01.01.2013 Views

Load on the lumbar spine of flight attendants - North Wales Spine ...

Load on the lumbar spine of flight attendants - North Wales Spine ...

Load on the lumbar spine of flight attendants - North Wales Spine ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Abstract<br />

Internati<strong>on</strong>al Journal <strong>of</strong> Industrial Erg<strong>on</strong>omics 37 (2007) 863–876<br />

<str<strong>on</strong>g>Load</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>lumbar</strong> <strong>spine</strong> <strong>of</strong> <strong>flight</strong> <strong>attendants</strong> during pushing and<br />

pulling trolleys aboard aircraft<br />

Matthias Ja¨ ger a, , Kirsten Sawatzki a , Ulrich Glitsch b , Rolf Ellegast b ,<br />

Hans Ju¨ rgen Ottersbach b , Karlheinz Schaub c , Gerhard Franz d , Alwin Luttmann a<br />

a Institute for Occupati<strong>on</strong>al Physiology at <strong>the</strong> University <strong>of</strong> Dortmund, ArdeystraX e 67, 44139 Dortmund, Germany<br />

b BGIA-Institute for Occupati<strong>on</strong>al Safety and Health, Alte HeerstraX e 111, 53757 Sankt Augustin, Germany<br />

c Institute <strong>of</strong> Erg<strong>on</strong>omics, Darmstadt University <strong>of</strong> Technology, PetersenstraX e 30, 64827 Darmstadt, Germany<br />

d Instituti<strong>on</strong> for Statutory Accident Insurance and Preventi<strong>on</strong> in <strong>the</strong> Vehicle Operating Trades in Germany, Ottenser HauptstraX e 54,<br />

22765 Hamburg, Germany<br />

Received 20 February 2005; received in revised form 11 August 2006; accepted 18 August 2006<br />

Available <strong>on</strong>line 30 August 2007<br />

Flight <strong>attendants</strong> report <strong>on</strong> high physical load and complaints particularly focussing <strong>on</strong> <strong>the</strong> lower back. These findings are mainly<br />

ascribed to pushing and pulling <strong>of</strong> trolleys during <strong>the</strong> ascent and descent <strong>flight</strong> phases. Within an interdisciplinary experimental study, <strong>the</strong><br />

load <strong>on</strong> <strong>the</strong> <strong>lumbar</strong> <strong>spine</strong> <strong>of</strong> <strong>flight</strong> <strong>attendants</strong> during trolley handling aboard aircraft was analysed based <strong>on</strong> laboratory measurements<br />

regarding posture and exerted forces as well as <strong>on</strong> subsequent biomechanical model calculati<strong>on</strong>s. Forces and moments <strong>of</strong> force at <strong>the</strong><br />

lumbosacral disc were quantified for 458 manoeuvres performed by 25 <strong>flight</strong> <strong>attendants</strong> in total (22 female, 3 male).<br />

Lumbar load varies according to handling mode (pushing, pulling), floor gradient (01, 21, 51, 81), trolley type (half-, full-size trolley),<br />

trolley loading (empty, medium, full) and, in additi<strong>on</strong>, according to individual executi<strong>on</strong> technique. For each <strong>of</strong> <strong>the</strong> resulting 48 task<br />

c<strong>on</strong>figurati<strong>on</strong>s, <strong>lumbar</strong> load was evaluated with respect to potential biomechanical overload by applying work-design recommendati<strong>on</strong>s<br />

for disc compressi<strong>on</strong> and moment <strong>of</strong> force. Irrespective <strong>of</strong> floor inclinati<strong>on</strong>, trolley weight and individual performance, pushing <strong>of</strong> small<br />

trolleys is combined with acceptable <strong>lumbar</strong> load, pulling with critical load. Pushing or pulling large trolleys occasi<strong>on</strong>ally yield to critical<br />

<strong>lumbar</strong> load, in particular, when heavy or heaviest c<strong>on</strong>tainers are moved <strong>on</strong> relatively steep or steepest surfaces.<br />

To diminish overload risk relevantly, top-edge grasp positi<strong>on</strong>s should be avoided for pulling <strong>of</strong> half-size trolleys, whereas for <strong>the</strong> o<strong>the</strong>r<br />

cases, grasping at <strong>the</strong> upper edge <strong>of</strong> <strong>the</strong> trolley is recommended.<br />

Relevance to industry<br />

The provided study illustrates <strong>lumbar</strong> load <strong>of</strong> <strong>flight</strong> <strong>attendants</strong> during trolley handling aboard aircraft for typical task c<strong>on</strong>diti<strong>on</strong>s and<br />

individual executi<strong>on</strong> techniques. Specified hints for work design regarding posture and grasp positi<strong>on</strong> enable to avoid biomechanical low-back<br />

overload for <strong>flight</strong> <strong>attendants</strong>. Fur<strong>the</strong>rmore, trolley properties may be rec<strong>on</strong>sidered, regular maintenance <strong>of</strong> rollers should be guaranteed.<br />

r 2007 Elsevier B.V. All rights reserved.<br />

Keywords: Push and pull; Flight <strong>attendants</strong>; Aircraft trolleys; <str<strong>on</strong>g>Load</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>spine</strong>; Handling recommendati<strong>on</strong><br />

1. Introducti<strong>on</strong><br />

In <strong>the</strong> c<strong>on</strong>text <strong>of</strong> service activities during short <strong>flight</strong>s <strong>of</strong><br />

commercial aircraft, <strong>flight</strong> <strong>attendants</strong> reported frequently<br />

<strong>on</strong> increased physical load and musculoskeletal complaints,<br />

Corresp<strong>on</strong>ding author. Tel.: +49 231 1084 267; fax: +49 231 1084 401.<br />

E-mail address: mjaeger@ifado.de (M. Ja¨ ger).<br />

0169-8141/$ - see fr<strong>on</strong>t matter r 2007 Elsevier B.V. All rights reserved.<br />

doi:10.1016/j.erg<strong>on</strong>.2007.07.010<br />

ARTICLE IN PRESS<br />

www.elsevier.com/locate/erg<strong>on</strong><br />

in particular, with respect to <strong>the</strong> lower back, which was<br />

mainly traced back to trolley handling during <strong>the</strong> ascent<br />

and descent <strong>flight</strong> phases. An interdisciplinary experimental<br />

study was c<strong>on</strong>ducted (Glitsch et al., 2004), followed by<br />

intensified evaluati<strong>on</strong>s <strong>on</strong> spinal-loading details (Sawatzki<br />

and Ja¨ ger, 2006), as adequate informati<strong>on</strong> <strong>on</strong> low-back<br />

load was not available and as musculoskeletal load in<br />

general was assessed hi<strong>the</strong>rto <strong>on</strong>ly <strong>the</strong>oretically <strong>on</strong> <strong>the</strong> basis


864<br />

<strong>of</strong> c<strong>on</strong>tainer mass, fricti<strong>on</strong>, cabin inclinati<strong>on</strong>, and o<strong>the</strong>r<br />

task c<strong>on</strong>diti<strong>on</strong>s.<br />

Previous studies were performed to quantify externalload<br />

indicators such as <strong>the</strong> forces applied to a transport<br />

cart, <strong>the</strong> handle height <strong>of</strong> <strong>the</strong> trolleys, moving speed or <strong>the</strong><br />

floor properties while pushing or pulling (e.g. Winkel, 1983;<br />

Lee et al., 1991; Al-Eisawi et al., 1999; Laursen and<br />

Schibye, 2002). In o<strong>the</strong>r studies, knowledge <strong>on</strong> <strong>lumbar</strong> load<br />

is restricted <strong>on</strong> handling <strong>of</strong> carts or two-wheeled c<strong>on</strong>tainers<br />

<strong>on</strong> horiz<strong>on</strong>tal surfaces (e.g. Mital et al., 1997; Schibye<br />

et al., 2001; Hoozemans et al., 2004). Specific reviews <strong>on</strong><br />

pushing and pulling in relati<strong>on</strong> to musculoskeletal<br />

disorders or erg<strong>on</strong>omic recommendati<strong>on</strong>s for manual<br />

vehicles are provided in <strong>the</strong> literature (Hoozemans et al.,<br />

1998; Jung et al., 2005).<br />

The aim <strong>of</strong> <strong>the</strong> study features presented in <strong>the</strong> paper<br />

<strong>on</strong> hand was to quantify <strong>lumbar</strong> load, to estimate <strong>lumbar</strong><br />

overload risk, to identify disadvantageous task c<strong>on</strong>diti<strong>on</strong>s<br />

and to derive biomechanically substantiated hints for<br />

work design in order to prevent low-back overload for<br />

<strong>flight</strong> <strong>attendants</strong>. O<strong>the</strong>r parts <strong>of</strong> <strong>the</strong> underlying crosssecti<strong>on</strong>al<br />

study deal with obtaining typical task c<strong>on</strong>diti<strong>on</strong>s<br />

such as frequency and performance properties aboard<br />

aircraft. Adopted postures and exerted pull-or-push forces<br />

during trolley handling were recorded in comprehensive<br />

laboratory experiments (Glitsch et al., 2007), <strong>the</strong> data <strong>of</strong><br />

which served as input measures at subsequent biomechanical<br />

model calculati<strong>on</strong>s for <strong>the</strong> predicti<strong>on</strong> <strong>of</strong> several<br />

<strong>lumbar</strong>-load indicators. Subjective percepti<strong>on</strong> <strong>of</strong> musculoskeletal<br />

load and complaints were examined via questi<strong>on</strong>naires<br />

at a group <strong>of</strong> about 600 German <strong>flight</strong><br />

<strong>attendants</strong>. Owing to guarantee a representative subsample<br />

<strong>of</strong> 25 <strong>flight</strong> <strong>attendants</strong> serving as subjects in <strong>the</strong><br />

previously menti<strong>on</strong>ed laboratory experiments, compilati<strong>on</strong>s<br />

<strong>of</strong> German airlines were examined with regard to<br />

biometric data <strong>of</strong> about 2,300 German <strong>flight</strong> <strong>attendants</strong>,<br />

and, according to <strong>the</strong> same aim, <strong>the</strong> physical strength was<br />

estimated via measurements <strong>on</strong> <strong>the</strong> individual forceproducti<strong>on</strong><br />

capability at about 500 pers<strong>on</strong>s (Schaub<br />

et al., 2007).<br />

2. Methods<br />

2.1. Experimental overview<br />

The quantificati<strong>on</strong> <strong>of</strong> <strong>the</strong> mechanical load <strong>on</strong> <strong>the</strong> <strong>lumbar</strong><br />

<strong>spine</strong> <strong>of</strong> <strong>flight</strong> <strong>attendants</strong> while moving transport carts <strong>on</strong><br />

inclined surfaces indispensably presumes knowledge <strong>of</strong> two<br />

informati<strong>on</strong> aspects, posture adopted and forces exerted by<br />

<strong>the</strong> pers<strong>on</strong> under study. Data ga<strong>the</strong>ring <strong>of</strong> <strong>the</strong>se influences<br />

<strong>on</strong> <strong>lumbar</strong> load is essentially based <strong>on</strong> <strong>the</strong> laboratory<br />

experiments described in detail by Glitsch et al. (2007). As<br />

a sketchy insight in <strong>the</strong> experimental methodology, typical<br />

situati<strong>on</strong>s during <strong>the</strong> four basic tasks, i.e. pushing or<br />

pulling c<strong>on</strong>tainers <strong>of</strong> different size, so-called full-size<br />

trolleys (FST) or half-size trolleys (HST), respectively, are<br />

dem<strong>on</strong>strated in Fig. 1. Pr<strong>of</strong>essi<strong>on</strong>al <strong>flight</strong> <strong>attendants</strong><br />

ARTICLE IN PRESS<br />

M. Jäger et al. / Internati<strong>on</strong>al Journal <strong>of</strong> Industrial Erg<strong>on</strong>omics 37 (2007) 863–876<br />

served as subjects for a couple <strong>of</strong> tasks simulating various<br />

c<strong>on</strong>diti<strong>on</strong>s aboard aircraft. During performing <strong>the</strong> experimental<br />

procedures, <strong>the</strong> subjects wore a specific measuring<br />

system (‘‘CUELA’’: for fur<strong>the</strong>r details, cf. Ellegast and<br />

Kupfer, 2000) c<strong>on</strong>taining several g<strong>on</strong>iometers and inclinometers<br />

in order to enable c<strong>on</strong>tinuous ambulatory recording<br />

<strong>of</strong> postural data, such as <strong>the</strong> flexi<strong>on</strong> angle between<br />

forearm and upper arm or <strong>the</strong> forward bending <strong>of</strong> <strong>the</strong><br />

trunk. The trolleys were equipped with several force<br />

sensors so that <strong>the</strong> acti<strong>on</strong> forces transferred via both hands<br />

could be registered with respect to amplitude, spatial<br />

directi<strong>on</strong>, point <strong>of</strong> applicati<strong>on</strong>, and temporal behaviour.<br />

The trolleys were pushed or pulled, in an upward<br />

directi<strong>on</strong>, <strong>on</strong> a ramp <strong>of</strong> a length <strong>of</strong> approximately 12 m;<br />

this distance was not covered by a single push-or-pull<br />

acti<strong>on</strong>, but divided into three c<strong>on</strong>secutive handling<br />

manoeuvres <strong>of</strong> few steps and inserted 5-s rest phases in<br />

an upright posture. In analogy to real occupati<strong>on</strong>al life,<br />

each manoeuvre was accompanied by an initial brake<br />

release and a final brake toggling. The ramp gradient was<br />

adjusted between 01, i.e. horiz<strong>on</strong>tal, and 81 reflecting <strong>the</strong><br />

comm<strong>on</strong> range <strong>of</strong> aircraft pitches in <strong>the</strong> respective <strong>flight</strong><br />

phase while providing meals and drinks. Intermediate<br />

gradients were 21 and 51.<br />

The weight <strong>of</strong> <strong>the</strong> trolleys has been varied in <strong>the</strong><br />

experiments between unloaded and fully laden. Due to<br />

<strong>the</strong> different tare weights and capacities <strong>of</strong> HST and<br />

FST, <strong>the</strong> total mass ranged between 30 kg (HST) or 40 kg<br />

(FST) in case <strong>of</strong> empty c<strong>on</strong>tainers and reached up to 60 kg<br />

