30.12.2012 Views

Lecture Slides

Lecture Slides

Lecture Slides

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Outline<br />

Velocity Kinematics<br />

EE 451 - Velocity Kinematics<br />

H.I. Bozma<br />

Electric Electronic Engineering<br />

Bogazici University<br />

November 5, 2012<br />

H.I. Bozma EE 451 - Velocity Kinematics


Outline<br />

Velocity Kinematics<br />

Velocity Kinematics<br />

Introduction<br />

Angular Velocity: Fixed Axis<br />

Skew-Symmetric Matrices<br />

Angular Velocity<br />

Linear Velocity<br />

Jacobian<br />

Tool Velocity<br />

Analytic Jacobian<br />

Singularities<br />

Force-Torque Relationships<br />

Inverse Velocity<br />

H.I. Bozma EE 451 - Velocity Kinematics


Velocity Kinematics<br />

Outline<br />

Velocity Kinematics<br />

Introduction<br />

Angular Velocity: Fixed Axis<br />

Skew-Symmetric Matrices<br />

Angular Velocity<br />

Linear Velocity<br />

Jacobian<br />

Tool Velocity<br />

Analytic Jacobian<br />

Singularities<br />

Force-Torque Relationships<br />

Inverse Velocity<br />

◮ Velocity in Configuration space C ⇔ Velocity in Workspace W<br />

◮ Representation of velocities<br />

◮ Revolute – angular<br />

◮ Prismatic – linear<br />

◮ Angular velocity about a fixed axis<br />

◮ Rotation around a moving axis<br />

◮ Instantaneous transformations btw n-vector joint velocities in<br />

C ⇔ 6-vector of angular and linear velocities in W →<br />

Jacobian (6-n matrix)<br />

H.I. Bozma EE 451 - Velocity Kinematics


Outline<br />

Velocity Kinematics<br />

Pure Rotation About Fixed Axis<br />

Introduction<br />

Angular Velocity: Fixed Axis<br />

Skew-Symmetric Matrices<br />

Angular Velocity<br />

Linear Velocity<br />

Jacobian<br />

Tool Velocity<br />

Analytic Jacobian<br />

Singularities<br />

Force-Torque Relationships<br />

Inverse Velocity<br />

◮ Pure rotation → Every point moves in a circle.<br />

◮ Centers of circles – On the axis of rotation<br />

◮ Perpendicular to the axis – θ<br />

◮ Angular velocity ω = ˙θk where<br />

˙θ = dθ<br />

dt and<br />

k - unit vector in the axis of rotation<br />

◮ Linear velocity v = ω ×r<br />

r - Vector from origin (axis of rotation) to the point<br />

H.I. Bozma EE 451 - Velocity Kinematics


Goal<br />

Outline<br />

Velocity Kinematics<br />

◮ Goal – The motion of a moving frame.<br />

Introduction<br />

Angular Velocity: Fixed Axis<br />

Skew-Symmetric Matrices<br />

Angular Velocity<br />

Linear Velocity<br />

Jacobian<br />

Tool Velocity<br />

Analytic Jacobian<br />

Singularities<br />

Force-Torque Relationships<br />

Inverse Velocity<br />

◮ The motion of the origin of the frame<br />

◮ The rotational motion of the frame’s axes<br />

H.I. Bozma EE 451 - Velocity Kinematics


Outline<br />

Velocity Kinematics<br />

Angular vs Linear Velocity<br />

Introduction<br />

Angular Velocity: Fixed Axis<br />

Skew-Symmetric Matrices<br />

Angular Velocity<br />

Linear Velocity<br />

Jacobian<br />

Tool Velocity<br />

Analytic Jacobian<br />

Singularities<br />

Force-Torque Relationships<br />

Inverse Velocity<br />

◮ Attach a frame rigidly to each object with an orientation<br />

◮ Each point on the object – Same angular velocity!<br />

