27.12.2012 Views

4D dose calculations at PSI - current status and ongoing work - GSI

4D dose calculations at PSI - current status and ongoing work - GSI

4D dose calculations at PSI - current status and ongoing work - GSI

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>4D</strong> <strong>dose</strong> <strong>calcul<strong>at</strong>ions</strong> <strong>at</strong> <strong>PSI</strong> -<br />

<strong>current</strong> st<strong>at</strong>us <strong>and</strong> <strong>ongoing</strong> <strong>work</strong><br />

Dirk Boye, Ye Zhang, Andreas Schaetti, Antje Knopf, Tony Lomax<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


Content<br />

1. <strong>4D</strong> <strong>dose</strong> calcul<strong>at</strong>ion on a deforming <strong>dose</strong> grid<br />

2. Deforming <strong>dose</strong> grid & rescanning<br />

3. Proton range vari<strong>at</strong>ions & target contour adapt<strong>at</strong>ion<br />

4. <strong>4D</strong>MRI / simul<strong>at</strong>ed <strong>4D</strong>CT<br />

5. Other projects from Ye Zhang <strong>and</strong> Andreas Schaetti<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


1. <strong>4D</strong> <strong>dose</strong> calcul<strong>at</strong>ion on a deforming <strong>dose</strong> grid<br />

2. Deforming <strong>dose</strong> grid & rescanning<br />

3. Proton range vari<strong>at</strong>ions & target contour adapt<strong>at</strong>ion<br />

4. <strong>4D</strong>MRI / simul<strong>at</strong>ed <strong>4D</strong>CT<br />

5. Other projects from Ye Zhang <strong>and</strong> Andreas Schaetti<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


St<strong>at</strong>ic 3D <strong>dose</strong> calcul<strong>at</strong>ion <strong>at</strong> <strong>PSI</strong><br />

Contribution of pencil beam to total <strong>dose</strong> <strong>at</strong><br />

grid point (s, t, u)<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


St<strong>at</strong>ic 3D <strong>dose</strong> calcul<strong>at</strong>ion <strong>at</strong> <strong>PSI</strong><br />

For each pencil beam the <strong>dose</strong> contributions to all relevant <strong>dose</strong> grid<br />

points are calcul<strong>at</strong>ed<br />

Total <strong>dose</strong> is the sum over all pencil beam <strong>at</strong> all grid points<br />

Dose between grid points is interpol<strong>at</strong>ed<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


St<strong>at</strong>ic 3D <strong>dose</strong> calcul<strong>at</strong>ion <strong>at</strong> <strong>PSI</strong><br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


St<strong>at</strong>ic 3D <strong>dose</strong> calcul<strong>at</strong>ion <strong>at</strong> <strong>PSI</strong><br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


Issues of 3D <strong>dose</strong> calcul<strong>at</strong>ion<br />

Always <strong>dose</strong> to w<strong>at</strong>er<br />

Steep density gradients<br />

It does not take into account where a high density area is<br />

(more upstream/downstream) -> different sc<strong>at</strong>tering effects<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


Why <strong>4D</strong> <strong>dose</strong> calcul<strong>at</strong>ion ?<br />

Direction of protons perpendicular to target motion<br />

This will lead to huge interplay effects <strong>and</strong> subsequently to<br />

hot <strong>and</strong> cold spots in <strong>dose</strong> distribution (worst case:<br />

scanning of protons is in phase with organ motion)<br />

Different approaches to compens<strong>at</strong>e for interplay effects<br />

(tracking, g<strong>at</strong>ing, rescanning or combin<strong>at</strong>ions)<br />

Use which approach? In which case?<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


<strong>4D</strong> approach<br />

Start with a st<strong>at</strong>ic 3D tre<strong>at</strong>ment plan<br />

Exact timeline <strong>and</strong> positions of all individual pencil beams is known<br />

Idea: Change positions <strong>and</strong> w<strong>at</strong>er equivalent range of <strong>dose</strong> grid points<br />

during <strong>dose</strong> calcul<strong>at</strong>ion reflecting organ motion <strong>at</strong> specific timestamp<br />

(TS) of pencil beam th<strong>at</strong> is <strong>current</strong>ly calcul<strong>at</strong>ed<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