(HST) or 90 kg (FST) for completely loaded trolleys,<br />

respectively. Forty-five and 65 kg were chosen as intermediate<br />

c<strong>on</strong>diti<strong>on</strong>s.<br />

In <strong>the</strong> laboratory experiments, 25 voluntary and healthy<br />

<strong>flight</strong> <strong>attendants</strong> participated. According to <strong>the</strong> high<br />

proporti<strong>on</strong> <strong>of</strong> women in Germany working as a <strong>flight</strong><br />

attendant in relati<strong>on</strong> to men, 22 female and 3 male subjects<br />

took part in <strong>the</strong> measurements. The variety and complexity<br />

<strong>of</strong> <strong>the</strong> experimental procedures caused separate days for<br />

each subject. All pers<strong>on</strong>s performed <strong>the</strong> same battery <strong>of</strong><br />

tasks, if being able.<br />

The variati<strong>on</strong> <strong>of</strong> <strong>the</strong> menti<strong>on</strong>ed task parameters totally<br />

resulted in 48 different experimental c<strong>on</strong>figurati<strong>on</strong>s, i.e.<br />

two handling modes, two trolley types, three trolley<br />

masses, four floor gradients were applied. C<strong>on</strong>sidering<br />

<strong>the</strong> sample <strong>of</strong> 25 subjects and three manoeuvres per trial, in<br />

total, 3,600 acti<strong>on</strong>s <strong>of</strong> a length <strong>of</strong> 3–10 s were recorded.<br />

Invalid trials, for example, due to insufficient muscular<br />

capacity or unsuitable footwear to perform a high-loading<br />

task like handling a heavy trolley <strong>on</strong> an 81 inclined surface,<br />

let diminish <strong>the</strong> total number to 3,410 <strong>of</strong> usable periods.<br />

2.2. Data recording<br />

The sample rate <strong>of</strong> all signals was set to 50 Hz. In<br />

c<strong>on</strong>sequence, <strong>the</strong> diverse indicators <strong>of</strong> kinematics or<br />

kinetics provided in <strong>the</strong> following were stored for every<br />

20 ms, corresp<strong>on</strong>ding time courses were generated by


FST<br />

full-<br />

size<br />

trolley<br />

HST<br />

half-<br />

size<br />

c<strong>on</strong>necting adjacent points. In order to enable succeeding<br />

comparis<strong>on</strong> <strong>of</strong> various tasks with respect to resulting<br />

<strong>lumbar</strong> load, time courses were ‘‘low-pass filtered’’ by a<br />

200-ms moving average, i.e. mean values at every 20 ms<br />

were calculated for 10 c<strong>on</strong>secutive points.<br />

2.2.1. Posture<br />

Manifold informati<strong>on</strong> <strong>on</strong> <strong>the</strong> posture <strong>of</strong> a <strong>flight</strong><br />

attendant was registered while performing <strong>the</strong> push-or-pull<br />

manoeuvres in <strong>the</strong> laboratory. The applied CUELA system<br />

enabled <strong>the</strong> recording <strong>of</strong> 26 postural indicators over time.<br />

The positi<strong>on</strong>s <strong>of</strong> <strong>the</strong> legs were described by four measures,<br />

eight indicators were related to <strong>the</strong> trunk and head, and 14<br />

parameters were c<strong>on</strong>cerned to <strong>the</strong> shoulders, arms and<br />

hands. These indicators mainly represent ‘‘relative angles’’<br />

between adjacent body segments to describe <strong>the</strong> graduati<strong>on</strong><br />

<strong>of</strong> joint flexi<strong>on</strong> or, <strong>on</strong>ly in <strong>the</strong> case <strong>of</strong> trunk inclinati<strong>on</strong><br />

against gravity, ‘‘absolute angles’’. Enabling data usage for<br />

<strong>the</strong> intended subsequent <strong>lumbar</strong>-load predicti<strong>on</strong> via <strong>the</strong><br />

biomechanical analysis tool ‘‘THE DORTMUNDER’’ (Ja¨ ger<br />

et al., 2001), c<strong>on</strong>versi<strong>on</strong> into an inertial co-ordinate system<br />

was necessary.<br />

2.2.2. Acti<strong>on</strong> forces at trolley and hands<br />

The forces applied at <strong>the</strong> trolley during pushing or<br />

pulling were recorded via sensor-equipped bars fixed to <strong>the</strong><br />

trolley. The bars were positi<strong>on</strong>ed individually for each trial<br />

according to <strong>the</strong> preferred grasping manner stated by <strong>the</strong><br />

ARTICLE IN PRESS<br />

M. Jäger et al. / Internati<strong>on</strong>al Journal <strong>of</strong> Industrial Erg<strong>on</strong>omics 37 (2007) 863–876 865<br />

trolley<br />

pushing pulling<br />

Fig. 1. Typical situati<strong>on</strong>s in <strong>the</strong> laboratory for posture and force recording during trolley handling.<br />

respective attendant: two bars vertically at <strong>the</strong> lateral edges<br />

<strong>of</strong> <strong>the</strong> trolley, because <strong>the</strong> pers<strong>on</strong> comm<strong>on</strong>ly varies <strong>the</strong><br />

grasp height, or <strong>on</strong>e bar horiz<strong>on</strong>tally at <strong>the</strong> upper trolley<br />

edge if <strong>the</strong> attendant preferred grasping at <strong>the</strong> top. At <strong>the</strong><br />

handles, three-axial force sensors were inserted at both<br />

ends so that <strong>the</strong> l<strong>on</strong>gitudinal, vertical and transversal<br />

comp<strong>on</strong>ents could be recorded. The l<strong>on</strong>gitudinal comp<strong>on</strong>ent<br />

represents <strong>the</strong> moti<strong>on</strong>-directed push-or-pull force, <strong>the</strong><br />

vertical comp<strong>on</strong>ents shows <strong>the</strong> pers<strong>on</strong>’s leaning up<strong>on</strong> <strong>the</strong><br />

trolley or, inversely directed, a lifting force, and <strong>the</strong><br />

transversal force comp<strong>on</strong>ent indicates <strong>the</strong> force pointing<br />

to lateral. In maximum, 10 force-related signals were<br />

c<strong>on</strong>tinuously registered. Recording <strong>of</strong> <strong>on</strong>ly 10 out <strong>of</strong> 12<br />

signals is based <strong>on</strong> <strong>the</strong> fact that at each handle <strong>the</strong> force<br />

pointing to <strong>the</strong> bar’s length axis is not measured twice, but<br />

<strong>on</strong>ly <strong>on</strong>ce.<br />

At <strong>on</strong>e bar, <strong>the</strong> sum <strong>of</strong> <strong>the</strong> two force signals for an<br />

identical directi<strong>on</strong> lead to <strong>the</strong> resultant force comp<strong>on</strong>ent at<br />

<strong>the</strong> respective hand. The distributi<strong>on</strong> <strong>of</strong> <strong>the</strong> forces,<br />

recorded by <strong>the</strong> two sensors at <strong>the</strong> same bar, allowed <strong>the</strong><br />

local determinati<strong>on</strong> <strong>of</strong> <strong>the</strong> point <strong>of</strong> force applicati<strong>on</strong>. This<br />

indicator enabled <strong>the</strong> verificati<strong>on</strong> <strong>of</strong> <strong>the</strong> grasp-point<br />

localizati<strong>on</strong> predicted by <strong>the</strong> postural measurements via<br />

g<strong>on</strong>io- and inclinometers at <strong>the</strong> body. For <strong>the</strong> following<br />

biomechanical <strong>lumbar</strong>-load predicti<strong>on</strong>s, <strong>the</strong> three force<br />

comp<strong>on</strong>ents for both hands were used as input data after<br />

angle c<strong>on</strong>versi<strong>on</strong> due to <strong>the</strong> trolley’s oblique orientati<strong>on</strong><br />

while moving <strong>on</strong> an inclined surface.


866<br />

2.3. Indicators <strong>of</strong> <strong>lumbar</strong> load<br />

Computerized calculati<strong>on</strong>s for quantifying measures <strong>of</strong><br />

<strong>lumbar</strong> load were performed which were based <strong>on</strong> <strong>the</strong><br />

recorded data <strong>on</strong> posture and exerted hand forces, both<br />

varying in <strong>the</strong> course <strong>of</strong> a push-or-pull acti<strong>on</strong>, as described<br />

above. Individual stature and body mass, ranging between<br />

<strong>the</strong> 5th and 95th percentiles <strong>of</strong> <strong>the</strong> sample ‘‘German <strong>flight</strong><br />

<strong>attendants</strong>’’, were c<strong>on</strong>sidered (cf. Schaub et al., 2007).<br />

Several mechanical indicators <strong>of</strong> <strong>lumbar</strong> load, i.e. <strong>the</strong><br />

bending and torsi<strong>on</strong>al moments <strong>of</strong> force or <strong>the</strong> compressive<br />

and shear forces at <strong>the</strong> lowest intervertebral disc <strong>of</strong><br />

<strong>the</strong> <strong>spine</strong>, were predicted applying a previously developed<br />

‘‘biomechanical model’’. As comm<strong>on</strong> in comparable<br />

erg<strong>on</strong>omic investigati<strong>on</strong>s, <strong>the</strong> lumbosacral disc ‘‘L5–S1’’—<br />

<strong>the</strong> transiti<strong>on</strong> between <strong>the</strong> 5th <strong>lumbar</strong> and <strong>the</strong> 1st sacral<br />

vertebrae, <strong>the</strong> latter representing <strong>the</strong> upper part <strong>of</strong> <strong>the</strong><br />

sacrum—was chosen as <strong>the</strong> reference point due to its<br />

relatively high disease prevalence and biomechanical overexerti<strong>on</strong><br />

risk. The indirect method <strong>of</strong> biomechanical<br />

modelling was applied, since direct determinati<strong>on</strong> via<br />

invasive measurement <strong>of</strong> mechanical indicators <strong>of</strong> <strong>lumbar</strong><br />

load such as <strong>the</strong> intradiscal pressure (e.g. Nachems<strong>on</strong> and<br />

Elfstro¨ m, 1970; Wilke et al., 1999) cannot be performed in<br />

erg<strong>on</strong>omic investigati<strong>on</strong>s for ethical reas<strong>on</strong>s.<br />

2.3.1. Biomechanical modelling<br />

The basic approach, <strong>the</strong> underlying procedures and<br />

details <strong>on</strong> <strong>the</strong> modellings <strong>of</strong> <strong>the</strong> skeletal and muscular<br />

structures, <strong>of</strong> intra-abdominal-pressure efficacy and <strong>of</strong><br />

inertia effects are described formerly (cf. Ja¨ ger et al., 1991,<br />

2001); a few aspects provided in <strong>the</strong> following may give a<br />

sketchy insight.<br />

A spatial dynamic multi-segmental biomechanical model<br />

(‘‘THE DORTMUNDER’’) was used for quantifying <strong>the</strong> <strong>lumbar</strong><br />

load during trolley handling. The human skeletal structure<br />

in this analysis tool is represented by 30 rigid body<br />

segments, 14 <strong>of</strong> which are located within <strong>the</strong> trunk<br />

according to <strong>the</strong> locati<strong>on</strong> <strong>of</strong> <strong>the</strong> intervertebral discs<br />

between pelvis and shoulder-joint height (T3–T4); in <strong>the</strong><br />

superior joint, a neck–head segment is c<strong>on</strong>nected. Individual<br />

postures are replicated via angle variati<strong>on</strong> in up to 26<br />

joints, which particularly enables <strong>the</strong> imitati<strong>on</strong> <strong>of</strong> realistic<br />

spinal curvatures via sagittal and lateral flexi<strong>on</strong> as well as<br />

twisting. Foot, lower and upper legs, shoulder, upper arm<br />

and forearm as well as hand are included in <strong>the</strong> model<br />

bilaterally.<br />

The muscular structure in <strong>the</strong> lower trunk regi<strong>on</strong> which,<br />

in particular, is spread over <strong>the</strong> <strong>lumbar</strong> discs, is replicated<br />

by <strong>the</strong> effect <strong>of</strong> 14 muscles or muscle cords in total: <strong>the</strong><br />

L<strong>on</strong>gissimus Thoracis and Iliocostalis Lumborum as<br />

relevant cords <strong>of</strong> <strong>the</strong> Erector Spinae muscle group at <strong>the</strong><br />

back, and <strong>the</strong> Rectus abdominis as well as <strong>the</strong> medial and<br />

lateral parts <strong>of</strong> both <strong>the</strong> External and Internal Obliques at<br />

<strong>the</strong> fr<strong>on</strong>tal side. Their functi<strong>on</strong>al effects corresp<strong>on</strong>d to nine<br />

‘‘muscle equivalents’’ or ‘‘resultant force vectors’’ in<br />

anatomically justified distances. The ma<strong>the</strong>matical problem<br />

ARTICLE IN PRESS<br />

M. Jäger et al. / Internati<strong>on</strong>al Journal <strong>of</strong> Industrial Erg<strong>on</strong>omics 37 (2007) 863–876<br />

<strong>of</strong> redundant muscle force distributi<strong>on</strong> is solved via a linear<br />

optimizati<strong>on</strong> technique.<br />

The effect <strong>of</strong> trunk stabilizati<strong>on</strong> according to intraabdominal<br />

pressure is c<strong>on</strong>sidered in <strong>the</strong> model by referring<br />

to <strong>the</strong> measurements <strong>of</strong> Morris et al. (1961) and <strong>the</strong><br />

c<strong>on</strong>secutive evaluati<strong>on</strong>s <strong>of</strong> Chaffin (1969). For purposes <strong>of</strong><br />

validati<strong>on</strong>, for example, specific electromyographical measurements<br />

were performed, <strong>the</strong> underlying top-down<br />

principle in THE DORTMUNDER was compared to<br />

corresp<strong>on</strong>ding bottom-up applicati<strong>on</strong>, and, where possible,<br />

results <strong>of</strong> modelling were verified by findings from<br />

measurements <strong>of</strong> <strong>lumbar</strong> intradiscal pressure (Nachems<strong>on</strong>,<br />

1966; Anderss<strong>on</strong> et al., 1977; Wilke et al., 1999).<br />

The model was applied ‘‘quasi-statically’’, i.e. <strong>the</strong> acti<strong>on</strong><br />

forces during trolley handling included <strong>the</strong> inertial effects,<br />

however, accelerati<strong>on</strong> <strong>of</strong> body segments’ masses remained<br />

unc<strong>on</strong>sidered in this study. A sample <strong>of</strong> 468 out <strong>of</strong> 3,410<br />

usable acti<strong>on</strong>s was analysed with regard to <strong>the</strong> predicti<strong>on</strong><br />

