27.08.2023 Views

[Rice Catalyst Issue 14]

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

A next step can employ the use of FLAG<br />

purification and FLAG peptide to elute<br />

peptide, as the eluate has FLAG peptide,<br />

which may interfere in further experiments.<br />

To solve this, the protein can be purified<br />

further to remove the FLAG peptide, with<br />

purification methods such as ion-exchange<br />

chromatography or dialysis. Additionally,<br />

conducting a structural analysis of the anti-<br />

FLAG-tag-treated protein would be a way to<br />

further understand the extent of<br />

purification of the protein.<br />

ACKNOWLEDGEMENTS<br />

I thank Dr. Kuang-Lei Tsai and Dr. Shin-Fu<br />

Chen for all their support and mentorship<br />

throughout the project. UT McGovern<br />

Medical school Department of Biochemistry<br />

and Molecular Biology for funding this<br />

project.<br />

WORKS CITED<br />

1. Liao, S.M. et al. A kinase-cyclin pair in the RNA<br />

polymerase II holoenzyme. Nature 374, 193-6<br />

(1995).<br />

2. C. J. Hengartner, C. M. Thompson, J. Zhang, D.<br />

M. Chao, S. M. Liao, A. J. Koleske, S. Okamura,<br />

R. A. Young, Association of an activator with an<br />

RNA polymerase II holoenzyme. Genes Dev. 9,<br />

897–910 (1995).<br />

3. K.-L. Tsai, S. Sato, C. Tomomori-Sato, R. C.<br />

Conaway, J. W. Conaway, F. J. Asturias, A<br />

conserved Mediator-CDK8 kinase module<br />

association regulates Mediator-RNA<br />

polymerase II interaction. Nat. Struct. Mol. Biol.<br />

20, 611–619 (2013).<br />

4. Li YC, Chao TC, Kim HJ, Cholko T, Chen SF, Li G,<br />

Snyder L, Nakanishi K, Chang CE, Murakami K,<br />

Garcia BA, Boyer TG, Tsai KL. Structure and<br />

noncanonical Cdk8 activation mechanism<br />

within an Argonaute-containing Mediator<br />

kinase module. Sci Adv. (2021)<br />

5. A. M. Burroughs, L. M. Iyer, L. Aravind, Two<br />

novel PIWI families: Roles in inter-genomic<br />

conflicts in bacteria and Mediator-dependent<br />

modulation of transcription in eukaryotes.<br />

Biol. Direct 8, 13 (2013).<br />

6. D. C. Swarts, K. Makarova, Y. Wang, K.<br />

Nakanishi, R. F. Ketting, E. V. Koonin, D. J.<br />

Patel, J. van der Oost, The evolutionary<br />

journey of Argonaute proteins. Nat. Struct. Mol.<br />

Biol. 21, 743–753 (20<strong>14</strong>).<br />

7. N. T. Schirle, J. Sheu-Gruttadauria, I. J. MacRae,<br />

Structural basis for microRNA targeting.<br />

Science 346, 608–613 (20<strong>14</strong>).<br />

8. Y. Wang, G. Sheng, S. Juranek, T. Tuschl, D. J.<br />

Patel, Structure of the guide-strand-containing<br />

argonaute silencing complex. Nature 456, 209–<br />

213 (2008).<br />

9. Hutvagner G, Simard MJ. Argonaute proteins:<br />

key players in RNA silencing. Nat Rev Mol Cell<br />

Biol. 2008 Jan; 9 (1):22-32. doi:<br />

10.1038/nrm2321. PMID: 18073770.<br />

10. Sheu-Gruttadauria, J. & MacRae, I.J. Structural<br />

Foundations of RNA Silencing by Argonaute. J<br />

Mol Biol 429, 2619-2639 (2017).<br />

11. K. Nakanishi, Anatomy of RISC: How do small<br />

RNAs and chaperones activate Argonaute<br />

proteins? Wiley Interdiscip. Rev. RNA 7, 637–660<br />

(2016).<br />

12. G. Meister, Argonaute proteins: Functional<br />

insights and emerging roles. Nat. Rev. Genet.<br />

<strong>14</strong>, 447–459 (2013).<br />

13. Oh-Ishi M, Maeda T. Separation techniques for<br />

high-molecular-mass proteins. J Chromatogr B<br />

Analyt Technol Biomed Life Sci. May 5;771(1-<br />

2):49-66. doi: 10.1016/s1570-0232(02)00112-5.<br />

PMID: 12015992. (2002).<br />

<strong>14</strong>. ThermoFisher Bac-to-Bac Baculovirus<br />

Expression System USER GUIDE (2018)<br />

Designed by: Taylor Schultz<br />

Figure 4. Western Blot of the first and second halves of<br />

Human MED13 protein where the molecular mass of<br />

the first half was around 175 kDa, and the second half<br />

around <strong>14</strong>0 kDa. The half-length MED13 proteins were<br />

purified using anti-FLAG antibodies. SDS-PAGE was<br />

subjected onto Human MED13 and electroblotted onto<br />

PVDF membrane. Lane 1: prestained low molecular<br />

mass marker. Lane 2: nothing. Lane 3: the purification<br />

proteins of the first-half MED13-transfected Sf9 insect<br />

cells via anti-FLAG-tag Immunoprecipitation assay.<br />

Lane 4: the detected band shows the second-half<br />

MED13-transfected insect cells via anti-FLAG-tag<br />

Immunoprecipitation assay.<br />

Figure 5. Significant protein band from elution of fulllength<br />

MED13-transfected Sf9 insect-cell pellet found<br />

around 240 kDa. SDS-PAGE was conducted under<br />

reducing conditions. Samples were run through Tris-HCl<br />

SDS acrylamide gel 10% in running buffer (25 mM Tris,<br />

pH 8.3, 192 mM glycine, 0.1% (w/v) SDS), stained with<br />

Coomassie blue solution, then visualized with white<br />

light. Lane 1: low molecular mass marker. Lane 2: the<br />

purification proteins of the His-tag Ni column. Lane 3: is<br />

purified proteins from the FLAG-immunoprecipitation<br />

column. The heavy chain and light chain bands present<br />

in the FLAG-immunoprecipitation column come from<br />

the anti-FLAG-tag antibody.<br />

Figure 6. Western Blot of the Full Human MED13 protein that<br />

shows the Molecular Weight of full-length MED13 is 240 kDa. Fulllength<br />

MED13 protein was purified using anti-FLAG antibodies.<br />

SDS-PAGE was subjected onto Human MED13 and electroblotted<br />

onto PVDF membrane. Lane 1: prestained low molecular mass<br />

marker. Lane 2: the detected band shows purified full-length<br />

MED13 via anti-FLAG Immunoprecipitation assay.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!