that was placed <strong>in</strong> a preheated autoclave (at 100ºC).<br />

A modification of the synthesis route by Tomita and co workers 125 was used. A diluted<br />

silica sol was added to the ADA/EN suspension. This mixture was poured <strong>in</strong>to a Teflon<br />

l<strong>in</strong>er and DDR was synthesised at 140-180ºC <strong>for</strong> 10-31 days with or without rotation of<br />

the autoclaves.<br />

The 50 ml Teflon l<strong>in</strong>ers were filled up to 2/3 with the sol solution. Nucleation of the<br />

Teflon l<strong>in</strong>ers was avoided by clean<strong>in</strong>g with a diluted HF (Aldrich) followed by wash<strong>in</strong>g<br />

with deionised water or by diluted NH4F (Aldrich) and H2O. The Teflon l<strong>in</strong>ers were<br />

placed <strong>in</strong> homemade sta<strong>in</strong>less autoclaves and placed <strong>in</strong> a preheated oven at 150-160ºC <strong>for</strong><br />

21-60 days. No DDR layers were attempted to prepare, the focus was on the DDR<br />

material synthesis.<br />

Dodecasil-1H synthesis<br />

The “small crystal DOH synthesis route” us<strong>in</strong>g ethylenediam<strong>in</strong>e (EN) as base was<br />

followed by dissolv<strong>in</strong>g 1-adamantaneam<strong>in</strong>e (ADA) <strong>in</strong> an aqueous EN solution.<br />

Tetramethyloxysilane (TMOS) was added drop wise. 50 ml Teflon l<strong>in</strong>ers were filled up<br />

to 2/3 with this gel composition. Crystallisation was per<strong>for</strong>med at 200ºC <strong>for</strong> 1 to 60 days<br />

<strong>in</strong> autoclaves. The “small crystal DOH ammonia route“ was similar but the aqueous<br />

solution of EN is replaced by 33% NH3 (Aldrich). The crystallisation was per<strong>for</strong>med<br />

statically or dynamically. Dynamic crystallisation was per<strong>for</strong>med by rotat<strong>in</strong>g the<br />

autoclaves or by stirr<strong>in</strong>g the gel by means of a comb<strong>in</strong>ation of an oil bath and magnet<br />

stirrer as agitation.<br />

Small amounts of titanium isopropoxide (Alfa Aesar) or titanium n-propoxide (Aldrich)<br />

were added to the silica source or to the f<strong>in</strong>al gel composition <strong>for</strong> the <strong>for</strong>mation of Ti-<br />

DOH.<br />

Seeded DOH syntheses were per<strong>for</strong>med to obta<strong>in</strong> DOH SDA-free. The DOH seeds were<br />

prepared as described above followed by gr<strong>in</strong>d<strong>in</strong>g <strong>in</strong> ethanol or <strong>in</strong> acetone. The DOH<br />

seeds were added as nuclei to the gel composition.<br />

3.2.2 SDA removal from dodecasil-1H by post synthesis treatments<br />

The synthesised zeolitic products were washed with H2O and ethanol. Subsequently<br />

several post synthesis treatments have been applied to remove the structure direct<strong>in</strong>g<br />

agent (SDA) from the [5 12 6 8 ] cages of DOH.<br />

A. Calc<strong>in</strong>ation at 700-900ºC <strong>in</strong> air at ambient pressure. The heat<strong>in</strong>g time change<br />

between 5 hours and 21 days with a heat<strong>in</strong>g and cool<strong>in</strong>g ramp of 5 to 10ºC/m<strong>in</strong><br />

40


3 Experimental<br />

o of as-made DOH crystals<br />

o of as-made DOH crystals synthesised with traces of titanium (Si/Ti~100)<br />

to assist the burnout by catalytic oxidation<br />

o of DOH be<strong>in</strong>g ball milled to reduce the crystal size. The DOH crystals<br />

were ball milled <strong>for</strong> 4 to 72 hours.<br />

B. calc<strong>in</strong>ation <strong>in</strong> pressurised air: Hot Isostatic Pressure (HIP) calc<strong>in</strong>ation was<br />

per<strong>for</strong>med with a vacuum s<strong>in</strong>ter oven of Eng<strong>in</strong>eered Pressure Systems<br />

International N.V. Belgium. The samples were calc<strong>in</strong>ed between 700 and 900ºC<br />

<strong>for</strong> 5 hours. Dur<strong>in</strong>g this time the air pressure changed between 1 and 200 MPa<br />

with a frequency between 1 and 8 times.<br />

3.2.3 Dodecasil-1H layer <strong>for</strong>mation<br />

The DOH Zeolite layers were prepared on commercially available alum<strong>in</strong>a disks<br />

(Inocermic GmbH Hermsdorf Germany). A 0.5 wt% suspension of DOH nuclei <strong>in</strong> H2O<br />

was sp<strong>in</strong>coated 1, 3 or 5 times on the substrates with a Delta+80 7 equipment of SÜSS<br />

Microtec (Table 11). The seeded substrates were heated at 600ºC <strong>for</strong> 3 hours with a<br />

heat<strong>in</strong>g and cool<strong>in</strong>g rate of 1ºC/m<strong>in</strong>. The seeded substrates were located horizontally at<br />

the bottom of a Teflon l<strong>in</strong>ed steel autoclave. A clear solution with a molar ratio of<br />

100SiO2:11ADA:267EN:7400H2O was added. F<strong>in</strong>ally, the seeded substrates were<br />

subjected to hydrothermal crystal growth at 200ºC <strong>for</strong> 24-48 hours.<br />

The second attempt of DOH zeolite layer <strong>for</strong>mation was carried out by deposit<strong>in</strong>g a<br />

suspension of 0.25 wt% DOH nuclei <strong>in</strong> H2O on a substrate. The seeds were dried at<br />

200ºC prior to the hydrothermal step. A clear sol solution with a molar ratio of<br />

100SiO2:5.9ADA:69EN:3500H2O was added. The hydrothermal treatment was<br />

per<strong>for</strong>med at 200ºC <strong>for</strong> 24 hours. The zeolitic layers were washed with ethanol and H2O<br />

and f<strong>in</strong>ally calc<strong>in</strong>ed at 700ºC <strong>for</strong> 5 hours with a heat<strong>in</strong>g and cool<strong>in</strong>g rate of 1ºC/m<strong>in</strong>.<br />

Table 11 Seed<strong>in</strong>g and coat<strong>in</strong>g properties of DOH membranes<br />

Deposition Nuclei Gel composition Crystallisation<br />

Technique # Deposition steps SiO2:ADA:EN:H2O Temperature Time<br />

A 1 100:11:267:7400 200ºC 48h<br />

Sp<strong>in</strong>-coat<strong>in</strong>g, 600ºC B 3 100:11:267:7400 200ºC 48h<br />

C 5 100:11:267:7400 200ºC 24h<br />

D 1 100:5.9:69:3500 200ºC 24h<br />

Deposit<strong>in</strong>g, 200ºC E 1 100:5.9:69:3500 200ºC 24h<br />

F 1 100:5.9:69:3500 200ºC 24h<br />

41


3 Experimental<br />

3.3 Sol-gel derived TiO2, ZrO2 and b<strong>in</strong>ary oxide membranes<br />

Sol-gel derived membranes are prepared us<strong>in</strong>g the supports with <strong>in</strong>termediate layers as<br />

discussed previously. The f<strong>in</strong>al titania zirconia and b<strong>in</strong>ary metal oxide membrane<br />

materials are prepared from polymeric sols, a process which will be outl<strong>in</strong>ed <strong>in</strong> the next<br />

section. F<strong>in</strong>ally, the <strong>for</strong>mation of the sol-gel derived membrane is described and the<br />

characterisations of these materials are discussed.<br />

3.3.1 Polymeric TiO2, ZrO2 and b<strong>in</strong>ary oxide sol synthesis<br />

The <strong>for</strong>mation of a titania or zirconia polymeric sol can be controlled us<strong>in</strong>g a precursor<br />

modifier to stabilise the alkoxide precursors. The ketone acetyl acetone and the am<strong>in</strong>e<br />

diethanolam<strong>in</strong>e were selected as precursor modifiers. The sol syntheses <strong>in</strong> this work are<br />

subdivided <strong>in</strong> to the ketone acetyl acetone and the am<strong>in</strong>e diethanolam<strong>in</strong>e route. A few<br />

experiments were conducted with an alternative am<strong>in</strong>e: diisopropanolam<strong>in</strong>e.<br />

3.3.1.1 Ketone route<br />

The general procedure <strong>for</strong> synthesis of the acetyl acetone sols was carried out as follows<br />

(Figure 18). A solution (1:1 molar) of acetyl acetone (Ac) and the correspond<strong>in</strong>g<br />

carboxylic acid was added under stirr<strong>in</strong>g to a solution of zirconium n-propoxide (Mateck,<br />

70%) <strong>in</strong> 2-propanol (Aldrich), with a f<strong>in</strong>al molar ratio Ac/Zr ~1.<br />

Figure 18 Procedure followed <strong>in</strong> the synthesis of different acetyl acetone 8YSZ sols<br />

42


3 Experimental<br />

Another solution was prepared compris<strong>in</strong>g H2O and yttrium nitrate (Treibacher) <strong>in</strong> 2propanol<br />

to prepare YSZ sols. This hydrolysis solution was added drop wise at 0ºC to the<br />

Zr-solution, and the hydrolysis molar ratio (W) was water/Zr ~4. The f<strong>in</strong>al sol conta<strong>in</strong>ed<br />

variable contents of solids with a nom<strong>in</strong>al molar ratio Zr/Y ~ 85/15. The carboxylic acids<br />

used as catalysts <strong>in</strong>clude acetic, propionic, caproic (Ca) and nanonic acid, all of which<br />

were supplied by Aldrich. The different solid contents were obta<strong>in</strong>ed by adjust<strong>in</strong>g the<br />

amount of 2-propanol used as solvent. S<strong>in</strong>gle oxide titania sols are synthesised us<strong>in</strong>g<br />

titanium isopropoxide (Alfa Aesar) <strong>in</strong>stead of zirconium n-propoxide. No b<strong>in</strong>ders are<br />

used <strong>in</strong> order to avoid large pores <strong>in</strong> the s<strong>in</strong>ter<strong>in</strong>g steps.<br />

The structure direct<strong>in</strong>g agents (SDA’s) such as, decylam<strong>in</strong>e (C10), cetylam<strong>in</strong>e (C16),<br />

cetyltrimethylammonium (CTA+) and Pluronic F127 are added to zirconia sols with<br />

weight ratios of 0.32, 0.48, 0.73 and 1.2 <strong>for</strong> C10, C16, CTA+ and F127, respectively.<br />

3.3.1.2 Am<strong>in</strong>e route<br />

Polymeric sols were prepared by mix<strong>in</strong>g a precursor solution and a hydrolysis solution.<br />

The alkoxide (zirconium n-propoxide or titanium n-propoxide Aldrich) was mixed with<br />

with diethanolam<strong>in</strong>e (hereafter referred as DEA) and n-propanol (ACS Reagents Aldrich)<br />

with a molar ratio 1:2:72.6 under argon atmosphere, <strong>for</strong>m<strong>in</strong>g the precursor solution. TiO2<br />

and ZrO2 mixture sols were prepared by mix<strong>in</strong>g the alkoxide precursors, via mix<strong>in</strong>g 10,<br />

25, 50, 66, 75 or 90% of titanium n-propoxide to zirconium n-propoxide. The hydrolysis<br />

solution, consist<strong>in</strong>g of 7-10 mol equivalents (with respect to the alkoxide) of 1.0 M HNO3<br />

(Aldrich) and n-propanol (volume ratio 1.8:50), was added slowly (1.5 mL/m<strong>in</strong>) to the<br />

precursor solution under vigorous stirr<strong>in</strong>g <strong>in</strong> an argon atmosphere. The molar ratio of the<br />

f<strong>in</strong>al sol was 1:2:7:120 <strong>for</strong> respectively the alkoxide, diethanolam<strong>in</strong>e, H2O and<br />

n-propanol.<br />

The effect of acidification on hydrolysis and condensation was <strong>in</strong>vestigated by select<strong>in</strong>g<br />

1.0 M HNO3, 0.1 M HNO3 or H2O. The effect of DEA to stabilise the precursors is<br />

compared to the longer cha<strong>in</strong> diisopropanolam<strong>in</strong>e (hereafter referred as DIPA).<br />

n-Propanol (Reagent plus, 99.7%), DEA and DIPA were purchased from Aldrich and<br />

used as received.<br />

43


3 Experimental<br />

Figure 19 Procedure followed <strong>in</strong> the synthesis of different am<strong>in</strong>e sols<br />

3.3.2 Dry<strong>in</strong>g and s<strong>in</strong>ter<strong>in</strong>g of TiO2, ZrO2 and b<strong>in</strong>ary oxide bulk material<br />

The polymeric sols were dried <strong>in</strong> a glass beaker at 80ºC <strong>for</strong> 4 hours to remove the<br />

propanol and the dried further at 140ºC to the obta<strong>in</strong> bulk material. The dried powders<br />

were characterised with DTA/TG and element analyses (carbon and nitrogen). The<br />

powders were calc<strong>in</strong>ed at 400, 500, 550 and 600ºC <strong>for</strong> 2 hours with heat<strong>in</strong>g rates of<br />

0.4ºC/m<strong>in</strong>. The YSZ bulk materials were further calc<strong>in</strong>ed at 800 and 1080ºC <strong>for</strong> 2 hours.<br />

Organic extractions were per<strong>for</strong>med by mix<strong>in</strong>g 1 wt% suspensions of the gelled sols <strong>in</strong> a<br />

n-propanol/n-heptane (mol ratio of 2:1) solution. These mixtures were refluxed overnight<br />

followed by conventional wash<strong>in</strong>g with H2O and dry<strong>in</strong>g.<br />

3.3.3 <strong>Microporous</strong> TiO2, ZrO2 and b<strong>in</strong>ary oxide membrane preparation<br />

The polymeric sols were applied on suitable substrates by sp<strong>in</strong> coat<strong>in</strong>g with a rotat<strong>in</strong>g<br />

speed rang<strong>in</strong>g from 500 to 5000 RPM or by dip coat<strong>in</strong>g. The wet films were dried at<br />

room temperature or <strong>in</strong> a climate chamber set at 40ºC with 60% humidity <strong>for</strong> 3 hours.<br />

The films were fired at 400, 450, 500 or 600ºC <strong>for</strong> 2 hours with heat<strong>in</strong>g rates of<br />

0.4ºC/m<strong>in</strong>. These steps were repeated to <strong>for</strong>m a second layer. The films were made on a<br />

microscope glass slip (Chance Propper Ltd.) or on γ-Al2O3 membrane supports described<br />

<strong>in</strong> the first section of this chapter.<br />

44


3 Experimental<br />

3.4 Characterisation <strong>for</strong> microporous materials and membranes<br />

3.4.1 <strong>Microporous</strong> material characterisation<br />

Particle size analysis of the sols was per<strong>for</strong>med by us<strong>in</strong>g dynamic light scatter<strong>in</strong>g (DLS)<br />

equipment (Horiba Nanoparticle Size Analyzer LB-550) and small angle X-ray<br />

scatter<strong>in</strong>g. Prior to analysis, the sols were filtered with a Schleicher & Schuell 800 nm<br />

membrane sieve.<br />

Small angle X-ray scatter<strong>in</strong>g<br />

SAXS studies 126 were per<strong>for</strong>med us<strong>in</strong>g a NANOSTAR camera (Bruker AXS), fitted with<br />

a rotat<strong>in</strong>g anode source, run at 40 kV and 40 mA and filtered to yield only CuKα with<br />

wavelength λ=1.540 Å. The collimation path consisted of 3 p<strong>in</strong>holes and the primary<br />

beam stop at about 1.05 m from the sample position was chosen at 2 mm <strong>in</strong> diameter to<br />

allow the smallest scatter<strong>in</strong>g vector q~0.006 Å -1 to be obta<strong>in</strong>ed. Scatter<strong>in</strong>g patterns <strong>in</strong><br />

2-dimensionals were collected on a Hi-Star Xenon-filled 1000·1000 wired grid area<br />

detector. Typical acquisition times <strong>for</strong> the dilute solutions, which were kept <strong>for</strong> 10 hours,<br />

<strong>for</strong> statistical reasons, <strong>in</strong> sealed quartz capillaries of 1.5 mm diameter <strong>in</strong> the evacuated<br />

sample chamber. Transmissions of the solutions were <strong>in</strong> the order of 40-50% from<br />

absorbance measurements us<strong>in</strong>g a glassy carbon standard which was <strong>in</strong>serted <strong>in</strong> the<br />

optical path between the sample and the detector. The spot size of the beam on the<br />

sample was 500 µm. All data was corrected <strong>for</strong> background scatter<strong>in</strong>g of the quartz after<br />

a radially averag<strong>in</strong>g process of the raw data to yield a usable scatter<strong>in</strong>g vector range<br />

0.008


3 Experimental<br />

X-ray diffraction<br />

Powder X-ray diffraction measurements were conducted us<strong>in</strong>g a Siemens D500<br />

diffractometer with a CuKα radiation. The crystall<strong>in</strong>ity of the sample is calculated based<br />

on the ratio of the crystal area and the amorphous area as displayed by the XRD pattern<br />

which was previously corrected by the background contribution. The total <strong>in</strong>tegrated area<br />

(<strong>in</strong>tensity*2Θ) of the XRD patterns is assumed to be an accumulation of background,<br />

amorphous and crystall<strong>in</strong>e <strong>in</strong>tensity <strong>in</strong> a selected XRD angle range, <strong>in</strong> this case selected<br />

from 10


3 Experimental<br />

Element analysis<br />

The carbon content of the DOH crystals and sol-gel derived sols and bulk materials was<br />

obta<strong>in</strong>ed by combust<strong>in</strong>g the sample with the use of radiofrequency heat<strong>in</strong>g (2300ºC) <strong>in</strong> an<br />

oxygen flow with combust<strong>in</strong>g additives. The quantity of combusted carbon was<br />

determ<strong>in</strong>ed by means of Infrared (Leco CS 600). Nitrogen content <strong>in</strong> the DOH crystals<br />

and sol-gel derived bulk materials was determ<strong>in</strong>ed by thermal conductivity detection, the<br />

<strong>in</strong>organic samples were heated <strong>in</strong> helium flow by means of resistance heat<strong>in</strong>g (Leco TCH<br />

600). The metal ion impurities <strong>in</strong> the DOH zeolite crystals were studied with Inductively<br />

Coupled Plasma with Optical Emission Spectroscopy (TJA-IRIS-INTREPID).<br />

Static corrosion tests were per<strong>for</strong>med <strong>in</strong> nitric acid and sodium hydroxide at a pH rang<strong>in</strong>g<br />

from 1 to 13 by stirr<strong>in</strong>g the suspension of the sol/gel derived bulk materials fired at 400,<br />

500 and 600ºC. Corrosion tests were carried out at room temperature <strong>for</strong> 8 days.<br />

3.4.2 <strong>Microporous</strong> membrane characterisation<br />

Scann<strong>in</strong>g and Transmission Electron Microscopy (SEM-TEM)<br />

Surface and cross section SEM analysis were per<strong>for</strong>med us<strong>in</strong>g a LEO 1530 (Gem<strong>in</strong>i)<br />

electron microscope. Electron energy dispersive X-ray analysis (EDX) was used <strong>for</strong><br />

qualitative analysis of the powder. TEM <strong>in</strong>vestigations were per<strong>for</strong>med us<strong>in</strong>g a Philips<br />

CM200 or a Tecnai F20 G 2 operat<strong>in</strong>g at 200 kV.<br />

Secondary Ion Mass Spectroscopy<br />

The <strong>in</strong>filtration depth of DEA sols was studied by means of Secondary Ion Mass<br />

Spectroscopy (SIMS). By repeatedly sputter<strong>in</strong>g the membrane surface with argon the<br />

chemical composition could be determ<strong>in</strong>ed at various depths. Profiles were obta<strong>in</strong>ed with<br />

a resolution of ~0.4 nm. The chemical composition was determ<strong>in</strong>ed to be <strong>in</strong> an area of<br />

0.01 mm 2 <strong>in</strong>side a crater of 0.09-0.16 mm 2 exclud<strong>in</strong>g edge effects.<br />

Raman spectroscopy<br />

The Raman spectroscopy measurements were made us<strong>in</strong>g a Horiba Job<strong>in</strong> Yvon<br />

SpexT64000 system equipped with two scann<strong>in</strong>g mechanisms, one <strong>for</strong> the<br />

<strong>for</strong>emonochromator and another one <strong>for</strong> the spectrograph. The SpexT64000 is equipped<br />

with 1800 grooves/mm grat<strong>in</strong>gs. The 488 nm l<strong>in</strong>e of an Ar + ion laser (COHERENT<br />

Innova® 300C Series) was used <strong>for</strong> the probes excitation. The spectra were collected <strong>in</strong> a<br />

backscatter<strong>in</strong>g geometry with a confocal Raman microscope equipped with an Olympus<br />

MPlan 50x objective. The detection of the Raman signal was carried out with a CCD<br />

detector operat<strong>in</strong>g at -196°C. The probes were also measured us<strong>in</strong>g a Raman micro<br />

spectrometer (Horiba Job<strong>in</strong> Yvon, model LabRam) us<strong>in</strong>g the 514.5 nm excitation l<strong>in</strong>e<br />

47


3 Experimental<br />

from an Ar + laser (model 2213) and the 632.8 nm excitation l<strong>in</strong>e from a He-Ne laser. The<br />

spectra were collected <strong>in</strong> a backscatter<strong>in</strong>g geometry with a Raman microscope equipped<br />

with an Olympus LMPlanFl 50x/0.50 objective. The acquisition time was set at 5<br />

cycles/20 seconds.<br />

X-Ray Photoelectron Spectroscopy<br />

X-Ray Photoelectron Spectroscopy (XPS) were per<strong>for</strong>med us<strong>in</strong>g a XPS/AES<br />

spectrometer based on Physical Electronics components. In-depth profil<strong>in</strong>g is obta<strong>in</strong>ed<br />

with a 4kV Ar-sputter gun <strong>for</strong> 2 m<strong>in</strong>. Quantification of the results was done us<strong>in</strong>g the<br />

program MultiPak result<strong>in</strong>g <strong>in</strong> at% with 15% relative accuracy.<br />

Mass transport<br />

<strong>Gas</strong> permeation characteristics of the sol-gel derived membranes were determ<strong>in</strong>ed <strong>in</strong> a<br />

setup at the University of Twente and at the University of E<strong>in</strong>dhoven as schematically<br />

outl<strong>in</strong>ed <strong>in</strong> Figure 20. This was done with pure gasses at pressures and temperatures<br />

rang<strong>in</strong>g from 2 to 5 bars and 100 to 200°C, respectively. In this setup the rate of<br />

permeation is measured at atmospheric conditions us<strong>in</strong>g a thermal mass flow controller<br />

(MFC). Feed pressure and temperature were controlled with a mechanical pressure<br />

reducer (PR) and programmable electrical heater. Upon <strong>in</strong>stallation of the membranes <strong>in</strong><br />

a sta<strong>in</strong>less steel, they were first degassed <strong>for</strong> at least 60 h at 200°C (heat<strong>in</strong>g rate 1 ºC/m<strong>in</strong>)<br />

under helium flush. Dur<strong>in</strong>g all measurements feed pressure, transmembrane pressure and<br />

temperature were logged automatically. All gasses, i.e. hydrogen (H2), helium (He),<br />

nitrogen (N2), argon (Ar) and carbon dioxide (CO2), were used with a m<strong>in</strong>imum purity of<br />

99.999%. Only sulphur hexafluoride (SF6) was used with a m<strong>in</strong>imum purity of 99.8%.<br />

Pressure reducer<br />

PR<br />

P<br />

Membrane <strong>in</strong><br />

sample holder<br />

48<br />

Valve V<br />

∆∆∆∆P ∆∆∆∆P<br />

Mass Flow MFC Controller<br />

Figure 20 Schematic outl<strong>in</strong>e of the setup <strong>for</strong> the determ<strong>in</strong>ation of gas permeation characteristics. P<br />

presents the feed pressure and ∆P the pressure difference over the membrane.


3 Experimental<br />

Additionally, the hydrothermal stability of one of the membranes was evaluated by<br />

measur<strong>in</strong>g of the He and N2 permeation upon exposure to water vapour at 200°C. In a<br />

setup as schematically outl<strong>in</strong>ed <strong>in</strong> Figure 21, the partial vapour pressure of the water <strong>in</strong><br />

this setup was controlled with a thermostated reservoir through which He was fed to the<br />

membrane module. At the permeate side water can be collected <strong>in</strong> a cold-trap (CT) be<strong>for</strong>e<br />

the He flow is measured with a thermal mass flow controller (MFC). The hydrothermal<br />

treatment consisted of 3 consecutive 24 hour periods dur<strong>in</strong>g which the vapour pressure<br />

was kept at 1, 2 and 3 bar, respectively. Upon term<strong>in</strong>ation of this treatment the membrane<br />

was degassed under a sweep of ‘dry’ He, while periodically measur<strong>in</strong>g He and N2<br />

permeation <strong>in</strong> time.<br />

Pressure<br />

PR<br />

reducer<br />

P<br />

Membrane Membrane <strong>in</strong><br />

<strong>in</strong><br />

sample sample holder<br />

holder<br />

Boiler<br />

Boiler<br />

49<br />

Valve V<br />

∆∆∆∆P<br />

Mass MFC Flow Controller<br />

CT Cold trap<br />

Figure 21 Schematic outl<strong>in</strong>e of the setup used <strong>for</strong> the evaluation of hydrothermal stability.