<strong>of</strong> several mechanical indicators <strong>of</strong> <strong>lumbar</strong> load. Selecti<strong>on</strong><br />

was performed arbitrarily in principle, but under <strong>the</strong><br />

restricti<strong>on</strong>s to receive data for each <strong>of</strong> <strong>the</strong> 48 different task<br />

c<strong>on</strong>figurati<strong>on</strong>s in total and to reject trials involving<br />

uncomm<strong>on</strong> handling performance with respect to posture<br />

(e.g. twisted), force exerti<strong>on</strong> (e.g. single-handed) or, in<br />

some cases, gliding foot.<br />

2.3.2. Evaluati<strong>on</strong> criteria<br />

The mechanical load <strong>on</strong> <strong>the</strong> <strong>lumbar</strong> <strong>spine</strong> during trolley<br />

handling is described <strong>on</strong> <strong>the</strong> basis <strong>of</strong> force and moment <strong>of</strong><br />

force acting at <strong>the</strong> lumbosacral disc. For both indicators,<br />

classificati<strong>on</strong> approaches provided in <strong>the</strong> literature are<br />

applied, as customary in erg<strong>on</strong>omics and occupati<strong>on</strong>al<br />

health in <strong>the</strong> assessment <strong>of</strong> activities involving <strong>lumbar</strong> load.<br />

Based <strong>on</strong> total values for <strong>the</strong> vectorial quantity ‘‘moment<br />

<strong>of</strong> force’’, Tichauer (1978) provides moment categories with<br />

relevance to <strong>the</strong> selecti<strong>on</strong> and training <strong>of</strong> working pers<strong>on</strong>s or<br />

to <strong>the</strong> adherence <strong>of</strong> rest brakes. This classificati<strong>on</strong> is based <strong>on</strong><br />

decades <strong>of</strong> experience <strong>of</strong> load analyses in erg<strong>on</strong>omic and<br />

biomechanical studies with a special emphasis <strong>on</strong> muscle<br />

physiology and <strong>lumbar</strong>-load model calculati<strong>on</strong>s. The limit<br />

values 40, 85 and 135 N m serve for defining <strong>the</strong> respective<br />

classes. According to Tichauer’s specificati<strong>on</strong>s, a criteri<strong>on</strong> <strong>of</strong><br />

85 N m was chosen for <strong>the</strong> evaluati<strong>on</strong> <strong>of</strong> moment values<br />

resulting for <strong>flight</strong> <strong>attendants</strong> while trolley handling. The<br />

properties ‘‘good body structure’’ and ‘‘some training’’ were<br />

attributed to that group <strong>of</strong> working pers<strong>on</strong>s, whereas<br />

‘‘selective recruitment <strong>of</strong> labour’’ regarding musculoskeletal<br />

or cardiopulm<strong>on</strong>ary performances, ‘‘careful training’’ and<br />

‘‘attenti<strong>on</strong> to rest pauses’’ were estimated as too severe<br />

c<strong>on</strong>diti<strong>on</strong>s. An incorrect, too insensible categorizati<strong>on</strong> would<br />

be carried out, if <strong>flight</strong> <strong>attendants</strong>—according to <strong>the</strong> 3rd<br />

category <strong>of</strong> Tichauer—were described as ‘‘untrained’’ or<br />

‘‘irrespective <strong>of</strong> body build’’. In total, <strong>the</strong> 85-N m criteri<strong>on</strong><br />

was applied to <strong>the</strong> sagittal–moment comp<strong>on</strong>ent, since this<br />

directi<strong>on</strong> clearly dominates <strong>the</strong> total moment in <strong>the</strong> analysed<br />

spectrum <strong>of</strong> tasks, i.e. pushing or pulling <strong>on</strong> a straight way<br />

(Glitsch et al., 2004).


Evaluati<strong>on</strong> <strong>of</strong> <strong>the</strong> reacti<strong>on</strong> forces acting at <strong>the</strong> lumbosacral<br />

disc is focussed <strong>on</strong> disc compressi<strong>on</strong>, as valid<br />

comparable criteria regarding <strong>the</strong> o<strong>the</strong>r comp<strong>on</strong>ents, i.e.<br />

sagittal and lateral shear, are more or less not available (cf.<br />

Mital et al., 1997; Ja¨ ger, 2001). The disc-compressi<strong>on</strong><br />

criteri<strong>on</strong> applied in this paper is derived from <strong>the</strong> so-called<br />

DORTMUND RECOMMENDATIONS, which represent age-andgender-specific<br />

limits during occupati<strong>on</strong>al work (Ja¨ ger and<br />

Luttmann, 1997). The provided values are based <strong>on</strong><br />

numerous measurements <strong>on</strong> <strong>the</strong> load-bearing capacity <strong>of</strong><br />

autopsy material dissected from human <strong>lumbar</strong> <strong>spine</strong>s,<br />

subsequent gender-specific regressi<strong>on</strong> analyses over age<br />

and, in order to avoid overestimati<strong>on</strong> <strong>of</strong> individual’s spinal<br />

load-bearing capacity, a decrement inserti<strong>on</strong> as a safety<br />

margin.<br />

The recommended limits range between 2.3 kN for males<br />

as from an age <strong>of</strong> 60 years and 6.0 kN for 20-year-old male<br />

adults or, in case <strong>of</strong> females, between 1.8 and 4.4 kN for<br />

older or younger pers<strong>on</strong>s, respectively. C<strong>on</strong>sidering <strong>the</strong><br />

huge majority <strong>of</strong> women, <strong>on</strong> <strong>the</strong> <strong>on</strong>e hand, and <strong>the</strong> age<br />

distributi<strong>on</strong> <strong>of</strong> German <strong>flight</strong> <strong>attendants</strong> (cf. Schaub et al.,<br />

2007), in accordance with <strong>the</strong> 95th percentile a value <strong>of</strong><br />

2.5 kN was ultimately chosen as <strong>the</strong> criteri<strong>on</strong> for evaluating<br />

disc compressi<strong>on</strong> during trolley manoeuvres.<br />

This approach <strong>of</strong> comparing predicted disc compressi<strong>on</strong> and<br />

<strong>the</strong> mechanical strength follows <strong>the</strong> idea <strong>of</strong> <strong>the</strong> well-known<br />

5°<br />

80<br />

ARTICLE IN PRESS<br />

FST<br />

fullsize<br />

trolley<br />

0<br />

0 1 2 3 4 5 6 7<br />

65 kg -80<br />

upward + / downward -<br />

leftward + / rightward -<br />

HST<br />

halfsize<br />

trolley<br />

60 kg<br />

80<br />

‘‘Work Practices Guide for Manual Lifting’’ (NIOSH, 1981;<br />

Waters et al., 1993), <strong>the</strong> applicati<strong>on</strong> <strong>of</strong> which, however, seems<br />

inadequate for evaluating pushing and pulling activities.<br />

Fur<strong>the</strong>rmore, <strong>the</strong> NIOSH criteri<strong>on</strong> is <strong>on</strong>ly weakly supported<br />

by both its epidemiological and biomechanical sources, and<br />

<strong>the</strong> underlying data base regarding mechanical-strength tests<br />

is smaller by a factor <strong>of</strong> approximately30incomparis<strong>on</strong>to<br />

<strong>the</strong> DORTMUND RECOMMENDATIONS (Ja¨ ger and Luttmann,<br />

1999).<br />

3. Results<br />

3.1. Typical temporal behaviour<br />

3.1.1. Acti<strong>on</strong> forces at trolley and hands<br />

Fig. 2 shows typical time-course secti<strong>on</strong>s <strong>of</strong> about 6–8 s<br />

for <strong>the</strong> acti<strong>on</strong> forces at <strong>the</strong> hands recorded at <strong>the</strong><br />

laboratory experiments for exemplary manoeuvres. The<br />

examples represent pushing (left) or pulling (right) <strong>of</strong> FST<br />

(above) or HST (below) <strong>of</strong> similar mass (65 kg vs. 60 kg) <strong>on</strong><br />

a51 inclined surface, performed by <strong>the</strong> same subject. With<br />

respect to <strong>the</strong> four basic tasks in Fig. 2, each diagram<br />

includes six curves according to bi-lateral registrati<strong>on</strong>s <strong>of</strong><br />

<strong>the</strong> l<strong>on</strong>gitudinal, vertical and lateral directi<strong>on</strong>s.<br />

As <strong>the</strong> diagrams show, all acti<strong>on</strong>–force time courses are<br />

characterized by a ‘‘rough’’, unsteady behaviour: most <strong>of</strong><br />

acti<strong>on</strong> forces at <strong>the</strong> hands in N<br />

pushing pulling<br />

forward + / backward -<br />

forward + / backward -<br />

upward + / downward -<br />

5 s<br />

leftward +<br />

rightward -<br />

0<br />

0 1 2 3 4 5 6 7 8<br />

-80<br />

M. Jäger et al. / Internati<strong>on</strong>al Journal <strong>of</strong> Industrial Erg<strong>on</strong>omics 37 (2007) 863–876 867<br />

8<br />

80<br />

upward + / downward -<br />

leftward + / rightward -<br />

0<br />

0 1 2 3 4 5 6 7 8<br />

-80<br />

80<br />

forward + / backward -<br />

upward + / downward -<br />

0<br />

0 1 2 3 4 5<br />

leftward + / rightward -<br />

6 7 8<br />

-80<br />

forward + / backward -<br />

time in s<br />

Fig. 2. Typical time courses for acti<strong>on</strong> forces at <strong>the</strong> hands during trolley handling, performed by <strong>the</strong> same subject. Note: c<strong>on</strong>tinuous lines, right hand;<br />

broken lines, left hand.


868<br />

<strong>the</strong> curves dem<strong>on</strong>strate a steep increase after a 1-s<br />

preparati<strong>on</strong> phase, when an adequate posture was adopted,<br />

<strong>the</strong> trolley was prepositi<strong>on</strong>ed and <strong>the</strong> muscular tensi<strong>on</strong> for<br />

<strong>the</strong> subsequent force exerti<strong>on</strong> in order to set <strong>the</strong> trolley in<br />

moti<strong>on</strong> were terminated. During <strong>the</strong> main activity <strong>of</strong><br />

pushing or pulling, <strong>the</strong> curves show a more or less<br />

horiz<strong>on</strong>tal tendency including step-induced changes. In<br />

<strong>the</strong> later phases, a weaker decrease during retardati<strong>on</strong><br />

caused by fricti<strong>on</strong> and gravity can be observed. In additi<strong>on</strong>,<br />

<strong>the</strong> upper-left diagram clearly shows <strong>the</strong> reacti<strong>on</strong> <strong>on</strong><br />

toggling <strong>the</strong> brake via a foot moti<strong>on</strong> by a local maximum<br />

at <strong>the</strong> time 6–7 s in <strong>the</strong> courses for <strong>the</strong> vertical hand-force<br />

comp<strong>on</strong>ent: a 40-N force pointing downwards, i.e. showing<br />

a negative value, is changed to a maximum value <strong>of</strong> about<br />

50 N in upward directi<strong>on</strong> in this phase. In a first attempt,<br />

<strong>the</strong> corresp<strong>on</strong>ding curves for <strong>the</strong> left and right hands show<br />

similar results for identical task c<strong>on</strong>diti<strong>on</strong>s; larger differences<br />

are mainly attributed to unequal tasks or differing<br />

comp<strong>on</strong>ents <strong>of</strong> <strong>the</strong> acti<strong>on</strong> forces, as <strong>the</strong> examples in Fig. 2<br />

illustrate.<br />

Excepting <strong>the</strong> case <strong>of</strong> pulling <strong>the</strong> HST (lower right),<br />

<strong>the</strong> highest forces <strong>of</strong> up to 120 N were ga<strong>the</strong>red for <strong>the</strong><br />

forward–backward comp<strong>on</strong>ent, i.e. <strong>the</strong> comp<strong>on</strong>ent in <strong>the</strong><br />

directi<strong>on</strong> <strong>of</strong> moti<strong>on</strong> while pushing or pulling. C<strong>on</strong>sidering<br />

<strong>the</strong> assumed co-ordinate system, pushing leads to positive<br />

values and pulling to negative values regarding <strong>the</strong><br />

forward–backward comp<strong>on</strong>ent. In c<strong>on</strong>trast to highest peak<br />

values for <strong>the</strong> sagittal force comp<strong>on</strong>ent, <strong>the</strong> lowest force<br />

5 °<br />

FST<br />

fullsize<br />

trolley<br />

65 kg<br />

HST<br />

halfsize<br />

trolley<br />

60 kg<br />

2<br />

1<br />

ARTICLE IN PRESS<br />

peak, reaching up to 25 N, were found for <strong>the</strong> lateral<br />

comp<strong>on</strong>ent, i.e. for <strong>the</strong> steering acti<strong>on</strong>s. Intermediate<br />

values were recorded for <strong>the</strong> vertical forces; in <strong>the</strong><br />

respective curves, distinct local maxima in <strong>the</strong> upward<br />

directed forces after about a sec<strong>on</strong>d can be identified which<br />

is traced back to ‘‘partial lifting’’ in order to overcome<br />

resting state.<br />

The force-comp<strong>on</strong>ent pattern in <strong>the</strong> case <strong>of</strong> pulling a<br />

HST obviously differs from <strong>the</strong> force distributi<strong>on</strong> in <strong>the</strong><br />

o<strong>the</strong>r three cases shown in Fig. 2: besides <strong>the</strong> anyhow high<br />

forces in pulling directi<strong>on</strong>, high forces in upward directi<strong>on</strong><br />

were permanently exerted during <strong>the</strong> main phase. This<br />

activity is ascribed to <strong>the</strong> fact that <strong>the</strong> small HSTs can be<br />

tilt by relatively low horiz<strong>on</strong>tal forces if applied at <strong>the</strong><br />

upper edge. To prevent tilting while pulling, <strong>the</strong> pers<strong>on</strong>s<br />

superimpose c<strong>on</strong>siderable upward forces to <strong>the</strong> horiz<strong>on</strong>tal<br />

sagittal force so that <strong>the</strong> sum <strong>of</strong> both enables stability.<br />

With respect to <strong>the</strong> provided example, <strong>the</strong> vertical forces<br />

for ‘‘backdrop lifting’’ even exceed <strong>the</strong> underlying horiz<strong>on</strong>tal<br />

forces for pulling (approximately 70–120 N vs.<br />

50–80 N).<br />

3.1.2. Indicators <strong>of</strong> <strong>lumbar</strong> load<br />

The mechanical load <strong>on</strong> <strong>the</strong> <strong>lumbar</strong> <strong>spine</strong> <strong>of</strong> <strong>flight</strong><br />

<strong>attendants</strong> during moving meal-and-drink c<strong>on</strong>tainers is<br />

exemplarily indicated in Fig. 3. In <strong>the</strong> upper part <strong>of</strong> <strong>the</strong><br />

diagram, <strong>the</strong> time courses for <strong>the</strong> reacti<strong>on</strong> forces acting at<br />

<strong>the</strong> lumbosacral disc for handling a FST <strong>of</strong> a total mass <strong>of</strong><br />

pushing pulling<br />

sagittal shear<br />

0<br />

0 1 2 3 4 5 6 7 8<br />

lateral shear<br />

2<br />

1<br />

M. Jäger et al. / Internati<strong>on</strong>al Journal <strong>of</strong> Industrial Erg<strong>on</strong>omics 37 (2007) 863–876<br />

compressi<strong>on</strong><br />

compressi<strong>on</strong><br />

reacti<strong>on</strong> forces at L5-S1 in kN<br />

sagittal<br />

shear<br />

0<br />

0 1 2 3 4 5<br />

lateral shear<br />

6 7 8<br />

0<br />

0<br />

0 1 2 3 4 5 6<br />

lateral shear<br />

7 8 0 1 2 3 4 5<br />

lateral shear<br />

6 7 8<br />

5 s time in s<br />

2<br />

1<br />

2<br />

1<br />

compressi<strong>on</strong><br />

sagittal shear<br />

compressi<strong>on</strong><br />

sagittal shear<br />

Fig. 3. Typical time courses for predicted reacti<strong>on</strong> forces at <strong>the</strong> lower <strong>spine</strong> during trolley handling, performed by <strong>the</strong> same subject.