◮ Angular velocity – Property of the frame attached to a body<br />

◮ Linear velocity – Property of the point, but rather the frame<br />

H.I. Bozma EE 451 - Velocity Kinematics


Outline<br />

Velocity Kinematics<br />

Definition and Properties<br />

◮ Linearity<br />

◮ Relation to cross product<br />

◮ Similarity transformation<br />

◮ Quadratic form<br />

Introduction<br />

Angular Velocity: Fixed Axis<br />

Skew-Symmetric Matrices<br />

Angular Velocity<br />

Linear Velocity<br />

Jacobian<br />

Tool Velocity<br />

Analytic Jacobian<br />

Singularities<br />

Force-Torque Relationships<br />

Inverse Velocity<br />

H.I. Bozma EE 451 - Velocity Kinematics


Outline<br />

Velocity Kinematics<br />

Derivative of a Rotation Matrix<br />

d<br />

dθ Rk,θ = S(k)Rk,θ<br />

Introduction<br />

Angular Velocity: Fixed Axis<br />

Skew-Symmetric Matrices<br />

Angular Velocity<br />

Linear Velocity<br />

Jacobian<br />

Tool Velocity<br />

Analytic Jacobian<br />

Singularities<br />

Force-Torque Relationships<br />

Inverse Velocity<br />

H.I. Bozma EE 451 - Velocity Kinematics


Outline<br />

Velocity Kinematics<br />

Introduction<br />

Angular Velocity: Fixed Axis<br />

Skew-Symmetric Matrices<br />

Angular Velocity<br />

Linear Velocity<br />

Jacobian<br />

Tool Velocity<br />

Analytic Jacobian<br />

Singularities<br />

Force-Torque Relationships<br />

Inverse Velocity<br />

Angular Velocity about a Moving Axis<br />

◮ Time varying rotation matrix R(t), R(t) ∈ SO(3)<br />

H.I. Bozma EE 451 - Velocity Kinematics


Outline<br />

Velocity Kinematics<br />

Addition of Angular Velocities<br />

R 0 n = R 0 1 R1 2 ...Rn−1<br />

n<br />

˙R 0 n = S(ω 0 0,n )R0 n<br />

Introduction<br />

Angular Velocity: Fixed Axis<br />

Skew-Symmetric Matrices<br />

Angular Velocity<br />

Linear Velocity<br />

Jacobian<br />

Tool Velocity<br />

Analytic Jacobian<br />

Singularities<br />

Force-Torque Relationships<br />

Inverse Velocity<br />

ω 0 0,n = ω 0 0,1 +R 0 1ω 1 1,2 +R 0 2ω 2 2,3 +...+R 0 n−1ω n−1<br />

n−1,n<br />

= ω 0 0,1 +ω 0 1,2 +ω 0 2,3 +...+ω 0 n−1,n<br />

H.I. Bozma EE 451 - Velocity Kinematics


Outline<br />

Velocity Kinematics<br />

Introduction<br />

Angular Velocity: Fixed Axis<br />

Skew-Symmetric Matrices<br />

Angular Velocity<br />

Linear Velocity<br />

Jacobian<br />

Tool Velocity<br />

Analytic Jacobian<br />

Singularities<br />

Force-Torque Relationships<br />

Inverse Velocity<br />

Linear Velocity of a Point p Attached to a Frame<br />

Assume: p – Attached rigidly to o1x1y1z1<br />

◮ Case 1: o1x1y1z1 is rotating wrt o0x0y0z0<br />

◮ Case 2: Motion of o1x1y1z1 wrt o0x0y0z0 - Defined by<br />

H0 1 (t) =<br />

� R 0 1 (t) o 0 1 (t)<br />

0 1<br />

�<br />

H.I. Bozma EE 451 - Velocity Kinematics


Jacobian<br />

Outline<br />

Velocity Kinematics<br />

◮ n link robotic system – q1,...,qn<br />

◮ T0 �<br />

R0 n = n(t) o0 �<br />

n(t)<br />

0 1<br />

Introduction<br />

Angular Velocity: Fixed Axis<br />

Skew-Symmetric Matrices<br />

Angular Velocity<br />

Linear Velocity<br />

Jacobian<br />

Tool Velocity<br />

Analytic Jacobian<br />

Singularities<br />

Force-Torque Relationships<br />

Inverse Velocity<br />