Deforming <strong>dose</strong> grid<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


Stages of development<br />

1. Rigid motion of all <strong>dose</strong> grid points<br />

2. Non-rigid motion of individual <strong>dose</strong> grid points<br />

3. Non-rigid motion <strong>and</strong> changes of w<strong>at</strong>er equivalent range<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


Deforming <strong>dose</strong> grid – inputs<br />

Source of displacement maps:<br />

Image registr<strong>at</strong>ion (<strong>4D</strong>CT, <strong>4D</strong>MRI) or motion models<br />

Source of density-vari<strong>at</strong>ion maps:<br />

<strong>4D</strong>CT or simul<strong>at</strong>ed <strong>4D</strong>CT (displacement maps+3DCT)<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


Deforming <strong>dose</strong> grid – inputs<br />

Input d<strong>at</strong>a is sampled into timesteps, sampling r<strong>at</strong>e dependent on<br />

source<br />

Motion in between timesteps can be easily interpol<strong>at</strong>ed<br />

Open question: Wh<strong>at</strong> about the density in between timesteps?<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


<strong>4D</strong> <strong>dose</strong> <strong>calcul<strong>at</strong>ions</strong> in homogenouos CT phantom<br />

Box of w<strong>at</strong>er<br />

Target: sphere<br />

V=112ccm, depth 10cm<br />

Proton beams from top<br />

Linear motion (period: 5s)<br />

perpendicular to the beam<br />

(motion field is discontinuous)<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


<strong>4D</strong> <strong>dose</strong> <strong>calcul<strong>at</strong>ions</strong> in homogenouos CT phantom<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


<strong>4D</strong> <strong>dose</strong> <strong>calcul<strong>at</strong>ions</strong> in homogenouos CT phantom<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


<strong>4D</strong> <strong>dose</strong> <strong>calcul<strong>at</strong>ions</strong> in simple CT phantoms<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


1. <strong>4D</strong> <strong>dose</strong> calcul<strong>at</strong>ion on a deforming <strong>dose</strong> grid<br />

2. Deforming <strong>dose</strong> grid & rescanning<br />

3. Proton range vari<strong>at</strong>ions & target contour adapt<strong>at</strong>ion<br />

4. <strong>4D</strong>MRI / simul<strong>at</strong>ed <strong>4D</strong>CT<br />

5. Other projects from Ye Zhang <strong>and</strong> Andreas Schaetti<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


Rescanning for motion mitig<strong>at</strong>ion<br />

1 st step: Scaled rescanning<br />

Apply all pencil beams multiple times<br />

with a fraction(1/number of rescans) of<br />

<strong>dose</strong><br />

(easy to implement)<br />

“Wash-out” of interplay effects<br />

(if scanning is not exactly in phase with<br />

motion)<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


Scaled rescanning & deforming <strong>dose</strong> grid results<br />

4x rescanning 8x rescanning<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


Motion adapted target contour<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


Rescanning results<br />

4x rescanning 6x rescanning<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


<strong>4D</strong> <strong>dose</strong> <strong>calcul<strong>at</strong>ions</strong> in heterogeneous CT phantom<br />

Box of w<strong>at</strong>er<br />

Target: sphere<br />

V=112ccm, depth 10cm<br />

Proton beams from top<br />

Upstream obstacle with high<br />

density area<br />

Motion scenario 1:<br />

moving target, st<strong>at</strong>ic obstacle<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


no rescanning<br />

Results<br />

6x rescanning to adapted contour<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


<strong>4D</strong> <strong>dose</strong> <strong>calcul<strong>at</strong>ions</strong> in heterogeneous CT phantom<br />

Box of w<strong>at</strong>er<br />

Target: sphere<br />

V=112ccm, depth 10cm<br />

Proton beams from top<br />

Upstream obstacle with high<br />

density area<br />

Motion scenario 2:<br />

st<strong>at</strong>ic target, moving obstacle<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


no rescanning<br />

Results<br />

8x rescanning<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


1. <strong>4D</strong> <strong>dose</strong> calcul<strong>at</strong>ion on a deforming <strong>dose</strong> grid<br />

