30.12.2012 Views

Work in Progress - Frank Oertel's Homepage

Work in Progress - Frank Oertel's Homepage

Work in Progress - Frank Oertel's Homepage

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

A Hilbert space approach to Wiener Chaos<br />

Decomposition and applications to f<strong>in</strong>ance<br />

<strong>Work</strong> <strong>in</strong> <strong>Progress</strong><br />

<strong>Frank</strong> Oertel<br />

Zurich University of Applied Sciences ZHW<br />

Department T – Mathematics and Physics<br />

CH – 8401 W<strong>in</strong>terthur<br />

frank.oertel@zhw<strong>in</strong>.ch<br />

Abstract<br />

The Malliav<strong>in</strong> calculus (also known as the stochastic calculus of variations) is an<br />

<strong>in</strong>f<strong>in</strong>ite–dimensional differential calculus on the Wiener space, <strong>in</strong>itiated by Malliav<strong>in</strong><br />

and further developed by Bismut, Stroock and others (cf. [9], [2], [14]) and which has<br />

been shown as a very important tool for mathematical physicists work<strong>in</strong>g <strong>in</strong> Quantum<br />

Field Theory.<br />

We consider the first aspects of this calculus which have been used <strong>in</strong> f<strong>in</strong>ancial applications,<br />

such as the pric<strong>in</strong>g and hedg<strong>in</strong>g of path dependent options or the <strong>in</strong>vestigation<br />

of residual risk <strong>in</strong> <strong>in</strong>complete markets. To be able to understand these applications,<br />

we have to work through the theory and methods of the underly<strong>in</strong>g mathematical mach<strong>in</strong>ery.<br />

In this paper, we use only some elementary Hilbert space methods to obta<strong>in</strong><br />

another description of the multiple Wiener <strong>in</strong>tegral (given a f<strong>in</strong>ite time horizon T > 0<br />

and the natural filtration <strong>in</strong>duced by the Wiener process W ) and its relations to a<br />

decomposition of an arbitrary random variable <strong>in</strong> L2 (Ω, F W T , P) <strong>in</strong> successive Wiener<br />

chaoses, which works <strong>in</strong> a similar way as a Taylor’s expansion but tak<strong>in</strong>g <strong>in</strong>to account<br />

the stochastic dynamics. In particular we will present the ma<strong>in</strong> ideas, lead<strong>in</strong>g to this<br />

representation of L 2 (Ω, F W T<br />

, P). We recognize the appearance of the well known family<br />

of stochastic exponentials and its relations to the Itô representation of such L 2 –random<br />

variables.<br />

1 Introduction<br />

Let T > 0 and (Ω, F, P) be a probability space. Given a (one-dimensional) Wiener process W<br />

and its natural filtration F W = (F W t )0≤t≤T , let us recall the standard example <strong>in</strong> the classical<br />

1


Black & Scholes-market (without transaction costs), where the stock price S is modelled as<br />

dSt = µSt dt + σSt dWt and the price of the riskless asset is given by dBt = rBt dt, where<br />

µ, σ ∈ R, σ �= 0 and r ≥ 0. Then it is well known that there exists an eqivalent mart<strong>in</strong>gale<br />

measure (EMM) Q ∼ P so that Bt := Wt + µ−r<br />

t def<strong>in</strong>es a standard Q-Wiener Process B (so<br />

σ<br />

that FW = FB ) and � St := exp(−rt) St def<strong>in</strong>es a Q-mart<strong>in</strong>gale � S, which implies that every<br />

cont<strong>in</strong>gent claim Z ∈ L2 (Ω, F B T , Q) can be replicated by a self-f<strong>in</strong>anc<strong>in</strong>g portfolio and that<br />

the value of any replicat<strong>in</strong>g self-f<strong>in</strong>anc<strong>in</strong>g portfolio Π at time t is given by<br />

Πt = EQ(e −r(T −t) Z | F B t ) .<br />

The existence of such a replicat<strong>in</strong>g portfolio follows by the Kunita-Watanabe representation<br />

theorem - applied to the the Q−square-<strong>in</strong>tegrable mart<strong>in</strong>gale Π (cf. [7]):<br />

Theorem 1.1 Let M = (Mt)0≤t≤T be a square-<strong>in</strong>tegrable mart<strong>in</strong>gale, with respect to the<br />

filtration F B . Then there exists an adapted process K so that EQ( � T<br />

0 K2 s ds) < ∞ and<br />

for all t ∈ [0, T ].<br />

� t<br />

Mt = M0 + Ks dBs<br />

0<br />

Corrolary 1.1 Let Z ∈ L2 (Ω, F B T , Q). Then there exists an adapted process L so that<br />

EQ( � T<br />

0 L2s ds) < ∞ and<br />

Z = EQ(Z) +<br />

� T<br />

0<br />

Ls dBs .<br />

Unfortunately, this is only a statement lead<strong>in</strong>g to the existence of a hedg<strong>in</strong>g strategy H :=<br />