◮ As robot moves around, qi, R 0 n and o 0 n – functions of time<br />

◮ Angular velocity of end effector ω 0 n(t) – Defined by<br />

S(ω 0 n(t)) = ˙R 0 n(t)(R 0 n(t)) T<br />

◮ Linear velocity of end effector v0 n = ˙o 0 n<br />

�<br />

v0 n<br />

ω0 � �<br />

Jv<br />

= J˙q where J =<br />

n Jω<br />

Goal: Find ξ =<br />

H.I. Bozma EE 451 - Velocity Kinematics<br />

�<br />

⇐ Jacobian


Outline<br />

Velocity Kinematics<br />

Angular Velocity - Revolute Joint<br />

Introduction<br />

Angular Velocity: Fixed Axis<br />

Skew-Symmetric Matrices<br />

Angular Velocity<br />

Linear Velocity<br />

Jacobian<br />

Tool Velocity<br />

Analytic Jacobian<br />

Singularities<br />

Force-Torque Relationships<br />

Inverse Velocity<br />

If revolute joint, qi = θi with axis of rotation zi−1<br />

Let ω i−1<br />

i – Angular velocity of joint i wrt oi−1xi−1yi−1zi−1 Note<br />

that<br />

ω i−1<br />

i<br />

= ˙qiz i−1<br />

i−1 = ˙qik where k =<br />

⎡<br />

⎣<br />

0<br />

0<br />

1<br />

⎤<br />

⎦<br />

H.I. Bozma EE 451 - Velocity Kinematics


Outline<br />

Velocity Kinematics<br />

Angular Velocity – Prismatic Joint<br />

Introduction<br />

Angular Velocity: Fixed Axis<br />

Skew-Symmetric Matrices<br />

Angular Velocity<br />

Linear Velocity<br />

Jacobian<br />

Tool Velocity<br />

Analytic Jacobian<br />

Singularities<br />

Force-Torque Relationships<br />

Inverse Velocity<br />

If prismatic joint, qi = di with axis of translation zi−1<br />

ω i−1<br />

i<br />

= 0<br />

H.I. Bozma EE 451 - Velocity Kinematics


Outline<br />

Velocity Kinematics<br />

Angular Velocity - End effector<br />

Let ρi =<br />

� 1 if revolute<br />

0 otherwise<br />

Introduction<br />

Angular Velocity: Fixed Axis<br />

Skew-Symmetric Matrices<br />

Angular Velocity<br />

Linear Velocity<br />

Jacobian<br />

Tool Velocity<br />

Analytic Jacobian<br />

Singularities<br />

Force-Torque Relationships<br />

Inverse Velocity<br />

ω 0 n = ρ1˙q1k +ρ2˙q2R 0 1k +...+ρn˙qnR 0 n−1k<br />

=<br />

n�<br />

i=1<br />

ρi ˙qiz 0 i−1<br />

H.I. Bozma EE 451 - Velocity Kinematics


Outline<br />

Velocity Kinematics<br />

Linear Velocity - End effector<br />

◮ Prismatic joint<br />

◮ Revolute joint<br />

Introduction<br />

Angular Velocity: Fixed Axis<br />

Skew-Symmetric Matrices<br />

Angular Velocity<br />

Linear Velocity<br />

Jacobian<br />

Tool Velocity<br />

Analytic Jacobian<br />

Singularities<br />

Force-Torque Relationships<br />

Inverse Velocity<br />

H.I. Bozma EE 451 - Velocity Kinematics


Outline<br />

Velocity Kinematics<br />

Linear Velocity - Prismatic Joint<br />

Introduction<br />

Angular Velocity: Fixed Axis<br />

Skew-Symmetric Matrices<br />

Angular Velocity<br />

Linear Velocity<br />

Jacobian<br />

Tool Velocity<br />

Analytic Jacobian<br />

Singularities<br />

Force-Torque Relationships<br />

Inverse Velocity<br />

H.I. Bozma EE 451 - Velocity Kinematics


Outline<br />

Velocity Kinematics<br />

Linear Velocity - Revolute Joint<br />

Introduction<br />

Angular Velocity: Fixed Axis<br />

Skew-Symmetric Matrices<br />

Angular Velocity<br />

Linear Velocity<br />

Jacobian<br />

Tool Velocity<br />

Analytic Jacobian<br />

Singularities<br />