2. Deforming <strong>dose</strong> grid & rescanning<br />

3. Proton range vari<strong>at</strong>ions & target contour adapt<strong>at</strong>ion<br />

4. <strong>4D</strong>MRI / simul<strong>at</strong>ed <strong>4D</strong>CT<br />

5. Other projects from Ye Zhang <strong>and</strong> Andreas Schaetti<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


Proton range vari<strong>at</strong>ions & target contour adapt<strong>at</strong>ion<br />

Even though target is not moving, rescanning alone is not enough to<br />

achieve a homogeneous <strong>dose</strong> distribution<br />

Contour adaption accounting for proton range vari<strong>at</strong>ions needed<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


Proton range vari<strong>at</strong>ions & target contour adapt<strong>at</strong>ion<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


Proton range vari<strong>at</strong>ions & target contour adapt<strong>at</strong>ion<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


Proton range vari<strong>at</strong>ions & target contour adapt<strong>at</strong>ion<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


Proton range vari<strong>at</strong>ions & target contour adapt<strong>at</strong>ion<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


Results<br />

8x rescanning to adapted contour<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


<strong>4D</strong> <strong>dose</strong> <strong>calcul<strong>at</strong>ions</strong> in heterogeneous CT phantom<br />

Box of w<strong>at</strong>er<br />

Target: sphere<br />

V=112ccm, depth 10cm<br />

Proton beams from top<br />

Upstream obstacle with high<br />

density area<br />

Motion scenario 3:<br />

moving target & obstacle<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


Motion & density vari<strong>at</strong>ion target adapt<strong>at</strong>ion<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


Results<br />

6x rescanning to adapted contour<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


Rescanning – next steps<br />

- Real p<strong>at</strong>ient geometries<br />

- Implement iso-layered rescanning (Zenklusen et al.) in tre<strong>at</strong>ment<br />

planning<br />

(huge effect on scanning p<strong>at</strong>tern resulting in de-phasing of beam<br />

scanning <strong>and</strong> target motion, dead-time / beam-on time r<strong>at</strong>io better)<br />

- <strong>4D</strong> plan optimiz<strong>at</strong>ion (beam weights, not relying on 3D plan)<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


1. <strong>4D</strong> <strong>dose</strong> calcul<strong>at</strong>ion on a deforming <strong>dose</strong> grid<br />

2. Deforming <strong>dose</strong> grid & rescanning<br />

3. Proton range vari<strong>at</strong>ions & target contour adapt<strong>at</strong>ion<br />

4. <strong>4D</strong>MRI / simul<strong>at</strong>ed <strong>4D</strong>CT<br />

5. Other projects from Ye Zhang <strong>and</strong> Andreas Schaetti<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


<strong>4D</strong>MRI -<br />

source of deform<strong>at</strong>ion maps<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


<strong>4D</strong>MRI<br />

[Siebenthal et. al 2007] – <strong>4D</strong> MR imaging of respir<strong>at</strong>ory organ motion <strong>and</strong><br />

its variability<br />

- free bre<strong>at</strong>hing<br />

- long acquisition times ( ~ 1h)<br />

- no external signal<br />

- reconstruction by internal navig<strong>at</strong>or slice registr<strong>at</strong>ion<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


<strong>4D</strong>MRI – principal<br />

navig<strong>at</strong>or slices <strong>and</strong> image slices are acquired altern<strong>at</strong>ely<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


<strong>4D</strong>MRI – principal<br />

idea: if navig<strong>at</strong>or before <strong>and</strong> after one image slice m<strong>at</strong>ch those surrounding<br />

another image slice those image slices belong to one 3D stack<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


<strong>4D</strong>MRI – liver<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


<strong>4D</strong>MRI – lung<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


<strong>4D</strong>MRI – possible advantages for <strong>dose</strong> <strong>calcul<strong>at</strong>ions</strong><br />

- long acquisition times & free bre<strong>at</strong>hing<br />

many different bre<strong>at</strong>hing cycles<br />

organ drift is acquired<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


Simul<strong>at</strong>ed <strong>4D</strong>CT -<br />

source of density vari<strong>at</strong>ion maps<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