K/σ � S, which <strong>in</strong> general does not tell us, how this portfolio looks like. However, if the<br />

cont<strong>in</strong>gent claim Z can be written as Z = f(ST ), (e.g., if Z is a standard Call option) we<br />

can express the portfolio value Πt as a sufficiently smooth function of t and St, Πt = F (t, St),<br />

and an application of Itô’s formula leads to the concrete value Ht = ∂F<br />

∂x (t, St) - satisfy<strong>in</strong>g<br />

trader’s needs. Here, Malliav<strong>in</strong> calculus enters the scene. Due to this calculus, it is possible<br />

to transfer the Kunita-Watanabe representation to random variables which are functionals<br />

of Brownian motion. It turns out that the process L <strong>in</strong> the previous corollary can be<br />

identified as the optional projection of the Malliav<strong>in</strong> derivative process (DtF )0≤t≤T of F .<br />

In these lecture notes we f<strong>in</strong>ally expla<strong>in</strong> the construction of such an derivative1 and prove<br />

and formulate precisely the follow<strong>in</strong>g (cf. [5])<br />

Theorem 1.2 Let Z = F (B) be a functional of the Brownian motion B. Then, under<br />

technical hypotheses on F<br />

Z = EQ(Z) +<br />

� T<br />

0<br />

EQ(DsF | F B s ) dBs .<br />

1 This means, that we want to ”differentiate” F with respect to the chance variable ω ∈ Ω - without<br />

assum<strong>in</strong>g any topological structure on Ω.<br />

2


This result, built on deep theorems <strong>in</strong> Malliav<strong>in</strong> calculus, directly lead to applications <strong>in</strong><br />

f<strong>in</strong>ance, such as the construction of hedg<strong>in</strong>g portfolios of certa<strong>in</strong> exotic options or the <strong>in</strong>vestigation<br />

of discont<strong>in</strong>uous path-dependent payoff functionals of multidimensional diffusion<br />

processes (cf. [1], [3], [4]). A general approach to the analysis of dynamic hedg<strong>in</strong>g portfolos<br />

is discussed <strong>in</strong> [8]. The common source of these papers (and the basics of the Malliav<strong>in</strong><br />

calculus) is the nontrivial fact that option prices can be decomposed <strong>in</strong> Wiener chaoses.<br />

This chaotic decomposition works <strong>in</strong> a similar way as a Taylor’s power series expansion <strong>in</strong><br />

complex analysis, tak<strong>in</strong>g additionally <strong>in</strong>to account the stochastic dynamics of the underly<strong>in</strong>g<br />

asset price process. As <strong>in</strong> complex analysis, we will see, that the Malliav<strong>in</strong> derivative allows<br />

us to differentiate piecewise ”power series” (<strong>in</strong> L 2 (Ω)), and we will obta<strong>in</strong> the Itô <strong>in</strong>tegral as<br />

a special case of the Skorohod <strong>in</strong>tegral, which is the adjo<strong>in</strong>t of the Malliav<strong>in</strong> derivative operator.<br />

S<strong>in</strong>ce the Wiener chaos decomposition plays the crucial role <strong>in</strong> the Malliav<strong>in</strong> calculus,<br />

we give a detailed <strong>in</strong>troduction to it, <strong>in</strong>clud<strong>in</strong>g complete proofs. We only use elementary<br />

facts of Hilbert space theory. Nevertheless, our (analytic) proofs could lead to a transfer to<br />

more general semimart<strong>in</strong>gales than Brownian motion.<br />

2 The construction of the multiple Wiener <strong>in</strong>tegral<br />

Let T > 0 fixed and n ∈ N. Let f ∈ L2 (Sn(T )), where Sn(T ) := {(t1, t2,..., tn) ∈ [0, T ] n :<br />

t1 ≤ t2 ≤ ...tn} denotes the n− simplex <strong>in</strong> the cube [0, T ] n . Let W be a Wiener process<br />

(Brownian motion) and FW = (F W t )0≤t≤T the usual W -augmented filtration. We want to<br />

construct an iterated Itô-<strong>in</strong>tegral, <strong>in</strong> the follow<strong>in</strong>g sense<br />

Jnf =<br />

� T<br />

0<br />

(<br />

� tn<br />

0<br />

...(<br />

� t2<br />

0<br />

f(t1, t2, ..., tn)dWt1)...dWtn−1)dWtn . (1)<br />

To prove and understand the existence of (1), we use the well known Hilbert space approach<br />

to the Itô-<strong>in</strong>tegral. So let us recall the basic Hilbert spaces which lead to the fundamental Itô<br />

isometry: L2 (Ω × [0, T ], PW , λT ⊗ P) = : L2 T (W ) is the Hilbert space of all predictable pro-<br />

cesses X with �X� 2<br />

L 2 T (W ) = E( � T<br />

0 X2 s ds) < ∞, where P W denotes the predictable σ−algebra,<br />

i.e., the σ−algebra, generated by all left-cont<strong>in</strong>uous and F W -adapted processes. S<strong>in</strong>ce W<br />

is (left-)cont<strong>in</strong>uous, F W -adapted processes and F W -predictable processes co<strong>in</strong>cide. If X ∈<br />

L 2 T (W ), then it is well known, that the stochastic <strong>in</strong>tegral X • W = (� t<br />