Force-Torque Relationships<br />

Inverse Velocity<br />

H.I. Bozma EE 451 - Velocity Kinematics


Jacobian – Summary<br />

where<br />

Outline<br />

Velocity Kinematics<br />

�<br />

Jv1 ... Jvn J =<br />

Introduction<br />

Angular Velocity: Fixed Axis<br />

Skew-Symmetric Matrices<br />

Angular Velocity<br />

Linear Velocity<br />

Jacobian<br />

Tool Velocity<br />

Analytic Jacobian<br />

Singularities<br />

Force-Torque Relationships<br />

Inverse Velocity<br />

Jω1 ... Jωn<br />

Jvi =<br />

�<br />

z0 i−1 ×(on −oi−1) if revolute<br />

z0 i−1 if prismatic<br />

Jωi =<br />

�<br />

z0 i−1 if revolute<br />

0 if prismatic<br />

H.I. Bozma EE 451 - Velocity Kinematics<br />


Outline<br />

Velocity Kinematics<br />

2 DOF RR Planar Robot<br />

Introduction<br />

Angular Velocity: Fixed Axis<br />

Skew-Symmetric Matrices<br />

Angular Velocity<br />

Linear Velocity<br />

Jacobian<br />

Tool Velocity<br />

Analytic Jacobian<br />

Singularities<br />

Force-Torque Relationships<br />

Inverse Velocity<br />

H.I. Bozma EE 451 - Velocity Kinematics


3 DOF RRR Robot<br />

Outline<br />

Velocity Kinematics<br />

Introduction<br />

Angular Velocity: Fixed Axis<br />

Skew-Symmetric Matrices<br />

Angular Velocity<br />

Linear Velocity<br />

Jacobian<br />

Tool Velocity<br />

Analytic Jacobian<br />

Singularities<br />

Force-Torque Relationships<br />

Inverse Velocity<br />

H.I. Bozma EE 451 - Velocity Kinematics


Tool Velocity<br />

Outline<br />

Velocity Kinematics<br />

◮ TI transformation T6 tool =<br />

�<br />

R d<br />

0 1<br />

◮ ω tool = ω6 → ω tool<br />

tool = RT ω 6 6<br />

◮ v tool<br />

tool<br />

= vtool 6 +ωtool 6 ×rtool<br />

Introduction<br />

Angular Velocity: Fixed Axis<br />

Skew-Symmetric Matrices<br />

Angular Velocity<br />

Linear Velocity<br />

Jacobian<br />

Tool Velocity<br />

Analytic Jacobian<br />

Singularities<br />

Force-Torque Relationships<br />

Inverse Velocity<br />

H.I. Bozma EE 451 - Velocity Kinematics<br />


End Effector Frame<br />

◮ X =<br />

� d(q)<br />

α(q)<br />

Outline<br />

Velocity Kinematics<br />

�<br />

∈ R3 ×SO(3)<br />

Introduction<br />

Angular Velocity: Fixed Axis<br />

Skew-Symmetric Matrices<br />

Angular Velocity<br />

Linear Velocity<br />

Jacobian<br />

Tool Velocity<br />

Analytic Jacobian<br />

Singularities<br />

Force-Torque Relationships<br />

Inverse Velocity<br />

◮ ˙X = Ja(q)˙q ⇐ Analytic Jacobian<br />

◮ Assuming Euler angles R = Rz,φRy,θRz,ψ,<br />

�<br />

I 0<br />

Ja(q) =<br />

0 B−1 � �<br />

I 0<br />

J(q) =<br />

(α) 0 B−1 (α)<br />

⎡<br />

where B(α) = ⎣<br />

cosψsinθ −sinψ 0<br />

sinψsinθ cosψ 0<br />

cosθ 0 1<br />

⎤<br />

⎦<br />

H.I. Bozma EE 451 - Velocity Kinematics<br />

�� ˙d<br />

ω<br />


Outline<br />

Velocity Kinematics<br />

Singularities - Singular Configurations<br />

◮ ξ = J(q)˙q<br />

Introduction<br />

Angular Velocity: Fixed Axis<br />

Skew-Symmetric Matrices<br />

Angular Velocity<br />

Linear Velocity<br />

Jacobian<br />

Tool Velocity<br />

Analytic Jacobian<br />

Singularities<br />

Force-Torque Relationships<br />

Inverse Velocity<br />

◮ J(q) = � J1(q) J2(q) ... Jn(q) � → ξ = � n<br />