65 kg <strong>on</strong> a 51 inclined floor is drawn, and <strong>the</strong> corresp<strong>on</strong>ding<br />

curves for moving a 60-kg HST are shown in <strong>the</strong> lower<br />

part. On <strong>the</strong> left-hand side, push-related results are<br />

marked, whereas pull-related <strong>lumbar</strong> load is provided <strong>on</strong><br />

<strong>the</strong> right-hand side. In each <strong>of</strong> <strong>the</strong> diagrams, <strong>the</strong> temporal<br />

behaviour <strong>of</strong> <strong>the</strong> comp<strong>on</strong>ents <strong>of</strong> <strong>the</strong> reacti<strong>on</strong> force in three<br />

orthog<strong>on</strong>al disc-related directi<strong>on</strong>s are shown: <strong>the</strong> axial<br />

compressi<strong>on</strong> as well as sagittal and lateral shear. In total,<br />

<strong>the</strong> L5–S1 reacti<strong>on</strong>–force time courses in Fig. 3 corresp<strong>on</strong>d<br />

to <strong>the</strong> curves in Fig. 2 for <strong>the</strong> acti<strong>on</strong>–forces applied at <strong>the</strong><br />

hands during pushing or pulling <strong>the</strong> identical c<strong>on</strong>tainers by<br />

<strong>the</strong> same pers<strong>on</strong>.<br />

As dem<strong>on</strong>strated in Fig. 3, disc compressi<strong>on</strong> shows to<br />

<strong>the</strong> highest force values in comparis<strong>on</strong> to <strong>the</strong> two shearforce<br />

comp<strong>on</strong>ents. The sagittal shear force was throughout<br />

higher than <strong>the</strong> lateral comp<strong>on</strong>ent in all four cases. The<br />

compressive-force curves show a pr<strong>on</strong>ounced maximum<br />

after <strong>the</strong> initial phase for prepositi<strong>on</strong>ing <strong>the</strong> body and <strong>the</strong><br />

trolley. The compressi<strong>on</strong>-related peak values ga<strong>the</strong>red for<br />

<strong>the</strong> four cases in Fig. 3 vary between approximately 1.7 and<br />

2.7 kN, both <strong>of</strong> which are related to pulling manoeuvres.<br />

Step-induced changes revealing in more or less ‘‘unsteady<br />

curves’’ are more distinct for pushing than for pulling in<br />

<strong>the</strong>se examples. The highest disc compressi<strong>on</strong> forces during<br />

<strong>the</strong> ‘‘main phase <strong>of</strong> c<strong>on</strong>tinuous moving’’ resulted for<br />

pulling <strong>the</strong> HST, which might be attached to <strong>the</strong><br />

corresp<strong>on</strong>ding acti<strong>on</strong> force pattern showing str<strong>on</strong>g verticalforce<br />

exerti<strong>on</strong> throughout pulling a HST (cf. lower-right<br />

diagram in Fig. 2).<br />

3.2. Effects <strong>of</strong> various task c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> <strong>lumbar</strong> load<br />

Replicati<strong>on</strong> <strong>of</strong> real-life task c<strong>on</strong>diti<strong>on</strong>s in <strong>the</strong> investigati<strong>on</strong><br />

<strong>of</strong> <strong>lumbar</strong> load for <strong>flight</strong> <strong>attendants</strong> while trolley<br />

handling lead to <strong>the</strong> c<strong>on</strong>siderati<strong>on</strong> <strong>of</strong> 48 ‘‘task c<strong>on</strong>figurati<strong>on</strong>s’’<br />

representing different combinati<strong>on</strong>s <strong>of</strong> various<br />

c<strong>on</strong>tainer types and masses as well as several floor<br />

gradients during <strong>the</strong> pushing or pulling experiments in<br />

<strong>the</strong> laboratory. In analogy to <strong>the</strong> time courses provided in<br />

Fig. 3, 468 complete manoeuvres were analysed with regard<br />

to <strong>lumbar</strong> load. The results <strong>of</strong> <strong>the</strong> <strong>lumbar</strong>-load predicti<strong>on</strong><br />

calculati<strong>on</strong>s are summarized in Fig. 4 based <strong>on</strong> <strong>the</strong> peak<br />

values <strong>of</strong> <strong>the</strong> respective moving-averaged time courses.<br />

In <strong>the</strong> upper part in Fig. 4, effects <strong>of</strong> various task<br />

c<strong>on</strong>diti<strong>on</strong>s are dem<strong>on</strong>strated with respect to lumbosacral<br />

compressive forces (F c), whereas <strong>the</strong> lower part shows <strong>the</strong><br />

corresp<strong>on</strong>ding relati<strong>on</strong>s by means <strong>of</strong> <strong>the</strong> indicator ‘‘sagittal<br />

moment <strong>of</strong> force’’ (Ms). Both parts are organized in<br />

analogy to Figs. 2 and 3: <strong>the</strong> two diagrams above are<br />

related to FSTs and <strong>the</strong> two lower <strong>on</strong>es to half-size<br />

c<strong>on</strong>tainers; <strong>on</strong> <strong>the</strong> left-hand side, <strong>the</strong> effects <strong>of</strong> pushing are<br />

visualized and pulling-related results <strong>on</strong> <strong>the</strong> right-hand<br />

side. Each <strong>of</strong> <strong>the</strong> eight diagrams in total shows <strong>the</strong><br />

dependency <strong>of</strong> <strong>the</strong> respective <strong>lumbar</strong>-load indicator, i.e.<br />

compressi<strong>on</strong> or sagittal moment, vs. trolley mass for<br />

various floor gradients. The symbols and bars represent<br />

mean and standard deviati<strong>on</strong> values for <strong>the</strong> respective task<br />

ARTICLE IN PRESS<br />

M. Jäger et al. / Internati<strong>on</strong>al Journal <strong>of</strong> Industrial Erg<strong>on</strong>omics 37 (2007) 863–876 869<br />

c<strong>on</strong>figurati<strong>on</strong>. For purposes <strong>of</strong> clearness, in Fig. 4, <strong>the</strong><br />

underlying number <strong>of</strong> analysed manoeuvres per c<strong>on</strong>figurati<strong>on</strong><br />

(n) is included in <strong>the</strong> lower part in Fig. 5 (range <strong>of</strong> n:<br />

3–17, median: 9). In spite <strong>of</strong> <strong>the</strong> low numbers <strong>of</strong><br />

measurements for 3 <strong>of</strong> 48 c<strong>on</strong>figurati<strong>on</strong>s (n: 3 or 4) and<br />

in spite <strong>of</strong> <strong>the</strong> reserve <strong>of</strong> mere statistics, <strong>the</strong> respective<br />

standard deviati<strong>on</strong> values are never<strong>the</strong>less provided to<br />

enable easy comparability in Fig. 4.<br />

The diagram in <strong>the</strong> upper-left corner in Fig. 4<br />

dem<strong>on</strong>strates <strong>the</strong> effects <strong>of</strong> various c<strong>on</strong>tainer weight and<br />

floor inclinati<strong>on</strong> <strong>on</strong> lumbosacral-disc compressive force<br />

during pushing FSTs. As <strong>the</strong> regressi<strong>on</strong> lines illustrate,<br />

<strong>lumbar</strong> load clearly increases with both increasing mass<br />

and increasing gradient, and <strong>the</strong> line’s slope is more<br />

pr<strong>on</strong>ounced for steeper inclinati<strong>on</strong> than for a horiz<strong>on</strong>tal<br />

surface. That means, <strong>the</strong> higher <strong>the</strong> mass and/or <strong>the</strong> higher<br />

<strong>the</strong> gradient, <strong>the</strong> higher <strong>the</strong> resultant <strong>lumbar</strong>-disc compressi<strong>on</strong>.<br />

These effects—related to disc compressi<strong>on</strong> and<br />

FSTs—can also be identified in <strong>the</strong> corresp<strong>on</strong>ding moment<br />

regressi<strong>on</strong>s over trolley mass (cf. lower part in Fig. 4,<br />

upper-left diagram) and, but not as distinct as for pushing<br />

FSTs, in analogous cases <strong>of</strong> pushing HSTs (cf. lower-left<br />

diagrams).<br />

The results for <strong>lumbar</strong> load received from <strong>the</strong> measurements<br />

during pulling FSTs or HSTs are not as evident<br />

as for pushing so that <strong>the</strong> regressi<strong>on</strong> lines in <strong>the</strong> respective<br />

diagrams may intersect am<strong>on</strong>g <strong>on</strong>e ano<strong>the</strong>r (cf. <strong>the</strong><br />

four diagrams in <strong>the</strong> right part in Fig. 4 vs. <strong>the</strong> four left<br />

diagrams). On <strong>the</strong> <strong>on</strong>e hand, <strong>the</strong> regressi<strong>on</strong>s show an<br />

inclinati<strong>on</strong> vs. trolley mass, however, <strong>lumbar</strong> load does not<br />

increase with floor steepness, <strong>on</strong> <strong>the</strong> o<strong>the</strong>r hand. The latter<br />

effect is particularly evident for pulling HSTs so that, for<br />

example, pulling an empty HST <strong>on</strong> a horiz<strong>on</strong>tal surface<br />

leads <strong>on</strong> average to higher values <strong>of</strong> <strong>lumbar</strong> load than<br />

pulling it <strong>on</strong> an 81 inclined floor.<br />

Regardless <strong>of</strong> <strong>the</strong> specific effects <strong>of</strong> trolley mass and floor<br />

gradient <strong>on</strong> <strong>lumbar</strong> load, overall comparis<strong>on</strong> for <strong>the</strong> four<br />

basic tasks shows highest values for pushing full-size and<br />

pulling HSTs, whereas pulling FSTs and pushing HSTs<br />

resulted in lower values for both disc compressi<strong>on</strong> and<br />

moment. These results include <strong>the</strong> particular feature that<br />

pulling <strong>the</strong> smaller HSTs lead to higher <strong>lumbar</strong> load<br />

than pulling <strong>the</strong> larger full-size c<strong>on</strong>tainers, although <strong>the</strong><br />

laden FSTs were heavier than <strong>the</strong> laden HSTs <strong>on</strong> average<br />

(see also Figs. 2 and 3). Fig. 4 clearly illustrates<br />

fur<strong>the</strong>rmore that <strong>the</strong> influence <strong>of</strong> gradient variati<strong>on</strong> is<br />

highest for pushing FSTs and lowest for pulling those large<br />

c<strong>on</strong>tainers.<br />

4. Discussi<strong>on</strong><br />

4.1. Evaluati<strong>on</strong> <strong>of</strong> <strong>lumbar</strong> load<br />

Lumbar load with respect to biomechanical overload for<br />

<strong>flight</strong> <strong>attendants</strong> during trolley handling is evaluated in<br />

detail by applicati<strong>on</strong> <strong>of</strong> two pairs <strong>of</strong> criteria, <strong>the</strong> results <strong>of</strong><br />

which are subsequently summarized to illustrate <strong>the</strong> main


870<br />

FST<br />

fullsize<br />

trolley<br />

HST<br />

halfsize<br />

trolley<br />

FST<br />

fullsize<br />

trolley<br />

HST<br />

halfsize<br />

trolley<br />

effects. The definiti<strong>on</strong>s <strong>of</strong> <strong>the</strong> criteria were derived<br />

following <strong>the</strong> premises <strong>of</strong> plausibility and comm<strong>on</strong> sense.<br />

4.1.1. Evaluati<strong>on</strong> criteria<br />

As described in Secti<strong>on</strong> 2, <strong>the</strong> results for both <strong>lumbar</strong>-load<br />

indicators—compressive force (Fc) and sagittal moment (Ms)<br />

at <strong>the</strong> lumbosacral disc—are compared to <strong>the</strong> corresp<strong>on</strong>ding<br />

ARTICLE IN PRESS<br />

M. Jäger et al. / Internati<strong>on</strong>al Journal <strong>of</strong> Industrial Erg<strong>on</strong>omics 37 (2007) 863–876<br />

4<br />

3<br />

2<br />

1<br />

0<br />

4<br />

3<br />

2<br />

1<br />

0<br />

200<br />

150<br />

100<br />

50<br />

0<br />

200<br />

150<br />

100<br />

50<br />

0<br />

compressive force <strong>on</strong> L5-S1 (Fc) in kN<br />

pushing pulling<br />

0<br />

40 kg 65 kg 90 kg 40 kg 65 kg 90 kg<br />

0<br />

30 kg 45 kg 60 kg<br />

30 kg<br />

4<br />

3<br />

2<br />

1<br />

4<br />

3<br />

2<br />

1<br />

8 °<br />

5 °<br />

2 °<br />

0 °<br />

45 kg<br />

60 kg<br />

pushing pulling<br />

40 kg 65 kg 90 kg<br />

sagittal moment at L5-S1 (Ms) in Nm<br />

200<br />

150<br />

100<br />

0<br />

30 kg 45 kg 60 kg 30 kg 45 kg 60 kg<br />

50<br />

0<br />

200<br />

150<br />

100<br />

50<br />

8 °<br />

5 °<br />

2 °<br />

0 °<br />

recommended <strong>lumbar</strong>-load limits (LLL), i.e. 2.5 kN or<br />

85 N m, respectively. In additi<strong>on</strong>, potential exceeding a limit<br />

by a single pers<strong>on</strong> or several subjects for a certain task<br />

c<strong>on</strong>figurati<strong>on</strong> is rated via two fur<strong>the</strong>r criteria, which illustrate<br />