0 Xs dWs)0≤t≤T is<br />

a L2 (Ω)-bounded (and cont<strong>in</strong>uous) mart<strong>in</strong>gale: X • W ∈ M 2 T (W ) := {Z : Z is a FW -<br />

mart<strong>in</strong>gale and sup E(Z<br />

0≤s≤T<br />

2 s ) < ∞}. Thus, it is an uniformly <strong>in</strong>tegrable and (<strong>in</strong> particular)<br />

closable mart<strong>in</strong>gale with clos<strong>in</strong>g element (X • W )T = � T<br />

0 XsdWs ∈ L2 (Ω, F W T , P). Let us<br />

recall the follow<strong>in</strong>g<br />

Theorem 2.1 (Itô Isometry) L2 1<br />

T (W ) ↩→ L2 (Ω, F W T , P), X ↦→ (X • W )T<br />

l<strong>in</strong>ear embedd<strong>in</strong>g:<br />

is an isometric<br />

E((X • W ) 2 � T<br />

T ) = E(<br />

0<br />

X 2 s ds).<br />

Let L2 0(Ω, F W T , P) := {X ∈ L2 (Ω) : E(X) = 0}. Then L2 0(Ω, F W T , P) obviously is a subspace of<br />

the Hilbert space L2 (Ω, F W T , P), and the Kunita-Watanabe representation theorem, together<br />

with the Itô isometry now reveal the small ”size” of the space L2 T (W ) of all square <strong>in</strong>tegrable<br />

FW -adapted processes:<br />

3


Theorem 2.2 L2 T (W ) ∼ = L2 0(Ω, F W T , P).<br />

To construct the iterated Itô <strong>in</strong>tegral recursively, we first take a closer look at the f<strong>in</strong>ite<br />

dimensional simplexes. So, let k ≥ 2 be an arbitrary natural number and t > 0. Given a<br />

function g : R k −→ R, we set g(·, s)(u) := g(u, s), where u ∈ R k−1 and s ∈ R. S<strong>in</strong>ce<br />

1lSk(t)(u, s) = 1lSk−1(s)(u) · 1l[0,t](s)<br />

for all (u, s) ∈ Sk(t), Fub<strong>in</strong>i’s theorem directly leads to the follow<strong>in</strong>g<br />

Lemma 2.1 If g ∈ L 2 (Sk(t)), then g(·, s) ∈ L 2 (Sk−1(s)) for all s ∈ [0, t], and<br />

�<br />

Sk(t)<br />

g(v) d k v =<br />

�t<br />

0<br />

� �<br />

Sk−1(s)<br />

g(u, s) d k−1 �<br />

u ds .<br />

The above isometry and Fub<strong>in</strong>i-allowed <strong>in</strong>terchang<strong>in</strong>g of the operators E and � t<br />

, now lead<br />

0<br />

us to a precise mean<strong>in</strong>g of the iterated Itô-<strong>in</strong>tegral. Given an arbitrary t > 0, we will def<strong>in</strong>e<br />

l<strong>in</strong>ear isometries Y (k) : L2 (Sk(t)) → L2 t (W ) recursively by2 and<br />

Y (1) g(ω, s) := g(s) (s ∈ [0, t]) [determ<strong>in</strong>istic]<br />

Y (k) g(ω, s) := (Y (k−1) g(·, s) • W )s(ω) (s ∈ [0, t])<br />

for k > 1. The next proposition will show us that these operators are well def<strong>in</strong>ed.<br />

Proposition 2.1 Let k, l ∈ N and t > 0. Then Y (k) : L 2 (Sk(t)) → L 2 t (W ) def<strong>in</strong>es a l<strong>in</strong>ear<br />

isometry from the Hilbert space L 2 (Sk(t)) <strong>in</strong>to the Hilbert space L 2 t (W ) and, if k �= l, then<br />

(Y (k) g | Y (l) h) L 2 t (W ) = 0 for all g ∈ L 2 (Sk(t)) and h ∈ L 2 (Sl(t)). (2)<br />

Proof: Noth<strong>in</strong>g is to show for k = 1. So let g ∈ L2 (Sk+1(t)) given and the l<strong>in</strong>ear<br />

isometry Y (k) : L2 (Sk(s)) → L2 s(W ) already be constructed (for arbitrary s ∈ [0, T ]). Let<br />

s ∈ [0, t]. Fub<strong>in</strong>i’s theorem implies that g(·, s) ∈ L2 (Sk(s)), so that Y (k) g(·, s) • W ∈ M 2 s (W )<br />

exists. Hence, sett<strong>in</strong>g (Y (k+1) g)s := (Y (k) g(·, s)•W )s = � s<br />