Simul<strong>at</strong>ed <strong>4D</strong>CT<br />

Steps for simul<strong>at</strong>ion:<br />

1. St<strong>at</strong>istical organ motion model of liver from <strong>4D</strong>MRI of test subjects<br />

2. Find correspondent points in st<strong>at</strong>ic CT d<strong>at</strong>aset suitable for model<br />

3. Cre<strong>at</strong>e continuous deform<strong>at</strong>ion fields from model<br />

4. Warp fields to CT set to cre<strong>at</strong>e <strong>4D</strong>CT<br />

Or: 1. Acquire <strong>4D</strong>MRI of p<strong>at</strong>ient <strong>and</strong> <strong>work</strong> without model<br />

Result will show motion only in a region of interest (1 st step: only liver)<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


Simul<strong>at</strong>ed <strong>4D</strong>CT<br />

Possible advantages over <strong>4D</strong>CT:<br />

- no additional <strong>dose</strong><br />

- not restricted to one average bre<strong>at</strong>hing cycle<br />

- no artifacts due to acquisition<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


Simul<strong>at</strong>ed <strong>4D</strong>CT – Coronal view<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


Simul<strong>at</strong>ed <strong>4D</strong>CT – Axial view<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


Work in progress: sliding boundaries<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


Simul<strong>at</strong>ed <strong>4D</strong>CT – next steps<br />

- Sliding boundaries (1 st : ribs st<strong>at</strong>ic + collision detection)<br />

- QA of simul<strong>at</strong>ions?<br />

(example: tre<strong>at</strong>ment plan comparison <strong>4D</strong>CT – simul<strong>at</strong>ed <strong>4D</strong>CT)<br />

- Cre<strong>at</strong>e motion library for liver (test plans for robustness to motion<br />

vari<strong>at</strong>ions)<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


1. <strong>4D</strong> <strong>dose</strong> calcul<strong>at</strong>ion on a deforming <strong>dose</strong> grid<br />

2. Deforming <strong>dose</strong> grid & rescanning<br />

3. Proton range vari<strong>at</strong>ions & target contour adapt<strong>at</strong>ion<br />

4. <strong>4D</strong>MRI / simul<strong>at</strong>ed <strong>4D</strong>CT<br />

5. Other projects from Ye Zhang <strong>and</strong> Andreas Schaetti<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


Andreas Schaetti<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


<strong>4D</strong> measurements<br />

Verify <strong>4D</strong> <strong>dose</strong> <strong>calcul<strong>at</strong>ions</strong> with measurements (CCD+gafchromic film)<br />

1 st step: simple Quasar 2D motion phantom<br />

l<strong>at</strong>er: free table motion or advanced phantom<br />

Investig<strong>at</strong>e Advanced scanning modes (combin<strong>at</strong>ion g<strong>at</strong>ing, rescanning<br />

line scanning)<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


Ye Zhang<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


<strong>4D</strong>CT image registr<strong>at</strong>ion<br />

Question: Which registr<strong>at</strong>ion (+settings) should one use to extract needed<br />

d<strong>at</strong>a (Affine, B-Spline, Demons, .... ) ?<br />

Preliminary results:<br />

- Best method so far: Combin<strong>at</strong>ion of Affine <strong>and</strong> Demons<br />

- Difference in <strong>dose</strong> distributions when using different registr<strong>at</strong>ion methods<br />

in <strong>dose</strong> calcul<strong>at</strong>ion up to 10 % (for rescanning)<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


Beam‘s Eye View (BEV)<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


Beam‘s Eye View (BEV)<br />

- P<strong>at</strong>ient positioning<br />

- Verifying tumor position online<br />

- Motion prediction<br />

- G<strong>at</strong>ed rescanning<br />

- Pulsed radiograph mode (10 Hz) for tracking<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


Beam‘s Eye View (BEV)<br />

1 st step: autom<strong>at</strong>ic l<strong>and</strong>mark recognition<br />

- use simul<strong>at</strong>ed BEV images (DRRs) to cre<strong>at</strong>e algorithms<br />

2 nd step: motion prediction<br />

as soon as BEV system is up <strong>and</strong> running:<br />

measurements with <strong>4D</strong> phantoms<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


Beam‘s Eye View (BEV)<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th


Thank you for your <strong>at</strong>tention<br />

<strong>4D</strong> <strong>work</strong>shop Dirk Boye, December 10 th

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!