<strong>the</strong> ‘‘frequency’’ or <strong>the</strong> ‘‘intensity’’ <strong>of</strong> target overshooting by<br />

<strong>the</strong> three categories ‘‘acceptable’’, ‘‘occasi<strong>on</strong>ally critical’’ or<br />

‘‘critical’’ <strong>lumbar</strong> load. That means for each <strong>of</strong> <strong>the</strong> 48 task<br />

8 °<br />

5 °<br />

2 °<br />

0 °<br />

40 kg 65 kg 90 kg<br />

Fig. 4. Predicted <strong>lumbar</strong> load, represented by two indicators (upper/lower part), during pushing and pulling <strong>of</strong> trolleys c<strong>on</strong>sidering various weights and<br />

different inclinati<strong>on</strong>s (numbers <strong>of</strong> analysed manoeuvres per task c<strong>on</strong>figurati<strong>on</strong>: see Fig. 5, lower part).<br />

8 °<br />

5 °<br />

2 °<br />

0 °


c<strong>on</strong>figurati<strong>on</strong>s that both <strong>the</strong> so-called frequency criteri<strong>on</strong><br />

(Cf) and <strong>the</strong> so-called amplitude criteri<strong>on</strong> (Ca) are applied <strong>on</strong><br />

<strong>the</strong> value ranges for both <strong>lumbar</strong>-load indicators (Cf[Fc],<br />

Cf[Ms], Ca[Fc], Ca[Ms]).<br />

The lowest category <strong>of</strong> <strong>the</strong> frequency criteri<strong>on</strong> (‘‘acceptable’’)<br />

is fulfilled for an examined sub-sample <strong>of</strong> <strong>the</strong> size<br />

‘‘n’’, if <strong>the</strong> number <strong>of</strong> manoeuvres ‘‘n + ’’—combined with<br />

higher compressive force or sagittal moment than <strong>the</strong><br />

respective <strong>lumbar</strong>-load limit—is, in maximum, 1; or, in<br />

o<strong>the</strong>r words, <strong>the</strong> respective <strong>lumbar</strong>-load limit is never<br />

exceeded (n + ¼ 0) or <strong>on</strong>e time (n + ¼ 1). According to<br />

<strong>the</strong>se cases, <strong>the</strong> manoeuvres were performed by all or<br />

almost all subjects in such a way that <strong>the</strong> resulting <strong>lumbar</strong>load<br />

values did not exceed <strong>the</strong> recommended limits for<br />

work design. By c<strong>on</strong>trast, <strong>the</strong> highest Cf category<br />

(‘‘critical’’) is valid when more than half <strong>of</strong> all manoeuvres<br />

leads to <strong>lumbar</strong> load above <strong>the</strong> respective limit (n/2<strong>on</strong> + ),<br />

assuming an identical task c<strong>on</strong>figurati<strong>on</strong>. Limit exceeding<br />

occurring two times up to <strong>the</strong> half <strong>of</strong> all manoeuvres<br />

(2pn + pn/2) would lead to <strong>the</strong> intermediate category<br />

(‘‘occasi<strong>on</strong>ally critical’’).<br />

In summary, <strong>the</strong> categories <strong>of</strong> <strong>the</strong> frequency criteri<strong>on</strong> C f<br />

were defined as follows:<br />

<strong>lumbar</strong> load according to Cf ‘‘acceptable’’ nþp1; <strong>lumbar</strong> load according to Cf ‘‘occasi<strong>on</strong>ally critical’’ 2pnþpn=2; <strong>lumbar</strong> load according to Cf ‘‘critical’’ n=2<strong>on</strong>þ :<br />

If <strong>the</strong> value ‘‘mean plus standard deviati<strong>on</strong>’’ (m+S.D.)<br />

for a certain task c<strong>on</strong>figurati<strong>on</strong> is lower than <strong>the</strong><br />

recommended <strong>lumbar</strong>-load limit (m+S.D.oLLL), <strong>the</strong><br />

‘‘acceptable’’ category <strong>of</strong> <strong>the</strong> amplitude criteri<strong>on</strong> is valid.<br />

Such a group <strong>of</strong> data implies that <strong>lumbar</strong> load was<br />

prep<strong>on</strong>derantly lower than <strong>the</strong> respective limit and that <strong>the</strong><br />

intensity <strong>of</strong> a potential limit exceeding was not high enough<br />

to predominate <strong>the</strong> main result. The ‘‘critical’’ Ca category<br />

is fulfilled in cases, if <strong>the</strong> mean value exceeds <strong>the</strong> fixed limit<br />

for <strong>lumbar</strong> load (LLLom). That means that <strong>the</strong> amplitudes<br />

<strong>of</strong> <strong>lumbar</strong> load during trolley handling under <strong>the</strong><br />

respective circumstances were <strong>on</strong> average higher than <strong>the</strong><br />

corresp<strong>on</strong>ding recommendati<strong>on</strong>s for work design. Assuming<br />

<strong>lumbar</strong> load <strong>of</strong> intermediate intensity (mpLLLp<br />

m+S.D.), i.e. <strong>lumbar</strong> load was partly higher than <strong>the</strong><br />

respective limit to a c<strong>on</strong>siderable, but n<strong>on</strong>-predominant<br />

extent, a categorizati<strong>on</strong> ‘‘occasi<strong>on</strong>ally critical’’ resulted for<br />

this task c<strong>on</strong>figurati<strong>on</strong>. This implies that <strong>the</strong> main part <strong>of</strong><br />

sample’s <strong>lumbar</strong> load falls below <strong>the</strong> recommended limit<br />

for work design.<br />

In summary, <strong>the</strong> following specificati<strong>on</strong>s were stipulated<br />

for <strong>the</strong> categories <strong>of</strong> <strong>the</strong> amplitude criteri<strong>on</strong> Ca:<br />

<strong>lumbar</strong> load according to Ca ‘‘acceptable’’ m þ S:D:oLLL;<br />

<strong>lumbar</strong> load according to Ca ‘‘occasi<strong>on</strong>ally critical’’ mpLLLpm þ S:D:;<br />

<strong>lumbar</strong> load according to Ca ‘‘critical’’ LLLom:<br />

Applicati<strong>on</strong> <strong>of</strong> <strong>the</strong> frequency and amplitude criteria <strong>on</strong><br />

<strong>the</strong> results for disc compressi<strong>on</strong> or sagittal moment (Cf[Fc],<br />

ARTICLE IN PRESS<br />

M. Jäger et al. / Internati<strong>on</strong>al Journal <strong>of</strong> Industrial Erg<strong>on</strong>omics 37 (2007) 863–876 871<br />

Cf[Ms], Ca[Fc], Ca[Ms]) <strong>of</strong> totally 468 manoeuvres, grouped<br />

for 48 task c<strong>on</strong>figurati<strong>on</strong>s, is dem<strong>on</strong>strated in <strong>the</strong> upper<br />

part in Fig. 5. According to <strong>the</strong> four basic tasks—pushing<br />

or pulling FST or HST—and to <strong>the</strong> four floor gradients<br />

and three loading states, Fig. 5 shows 192 cells in total,<br />

resulting from <strong>the</strong> detailed evaluati<strong>on</strong>s (four criteria times<br />

48 c<strong>on</strong>figurati<strong>on</strong>s). This evaluati<strong>on</strong> induced various results<br />

for <strong>the</strong> four basic tasks, as <strong>the</strong> different patterns show: <strong>the</strong><br />

white cells in <strong>the</strong> lower-left diagram indicate that pushing a<br />

small c<strong>on</strong>tainer leads to ‘‘acceptable’’ <strong>lumbar</strong> load for all<br />

task c<strong>on</strong>diti<strong>on</strong>s, i.e. irrespective <strong>of</strong> trolley loading, surface<br />

inclinati<strong>on</strong> and individual performance. For pulling a HST<br />

(lower-right diagram), however, dark cells dominate which<br />

corresp<strong>on</strong>ds to ‘‘critical’’ <strong>lumbar</strong> load for <strong>the</strong> respective<br />

task c<strong>on</strong>figurati<strong>on</strong>. The uppermost diagrams, representing<br />

<strong>the</strong> evaluati<strong>on</strong> <strong>of</strong> moving <strong>the</strong> large c<strong>on</strong>tainers in both<br />

handling modes, indicate ‘‘occasi<strong>on</strong>ally critical’’ <strong>lumbar</strong><br />

load for a couple <strong>of</strong> task c<strong>on</strong>figurati<strong>on</strong>s, in particular, for<br />

heavy trolleys moved <strong>on</strong> relatively steep surfaces.<br />

4.1.2. Summarizati<strong>on</strong><br />

The quadruple results <strong>of</strong> <strong>the</strong> detailed evaluati<strong>on</strong> for each<br />

<strong>of</strong> <strong>the</strong> 48 task c<strong>on</strong>figurati<strong>on</strong>s (cf. upper part in Fig. 5) were<br />

summarized in order to clarify systematic behaviour and to<br />

enable <strong>the</strong> derivati<strong>on</strong> <strong>of</strong> justified work-design measures<br />

(cf. lower part in Fig. 5).<br />

In <strong>the</strong> case <strong>of</strong> task c<strong>on</strong>diti<strong>on</strong>s combined with prevailing<br />

acceptable <strong>lumbar</strong> load, <strong>the</strong> corresp<strong>on</strong>ding work was<br />

assessed being ‘‘uncritical’’ or ‘‘acceptable’’ so that no<br />

redesign seems necessary. This <strong>lumbar</strong>-load category is to<br />

be assumed if n<strong>on</strong>e <strong>of</strong> <strong>the</strong> two pairs <strong>of</strong> criteria (Cf[Fc],<br />

Cf[Ms] andCa[Fc], Ca[Ms]) is exceeded or if, at most, <strong>on</strong>e <strong>of</strong><br />

<strong>the</strong> four leads to an ‘‘occasi<strong>on</strong>ally critical’’ load evaluati<strong>on</strong>.<br />

The latter aspect implies, besides three acceptable share<br />

evaluati<strong>on</strong>s, that ei<strong>the</strong>r at best <strong>on</strong>e <strong>of</strong> all manoeuvres<br />

performed by several <strong>flight</strong> <strong>attendants</strong> under <strong>the</strong> respective<br />

task c<strong>on</strong>diti<strong>on</strong> resulted in an overshooting <strong>of</strong> <strong>on</strong>e <strong>of</strong> <strong>the</strong><br />

recommended <strong>lumbar</strong>-load limits for disc compressive<br />

force or sagittal moment <strong>of</strong> force (Cf: n + p1). Or <strong>the</strong><br />

intermediate category for <strong>the</strong> amplitude criteri<strong>on</strong> (Ca:<br />

mpLLLpm+S.D.) is fulfilled regarding <strong>on</strong>e <strong>of</strong> <strong>the</strong> two<br />

load indicators (Fc, Ms), i.e. <strong>the</strong> main part <strong>of</strong> sample’s<br />

<strong>lumbar</strong> load falls below <strong>the</strong> respective recommendati<strong>on</strong> for<br />

disc compressi<strong>on</strong> or moment.<br />

In c<strong>on</strong>trast to acceptable <strong>lumbar</strong> load, <strong>the</strong> summarizati<strong>on</strong><br />

procedure leads to an overall assessment ‘‘critical’’ if,<br />

at least, <strong>on</strong>e <strong>of</strong> <strong>the</strong> four share estimati<strong>on</strong>s resulted in <strong>the</strong><br />

categorizati<strong>on</strong> ‘‘critical’’. This summarizati<strong>on</strong> rule implies<br />

that <strong>the</strong> o<strong>the</strong>r detailed evaluati<strong>on</strong>s are ignored due to <strong>the</strong><br />

highly assumed impact <strong>of</strong> <strong>on</strong>e critical share-estimati<strong>on</strong>:<br />

ei<strong>the</strong>r most <strong>of</strong> <strong>the</strong> manoeuvres yielded to exceeding <strong>on</strong>e <strong>of</strong><br />

<strong>the</strong> <strong>lumbar</strong>-load limits (Cf: n/2<strong>on</strong> + ), or <strong>the</strong> mean value for<br />

disc compressi<strong>on</strong> or moment excelled <strong>the</strong> respective limit<br />

(C a: LLLom). Measures <strong>of</strong> work design are urgently<br />

recommended.<br />

Finally, <strong>the</strong> rules for an intermediate categorizati<strong>on</strong> after<br />

summarizing <strong>the</strong> detailed evaluati<strong>on</strong>s are described: n<strong>on</strong>e


872<br />

FST<br />

fullsize<br />

trolley<br />

ARTICLE IN PRESS<br />

M. Jäger et al. / Internati<strong>on</strong>al Journal <strong>of</strong> Industrial Erg<strong>on</strong>omics 37 (2007) 863–876<br />