0 (Y (k) g(·, s))u dWu ∈ L2 (Ω, F W s , P),<br />

the previous considerations show that<br />

E(<br />

� t<br />

0<br />

(Y (k+1) g) 2 s ds) =<br />

� t<br />

0<br />

E((Y (k+1) g) 2 s) ds =<br />

� t<br />

0<br />

(E(<br />

� s<br />

0<br />

(Y (k) g(·, s)) 2 u) du) ds.<br />

By assumption, E( � s<br />

0 (Y (k) g(·, s)) 2 u) du = �<br />

Sk(s) g2 (u, s) dku, and it follows that<br />

�<br />

�Y (k+1) g� 2<br />

L2 t (W ) =<br />

Sk+1(t)<br />

g 2 (v) d k+1 v = �g� 2<br />

L2 (Sk+1(t)) < ∞.<br />

Now we will prove (2). Given m ∈ N, we have to show that (Y (k) g | Y (k+m) h) L 2 t (W ) = 0 for<br />

all k ∈ N. First, let k = 1. Then (Y (1) g | Y (1+m) h) L 2 t (W )<br />

2 More precisely, we should use the symbol Y (k)<br />

t<br />

to denote the dependence on the parameter t.<br />

4


= E( � t<br />

0 g(s) · (Y (1+m) h)s ds) = � t<br />

0 g(s) · E((Y (1+m) h)s) ds = 0, s<strong>in</strong>ce Y (1) g = g is determ<strong>in</strong>istic<br />

and Y (m) h(·, s) • W is a mart<strong>in</strong>gale which starts at 0. Let g ∈ L 2 (Sk+1(t)) and<br />

h ∈ L 2 (Sk+1+m(t)). Then, given the assumption that (2) is valid for k, the Itô isometry<br />

implies that <strong>in</strong> particular<br />

E((Y (k+1) g)s · (Y (k+1+m) h)s) = ((Y (k+1) g)s | (Y (k+1+m) h)s) L 2 (Ω,F W s ,�)<br />

= (Y (k) g(·, s) | Y (k+m) h(·, s)) L 2 s(W )<br />

= 0<br />

for all s ∈ [0, t]. Integrat<strong>in</strong>g both sides over [0, t], f<strong>in</strong>ishes the proof. �<br />

Now we def<strong>in</strong>e for arbitrary T > 0, n ∈ N and f ∈ L 2 (Sn(T ))<br />

Jnf := (Y (n) f • W )T =<br />

� T<br />

0<br />

(Y (n) f)s dWs .<br />

Evaluat<strong>in</strong>g this expression recursively, it follows by construction that<br />

Jnf =<br />

� T<br />

0<br />

Jn−1f(·, s) dWs<br />

for all n > 1, and we obta<strong>in</strong> the above expression (1). Sett<strong>in</strong>g J0c := c for c ∈ L 2 (S0(T )) :=<br />

R, we arrive at the follow<strong>in</strong>g<br />

Theorem 2.3 Let n ∈ N0 and T > 0. Then<br />

Jn : L 2 (Sn(T )) 1<br />

↩→ L 2 (Ω, F W T , P)<br />

is a l<strong>in</strong>ear isometry, and if m ∈ N0 with m �= n, then<br />

for all f ∈ L 2 (Sn(T ) and g ∈ L 2 (Sm(T )).<br />

E(Jnf · Jmg) = (Jnf | Jmg) L 2 (Ω,F W T ,�) = 0<br />

Proof: Jn is the composition of two l<strong>in</strong>ear isometries, namely<br />

L 2 (Sn(T )) 1<br />

↩→ L 2 T (W ) ∼ = → L 2 (Ω, FT , P), f ↦→ Y (n) f ↦→ (Y (n) f • W )T<br />

Until now, we have def<strong>in</strong>ed the multiple Wiener <strong>in</strong>tegral only for functions belong<strong>in</strong>g to<br />

L 2 (Sn(T )) with given T > 0. The def<strong>in</strong>ition of the simplex Sn(T ) = {(t1, t2, ..., tn) ∈ [0, T ] n :<br />

t1 ≤ t2 ≤ ... ≤ tn} leads to the conclusion that the order structure of R n plays a fundamental<br />

role <strong>in</strong> the construction of the mutiple <strong>in</strong>tegral, but it is not really so. Let f ∈ L 2 ([0, T ] n )<br />

be a symmetric function; i.e.: f(t1, t2, ..., tn) = f(tσ(1), tσ(2), ..., tσ(n)) for all permutations<br />

σ ∈ Sn. Let � L 2 ([0, T ] n ) denote the (closed) l<strong>in</strong>ear subspace of all symmetric functions <strong>in</strong><br />

L 2 ([0, T ] n ).<br />

Proposition 2.2 Let n ∈ N and T > 0. Then 3<br />

for all f ∈ � L 2 ([0, T ] n ).<br />

�f� 2<br />

L 2 ([0,T ] n ) = n! · �f | Sn(T )� 2<br />

L 2 (Sn(T ))<br />

3 Often, we will denote f | Sn(T ) by the same symbol f, if no misunderstand<strong>in</strong>g is possible.<br />

5<br />

�<br />

(3)


Proof: Noth<strong>in</strong>g is to show for n = 1. So, let (3) be true for n ∈ N and let f ∈<br />

�L 2 ([0, T ] n+1 ). Set Hk = L2 ([0, T ] k ). Then, by <strong>in</strong>duction assumption and Fub<strong>in</strong>i<br />