4 Results and discussion<br />

4 Results and discussion<br />

The first section deals with the support and support<strong>in</strong>g ceramic membrane layers. The<br />

second section <strong>in</strong>cludes the properties and potentials of deca-dodecasil 3R and dodecasil<br />

1H zeolite materials and of the first dodecasil 1H layers. The f<strong>in</strong>al section describes the<br />

properties of sol-gel derived TiO2-(Y2O3)ZrO2 membranes <strong>in</strong>clud<strong>in</strong>g the sol, the<br />

microstructure and the membrane layer characterisation and discussions.<br />

4.1 Supports and <strong>in</strong>termediate layers<br />

Supports were made of α-Al2O3 material (AKP30) and were prepared by colloidal<br />

filtration as reported by Nijmeijer et al. 87 The supports have a diameter of 36 mm and a<br />

thickness of 2-2.4 mm (Figure 22-A). AKP30 alum<strong>in</strong>a bulk material has a surface area<br />

7.1 m 2 /g measured by gas physisorption, which is comparable with the 6.9 m 2 /g reported<br />

by the supplier. The particle size is 340 nm (D50) and the purity >99.99%. The purity<br />

was analysed by means of X-ray fluorescence result<strong>in</strong>g <strong>in</strong> only 8 ppm Ni, 5 ppm Zn and 2<br />

ppm Fe. The porosity of the colloidal filtrated and (1100ºC) fired substrate is 31% with<br />

an average pore size of ~80 nm and is comparable with similar prepared substrate. 87,99<br />

α-Al2O3 SEM surface image is presented <strong>in</strong> Figure 22-B.<br />

36 mm<br />

A B<br />

Figure 22 A) 36 mm <strong>in</strong> diameter produced α-Al2O3 support and B) the surface SEM image.<br />

The <strong>in</strong>termediate layers are prepared with γ-Al2O3 to <strong>for</strong>m layers of good quality to<br />

support the f<strong>in</strong>al membrane layers. However, the f<strong>in</strong>al membrane layers might be<br />

supported <strong>in</strong> the future by mesoporous titania or zirconia materials to produce chemically<br />

more stable membranes with match<strong>in</strong>g thermal expansion coefficients with titania or<br />

zirconia functional membrane layers.<br />

The <strong>in</strong>termediate layers are prepared from Boehmite sols hav<strong>in</strong>g particle sizes (d50)<br />

typically ~30 nm (Figure 23) and are comparable with results reported <strong>in</strong> literature. 87,99<br />

50<br />

α-Al2O3


4 Results and discussion<br />

Abundance %<br />

20<br />

15<br />

10<br />

5<br />

0<br />

1 10 100 1000<br />

Particle size <strong>in</strong> nm<br />

51<br />

A 28nm<br />

B 26nm<br />

Figure 23 Particle size distribution of Boehmite sol measured twice by means of Dynamic Light Scatter<strong>in</strong>g<br />

The γ-Al2O3 layer obta<strong>in</strong>ed by dip coat<strong>in</strong>g is ~1 µm <strong>in</strong> thickness and can be <strong>in</strong>creased to<br />

approximately 3 µm by repeat<strong>in</strong>g the coat<strong>in</strong>g and fir<strong>in</strong>g steps (Figure 24-A).<br />

Homogeneous γ-Al2O3 <strong>in</strong>termediate was obta<strong>in</strong>ed by means of sp<strong>in</strong>-coat<strong>in</strong>g. The<br />

thickness of the twice sp<strong>in</strong>-coated γ-Al2O3 <strong>in</strong>termediate is ~3 µm (us<strong>in</strong>g 1000 or 3000<br />

RPM), <strong>in</strong>dicat<strong>in</strong>g that the layer thickness is more dependent on the concentration of the<br />

Boehmite sol and the evaporation time than the actual sp<strong>in</strong>n<strong>in</strong>g speed (Figure 24-B and<br />

C). Raman or XRD analysis could not dist<strong>in</strong>guish the γ from the α-Al2O3 phase of the<br />

membranes. The γ-Al2O3 bulk material was analysed with XRD and gas physisorption<br />

after dry<strong>in</strong>g and fir<strong>in</strong>g treatments.<br />

γ-Al2O3<br />

α- Al2O3<br />

A B<br />

γ-Al2O3<br />

α- Al2O3<br />

γ-Al2O3<br />

α- Al2O3<br />

2-3 µm<br />

Figure 24 Cross section SEM images of γ-Al2O3 <strong>in</strong>termediate layers by dipcoat<strong>in</strong>g (s<strong>in</strong>gle layer, A) or<br />

sp<strong>in</strong>coat<strong>in</strong>g at 1000 RPM (B) and 3000 RPM (C).<br />

The γ-Al2O3 <strong>in</strong>termediate layer material calc<strong>in</strong>ed at 600ºC <strong>for</strong> 3 hours showed a type IV<br />

isotherm <strong>in</strong>dicat<strong>in</strong>g a mesoporous material. XRD pattern results confirm the presence of<br />

pure γ-Al2O3 and the absence of α-Al2O3 and δ-Al2O3. The specific surface area is<br />

derived from the Brunauer, Emmet and Teller (SBET) theory. 130 The Barret, Joyner and<br />

Halenda (BJH) algorithm 130 is selected <strong>for</strong> estimat<strong>in</strong>g the pore size of mesoporous<br />

material that presents type IV isotherms. The BET specific surface areas are <strong>in</strong> the range<br />

C


4 Results and discussion<br />

of 205-225 m 2 /g with a median pore size of 4.1-4.6 nm (Figure 25). This is comparable<br />

with literature results. 5<br />

VPore / cm 3 g -1<br />

0,3 8<br />

0,2<br />

0,1<br />

102 10-1 102 100 102 101 102 0,0<br />

0<br />

r / nm<br />

Figure 25 Pore size distribution of the γ-Al2O3 powder calc<strong>in</strong>ed at 600ºC <strong>for</strong> 3 hours us<strong>in</strong>g the BJH model.<br />

The pore volume was calculated from the absorbed gas <strong>for</strong> certa<strong>in</strong> mass of powder (cm 3 /g). The green l<strong>in</strong>e<br />

presents the differential of the absorbed volume.<br />

52<br />

6<br />

dV/dr / cm 3 nm -1 g -1<br />

4<br />

2


4 Results and discussion<br />

4.2 Zeolite materials and layers<br />

All silica clathrasil 8-r<strong>in</strong>g deca-dodecasil 3R (DDR) zeolite type might be a potential<br />

membrane material to separate CO2 from other gasses. 6-r<strong>in</strong>g dodecasil 1H (DOH), also<br />

an all silica clathrasil, could be an <strong>in</strong>terest<strong>in</strong>g membrane material <strong>for</strong> H2 to CO2<br />

separation.<br />

First, DDR syntheses results will be described briefly. Second, the successful syntheses<br />

of DOH will be described <strong>in</strong>clud<strong>in</strong>g the results to obta<strong>in</strong> quasi SDA-free DOH structures,<br />

followed by a discussion on the <strong>for</strong>mation of secondary grown DOH layers on α-Al2O3<br />

supports.<br />

4.2.1 Deca-dodecasil-3R synthesis<br />

Deca-dodecasil-3R (DDR) is not commercially available but can be synthesised from<br />

silicon precursors which are hydrolysed <strong>in</strong> the presence of the structure direct<strong>in</strong>g agents<br />

(SDA) at high pH. These reactions are per<strong>for</strong>med <strong>in</strong> Teflon l<strong>in</strong>ed steel autoclaves at high<br />

temperatures <strong>for</strong> several days. Am<strong>in</strong>oadamantane (ADA) is the most frequently used<br />

known SDA <strong>for</strong> the <strong>for</strong>mation of DDR.<br />

Dodecasil-1H is one of the compet<strong>in</strong>g phases of DDR us<strong>in</strong>g the same gel composition. 60<br />

DOH is synthesised at temperatures above 190ºC while DDR requires synthesis<strong>in</strong>g<br />

temperatures <strong>in</strong> the range of 160-170ºC.<br />

Table 12 presents the obta<strong>in</strong>ed phases as a function of the synthesis temperature. It shows<br />

shown that DOH is synthesised at higher temperatures. Chang<strong>in</strong>g the gel composition did<br />

not result <strong>in</strong> s<strong>in</strong>gle phase DDR zeolite material. Different polymorphs of DOH, SGT and<br />

DDR (SGT is zeolite type Sigma 2) are <strong>for</strong>med at temperatures below 200ºC, as seen <strong>in</strong><br />

Figure 26 A and B.<br />

A)<br />

Polymorphs<br />

Figure 26 A) Optical microscope image of polymorph products obta<strong>in</strong>ed at 170ºC <strong>for</strong> 25 days. B) DOH-<br />

DDR polymorphs found by den Exter et al. 67 .<br />

53<br />

B)


4 Results and discussion<br />

Table 12 DDR synthesis conditions present<strong>in</strong>g the molar ratio and crystallisation time <strong>in</strong> days<br />

SiO2:ADA:EN:H2O Crystallisation<br />

conditions<br />

Obta<strong>in</strong>ed phase<br />

Days Temp. ºC<br />

100:30.7:266:7300 60 160 DDR/SGT<br />

100:30.7:266:7300 25 170 DDR/SGT/DOH<br />

100:11:267:7405 27 200 DOH<br />

The Sigma 2 (SGT) zeolite type coexists <strong>in</strong> the products synthesised at temperatures<br />

below 200ºC. SGT can be synthesised <strong>in</strong> the presence of sodium and alum<strong>in</strong>ium as well.<br />

Inductively Coupled Plasma with Optical Emission Spectroscopy found traces of these<br />

compounds. These impurities might act as structure direct<strong>in</strong>g agents. SGT <strong>in</strong> the products<br />

could not be excluded by chang<strong>in</strong>g the gel composition (Table 13).<br />

S<strong>in</strong>gle phase DDR synthesis seems to be complex. Only a few groups are able to prepare<br />

pure DDR 65,125 who used a well studied synthesis conditions and raw materials.<br />

Table 13 DDR synthesis conditions present<strong>in</strong>g the molar ratio of the gel composition and crystallisation<br />

time <strong>in</strong> days synthesised at 160ºC<br />

SiO2:ADA:EN:H2O Crystallisation conditions <strong>in</strong> days Obta<strong>in</strong>ed phase<br />

100:11:267:7405 28 DDR/SGT<br />

100:30.7:266:7300 60 DDR/SGT<br />

100:47:266:3600 33 DDR/SGT/DOH<br />

100:47:404:6800 25 DDR/SGT/DOH<br />

4.2.2 Structure direct<strong>in</strong>g agent free Dodecasil-1H synthesis<br />

4.2.2.1 Synthesis of small DOH nuclei<br />

Dodecasil 1H (DOH) can be synthesised successfully us<strong>in</strong>g ammonia and<br />

ethylenediam<strong>in</strong>e as the base. The zeolite type SGT (Sigma 2) or a mixture of DOH and<br />

deca-dodecasil 3R (DDR) <strong>in</strong>stead of s<strong>in</strong>gle phase DOH crystals was obta<strong>in</strong>ed when us<strong>in</strong>g<br />

the gel composition as reported by Den Exter. 66 Pure DOH was obta<strong>in</strong>ed us<strong>in</strong>g a gel<br />

composition with less ADA and EN (Table 14).<br />

Pure DOH was synthesised with a 9-18 Si/ADA mol ratio. Decreas<strong>in</strong>g the water content<br />

<strong>in</strong> the gel may reduce the hydrolysis rate and thereby result <strong>in</strong> smaller crystals. Partial<br />

crystall<strong>in</strong>e DOH product was obta<strong>in</strong>ed when the mol ratio of H2O/Si was reduced from<br />

74 to 10, most likely due to <strong>in</strong>homogeneous components <strong>in</strong> the gel (Table 15).<br />

54


4 Results and discussion<br />

Table 14 DOH synthesis conditions present<strong>in</strong>g the molar ratio of the gel composition and the crystallisation<br />

time <strong>in</strong> days.<br />

SiO2:ADA:EN:H2O Crystallisation conditions Obta<strong>in</strong>ed phase<br />

Days Temp. ºC<br />

100:47:420:5500 11 200 SGT<br />

100:47:420:5500 11 ~190 DOH/DDR<br />

100:23:267:7405 24 200 DOH+Gel<br />

100:11:267:7405 27 200 DOH<br />

Table 15 Gel composition with molar ratio 100SiO2:xADA:267EN:yH2O syntheses crystallised at 200ºC<br />

static or dynamic agitation with result<strong>in</strong>g products.<br />

Gel Crystallisation Product<br />

composition conditions<br />

x y days Agitation<br />

5.5 7405 10 Rotation DOH<br />

5.5 7405 20 Rotation DOH<br />

11 7405 24 Static DOH<br />

23 7405 24 Static DOH+gel<br />

11 3000 24 Static DOH<br />

11 1000 21 Static DOH+gel<br />

The time <strong>for</strong> complete DOH crystallisation can be reduced from 21 to 7 days by rotat<strong>in</strong>g<br />

the autoclave. The crystallisation time was further reduced to only 4 days by stirr<strong>in</strong>g the<br />

gel <strong>in</strong> situ (Table 16). Increas<strong>in</strong>g the gel homogeneity clearly decreases the crystallisation<br />

time. The DOH crystallisation under stirr<strong>in</strong>g was further studied <strong>for</strong> the gels, conta<strong>in</strong><strong>in</strong>g<br />

ammonia <strong>in</strong>stead of ethylenediam<strong>in</strong>e. The DOH crystall<strong>in</strong>ity, us<strong>in</strong>g the NH3 route, does<br />

not <strong>in</strong>crease after 5 days of stirr<strong>in</strong>g (Figure 27) at 200ºC. The smallest DOH crystals, <strong>in</strong><br />

the range of 5-13 µm <strong>in</strong> diameter, were obta<strong>in</strong>ed us<strong>in</strong>g the NH3 route <strong>in</strong> comb<strong>in</strong>ation with<br />

autoclave rotation <strong>for</strong> 18 days (Figure 28).<br />

Table 16 Autoclave agitation crystallisation conditions us<strong>in</strong>g 100SiO2:11ADA:267EN:7405H2O gel<br />

composition at 200ºC as function of crystallisation time<br />

Autoclave agitation days Product<br />

Static 21 DOH<br />

14 DOH<br />

7 DOH + Gel<br />

Rotation 7 DOH<br />

Stir 4 DOH<br />

55


4 Results and discussion<br />

Figure 27 Crystall<strong>in</strong>ity of DOH, us<strong>in</strong>g the NH3 route, as function of the crystallisation time with a<br />

crystallisation temperature of 200˚C.<br />

Figure 28 Optical micrograph of synthesised DOH crystals<br />

Ag<strong>in</strong>g the gel composition prior to the hydrothermal crystallisation of DOH<br />

The average crystal size, obta<strong>in</strong>ed after 4 days of crystallisation at 200˚C, is a function of<br />

the ag<strong>in</strong>g temperature of the gel. The smallest DOH crystals, 5-10 µm <strong>in</strong> size, are<br />

obta<strong>in</strong>ed after 4 days of crystallisation of the aged gels. This gel was aged at 80˚C <strong>for</strong> 24<br />

56<br />

Crystall<strong>in</strong>ity %<br />

5 10 15 20 25 30 35<br />

2Θ [º]<br />

DOH crystals<br />

100<br />

75<br />

50<br />

25<br />

0<br />

12days<br />

NH 3 route<br />

2 4 6<br />

Days<br />

8 10 12<br />

2days<br />

3days<br />

4days<br />

5days


4 Results and discussion<br />

hours us<strong>in</strong>g ethylenediam<strong>in</strong>e as a base. Lower ag<strong>in</strong>g temperatures resulted <strong>in</strong> larger<br />

crystals (Figure 29). The crystal size is estimated from several crystals observed with the<br />

optical micrograph. This <strong>in</strong>dicates that the nucleation of primary build<strong>in</strong>g units occurs at<br />

moderate temperatures (50-80ºC), which is typical <strong>for</strong> zeolite <strong>for</strong>mation. At higher<br />

temperatures (200ºC), DOH crystal growth is stimulated. These results suggest that the<br />

DOH nucleation and growth can be decoupled.<br />

The crystal size <strong>in</strong> the range of 10 µm can be too large to act as nuclei <strong>for</strong> the <strong>for</strong>mation<br />

of DOH th<strong>in</strong> layers. It is believed that zeolite membrane layers should have a desired<br />

thickness of less than 20 µm. 133<br />

Crystal size [µm]<br />

160<br />

120<br />

80<br />

40<br />

0<br />

20 40 60 80<br />

Ag<strong>in</strong>g temperature [ºC]<br />

Figure 29 Crystal size as function of the ag<strong>in</strong>g temperature us<strong>in</strong>g the gel composition of<br />

100SiO2:11ADA:267EN:7405H2O. Two samples at each ag<strong>in</strong>g temperature of 25, 50 and 80ºC were<br />

prepared. The crystallisation was per<strong>for</strong>med by rotat<strong>in</strong>g the autoclave at 200˚C <strong>for</strong> 4 days. The crystal<br />

sizes were determ<strong>in</strong>ed with an optical microscope.<br />

4.2.2.2 Preparation of quasi template free DOH<br />

Seed<strong>in</strong>g DOH synthesis<br />

The addition of DOH seeds enhances the DOH crystallisation. However, the<br />

reproducibility of a synthesis with seeds <strong>in</strong> comb<strong>in</strong>ation with low concentration of SDA<br />

was proven to be difficult. Nevertheless, low yield of pure DOH was obta<strong>in</strong>ed us<strong>in</strong>g a<br />

low amount of seeds (0.28-0.60 wt% compared to the total gel mass) <strong>in</strong> comb<strong>in</strong>ation with<br />

Si/ADA = 100 molar ratio <strong>in</strong>stead of 9. These results confirm the possibility of DOH<br />

synthesis by secondary growth as published by Grebner et al. 71-73 However, the<br />

57


4 Results and discussion<br />

successful reproduced seeded DOH synthesis still <strong>in</strong>cludes significantly amount of SDA.<br />

This could have resulted <strong>in</strong> almost completely templated DOH. The chemical analysis<br />

confirm this expectation with a 5.5 wt% (0.22 mol%) carbon content. This amount,<br />

related to the theoretically determ<strong>in</strong>ed SiO2/ADA ratio of 34 <strong>in</strong> DOH, results <strong>in</strong> a ~75%<br />

cage occupancy. To summarise, it was not possible to synthesize DOH without the<br />

addition of (small amounts of) SDA by us<strong>in</strong>g secondary growth of seeds.<br />

Post treatments<br />

Several post treatments are compared <strong>in</strong> order to remove the organic template from the<br />

largest DOH [5 12 6 8 ] cages, namely 1) conventional calc<strong>in</strong>ations, 2) conventional<br />

calc<strong>in</strong>ations of DOH synthesised with traces of titanium to assist the burnout by catalytic<br />

oxidation, 3) reduc<strong>in</strong>g the crystal size to shorten the path length of the oxygen and<br />

combusted gasses by means of mechanical ball mill<strong>in</strong>g and 4) calc<strong>in</strong>ation <strong>in</strong> comb<strong>in</strong>ation<br />

with pressurised air.<br />

1) Conventional calc<strong>in</strong>ations<br />

The structure direct<strong>in</strong>g agent (SDA) occluded <strong>in</strong> DOH could not be removed completely<br />

by means of conventional calc<strong>in</strong>ation <strong>in</strong> air under ambient pressure and at temperatures<br />

between 700 and 900ºC. This is <strong>in</strong> l<strong>in</strong>e with other published results. 66,71-73 If all large<br />

cages are occupied by an ADA molecule the organic compounds amount to a total of<br />

6.9 wt.%. A complete SDA removal is observed at about 1400ºC, which is coupled with<br />

DOH structure breakdown (Figure 30). The XRD patterns of the ‘as-made’ and the<br />

calc<strong>in</strong>ed sample at 900ºC <strong>for</strong> 5 hours clearly show a broad diffraction around 22° 2Θ<br />

<strong>in</strong>dicat<strong>in</strong>g amorphous silica (Figure 31). This typical crystall<strong>in</strong>ity loss after calc<strong>in</strong>ation is<br />

coupled with an <strong>in</strong>crease <strong>in</strong> the <strong>in</strong>tensity <strong>for</strong> the low angle and is typical of empty<strong>in</strong>g<br />

zeolite cages. Several samples suffer significant crystall<strong>in</strong>ity loss after calc<strong>in</strong>ation.<br />

58


4 Results and discussion<br />

Intensity (a.u.)<br />

DTA <strong>in</strong> µV/mg<br />

0,05<br />

0,00<br />

-0,05<br />

-0,10<br />

-0,15<br />

-0,20<br />

-0,25<br />

exo<br />

200 400 600 800 1000 1200<br />

85<br />

1400<br />

Temp [ºC]<br />

Figure 30 DTA/TG results of DOH synthesised by means of the NH3 route (5ºC/m<strong>in</strong>)<br />

10 15 20 25 30<br />

2Theta [º]<br />

59<br />

As-made<br />

900ºC /5 hours<br />

Figure 31 XRD pattern of DOH sample as-made (black) and calc<strong>in</strong>ed at 900ºC <strong>for</strong> 5 hours (grey)<br />

The cage occupancy is calculated from the experimentally determ<strong>in</strong>ed Si/C molar ratio of<br />

the DOH samples. 34SiO2:1ADA:xN2 69 is the chemical composition of DOH. C10NH17 is<br />

the chemical composition of ADA. The cage occupancy is 100 % when the Si/C ratio<br />

is 3.4.<br />

105<br />

100<br />

95<br />

90<br />

TG weight %


4 Results and discussion<br />

The coupled loss of SDA and crystall<strong>in</strong>ity dur<strong>in</strong>g calc<strong>in</strong>ation might be expla<strong>in</strong>ed by the<br />

collapse of the DOH surface structure. While the <strong>in</strong>ner part of the DOH crystals<br />

ma<strong>in</strong>ta<strong>in</strong>s their crystal structure <strong>in</strong>clud<strong>in</strong>g the trapp<strong>in</strong>g of some of the template and the<br />

outer part of the DOH crystals collapses. In pr<strong>in</strong>ciple, O2 with a k<strong>in</strong>etic diameter of 3.46<br />

Å, CO of 3.70 Å and CO2 of 3.30 Å are <strong>in</strong>accessible to the DOH structure due to the<br />

smaller w<strong>in</strong>dow open<strong>in</strong>g compared to the k<strong>in</strong>etic diameter of these gasses. However, the<br />

DOH structure might ‘breathe’ (elastic vibration) at elevated temperatures allow<strong>in</strong>g the<br />

transport of these gasses. This behaviour has been observed <strong>for</strong> other zeolites. 134<br />

The rema<strong>in</strong>s of the burned out ADA might react with the oxygen from the silica<br />

framework at elevated temperatures. This could expla<strong>in</strong> the decrease <strong>in</strong> cage occupancy<br />

coupled with the DOH structure loss. This might occur preferentially at the outer surface<br />

of the DOH crystals. SDA combustion is studied by DTA/TG measurements <strong>in</strong> air and <strong>in</strong><br />

nitrogen. DTA/TG plots show similar behaviour <strong>for</strong> both gasses <strong>in</strong>dicat<strong>in</strong>g that the<br />

weight loss is <strong>in</strong>dependent of the atmosphere and could expla<strong>in</strong> the <strong>in</strong>ternal combustion.<br />

In a nut shell, conventional calc<strong>in</strong>ation at ambient pressure removes only a part of the<br />

organic SDAs.<br />

2) Catalytic oxidation by titanium <strong>in</strong>corporation <strong>in</strong> the DOH framework<br />

Titanium was <strong>in</strong>corporated <strong>in</strong>to the DOH framework <strong>in</strong> order to enhance the conventional<br />

calc<strong>in</strong>ation by means of catalytic oxidation. Small amounts of titanium isopropoxide or<br />

titanium n-propoxide were added to the silica source or to the f<strong>in</strong>al sol composition.<br />

Similar attempts have been per<strong>for</strong>med to <strong>in</strong>corporate iron or alum<strong>in</strong>ium and have resulted<br />

<strong>in</strong> multi phase zeolite products.<br />

Highly crystall<strong>in</strong>e Ti-DOH products are obta<strong>in</strong>ed after ~27 days of crystallisation at<br />

200ºC <strong>in</strong> the presence of a small amount of titanium <strong>in</strong> the gel (molar ratio Si/Ti 10-∞,<br />

see Table 17). Electron energy dispersive X-ray analysis and Inductively Coupled Plasma<br />

analysis confirm the presence of titanium <strong>in</strong> the samples. Raman spectroscopy presents<br />

bands at 960 cm -1 <strong>in</strong>dicat<strong>in</strong>g the presence of Ti-O-Si bonds.<br />

Table 17 Cage occupancy of as-made and after calc<strong>in</strong>ation <strong>for</strong> samples with different Si/Ti molar ratios<br />

Sample # Crystal size Si/Ti Cage occupancy<br />

As-made Calc<strong>in</strong>ed at 900ºC<br />

Ti-1 Ca. 100 µm ∞ 91% 31%<br />

Ti-2 100 76% 24%<br />

Ti-3 Ca. 40 µm ∞ - 11%<br />

Ti-4 100 - 4%<br />

60


4 Results and discussion<br />

The carbon content (≡ cage occupancy) after calc<strong>in</strong>ation is lower if titanium had been<br />

present <strong>in</strong> the gel composition. In addition, more cages are emptied after the calc<strong>in</strong>ation<br />

at 900ºC when the crystallisation is per<strong>for</strong>med <strong>for</strong> smaller DOH crystals. This is <strong>in</strong>dicated<br />

by compar<strong>in</strong>g the samples Ti-2 with sample Ti-4 (Table 17). The reduced path length<br />

(smaller crystals) the combusted species have to travel until they are expelled from the<br />

crystal show a significant contribution to the f<strong>in</strong>al cage occupancy.<br />

A broad exothermic peak <strong>in</strong> the temperature range of 300 to 600ºC is observed <strong>for</strong> the all<br />

silica DOH sample (Figure 32). The addition of titanium to the gel resulted <strong>in</strong> an even<br />

broader exothermic peak extend<strong>in</strong>g to about 900ºC. The TG results are <strong>in</strong> agreement with<br />

the DTA results. The addition of titanium results <strong>in</strong> weight loss of ~5 wt % <strong>in</strong> the range<br />

of 100-900ºC which is a factor 2 higher compared to the undoped DOH.<br />

DTA <strong>in</strong> µV/mg<br />

0,0<br />

-0,1<br />

-0,2<br />

-0,3<br />

-0,4<br />

-0,5<br />

exo<br />

D1H<br />

Ti-D1H<br />

100 200 300 400 500 600 700 800 900<br />

92<br />

1000<br />

Temp [ºC]<br />

Figure 32 DTA/TG plots of DOH as function of titanium <strong>in</strong>corporation.<br />

The decrease <strong>in</strong> rema<strong>in</strong><strong>in</strong>g carbon and the larger weight loss as observed by TG suggest<br />

that the small amount of titanium which was added to the synthesis gel has an <strong>in</strong>fluence<br />

on the calc<strong>in</strong>ation product. Whether this can be expla<strong>in</strong>ed by catalytic oxidation is still<br />

unclear. This hypothesis should be studied <strong>in</strong> more detail.<br />

3) Calc<strong>in</strong>ation of Ball milled DOH<br />

The smallest synthesised DOH crystal size is <strong>in</strong> the order of 10 µm. Reduc<strong>in</strong>g the crystal<br />

size is attractive <strong>for</strong> SDA removal and beneficial <strong>for</strong> the <strong>for</strong>mation of th<strong>in</strong> DOH layers.<br />

The expulsion of the organic rema<strong>in</strong>s from the D1H crystal dur<strong>in</strong>g the calc<strong>in</strong>ation could<br />

61<br />

108<br />

104<br />

100<br />

96<br />

TG weight %


4 Results and discussion<br />

be enhanced by a shorter path length. The path length can be reduced by gr<strong>in</strong>d<strong>in</strong>g the<br />

as-made crystals <strong>in</strong>to smaller particles. Ball mill<strong>in</strong>g was used as the gr<strong>in</strong>d<strong>in</strong>g method.<br />

The crystal size obta<strong>in</strong>ed by optical microscopy reduces two orders of magnitude to<br />

1-10 µm by ball mill<strong>in</strong>g <strong>for</strong> 0 to 26 hours (Figure 33).<br />

Crystal size [µm]<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 5 10 15 20 25 30<br />

Ball mill <strong>in</strong> hours<br />

Figure 33 Crystal size of large synthesised DOH as function of ball mill<strong>in</strong>g time.<br />

~1 µm DOH crystal can be observed after ball mill<strong>in</strong>g <strong>for</strong> 72 hours (Figure 34-A and B).<br />

Decreas<strong>in</strong>g the crystal size by ball mill<strong>in</strong>g is coupled with a significant crystall<strong>in</strong>ity<br />

decrease dur<strong>in</strong>g the 72 hours of ball mill<strong>in</strong>g (Table 18). Attempts to hydrothermally<br />

recrystallise the ball milled products were unsuccessful. Treat<strong>in</strong>g the ball milled DOH<br />

products with aqueous NH4F did not separate the crystall<strong>in</strong>e and amorphous phases.<br />

Calc<strong>in</strong>ation of the 72 hours ball milled sample at 900ºC <strong>for</strong> 5 hours did not result <strong>in</strong><br />

further crystall<strong>in</strong>ity loss. The ~35% crystall<strong>in</strong>e DOH product did not conta<strong>in</strong> any carbon.<br />

Once aga<strong>in</strong>, the peak <strong>in</strong>tensity at the low diffraction angle <strong>in</strong>creased after calc<strong>in</strong>ation<br />

<strong>in</strong>dicat<strong>in</strong>g the presence of empty cages (XRD pattern not shown). The few DOH crystals<br />

left are SDA free. This <strong>in</strong>dicates that the template removal is strongly dependent on the<br />

crystal size. The quantity of expell<strong>in</strong>g of the combusted SDA is dependent on the path<br />

length of the transported species should travel.<br />

62


4 Results and discussion<br />

DOH crystals<br />

Figure 34 A) Optical microscope image of as-made DOH crystals and B) SEM image of the 72 hours ball<br />

milled DOH crystals<br />

Table 18 Crystall<strong>in</strong>ity loss and cage occupancy of as-made and calc<strong>in</strong>ed DOH as function of ball mill<strong>in</strong>g<br />

times.<br />

Sample # Ball milled Crystall<strong>in</strong>ity Cage filled<br />

Be<strong>for</strong>e<br />

calc<strong>in</strong>ation<br />

63<br />

Gr<strong>in</strong>ded<br />

DOH crystals<br />

A B<br />

Calc<strong>in</strong>ed<br />

at 900ºC<br />

Asmade<br />

Calc<strong>in</strong>ed<br />

at 900ºC<br />

BM-1 0h 72% -<br />

72h 32% 35% - 0%<br />

BM-3 0h 93% 82% 83%<br />

16h 97% - 49%<br />

22h 71% - 7%<br />

Figure 35 presents the XRD patterns and its crystall<strong>in</strong>ity (samples BM-2 <strong>in</strong> Table 18) of<br />

DOH crystals ball milled <strong>for</strong> 0, 16 and 22 hours. Significant crystall<strong>in</strong>ity is ma<strong>in</strong>ta<strong>in</strong>ed<br />

after 16 to 22 hours of ball mill<strong>in</strong>g. The cage occupancy decreases sharply after 16 hours<br />

of ball mill<strong>in</strong>g (Inlay Figure 35). Aga<strong>in</strong>, reduc<strong>in</strong>g the crystal size seems to be coupled<br />

with crystall<strong>in</strong>ity and SDA loss. Partly SDA-free ~71% crystall<strong>in</strong>e DOH could be<br />

obta<strong>in</strong>ed after ball mill<strong>in</strong>g <strong>for</strong> 22 hours and calc<strong>in</strong>ation of 900ºC <strong>for</strong> 5 hours. A broad<br />

particle size distribution is observed (5-125µm) by means of optical microscopy. The<br />

largest rema<strong>in</strong>ed DOH crystals could conta<strong>in</strong> some of the SDA and could expla<strong>in</strong> the<br />

small carbon concentration.