FST<br />

fullsize<br />

trolley<br />

HST<br />

halfsize<br />

trolley<br />

HST<br />

halfsize<br />

trolley<br />

8 °<br />

5 °<br />

2 °<br />

0 °<br />

8 °<br />

5 °<br />

2 °<br />

0 °<br />

pushing pulling<br />

Fc: compressive force Ms: sagittal moment<br />

8 °<br />

5 °<br />

2 °<br />

0 °<br />

8 °<br />

5 °<br />

2 °<br />

0 °<br />

40 kg 65 kg 90 kg<br />

Cf<br />

Ca<br />

Cf<br />

Ca<br />

Cf<br />

Ca<br />

Cf<br />

Ca<br />

Fc Ms Fc Ms Fc Ms<br />

30 kg 45 kg 60 kg<br />

Cf<br />

Ca<br />

Cf<br />

Ca<br />

Cf<br />

Ca<br />

Cf<br />

Ca<br />

Fc Ms Fc Ms Fc Ms<br />

summarizati<strong>on</strong><br />

pushing pulling<br />

40 kg 65 kg 90 kg<br />

9<br />

12<br />

30 kg 45 kg 60 kg<br />

29<br />

8 12 13 33<br />

6 10 14 30<br />

n = 13 10 17 40<br />

N = 36 44 52 132<br />

9 10 15 34<br />

13 7 13 33<br />

8 7 15 30<br />

n = 4 10 12 26<br />

N = 34 34 55 123<br />

detailed evaluati<strong>on</strong><br />

8<br />

8 °<br />

5 °<br />

2 °<br />

0 °<br />

8 °<br />

5 °<br />

2 °<br />

0 °<br />

8 °<br />

5 °<br />

2 °<br />

0 °<br />

8 °<br />

5 °<br />

2 °<br />

0 °<br />

40 kg<br />

65 kg 90 kg<br />

Cf<br />

Ca<br />

Cf<br />

Ca<br />

Cf<br />

Ca<br />

Cf<br />

Ca<br />

Fc Ms Fc Ms Fc Ms<br />

30 kg 45 kg 60 kg<br />

Cf<br />

Ca<br />

Cf<br />

Ca<br />

Cf<br />

Ca<br />

Cf<br />

Ca<br />

Fc Ms Fc Ms Fc Ms<br />

40 kg 65 k g 90 k g<br />

10 10 3 23<br />

9 11 9 29<br />

10 12 10 32<br />

n = 6 10 10 26<br />

N = 35 43 32 110<br />

30 kg 45 kg 60 kg<br />

9 5<br />

4 9<br />

7 5<br />

23<br />

25<br />

27<br />

n = 7 9 12 28<br />

N = 27 28 48 103<br />

Fig. 5. Evaluati<strong>on</strong> <strong>of</strong> <strong>lumbar</strong> load for studied task c<strong>on</strong>figurati<strong>on</strong>s. Note: <strong>lumbar</strong> load acceptable (white), occasi<strong>on</strong>ally critical (grey), critical (dark). Upper<br />

part: detailed evaluati<strong>on</strong> for both load indicators (Fc, Ms) and both ratings (Cf, Ca). Lower part: resultant assessment by summarizing <strong>the</strong> above shareevaluati<strong>on</strong>s.<br />

Numbers (n, N) indicate <strong>the</strong> sample sizes for <strong>the</strong> diverse experimental c<strong>on</strong>figurati<strong>on</strong>s.<br />

9<br />

12<br />

15<br />

Cf: frequency criteri<strong>on</strong><br />

Ca: amplitude criteri<strong>on</strong>


<strong>of</strong> <strong>the</strong> share estimati<strong>on</strong>s is critical, and two up to four<br />

occasi<strong>on</strong>ally critical evaluati<strong>on</strong>s are present implying <strong>the</strong><br />

complementary categories being acceptable. Measures <strong>of</strong><br />

work design should be c<strong>on</strong>sidered and are recommended<br />

‘‘from case to case’’.<br />

In total, <strong>the</strong> following rules were applied in <strong>the</strong><br />

summarizati<strong>on</strong> procedure:<br />

Overall <strong>lumbar</strong><br />

load<br />

Cf[Fc], Cf[Ms], Ca[Fc], Ca[Ms]<br />

‘‘acceptable’’ 4 ‘‘acceptable’’<br />

or 3 ‘‘acceptable’’, 1 ‘‘occasi<strong>on</strong>ally<br />

‘‘occasi<strong>on</strong>ally<br />

critical’’<br />

critical’’<br />

‘‘critical’’ X1 ‘‘critical’’<br />

2 ‘‘acceptable’’, 2 ‘‘occasi<strong>on</strong>ally<br />

critical’’<br />

or 1 ‘‘acceptable’’, 3 ‘‘occasi<strong>on</strong>ally<br />

critical’’<br />

or 4 ‘‘occasi<strong>on</strong>ally critical’’<br />

Applicati<strong>on</strong> <strong>of</strong> <strong>the</strong> summarizati<strong>on</strong> rules <strong>on</strong> <strong>the</strong> detailed<br />

evaluati<strong>on</strong>s regarding <strong>the</strong> 48 task c<strong>on</strong>figurati<strong>on</strong>s is illustrated<br />

in <strong>the</strong> lower part in Fig. 5. Moving HSTs yields to very clear<br />

assessments, even if c<strong>on</strong>troversial for <strong>the</strong> two handling<br />

modes: pushing is combined with acceptable <strong>lumbar</strong> load,<br />

pulling with critical load, irrespective <strong>of</strong> <strong>the</strong> graduati<strong>on</strong>s <strong>of</strong><br />

floor inclinati<strong>on</strong> and trolley loading or irrespective <strong>of</strong><br />

individual performance. Pushing FSTs were assessed to be<br />

occasi<strong>on</strong>ally critical or critical for three c<strong>on</strong>figurati<strong>on</strong>s each.<br />

Pulling FSTs is less critically assessed: <strong>on</strong>ce critical and four<br />

times occasi<strong>on</strong>ally critical. In <strong>the</strong> case <strong>of</strong> FST moving, <strong>the</strong><br />

category ‘‘critical’’ is valid, if at all, for moving heavy or<br />

heaviest c<strong>on</strong>tainers <strong>on</strong> steep or steepest surfaces.<br />

4.2. Biomechanically justified work design<br />

The manifold results for <strong>lumbar</strong> load were previously<br />

analysed with respect to <strong>the</strong> various task c<strong>on</strong>diti<strong>on</strong>s and<br />

<strong>the</strong>ir graduati<strong>on</strong>s. The diverse evaluati<strong>on</strong> approaches<br />

discovered, in particular, biomechanical overload for<br />

pulling HSTs as well as for a few o<strong>the</strong>r c<strong>on</strong>figurati<strong>on</strong>s<br />

representing heavy trolley loading or c<strong>on</strong>siderably inclined<br />

surfaces. However, having <strong>the</strong> individual results in view, it<br />

is evident that performance was not strictly combined with<br />

high <strong>lumbar</strong>-load values and that some subjects were<br />

obviously able to move <strong>the</strong> trolley in an advantageous<br />

manner. Besides individual performance characteristics,<br />

<strong>the</strong> actual trolley design may be improved to support<br />

erg<strong>on</strong>omic handling.<br />

4.2.1. Handling technique<br />

In order to derive biomechanically justified hints and<br />

erg<strong>on</strong>omically acceptable handling techniques, pairs <strong>of</strong><br />

manoeuvres resulting in extreme disc compressi<strong>on</strong>, ei<strong>the</strong>r<br />

minimum or maximum values, were selected for identifying<br />

relevant differences in individual performances; such<br />

ARTICLE IN PRESS<br />

M. Jäger et al. / Internati<strong>on</strong>al Journal <strong>of</strong> Industrial Erg<strong>on</strong>omics 37 (2007) 863–876 873<br />

comparis<strong>on</strong>s were performed regarding <strong>the</strong> high-loading<br />

task c<strong>on</strong>figurati<strong>on</strong>s (medium/heavy, 51/81) for both trolley<br />

types (HST, FST) and handling modes (pushing, pulling).<br />

A typical example <strong>of</strong> paired comparis<strong>on</strong>s is shown in<br />

Fig. 6, providing <strong>the</strong> time courses <strong>of</strong> <strong>the</strong> acti<strong>on</strong> forces<br />

applied at <strong>the</strong> hands in <strong>the</strong> upper part and <strong>the</strong> analogous<br />

curves <strong>of</strong> <strong>the</strong> disc-related reacti<strong>on</strong> forces below. On <strong>the</strong> lefthand<br />

side, <strong>the</strong> results <strong>of</strong> <strong>the</strong> manoeuvre combined with <strong>the</strong><br />

lowest disc-compressi<strong>on</strong> peak value are dem<strong>on</strong>strated,<br />

whereas <strong>the</strong> right-hand side corresp<strong>on</strong>ds to <strong>the</strong> highest<br />

peak <strong>of</strong> <strong>the</strong> same sub-sample ‘‘pulling a 60-kg HST <strong>on</strong> a 51<br />

inclined surface’’. The compressi<strong>on</strong> curves illustrate that<br />

<strong>the</strong> resulting <strong>lumbar</strong> load may vary to a very c<strong>on</strong>siderable<br />

extent due to individual technique: related to <strong>the</strong> example<br />

in Fig. 6, compressi<strong>on</strong> ranges between nearly 2 and 5.5 kN.<br />

The corresp<strong>on</strong>ding hand–force curves show a similar<br />

behaviour: low forces in <strong>the</strong> left, much higher <strong>on</strong>es in <strong>the</strong><br />

right. This aspect may be attributed to <strong>the</strong> underlying<br />

postures, which can significantly be referred to <strong>the</strong> grasp<br />

points at <strong>the</strong> trolley. As sketched in <strong>the</strong> top line in<br />

Fig. 6, grasp localizati<strong>on</strong> differed noticeably. A low grasp<br />

positi<strong>on</strong> (see left-hand part <strong>of</strong> Fig. 6) helps to keep stable<br />

movement <strong>of</strong> <strong>the</strong> relatively ‘‘shaky’’ HST, whereas grasping<br />

at <strong>the</strong> top edge (see right) corresp<strong>on</strong>ds to a l<strong>on</strong>g vertical<br />

lever arm. This would yield to easily tilting, which is,<br />

however, avoided by <strong>the</strong> subject by supplementary upwarddirected<br />

acti<strong>on</strong> forces, as menti<strong>on</strong>ed in <strong>the</strong> c<strong>on</strong>text <strong>of</strong><br />

Figs. 2 and 3.<br />

Applicati<strong>on</strong> <strong>of</strong> this methodology <strong>of</strong> paired comparis<strong>on</strong><br />

to all <strong>of</strong> <strong>the</strong> 16 selected sub-samples—representing each<br />

<strong>lumbar</strong>-load values for manoeuvres performed by several<br />

<strong>flight</strong> <strong>attendants</strong> in various task c<strong>on</strong>figurati<strong>on</strong>s—lead to <strong>the</strong><br />

following systematic results without any c<strong>on</strong>tradicti<strong>on</strong>:<br />

pulling a half-size c<strong>on</strong>tainer yields in lower disc compressi<strong>on</strong><br />

for grasping at a low positi<strong>on</strong>, whereas all o<strong>the</strong>r tasks<br />

(HST pushing, FST pushing/pulling) are combined with<br />

low compressi<strong>on</strong> values in case <strong>of</strong> grasp points at <strong>the</strong> top<br />

edge. These effects can be traced back in pushing activities<br />

to <strong>the</strong> possibility to lean <strong>the</strong> body <strong>on</strong> <strong>the</strong> c<strong>on</strong>tainer and,<br />

<strong>the</strong>reby, to reduce <strong>the</strong> back loading induced by body<br />

weight. During pulling a full-size c<strong>on</strong>tainer, <strong>the</strong> HSTspecific<br />

upward-directed acti<strong>on</strong> forces, applied to avoid<br />

tilting, are unnecessary according to <strong>the</strong> FST’s length<br />

supporting stability. Fur<strong>the</strong>rmore, lower grasping would<br />

force disadvantageous posture with more pr<strong>on</strong>ounced<br />

trunk inclinati<strong>on</strong> or knee flexi<strong>on</strong>.<br />

4.2.2. Trolley properties<br />

The hand forces applied to <strong>the</strong> trolley were measured in<br />

<strong>the</strong> laboratory experiments via specifically established bars,<br />

which were fixed to <strong>the</strong> c<strong>on</strong>tainers. In real life, however,<br />

such handgrips supporting adequate handling do comm<strong>on</strong>ly<br />

not exist (cf. Glitsch et al., 2007). Besides simple,<br />

rigid bars, solid fr<strong>on</strong>tal pull-out trays could also be<br />

mounted so that, in particular, <strong>the</strong> effective base area <strong>of</strong><br />

<strong>the</strong> short HST is virtually enlarged in moving directi<strong>on</strong><br />

and, thus, tilting tendency while pulling is diminished.


874<br />

HST<br />

60 kg<br />

pulling<br />

5 °<br />

F hands<br />

in N<br />

F L5-S1<br />

in kN<br />

Fur<strong>the</strong>rmore, <strong>the</strong> roller c<strong>on</strong>cepti<strong>on</strong> may be rec<strong>on</strong>sidered<br />

with respect to easy manoeuvring and maintain good<br />

quality <strong>of</strong> wheeling, as enhanced fricti<strong>on</strong> (e.g. scruffy axle<br />

bearing) requires intensified force exerti<strong>on</strong> for <strong>the</strong> <strong>flight</strong><br />

<strong>attendants</strong> and, in c<strong>on</strong>sequence, yield to higher <strong>lumbar</strong><br />

load. Regarding extreme <strong>flight</strong> c<strong>on</strong>diti<strong>on</strong>s, i.e. moving<br />

heavy c<strong>on</strong>tainers <strong>on</strong> a steep floor, provisi<strong>on</strong> <strong>of</strong> motordriven<br />

trolleys may be examined.<br />

4.3. Criticism <strong>of</strong> <strong>the</strong> methods<br />

The provided investigati<strong>on</strong> into low-back load <strong>of</strong> <strong>flight</strong><br />

<strong>attendants</strong> during moving meal-and-drink c<strong>on</strong>tainers <strong>on</strong> an<br />

inclined floor comprises comprehensive measurements <strong>of</strong><br />

posture and exerted forces as well as subsequent complex<br />

biomechanical model calculati<strong>on</strong>s and diverse evaluati<strong>on</strong>s<br />

with respect to <strong>lumbar</strong> overload. Never<strong>the</strong>less, a couple <strong>of</strong><br />

critical aspects can be discussed in order to illustrate <strong>the</strong><br />

limitati<strong>on</strong>s <strong>of</strong> <strong>the</strong> study <strong>on</strong> hand. These items <strong>of</strong> criticism<br />

can be attached to <strong>the</strong> focus <strong>of</strong> <strong>the</strong> study, to <strong>the</strong> category <strong>of</strong><br />

applied instruments and data recording and to <strong>the</strong><br />

interpretati<strong>on</strong> <strong>of</strong> <strong>the</strong> results.<br />

Analysing <strong>the</strong> load <strong>on</strong> <strong>the</strong> <strong>lumbar</strong> <strong>spine</strong> during trolley<br />

handling implies that o<strong>the</strong>r activities remained unc<strong>on</strong>sidered<br />