�f� 2 Hn+1 =<br />

� T<br />

�f(·, s)�<br />

0<br />

2 � T<br />

Hn ds = n!<br />

0<br />

�f(·, s)� 2 �<br />

Sn(T ) ds<br />

= n! f 2 (t) d n+1 t .<br />

Now,<br />

Sn(T )×[0,T ]<br />

Sn(T ) × [0, T ] = {(τ, s) ∈ [0, T ] n+1 : τ ∈ Sn(T )} = An+1(T ) ∪ Sn+1(T ) ,<br />

where An+1(T ) := {(τ, s) ∈ [0, T ] n+1 : τ ∈ Sn(T ), s < τn}. S<strong>in</strong>ce exactly n ordered positions<br />

for such an s are possible, An+1(T ) equals to the disjo<strong>in</strong>t junion �n k=1 Λ−1<br />

k (Sn+1(T )) (a.s.),<br />

where Λk ∈ O(n + 1; R) denotes the matrix which maps the unit vector el to el if 1 ≤ l < k,<br />

el to el+1 if k ≤ l < n + 1 and en+1 to ek. S<strong>in</strong>ce f is symmetric, it follows <strong>in</strong> particular that<br />

f 2 (t) = f 2 (Λkt) for all k ∈ {1, ..., n} and t ∈ [0, T ] n+1 , so that the transformation formula<br />

implies that<br />

�<br />

�<br />

�<br />

Sn+1(T )<br />

f 2 (t) d n+1 t =<br />

Λ −1<br />

k (Sn+1(T ))<br />

f 2 (Λkt) d n+1 t =<br />

Λ −1<br />

k (Sn+1(T ))<br />

f 2 (t) d n+1 t,<br />

and the proof is f<strong>in</strong>ished. �<br />

Us<strong>in</strong>g this fact, we now transfer the def<strong>in</strong>ition of the multiple Wiener <strong>in</strong>tegral to functions<br />

f ∈ � L 2 ([0, T ] n ) <strong>in</strong> the follow<strong>in</strong>g sense:<br />

Inf := n! · Jn(f | Sn(T )).<br />

By the previous considerations, In : � L2 ([0, T ] n ) → L2 (Ω, FT , P) is a l<strong>in</strong>ear cont<strong>in</strong>uous operator,<br />

and:<br />

E((Inf) 2 ) = �Inf� 2<br />

L2 (Ω,FT ,�) = n! · �f�2L<br />

2 ([0,T ] n ) .<br />

3 Hermite Polynomials and Chaos Decomposition<br />

In the follow<strong>in</strong>g paragraph we consider functions <strong>in</strong> � L2 ([0, T ] n ) of type<br />

g ⊗n n�<br />

(x1, ..., xn) := g(xi) ,<br />

where g ∈ L 2 ([0, T ]). We will recognize that these symmetric products are the cornerstones<br />

of the factorization of L 2 (Ω, FT , P) through multiple Wiener <strong>in</strong>tegrals. To that end, let us<br />

recall the well known Hermite polynomials (n ∈ N0, x ∈ R) :<br />

i=1<br />

hn(x) := (−1) n · exp( x2<br />

2 ) · g(n) (x) ,<br />

where g(x) := exp(− x2<br />

2 ). The first Hermite polynomials are h0(x) = 1, h1(x) = x, h2(x) =<br />

x 2 − 1 and h3(x) = x 3 − 3x. Given a > 0, we put<br />

Then we have the follow<strong>in</strong>g<br />

Hn(x, a) := √ a n · hn( x √ a ).<br />

6


Lemma 3.1 Let t ∈ R, x ∈ R and a > 0. Then<br />

(i) exp(tx − t2<br />

∞� t ) = 2<br />

n=0<br />

n<br />

· hn(x)<br />

n!<br />

(ii) exp(tx − at2<br />

∞� t ) = 2<br />

n=0<br />

n<br />

n! · Hn(x, a).<br />

Proof: Let x ∈ R fixed. S<strong>in</strong>ce exp(tx − t2<br />

x2 ) = exp( 2 2 ) · (g ◦ τx)(t), where τx(t) := x − t<br />

and g(y) := exp(− y2<br />

2 ), Taylor’s formula applied to g ◦ τx leads to<br />

exp(tx − t2<br />

2<br />

) = exp(x2 ) ·<br />

2<br />

n=0<br />

∞�<br />

n=0<br />

(g ◦ τx) (n) (0)<br />

n!<br />

· t n<br />

= exp( x2<br />

∞�<br />

) · (−1)<br />

2<br />

n=0<br />

n · (g(n) ◦ τx)(0)<br />

n!<br />

∞� t<br />

=<br />

n<br />

n! · hn(x) ,<br />

and (i) is proven. Now, (ii) follows directly, by sett<strong>in</strong>g exp(tx − at2<br />

s2<br />

) = exp(sy − ), where<br />

2 2<br />

s := t √ a and y := x √ . �<br />

a<br />

Due to partial differentiation of the function (x, a) ↦→ exp(tx− at2 ), the corollary immediately<br />

2<br />

implies the important<br />

Remark 3.1 ∂<br />

∂xHn(x, a) = n · Hn−1(x, a) and ( 1<br />

2 ∂x2 + ∂<br />

∂a )Hn(x, a) = 0 on R × R ∗<br />

+ .<br />

Now we can prove the follow<strong>in</strong>g representation:<br />

Theorem 3.1 Let T > 0 and g ∈ L 2 ([0, T ]). Then g ⊗n ∈ � L 2 ([0, T ] n ) for all n ∈ N and<br />

where X := g • W .<br />

∂ 2<br />

In(g ⊗n ) = Hn(XT , 〈X, X〉T ) = Hn((g • W )T , �g� 2<br />

L2 ([0,T ] ) , (4)<br />

Proof: We will prove the statement by <strong>in</strong>duction on n. Noth<strong>in</strong>g is to show for n = 1. Let<br />