i=1 Ji(q)˙qi<br />

◮ J(q) is a 6×n matrix → Rank(J(q)) ≤ min(6,n)<br />

◮ End effector velocity = � Arbitrary if Rank(J(q)) = 6<br />

◮ Rank(J(q)) is time-varying!<br />

◮ q ∈ C for which Rank(J(q)) < maxRank(J(q)) ← Singularity<br />

◮ For 6×6 matrix, det(J(q)) = 0<br />

H.I. Bozma EE 451 - Velocity Kinematics


Outline<br />

Velocity Kinematics<br />

Problems of Singularities?<br />

◮ Certain velocities are not attainable<br />

Introduction<br />

Angular Velocity: Fixed Axis<br />

Skew-Symmetric Matrices<br />

Angular Velocity<br />

Linear Velocity<br />

Jacobian<br />

Tool Velocity<br />

Analytic Jacobian<br />

Singularities<br />

Force-Torque Relationships<br />

Inverse Velocity<br />

◮ Bounded end-effector velocities – Unbounded joint velocities<br />

◮ Often correspond to points on the boundary of workspace<br />

◮ Often correspond to points unreachable via small<br />

perturbations of link parameters<br />

H.I. Bozma EE 451 - Velocity Kinematics


Outline<br />

Velocity Kinematics<br />

Decoupling of Singularities<br />

Introduction<br />

Angular Velocity: Fixed Axis<br />

Skew-Symmetric Matrices<br />

Angular Velocity<br />

Linear Velocity<br />

Jacobian<br />

Tool Velocity<br />

Analytic Jacobian<br />

Singularities<br />

Force-Torque Relationships<br />

Inverse Velocity<br />

◮ Arm singularities - Singularities resulting from the arm motion<br />

◮ Wrist singularities - Singularities resulting from the wrist<br />

motion<br />

H.I. Bozma EE 451 - Velocity Kinematics


RR Planar Robot<br />

Outline<br />

Velocity Kinematics<br />

Introduction<br />

Angular Velocity: Fixed Axis<br />

Skew-Symmetric Matrices<br />

Angular Velocity<br />

Linear Velocity<br />

Jacobian<br />

Tool Velocity<br />

Analytic Jacobian<br />

Singularities<br />

Force-Torque Relationships<br />

Inverse Velocity<br />

H.I. Bozma EE 451 - Velocity Kinematics


Outline<br />

Velocity Kinematics<br />

Force-Torque Relationships<br />

Introduction<br />

Angular Velocity: Fixed Axis<br />

Skew-Symmetric Matrices<br />

Angular Velocity<br />

Linear Velocity<br />

Jacobian<br />

Tool Velocity<br />

Analytic Jacobian<br />

Singularities<br />

Force-Torque Relationships<br />

Inverse Velocity<br />

◮ Interaction with the environment → Forces and moments at<br />

the end effector F = [FxFyFznxnynz] T<br />

◮ [FxFyFznxnynz] → Joint torques τ where τ = J(q) T F<br />

H.I. Bozma EE 451 - Velocity Kinematics


Outline<br />

Velocity Kinematics<br />

Inverse Velocity Problem<br />

Introduction<br />

Angular Velocity: Fixed Axis<br />

Skew-Symmetric Matrices<br />

Angular Velocity<br />

Linear Velocity<br />

Jacobian<br />

Tool Velocity<br />

Analytic Jacobian<br />

Singularities<br />

Force-Torque Relationships<br />

Inverse Velocity<br />

◮ Problem Statement: Given ξ, find ˙q such that ξ = J(q)˙q<br />

◮ If J(q) is invertible (square and full rank), ˙q = J(q) −1 ξ<br />

◮ If n �= 6, J(q) is not invertible !<br />

◮ If ξ ∈ Span(J(q)) ↔ Rank(J(q)) = Rank([J(q) |ξ])<br />

(Gaussian Elimination)<br />

◮ If n > 6, Pseudoinverse J + = (J T J) −1 J → ˙q = J + (q) −1 ξ<br />

H.I. Bozma EE 451 - Velocity Kinematics

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!