4 Results and discussion<br />

10 15 20 25 30 35 40<br />

2Theta [º]<br />

Figure 35 XRD pattern of DOH as-made, ball milled <strong>for</strong> 16 and 22 hours. Inlay presents the cage<br />

occupancy after calc<strong>in</strong>ation at 900ºC <strong>for</strong> 5 hours.<br />

4) DOH calc<strong>in</strong>ation at high pressure<br />

The SDA removal from D1H crystals might be easier if free oxygen molecules were<br />

present <strong>in</strong> the cages to support the destruction of the SDA. At higher air pressures dur<strong>in</strong>g<br />

calc<strong>in</strong>ation it might be possible to <strong>for</strong>ce oxygen molecules <strong>in</strong>to the cages which then may<br />

react with the rema<strong>in</strong>s of the combusted SDA by <strong>for</strong>m<strong>in</strong>g e.g. CO or CO2. A pressure<br />

sw<strong>in</strong>g process could <strong>in</strong> particular enhance the expulsion of the SDA by enhanced oxygen<br />

penetration <strong>in</strong>to the cages at high pressure levels followed by the outgass<strong>in</strong>g of the<br />

reaction products - CO and CO2 at low pressure level (1 MPa). It is expected that the gas<br />

transport might be a function of the environmental pressure.<br />

Calc<strong>in</strong>ation at 700ºC <strong>for</strong> 5 hours <strong>in</strong> comb<strong>in</strong>ation with 10 times 10 MPa air (Figure 36) on<br />

D1H crystals resulted <strong>in</strong> a strong reduction <strong>in</strong> cage occupancy while ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g high<br />

crystall<strong>in</strong>ity (Table 19). In contrast, only a slight cage occupancy loss was observed when<br />

the sample was exposed to 700ºC <strong>for</strong> 5 hours with atmospheric pressure. The Hot<br />

Isostatic Pressure (HIP) cycl<strong>in</strong>g enhances the SDA removal. However, the pressure,<br />

temperature or time might not have been enough to obta<strong>in</strong> the low cage occupancy of<br />

11 % as has been observed after calc<strong>in</strong>ation at 900ºC <strong>for</strong> 21 days (Table 19).<br />

64<br />

Cage occupancy [%]<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 5 10 15 20 25<br />

ball mill<strong>in</strong>g <strong>in</strong> hours<br />

As made<br />

16h Ball milled<br />

22h Ball milled


4 Results and discussion<br />

900 [ºC]<br />

700 [ºC]<br />

Calc<strong>in</strong>ation temp.<br />

Time<br />

5 hours<br />

65<br />

200 MPa<br />

Pressure<br />

50 MPa<br />

10 MPa<br />

Figure 36 The HIP calc<strong>in</strong>ation program. Solid l<strong>in</strong>es present the temperature profile and the dashed l<strong>in</strong>es the<br />

applied pressure of technical air<br />

Table 19 Crystall<strong>in</strong>ity loss and cage occupancy of Hot Isostatic Pressure calc<strong>in</strong>ed D1H samples. All the<br />

HIP calc<strong>in</strong>ations were per<strong>for</strong>med <strong>for</strong> 5 hours with heat<strong>in</strong>g and cool<strong>in</strong>g ramps of 10ºC/m<strong>in</strong>.<br />

Temperature Pressure Crystall<strong>in</strong>ity loss Cage occupancy<br />

As made - 75 - 78%<br />

700ºC/5h - Ca. 14% 67%<br />

700ºC/5h 10x10 MPa Ca. 1% 15%<br />

900ºC-21 Days - Ca. 13% 11%<br />

900ºC/5h - Ca. 9% 64%<br />

900ºC/5h 2x50 MPa Ca. 13% 1%<br />

900ºC/5h 200 MPa Ca. 23% -<br />

Increas<strong>in</strong>g the temperature and pressure to 900ºC and 200 MPa <strong>for</strong> 5 hours resulted <strong>in</strong><br />

significant crystall<strong>in</strong>ity loss (Table 19). The air pressure of 200 MPa might have been<br />

sufficient to destroy the D1H crystals partly.<br />

Decreas<strong>in</strong>g the pressure to 50 MPa and apply<strong>in</strong>g this pressure twice at 900ºC <strong>for</strong> 5 hours<br />

resulted <strong>in</strong> very low carbon content and ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g the high crystall<strong>in</strong>ity (Figure 37).<br />

HIP calc<strong>in</strong>ation us<strong>in</strong>g a pressure cycle of 50 MPa on templated D1H crystals results <strong>in</strong><br />

quasi-SDA free D1H. Aga<strong>in</strong>, a peak <strong>in</strong>tensity <strong>in</strong>crease is observed <strong>in</strong> the low angle scale<br />

<strong>in</strong>dicat<strong>in</strong>g free (or nearly free) zeolitic pores (Table 19). All the samples used <strong>in</strong> this HIP<br />

calc<strong>in</strong>ation are <strong>in</strong> the range of 5-40 µm.<br />

The results suggest that the gas transport of penetrat<strong>in</strong>g oxygen and combusted gasses is<br />

enhanced by the pressure sw<strong>in</strong>g process at elevated temperatures. This quasi SDA-free<br />

D1H is a potential membrane material with a well def<strong>in</strong>ed pore size of 2.8 Å and might


4 Results and discussion<br />

be able to selectively transport H2 (or He) from gasses with k<strong>in</strong>etic diameter larger than<br />

3 Å at moderate temperature.<br />

Cage occupancy [%]<br />

80<br />

60<br />

40<br />

20<br />

0<br />

As made 900ºC 21 days 900ºC 2x50MPa 5h<br />

Figure 37 the cage occupancy of small crystal D1H samples that are as-made, calc<strong>in</strong>ed at 900ºC <strong>for</strong> 21 days<br />

and calc<strong>in</strong>ed at 900ºC <strong>for</strong> 5 hours <strong>in</strong>clud<strong>in</strong>g 2 times 50 MPa pressurised air.<br />

4.2.3 Dodecasil-1H layer characterisation<br />

Th<strong>in</strong> zeolite films can be prepared on α-Al2O3 substrates 58 by us<strong>in</strong>g direct coat<strong>in</strong>g or by<br />

the so-called secondary growth method to <strong>for</strong>m zeolitic membranes. Secondary growth is<br />

preferred to direct growth <strong>for</strong> DOH layers due to the fact that direct grow<strong>in</strong>g can result <strong>in</strong><br />

a low crystall<strong>in</strong>e DOH or <strong>in</strong> large DOH crystals. Besides, nucleation and growth are<br />

decoupled <strong>in</strong> secondary growth which could result <strong>in</strong> homogenous th<strong>in</strong> layers. No zeolitic<br />

layer was observed after 24 hours by direct coat<strong>in</strong>g us<strong>in</strong>g a standard DOH synthesis sol<br />

as described <strong>in</strong> the first section of DOH growth.<br />

Sp<strong>in</strong> coat<strong>in</strong>g a substrate with a suspension of DOH nuclei resulted <strong>in</strong> random oriented<br />

DOH crystals. Small DOH crystals that were calc<strong>in</strong>ed at 900ºC <strong>for</strong> 5 hours were selected<br />

to act as DOH nuclei. DOH nuclei were grown hydrothermally to <strong>for</strong>m a layer <strong>in</strong> an<br />

autoclave at 200ºC <strong>for</strong> 48 hours. The autoclave conta<strong>in</strong>ed a gel composition<br />

100SiO2:11ADA:267EN:7405H2O (<strong>in</strong> molar ratio). This gel composition, <strong>in</strong>clud<strong>in</strong>g<br />

SDA, was chosen to get pure DOH. Though, SDA free gel solution is advisable to avoid<br />

calc<strong>in</strong>ation at elevated temperature. SDA calc<strong>in</strong>ation of DOH layers on top of α-Al2O3<br />

substrates could result <strong>in</strong> cracks due to thermal expansion coefficient mismatches.<br />

The hydrothermal secondary growth resulted <strong>in</strong> island growth (Figure 38-A) or <strong>in</strong> DOH<br />

layers which are too thick <strong>for</strong> membrane applications when the support was sp<strong>in</strong>-coated 5<br />

times. The rema<strong>in</strong><strong>in</strong>g product obta<strong>in</strong>ed dur<strong>in</strong>g the hydrothermal secondary growth was<br />

66


4 Results and discussion<br />

characterised with XRD which showed highly crystall<strong>in</strong>e DOH (XRD pattern not shown).<br />

Microscopic images clearly show hexagonal crystals on the surface (Photos not shown).<br />

A B<br />

Figure 38 DOH Zeolite layer by sp<strong>in</strong> coat<strong>in</strong>g (A) followed by hydrothermal growth. B is deposited wet<br />

followed by hydrothermal growth and f<strong>in</strong>ally calc<strong>in</strong>ed.<br />

A similar suspension of DOH nuclei <strong>in</strong> H2O was deposited and subsequently dried at<br />

200ºC <strong>for</strong> 2 hours <strong>for</strong> seed attachment. The DOH nuclei on the substrates were grown<br />

hydrothermally <strong>in</strong> a 100SiO2:5.9ADA:69EN:3506H2O (<strong>in</strong> molar ratio) gel composition at<br />

200ºC <strong>for</strong> 24 hours. This gel composition was selected as described <strong>in</strong> 125 <strong>for</strong> preparation<br />

of th<strong>in</strong> DDR membrane layers. DDR layers are grown with this gel composition at 160-<br />

170ºC, DOH layer crystallisation temperature is selected at 200ºC. F<strong>in</strong>ally, the washed<br />

membranes were calc<strong>in</strong>ed <strong>for</strong>m<strong>in</strong>g a brown layer like Figure 38-B.<br />

Figure 39 presents the surface of membrane B. 10-20 µm hexagonal DOH crystals are<br />

clearly present.<br />

Figure 39 Optical microscope image of DOH membrane A’s surface<br />

Figure 40-A presents a cross section of DOH membrane B consist<strong>in</strong>g of an α-Al2O3<br />

support with the delam<strong>in</strong>ated DOH layer on top. Some areas <strong>in</strong>dicate attachment between<br />

67<br />

Hexagonal<br />

DOH crystals<br />

50 µm


4 Results and discussion<br />

the α-Al2O3 support and the DOH layer (Figure 40-B). The delam<strong>in</strong>ation is likely a result<br />

of the stresses occurr<strong>in</strong>g dur<strong>in</strong>g the heat-treatment of 700ºC.<br />

The thickness of the DOH layer is <strong>in</strong> the range of 50 to 80 µm. No DOH nuclei can be<br />

dist<strong>in</strong>guished which could have grown <strong>in</strong>to crystals of 10-20 µm <strong>in</strong> size (Figure 40-C).<br />

The thickness/width ratio is about 10, <strong>in</strong>dicat<strong>in</strong>g th<strong>in</strong> plates. Figure 40-C presents a<br />

highly porous zeolitic area close to the α-Al2O3 surface and on the membrane surface. A<br />

more dense area is observed between these porous layers and is magnified (Figure 40-D).<br />

The <strong>in</strong>tercrystall<strong>in</strong>e channels transport liquids despite the dense areas <strong>in</strong> the zeolitic layer.<br />

A B<br />

DOH<br />

α-Al2O3<br />

C D<br />

DOH<br />

Figure 40 Cross section SEM images of DOH layer on α-Al2O3 support. A) presents the full thickness of the<br />

membrane. The zeolitic layer is delam<strong>in</strong>ated. B) higher magnification result<strong>in</strong>g. C) orientation of the zeolite<br />

crystals on the α-Al2O3 surface and D high density area of the zeolitic layer.<br />

The DOH crystals are present on the α-Al2O3 surface. The alum<strong>in</strong>a layer did not conta<strong>in</strong><br />

any silicon and the zeolitic layer was free of any alum<strong>in</strong>ium. This <strong>in</strong>dicates that all-silica<br />

DOH can be prepared on alum<strong>in</strong>a supports without <strong>in</strong>terfer<strong>in</strong>g.<br />

Strik<strong>in</strong>g is the crystallisation time if compared to other synthesis attempts. While a<br />

crystallisation time with a m<strong>in</strong>imum of 4 days is required to <strong>for</strong>m highly crystall<strong>in</strong>e DOH<br />

68<br />

DOH<br />

α-Al2O3<br />

DOH


4 Results and discussion<br />

without a substrate, D1H layers are obta<strong>in</strong>ed after only 24 hours. This offers prospects <strong>for</strong><br />

mak<strong>in</strong>g th<strong>in</strong> homogeneous DOH layers <strong>in</strong> relatively short time. Nevertheless, the DOH<br />

crystals are too large thereby <strong>for</strong>m<strong>in</strong>g thick layers. The recommendation is to optimise<br />

the DOH crystal growth be<strong>for</strong>e further studies on DOH layers and membranes.<br />

69


4 Results and discussion<br />

4.3 Sol-Gel derived membranes<br />

TiO2, ZrO2 and the b<strong>in</strong>ary oxides TiO2-ZrO2 and Y2O3-ZrO2 (hereafter referred as YSZ)<br />

can be prepared by means of the sol-gel technique. Generally, the hydrolysis of highly<br />

reactive Ti and Zr-precursors is controlled with precursor modifiers such as ketones and<br />

am<strong>in</strong>es as described <strong>in</strong> the chapter ‘Theory’.<br />

Y2O3 or TiO2 doped ZrO2 sol-gel derived materials and membranes were studied and<br />

prepared. A thorough study has been per<strong>for</strong>med on polymeric YSZ sols us<strong>in</strong>g ketone<br />

acetyl acetone as precursor modifier to prevent a full hydrolysis of the alkoxides <strong>in</strong> the<br />

presence of pore <strong>for</strong>mers. This approach has been concentrated on the sol and bulk<br />

material properties. The first results obta<strong>in</strong>ed <strong>for</strong> YSZ layers us<strong>in</strong>g this approach<br />

(hereafter referred as ketone approach) are discussed.<br />

The second approach is based on the promis<strong>in</strong>g diethanolam<strong>in</strong>e precursor modifier<br />

outl<strong>in</strong>ed by Van Gestel et al., 82,104,135 Spijksma et al. 80,81 and Aust et al 83 (hereafter<br />

referred as am<strong>in</strong>e approach). This work is concentrated on the study of (TiO2-doped)<br />

ZrO2 powder and membranes us<strong>in</strong>g diethanolam<strong>in</strong>e as the precursor modifier.<br />

Diethanolam<strong>in</strong>e <strong>in</strong> the sol synthesis comb<strong>in</strong>es the prevention of fast hydrolysis of the<br />

alkoxides and the higher viscosity (than acetyl acetone), which is beneficial to the coat<strong>in</strong>g<br />

procedures. Diisopropanolam<strong>in</strong>e can be an alternative to diethanolam<strong>in</strong>e precursor<br />

modifier.<br />

Acetyl acetone Diethanolam<strong>in</strong>e<br />

The selection of the membrane layer material is ma<strong>in</strong>ly based on the microstructure<br />

property results of these bulk materials. Several (TiO2 doped) ZrO2 membranes have<br />

been prepared and characterised. F<strong>in</strong>ally, the permeability, permselectivity and<br />

permeability as function of hydrothermal stability will be discussed.<br />

4.3.1 Polymeric sol characterisation<br />

The 8 mol % Y2O3 doped ZrO2 (8YSZ) sol particle size, viscosity and stability have been<br />

studied <strong>for</strong> the ketone approach. The sol composition of 25, 50, 66, 75, 90, 100% molar<br />

ratio TiO2 <strong>in</strong> ZrO2 have been prepared by the am<strong>in</strong>e approach.<br />

70


4 Results and discussion<br />

4.3.1.1 Ketone approach<br />

A summary of the stability of the f<strong>in</strong>al 8YSZ sols obta<strong>in</strong>ed while simultaneously vary<strong>in</strong>g<br />

the type of carboxylic acid and the solid content is depicted <strong>in</strong> Table 20. A sol is<br />

considered stable when a sol is clear <strong>for</strong> several months at room temperature. It is clear<br />

that the higher the aliphatic cha<strong>in</strong> of the carboxylic acid, the higher the sol stability. In<br />

fact, when nanonic acid was used, the obta<strong>in</strong>ed sols were stable <strong>in</strong> the whole range of<br />

solid content. S<strong>in</strong>ce the carboxylic acid acts as hydrolysis/polymerization catalyst, this<br />

behaviour can be expla<strong>in</strong>ed consider<strong>in</strong>g that the lower acid strength of long-cha<strong>in</strong> acid<br />

reduces the reaction (growth) rate, decreas<strong>in</strong>g <strong>in</strong> turn the <strong>for</strong>mation of bigger particles<br />

and agglomerates. Bigger particles and agglomerates can destabilize the sol due to<br />

sedimentation. These bigger particles are avoided us<strong>in</strong>g long-cha<strong>in</strong> acids. Moreover,<br />

another effect to be taken <strong>in</strong>to account is when the acid cha<strong>in</strong> length is <strong>in</strong>creased, the<br />

8YSZ nano-particles are somehow better protected or capped, 136 reduc<strong>in</strong>g the possibility<br />

of agglomeration (Figure 41-A and B).<br />

Table 20 Summary of the screened synthesis compositions show<strong>in</strong>g <strong>in</strong>fluence of solid content wt% and the<br />

type of carboxylic acid on the f<strong>in</strong>al sol stability. Shadowed cells represent unstable sols while white ones<br />

represent stable clear sols (stable <strong>for</strong> several months). Fixed molar ratios of the sols <strong>in</strong>clude Ac/Zrpropoxide<br />

~1, water/Zr-propoxide ~4 and acid/Ac ~1. § Maximal 8YSZ wt% content was limited by the<br />

carboxylic acid solubility, be<strong>in</strong>g the maximum values: 20% (acetic), 19% (propionic), 18% (caproic) and<br />

17% (nanonic). Unstable sols start precipitat<strong>in</strong>g after a few days or weeks.<br />

Solid Content,<br />

8YSZ wt%<br />

2.5<br />

5.0<br />

10<br />

15<br />

Max.<br />

§<br />

71<br />

Carboxylic Acid<br />

Acetic Propanoic Caproic Nanonic<br />

Unstable Sols<br />

Stable Sols<br />

On the other hand, the sols with a higher solid content show a larger average particle size<br />

(Figure 41-C) and are more stabile. The sols have been analysed with the dynamic light<br />

scatter<strong>in</strong>g technique immediate after the synthesis was f<strong>in</strong>alised. This effect is attributed<br />

to the higher concentration of protect<strong>in</strong>g/complex<strong>in</strong>g agents (acetyl acetone and the<br />

correspond<strong>in</strong>g carboxylic acid), although the concentration of particles is higher and the<br />

collision probability too. 5wt% structure direct<strong>in</strong>g agent added to stable sols showed a<br />

similar particles size distribution with an average particle diameter of 4.5 nm and a<br />

standard deviation (δ) of 1.9 nm (Figure 41-D). Ketone sols with 0, 50, 75, 100 mol %


4 Results and discussion<br />

TiO2 <strong>in</strong> ZrO2 showed similar particle size distributions. The particle size does not seem to<br />

be <strong>in</strong>fluenced by the type of metal organic precursor.<br />

For the whole set of sols, the viscosity was measured <strong>in</strong> a wide range of shear rates (see<br />

Figure 42). The nature of the carboxylic sols, apparently, does not <strong>in</strong>fluence the viscosity<br />

while the solid content does <strong>in</strong> an exponential manner. For highly concentrated sols (~ 20<br />

wt% 8YSZ), the viscosity reaches a maximum value of 12.5 mPa•s. Likely, the dry<strong>in</strong>g<br />

rate is a function of the viscosity which <strong>in</strong>creases when the solid content is decreased. In<br />

fact, the difference among the different sols given an acid type is only the amount of 2propanol<br />

used as solvent. The dry<strong>in</strong>g rate is decreased when the cha<strong>in</strong> length of the<br />

carboxylic acid <strong>in</strong>creases. This rheological and dry<strong>in</strong>g behaviour has a direct effect on the<br />

coat<strong>in</strong>g quality obta<strong>in</strong>ed, done by manual dipp<strong>in</strong>g of glass slips, s<strong>in</strong>ce apparently the best<br />

layers (based on the sol stability and viscosity) are obta<strong>in</strong>ed with concentrated sols and<br />

those synthesised with caproic or nanonic acid. These pictures are not shown. However,<br />

low-concentrated sols are needed to <strong>for</strong>m crack-free layers consist<strong>in</strong>g of small particles.<br />

Generally, high concentrated sols results <strong>in</strong> cracked layers, possible due to too thick<br />

coat<strong>in</strong>gs. Thus, low-concentration caproic- or nanonic (pelargonic)-catalysed sols are the<br />

most promis<strong>in</strong>g coat<strong>in</strong>g materials.<br />

Solid Content YSZ (% YSZ)<br />

20<br />

15<br />

10<br />

5<br />

A<br />

NH 2<br />

O<br />

OH<br />

OH<br />

O<br />

OH<br />

O<br />

OH<br />

O<br />

OH<br />

O<br />

O<br />

OH<br />

0 4 8 12 16<br />

Particle Diameter (nm)<br />

C<br />

Acetic Acid<br />

72<br />

Carboxylic Acid<br />

Am<strong>in</strong>ocaproic<br />

Oleic<br />

L<strong>in</strong>oleic<br />

Pelargonic<br />

Caproic<br />

Acetic<br />

8YSZ+F127<br />

8YSZ<br />

YSZ 5%wt<br />

0 4 8 12 16<br />

Particle Diameter (nm)<br />

0 4 8 12<br />

Particle diameter (nm)<br />

Figure 41 (A) carboxylic cha<strong>in</strong>s. Particles size of the sols as function of the carboxylic groups (B), (C) Particle<br />

size of the sols as function of the sol content and (D) the <strong>in</strong>fluence of the 5wt% structure direct<strong>in</strong>g agent on the<br />

particle size.<br />

D<br />

B


4 Results and discussion<br />

Solid Content,<br />

8YSZ wt%<br />

0<br />

2.5<br />

5.0<br />

10<br />

15<br />

Max §<br />

73<br />

Carboxylic Acid<br />

Acetic Propanoic Caproic Nanonic<br />

12 6.6 3.2 2<br />

Viscosity (mPa·s)<br />

Figure 42 Viscosity of the obta<strong>in</strong>ed sols as a function of the type of carboxylic acid and the solid<br />

concentration.<br />

4.3.1.2 Am<strong>in</strong>e approach<br />

The synthesis of sols from diethanolam<strong>in</strong>e (DEA) modified precursors results <strong>in</strong> 0, 25,<br />

50, 66, 75, 90, 100 mol% TiO2 <strong>in</strong> ZrO2 sols that are stable at least <strong>for</strong> several weeks. The<br />

particle sizes of these DEA sols as measured by means of dynamic light scatter<strong>in</strong>g (DLS)<br />

and small angle X-ray scatter<strong>in</strong>g (SAXS). These results <strong>in</strong>dicate that all sol particles are<br />

similar <strong>in</strong> size (2-5 nm) and that their size does not depend significantly on the Ti to Zr<br />

ratio (Table 21-Figure 43).<br />

Replac<strong>in</strong>g the precursor modifier DEA with diisopropanolam<strong>in</strong>e (DIPA) resulted <strong>in</strong><br />

similar average particle sizes (Figure 44).<br />

Table 21 Particle sizes with errors between brackets and fractal dimensions of mol % TiO2 <strong>in</strong> ZrO2 DEAsols<br />

Sample Concentration Particle size by SAXS <strong>in</strong> nm Fractal dimension<br />

TiO2 2 wt% 3.8 (±0.5) 1.37 (±0.01)<br />

Ti0.5Zr0.5O2 2 wt% 2.8 (±1.0) 1.04 (±0.01)<br />

Ti0.5Zr0.5O2 4 wt% 3.6 (±1.0) 1.16 (±0.01)<br />

ZrO2 2 wt% 2.0 (±0.5) -


4 Results and discussion<br />

Particle size <strong>in</strong> nm<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

DLS<br />

0 25 50 75 100<br />

SAXS<br />

0 25 50 75 100<br />

mol % TiO 2 <strong>in</strong> ZrO 2<br />

Figure 43 Particle sizes measured by DLS (dark grey) and SAXS (light grey) as function mol% TiO2 <strong>in</strong><br />

ZrO2 DEA-sols.<br />

Abundance %<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

50 mol% TiO 2 <strong>in</strong> ZrO 2<br />

DEA<br />

DIPA<br />

0<br />

1 10 100<br />

Particle size [nm]<br />

Figure 44 Particle size distribution by DLS of 50 mol% TiO2 <strong>in</strong> ZrO2 with DEA (solid l<strong>in</strong>e) and DIPA<br />

(dashed l<strong>in</strong>e) as precursor modifier<br />

The particle size measured by DLS or SAXS <strong>in</strong>creased approximately 25% if the solid<br />

content of the 50 mol% TiO2 <strong>in</strong> ZrO2 DEA-sol was doubled (Table 21). This <strong>in</strong>crease <strong>in</strong><br />

the particle size diameter as a function of the concentration is with<strong>in</strong> the error. A<br />

significant difference <strong>in</strong> particle size is observed between ZrO2 and TiO2 DEA-sols when<br />

only the SAXS results are considered. More measurements are required to expla<strong>in</strong> this<br />

74


4 Results and discussion<br />

difference. The charge density difference between zirconium (0.65) and titanium (0.63)<br />

might expla<strong>in</strong> these results. The higher charge density of zirconium can result <strong>in</strong> a higher<br />

reactivity of zirconium alkoxides compared to titanium alkoxides.<br />

The fractal dimensions of pure titania sol (1.37) and 50 mol% TiO2 <strong>in</strong> ZrO2 (1.04) present<br />

l<strong>in</strong>ear polymeric sols that are weakly branched, like silica sols (1.1-1.8). 132 The fractal<br />

dimension of pure ZrO2 could not be characterised with SAXS because these particles<br />

were too small (Table 21).<br />

These stable DEA or DIPA sols have similar particle sizes as silica sols. The fractal<br />

dimensions of the DEA sols are comparable with the silica sols that <strong>for</strong>m pores <strong>in</strong> the<br />

range of 3Å. There<strong>for</strong>e, these TiO2-ZrO2 sols with match<strong>in</strong>g silica sols properties might<br />

