30.12.2012 Views

Finite element calculations for the helium atom∗ 1 Introduction

Finite element calculations for the helium atom∗ 1 Introduction

Finite element calculations for the helium atom∗ 1 Introduction

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

all states. The grid points are:<br />

1s1s 1 S : 0.0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0, 1.2, 1.6,<br />

2.0, 2.6, 3.2, 4.2, 6.0, 9.0, 15.0;<br />

− 1.0, −0.6, −0.2, 0.2, 0.6, 1.0;<br />

1s2s 1 S : 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0,<br />

2.2, 2.4, 2.6, 3.0, 3.4, 3.8, 4.2, 4.8, 5.6, 8.0, 11.5, 15.0, 20.0;<br />

− 1.0, −0.5, 0.5, 1.0;<br />

1s2s 3 S : 0.0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.4, 1.6,<br />

1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6, 4.0, 4.5, 5.5, 7.0, 10.0, 13.0,<br />

16.0, 20.0, 25.0;<br />

− 1.0, 0.0, 1.0;<br />

1s2p 3 P : 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.2, 2.6, 3.0, 3.6, 5.0, 7.0,<br />

10.0, 15.0, 20.0, 25.0;<br />

− 1.0, 0.0, 1.0;<br />

1s3d 3 D : 0.0, 0.2, 0.4, 0.6, 1.0, 1.6, 2.2, 3.0, 4.0, 6.0, 9.0, 13.0, 18.0, 24.0, 30.0;<br />

− 1.0, 0.0, 1.0;<br />

Table 1: Computational ef<strong>for</strong>ts.<br />

state 1s1s 1 S 1s2s 1 S 1s2s 3 S 1s2p 3 P 1s3d 3 D<br />

number of 57472 65320 68243 44954 36246<br />

unknowns<br />

Table 2: FEM results <strong>for</strong> <strong>the</strong> <strong>helium</strong> atom(a.u.).<br />

state 1s1s 1 S 1s2s 1 S 1s2s 3 S 1s2p 3 P 1s3d 3 D<br />

results in -2.90372437703411959 -2.1459740460544 -2.1752293782367 -2.133164190 -2.055636309453<br />

references 83111594(4) [12] 188(21) [10] 913037(13) [10] 77927(1) [35] 261(4) [35]<br />

this work -2.903724106 -2.1459740042 -2.1752293277 -2.1331633824 -2.05558078<br />

Now, we show <strong>the</strong> behaviors of wave functions in a special case µ = 1(θ = 0 ◦ ). From<br />

Figure 1-5, we can see that <strong>the</strong> domain where electrons appear frequently is considerably<br />

small, so it is reasonable to solve <strong>the</strong> Schrödinger equation in bounded domains. Fur<strong>the</strong>rmore,<br />

we can see that <strong>the</strong> figures of wave functions ψs, ψp constructed in (3.6) are<br />

symmetric or antisymmetric according to singlets or triplets respectively. We didn’t add<br />

this assumption a priori.<br />

Acknowledgements: The authors are grateful to <strong>the</strong> anonymous referees <strong>for</strong> <strong>the</strong>ir<br />

valuable comments and advices <strong>for</strong> our paper. The authors also thank professor Peizhu<br />

Ding of Jilin University <strong>for</strong> discussing <strong>the</strong> problem with us and reading this paper.<br />

References<br />

[1] Ch.Froese-Fischer, T heHartree − F ock Method <strong>for</strong>Atoms, Wiley-Intersciece, New<br />

York(1977).<br />

[2] I.L.Hawk and D.L.Hardcastle, Comput. Phys. Commun. 16,159(1979).<br />

12

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!