(4) be valid for n ∈ N and set φn+1 := g⊗n+1 | Sn+1(T ). Then φn+1(·, s) = (g | [0, s]) ⊗n · g(s)<br />

on Sn(s) for all s ∈ [0, T ], and the def<strong>in</strong>ition of In+1 implies that<br />

In+1g ⊗n+1 � T<br />

= (n + 1)! · Jn+1φn+1 = (n + 1)! ·<br />

� T<br />

0<br />

= (n + 1)! ·<br />

= (n + 1)! ·<br />

= (n + 1) ·<br />

= (n + 1) ·<br />

(Y (n) φn+1(·, s) • W )s dWs<br />

· t n<br />

(Y (n+1) φn+1)s dWs<br />

0<br />

� T<br />

g(s) · (Y<br />

0<br />

(n) (g | [0, s]) ⊗n • W )s dWs<br />

� T<br />

0<br />

� T<br />

0<br />

g(s) · In(g | [0, s]) ⊗n dWs<br />

g(s) · Hn(Xs , 〈X, X〉s) dWs .<br />

7


On the other hand, us<strong>in</strong>g the previous remark, Itô’s formula applied to Hn+1(XT , 〈X, X〉T )<br />

leads to<br />

Hn+1(XT , 〈X, X〉T ) =<br />

� T<br />

0<br />

= (n + 1) ·<br />

= (n + 1) ·<br />

D1Hn+1(Xs , 〈X, X〉s) dXs + 0<br />

� T<br />

0<br />

� T<br />

0<br />

Hn(Xs , 〈X, X〉s) dXs<br />

Hn(Xs , 〈X, X〉s) · g(s) dWs ,<br />

and the proof is f<strong>in</strong>ished. �<br />

Let T > 0. To prove our ma<strong>in</strong> theorem <strong>in</strong> this paragraph - the Chaos representation of L2 -,<br />

we need a deeper <strong>in</strong>vestigation of the set {exp((g •W ))T : g ∈ L2 ([0, T ])}. Let g ∈ L2 ([0, T ]).<br />

Then X := g • W ∈ M 2 T (W ) and exp(XT ) = E(X)T · exp( 1<br />

2�g�2 L2 ([0,T ]) ) is an element of<br />

L1 (Ω, FT , P) with E( exp(XT )) ≤ exp( 1<br />

2�g�2 L2 ([0,T ] ) < ∞ (s<strong>in</strong>ce E(X) is a positive supermart<strong>in</strong>gale4<br />

), but <strong>in</strong> our case, we are able to show the follow<strong>in</strong>g:<br />

Lemma 3.2<br />

(i) exp((g • W )T ) ∈ L 2 (Ω, FT , P) for all g ∈ L 2 ([0, T ]);<br />

(ii) {exp((g • W )T ) : g ∈ L 2 ([0, T ])} is total <strong>in</strong> L 2 (Ω, FT , P).<br />

Proof: ad (i): Let X = g • W . Due to Lemma 5 and the previous theorem, it follows (for<br />

t = 1) that<br />

∞� 1<br />

E(X)T =<br />

n! · Hn(XT<br />

∞� 1<br />

, < X, X >T ) =<br />

n! In(g ⊗n )<br />

n=0<br />

holds po<strong>in</strong>twise on Ω. Now we show that this convergence still holds <strong>in</strong> L2 (Ω). Let us<br />

consider the f<strong>in</strong>ite sums Zn := n� 1<br />

k! Ik(g⊗k ) = n�<br />

Jk(g⊗k | Sk(T )) and let m < n. Each<br />

k=0<br />

Zn belongs to L 2 (Ω), and it follows (by orthogonality and isometry) that �Zn − Zm� 2<br />

L 2 (Ω) =<br />

n�<br />

k=m+1<br />

1<br />

k! �g⊗k � 2<br />

L 2 (Sk(T ))<br />

= n�<br />

k=m+1<br />

k=0<br />

n=0<br />

1<br />

k! (�g�2<br />

L 2 ([0,T ]) )k . Hence (Zn) is a Cauchy sequence <strong>in</strong> L 2 (Ω),<br />

and it follows the existence of a Z ∈ L2 (Ω) so that �Zn − Z�L2 (Ω) → 0 for n → ∞. In<br />

particular, there exists a subsequence (Znk ) of (Zn) so that Z = lim Znk po<strong>in</strong>twise <strong>in</strong> Ω.<br />

k→∞<br />

Thus E(X)T = Z ∈ L 2 (Ω) and therefore exp(XT ) = Z · exp( 1<br />

2 �g�2<br />

L 2 ([0,T ] ) ∈ L2 (Ω).<br />

ad (ii): Let N be the L 2 -closure of the l<strong>in</strong>ear hull M of the set {exp((g • W )T ) : g ∈<br />