<strong>for</strong>m ultramicroporous membrane layers.<br />

4.3.2 Microstructure properties of membrane material<br />

The porous properties of dried and extracted or calc<strong>in</strong>ed sols are studied with N2-sorption<br />

measurements. The pore size distributions obta<strong>in</strong>ed by gas physisorption does not have to<br />

correlate quantitatively with the actual pore size <strong>in</strong> the supported membranes. This is due<br />

to the fact that supported membrane materials are exposed to capillary <strong>for</strong>ces of the<br />

porous support dur<strong>in</strong>g the coat<strong>in</strong>g and the dry<strong>in</strong>g steps.<br />

<strong>Gas</strong> physisorption results can give trends <strong>in</strong> chang<strong>in</strong>g the pore structure. Moreover, the<br />

pore structure is generally determ<strong>in</strong>ed by N2-sorption hav<strong>in</strong>g a k<strong>in</strong>etic diameter of 0.365<br />

nm and a sorption area of 0.166 nm 2 , which can only be applicable <strong>for</strong> pores that are<br />

accessible <strong>for</strong> the penetrat<strong>in</strong>g species (dpore>dk<strong>in</strong>). Pores might be H2 open and<br />

<strong>in</strong>accessible <strong>for</strong> N2 or CO2. This makes this characterization method only partially<br />

suitable <strong>for</strong> ultra-microporous membrane materials.<br />

4.3.2.1 Ketone approach – 8YSZ<br />

The gas physisorption study on powders obta<strong>in</strong>ed from ketone 8 mol% yttria doped ZrO2<br />

(8YSZ) sols is focussed <strong>for</strong> the sols that <strong>in</strong>clude the addition of all mentioned structure<br />

direct<strong>in</strong>g agents (SDA); decylam<strong>in</strong>e, cetylam<strong>in</strong>e, cetyltrimethylammonium and Pluronic<br />

F127 (hereafter referred as C10, C16, CTA+ and F127). The specific surface area is<br />

derived from the Brunauer, Emmet and Teller (SBET) theory. 130 The sols with the addition<br />

SDA F127 are studied <strong>in</strong> comb<strong>in</strong>ation with acetyl acetone modified precursor with<br />

caproic acid.<br />

The microstructure properties of the 8YSZ powders are listed <strong>in</strong> Table 22. The pore<br />

diameter was calculated with Horvath-Kawazoe model 131 adapted <strong>for</strong> cyl<strong>in</strong>drical pores<br />

75


4 Results and discussion<br />

(Saito-Foley 137 ) <strong>for</strong> the microporous materials (HK-SF). A material is considered to be<br />

microporous when the relative microporous adsorbed volume Vmicro/Vtotal is large <strong>in</strong><br />

comb<strong>in</strong>ation with type I N2-sorption isotherm. The Barret, Joyner and Halenda (BJH)<br />

algorithm 130 is selected <strong>for</strong> estimat<strong>in</strong>g the pore size <strong>in</strong> diameter of mesoporous material<br />

that presents type IV isotherms.<br />

Table 22 Microstructure properties of 8YSZ powders prepared from sols that are extracted or sols that are<br />

dried and calc<strong>in</strong>ed at 450 and 500ºC.<br />

Surfactant Temp. <strong>in</strong> ºC Crystal size<br />

nm<br />

76<br />

SBET<br />

m 2 /g<br />

Vtotal *<br />

cm 3 /g<br />

Vmicro *<br />

cm 3 /g<br />

BJH Ø<br />

nm<br />

HK-SF<br />

Ø nm<br />

C10 450 - 77 0.096 0.021 3.4<br />

C16 450 - 35 0.410 0.009 2.6<br />

CTAB 450 - 67 0.114 0.017 3.5<br />

F127 450 6.5 106 0.106 0.027 3.6<br />

F127 Extracted Amorphous 106 0.260 0.034 7.4<br />

F127 500 8.5 70<br />

Acetyl acetone and caproic acid added to the 8YSZ sol<br />

F127 500 7.0 49 0.037 0.013 3.5<br />

- 500 5.7 57 0.028 0.015 1.0<br />

* Vtotal = Absorbed pore volume at P/P0 of 0.95 128 and the Vmicro= Absorbed pore volume at P/P0 of 0.02<br />

Sols that conta<strong>in</strong>ed F127 as SDA result <strong>in</strong> powders with the largest specific surface area.<br />

No clear trend could be observed on the microstructural properties as function of the<br />

SDA type. The addition of the SDA C16 to the 8YSZ sols results <strong>in</strong> powders with the<br />

lowest specific surface area and the lowest relative absorped microporous volume (ratio<br />

between Vmicro and Vtotal). The microstructural properties of the C16 sample <strong>in</strong>dicate a<br />

more dense material compared to the others. The N2 sorption isotherms of the samples<br />

with C10, C16 and CTA and F127 added to the 8YSZ sols are outl<strong>in</strong>ed <strong>in</strong> Figure 45-B.<br />

8YSZ sol with F127 added as SDA were extracted or calc<strong>in</strong>ed at 450 and 500ºC after<br />

dry<strong>in</strong>g. A lower specific surface area (106 to 70 m 2 /g) was observed <strong>for</strong> 8YSZ sols with<br />

F127 when the calc<strong>in</strong>ation temperature was <strong>in</strong>creased from 450 to 500ºC. This <strong>in</strong>dicates<br />

that the material is densify<strong>in</strong>g above 450ºC.


4 Results and discussion<br />

V [cm<br />

ads 3<br />

/g]<br />

150<br />

120<br />

90<br />

60<br />

30<br />

V ads / cm 3 g -1<br />

dV/d2r (cm 3 /g·nm)<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

8YSZAcCa+F<br />

8YSZAcCA<br />

0,0 0,2 0,4 0,6 0,8 1,0<br />

p/p0 0<br />

C16<br />

CTA<br />

C10<br />

F127<br />

0.00<br />

0.1 1 10 100<br />

diameter <strong>in</strong> [nm]<br />

B1 B2<br />

0<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

P/P 0<br />

77<br />

F127<br />

C10<br />

CTA<br />

C16<br />

Figure 45 N2-sorption isotherms of different calc<strong>in</strong>ed sols A) isotherms of the 8YSZ powders calc<strong>in</strong>ed at 500ºC<br />

that conta<strong>in</strong>ed acetyl acetone and caproic acid <strong>in</strong> the sols (grey dots) and with the additional SDA F127 (black<br />

dots) 500ºC. B1) Pore size distribution and B2) isotherms of 8YSZ powders calc<strong>in</strong>ed at 450ºC with different<br />

SDA’s C10, C16, CTA and F127 added to the 8YSZ sols.<br />

A


4 Results and discussion<br />

The addition of the comb<strong>in</strong>ation acetyl acetone as precursor modifier and caproic acid as<br />

catalyst to the 8YSZ sol resulted <strong>in</strong> a decrease of specific surface area (70 to 49 m 2 /g) of<br />

the powders but <strong>in</strong>creased the relative absorbed microporous volume. One could state<br />

that the material is becom<strong>in</strong>g more microporous due to the addition of this comb<strong>in</strong>ation<br />

of acetyl acetone and caproic acid. Similar powder that were synthesised without the<br />

addition of the SDA F127 resulted <strong>in</strong> even higher relative absorbed microporous volume.<br />

Figure 45-A clearly <strong>in</strong>dicates the effect of the SDA F127 to 8YSZ sols. The pore<br />

diameter of this powder was estimated at 1.0 nm us<strong>in</strong>g the HK-SF method. The 8YSZ<br />

powder that was synthesised with the comb<strong>in</strong>ation of acetyl acetone and caproic acid is<br />

the most microporous material found <strong>in</strong> this test. In spite its microporosity, it is believed<br />

that microporous material with 57 m 2 /g will likely result <strong>in</strong> layers with low permeation.<br />

The uncalc<strong>in</strong>ed 8YSZ powder was totally XRD-amorphous, as expected from the<br />

polymeric nature of the particles and the rema<strong>in</strong><strong>in</strong>g organics embedded and bonded<br />

with<strong>in</strong> the Zr-O / Y-O branches. The 8YSZ sol with the addition of the SDA F127 that<br />

was dried and followed by leach<strong>in</strong>g procedure with n-propanol/n-heptane (see chapter<br />

3.3.2.) is referred as the extracted sample. The extracted sample is almost amorphous but<br />

showed some weak order, deduced from the broad peak at 30º (ma<strong>in</strong> peak of the fluorite<br />

structure, see Figure 46). The samples calc<strong>in</strong>ed at 450ºC and 500ºC show already the<br />

pattern correspond<strong>in</strong>g to the fluorite (cubic) structure without any other phase impurity<br />

(such as tetragonal or monocl<strong>in</strong>ic zirconia phases), as expected from the stabilization<br />

effect of yttria (8 mol%).<br />

Intensity (a.u.)<br />

25 30 35 40 45 50 55 60 65 70 75<br />

2Theta [º]<br />

78<br />

CubicYSZ<br />

500ºC Acetyl acetone+Caproic acid<br />

500ºC<br />

450ºC<br />

Extracted<br />

Figure 46 XRD diffraction patterns of the 8YSZ powders that were extracted or calc<strong>in</strong>ed at 450 and 500ºC.<br />

The upper l<strong>in</strong>e presents the 8YSZ powder calc<strong>in</strong>ed at 500º with the addition of the carboxylic caproic acid<br />

and acetyl acetone to the sol. All peaks are assigned to cubic ZrO2 structure (JCPDS card #30-1468).


4 Results and discussion<br />

The average crystal size is calculated from XRD diffraction pattern us<strong>in</strong>g the Scherrer’s<br />

equation at the peak at ~30º. The average crystal sizes of the 8YSZ powders are listed <strong>in</strong><br />

Table 22. The average crystal size <strong>in</strong>creases from 5.7 to 7.0 nm <strong>for</strong> the 8YSZ powders<br />

that were calc<strong>in</strong>ed at 500ºC when the SDA F127 was added to the 8YSZ sol that<br />

conta<strong>in</strong>ed the comb<strong>in</strong>ation of acetyl acetone and caproic acid. The larger particle might<br />

have been <strong>for</strong>med due to the structur<strong>in</strong>g effect of the long polymeric cha<strong>in</strong>s of F127. This<br />

effect seems to be enhanced when the comb<strong>in</strong>ation of acetyl acetone and caproic acid is<br />

not present, and result <strong>in</strong> an <strong>in</strong>crease of average crystal size from 7.0 to 8.5 nm. This<br />

might be expla<strong>in</strong>ed by the absence of the h<strong>in</strong>der<strong>in</strong>g of crystal growth due to the capp<strong>in</strong>g<br />

effect of the acetyl acetone or caproic acid groups.<br />

The prist<strong>in</strong>e polymeric 8YSZ sols ma<strong>in</strong>ta<strong>in</strong> their fluorite structure at any tested<br />

temperature with <strong>in</strong>creas<strong>in</strong>g crystal size from 5.5, 7.0, 13.5 to 72 nm at respectively, 500,<br />

600, 800 and 1080ºC (Figure 47). The <strong>in</strong>crease of average crystal size is likely attributed<br />

to the s<strong>in</strong>ter<strong>in</strong>g behaviour of the nano-crystall<strong>in</strong>e particles.<br />

Intensity (a.u.)<br />

20 30 40 50 60 70<br />

2 Theta [º]<br />

Figure 47 XRD diffraction patterns of dried 8YSZ sols calc<strong>in</strong>ed at 500-1080ºC with 2h dwell time (heat<strong>in</strong>g<br />

and cool<strong>in</strong>g ramps 2 K/m<strong>in</strong>). The <strong>in</strong>lay presents the crystal size as a function of the calc<strong>in</strong>ation temperature.<br />

The XRD data suggest the <strong>for</strong>mation of cubic 8YSZ material at temperature below 500ºC<br />

(Figure 47) and even below 450ºC (Figure 46). All the calc<strong>in</strong>ed 8YSZ powders listed <strong>in</strong><br />

Table 22 present the cubic phase. So the cubic phase <strong>for</strong>mation is <strong>in</strong>dependent on the<br />

organic additives. Likely, the cubic phase <strong>for</strong>mation is determ<strong>in</strong>ed by the 8YSZ sol<br />

properties.<br />

79<br />

Crystal size [nm]<br />

80<br />

60<br />

40<br />

20<br />

0<br />

500 600 700 800 900 1000 1100<br />

T [ºC]<br />

1080ºC<br />

800ºC<br />

600ºC<br />

500ºC


4 Results and discussion<br />

DTA/TG analyses were per<strong>for</strong>med to determ<strong>in</strong>e the crystallisation temperatures and the<br />

temperature where the organics are removed. The organics can be the propoxide groups<br />

attached to the zirconium precursor, nitrate-groups from the yttrium precursor, bonded<br />

2-propanol groups, caproic acid, acetyl acetone and the structure direct<strong>in</strong>g agents. Figure<br />

48-A shows the DTA curves from the powders that were prepared from 8YSZ sols, 8YSZ<br />

sols with the SDA 127 and the 8YSZ sols with the SDA 127 plus the comb<strong>in</strong>ation acetyl<br />

acetone and caproic acid.<br />

Figure 48-A presents the DTA curve of 8YSZ powder and shows a broad exothermic<br />

peak between 150 and 400ºC. Approximately 55 wt% is lost <strong>in</strong> this temperature range<br />

from the 8YSZ powder when the TG curve is considered (Figure 48-B). This can be<br />

assigned to the gradual burn out of the (bonded) n-propanol, nitrate and propoxide<br />

groups. Exothermic peaks are observed at approximately 160, 200, 270 and 360ºC.<br />

Further analysis with e.g. DTA <strong>in</strong> comb<strong>in</strong>ation with a mass spectrometer is required to<br />

<strong>in</strong>dentify these exothermic peaks. Clearly, no crystallisation temperature can be extracted<br />

from this data. 8YSZ powders with F127 added to the sol show a less complex DTA<br />

curve. Less weight loss is observed as a result of dry<strong>in</strong>g at 140 ºC <strong>for</strong> 8 hours <strong>in</strong>stead of<br />

standard 4 hours. The dehydration of the 8YSZ powder that conta<strong>in</strong>s F127 is observed at<br />

100ºC by show an endothermic peak. The exothermic peak at 435ºC can not be assigned<br />

to the crystallisation temperature due to the fact that the material is show cubic phase<br />

<strong>for</strong>mation at 400ºC (results not shown). There<strong>for</strong>e, both exothermic peaks at 235 and<br />

435ºC are likely related to the burnout of the organic species mentioned <strong>for</strong> the 8YSZ <strong>in</strong><br />

comb<strong>in</strong>ation with the combustion of the F127. F127 seem to organise the gradual burn<br />

out of the organic species when the 8YSZ powder and 8YSZ powder with F127 are<br />

compared. This effect is no longer visible when the comb<strong>in</strong>ation acetyl acetone and<br />

caproic acid are added to the sol. Aga<strong>in</strong>, a broad exothermic peak between 175 and 410ºC<br />

with a weight loss of 35% is observed. One is unable to dist<strong>in</strong>guish the crystallisation<br />

temperature and the temperature when each of the organic compounds is combusted. The<br />

comb<strong>in</strong>ation of acetyl acetone and caproic acid seem to be bonded to the <strong>in</strong>organic solids<br />

<strong>in</strong> a broad temperature range.<br />

80


4 Results and discussion<br />

DTA µV/mg<br />

0.1<br />

0.0<br />

-0.1<br />

-0.2<br />

-0.3<br />

-0.4<br />

Exo<br />

8YSZ<br />

8YSZ +F127<br />

8YSZ +F127<br />

+Acetyl acetone<br />

+caproic acid<br />

100 200 300 400 500 600<br />

T [ºC]<br />

A<br />

81<br />

Weigth [%]<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

8YSZ<br />

8YSZ +F127<br />

+Acetyl acetone<br />

+Caproic acid<br />

100 200 300 400 500 600<br />

Figure 48 DTA (A) and TG (B) curves 8YSZ dried sols of blank, +F127 and AcCa+F127<br />

T [ºC]<br />

8YSZ +F127<br />

In summary, first 8YSZ powder can be prepared microporously with the addition of<br />

acetyl acetone as the precursor modifier and caproic acid as the condensation catalyst to<br />

the sol. However, the specific surface area of only ~50 m 2 /g of this microporous material<br />

might <strong>for</strong>m membrane layers with too low porosity. This could lead to low<br />

permeabilities, see page 96.<br />

Second, the 8YSZ sol is, <strong>in</strong> comb<strong>in</strong>ation with block copolymer Pluronic #F127<br />

mesostructur<strong>in</strong>g the nanocrystals and offers the most <strong>in</strong>terest<strong>in</strong>g mesoporous membrane<br />

material due to its high specific surface area. The block copolymer F127 seems to prevent<br />

densification dur<strong>in</strong>g the fir<strong>in</strong>g steps. The F127 mesostructer<strong>in</strong>g of 8YSZ can be<br />

<strong>in</strong>terest<strong>in</strong>g <strong>for</strong> several applications such as catalytic reactions or membranes that may be<br />

more suited <strong>for</strong> separat<strong>in</strong>g bulkier molecules.<br />

Third, the <strong>for</strong>mation of porous 8YSZ is less effective <strong>for</strong> extraction compared to regular<br />

calc<strong>in</strong>ation. Extraction of the dried 8YSZ sols results <strong>in</strong> amorphous material with relative<br />

large pore sizes.<br />

Forth, the organics <strong>in</strong> the sols are gradually released dur<strong>in</strong>g the calc<strong>in</strong>ation. As a<br />

consequence, these ZrO2 coat<strong>in</strong>gs should be calc<strong>in</strong>ed carefully <strong>in</strong> the first temperature<br />

period (up to 450ºC) <strong>in</strong> order to ma<strong>in</strong>ta<strong>in</strong> the film morphology unchanged.<br />

4.3.2.2 Am<strong>in</strong>e approach-TiO2<br />

A comb<strong>in</strong>ation of type I and IV N2-sorption isotherms is obta<strong>in</strong>ed when the dried TiO2<br />

DEA sols are calc<strong>in</strong>ed at 400, 500 and 600ºC (Figure 49). Similar trends are found <strong>in</strong><br />

literature. 83 The BET specific surface area (SBET) of the TiO2 samples decreases with<br />

<strong>in</strong>creas<strong>in</strong>g calc<strong>in</strong>ation temperature (Table 23). This trend is coupled with an <strong>in</strong>crease <strong>in</strong><br />

the pore size (BJH algorithm 130 ) from 3.8, 6.1 to 8 nm and an <strong>in</strong>crease of crystal size<br />

B


4 Results and discussion<br />

from 11.3, 15.1 to 22.1 nm determ<strong>in</strong>ed with the Scherer equation <strong>for</strong> respectively 400,<br />

500 and 600 ºC. The relative micropore volume (Vmicro/Vtotal) decreases from 25 at 400ºC<br />

to 8% at 600ºC. TiO2 microstructure properties trends clearly <strong>in</strong>dicate a densification of<br />

the material with <strong>in</strong>creas<strong>in</strong>g calc<strong>in</strong>ation temperature.<br />

Table 23 Microstructure properties of dried TiO2 sols<br />

Calc<strong>in</strong>ation<br />

Temp. <strong>in</strong> [ºC]<br />

Equivalent<br />

1 M HNO3<br />

Crystal<br />

size nm<br />

SBET<br />

m 2 /g<br />

Vtotal<br />

cm 3 /g<br />

Vmicro<br />

cm 3 /g<br />

BJH<br />

nm<br />

140 7 amorphous - - - -<br />

400 7 11.3 216 0.24 0.06 3.8<br />

400 10 - 214 0.26 0.06 3.8<br />

500 7 15.1 90 0.18 0.03 6.1<br />

500 10 - 75 0.16 0.02 6.0<br />

600 7 22.1 36 0.09 0.01 8.0<br />

The effect on the TiO2 microstructural properties was studied by chang<strong>in</strong>g the quantity of<br />

the hydrolysis solution. The hydrolysis solution (1 M HNO3) was <strong>in</strong>creased from 7<br />

equivalent to 10 equivalent to the titanium precursor. The microstructure properties are<br />

listed <strong>in</strong> Table 23. The specific surface area and the relative microporous absorbed<br />

volume of the TiO2 powders calc<strong>in</strong>ed at 400 and 500ºC seem be <strong>in</strong>dependent on the<br />

<strong>in</strong>crease of equivalent 7 to 10 of the hydrolysis solution. This <strong>in</strong>dicates that the sol<br />

modification is mild as expected from similar average particle size <strong>in</strong> the sol. An average<br />

particle size of 4.4 nm was found with 7 equivalent 1 M HNO3and 4.1 nm with 10<br />

equivalent 1 M HNO3.<br />

The dried TiO2 sols listed <strong>in</strong> Table 23 trans<strong>for</strong>m from XRD-amorphous to anatase TiO2 <strong>in</strong><br />

the temperature range of 140-400ºC. The TiO2-TG plot (Figure 50) shows a weight loss<br />

with three decomposition steps <strong>in</strong> the <strong>in</strong>terval of 30-600ºC. The weight loss below<br />

~225ºC is assigned to the water desorption and organic removal. The decomposition step<br />

between 225 and 475ºC can be related to the gradual decomposition of the am<strong>in</strong>e ligands<br />

on the outer and <strong>in</strong>ner surface of the material which is believed to be bonded more strong<br />

than e.g. n-propanol. The third step <strong>in</strong> weight loss is small.<br />

The DTA pattern is complementary with the TG observations. The exothermic peak <strong>in</strong><br />

the DTA plot at ~225ºC suggests the removal of loosely bound organic residues. The<br />

second broad exothermic peak (320-360ºC) might be related to the gradual<br />

decomposition of the am<strong>in</strong>e groups <strong>in</strong> comb<strong>in</strong>ation with the gradual anatase TiO2<br />

crystallisation.<br />

82


4 Results and discussion<br />

Vads / cm 3 g -1<br />

200<br />

150<br />

100<br />

50<br />

0,0 0,2 0,4 0,6 0,8 1,0<br />

p/p0 0<br />

Figure 49 N2 isotherms TiO2 calc<strong>in</strong>ed at 400ºC (◊), 500ºC (○) and 600ºC (□). Open symbols present the<br />

adsorption and closed symbols the desorption po<strong>in</strong>ts.<br />

Exo<br />

uV/mg<br />

0,2<br />

0,1<br />

0,0<br />

-0,1<br />

-0,2<br />

-0,3<br />

400ºC<br />

500ºC<br />

0<br />

100 200 300 400 500 600<br />

Temperature [ºC]<br />

83<br />

DTA<br />

TG<br />

Figure 50 DTA-TG curves of dried TiO2 sol.<br />

600ºC<br />

A gradual anatase to rutile TiO2 trans<strong>for</strong>mation <strong>in</strong> comb<strong>in</strong>ation with removal of the<br />

rema<strong>in</strong><strong>in</strong>g organics might expla<strong>in</strong> the weight stabilisation above ~450ºC. Similar results<br />

have been found by Zou et al. 116 A mixture of anatase and rutile TiO2 is <strong>for</strong>med when the<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

weight loss %


4 Results and discussion<br />

dried TiO2 sol is calc<strong>in</strong>ed at 600ºC. Xu et al. 112 found rutile phase trans<strong>for</strong>mation<br />

temperature higher than 600ºC. This might be expla<strong>in</strong>ed by the difference <strong>in</strong> sol synthesis<br />

or 30 m<strong>in</strong>utes dwell time <strong>in</strong>stead of 2 hours.<br />

A comb<strong>in</strong>ation of rutile and anatase TiO2 was observed at 500ºC when the ketone<br />

approach was applied. DEA seems to prevent the anatase rutile trans<strong>for</strong>mation compared<br />

to the ketone approach and might be expla<strong>in</strong>ed by the stronger bonded precursor<br />

modifier.<br />

TiO2 layers prepared similar as the powder discussed above might have the same<br />

microstructural properties and <strong>for</strong>m crystall<strong>in</strong>e mesoporous TiO2 membranes. However,<br />

the microstructural properties of the layers can differ from the powders due to i) the<br />

<strong>for</strong>mation of th<strong>in</strong> layers <strong>in</strong>stead of agglomerated particles and ii) capillary <strong>for</strong>ces when a<br />

th<strong>in</strong> layer is applied on a porous substrate.<br />

10 20 30 40 50 60<br />

2Theta [º]<br />

Figure 51 XRD diffraction patterns of dried TiO2 sols calc<strong>in</strong>ed at 140, 400, 500, 600ºC. The crystal size<br />

determ<strong>in</strong>ed with the Scherrer relationship is presented <strong>in</strong> the <strong>in</strong>lay.<br />

4.3.2.3 Am<strong>in</strong>e approach - ZrO2<br />

Type I N2-sorption isotherms are obta<strong>in</strong>ed when the dried ZrO2 DEA sols were calc<strong>in</strong>ed<br />

at 400, 500 and 600ºC (Figure 52). The specific surface area seems to be stable <strong>in</strong> the<br />

temperature range of 400-500ºC and decreases at higher calc<strong>in</strong>ation temperatures (Table<br />

24). The ZrO2 type I N2 sorption isotherm <strong>in</strong>dicates lower specific surface area values<br />

than TiO2 but are similar to the results published <strong>in</strong> literature. 116<br />

84<br />

600ºC<br />

Crystal size [nm]<br />

500ºC<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

400ºC<br />

140ºC<br />

400 500 600<br />

T [ºC]


4 Results and discussion<br />

The <strong>in</strong>crease <strong>in</strong> pore size <strong>in</strong> comb<strong>in</strong>ation with a decrease of the relative microporous<br />

adsorbed volume Vmicro/Vtotal (56-6%) with <strong>in</strong>creas<strong>in</strong>g temperature is <strong>in</strong> agreement with<br />

the results found by Xu et al. 112 The pore size <strong>in</strong>crease seems to be coupled with the<br />

<strong>in</strong>crease <strong>in</strong> crystal size, which <strong>in</strong>creases from 6.1 at 400ºC to 19 nm at 600ºC (Figure 54).<br />

Similar trend have been observer <strong>for</strong> the TiO2 powders.<br />

Table 24 Microstructure properties of dried ZrO2 sols<br />

Calc<strong>in</strong>ation<br />

Temp. <strong>in</strong> [ºC]<br />

Crystal<br />

size nm<br />

SBET<br />

m 2 /g<br />

Vtotal<br />

cm 3 /g<br />

Vmicro<br />

cm 3 /g<br />

SF nm BJH<br />

nm<br />

140 amorphous - - - -<br />

400 6.1 74 0.034 0.019 1.5 -<br />

500 8.3 77 0.054 0.019 2.2 -<br />

600 19 6 0.011 0.001 4.0<br />

Vads / cm 3 g -1<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

500ºC<br />

400ºC<br />

600ºC<br />

85<br />

ZrO 2<br />

0,0 0,2 0,4 0,6 0,8 1,0<br />

p/p0 0<br />

Figure 52 N2 isotherms ZrO2 calc<strong>in</strong>ed at 400ºC (◊), 500ºC (○) and 600ºC (□).<br />

Open symbols present the adsorption and closed symbols the desorption po<strong>in</strong>ts.<br />

The dried ZrO2 sols crystallize to tetragonal ZrO2 <strong>in</strong> the temperature range of 140-400ºC.<br />

The TG plot (Figure 53) of dried ZrO2 can be subdivided <strong>in</strong>to three steps. The first step<br />

presents the water and loosely bounded organic removal <strong>in</strong> the temperature range of 50 to<br />

300ºC. A sharp weight loss is obta<strong>in</strong>ed <strong>in</strong> the second step up to 400ºC where the am<strong>in</strong>e<br />

groups leave the <strong>in</strong>organic-organic material <strong>in</strong> comb<strong>in</strong>ation with crystallisation. No