ARTICLE IN PRESS<br />

200<br />

200<br />

upward + / downward -<br />

100<br />

upward + / downward -<br />

leftward + / rightward -<br />

100<br />

leftward + /<br />

rightward -<br />

0<br />

0<br />

0 2 4 6 8 10 0 2 4 6 8 10<br />

-100<br />

-200<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

M. Jäger et al. / Internati<strong>on</strong>al Journal <strong>of</strong> Industrial Erg<strong>on</strong>omics 37 (2007) 863–876<br />

min. disc compressi<strong>on</strong> max. disc compressi<strong>on</strong><br />

forward + / backward -<br />

-100<br />

-200<br />

right hand left hand right hand left hand<br />

compressi<strong>on</strong><br />

grasp at bars<br />

sagittal shear<br />

.<br />

lateral shear<br />

0 2 4 6 8 10<br />

5 s<br />

manoeuvres resulting in extreme <strong>lumbar</strong> load<br />

grasp at bar<br />

6<br />

5<br />

4<br />

3<br />

time in s<br />

forward + /<br />

backward -<br />

compressi<strong>on</strong><br />

2<br />

sagittal shear<br />

1<br />

lateral<br />

0<br />

0 2<br />

.<br />

4 6<br />

shear<br />

8 10<br />

Fig. 6. Exemplary comparis<strong>on</strong> <strong>of</strong> manoeuvres resulting in <strong>the</strong> lowest (diagrams left) or <strong>the</strong> highest disc compressi<strong>on</strong> (diagrams right) for an identical<br />

experimental c<strong>on</strong>figurati<strong>on</strong> (HST, 60 kg, pulling, 51). Bars in <strong>the</strong> headline indicate grasp positi<strong>on</strong>s (black squares) and bar orientati<strong>on</strong> (vertical vs.<br />

horiz<strong>on</strong>tal). Upper part: acti<strong>on</strong> forces at both hands. Lower part: corresp<strong>on</strong>ding reacti<strong>on</strong> forces at <strong>the</strong> lumbosacral disc.<br />

(cf. Schaub et al., 2007) and that o<strong>the</strong>r body regi<strong>on</strong>s or<br />

organs were not proved regarding potential overload. This<br />

approach is based <strong>on</strong> <strong>the</strong> first fact that <strong>the</strong> complaints <strong>of</strong><br />

female <strong>flight</strong> <strong>attendants</strong> about excessive physical workload<br />

encouraged <strong>the</strong> corresp<strong>on</strong>ding German Instituti<strong>on</strong> for<br />

Statutory Accident Insurance and Preventi<strong>on</strong> to initiate<br />

<strong>the</strong> study and to select <strong>the</strong> main aims (cf. Glitsch et al.,<br />

2007). The sec<strong>on</strong>d reas<strong>on</strong> is represented by <strong>the</strong> actual<br />

recordings <strong>of</strong> <strong>the</strong> subjective percepti<strong>on</strong> <strong>of</strong> <strong>flight</strong> <strong>attendants</strong><br />

via questi<strong>on</strong>naires. The respective results show <strong>the</strong> highest<br />

values for both complaints and physical load related to <strong>the</strong><br />

lower back (cf. Schaub et al., 2007) so that focussing <strong>on</strong><br />

<strong>lumbar</strong> load seems to be justified.<br />

Ano<strong>the</strong>r aspect <strong>of</strong> criticism is related to <strong>the</strong> applied tools<br />

for obtaining data <strong>on</strong> posture, hand–forces and <strong>lumbar</strong>load<br />

predicti<strong>on</strong>. As a first example, <strong>the</strong> CUELA measuring<br />

system represents a comprehensive tool for ambulatory<br />

recording <strong>of</strong> totally 26 postural indicators over time, four<br />

<strong>of</strong> which describe <strong>the</strong> sagittal flexi<strong>on</strong> angles <strong>of</strong> knee and hip<br />

joints, <strong>on</strong> <strong>the</strong> <strong>on</strong>e hand; that means lateral and medial<br />

rotati<strong>on</strong> <strong>of</strong> <strong>the</strong> thighs remained unc<strong>on</strong>sidered, <strong>on</strong> <strong>the</strong> o<strong>the</strong>r<br />

hand. Estimating rotati<strong>on</strong>’s effects <strong>on</strong> trolley handling as<br />

performed in <strong>the</strong> laboratory experiments illustrates that <strong>the</strong><br />

main directi<strong>on</strong> <strong>of</strong> moti<strong>on</strong> and force exerti<strong>on</strong> is pointed


forward or backward. In c<strong>on</strong>sequence, predicted values for<br />

compressive force and sagittal moment at L5–S1 adequately<br />

reflect <strong>the</strong>se predominant factors and are not c<strong>on</strong>siderably<br />

influenced by inaccuracies caused by neglected thigh rotati<strong>on</strong>s.<br />

The sec<strong>on</strong>d example c<strong>on</strong>cerns <strong>the</strong> replicati<strong>on</strong> <strong>of</strong> <strong>the</strong><br />

anatomical structures in <strong>the</strong> biomechanical model, THE<br />

DORTMUNDER. Regarding <strong>the</strong> skeletal modelling, standardized<br />

percentages for <strong>the</strong> dimensi<strong>on</strong>s <strong>of</strong> body segments were<br />

implemented (e.g. Dempster, 1955; Drillis and C<strong>on</strong>tini, 1966;<br />

White and Panjabi, 1978), since <strong>the</strong> individual proporti<strong>on</strong>s <strong>of</strong><br />

<strong>the</strong> subjects participating in <strong>the</strong> laboratory study were not<br />

obtained due to <strong>the</strong> time c<strong>on</strong>suming procedures for <strong>the</strong><br />

‘‘main’’ measurements <strong>on</strong> posture and acti<strong>on</strong> forces during<br />

trolley handling manoeuvres. C<strong>on</strong>sidering <strong>the</strong> typical anthropometry<br />

<strong>of</strong> <strong>flight</strong> <strong>attendants</strong> avoiding overweight, however,<br />

effects <strong>of</strong> body weight and, in particular, its distributi<strong>on</strong><br />

according to individual proporti<strong>on</strong>s seem negligible in<br />

relati<strong>on</strong> to exerted forces. Fur<strong>the</strong>r details <strong>of</strong> assumpti<strong>on</strong>s<br />

and restricti<strong>on</strong>s <strong>of</strong> both tools, CUELA and THE DORTMUNDER,<br />

are provided in <strong>the</strong> respective descripti<strong>on</strong>s (Ellegast and<br />

Kupfer, 2000; Ja¨ ger et al., 2001).<br />

Besides <strong>the</strong> features <strong>of</strong> a model, its applicati<strong>on</strong> in <strong>the</strong><br />

provided study may lead to fur<strong>the</strong>r discussi<strong>on</strong>s. As<br />

menti<strong>on</strong>ed in Secti<strong>on</strong> 2, THE DORTMUNDER was used<br />

quasi-statically so that inertial effects <strong>of</strong> body-mass<br />

accelerati<strong>on</strong> <strong>on</strong> <strong>lumbar</strong> load were neglected. Since <strong>the</strong><br />

trolleys are predominantly moved by performing c<strong>on</strong>secutive<br />

steps, i.e. by movements <strong>of</strong> <strong>the</strong> legs, and since <strong>the</strong><br />

upper-body segments show relatively slow, translati<strong>on</strong>al<br />

moti<strong>on</strong>s during <strong>the</strong> pushing-or-pulling periods including<br />

<strong>on</strong>ly little rotati<strong>on</strong> <strong>of</strong> trunk and arm segments, <strong>the</strong> resultant<br />

inertial effects <strong>on</strong> <strong>lumbar</strong> load were c<strong>on</strong>sidered negligible in<br />

relati<strong>on</strong> to exerted forces.<br />

The evaluati<strong>on</strong> <strong>of</strong> <strong>lumbar</strong> load is based <strong>on</strong> a sub-sample<br />

<strong>of</strong> 468 handling activities, although raw data <strong>on</strong> more than<br />

3,000 manoeuvres were obtained in <strong>the</strong> course <strong>of</strong> <strong>the</strong><br />

laboratory experiments. However, inspecti<strong>on</strong> and verificati<strong>on</strong><br />

<strong>of</strong> <strong>the</strong> manifold data sets for posture and hand-forces<br />

as well as <strong>the</strong> model calculati<strong>on</strong>s for complete manoeuvres,<br />

covering each about 200 up to 500 separate situati<strong>on</strong>s and<br />

corresp<strong>on</strong>ding <strong>lumbar</strong>-load predicti<strong>on</strong>s, represent very<br />

time-c<strong>on</strong>suming procedures. In c<strong>on</strong>sequence, restricti<strong>on</strong><br />

<strong>on</strong> a sub-sample was necessary to keep <strong>the</strong> investigati<strong>on</strong>’s<br />

durati<strong>on</strong> in tolerably reas<strong>on</strong>able times. Even if about<br />

15,000 situati<strong>on</strong>s are after all represented in <strong>the</strong> total data<br />

pool, never<strong>the</strong>less, load evaluati<strong>on</strong> for some task c<strong>on</strong>figurati<strong>on</strong>s<br />

is based <strong>on</strong> a small number <strong>of</strong> manoeuvres <strong>on</strong>ly.<br />

The evaluati<strong>on</strong>s for similar task c<strong>on</strong>figurati<strong>on</strong>s show<br />

analogous estimati<strong>on</strong>s, as <strong>the</strong> corresp<strong>on</strong>ding results for<br />

neighbouring white-to-dark coloured cells in Fig. 5<br />

illustrate. This may indicate that <strong>the</strong> respective data pool<br />

for a discussed ‘‘small-number’’ task c<strong>on</strong>figurati<strong>on</strong> was<br />

representative or, at least, not misleading.<br />

The various trolley handling tasks were assessed with<br />

respect to potential <strong>lumbar</strong> overload by means <strong>of</strong> four<br />

criteria in total, which refer to <strong>the</strong> level and distributi<strong>on</strong> <strong>of</strong><br />

both disc compressive-force and sagittal-moment values for<br />

ARTICLE IN PRESS<br />

M. Jäger et al. / Internati<strong>on</strong>al Journal <strong>of</strong> Industrial Erg<strong>on</strong>omics 37 (2007) 863–876 875<br />

a certain data pool obtained for identical task c<strong>on</strong>diti<strong>on</strong>s<br />

each. Comparis<strong>on</strong> <strong>of</strong> corresp<strong>on</strong>ding share evaluati<strong>on</strong>s<br />

show that applicati<strong>on</strong> <strong>of</strong> <strong>the</strong> moment criteri<strong>on</strong> results in<br />

higher overload-risk categories than applying <strong>the</strong> disccompressi<strong>on</strong><br />

criteri<strong>on</strong> for some task c<strong>on</strong>figurati<strong>on</strong>s,<br />

whereas inverse effects were not received (cf. Fig. 5, upper<br />

part: dark/grey Ms cells more frequent than dark/grey Fc<br />

cells). This may be traced back to <strong>the</strong> different backgrounds<br />

<strong>of</strong> moment classificati<strong>on</strong> and compressi<strong>on</strong>-related<br />

recommendati<strong>on</strong>s. The latter criteria focus <strong>on</strong> <strong>the</strong> loadbearing<br />

capacity <strong>of</strong> spinal structures <strong>on</strong>ly, and <strong>the</strong> former<br />

criteria additi<strong>on</strong>ally include attributes <strong>of</strong> <strong>the</strong> physical<br />

capacity and <strong>the</strong> training status <strong>of</strong> working pers<strong>on</strong>s.<br />

Therefore, <strong>the</strong> share evaluati<strong>on</strong>s based <strong>on</strong> <strong>the</strong> moment<br />

criteri<strong>on</strong> should not be disregarded in order to strive for<br />

appropriate protecti<strong>on</strong>, even if <strong>the</strong> compressi<strong>on</strong> criteri<strong>on</strong><br />

may show a minor overload risk for <strong>the</strong> same task. In total,<br />

<strong>the</strong> detailed evaluati<strong>on</strong> approach applied in this paper<br />

illustrates <strong>the</strong> advantage <strong>of</strong> a stepwise procedure, starting<br />

with <strong>the</strong> ‘‘bottle-neck attempt’’ <strong>of</strong> focussing <strong>on</strong> skeletal<br />

<strong>lumbar</strong> load and expending via <strong>the</strong> supplementary inclusi<strong>on</strong><br />

<strong>of</strong> o<strong>the</strong>r physiological risk criteria.<br />

The previous evaluating procedures focussed <strong>on</strong> <strong>the</strong><br />

effects <strong>of</strong> objective working c<strong>on</strong>diti<strong>on</strong>s and <strong>of</strong> individuals<br />

executi<strong>on</strong> techniques <strong>on</strong> <strong>the</strong> resulting <strong>lumbar</strong> load during<br />

trolley handling in order to derive biomechanically justified<br />

measures <strong>of</strong> work design. Preferring technical c<strong>on</strong>trol,<br />

anthropometric characteristics remained <strong>the</strong>refore unc<strong>on</strong>sidered.<br />

Even if not provided in detail here, respective<br />

analyses were performed with regard to <strong>the</strong> influences <strong>of</strong><br />

stature, body weight and <strong>the</strong> ‘‘body mass index’’ <strong>on</strong> <strong>lumbar</strong><br />

load (Sawatzki and Ja¨ ger, 2006). Roughly described,<br />

slightly smaller values for compressive forces and moments<br />

<strong>of</strong> force at <strong>the</strong> lumbosacral disc were found for pers<strong>on</strong>s <strong>of</strong><br />

low body height or weight. The <strong>on</strong>ly excepti<strong>on</strong> is pulling <strong>of</strong><br />

unladen FSTs if executed by tall or heavy subjects; <strong>the</strong>n,<br />

<strong>the</strong>se <strong>lumbar</strong>-load indicators show relatively low values. In<br />

<strong>the</strong>se cases, however, distinct trunk inclinati<strong>on</strong> or kyphotic<br />

curvature was particularly observed for tall pers<strong>on</strong>s; this<br />

aspect may be interpreted as a result <strong>of</strong> <strong>the</strong> existing trolley<br />

dimensi<strong>on</strong>s and design, which hinder grasping at an<br />

adequate vertical positi<strong>on</strong>.<br />

5. C<strong>on</strong>cluding remarks<br />

The load <strong>on</strong> <strong>the</strong> <strong>lumbar</strong> <strong>spine</strong> <strong>of</strong> <strong>flight</strong> <strong>attendants</strong> during<br />

pushing and pulling trolleys aboard aircraft was analysed by<br />

means <strong>of</strong> laboratory experiments—in order to obtain<br />

appropriate data <strong>on</strong> posture and exerted forces—and by<br />

subsequent biomechanical model calculati<strong>on</strong>s. Several <strong>lumbar</strong>-load<br />

indicators were quantified for different task c<strong>on</strong>diti<strong>on</strong>s<br />

regarding handling mode and floor gradient as well as<br />

trolley type and mass, varying each in comm<strong>on</strong> ranges.<br />

To estimate biomechanical overload risk for <strong>the</strong> <strong>lumbar</strong><br />