L 2 ([0, T ])}. S<strong>in</strong>ce L 2 (Ω) = N ⊕ N ⊥ and N ⊥ = M ⊥ , we only have to show that M ⊥ = 0. So<br />

let ξ ∈ M ⊥ . By l<strong>in</strong>earity of the stochastic <strong>in</strong>tegral, it follows that<br />

E(ξ · exp(<br />

n�<br />

i=1<br />

λi · (gi • W )T )) = 0<br />

4 Indeed, Novikov’s condition implies that E(X) is still an uniformly <strong>in</strong>tegrable mart<strong>in</strong>gale.<br />

8


for all n ∈ N, λ1, ..., λn ∈ R and g1, ..., gn ∈ L2 ([0, T ]). In particular we obta<strong>in</strong> for arbitrary<br />

t1, ..., tn ∈ [0, T ]<br />

E(ξ · exp((λ | Z(ω))�n)) = 0 , (5)<br />

where λ := ( λ1, ..., λn) and Z := ((1(0,t1] • W )T , ...(1(tn−1,tn] • W )T ) = (Wt1, ..., Wtn − Wtn−1).<br />

By construction of Z, w ↦→ E(ξ · exp((w | Z)�n)) is an entire function on the connected open<br />

doma<strong>in</strong> Cn , so that (5) is true for all λ ∈ Cn . Denot<strong>in</strong>g m(A) := �<br />

A ξ dP (A ∈ F W T ), it<br />

follows <strong>in</strong> particular that<br />

�<br />

0 = E(ξ · exp(i (λ | Z(ω))�n)) = exp(i (λ | Z(ω))�n) m(dω)<br />

�<br />

Ω<br />

= exp(i (λ | ρ)�n) mZ(dρ) = �mZ(λ)<br />

� n<br />

for all λ ∈ R n . In other words, the Fourier transform of the measure mZ vanishes on R n .<br />

Hence, by <strong>in</strong>jectivity of the Fourier transform, m vanishes on σ(Z) = σ(Wt1, ..., Wtn) for all<br />

t1, ..., tn ∈ [0, T ], which implies by def<strong>in</strong>ition of m, that E(1A ·ξ) = m(A) = 0 for all A ∈ F W T .<br />

Hence, ξ = 0, and the proof of the lemma is f<strong>in</strong>ished. �<br />

Now we are totally prepared to prove<br />

Theorem 3.2 (Chaos decomposition) Let T > 0 and X ∈ L2 (Ω, F W T , P). Then there<br />

exists a unique sequence (fn)n∈� of determ<strong>in</strong>istic and symmetric functions fn ∈ � L2 ([0, T ] n )<br />

so that<br />

∞�<br />

X = E(X)+<br />

and<br />

�X� 2<br />

L 2 (Ω) = E2 (X)+<br />

∞�<br />

n=1<br />

n=1<br />

Infn<br />

n! · �fn� 2<br />

L 2 ([0,T ]) .<br />

Proof: Let X ∈ L2 (Ω, F W T , P) be given. Then, by the previous lemma, there exists a<br />

sequence (Zn) belong<strong>in</strong>g to the l<strong>in</strong>ear hull of the set {exp((g • W )T ) : g ∈ L2 ([0, T ])} so that<br />

�X − Zn� 2<br />

L 2 (Ω) → 0 . Each Zn can be written as a f<strong>in</strong>ite sum of type � ln<br />

k=1 αk exp((gk • W )T )<br />

with real αk and square-<strong>in</strong>tegrable gk. By theorem 6 and the previous considerations, each<br />

stochastic exponential E(gk • W )T can be written as E(gk • W )T = ∞�<br />

m=0<br />

1 ⊗m<br />

Im(g m! k ), so that<br />

Zn = � ∞<br />

m=0 Jmφ n m with (φ n m) n∈� ⊆ L 2 (Sm(T )). Orthogonality and the isometry condition<br />

now lead to �Zi − Zj� 2<br />

L 2 (Ω) = � ∞<br />

m=0 �φi m − φ j m� 2<br />

L 2 (Sm(T )) for all i, j ∈ N. Thus, (φi m) i∈�<br />

is a L 2 (Sm(T ))-Cauchy sequence for every m ∈ N0, imply<strong>in</strong>g the existence of a limit φm<br />

∈ L 2 (Sm(T )) with �φm − φ i m� 2<br />

L 2 (Sm(T )) → 0 for i → ∞, and we obta<strong>in</strong> that � ∞<br />

m=0 �φm −<br />

φi m�2 L2 (Sm(T )) → 0 for i → ∞. Hence, by orthogonality and the isometry condition aga<strong>in</strong>,<br />

it follows the existence of Z := �∞ m=0 Jmφm = �∞ m=0 Jm(φm − φi0 m) + Zi0 ∈ L2 (Ω) (for a<br />