4 Results and discussion<br />

significant weight loss is observed <strong>in</strong> the third step where the rema<strong>in</strong><strong>in</strong>g organics are<br />

combusted. The carbon content measurements at 140 to 600ºC are complementary to<br />

these results (Figure 72).<br />

Exo<br />

uV/mg<br />

0,3<br />

0,2<br />

0,1<br />

0,0<br />

-0,1<br />

-0,2<br />

-0,3<br />

100 200 300 400 500 600 700<br />

0<br />

800<br />

Temperature [ºC]<br />

86<br />

DTA<br />

TG<br />

Figure 53 DTA-TG curves of dried ZrO2 sol.<br />

The DTA results (Figure 53) are complementary to the TG results. The exothermic peak<br />

<strong>in</strong> the DTA plot at 308ºC suggests the removal of organic residues (Figure 53). More<br />

organics rema<strong>in</strong> <strong>in</strong> the ZrO2 microporous material <strong>in</strong> the temperature range of 140-600ºC<br />

compared to TiO2 (Figure 72). The second exothermic peak at 358ºC might be related to<br />

the <strong>for</strong>mation of tetragonal ZrO2.<br />

A comb<strong>in</strong>ation of tetragonal and monocl<strong>in</strong>ic ZrO2 (tetra/mono >>1) is <strong>for</strong>med when the<br />

dried ZrO2 sol is calc<strong>in</strong>ed at 600ºC (Figure 54). No cubic ZrO2 could be observed as<br />

expected from the mild temperature conditions and absence of a cubic phase stabilisator<br />

such as Y2O3. Raman spectroscopy did observe only monocl<strong>in</strong>ic and tetragonal ZrO2 on<br />

the ZrO2 layers and will be discussed <strong>in</strong> the next section. The phase trans<strong>for</strong>mation from<br />

tetragonal to monocl<strong>in</strong>ic ZrO2 may <strong>for</strong>m gradually <strong>in</strong> the temperature range of 450-<br />

650ºC.<br />

The gas physisorption, DTA and XRD results on ZrO2 DEA 2 wt% sols that are dried and<br />

calc<strong>in</strong>ed at 140, 400, and 500ºC <strong>for</strong> 3 hours with a heat<strong>in</strong>g rate of 25ºC/hours suggest that<br />

these materials might <strong>for</strong>m microporous membranes with rather low permeability due to<br />

the small specific surface areas.<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

weight loss %


4 Results and discussion<br />

20 30 40 50 60<br />

2Theta [º]<br />

Figure 54 XRD diffraction patterns of dried ZrO2 sols calc<strong>in</strong>ed at 140, 400, 500, 600ºC. The crystal size<br />

determ<strong>in</strong>ed with the Scherer equation is presented <strong>in</strong> the <strong>in</strong>lay.<br />

4.3.2.4 Am<strong>in</strong>e approach - B<strong>in</strong>ary oxides Ti1-xZrxO2<br />

The TiO2 addition <strong>in</strong>to the ZrO2 was conducted <strong>in</strong> the first stage of the powder <strong>for</strong>mation<br />

by mix<strong>in</strong>g the alkoxides so it can be assumed that, after the sol-gel <strong>for</strong>mation, a<br />

homogeneously distributed TiO2 <strong>in</strong> the ZrO2 network. Transmission Electron Microscopy<br />

- Energy Dispersive us<strong>in</strong>g X-ray analysis and Inductively Coupled Plasma<br />

measurements 116 were per<strong>for</strong>med and found similar metal oxide ratios as start<strong>in</strong>g<br />

mixtures support<strong>in</strong>g this assumption.<br />

Type I N2-sorption isotherms are observed <strong>for</strong> the Zr-rich b<strong>in</strong>ary oxides calc<strong>in</strong>ed at 500ºC<br />

(Figure 55). The specific surface area <strong>in</strong>creases and the pore size decrease with <strong>in</strong>creas<strong>in</strong>g<br />

the mol% TiO2 <strong>in</strong> ZrO2 (0 and 25% <strong>in</strong> Table 25 and Figure 56-A).<br />

Dop<strong>in</strong>g TiO2 with 10 and 25 mol% ZrO2 calc<strong>in</strong>ed at 500ºC resulted <strong>in</strong> comb<strong>in</strong>ation of<br />

type I and IV isotherms. The relative microporous adsorbed volume Vmicro/Vtotal <strong>in</strong>creases<br />

and pore size decreases with <strong>in</strong>creas<strong>in</strong>g ZrO2 content (Figure 56-B).<br />

All the b<strong>in</strong>ary oxides conta<strong>in</strong> significant relative microporous absorbed volume at 500ºC.<br />

This was expected from the l<strong>in</strong>ear polymeric sols. The N2-sorption isotherm of<br />

Ti0.5Zr0.5O2 sample calc<strong>in</strong>ed at 400ºC is comparable to what has been reported <strong>in</strong><br />

literature of Ti0.66Zr0.34O2 80 and Ti0.8Zr0.2O2. 83 The highest specific surface area, the<br />

highest relative microporous absorbed volume and the smallest estimated pore size <strong>in</strong> this<br />

study is obta<strong>in</strong>ed <strong>for</strong> Ti0.5Zr0.5O2 calc<strong>in</strong>ed at 500ºC (Table 25 and Figure 56). XRD<br />

87<br />

600ºC<br />

500ºC<br />

400ºC<br />

Crystal size [nm]<br />

140ºC<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

400 500<br />

T [ºC]<br />

600


4 Results and discussion<br />

amorphous 50 mol % TiO2 <strong>in</strong> ZrO2 calc<strong>in</strong>ed at 500ºC prepared by the ketone approach<br />

conta<strong>in</strong>ed significantly less specific surface area, results not shown.<br />

Table 25 Microstructure properties of calc<strong>in</strong>ed b<strong>in</strong>ary oxide TiO2-ZrO2 DEA sols<br />

Calc<strong>in</strong>ation<br />

temperature<br />

mol% Ti Crystal size<br />

nm<br />

SBET<br />

m 2 /g<br />

Vtotal<br />

cm 3 /g<br />

Vmicro<br />

cm 3 /g<br />

SF nm BJH<br />

nm<br />

400ºC 0 6.1 74 0.034 0.019 1.5 -<br />

25 Amorphous 180 0.086 0.052 - -<br />

50 Amorphous 124 0.080 0.055 - -<br />

100 11.3 216 0.24 0.06 - 3.8<br />

500ºC 0 8.3 77 0.054 0.019 2.2 -<br />

25 Amorphous 166 0.086 0.044 1.2 -<br />

50 Amorphous 190 0.109 0.057 1.0 -<br />

75 Amorphous 121 0.158 0.037 3.8<br />

100 15.1 90 0.18 0.03 6.1<br />

600ºC 0 19 6 0.011 0.001 4.0<br />

25 18.6 - - - -<br />

50 20.1 44 0.037 0.01 3.5<br />

90 19.2 - - - - -<br />

100 22.1 36 0.09 0.01 8.0<br />

Vads / cm 3 g -1<br />

100<br />

80<br />

60<br />

40<br />

20<br />

50 mol %<br />

500ºC 0, 25, 50 mol% TiO2<br />

25 mol %<br />

0,0 0,2 0,4 0,6 0,8 1,0<br />

p/p0 0<br />

Figure 55 N2 isotherms Zr-rich b<strong>in</strong>ary oxides calc<strong>in</strong>ed at 500ºC. 0 mol% TiO2 <strong>in</strong> ZrO2(□), 25 mol%<br />

TiO2 <strong>in</strong> ZrO2 (○) 50 mol% TiO2 <strong>in</strong> ZrO2 (◊).Open symbols present the adsorption and closed symbols<br />

the desorption po<strong>in</strong>ts.<br />

88<br />

0 mol %<br />

TiO2


4 Results and discussion<br />

V micro /V total [%]<br />

Spec. Surface area [m 2 /g]<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

200<br />

160<br />

120<br />

80<br />

40<br />

0<br />

0 25 50 75 100<br />

mol % TiO 2 <strong>in</strong> ZrO 2<br />

Figure 56 Relative absorbed microporous volume of powders calc<strong>in</strong>ed at 500ºC with vary<strong>in</strong>g mol% TiO2<br />

<strong>in</strong> ZrO2. B) Specific surface areas of powders calc<strong>in</strong>ed at 500ºC with vary<strong>in</strong>g mol% TiO2 <strong>in</strong> ZrO2.<br />

Vads / cm 3 g -1<br />

100<br />

80<br />

60<br />

40<br />

20<br />

500ºC<br />

400ºC<br />

50 mol% TiO2<br />

0,0 0,2 0,4 0,6 0,8 1,0<br />

p/p0 0<br />

Figure 57 N2 isotherms 50 mol% TiO2 <strong>in</strong> ZrO2 calc<strong>in</strong>ed at (◊) 400, (○) 500 and (□)<br />

600ºC. Open symbols present the adsorption and closed symbols the desorption po<strong>in</strong>ts.<br />

The sol and microstructure properties may be <strong>in</strong>fluenced by the acidity of the hydrolysis<br />

solution as Spijksma et al. 80 reported <strong>for</strong> the Ti0.66Zr0.34O2 calc<strong>in</strong>ed at 400ºC. The effect<br />

89<br />

600ºC<br />

A<br />

B


4 Results and discussion<br />

of hydrolysis solution acidity on the microstructure of the Ti0.5Zr0.5O2 bulk material was<br />

studied with gas physisorption.<br />

The fractal dimension of the 50 mol% TiO2 <strong>in</strong> ZrO2 sol is larger (1.29) with similar<br />

particle size if H2O was used <strong>in</strong>stead of 1 M HNO3 as hydrolysis solution.<br />

Figure 58-A and B show a simultaneous decrease <strong>in</strong> the specific surface area (190 to<br />

57 m 2 /g) and the relative microporous adsorbed volume (52 to 6%) as a result of a higher<br />

pH of the hydrolysis solution. It should be noted that Spijksma et al. 80 reported results<br />

<strong>for</strong> Ti0.66Zr0.34O2 calc<strong>in</strong>ed at 400ºC that show an <strong>in</strong>verse relation. In that particular work<br />

an acidic hydrolysis solution resulted <strong>in</strong> a significant <strong>in</strong>crease of both the average pore<br />

size of the powder and the particle size of the sol.<br />

V micro /V total [%]<br />

Spec. Surface area [m 2 /g]<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

200<br />

160<br />

120<br />

80<br />

40<br />

0<br />

1 M HNO3 0.1 M HNO3 H2O<br />

Figure 58 A) Relative micropore volume and B) Specific surface areas of powders calc<strong>in</strong>ed at 500ºC as a<br />

function of the hydrolysis agent acidity.<br />

DTA and XRD analysis are used to study the crystallisation temperature of the b<strong>in</strong>ary<br />

oxides. All b<strong>in</strong>ary oxides conta<strong>in</strong><strong>in</strong>g 25 to 75 mol % TiO2 <strong>in</strong> ZrO2 are still XRD<br />

amorphous at 500ºC and become nanocrystall<strong>in</strong>e at 600ºC. 25 mol% TiO2 doped ZrO2<br />

calc<strong>in</strong>ed at 600ºC possess a m<strong>in</strong>or phase of highly disturbed monocl<strong>in</strong>ic ZrO2 and a<br />

higher ratio of tetragonality compared to the undoped ZrO2. The higher tetragonality can<br />

be expla<strong>in</strong>ed by the <strong>in</strong>corporation of titanium <strong>in</strong>to the ZrO2 lattice (Figure 59-C). Clearly,<br />

the monocl<strong>in</strong>ic ZrO2 phase is suppressed by the addition of 25 mol% TiO2.<br />

Ti0.5Zr0.5O2 crystallises between 550 and 600ºC (Figure 59-A) to a highly distorted and<br />

disturbed orthorhombic phase similar to the orthorhombic TiZrO4 published <strong>in</strong>. 112<br />

90<br />

A<br />

B


4 Results and discussion<br />

In pure TiO2, the anatase phase trans<strong>for</strong>ms partly to the rutile phase if the calc<strong>in</strong>ation<br />

temperature is <strong>in</strong>creased from 500 to 600ºC (Figure 59-B). Apparently, this phase<br />

trans<strong>for</strong>mation is already suppressed by the presence of 10 mol % ZrO2. These results<br />

confirm the <strong>in</strong>corporation of ZrO2 <strong>in</strong>to the TiO2 framework found <strong>in</strong> literature, 83,112 up to<br />

25 mol % ZrO2 might be dissolvable <strong>in</strong>to anatase TiO2. The hydraulic radius decrease 112<br />

and the broaden<strong>in</strong>g of the anatase (110) diffraction peak from 0 to 10 mol% ZrO2 doped<br />

TiO2 clearly <strong>in</strong>dicate retardation of TiO2 densification.<br />

The TG and DTA results of the b<strong>in</strong>ary oxides are complex due to gradual organic loss <strong>in</strong><br />

a broad temperature range with many exothermic peaks, results not shown. A large<br />

weight loss 50% is observed <strong>for</strong> these b<strong>in</strong>ary oxides <strong>in</strong> the temperature range of 100-<br />

500ºC and might have masked the endothermic peak of phase trans<strong>for</strong>mation. A more<br />

detailed DTA curve can be prepared by apply<strong>in</strong>g a long dwell time at temperatures below<br />

the crystallisation temperature.<br />

91


4 Results and discussion<br />

Intensity (a.u.)<br />

Intensity (a.u.)<br />

Intensity (a.u.)<br />

20 30 40 50 60 70<br />

100 mol% Ti<br />

90 mol% Ti<br />

Orthorhombic TiZrO 4<br />

2 Theta [º]<br />

15 20 25 30 35 40 45 50 55<br />

2Theta [º]<br />

92<br />

600ºC<br />

550ºC<br />

500ºC<br />

400ºC<br />

600ºC<br />

Anatase TiO 2<br />

Rutile TiO 2<br />

0 mol% Ti<br />

25 mol% Ti<br />

20 30 40 50 60 70<br />

2Theta [º]<br />

600ºC<br />

Monocl<strong>in</strong>ic ZrO 2<br />

Tetragonal ZrO 2<br />

Figure 59 XRD patterns of A) 50 mol % TiO2 <strong>in</strong> ZrO2 dried sols calc<strong>in</strong>ed at 400, 500, 550 and 600ºC <strong>for</strong> 2<br />

hours with reference of orthorhombic TiZrO4. B) XRD patterns of 90 and 100 mol % TiO2 <strong>in</strong> ZrO2 calc<strong>in</strong>ed<br />

at 600ºC with references of anatase and rutile TiO2 and C) 0 and 25 mol % TiO2 <strong>in</strong> ZrO2 calc<strong>in</strong>ed at 600ºC<br />

with references of tetragonal and monocl<strong>in</strong>ic ZrO2<br />

A<br />

B<br />

C


4 Results and discussion<br />

In summary, anatase TiO2 conta<strong>in</strong>s mesopores <strong>in</strong> the temperature range of 400 to 600ºC.<br />

The average crystal size and the pore size seem to be coupled and <strong>in</strong>crease with<br />

<strong>in</strong>creas<strong>in</strong>g calc<strong>in</strong>ation temperature. Tetragonal ZrO2 is ma<strong>in</strong>ly microporous below 600ºC.<br />

However, the ZrO2 powder with a specific surface area of approximately 75 m 2 /g might<br />

result <strong>in</strong> low permeable membrane layers. Besides, both TiO2 and ZrO2 show phase<br />

trans<strong>for</strong>mations <strong>in</strong> the temperature range of 500-600ºC. This could lead to cracks dur<strong>in</strong>g<br />

the calc<strong>in</strong>ation as a result of thermal expansion mismatches of the phases.<br />

The crystallisation temperature of Ti0.5Zr0.5O2 is between 550 and 600ºC which is<br />

approximately 250ºC higher than s<strong>in</strong>gle oxides 320-360ºC. The higher crystallisation<br />

temperature could suppress the crystal growth while ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g the microporosity. The<br />

crystallisation temperature, high porosity, high microporosity and small pore size bulk<br />

material properties of Ti0.5Zr0.5O2 calc<strong>in</strong>ed at 500ºC are similar to state of the art SiO2.<br />

This <strong>in</strong>dicates that Ti0.5Zr0.5O2 might <strong>for</strong>m microporous membrane layers as well.<br />

However, amorphous microporous materials might have a lower chemical stability<br />

compared to their s<strong>in</strong>gle oxide relatives.<br />

4.3.2.6 Am<strong>in</strong>e approach – Diethanolam<strong>in</strong>e / Diisopropanolam<strong>in</strong>e<br />

The precursor modifier diethanolam<strong>in</strong>e (DEA) is replaced <strong>in</strong> the sol synthesis by<br />

equimolar diisopropanolam<strong>in</strong>e (DIPA) to i) <strong>in</strong>crease the viscosity, ii) better compatibility<br />

with the propanol solvent and iii) prevention of densification by <strong>for</strong>m<strong>in</strong>g higher porosity.<br />

No literature was found on this potential precursor modifier.<br />

No significant difference <strong>in</strong> the DTA/TG analyses and carbon content results are obta<strong>in</strong>ed<br />

when DIPA was used <strong>in</strong>stead of DEA as precursor modifier <strong>for</strong> the <strong>for</strong>mation of b<strong>in</strong>ary<br />

oxides with 25 and 50 mol % TiO2 <strong>in</strong> ZrO2 up to 500ºC.<br />

Figure 60-A presents type I sorption isotherms of 50 mol % TiO2 <strong>in</strong> ZrO2 us<strong>in</strong>g DIPA,<br />

which have specific surface area trends comparable with 50 mol % TiO2 <strong>in</strong> ZrO2 us<strong>in</strong>g<br />

DEA (Table 26). However, the specific surface areas of 25 and 50 mol % TiO2 <strong>in</strong> ZrO2 at<br />

400ºC us<strong>in</strong>g DIPA are a factor 2 higher than when DEA was used (Table 26 and Figure<br />

60-B). The higher specific surfaces are of dried and calc<strong>in</strong>ed DIPA sols may be expla<strong>in</strong>ed<br />

by the longer organic cha<strong>in</strong> of DIPA compared to DEA.<br />

93


4 Results and discussion<br />

Vads / cm 3 g -1<br />

150<br />

100<br />

50<br />

Table 26 Microstructure properties of dried b<strong>in</strong>ary oxide TiO2-ZrO2 DIPA sols<br />

Calc<strong>in</strong>ation Temp. Mol% Ti SBET m 2 /g<br />

400ºC 25 334<br />

50 224<br />

500ºC 25 219<br />

50 115<br />

600ºC 50 48<br />

50 mol% TiO2 <strong>in</strong> ZrO2 DIPA<br />

400ºC<br />

500ºC<br />

600ºC<br />

0,0 0,2 0,4 0,6 0,8 1,0<br />

p/p 0<br />

0<br />

25 mol% TiO2 <strong>in</strong> ZrO2 A DIPA-DEA 400ºC B<br />

200<br />

94<br />

Vads / cm 3 g -1<br />

150<br />

100<br />

50<br />

DIPA<br />

DEA<br />

0,0 0,2 0,4 0,6 0,8 1,0<br />

p/p 0<br />

0<br />

Figure 60 A) N2 isotherms 50 mol% TiO2 <strong>in</strong> ZrO2 calc<strong>in</strong>ed at (□) 400, (○) 500 and (◊) 600ºC us<strong>in</strong>g DIPA. B)<br />

N2 isotherms 25 mol% TiO2 <strong>in</strong> ZrO2 calc<strong>in</strong>ed at 400ºC us<strong>in</strong>g DIPA (○) and DEA (□). Open symbols present<br />

the adsorption and closed symbols the desorption po<strong>in</strong>ts.<br />

Ti0.5Zr0.5O2 calc<strong>in</strong>ed at 600ºC is XRD-amorphous when diethanolam<strong>in</strong>e is replaced by<br />

diisopropanolam<strong>in</strong>e <strong>in</strong> the sol synthesis (Figure 61). The crystallisation temperature of<br />

TiZrO4 prepared by DIPA is delayed and could be expla<strong>in</strong>ed by a more porous structure<br />

(larger specific surface area).<br />

Acidification of the hydrolysis solution <strong>in</strong> the DIPA sol synthesis is less effective<br />

compared to the DEA sol synthesis. The specific surface area and relative microporous<br />

adsorbed volume are comparable when the hydrolysis solution is prepared with H2O<br />

<strong>in</strong>stead of 1 M HNO3. These results suggest that the DIPA is better bonded to alkoxide<br />

precursors. There<strong>for</strong>e, DIPA might be an <strong>in</strong>terest<strong>in</strong>g alternative to DEA <strong>for</strong> the <strong>for</strong>mation<br />

of microporous membrane materials.


4 Results and discussion<br />

Intensity (a.u.)<br />

Ti 0,5 Zr 0,5 O 2 at 600ºC<br />

10 20 30 40 50 60 70<br />

2Theta [º]<br />

95<br />

Diethanolam<strong>in</strong>e<br />

Diisopropanolam<strong>in</strong>e<br />

Orthorhombic TiZrO 4<br />

Figure 61 XRD diffraction patterns of 50 mol % TiO2 <strong>in</strong> ZrO2 dried sols calc<strong>in</strong>ed at 600ºC when<br />

diethanolam<strong>in</strong>e and diisopropanolam<strong>in</strong>e are compared.<br />

4.3.2.7 Static corrosion tests<br />

A static corrosion test is pre<strong>for</strong>med as a simplified test to study the chemical stability of<br />

these powders. The results of these tests can be <strong>in</strong><strong>for</strong>mative but not conclusive on the<br />

hydrothermal stability of membrane layers.<br />

The TiO2, ZrO2 and Ti0.5Zr0.5O2 bulk materials that are calc<strong>in</strong>ed at 400, 500 and 600ºC<br />

powders showed to be stable at a pH of 13 <strong>for</strong> 8 days. The chemical stability of<br />

Ti0.5Zr0.5O2 bulk materials is slightly lower than that of the s<strong>in</strong>gle oxides at a pH of 1 <strong>for</strong><br />

8 days. However, only a few Ti and Zr ppms are dissolved <strong>in</strong> the acid. The chemical<br />

stability of these microporous <strong>in</strong>organic materials <strong>in</strong> acids <strong>in</strong>dicates that they are<br />

promis<strong>in</strong>g candidates <strong>for</strong> the <strong>for</strong>mation of hydrothermally stable membranes.<br />

4.3.2.8 Microstructure properties comparison by the Ketone and Am<strong>in</strong>e approach<br />

The sol syntheses of the Ketone and Am<strong>in</strong>e-approach are different <strong>in</strong> the concentration,<br />

pH, raw material and hydrolys<strong>in</strong>g agents. Despite that, the crystallisation temperature and<br />

the microstructure properties of calc<strong>in</strong>ed and dried ketone and am<strong>in</strong>e sols are compared.<br />

The am<strong>in</strong>e-approach offered membrane materials with generally higher crystallisation<br />

temperatures, higher specific surface areas and smaller pore sizes. This makes the am<strong>in</strong>eapproach<br />

used <strong>in</strong> this study more <strong>in</strong>terest<strong>in</strong>g <strong>for</strong> membrane materials than the ketoneapproach.<br />

However, both approaches can be applied <strong>for</strong> the <strong>for</strong>mation of microporous<br />

TiO2, ZrO2 or b<strong>in</strong>ary oxides. Mesoporous materials were made by templat<strong>in</strong>g 8YSZ or by<br />

synthesis<strong>in</strong>g TiO2 rich powders. TiO2 – (Y2O3)ZrO2 membranes and membrane layers are<br />

characterised <strong>in</strong> the next section.


4 Results and discussion<br />

4.3.3 Sol-Gel derived membrane characterisation<br />

Supported 8YSZ layers were prepared from the ketone sols and characterised with<br />

scann<strong>in</strong>g electron microscopy (SEM), transmission electron microscopy (TEM) and<br />

s<strong>in</strong>gle gas permeance measurement. Similar analyses are per<strong>for</strong>med on TiO2, ZrO2 and<br />

b<strong>in</strong>ary oxide layers that were prepared by am<strong>in</strong>e sols. Additional, X-ray photoelectron<br />

spectroscopy (XPS), Raman spectroscopy and Secondary Ion Mass Spectroscopy (SIMS)<br />

measurements are prepared on the latter.<br />

4.3.3.1 Ketone approach - 8YSZ layers<br />

8YSZ was prepared on glass substrates and on graded porous alum<strong>in</strong>a supports (γ-Al2O3).<br />

Figure 62-B shows a coat<strong>in</strong>g applied by simple dry<strong>in</strong>g of a film composed of 8YSZ sol<br />

us<strong>in</strong>g acetyl acetone, caproic acid and block copolymer F127 (YSZ/F127 ~ 1/4 wt/wt). In<br />

this case, the substrate was a microscope glass slip and the calc<strong>in</strong>ation temperature was<br />

500ºC <strong>for</strong> 2 hours. The obta<strong>in</strong>ed film has a thickness of about 200 nm, and a f<strong>in</strong>e porosity<br />

can be observed, although the primary particles cannot be recognized due to the<br />

resolution of SEM technique.<br />

A B<br />

YSZ<br />

Glass Substrate<br />

Figure 62 Cross section SEM image of a coated YSZ sol blended with a block copolymer on a glass slip and<br />

calc<strong>in</strong>ed at 500ºC.<br />

Two k<strong>in</strong>ds of 8YSZ layers have been prepared on graded porous γ-Al2O3 membranes<br />

be<strong>in</strong>g i) 8YSZ sol us<strong>in</strong>g acetyl acetone <strong>in</strong> comb<strong>in</strong>ation with nanonic acid and ii) 8YSZ<br />

sol us<strong>in</strong>g acetyl acetone, caproic acid and F127. A ~50 nm th<strong>in</strong> 8YSZ layer is obta<strong>in</strong>ed on<br />

a γ-Al2O3 membrane after calc<strong>in</strong><strong>in</strong>g at 450ºC an 8YSZ sol that <strong>in</strong>cluded nanonic acid.<br />

The surface and cross section of the membrane <strong>in</strong>dicate a homogeneous layer (Figure 63).<br />

96


4 Results and discussion<br />

nanonic YSZ<br />

γ-Al2O3<br />

α-Al2O3<br />

Figure 63 SEM photograph of a coated nanonic YSZ sol α-and γ-Al2O3 substrate and calc<strong>in</strong>ed at 450ºC.<br />

Figure 64 presents the TEM study of the supported 8YSZ layer that <strong>in</strong>cluded acetyl<br />

acetone, caproic acid and F127. The substrate was prepared from α-Al2O3 and is highly<br />

crystall<strong>in</strong>e. The γ-Al2O3 <strong>in</strong>termediate layer has a thickness of 6 µm (Figure 64-A). The<br />

YSZ functional layer presents a nanocrystall<strong>in</strong>e phase and has a thickness of only 20-30<br />

nm (Figure 64-B). Nanostructur<strong>in</strong>g due to the addition of F127 could not be observed <strong>in</strong><br />

this analysis. Clearly th<strong>in</strong> cubic YSZ layers can be prepared us<strong>in</strong>g the ketone approach.<br />

The cubic phase was identified by Raman spectroscopy (Figure 65). The band at 1155<br />

cm -1 can be assigned to the <strong>in</strong>organic bond<strong>in</strong>g of ZrO2 with the Al2O3 support<strong>in</strong>g layer.<br />