<strong>spine</strong>, comparis<strong>on</strong> <strong>of</strong> predicted <strong>lumbar</strong>-load values with<br />

recommended limits provided in <strong>the</strong> literature indicates<br />

specific patterns regarding <strong>the</strong> four ‘‘basic tasks’’, i.e. push


876<br />

or pull FST or HST, respectively. Moving <strong>the</strong> small<br />

c<strong>on</strong>tainers (HST) shows clear, but c<strong>on</strong>tradictory results<br />

according to <strong>the</strong> handling mode: regardless <strong>of</strong> different<br />

surface inclinati<strong>on</strong>s and trolley loadings, no <strong>lumbar</strong> overload<br />

risk was found for pushing, whereas exceeding <strong>the</strong><br />

recommended limit was frequently established for pulling a<br />

HST. Pushing and pulling <strong>of</strong> <strong>the</strong> large c<strong>on</strong>tainers (FST)<br />

lead to ‘‘critical’’ <strong>lumbar</strong> load in cases <strong>of</strong> superimpositi<strong>on</strong><br />

<strong>of</strong> both c<strong>on</strong>siderable trolley mass and c<strong>on</strong>siderable floor<br />

gradient. However, even <strong>the</strong> tasks inducing relevant<br />

<strong>lumbar</strong>-overload risk can positively be modified by<br />

adopting appropriate postures, that means by applying<br />

an improved handling technique: pulling <strong>of</strong> HSTs should<br />

never be performed using grasp positi<strong>on</strong>s at <strong>the</strong> top edge in<br />

order to reduce <strong>the</strong> tilt tendency <strong>of</strong> a HST. For all <strong>of</strong> <strong>the</strong><br />

three o<strong>the</strong>r basic tasks, i.e. pushing <strong>the</strong> small c<strong>on</strong>tainers as<br />

well as pushing and pulling <strong>the</strong> large c<strong>on</strong>tainers, grasping<br />

at <strong>the</strong> upper edge <strong>of</strong> <strong>the</strong> trolley is recommended.<br />

Besides individual performance characteristics, <strong>the</strong> c<strong>on</strong>structi<strong>on</strong><br />

could also be improved, for example, by rec<strong>on</strong>sidering<br />

<strong>the</strong> current roller c<strong>on</strong>cepti<strong>on</strong> or by mounting suitable<br />

handgrips or bars. A matter <strong>of</strong> fundamental c<strong>on</strong>cern seems<br />

guaranteeing adequate maintenance, in particular, <strong>of</strong> <strong>the</strong><br />

rollers to keep fricti<strong>on</strong> in reas<strong>on</strong>able range.<br />

References<br />

Al-Eisawi, K.W., Kerk, C.J., C<strong>on</strong>glet<strong>on</strong>, J.J., Amendola, A.A., Jenkins,<br />

O.C., Gaines, W., 1999. Factors affecting minimum push and pull<br />

forces <strong>of</strong> manual carts. Applied Erg<strong>on</strong>omics 30, 235–245.<br />

Anderss<strong>on</strong>, G.B.J., Örtengren, R., Nachems<strong>on</strong>, A., 1977. Intradiskal<br />

pressure, intraabdominal pressure and myoelectric back muscle<br />

activity related to posture and loading. Clinical Orthopaedics and<br />

Related Research 129, 156–164.<br />

Chaffin, D.B., 1969. Computerized biomechanical model—development<br />

<strong>of</strong> and use in gross body acti<strong>on</strong>s. Journal <strong>of</strong> Biomechanics 2, 429–441.<br />

Dempster, W.T., 1955. Space requirements <strong>of</strong> <strong>the</strong> seated operator. Wright<br />

Air Development Center, WADC Technical Report No. 55-159, Ohio.<br />

Drillis, W.T., C<strong>on</strong>tini, R., 1966. Body segment parameters. Office<br />

<strong>of</strong> Vocati<strong>on</strong>al Rehabilitati<strong>on</strong>, Department Health, Educati<strong>on</strong> and<br />

Welfare, Report No. 1163-03, New York.<br />

Ellegast, R.P., Kupfer, J., 2000. Portable posture and moti<strong>on</strong> measuring<br />

system for use in erg<strong>on</strong>omic field analysis. In: Landau, K. (Ed.),<br />

Erg<strong>on</strong>omic S<strong>of</strong>tware Tools in Product and Workplace Design. Erg<strong>on</strong>,<br />

Stuttgart, pp. 47–54.<br />

Glitsch, U., Ottersbach, H.J., Ellegast, R., Hermanns, I., Feldges, W.,<br />

Schaub, K., et al., 2004. Untersuchung der Belastung v<strong>on</strong> Flugbegleiterinnen<br />

und Flugbegleitern beim Schieben und Ziehen v<strong>on</strong> Trolleys in<br />

Flugzeugen. Hauptverband der gewerblichen Berufsgenossenschaften<br />

(HVBG) (Ed.), BIA-Report 5/2004. /http://www.hvbg.de/d/bia/pub/<br />

rep/rep04/bia0504.htmlS, Sankt Augustin.<br />

Glitsch, U., Ottersbach, H.J., Ellegast, R., Schaub, K., Jäger, M., Franz,<br />

G., 2007. Physical workload <strong>of</strong> <strong>flight</strong> <strong>attendants</strong> when pushing and<br />

pulling trolleys aboard aircraft. Internati<strong>on</strong>al Journal <strong>of</strong> Industrial<br />

Erg<strong>on</strong>omics, in press, doi:10.1016/j.erg<strong>on</strong>.2007.07.004.<br />

Hoozemans, M.J.M., van der Beek, A.J., Frings-Dresen, M.H.W., van<br />

Dijk, J.H., van der Woude, L.H.V., 1998. Pushing and pulling in<br />

relati<strong>on</strong> to musculoskeletal disorders: a review <strong>of</strong> risk factors.<br />

Erg<strong>on</strong>omics 41, 757–781.<br />

Hoozemans, M.J.M., Kuijer, P.P.F.M., Kingma, I., van Dieen, J.H., de<br />

Vries, W.H.K., van der Woude, L.H.V., et al., 2004. Mechanical<br />

loading <strong>of</strong> <strong>the</strong> low back and shoulders during pushing and pulling<br />

activities. Erg<strong>on</strong>omics 47, 1–18.<br />

ARTICLE IN PRESS<br />

M. Jäger et al. / Internati<strong>on</strong>al Journal <strong>of</strong> Industrial Erg<strong>on</strong>omics 37 (2007) 863–876<br />

Jäger, M., 2001. Belastung und Belastbarkeit der Lendenwirbelsa¨ ule im<br />

Berufsalltag—ein interdisziplinärer Ansatz fu¨ r eine erg<strong>on</strong>omische<br />

Arbeitsgestaltung. Fortschritt-Berichte VDI, Reihe 17, No. 208.<br />

VDI-Verlag, Du¨ sseldorf.<br />

Jäger, M., Luttmann, A., 1997. Assessment <strong>of</strong> low-back load during manual<br />

materials handling. In: Seppa¨ lä, P., Luopajärvi, T., Nyga˚rd, C.-H., Mattila,<br />

M. (Eds.), Musculoskeletal Disorders, Rehabilitati<strong>on</strong>. Proceedings <strong>of</strong> <strong>the</strong><br />

13th Triennial C<strong>on</strong>gress Internati<strong>on</strong>al Erg<strong>on</strong>omics Associati<strong>on</strong>, vol. 4.<br />

Finnish Institute <strong>of</strong> Occupati<strong>on</strong>al Health, Helsinki, pp. 171–173.<br />

Jäger, M., Luttmann, A., 1999. Critical survey <strong>on</strong> <strong>the</strong> biomechanical<br />

criteri<strong>on</strong> in <strong>the</strong> NIOSH method for <strong>the</strong> design and evaluati<strong>on</strong> <strong>of</strong><br />

manual lifting tasks. Internati<strong>on</strong>al Journal <strong>of</strong> Industrial Erg<strong>on</strong>omics<br />

23, 331–337.<br />

Jäger, M., Luttmann, A., Laurig, W., 1991. Lumbar load during <strong>on</strong>ehanded<br />

bricklaying. Internati<strong>on</strong>al Journal <strong>of</strong> Industrial Erg<strong>on</strong>omics 8,<br />

261–277.<br />

Jäger, M., Luttmann, A., Göllner, R., Laurig, W., 2001. The Dortmunder—biomechanical<br />

model for quantificati<strong>on</strong> and assessment <strong>of</strong> <strong>the</strong><br />

load <strong>on</strong> <strong>the</strong> <strong>lumbar</strong> <strong>spine</strong>. In: Society <strong>of</strong> Automotive Engineers (Ed.),<br />

SAE Digital Human Modeling C<strong>on</strong>ference Proceedings (CD-Rom,<br />

Paper 201-01-2085, 9pp), Arlingt<strong>on</strong>, VA.<br />

Jung, M.-C., Haight, J.M., Freivalds, A., 2005. Pushing and pulling carts<br />

and two-wheeled hand trucks. Internati<strong>on</strong>al Journal <strong>of</strong> Industrial<br />

Erg<strong>on</strong>omics 35, 79–89.<br />

Laursen, B., Schibye, B., 2002. The effect <strong>of</strong> different surfaces <strong>on</strong><br />

biomechanical loading <strong>of</strong> shoulder and <strong>lumbar</strong> <strong>spine</strong> during pushing<br />

and pulling <strong>of</strong> two-wheeled c<strong>on</strong>tainers. Applied Erg<strong>on</strong>omics 33, 167–174.<br />

Lee, K.S., Chaffin, D.B., Herrin, G.D., Waikar, A.M., 1991. Effect <strong>of</strong><br />

handle height <strong>on</strong> lower-back loading in cart pushing and pulling.<br />

Applied Erg<strong>on</strong>omics 22, 117–123.<br />

Mital, A., Nichols<strong>on</strong>, A.S., Ayoub, M.M., 1997. A Guide to Manual<br />

Materials Handling. Taylor & Francis, L<strong>on</strong>d<strong>on</strong>.<br />

Morris, J.M., Lucas, D.B., Bresler, B., 1961. Role <strong>of</strong> <strong>the</strong> trunk in stability<br />

<strong>of</strong> <strong>the</strong> <strong>spine</strong>. Journal <strong>of</strong> B<strong>on</strong>e and Joint Surgery 43A, 327–351.<br />

Nachems<strong>on</strong>, A., 1966. The load <strong>on</strong> <strong>the</strong> <strong>lumbar</strong> disks in different positi<strong>on</strong>s<br />

<strong>of</strong> <strong>the</strong> body. Clinical Orthopaedics 45, 107–122.<br />

Nachems<strong>on</strong>, A., Elfström, G., 1970. Intravital dynamic pressure<br />

measurements in <strong>lumbar</strong> discs. Scandinavian Journal <strong>of</strong> Rehabilitati<strong>on</strong><br />

Medicine (Suppl. 1).<br />

NIOSH, Nati<strong>on</strong>al Institute for Occupati<strong>on</strong>al Safety and Health, 1981.<br />

Work Practices Guide for Manual Lifting. Department <strong>of</strong> Health and<br />

Human Services, Cincinnati, pp. 81–122.<br />

Sawatzki, K., Jäger, M., 2006. Untersuchungen zur Identifikati<strong>on</strong> v<strong>on</strong><br />

Kriterien fu¨ r eine wirbelsäulensch<strong>on</strong>endere Handhabung v<strong>on</strong> Trolleys in<br />

Flugzeugen. Institut fu¨ r Arbeitsphysiologie an der Universität Dortmund,<br />

BG fu¨ r Fahrzeughaltungen (Eds.), Dortmund, Hamburg. /http://www.<br />

ifado.de/forschung/biomech/Lastenhandhabung/Ergaenzungsstudie.pdfS.<br />

Schaub, K., Berg, K., Winter, G., Ellegast, R., Glitsch, U., Ottersbach,<br />

H.J., et al., 2007. Muscular capabilities and workload <strong>of</strong> <strong>flight</strong><br />

<strong>attendants</strong> for pushing and pulling trolleys aboard aircraft. Internati<strong>on</strong>al<br />

Journal <strong>of</strong> Industrial Erg<strong>on</strong>omics, this issue, doi:10.1016/<br />

j.erg<strong>on</strong>.2007.07.002.<br />

Schibye, B., Søgaard, K., Martinsen, D., Klausen, K., 2001. Mechanical<br />

load <strong>on</strong> <strong>the</strong> low-back and shoulders during pushing and pulling <strong>of</strong> twowheeled<br />

waste c<strong>on</strong>tainers compared with lifting and carrying <strong>of</strong> bags<br />

and bins. Clinical Biomechanics 16, 549–559.<br />

Tichauer, E.R., 1978. The Biomechanical Basis <strong>of</strong> Erg<strong>on</strong>omics—Anatomy<br />

Applied to <strong>the</strong> Design <strong>of</strong> Work Situati<strong>on</strong>s. Wiley, New York.<br />

Waters, Th.R., Putz-Anders<strong>on</strong>, V., Garg, A., Fine, L.J., 1993. Revised<br />

NIOSH equati<strong>on</strong> for <strong>the</strong> design and evaluati<strong>on</strong> <strong>of</strong> manual lifting tasks.<br />

Erg<strong>on</strong>omics 36, 749–776.<br />

White, A.A., Panjabi, M.M., 1978. Clinical Biomechanics <strong>of</strong> <strong>the</strong> <strong>Spine</strong>.<br />

Lippincott, Philadelphia.<br />

Wilke, H.-J., Neef, P., Caimi, M., Hoogland, T., Claes, L.E., 1999. New in<br />

vivo measurements <strong>of</strong> pressures in <strong>the</strong> intervertebral disc in daily life.<br />

<strong>Spine</strong> 24, 755–762.<br />

Winkel, J., 1983. On <strong>the</strong> manual handling <strong>of</strong> wide-body carts used by<br />

cabin <strong>attendants</strong> in civil aircraft. Applied Erg<strong>on</strong>omics 14, 162–168.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!