→ 0 for<br />

suitable i0 ∈ N), and we obta<strong>in</strong> that �Z − Zi� 2<br />

L 2 (Ω) = � ∞<br />

m=0 �φm − φ i m� 2<br />

L 2 (Sm(T ))<br />

i → ∞. By uniqueness of the limits, X = Z = � ∞<br />

m=0 Jmφm with (φm) ⊆ L 2 (Sm(T )).<br />

To f<strong>in</strong>ish our proof we first extend each φm trivially to ψm ∈ L 2 ([0, T ] m ) and consider<br />

then the symmetrization � ψm of ψm:<br />

�ψm := 1 �<br />

· ψm ◦ Aσ ∈<br />

m!<br />

σ∈�n<br />

� L2 ([0, T ] m ) ,<br />

9


where Aσ(t1, ..., tm) := (tσ(1), ..., tσ(m)) for all (t1, ..., tm) ∈ [0, T ] m . S<strong>in</strong>ce Aσ(Sm(T )) has<br />

no common po<strong>in</strong>ts with Sm(T ) for all σ �= id, the def<strong>in</strong>ition of ψm implies that (ψm ◦<br />

Aσ) | Sm(T ) = 0 for all σ �= id, so that � ψm | Sm(T ) = 1<br />

m! · φm, and we obta<strong>in</strong> that<br />

X = �∞ m=0 Jmφm = �∞ m=0 Im � ψm. Moreover, due to proposition 4, it follows that<br />

�X� 2<br />

L 2 (Ω) =<br />

∞�<br />

m=0<br />

�φm� 2<br />

L 2 (Sm(T )) =<br />

∞�<br />

m=0<br />

m! · � � ψm� 2<br />

L 2 ([0,T ] m ) .<br />

S<strong>in</strong>ce X = � ∞<br />

m=0 Jmφm = φ 0 + � ∞<br />

m=1 (Y (m) φm • W )T , we have E(X) = φ 0 + 0, and because<br />

of the orthogonal representation, uniqueness follows immediately. �<br />

References<br />

[1] H. P. Berm<strong>in</strong>. Path Dependent Options: Hedg<strong>in</strong>g Lookback and Partial Lookback Options,<br />

Prepr<strong>in</strong>t, Lund University Sweden.<br />

[2] J. M. Bismut. Mart<strong>in</strong>gales, the Malliav<strong>in</strong> calculus and hypoellipticity under general<br />

Hörmander’s conditions, Z. Wahrsch. Verw. Gebiete 56 (1981), 469-505.<br />

[3] M. Dritschel and P. Protter. Complete Markets with Discont<strong>in</strong>uous Security Price,<br />

Prepr<strong>in</strong>t, Dept. Statistics, Purdue University, West Lafayette, USA.<br />

[4] E. Fournié, J.-M. Lasry, J. Lebuchoux, P.-L. Lions, and N. Touzi. An Application of<br />

Malliav<strong>in</strong> Calculus to Monte Carlo Methods <strong>in</strong> F<strong>in</strong>ance, Forthcom<strong>in</strong>g <strong>in</strong> F<strong>in</strong>ance &<br />

Stochastics.<br />

[5] I. Karatzas, D. Ocone, and J. Li. An extension of Clark’s formula, Stochastics and<br />

Stochastic Reports, 37 (1991), 127-131.<br />

[6] N. Kazamaki. Cont<strong>in</strong>uous Exponential Mart<strong>in</strong>gales and BMO, Spr<strong>in</strong>ger, Lecture Notes<br />

<strong>in</strong> Mathematics 1579 (1994).<br />

[7] H. Kunita and S. Watanabe. On square <strong>in</strong>tegrable mart<strong>in</strong>gales, Nagoya Math. J. 30<br />

(1967), 209-245.<br />

[8] V. Lacoste. Wiener Chaos: A New Approach to Option Hedg<strong>in</strong>g, Math. F<strong>in</strong>ance, Vol 6,<br />

No. 2 (April 1996), 197–213.<br />

[9] P. Malliav<strong>in</strong>. Stochastic calculus of variations and hypoelliptic operators, Proceed<strong>in</strong>gs<br />

of the International Conference on Stochastic Differential Equations, Kyoto, 195–263,<br />

K<strong>in</strong>okuniya, Tokyo; Wiley, New York (1976)<br />

[10] P. A. Meyer. Quantum Probability for Probabilists, Spr<strong>in</strong>ger, Lecture Notes <strong>in</strong> Mathematics<br />

1538, 2nd ed. (1994).<br />

[11] D. Nualart. The Malliav<strong>in</strong> Calculus and Related Topics, Spr<strong>in</strong>ger, Probability and its<br />

Applications (1995).<br />

[12] B. Øksendal. An <strong>in</strong>troduction to Malliav<strong>in</strong> Calculus with Applications to Economics,<br />

Norwegian School of Economics and Bus<strong>in</strong>ess Adm<strong>in</strong>istration, <strong>Work</strong><strong>in</strong>g Paper no. 3/96<br />

(1996).<br />

10


[13] D. Revuz and M. Yor. Cont<strong>in</strong>uous Mart<strong>in</strong>gales and Brownian Motion, Spr<strong>in</strong>ger,<br />

Grundlehren der math. Wissensch., 2nd ed. (1994).<br />

[14] D. Stroock. The Malliav<strong>in</strong> calculus and its applications, Stochastic Integrals (Proc. Sympos.<br />

Univ. Durham, Durham 1980), 394-432, Spr<strong>in</strong>ger, Lecture Notes <strong>in</strong> Mathematics<br />

851 (1981).<br />

11

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!