A B<br />

6µm γ-Al2O3<br />

Figure 64 TEM analysis of a membrane: electron diffraction pattern of the (A) α-Al2O3 and (B) γ-Al2O3,<br />

and TEM images of (C) a 6 µm γ-Al2O3 <strong>in</strong>termediate layer and (D) detail of the top 8YSZ layer that<br />

conta<strong>in</strong>ed F127, acetyl acetone and caproic acid <strong>in</strong> the sol (20-30 nm <strong>in</strong> thickness) on the <strong>in</strong>termediate<br />

layer.<br />

97<br />

γ-Al2O3<br />

8YSZ+F


4 Results and discussion<br />

A) 8YSZ membrane<br />

Excitation: 514.5 nm; 20.6 mW<br />

Raman Intensity<br />

Al 2 O 3<br />

380<br />

cubic YSZ<br />

262<br />

400 380 360 340 320 300 280 260 240 220 200<br />

Wavenumber/cm -1<br />

cubic YSZ<br />

225<br />

98<br />

Raman Intensity<br />

Al-O-Zr<br />

1155<br />

B) 8YSZ membrane<br />

Excitation: 514.5 nm; 20.6 mW<br />

cubic YSZ<br />

1050<br />

cubic YSZ<br />

1033<br />

1200 1180 1160 1140 1120 1100 1080 1060 1040 1020<br />

Wavenumber/cm -1<br />

Figure 65 A and B Raman spectra of the 8YSZ layer that conta<strong>in</strong>ed F127, acetyl acetone and caproic acid<br />

<strong>in</strong> the sol.<br />

4.3.3.2 Am<strong>in</strong>e approach - TiO2-ZrO2 and b<strong>in</strong>ary oxide layers<br />

TiO2, ZrO2 and 50 mol % TiO2 <strong>in</strong> ZrO2 layers are prepared on γ-Al2O3 membranes. The<br />

films are prepared by sp<strong>in</strong> or dip coat<strong>in</strong>g us<strong>in</strong>g the as-made DEA sols. The amount of<br />

mesoporous defects <strong>in</strong> the f<strong>in</strong>al membrane layer was m<strong>in</strong>imised by consequently coat<strong>in</strong>g<br />

each γ-Al2O3 membrane twice with the DEA sol. The first DEA layer was calc<strong>in</strong>ed<br />

be<strong>for</strong>e apply<strong>in</strong>g the second DEA layer. The layer thickness of the <strong>in</strong>termediate layer and<br />

the f<strong>in</strong>al membrane layer is observed with SEM and TEM. 20-40 nm homogeneous th<strong>in</strong><br />

films have been observed <strong>for</strong> the membrane layers prepared from TiO2, ZrO2 and<br />

Ti0.5Zr0.5O2 calc<strong>in</strong>ed at 400, 500 and 600ºC (Table 27 and Figure 67 A-C).<br />

The <strong>in</strong>filtration depth of DEA sols was studied by means of Secondary Ion Mass<br />

Spectroscopy (SIMS). A penetration depth <strong>in</strong>to the γ-Al2O3 was approximately half the<br />

f<strong>in</strong>al membrane layer thickness, consider<strong>in</strong>g the TiO2, ZrO2 and Ti0.5Zr0.5O2 layers<br />

calc<strong>in</strong>ed at 500ºC. Titanium and zirconium atoms were found at a distance of 10-15 nm<br />

from the Ti0.5Zr0.5O2 – γ-Al2O3 boundary <strong>for</strong> the Ti0.5Zr0.5O2 membrane with a thickness<br />

of 25 nm.<br />

Table 27 Intermediate and f<strong>in</strong>al membrane layer thickness<br />

Calc<strong>in</strong>ation mol% Ti Thickness γ-Al2O3 <strong>in</strong> µm Thickness F<strong>in</strong>al layer <strong>in</strong><br />

temperature<br />

nm by TEM<br />

400ºC 50 2.5 20-30 (SEM)<br />

0 5.8 36<br />

500ºC 50 2.6 25<br />

100 2.4 22<br />

600ºC 50 4.5 23


4 Results and discussion<br />

~50nm TiO2<br />

γ-Al2O3<br />

~50nm Ti0.5Zr0.5O2<br />

~25nm ZrO2<br />

γ-Al2O3<br />

γ-Al2O3<br />

Figure 66 SEM cross section images of A) TiO2, B) Ti0.5Zr0.5O2 and C) ZrO2 calc<strong>in</strong>ed at 600ºC<br />

The surfaces of the DEA-layers were studied with XRD to identify the crystall<strong>in</strong>e phase<br />

of the membrane layer. However, only the crystall<strong>in</strong>e support material could be observed.<br />

Focussed Raman spectroscopy studies observed crystall<strong>in</strong>e phase and are compared with<br />

the electron diffraction patterns obta<strong>in</strong>ed by means of high resolution transmission<br />

electron microscopy (HR-TEM).<br />

Figure 67-A present the HR-TEM image of the 25 nm TiO2 layer calc<strong>in</strong>ed at 500ºC.<br />

Rough estimation of the particle size diameter would be 5-10 nm. The particle sizes<br />

observed with TEM does not seem to change significantly from the particle size <strong>in</strong> the<br />

99<br />

A<br />

B<br />

C


4 Results and discussion<br />

sol. The average crystal size is 15 nm obta<strong>in</strong>ed from the XRD analysis on powders which<br />

is more than half of the f<strong>in</strong>al membrane layer thickness. Similar particle size range has<br />

been found <strong>for</strong> commercial TiO2 membranes. Defect free 25 nm th<strong>in</strong> TiO2 layers based<br />

on the stack<strong>in</strong>g of 2-5 particles is expected to be difficult.<br />

γ-Al2O3<br />

Tungsten<br />

A B<br />

γ-Al2O3<br />

Figure 67 A) TEM image of a TiO2 membrane calc<strong>in</strong>ed at 500ºC supported by γ-Al2O3. B) ordered atomic<br />

structure is observed present<strong>in</strong>g anatase TiO2<br />

Figure 67-B shows a higher magnification to show the atomic order<strong>in</strong>g present<strong>in</strong>g anatase<br />

TiO2. No rutile TiO2 was observed as <strong>in</strong> agreement with XRD analysis on bulk<br />

membrane material. Focussed Raman spectroscopy was applied on the TiO2 and ZrO2<br />

membranes obta<strong>in</strong><strong>in</strong>g ma<strong>in</strong>ly bands assigned to the support<strong>in</strong>g alum<strong>in</strong>a (Table 28 and<br />

Figure 68). Raman on the TiO2 membrane confirms the presence of anatase TiO2 by the<br />

bands at (520, 148 cm -1 ). Rutile TiO2 can not be excluded due to a very weak band at 450<br />

and 453 cm -1 , respectively 514 and 632 nm laser excitation.<br />

100<br />

TiO2


4 Results and discussion<br />

Raman Intensity<br />

Table 28 Raman bands of the TiO2 and ZrO2 membrane assigned to the microstructural phases. 138<br />

(s: strong, w: weak, vw: very weak).<br />

Laser excitation TiO2 membrane ZrO2 membrane<br />

514.5 nm, 40.1 mW 632.8 nm, 4.8 mW<br />

Wavelenth <strong>in</strong> cm -1<br />

520<br />

520w 522w Anatase TiO2<br />

468vw Monocl<strong>in</strong>ic ZrO2<br />

450vw 453vw<br />

Monocl<strong>in</strong>ic ZrO2<br />

or Rutile TiO2<br />

432w 433w α-Al2O3 α-Al2O3<br />

419s 419s α-Al2O3 α-Al2O3<br />

380s 381s α-Al2O3 α-Al2O3<br />

148s 148s Anatase TiO2<br />

468<br />

450<br />

432<br />

419<br />

A -- TiO2<br />

-- ZrO2<br />

B<br />

381<br />

148<br />

500 400 300 200 100<br />

Wavenumber/cm -1<br />

101<br />

Raman Intensity<br />

522<br />

453<br />

433<br />

419<br />

374<br />

148<br />

500 400 300 200 100<br />

Wavenumber/cm -1<br />

Figure 68 Raman spectra of TiO2 (red) and ZrO2 (brown) membranes calc<strong>in</strong>ed at 500ºC. Excitation: A) 514.5<br />

nm, 40.1 mW and B) 632.8, 4.8mW.<br />

Figure 69-B presents a homogeneous th<strong>in</strong> 25-30 nm ZrO2 layer conta<strong>in</strong><strong>in</strong>g ordered<br />

zirconium atoms (Figure 69-A). No particles and pores could be observed. Ordered ZrO2<br />

was observed <strong>in</strong> the scale of the membrane layer thickness <strong>in</strong>dicat<strong>in</strong>g fully crystall<strong>in</strong>e<br />

layer. Fully crystall<strong>in</strong>e 25 nm th<strong>in</strong> layers with the absence of small particles might <strong>for</strong>m a<br />

gastight layer. The presence of these ZrO2 nanocrystals might expla<strong>in</strong> the rather small<br />

BET specific surface area due to the <strong>in</strong>accessibility of N2.<br />

The electron diffraction pattern obta<strong>in</strong>ed from the HR-TEM analysis on the ZrO2<br />

membrane calc<strong>in</strong>ed at 500ºC showed crystall<strong>in</strong>e and amorphous <strong>in</strong>tensity. The


4 Results and discussion<br />

amorphous <strong>in</strong>tensity orig<strong>in</strong>ates from the support<strong>in</strong>g γ-Al2O3 layer and the nanocrystall<strong>in</strong>e<br />

<strong>in</strong>tensity to tetragonal ZrO2 phase as could expected from the XRD results on powders.<br />

Raman spectroscopy presents ma<strong>in</strong>ly alum<strong>in</strong>a (Table 28 and Figure 68). Monocl<strong>in</strong>ic<br />

ZrO2 enrichments on the surface might be identified by the very weak band at 468 and<br />

450 cm -1 . Tetragonal ZrO2 bands (e.g. 370 cm -1 ) are hard to dist<strong>in</strong>guish because this band<br />

is <strong>in</strong> the same wave number region where the α-Al2O3 bands are observed. Raman studies<br />

with 488 nm excitation on both TiO2 and ZrO2 membranes could not reveal more<br />

contrast.<br />

A<br />

ZrO2<br />

γ-Al2O3<br />

Figure 69 A and B) TEM images of a ZrO2 membrane calc<strong>in</strong>ed at 500ºC supported by γ-Al2O3.<br />

Cross section TEM image show 20-30 nm Ti0.5Zr0.5O2 membranes that are calc<strong>in</strong>ed at<br />

500 and 600ºC. Both membranes obta<strong>in</strong> amorphous structures. The electron diffraction<br />

patterns obta<strong>in</strong>ed by TEM do not <strong>in</strong>dicate the presence of crystall<strong>in</strong>e doma<strong>in</strong>s <strong>in</strong> the<br />

Ti0.5Zr0.5O2 layer calc<strong>in</strong>ed at 500 and 600ºC. The absence of orthorhombic Ti0.5Zr0.5O2<br />

which can be observed by XRD at 600ºC <strong>in</strong> the bulk material can be the result of effects<br />

that result from <strong>in</strong>teractions between the layer and the support material.<br />

Raman spectroscopy demonstrates ma<strong>in</strong>ly alum<strong>in</strong>a. No clear trends are observed on the<br />

difference <strong>in</strong> calc<strong>in</strong>ation temperature of the membranes. The weak band at 450 cm -1 , at<br />

both the laser excitations, can either be assigned to rutile TiO2 or to monocl<strong>in</strong>ic ZrO2<br />

(Table 29 and Figure 71). Raman spectroscopy could not show any signs <strong>for</strong> tetragonal<br />

ZrO2, anatase TiO2 or orthorhombic TiZrO4. Ti-O-Al, Zr-O-Al or Ti-O-Zr 139 bands were<br />

not visible.<br />

102<br />

Tungsten<br />

ZrO2<br />

γ-Al2O3<br />

B


4 Results and discussion<br />

Tungsten 500ºC A 600ºC<br />

B<br />

Ti0.5Zr0.5O2<br />

γ-Al2O3<br />

Figure 70 TEM images of a Ti0.5Zr0.5O2 membrane calc<strong>in</strong>ed at 500 (A) and 600ºC (B) supported by γ-Al2O3.<br />

Table 29 Raman bands on Ti0.5Zr0.5O2 membranes assigned to the microstructural phases. 138<br />

(vs: very strong, s: strong, w: weak)<br />

Laser excitation Ti0.5Zr0.5O2 membranes<br />

488 nm, 250 mW 514.5 nm, 40.1 mW 500ºC 600ºC<br />

Wavelenth <strong>in</strong> cm -1<br />

753s 752s α-Al2O3<br />

647s 647s<br />

α-Al2O3<br />

579w 579w<br />

α-Al2O3<br />

450w 450w Monocl<strong>in</strong>ic ZrO2 or Rutile TiO2<br />

433w 432w<br />

α-Al2O3<br />

419vs 419vs<br />

α-Al2O3<br />

380s 381s<br />

α-Al2O3<br />

103<br />

Tungsten<br />

γ-Al2O3<br />

Ti0.5Zr0.5O2


4 Results and discussion<br />

Raman Intensity<br />

752<br />

647<br />

579<br />

800 600 400<br />

Wavenumber/cm -1<br />

104<br />

419<br />

432<br />

450<br />

380<br />

600ºC<br />

500ºC<br />

Figure 71 Raman spectra of the Ti0.5Zr0.5O2 membranes calc<strong>in</strong>ed at 500ºC (green) and at 600ºC (blue)<br />

us<strong>in</strong>g the excitation of 514.5 nm, 20.6 mW.<br />

4.3.3.3 Am<strong>in</strong>e approach - Organic content <strong>in</strong> membrane layers<br />

The effective pore size <strong>in</strong> the layers can be determ<strong>in</strong>ed by an amorphous film around the<br />

nanocrystals or <strong>in</strong> comb<strong>in</strong>ation with the presence of organic residues orig<strong>in</strong>at<strong>in</strong>g from the<br />

am<strong>in</strong>es. The latter hypothesis was put <strong>for</strong>ward by Duke et al. 94 <strong>for</strong> carbon rema<strong>in</strong><strong>in</strong>gs<br />

and by Xomeritakis et al. 140 <strong>for</strong> am<strong>in</strong>e groups <strong>in</strong> microporous silica membranes.<br />

The carbon content at the outer surface of the membrane layers as determ<strong>in</strong>ed by XPS<br />

decreases with calc<strong>in</strong>ation temperature and is slightly higher than the carbon content of<br />

the bulk material as determ<strong>in</strong>ed by ICP (Figure 72). However, sputter<strong>in</strong>g the surface with<br />

argon <strong>for</strong> 2 m<strong>in</strong>utes reduces the carbon content to comparable values. This suggests that<br />

the observed high carbon concentrations orig<strong>in</strong>ate significantly from atmospheric<br />

contam<strong>in</strong>ation. Strik<strong>in</strong>g is the agreement between the carbon content trend <strong>in</strong> the powders<br />

and the layer with <strong>in</strong>creas<strong>in</strong>g ZrO2 <strong>in</strong> the sample. Both bulk material and membrane layer<br />

show an <strong>in</strong>crease <strong>in</strong> carbon content with an <strong>in</strong>creas<strong>in</strong>g ZrO2 content. This can be<br />

expla<strong>in</strong>ed by the slightly higher reactivity of the titanium precursor compared to that of<br />

the zirconium precursor result<strong>in</strong>g <strong>in</strong> stronger organic-<strong>in</strong>organic bonds.


4 Results and discussion<br />

Mol% Carbon<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0<br />

140<br />

400<br />

Temperature [ºC]<br />

105<br />

500<br />

600<br />

100%<br />

50%<br />

0%<br />

Mol % TiO 2<br />

<strong>in</strong> ZrO 2<br />

Figure 72 mol% carbon <strong>in</strong> the dried DEA sols calc<strong>in</strong>ed at 140, 400, 500 and 600ºC <strong>for</strong> 0, 50 and 100 mol% TiO2<br />

<strong>in</strong> ZrO2.


4 Results and discussion<br />

4.3.4 <strong>Gas</strong> permeation<br />

The results of all He and SF6 gas permeation measurements are summarized <strong>in</strong> Figure 73.<br />

The membrane numbers are listed <strong>in</strong> Table 30. The permselectivity of the membranes<br />

that have been calc<strong>in</strong>ed at 400ºC and of the γ-Al2O3 membrane are all similar to what can<br />

be expected from the Knudsen diffusion (6.0). An <strong>in</strong>crease <strong>in</strong> the calc<strong>in</strong>ation temperature,<br />

to 500ºC, results <strong>in</strong> a strong reduction of He permeation from 4⋅10 -8 mol/s⋅m 2 ⋅Pa to<br />

approximately 2⋅10 -9 mol/s⋅m 2 ⋅Pa. A calc<strong>in</strong>ation temperature of 600ºC causes a<br />

significant <strong>in</strong>crease <strong>in</strong> the He permeance to at least 2⋅10 -8 mol/s⋅m 2 ⋅Pa and a He/SF6<br />

permselectivity of up to 30. It should be noted that both the He and the SF6 permeability<br />

of membrane #204 significantly exceed those of all other membranes, which suggests<br />

that this particular membrane conta<strong>in</strong>s substantially more large pores or defects. All other<br />

results <strong>in</strong>dicate that mass transport through the Ti0.5Zr0.5O2 layers calc<strong>in</strong>ed above 400ºC is<br />

no longer dom<strong>in</strong>ated by the Knudsen diffusion, but that at least <strong>for</strong> the He transport there<br />

is a substantial contribution from micropore diffusion.<br />

He Permeance (10 -8 mol/s m 2 Pa)<br />

109 15<br />

10<br />

5<br />

0<br />

Permeance<br />

Permselectivity<br />

Double Coat<strong>in</strong>g<br />

Support 400ºC 400ºC 500ºC 500ºC 600ºC 600ºC<br />

#109 #206 #208 #132 #202 #205 #204<br />

Figure 73: He permeance and He/SF6 permselectivity of Ti0.5Zr0.5O2 membranes calc<strong>in</strong>ed at 400, 500 and<br />

600ºC measured at 200ºC.<br />

Table 30 Overview of characterised membranes with gas permeation<br />

F<strong>in</strong>al layer Calc<strong>in</strong>ation temperature Membrane #<br />

γ-Al2O3 600ºC 109<br />

Ti0.5Zr0.5O2 400ºC 206, 209<br />

500ºC 132, 143, 202<br />

600ºC 204, 205<br />

106<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

He/SF 6 Permselectivity


4 Results and discussion<br />

Permeance (10 -9 mol/s m2Pa)<br />

Permeance (10 -9 mol/s m 2 Pa)<br />

1.E-06<br />

10 -6<br />

1.E-07<br />

10 -7<br />

1.E-08<br />

10 -8<br />

1.E-09<br />

10 -9<br />

1.E-10 1E-08<br />

10 -10<br />

10 -8<br />

10 -9<br />

1E-09<br />

10 -10<br />

107<br />

#204; 600ºC<br />

#205; 600ºC<br />

1E-10<br />

0.2 0.3 0.4 0.5 0.6 0.7 0.8<br />

K<strong>in</strong>etic diameter (nm)<br />

#143; 500ºC<br />

#132; 500ºC<br />

#202; 500ºC<br />

Figure 74: Permeability (measured at 200ºC) of Ti0.5Zr0.5O2 membranes calc<strong>in</strong>ed at 500 and 600ºC <strong>for</strong><br />

different gasses as a function of their k<strong>in</strong>etic diameter. The l<strong>in</strong>es serve only as a guide to the eye.<br />

In Figure 74 the measured permeances of a series of gasses with k<strong>in</strong>etic diameters<br />

rang<strong>in</strong>g from 0.26 to 0.55 nm are presented <strong>for</strong> all membranes calc<strong>in</strong>ed at 500 and 600ºC.<br />

All membranes, demonstrate a significant <strong>in</strong>crease <strong>in</strong> permeability <strong>for</strong> gasses with a<br />

k<strong>in</strong>etic diameter below 0.3 nm. These data are <strong>in</strong>dicative of the existence of pores <strong>in</strong> the<br />

Ti0.5Zr0.5O2 layers hav<strong>in</strong>g dimensions which make them primarily accessible to relatively<br />

small molecules such as He and H2. This is especially manifest <strong>in</strong> membrane #205, which<br />

achieves a measured permselectivity <strong>for</strong> He/H2 and He/N2 of 2.0 and 14, respectively.<br />

In Figure 75 the effect of temperature on H2 and CO2 permeation are presented <strong>for</strong><br />

membrane #205 <strong>in</strong> Arrhenius-type plots. The l<strong>in</strong>earity of the relation between logarithm<br />

of permeance and reciprocal temperature confirms a thermally activated transport<br />

mechanism. The activation energy Ea can have any sign; <strong>in</strong> this study the sign is positive<br />

when the permeation <strong>in</strong>creases with temperature. The measured activation energy <strong>for</strong> H2<br />

and CO2 transport amount to 8.4 and 4.9 kJ/mol, respectively. As a result of these


4 Results and discussion<br />

differences the H2/CO2 permselectivity of this membrane <strong>in</strong>creases from 4.2 to 5.3 as the<br />

temperature <strong>in</strong>creases from 115 to 190ºC. This is comparable to values observed <strong>for</strong> ZrO2<br />

membranes. 141,142 The activation energies <strong>for</strong> He transport through membranes #202,<br />

#204 and #205 are 3.9, 7.9 and 15 kJ/mol, respectively, which is <strong>in</strong>dicative of an<br />

<strong>in</strong>creas<strong>in</strong>g degree of micropore diffusion <strong>in</strong> these membranes.<br />

Ln[Permeance s m 2 Pa/mol)]<br />

0.24 228 0.25 0.26 189 0.27 0.28 156 0.29 0.30 103 0.31 103 0.32<br />

-12.0<br />

7<br />

-12.5<br />

-13.0<br />

-13.5<br />

-14.0<br />

T (ºC)<br />

-14.5<br />

3<br />

0.24 0.25 0.26 0.27 0.28 0.29 0.30 0.31 0.32<br />

1000/RT (mol/kJ)<br />

108<br />

Hydrogen<br />

Carbon dioxide<br />

Permselectivity<br />

Figure 75: H2/CO2 permselectivity as a function of temperature and Arrhenius plots <strong>for</strong> H2 and CO2<br />

permeation of a Ti0.5Zr0.5O2 membrane (#205) calc<strong>in</strong>ed at 600ºC.<br />

Because of its outstand<strong>in</strong>g per<strong>for</strong>mance, the hydrothermal stability of this particular<br />

membrane (#205) has been tested. The effect of exposure to water vapour on He and N2<br />

permeation is presented <strong>in</strong> Figure 76. Dur<strong>in</strong>g the exposure, a strong decrease <strong>in</strong> both the<br />

He and N2 permeance is immediately observed. The amount of permeat<strong>in</strong>g water was too<br />

small to be determ<strong>in</strong>ed gravimetrically. After term<strong>in</strong>ation of the steam exposure,<br />

degass<strong>in</strong>g results <strong>in</strong> a steady <strong>in</strong>crease of both He and N2 permeation. Only after a period<br />

of approximately 750 hours the He permeation starts to decrease. Both permeation<br />

measurements and visual <strong>in</strong>spection of the membrane surface after the experiment<br />

exclude the occurrence of layer delam<strong>in</strong>ation which can result from hydrothermal<br />

treatment. In fact, a He/N2 permselectivity above 10 is observed aga<strong>in</strong> after exposure to<br />

steam after flush<strong>in</strong>g the membrane <strong>for</strong> 500 h which demonstrates a high degree of<br />

stability of the micropore structure. Besides, the γ-Al2O3 <strong>in</strong>termediate layer was not<br />

delam<strong>in</strong>ated as expected from the hydrothermal test<strong>in</strong>g on SiO2 membranes of the<br />

recently reported work of Duke et al. 94<br />

6<br />

5<br />

4<br />

H 2/CO 2 Permselectivty


4 Results and discussion<br />

He Permeance (mol/s m 2 Pa)<br />

2.5E-08<br />

2.5�10 8<br />

2.0E-08<br />

2.0·10 8<br />

1.5E-08<br />

1.5·10 8<br />

1.0·10 8<br />

1.0E-08<br />

0.5·10 8<br />

5.0E-09<br />

0.0·10 8<br />

Helium Nitrogen<br />

0.0E+00<br />

0.0E+00<br />

-250 0 250 500 750 1000 1250<br />

Time after Steam (h)<br />

109<br />

5.0E-09<br />

5�10 -9<br />

4.0E-09<br />

4·10 -9<br />

3.0E-09<br />

3·10 -9<br />

2·10 -9<br />

2.0E-09<br />

1·10 -9<br />

1.0E-09<br />

0·10 -9<br />

Figure 76: He (♦) and N2 (■) permeance of a Ti0.5Zr0.5O2 membrane (#205) calc<strong>in</strong>ed at 600ºC be<strong>for</strong>e and<br />

after exposure to 3 bar of steam at 200ºC.<br />

N 2 Permeance (mol/s m 2 Pa)


5 Conclusions and recommendations<br />

5 Conclusions and recommendations<br />

First, this chapter <strong>in</strong>cludes the conclusions of the studied zeolite materials. The basic aim<br />

was to prepare zeolite material that could separate gasses by molecular siev<strong>in</strong>g.<br />

Recommendations on the zeolite materials are discussed to achieve this goal.<br />

Second, the results on sol-gel derived TiO2-ZrO2 sols, bulk materials, layers and<br />

membranes are summarised and related to the preparation of the TiO2-ZrO2 gas<br />

separation membrane goal. Additionally, suggestions <strong>for</strong> further research are outl<strong>in</strong>ed to<br />

achieve <strong>in</strong>dustrial goals.<br />

8-r<strong>in</strong>g Deca-dodecasil 3R and 6-r<strong>in</strong>g Dodecasil 1H zeolite materials<br />

Deca-dodecasil 3R (DDR) hydrothermal synthesis is complex and <strong>for</strong>med zeolite<br />

mixtures of DDR with DOH or SGT (Dodecasil 1H or Sigma 2). The synthesis of DDR<br />

as a potential CO2/N2 separation membrane material was unsuccessful. Further syntheses<br />

with vary<strong>in</strong>g gel compositions of nutrients from several suppliers and reaction conditions<br />

should be per<strong>for</strong>med <strong>in</strong> order to understand how to prepare s<strong>in</strong>gle phase DDR.<br />

Dodecasil 1H (DOH) crystal synthesis, structure direct<strong>in</strong>g agent (SDA) free synthesis and<br />

SDA-free DOH by means of post synthesis treatments were per<strong>for</strong>med to prepare allsilica<br />

zeolite material with pores <strong>in</strong>accessible to gasses with the exception of gasses with<br />

a k<strong>in</strong>etic diameter of H2 or smaller.<br />

DOH can be synthesised under standard conditions (Teflon l<strong>in</strong>ed autoclave heated<br />

under static conditions, 200°C, gel composition: 100SiO2:9-11ADA:70-270EN:3000-<br />

7400H2O <strong>for</strong>m<strong>in</strong>g crystals >100 µm). Chang<strong>in</strong>g the synthesis conditions from static to<br />

dynamic by means of autoclave rotation or stirr<strong>in</strong>g the gel <strong>in</strong> situ to obta<strong>in</strong> a more<br />

homogeneous gel mixture reduces the DOH crystallisation time from 21 days to 4 days<br />

coupled with a decrease <strong>in</strong> crystal size. The DOH crystal size can also be reduced by<br />

ag<strong>in</strong>g the gel at 80ºC <strong>for</strong> several hours be<strong>for</strong>e hydrothermal crystallisation at 200ºC. The<br />

DOH nucleation and growth can be decoupled.<br />

The DOH crystal size can be reduced to th<strong>in</strong> hexagonal plates with sizes <strong>in</strong> the order of<br />

10 µm be<strong>in</strong>g too large <strong>for</strong> membrane <strong>for</strong>mation or to act as seeds <strong>for</strong> the layer <strong>for</strong>mation<br />

by means of the secondary growth of DOH nuclei. The DOH crystal size might be<br />

synthesised smaller by means of further crystallisation optimisation. This might be<br />

accomplished by chang<strong>in</strong>g the gel composition, ag<strong>in</strong>g of the gel and reaction condition<br />

such as the heat<strong>in</strong>g ramp and stirr<strong>in</strong>g/rotat<strong>in</strong>g conditions.<br />

Secondary growth of DOH crystals <strong>in</strong> gel composition with the absence of SDA<br />

was unsuccessful. Low DOH yield was obta<strong>in</strong>ed us<strong>in</strong>g a small amount of SDA <strong>in</strong> the gel<br />

composition. These synthesised DOH crystals have a ~75% SDA cage occupancy. SDAfree<br />

DOH synthesis by means of seeded synthesis was not obta<strong>in</strong>ed. This proposed<br />

110


5 Conclusions and recommendations<br />

method by Grebner et al. 71,72 was not confirmed which might be expla<strong>in</strong>ed by the<br />

absence of SDAs or guest molecules to <strong>for</strong>m DOH cages.<br />

DOH Calc<strong>in</strong>ation <strong>in</strong> air <strong>for</strong> extended periods (21 days) at elevated temperatures<br />

(900ºC) could not result <strong>in</strong> complete SDA removal. A m<strong>in</strong>or calc<strong>in</strong>ation enhancement is<br />

observed <strong>for</strong> the DOH samples that are doped with traces of titanium. It is not certa<strong>in</strong> if<br />

this can be expla<strong>in</strong>ed by catalytic oxidation of titanium. Significant DOH cages were<br />

emptied by calc<strong>in</strong>ation when the DOH crystal size was reduced mechanically. However,<br />

crystal structure loss is <strong>in</strong>evitable dur<strong>in</strong>g ball mill<strong>in</strong>g DOH crystals. Quasi SDA-free<br />

DOH, with an cage occupancy of only 1% and high crystall<strong>in</strong>ity, was obta<strong>in</strong>ed after<br />

calc<strong>in</strong>ation at 900ºC <strong>for</strong> 5 hours when the atmospheric pressure was <strong>in</strong>creased twice to 50<br />

MPa <strong>for</strong> 30 m<strong>in</strong> (Hot isostatic pressure calc<strong>in</strong>ation).<br />

All silica DOH that is quasi SDA-free was prepared and might present hydrothermal<br />

stable microporous material with pores that are <strong>in</strong>accessible <strong>for</strong> CO2 and possibly open to<br />

H2. These DOH crystals should be studied with gas sorption to prove the H2 accessibility<br />

and diffusion. First DOH layers on α-Al2O3 supports were prepared with crystallisation<br />

times of only 24 hours.<br />

Sol-Gel derived membranes<br />

Polymeric Y2O3 or TiO2 mixed ZrO2 sols are synthesised <strong>for</strong> the preparation of<br />

ultramicroporous powders and th<strong>in</strong> films on γ-Al2O3 support<strong>in</strong>g membranes as potential<br />

gas separation membranes. Two routes have been selected, the Ketone and the Am<strong>in</strong>e<br />

approach based on the precursor modifiers.<br />

Acetyl acetone modified Zr-precursor, carboxylic catalysed and yttrium-hydrated<br />

sol syntheses resulted <strong>in</strong> ~5 nm stable yttrium stabilised zirconia (YSZ) sols. Structure<br />

direct<strong>in</strong>g agents (SDA) such as Pluronic F127 did not change the particle size <strong>in</strong> the sol.<br />

Caproic and nanonic acids catalysed sols resulted <strong>in</strong> the highest viscous stable sols.<br />

Fractal dimensions of these Ketone-sols would be <strong>in</strong><strong>for</strong>mative to study.<br />

8 mol % Y2O3 addition to the zirconia sols resulted <strong>in</strong> cubic 8YSZ material at<br />

temperatures above 400ºC. 8YSZ calc<strong>in</strong>ed dried sols are microporous with BET specific<br />

surface areas of ~50 m 2 /g. SDA addition to the 8YSZ sols, to mesostructure the cubic<br />

8YSZ nanoparticles, trans<strong>for</strong>med the material to a more mesoporous nature. TEM<br />

<strong>in</strong>vestigations on powders and on the surface of mesostructured 8YSZ membranes are<br />

advised. 8YSZ layers with the absence of SDAs might <strong>for</strong>m microporous layers with low<br />

permeability. Optimal calc<strong>in</strong>ation conditions such as dry<strong>in</strong>g, heat<strong>in</strong>g ramp, dwell time<br />

calc<strong>in</strong>ation time and cool<strong>in</strong>g ramp should be studied <strong>in</strong> detail.<br />

30-50 nm cubic 8YSZ films prepared by the Ketone-approach show He and N2<br />

transport by Knudsen diffusion due to defects or by too large pores <strong>in</strong> the f<strong>in</strong>al membrane<br />

layer. Defect free 8YSZ layers us<strong>in</strong>g the Ketone-approach should be prepared <strong>in</strong> order to<br />

111


5 Conclusions and recommendations<br />

study the permeability of these films as a function of pressure difference over the<br />

membrane.<br />

TiO2-ZrO2 and mixtures of 25, 50, 66, 75 and 90% mol TiO2 <strong>in</strong> ZrO2 were<br />

prepared us<strong>in</strong>g the Am<strong>in</strong>e-approach. Diethanolam<strong>in</strong>e or diisopropanolam<strong>in</strong>e precursor<br />

modified Ti/Zr precursors can result <strong>in</strong> ~5 nm stable l<strong>in</strong>ear polymeric sols similar to the<br />

state of the art SiO2 sols. It is believed that sol-gel derived ultramicroporous materials can<br />

be synthesised with l<strong>in</strong>ear polymeric sols alone. The solid concentration and the molar<br />

composition of these Am<strong>in</strong>e sols should be studied by means of SAXS and viscosity<br />

measurements.<br />

The s<strong>in</strong>gle oxides TiO2 and ZrO2 crystallise at temperatures below 400ºC<br />

result<strong>in</strong>g <strong>in</strong> mesoporous and microporous material, respectively. As expected from the<br />

l<strong>in</strong>ear Am<strong>in</strong>e-sols, the amorphous b<strong>in</strong>ary TiO2/ZrO2 materials are microporous between<br />

400 and 500ºC. The highest BET specific surface area of ~200 m 2 /g with ~1.0 nm<br />

estimated pore size (gas physisorption) is obta<strong>in</strong>ed <strong>for</strong> the Ti0.5Zr0.5O2 calc<strong>in</strong>ed at 500ºC.<br />

The crystallisation temperature of orthorhombic Ti0.5Zr0.5O2 is between 550 and 600ºC<br />

which is ~250ºC higher than the s<strong>in</strong>gle oxides. Diisopropanolam<strong>in</strong>e <strong>in</strong>stead of<br />

diethanolam<strong>in</strong>e postponed the crystallisation temperature of the TiO2-ZrO2 mixture.<br />

These microporous materials exhibit even higher specific surface areas at 400ºC. This<br />

might be expla<strong>in</strong>ed by the higher viscosity of the Am<strong>in</strong>e sols. The crystallisation<br />

temperature and the specific surface areas of the b<strong>in</strong>ary TiO2/ZrO2 material prepared by<br />

the Am<strong>in</strong>e-approach are higher than the Ketone-approach. However, the solid<br />

concentration and the sol composition of both approaches are different which make them<br />

difficult to compare.<br />

State of the art silica membranes have pores <strong>in</strong> the range of 0.3 nm ma<strong>in</strong>ly due to their<br />

small particles of amorphous nature. It might not be excluded that ultramicroporous<br />

<strong>in</strong>organic membranes can be prepared from sol-gel derived amorphous ceramics alone.<br />

Amorphous Ti0.5Zr0.5O2 layers might be ultramicroporous. Nevertheless, the physical<br />

properties such as the results <strong>for</strong>m XRD and gas sorption (H2, CO2, N2 at low and high<br />

pressures and temperatures) on bulk material should be studied <strong>in</strong> more detail on these<br />

TiO2-ZrO2 microporous materials. Chang<strong>in</strong>g the sol composition, dry<strong>in</strong>g and calc<strong>in</strong>ation<br />

procedures might be beneficial.<br />

20-60 nm th<strong>in</strong> homogeneous films can be prepared from TiO2, ZrO2 and b<strong>in</strong>ary<br />

oxides on γ-Al2O3 membranes us<strong>in</strong>g calc<strong>in</strong>ation temperatures <strong>in</strong> the range of 400 to<br />

600ºC.<br />

Knudsen mass transport is observed <strong>in</strong> anatase TiO2 or tetragonal ZrO2 films prepared by<br />

the Am<strong>in</strong>e approach. This <strong>in</strong>dicates the presence of pores larger than the k<strong>in</strong>etic diameter<br />

of the transported gasses (~0.5 nm). The larger pores <strong>in</strong> TiO2 films are <strong>in</strong> agreement with<br />

the mesoporous nature of the TiO2 bulk material. Larger pores <strong>in</strong> ZrO2 films can be<br />

112


5 Conclusions and recommendations<br />

mesoporous defects or <strong>in</strong>tercrystall<strong>in</strong>e channels between ZrO2 crystals that are <strong>in</strong> the<br />

same order as the layer thickness. It is expected that crystall<strong>in</strong>e TiO2 or ZrO2 may not<br />

<strong>for</strong>m ultramicroporous membranes with crystallisation temperatures of 500ºC and higher<br />

due to the relative large crystall<strong>in</strong>ity of these layers. Defect free, TiO2 or ZrO2<br />

membranes should be prepared and studied with gas permeability to confirm the absence<br />

of ultramicropores.<br />

H2/CO2 permselectivity higher than Knudsen factor is observed <strong>for</strong> Ti0.5Zr0.5O2 films<br />

calc<strong>in</strong>ed at 500 and 600ºC. He and H2 gas transport is thermally activated <strong>in</strong>dicat<strong>in</strong>g the<br />

presence of micropore diffusion. Knudsen mass transport is obta<strong>in</strong>ed <strong>for</strong> gasses with<br />

k<strong>in</strong>etic diameter of CO2 and larger. These results show that Ti0.5Zr0.5O2 films calc<strong>in</strong>ed at<br />

500 and 600ºC conta<strong>in</strong> a pore size distribution of ~0.3 to ~0.5 nm <strong>in</strong> diameter.<br />

The He permeance of 1·10 -7 mol/m 2 sPa with a He/N2 permselectivity of 5.9 or the He<br />

permeance 2·10 -8 mol/m 2 sPa with a He/N2 permselectivity of 14 are lower than state of<br />

the art SiO2 membranes but are higher than TiO2-ZrO2 membranes found <strong>in</strong> literature. 80<br />

These results fulfil the primary aim of achiev<strong>in</strong>g gas separation membranes from TiO2-<br />

ZrO2 material. The permeance might be <strong>in</strong>creased by the <strong>for</strong>mation of th<strong>in</strong>ner or more<br />

porous γ-Al2O3 <strong>in</strong>termediate layers. The permselectivity might be improved us<strong>in</strong>g<br />

structure direct<strong>in</strong>g agents (SDAs) <strong>in</strong> the sols, avoid<strong>in</strong>g larger pores or metal load<strong>in</strong>g <strong>in</strong><br />

the f<strong>in</strong>al membrane layer.<br />

The micropores <strong>in</strong> these membranes are stable <strong>for</strong> at least 1500 hours. Steam test results<br />

<strong>in</strong> reversible pore block<strong>in</strong>g without layer delam<strong>in</strong>ation or destruction while ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g<br />

the He/N2 permselectivity of ~10. These gas separation membranes show the chemical<br />

stability at high temperatures <strong>in</strong> humid conditions fulfill<strong>in</strong>g the aim of hydrothermally<br />

stable membrane preparation. This evidence <strong>in</strong>dicates that b<strong>in</strong>ary oxide 50 mol % TiO2 <strong>in</strong><br />

ZrO2 microporous th<strong>in</strong> layers could be alternatives to SiO2 membranes <strong>for</strong> precombustion<br />

applications. However, the permselectivity and permeability values of the prepared<br />

Ti0.5Zr0.5O2 membranes do not reach <strong>in</strong>dustrial targets and these membranes might not<br />

have sufficient hydrothermal stability. The hydrothermal stability might be improved by<br />

us<strong>in</strong>g SDAs used <strong>in</strong> hydrothermal stable SiO2 membranes.<br />

113


6 References<br />

6 References<br />

1. Metz, B., Davidson, O., de Con<strong>in</strong>ck, H., Loos, M. & Meyer, L. IPCC special report on<br />

carbon dioxide capture and storage (Cambridge university press, Cambridge, 2005).<br />

2. Bernal, M. P., Coronas, J., Menendez, M. & Santamaria, J. <strong>Separation</strong> of CO2/N2<br />

mixtures us<strong>in</strong>g MFI-type zeolite membranes. AICHE 50, 127-135 (2004).<br />

3. Goettlicher, G. Energetik der Kohlendioxidrückhaltung <strong>in</strong> Kraftwerken. Fortschritt-<br />

Berichte VDI, Energietechnik (1999).<br />

4. Bohnes, S., Van der Donk, G. J. W., Meulenberg, W. A., Scherer, V. & Stoever, D. <strong>in</strong><br />

Proceed<strong>in</strong>g of Porous Ceramic Materials (ed. Luyten, J.) (Brugge, Belgium, 2005).<br />

5. Bhave, R. <strong>Inorganic</strong> <strong>Membranes</strong>, Synthesis, Characterization and Properties (Van<br />

Nostrand Re<strong>in</strong>hold, New York, 1991).<br />

6. L<strong>in</strong>, Y. S. <strong>Microporous</strong> and dense <strong>in</strong>organic membranes: current status and prospective.<br />

<strong>Separation</strong> and Purification Technology 25, 39-55 (2001).<br />

7. Bredesen, R., Jordal, K. & Bolland, O. High-temperature membranes <strong>in</strong> power generation<br />

with CO2 capture. Chemical Eng<strong>in</strong>eer<strong>in</strong>g and Process<strong>in</strong>g 43, 1129 (2004).<br />

8. Pex, P. et al. <strong>in</strong> Eight <strong>in</strong>ternational conference on <strong>in</strong>organic membranes (eds. Ak<strong>in</strong>, F. T.<br />

& L<strong>in</strong>, Y. S.) 524 (C<strong>in</strong>c<strong>in</strong>nati, Ohio, 2004).<br />

9. Pan, X. L., Stroh, N., Brunner, H., Xiong, G. X. & Sheng, S. S. Pd/ceramic hollow fibers<br />

<strong>for</strong> H2 separation. <strong>Separation</strong> and Purification Technology 32, 265-270 (2003).<br />

10. Jun, C. S. & Lee, K. H. Preparation of palladium membranes from the reaction of<br />

Pd(C3H3)(C5H5) with H2: wet-impregnated deposition. Journal of Membrane Science<br />

157, 107-115 (1999).<br />

11. Yeung, K. L. & Varma, A. Novel preparation techniques <strong>for</strong> th<strong>in</strong> metal-ceramic<br />

composite membranes. AICHE 41, 2131-2139 (1995).<br />

12. Moss, T. S., Peachey, N. M., Wilson, M. S. & Dye, R. C. <strong>in</strong> Fourth <strong>in</strong>ternational<br />

conference on <strong>in</strong>organic membranes (ed. Fa<strong>in</strong>, D. E.) 343 (Gatl<strong>in</strong>burg, Tennessee, 1996).<br />

13. Edlund, D. J. & McCarthy, J. The Relationship between Intermetallic Diffusion and Flux<br />

Decl<strong>in</strong>e <strong>in</strong> Composite-Metal <strong>Membranes</strong> - Implications <strong>for</strong> Achiev<strong>in</strong>g Long Membrane<br />

Lifetime. Journal of Membrane Science 107, 147-153 (1995).<br />

14. Morooka, S. & Kusakabe, K. <strong>Inorganic</strong> membranes <strong>for</strong> gas separation at elevated<br />

temperatures. Industrial Ceramics 20, 15-18 (2000).<br />

15. Wagner, C. Beitrag zur Theorie des Anlaufvorganges. Zeitschrift fuer Physikalische<br />

Chemie B11, 25 (1930).<br />

16. Van der Haar, L. M. Mixed-conduct<strong>in</strong>g perovskite membranes <strong>for</strong> oxygen separation<br />

(PhD Thesis, University of Twente, Enschede, 2001).<br />

17. Vente, J., McIntosh, S., Haije, W. G. & Bouwmeester, H. J. M. Properties and<br />

per<strong>for</strong>mance of BaxSr1-xCo0.8Fe0.2O3 materials <strong>for</strong> oxygen transport membranes. Journal<br />

of Solid State electrochemistry 10, 581 (2006).<br />

18. Vente, J., Haije, H. & Rak, Z. <strong>in</strong> Eight <strong>in</strong>ternational conference on <strong>in</strong>organic membranes<br />

(eds. Ak<strong>in</strong>, F. T. & L<strong>in</strong>, Y. S.) 595 (C<strong>in</strong>c<strong>in</strong>nati, Ohio, 2004).<br />

19. Mert<strong>in</strong>s, F. H. B. Perovskite-type ceramic membranes; Partial oxidation of methane <strong>in</strong> a<br />

catalytic membrane reactor (PhD Thesis, University of Twente, Enschede, 2005).<br />

20. Bouwmeester, H. J. M., Kruidhof, H. & Burggraaf, A. J. Importance of the Surface<br />

Exchange K<strong>in</strong>etics as Rate Limit<strong>in</strong>g Step <strong>in</strong> Oxygen Permeation through Mixed-<br />

Conduct<strong>in</strong>g Oxides. Solid State Ionics 72, 185-195 (1994).<br />

21. Buechler, O., Serra, J. M., Meulenberg, W. A. & Sebold, D. Preparat<strong>in</strong> of th<strong>in</strong> La1xSrxCo1-yFeyO3-delta<br />

membranes supported on tailored ceramic substrates. Solid State<br />

Ionics 178, 91-99 (2007).<br />

114


6 References<br />

22. Shao, Z., Dong, H., Xiong, G., Cong, Y. & Yang, W. Per<strong>for</strong>mance of a mixed-conduct<strong>in</strong>g<br />

ceramic membrane reactor with high oxygen permeability <strong>for</strong> methane conversion.<br />

Journal of Membrane Science 183, 181-192 (2001).<br />

23. Aasland, S., Tangen, I. L., Wiik, K. & Odegard, R. Oxygen permeation of<br />

SrFe0.67Co0.33O3-δ. Solid State Ionics 135, 713-717 (2000).<br />

24. Qi, X. W. & L<strong>in</strong>, Y. S. Electrical conduction and hydrogen permeation through mixed<br />

proton-electron conduct<strong>in</strong>g strontium cerate membranes. Solid State Ionics 130, 149-156<br />

(2000).<br />

25. Cheng, S., Gupta, V. K. & L<strong>in</strong>, Y. S. <strong>in</strong> Eight <strong>in</strong>ternational conference on <strong>in</strong>organic<br />

membranes (eds. Ak<strong>in</strong>, F. T. & L<strong>in</strong>, Y. S.) 50 (C<strong>in</strong>c<strong>in</strong>nati, Ohio, 2004).<br />

26. Balachandran, U., Guan, J., Dorris, S. E., Bose, A. C. & Stiegel, G. J. <strong>in</strong> Fifth<br />

<strong>in</strong>ternational conference on <strong>in</strong>organic membranes (ed. S.I., N.) 652 (Nagoya, 1998).<br />

27. Meulenberg, W. A., Serra, J. M. & Schober, T. Preparation of proton conduct<strong>in</strong>g<br />

BaCe0.8Gd0.2O3 th<strong>in</strong> films. Solid State Ionics 177, 2851 (2006).<br />

28. White, J. H., Schwartz, M. & Sammells, A. F. 10 (Patent Eltron Research, Inc., Boulder,<br />

Colo, U.S., 2000).<br />

29. Balachandran, U. et al. <strong>in</strong> Eight <strong>in</strong>ternational conference on <strong>in</strong>organic membranes (eds.<br />

Ak<strong>in</strong>, F. T. & L<strong>in</strong>, Y. S.) 163 (C<strong>in</strong>c<strong>in</strong>nati, Ohio, 2004).<br />

30. Readman, J. E., Olafsen, A., Larr<strong>in</strong>g, Y. & Blom, R. La0.8Sr0.2Co0.2Fe0.8O3-delta as a<br />

potential oxygen carrier <strong>in</strong> a chemical loop<strong>in</strong>g type reactor, an <strong>in</strong>-situ powder X-ray<br />

diffraction study. Journal of Materials Chemistry 15, 1931-1937 (2005).<br />

31. Norby, T. & Larr<strong>in</strong>g, Y. Mixed hydrogen ion-electronic conductors <strong>for</strong> hydrogen<br />

permeable membranes. Solid State Ionics 136, 139-148 (2000).<br />

32. Norby, T., Wideroe, M., Glockner, R. & Larr<strong>in</strong>g, Y. Hydrogen <strong>in</strong> oxides. Dalton<br />

Transactions, 3012-3018 (2004).<br />

33. Rothenberger, K. S. et al. Per<strong>for</strong>mance test<strong>in</strong>g of hydrogen transport membranes at<br />

elevated temperatures and pressures. Abstracts of Papers of the American Chemical<br />

Society 218, U634-U635 (1999).<br />

34. Balachandran, U., Lee, T. H., Wang, S. & Dorris, S. E. Use of mixed conduct<strong>in</strong>g<br />

membranes to produce hydrogen by water dissociation. International Journal of<br />

Hydrogen Energy 29, 291-296 (2004).<br />

35. Song, S. J., Wachsman, E. D., Rhodes, J., Dorris, S. E. & Balachandran, U. Hydrogen<br />

permeability of SrCe1-XMxO3-delta (x=0.05, M=Eu, Sm). Solid State Ionics 167, 99-105<br />

(2004).<br />

36. Rouquerol, J. et al. Recommendation <strong>for</strong> the characterization of porous solids. Pure &<br />

applied chemistry 66, 1739 (1984).<br />

37. Duke, M. C., da Costa, J. C. D., Do, D. D., Gray, P. G. & Lu, G. Q. Hydrothermally<br />

robust molecular sieve silica <strong>for</strong> wet gas separation. Advanced Functional Materials 16,<br />

1215 (2006).<br />

38. Ramsay, J. D. F. & Kallus, S. <strong>in</strong> Recent Advances <strong>in</strong> <strong>Gas</strong> <strong>Separation</strong> by <strong>Microporous</strong><br />

Ceramic <strong>Membranes</strong> (ed. Kanellopoulos, N. K.) 373-395 (Elsevier, Attikis, 2000).<br />

39. www.iza-structure.org.<br />

40. Breck, D. W. Zeolite molecular sieves: Structure chemistry and use (Wiley, New York,<br />

1974).<br />

41. Barrer, R. M. Hydrothermal chemistry of zeolites (Acadamic Press, New York, 1982).<br />

42. Julbe, A., Motuzas, J., Cazevielle, F., Volle, G. & Guizard, C. Synthesis of sodalite/alpha<br />

Al2O3 composite membranes by microwave heat<strong>in</strong>g. <strong>Separation</strong> and Purification<br />

Technology 32, 139-149 (2003).<br />

43. Julbe, A. <strong>in</strong> Studies <strong>in</strong> Surface Science and Catalysis (eds. Cejka, J. & Bekkum van, H.)<br />

p135 (Elsevier B.V., Amsterdam, 2005).<br />

115


6 References<br />

44. den Exter, M. J., Jansen, J. C. & Bekkum van, H. <strong>in</strong> Studies <strong>in</strong> Surface Science and<br />

Catalysis (eds. Weitkamp, J., Karge, H. G., Pfeifer, H. & Hölderich, W.) 1159 (Elsevier<br />

science B.V., Amsterdam, 1994).<br />

45. Bruggraaf, A. J. <strong>in</strong> Fundamentals of <strong>in</strong>organic membrane science and technology (eds.<br />

Bruggraaf, A. J. & Cot, L.) 331-435 (Elsevier, Amsterdam, 1996).<br />

46. Lovallo, M. C., Gouz<strong>in</strong>is, A. & Tsapatsis, M. Synthesis and characterization of oriented<br />

MFI membranes prepared by secondary growth. AICHE 44, 1903-1913 (1998).<br />

47. Hasegawa, Y. et al. <strong>Separation</strong> of CO2-CH4 and CO2-N2 systems us<strong>in</strong>g ion-exchanged<br />

FAU-type zeolite membranes with different Si/Al ratios. Korean Journal of Chemical<br />

Eng<strong>in</strong>eer<strong>in</strong>g 19, 309-313 (2002).<br />

48. Hasegawa, Y., Kusakabe, K. & Morooka, S. Effect of temperature on the gas permeation<br />

properties of NaY-type zeolite <strong>for</strong>med on the <strong>in</strong>ner surface of a porous support tube.<br />

Chemical Eng<strong>in</strong>eer<strong>in</strong>g Science 56, 4273-4281 (2001).<br />

49. Coronas, J., Falconer, J. L. & Noble, R. D. Characterization and permeation properties of<br />

ZSM-5 tubular membranes. AICHE 43, 1797-1812 (1997).<br />

50. Tuan, V. A., Falconer, J. L. & Noble, R. D. Alkali-free ZSM-5 membranes: Preparation<br />

conditions and separation per<strong>for</strong>mance. Industrial & Eng<strong>in</strong>eer<strong>in</strong>g Chemistry Research<br />

38, 3635-3646 (1999).<br />

51. Burggraaf, A. J., Vroon, Z., Keizer, K. & Verweij, H. Permeation of s<strong>in</strong>gle gases <strong>in</strong> th<strong>in</strong><br />

zeolite MFI membranes. Journal of Membrane Science 144, 77-86 (1998).<br />

52. Richter, H., Voigt, I., Fischer, G. & Puhlfurss, P. Preparation of zeolite membranes on the<br />

<strong>in</strong>ner surface of ceramic tubes and capillaries. <strong>Separation</strong> and Purification Technology<br />

32, 133-138 (2003).<br />

53. Ando, Y., Hirano, Y., Mase, S. & Taguchi, H. <strong>in</strong> Fifth <strong>in</strong>ternational conference on<br />

<strong>in</strong>organic membranes (ed. S.I., N.) 124 (Nagoya, 1998).<br />

54. Rocha, J. & Anderson, M. W. <strong>Microporous</strong> titanosilicates and other novel mixed<br />

octahedral-tetrahedral framework oxides. European Journal of <strong>Inorganic</strong> Chemistry, 801-<br />

818 (2000).<br />

55. Kuznicki, S. M. et al. A titanosilicate molecular sieve with adjustable pores <strong>for</strong> sizeselective<br />

adsorption of molecules. Nature 412, 720-724 (2001).<br />

56. Corma, A., Rey, F., Rius, J., Sabater, M. J. & Valencia, S. Supramolecular selfassembled<br />

molecules as organic direct<strong>in</strong>g agent <strong>for</strong> synthesis of zeolites. Nature 431,<br />

287-290 (2004).<br />

57. Guan, G. Q., Kusakabe, K. & Morooka, S. <strong>Gas</strong> permeation properties of ion-exchanged<br />

LTA-type zeolite membranes. <strong>Separation</strong> Science and Technology 36, 2233 (2001).<br />

58. Hedlund, J., Schoeman, B. & Sterte, J. Ultrath<strong>in</strong> oriented zeolite LTA films. Chemical<br />

Communications, 1193-1194 (1997).<br />

59. Hedlund, J., Schoeman, B. J. & Sterte, J. <strong>in</strong> Progress <strong>in</strong> Zeolite and <strong>Microporous</strong><br />

Materials, Pts a-C 2203-2210 (1997).<br />

60. Gies, H. Studies on Clathrasils .9. Crystal-Structure of Deca-Dodecasil 3R, the Miss<strong>in</strong>g<br />

L<strong>in</strong>k between Zeolites and Clathrasils. Zeitschrift Fur Kristallographie 175, 93-104<br />

(1986).<br />

61. Yaijma, K., Nakayama, K., Ni<strong>in</strong>o, M., Tomita, T. & Yoshida, S. <strong>in</strong> Proceed<strong>in</strong>gs of the<br />

9th <strong>in</strong>ternational conference on <strong>in</strong>organic membranes (eds. Bredesen, R. & Raeder, H.)<br />

(Tapir Uttrykk, Lillehammer, Norway, 2006).<br />

62. Tomita, T., Nakayama, K. & Sakai, H. <strong>Gas</strong> separation characteristics of DDR type zeolite<br />

membrane. <strong>Microporous</strong> and Mesoporous Materials 68, 71-75 (2004).<br />

63. Nakayama, K., Suzuki, K., Yoshida, M., Yajima, K. & Tomita, T. 33 (NGK <strong>in</strong>sulators,<br />

Ltd, Japan, 2005).<br />

64. Clark, T. et al. <strong>in</strong> 14th Annual Meet<strong>in</strong>g of the North American Membrane Society<br />

(Jackson Hole, WY, 2003).<br />

116


6 References<br />

65. Van den Berg, A. W. C. <strong>in</strong> Opportunities and limitations of hydrogen storage <strong>in</strong> zeolitic<br />

clathrates (University of Delft, 2006).<br />

66. den Exter, M. J. Exploratory study of the synthesis and properties of 6-, 8- and 10-R<strong>in</strong>g<br />

tectosilicates and their potential application <strong>in</strong> zeolite membranes (PhD thesis,<br />

University of Delft, 1996).<br />

67. Gies, H., Gerke, H. & Liebau, F. Dodecasile - e<strong>in</strong>e neue Reihe polytyper<br />

E<strong>in</strong>schlussverb<strong>in</strong>dungen von SiO2. Angewandte Chemie 94, 215 (1982).<br />

68. Baerlocher, C., Meier, W. M. & Olson, D. H. Atlas of Zeolite Framework Types<br />

(Elsevier, Amsterdam, 2001).<br />

69. Gies, H. 1-Am<strong>in</strong>oadamantane as guest molecule <strong>in</strong> dodecasil 1H: an X-ray<br />

crystallographic study. Journal of Inclusion Phenomena 4, 85-91 (1986).<br />

70. Gerke, H. & Gies, H. Studies on clathrasils. IV. Zeitschrift Für Kristallographie 166, 11-<br />

22 (1984).<br />

71. Grebner, M., Reich, A., Schüth, F. & Unger, K. (Merck Patent Gesellschaft 024962,<br />

Germany, 1993).<br />

72. Grebner, M., Reichert, H., Schüth, F. & Unger, K. <strong>in</strong> Characterization of Porous Solids<br />

Iii 545-550 (1987).<br />

73. Grebner, M. D., Reich, A., Schüth, F., Unger, K. K. & Franz, K. D. Influence of<br />

Synthesis Conditions on the Morphology of Dodecasil 1h. Zeolites 13, 139-144 (1993).<br />

74. Müller, U. et al. high-resolution sorption studies of argon and nitrogen on large crystals<br />

of microporous zeolite ZSM-5. Fresenius Zeitung Analytic Chemie 333, 433-436 (1989).<br />

75. Van de Goor, G., L<strong>in</strong>dlar, B., Felsche, J. & Behrens, P. Solvent-free synthesis of<br />

clathrasils us<strong>in</strong>g metal-organic complexes as structure-direct<strong>in</strong>g agents. Journal of<br />

chemical society chemical communications 24, 2559 (1995).<br />

76. Livage, J. & Sanchez, C. Sol-Gel Chemistry. Journal of Non-Crystall<strong>in</strong>e Solids 145, 11-<br />

19 (1992).<br />

77. Br<strong>in</strong>ker, C. J. & Scherer, G. W. Sol-Gel science (Acadamic Press, 1990).<br />

78. Benfer, S., Arki, P. & Tomandl, G. Ceramic membranes <strong>for</strong> filtration applications -<br />

Preparation and characterization. Advanced Functional Materials 6, 495 (2004).<br />

79. Richter, H. Herstellung keramischer nanofiltrationsmembranen aus ZrO2 und TiO2<br />

(Technical University Bergacadamie Freiberg, 1999).<br />

80. Spijksma, G. I. et al. <strong>Microporous</strong> zirconia-titania composite membranes derived from<br />

diethanolam<strong>in</strong>e-modified precursors. Advanced Materials 18, 2165 (2006).<br />

81. Spijksma, G. (PhD Thesis, University of Twente, Enschede, 2006).<br />

82. Van Gestel, T., Kruidhof, H., Blank, D. H. A. & Bouwmeester, H. J. M. ZrO2 and TiO2<br />

membranes <strong>for</strong> nanofiltration and pervaporation - Part 1. Preparation and characterization<br />

of a corrosion-resistant ZrO2 nanofiltration membrane with a MWCO < 300. Journal of<br />

Membrane Science 284, 128-136 (2006).<br />

83. Aust, U., Benfer, S., Dietze, M., Rost, A. & Tomandl, G. Development of microporous<br />

ceramic membranes <strong>in</strong> the system TiO2/ZrO2. Journal of Membrane Science 281, 463-<br />

471 (2006).<br />

84. Meulenberg, W. A., Mertens, J., Bram, M., Buchkremer, H. & Stöver, D. Graded porous<br />

TiO2 membranes <strong>for</strong> microfiltration. Journal of the European Ceramic Society, In press<br />

(2005).<br />

85. Cot, L. et al. <strong>Inorganic</strong> membranes and solid state sciences. Solid State Sciences 2, 313-<br />

334 (2000).<br />

86. Uhlhorn, R. J. R., Veld, M., Keizer, K. & Burggraaf, A. J. High Permselectivities of<br />

<strong>Microporous</strong> Silica-Modified Gamma-Alum<strong>in</strong>a <strong>Membranes</strong>. Journal of Materials<br />

Science Letters 8, 1135-1138 (1989).<br />

87. de Vos, R. M. High-selectivity, high-flux silica membranes <strong>for</strong> gas separation (University<br />

of Twente, Enschede, 1998).<br />

117


6 References<br />

88. de Vos, R. M., Maier, W. F. & Verweij, H. Hydrophobic silica membranes <strong>for</strong> gas<br />

separation. Journal of Membrane Science 158, 277-288 (1999).<br />

89. de Vos, R. M. & Verweij, H. Improved per<strong>for</strong>mance of silica membranes <strong>for</strong> gas<br />

separation. Journal of Membrane Science 143, 37-51 (1998).<br />

90. de Vos, R. M. & Verweij, H. High-selectivity, high-flux silica membranes <strong>for</strong> gas<br />

separation. Science 279, 1710-1711 (1998).<br />

91. Benes, N. E., Nijmeijer, A. & Verweij, H. <strong>in</strong> Recent Advances <strong>in</strong> <strong>Gas</strong> <strong>Separation</strong> by<br />

<strong>Microporous</strong> Ceramic <strong>Membranes</strong> (ed. Kanellopoulos, N. K.) 373-395 (Elsevier, Attikis,<br />

2000).<br />

92. Tsai, C. Y., Tam, S. Y., Lu, Y. F. & Br<strong>in</strong>ker, C. J. Dual-layer asymmetric microporous<br />

silica membranes. Journal of Membrane Science 169, 255-268 (2000).<br />

93. Xomeritakis, G. et al. Organic-templated silica membranes - I. <strong>Gas</strong> and vapor transport<br />

properties. Journal of Membrane Science 215, 225-233 (2003).<br />

94. Duke, M. C., da Costa, J. C. D., Do, D. D., Gray, P. G. & Lu, G. Q. Hydrothermally<br />

robust molecular sieve silica <strong>for</strong> wet gas separation. Advanced Functional Materials 16,<br />

1215-1220 (2006).<br />

95. Mase, S., Ando, Y., Hirano, Y. & Taguchi, H. <strong>in</strong> Fifth <strong>in</strong>ternational conference on<br />

<strong>in</strong>organic membranes (ed. S.I., N.) 652 (Nagoya, 1998).<br />

96. Yoshida, K., Hirano, Y., Fujii, H., Tsuru, T. & Asaeda, M. Hydrothermal stability and<br />

per<strong>for</strong>mance of silica-zirconia membranes <strong>for</strong> hydrogen separation <strong>in</strong> hydrothermal<br />

conditions. Journal of Chemical Eng<strong>in</strong>eer<strong>in</strong>g of Japan 34, 523-530 (2001).<br />

97. Oyama, S. T., Zang, L., Lee, D. & Jack, D. S. 11 (Patent, Conoco Inc., Houston, TX;<br />

Virg<strong>in</strong>ia Polytechnic Institute and State University, Blacksburg, VA, US, 2003).<br />

98. Asaeda, M. & Yamasaki, S. <strong>Separation</strong> of <strong>in</strong>organic/organic gas mixtures by porous silica<br />

membranes. <strong>Separation</strong> and Purification Technology 25, 151-159 (2001).<br />

99. Nijmeijer, A., Kruidhof, H., Bredesen, R. & Verweij, H. Preparation and properties of<br />

hydrothermally stable gamma-alum<strong>in</strong>a membranes. Journal of the American Ceramic<br />

Society 84, 136-140 (2001).<br />

100. Sekulic-Kuzmanovic, J. Mesoporous and microporous titania membranes (PhD thesis,<br />

University of Twente, Enschede, 2004).<br />

101. Voigt, I., Fischer, G., Puhlfurss, P., Schleifenheimer, M. & Stahn, M. TiO2-NFmembranes<br />

on capillary supports. <strong>Separation</strong> and Purification Technology 32, 87-91<br />

(2003).<br />

102. Voigt, I., Mitreuter, G. & Fut<strong>in</strong>g, M. The pore structure of meso- and microporous TiO2membranes.<br />

Ceramic Forum International 79, E39-E44 (2002).<br />

103. L<strong>in</strong>, Y. S., Chang, C. H. & Gopalan, R. Improvement of Thermal-Stability of Porous<br />

Nanostructured Ceramic <strong>Membranes</strong>. Industrial & Eng<strong>in</strong>eer<strong>in</strong>g Chemistry Research 33,<br />

860-870 (1994).<br />

104. Van Gestel, T., Van der Donk, G. J. W., Meulenberg, W. A., Bouwmeester, H. J. M. &<br />

Stoever, D. <strong>in</strong> International conference <strong>in</strong>organic membranes (eds. Bredesen, R. &<br />

Raeder, H.) 658 (Lillehammer, Norway, 2006).<br />

105. Kueper, T. W., Visco, S. J. & Dejonghe, L. C. Th<strong>in</strong>-Film Ceramic Electrolytes Deposited<br />

on Porous and Nonporous Substrates by Sol-Gel Techniques. Solid State Ionics 52, 251-<br />

259 (1992).<br />

106. Hebert, V., His, C., Guille, J., Vilm<strong>in</strong>ot, S. & Wen, T. L. Preparation and<br />

Characterization of Precursors of Y2O3 Stabilized ZrO2 by Metal-Organic Compounds.<br />

Journal of Materials Science 26, 5184-5188 (1991).<br />

107. Okubo, T. & Nagamoto, H. Low-Temperature Preparation of Nanostructured Zirconia<br />

and YSZ by Sol-Gel Process<strong>in</strong>g. Journal of Materials Science 30, 749-757 (1995).<br />

118


6 References<br />

108. Wen, T. L., Hebert, V., Vilm<strong>in</strong>ot, S. & Bernier, J. C. Preparation of Nanosized Yttria-<br />

Stabilized Zirconia Powders and Their Characterization. Journal of Materials Science 26,<br />

3787-3791 (1991).<br />

109. Pacheco, G. & Fripiat, J. J. Physical chemistry of the thermal trans<strong>for</strong>mation of<br />

mesoporous and microporous zirconia. Journal of Physical Chemistry B 104, 11906-<br />

11911 (2000).<br />

110. Serra, J. M., Hansch, R., Meulenberg, W. A., Menzler, N. H. & Buchkremer, H. <strong>in</strong><br />

International conference on porous ceramic materials (eds. Luyten, J. & Snijkers, F.)<br />

(Fransaer, D., Brugge (Belgium), 2005).<br />

111. Van Gestel, T., Meulenberg, W. A., Buchkremer, H., Van der Donk, G. J. W. &<br />

Bouwmeester, H. J. M. <strong>in</strong> International conference <strong>in</strong>organic membranes (eds. Bredesen,<br />

R. & Raeder, H.) 104 (Lillehammer, Norway, 2006).<br />

112. Xu, Q. Y. & Anderson, M. A. Sol-Gel Route to Synthesis of <strong>Microporous</strong> Ceramic<br />

<strong>Membranes</strong> - Thermal-Stability of TiO2-ZrO2 Mixed Oxides. Journal of the American<br />

Ceramic Society 76, 2093-2097 (1993).<br />

113. Xu, Q. Y. & Anderson, M. A. Sol-Gel Route to Synthesis of <strong>Microporous</strong> Ceramic<br />

<strong>Membranes</strong> - Preparation and Characterization of <strong>Microporous</strong> TiO2 and ZrO2 Xerogels.<br />

Journal of the American Ceramic Society 77, 1939-1945 (1994).<br />

114. Pacheco, G., Zhao, E., Valdes, E. D., Garcia, A. & Fripiat, J. J. <strong>Microporous</strong> zirconia<br />

from anionic and neutral surfactants. <strong>Microporous</strong> and Mesoporous Materials 32, 175-<br />

188 (1999).<br />

115. Sekulic, J., ten Elshof, J. E. & Blank, D. H. A. A microporous titania membrane <strong>for</strong><br />

nanofiltration and pervaporation. Advanced Materials 16, 1546 (2004).<br />

116. Zou, H. & L<strong>in</strong>, Y. S. Structural and surface chemical properties of sol-gel derived TiO2-<br />

ZrO2 oxides. Applied Catalysis A-General 265, 35-42 (2004).<br />

117. Knowles, J. A. & Hudson, M. J. Preparation and Characterization of Mesoporous, High-<br />

Surface-Area Zirconium(IV) Oxides. Journal of the Chemical Society-Chemical<br />

Communications, 2083-2084 (1995).<br />

118. Mamak, M., Coombs, N. & Oz<strong>in</strong>, G. Mesoporous yttria-zirconia and metal-yttria-zirconia<br />

solid solutions <strong>for</strong> fuel cells. Advanced Materials 12, 198 (2000).<br />

119. Yang, P. D., Zhao, D. Y., Margolese, D. I., Chmelka, B. F. & Stucky, G. D. Block<br />

copolymer templat<strong>in</strong>g syntheses of mesoporous metal oxides with large order<strong>in</strong>g lengths<br />

and semicrystall<strong>in</strong>e framework. Chemistry of Materials 11, 2813-2826 (1999).<br />

120. Hung, I. M., Hung, D. T., Fung, K. Z. & Hon, M. H. Synthesis and characterization of<br />

highly ordered mesoporous YSZ by tri-block copolymer. Journal of Porous Materials 13,<br />

225-230 (2006).<br />

121. S<strong>in</strong>g, K. S. W. et al. Report<strong>in</strong>g physisorption data <strong>for</strong> gas/solid systems. Pure & applied<br />

chemistry 54, 603-619 (1985).<br />

122. Benes, N. E. Mass transport <strong>in</strong> th<strong>in</strong> supported silica membranes (PhD thesis, University<br />

of Twente, Enschede, 2000).<br />

123. De Bruijn, F. T. Pervaporation and vapour permeation of methanol and MTBE through a<br />

microporous methylated silica membrane (PhD thesis, Technical University of Delft,<br />

Delft, 2006).<br />

124. Vroon, Z., Keizer, K., Burggraaf, A. J. & Verweij, H. Preparation and characterization of<br />

th<strong>in</strong> zeolite MFI membranes on porous supports. Journal of Membrane Science 144, 65-<br />

76 (1998).<br />

125. Nakayama, K., Suzuki, K., Yoshida, M., Yajima, K. & Tomita, T. 33 (Patent, NGK<br />

<strong>in</strong>sulators, Ltd, Japan, 2005).<br />

126. Van der Donk, G. J. W., Van Gestel, T. & Pyckhout-H<strong>in</strong>tzen, W. <strong>in</strong> Neutron scatter<strong>in</strong>gg<br />

at FRJ-2, Experimental reports 2005/6 (eds. Brückel, T., Richter, D. & Zorn, N.)<br />

(Forschungszentrum Jülich GmbH, Jülich, 2006).<br />

119


6 References<br />

127. Suh, Y. W., Lee, J. W. & Rhee, H. K. Synthesis of thermally stable tetragonal zirconia<br />

with large surface area and its catalytic activity <strong>in</strong> the skeletal isomerization of 1-butene.<br />

Catalysis Letters 90, 103-109 (2003).<br />

128. Diaz-Parralejo, A., Macias-Garcia, A., Cuerda-Correa, E. M. & Caruso, R. Influence of<br />

the type of solvent on the textural evolution of yttria stabilized zirconia powders obta<strong>in</strong>ed<br />

by the sol-gel method: Characterization and study of the fractal dimension. Journal of<br />

Non-Crystall<strong>in</strong>e Solids 351, 2115-2121 (2005).<br />

129. Kaneko, K. & Ishii, C. Superhigh surface-area determ<strong>in</strong>ation of microporous solids.<br />

Colloids and surfaces 67, 203 (1992).<br />

130. Barrett, P. A., Joyner, P. H. & Halenda, J. The determ<strong>in</strong>ation of pore volume and area<br />

distribution <strong>in</strong> porous substances: The computations from nitrogen isotherms. Journal of<br />

the American Chemical Society 73, 373 (1951).<br />

131. Horvath, G. & Kawazoe, K. Method <strong>for</strong> the Calculation of Effective Pore-Size<br />

Distribution <strong>in</strong> Molecular-Sieve Carbon. Journal of Chemical Eng<strong>in</strong>eer<strong>in</strong>g of Japan 16,<br />

470-475 (1983).<br />

132. De Lange, R. S. A. (PhD thesis, University of Twente, Enschede, 1993).<br />

133. Caro, J. & Noack, M. Zeolite <strong>Membranes</strong> - Status and Prospective. Advances <strong>in</strong> Porous<br />

Materials 1 (In press).<br />

134. Palim<strong>in</strong>o, M. et al. Pure silica ITQ-32 zeolite allows separation of l<strong>in</strong>ear olef<strong>in</strong>s from<br />

paraff<strong>in</strong>s. Chemical Communications 12, 1233-1235 (2007).<br />

135. Van Gestel, T. et al. <strong>in</strong> International conference on porous ceramic materials (eds.<br />

Luyten, J. & Snijkers, F.) (VITO, Brugge-Belgium, 2005).<br />

136. Cush<strong>in</strong>g, B. L., Kolesnichenko, V. L. & O'Connor, C. J. Recent advances <strong>in</strong> the liquidphase<br />

syntheses of <strong>in</strong>organic nanoparticles. Chemical Reviews 104, 3893-3946 (2004).<br />

137. Saito, A. & Foley, H. C. Argon Porosimetry of Selected Molecular-Sieves - Experiments<br />

and Exam<strong>in</strong>ation of the Adapted Horvath-Kawazoe Model. <strong>Microporous</strong> Materials 3,<br />

531-542 (1995).<br />

138. http://www.geocities.com/ostroum/FTRAMAN.htm (March 2007).<br />

139. Wan, Y. et al. Preparation of titania-zirconia composite aerogel material by sol-gel<br />

comb<strong>in</strong>ed with supercritical fluid dry<strong>in</strong>g. Applied Catalysis-A 277, 55-59 (2004).<br />

140. Xomeritakis, G., Tsai, C. Y. & Br<strong>in</strong>ker, C. J. <strong>Microporous</strong> sol-gel derived am<strong>in</strong>osilicate<br />

membrane <strong>for</strong> enhanced carbon dioxide separation. <strong>Separation</strong> and Purification<br />

Technology 42, 249-257 (2005).<br />

141. Gu, Y. F., Kusakabe, K. & Morooka, S. Sulfuric acid-modified zirconia membrane <strong>for</strong><br />

use <strong>in</strong> hydrogen separation. <strong>Separation</strong> and Purification Technology 24, 489 (2001).<br />

142. Gu, Y. F., Kusakabe, K. & Morooka, S. The separation of hydrogen from carbon dioxide<br />

us<strong>in</strong>g plat<strong>in</strong>um-loaded zirconia membranes. Journal of Chemical Eng<strong>in</strong>eer<strong>in</strong>g of Japan<br />

35, 421-427 (2002).<br />

120


Curriculum Vitae – George van der Donk<br />

George van der Donk was born <strong>in</strong> Nijmegen at 1978. He started his study<br />

chemical eng<strong>in</strong>eer<strong>in</strong>g at the University of Twente <strong>in</strong> 1997. His tra<strong>in</strong>eeship on<br />

solid oxide fuels cells was per<strong>for</strong>med at Risø National Laboratory <strong>in</strong> Denmark.<br />

George graduated, as a member of the <strong>Inorganic</strong> Materials Science research<br />

group, from the University of Twente. His thesis: “Oxygen coulometric titration of<br />

mixed conduct<strong>in</strong>g perovskites”. After university he went to Forschungszentrum Jülich<br />

GmbH (Germany) to start his Ph.D. For the Institute <strong>for</strong> materials and processes <strong>in</strong><br />

energy systems, <strong>in</strong> cooperation with the Ruhr University of Bochum, he wrote this<br />

Ph.D thesis and other publications. Currently he is work<strong>in</strong>g as a Design Eng<strong>in</strong>eer at<br />

Sensata Technologies Holland B.V. <strong>in</strong> Almelo (the Netherlands), where he develops<br />

electrochemical sensors <strong>for</strong> the automotive <strong>in</strong>dustry.


Acknowledgement<br />

First of all, I would like to thank my Doktorvater Professor Stöver <strong>for</strong> giv<strong>in</strong>g me the<br />

opportunity to do this PhD. I am grateful to Buchkremer <strong>for</strong> his enthousiasm <strong>for</strong> this topic<br />

about <strong>in</strong>organic membranes and <strong>for</strong> his ef<strong>for</strong>ts to setup the membrane group <strong>in</strong> Jülich. I<br />

would also thank Robert Vassen and his Thermal barrier layer group <strong>for</strong> their support.<br />

The person who answered most of my scientific and social questions is my supervisor<br />

Willi Meulenberg. With his motivation, we were able to create, on short notice, a wellaccepted<br />

<strong>in</strong>organic membrane group. Besides he also <strong>for</strong>med a bridge between the<br />

German work culture and my Dutch culture.<br />

The <strong>in</strong>organic membrane group <strong>in</strong>clud<strong>in</strong>g Vicente, Mart<strong>in</strong> Bram, Kampel, Hansch,<br />

Wiener, Betz, Willi, Tim, Oli and Jose are gratefully acknowledged. Many of the<br />

experiments and characterisations could not have been done without the help of e.g.<br />

Sebold, Fischer, Lersch, Coenen, Pracht, Werner, Kicky, Mai, Hannelore, Vicky and<br />

Kappertz from our <strong>in</strong>stitute and Wim Pyckhout-H<strong>in</strong>zten, Michulitz, Esser, Peica,<br />

Besmehn and Breuer from the other <strong>in</strong>stitutes of the Forschungszentrum Jülich. Professor<br />

Gies, Bernd-“ich b<strong>in</strong> mahl gespannt”-Marler and Somsen from the Ruhr Universität<br />

Bochum are thanked respectively <strong>for</strong> scientific zeolite discussions, cook<strong>in</strong>g together D1H<br />

and SEM/TEM analysis.<br />

Mieke is thanked <strong>for</strong> <strong>in</strong>troduc<strong>in</strong>g me <strong>in</strong> to the world of ceramic manufactur<strong>in</strong>g. Rob<br />

Delhez is gratefully acknowledged <strong>for</strong> the discussions on crystall<strong>in</strong>ity. My joy <strong>in</strong><br />

<strong>in</strong>organic membrane science was enhanced by the chats with Miquel Menendez, Joe Da<br />

Costa, Frederic, Marcel den Exter and Rune Bredesen. The high quality of the article<br />

conta<strong>in</strong><strong>in</strong>g the permeance of titania-zirconia membranes is ma<strong>in</strong>ly due to the ef<strong>for</strong>t of<br />

Nieck Benes and Marcus van Schilt from the University of E<strong>in</strong>dhoven. Most of the<br />

permeance measurements were per<strong>for</strong>med by Marcus.<br />

Due to the personalities of Nati and Jozef as well, our office quickly changed to the most<br />

popular gossip and coffee room. Both roommates contributed to the positive work<br />

atmosphere. Jürgen and Dirk, my carpool-mates, transported me daily to Jülich and back.<br />

Thanks <strong>for</strong> that. It was an honour to defend several times the runn<strong>in</strong>g-cup <strong>for</strong> the fastest<br />

FZJ <strong>in</strong>stitute. This could not have been achieved without the frequent tra<strong>in</strong><strong>in</strong>gs with<br />

Xabier, JB, Alexandra, Daniel and Ettler.<br />

Special thanks are addressed to Henny Bouwmeester from the University of Twente. He<br />

was constantly <strong>in</strong>terested <strong>in</strong> my progress and <strong>in</strong> our project. This resulted f<strong>in</strong>ally <strong>in</strong> a<br />

corporation between the University of Twente and FZJ. Many improvements to this<br />

thesis are a result of scientific discussions with Henny. It was a great pleasure to write<br />

two papers with Jose Manuel Serra Alfaro. His work mentality and scientific<br />

thoroughness trigged me constantly.


Last but not least, I would like to thank all the helpful persons that I have <strong>for</strong>gotten to<br />

mention by name. This thesis could not have been written without the support of my<br />

friends, family and my girlfriend Jitka.<br />

George van der Donk, November 2007


Schriften des Forschungszentrums Jülich<br />

Reihe Energie & Umwelt / Energy & Environment<br />

1. E<strong>in</strong>satz von multispektralen Satellitenbilddaten <strong>in</strong> der Wasserhaushalts-<br />

und Stoffstrommodellierung – dargestellt am Beispiel des<br />

Rure<strong>in</strong>zugsgebietes<br />

von C. Montzka (2008), XX, 238 Seiten<br />

ISBN: 978-3-89336-508-1<br />

2. Ozone Production <strong>in</strong> the Atmosphere Simulation Chamber SAPHIR<br />

by C. A. Richter (2008), XIV, 147 pages<br />

ISBN: 978-3-89336-513-5<br />

3. Entwicklung neuer Schutz- und Kontaktierungsschichten für<br />

Hochtemperatur-Brennstoffzellen<br />

von T. Kiefer (2008), 138 Seiten<br />

ISBN: 978-3-89336-514-2<br />

4. Optimierung der Reflektivität keramischer Wärmedämmschichten aus<br />

Yttrium-teilstabilisiertem Zirkoniumdioxid für den E<strong>in</strong>satz auf metallischen<br />

Komponenten <strong>in</strong> <strong>Gas</strong>turb<strong>in</strong>en<br />

von A. Stuke (2008), X, 201 Seiten<br />

ISBN: 978-3-89336-515-9<br />

5. Lichtstreuende Oberflächen, Schichten und Schichtsysteme zur<br />

Verbesserung der Lichte<strong>in</strong>kopplung <strong>in</strong> Silizium-Dünnschichtsolarzellen<br />

von M. Berg<strong>in</strong>ski (2008), XV, 171 Seiten<br />

ISBN: 978-3-89336-516-6<br />

6. Politikszenarien für den Klimaschutz IV – Szenarien bis 2030<br />

hrsg.von P. Markewitz, F. Chr. Matthes (2008), 376 Seiten<br />

ISBN 978-3-89336-518-0<br />

7. Untersuchungen zum Verschmutzungsverhalten rhe<strong>in</strong>ischer Braunkohlen<br />

<strong>in</strong> Kohledampferzeugern<br />

von Annette Schlüter (2008), 164 Seiten<br />

ISBN 978-3-89336-524-1<br />

8. <strong>Inorganic</strong> <strong>Microporous</strong> <strong>Membranes</strong> <strong>for</strong> <strong>Gas</strong> <strong>Separation</strong> <strong>in</strong> <strong>Fossil</strong> <strong>Fuel</strong> Power<br />

Plants<br />

by G. van der Donk (2008), VI, 120 pages<br />

ISBN: 978-3-89336-525-8


Band | Volume 8<br />

ISBN 978-3-89336-525-8

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!