02.01.2013 Views

Mobile Communications Chapter 1: Introduction - Rajalakshmi ...

Mobile Communications Chapter 1: Introduction - Rajalakshmi ...

Mobile Communications Chapter 1: Introduction - Rajalakshmi ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

University of Karlsruhe<br />

Institute of Telematics<br />

<strong>Mobile</strong> <strong>Communications</strong>: <strong>Introduction</strong><br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 1: <strong>Introduction</strong><br />

� A case for mobility<br />

� History of mobile communication<br />

� Market<br />

� Areas of research<br />

Computers for the next century?<br />

Computers are integrated<br />

� small, cheap, portable, replaceable - no more separate devices<br />

Technology in the background<br />

� computer are aware of their environment and adapt (“location<br />

awareness”)<br />

<strong>Mobile</strong> <strong>Communications</strong>: <strong>Introduction</strong><br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 1: <strong>Introduction</strong><br />

Jochen H. Schiller<br />

1999 1.1<br />

1.0.1<br />

� computer recognize the location of the user and react appropriately<br />

(e.g., call forwarding, fax forwarding)<br />

Advances in technology<br />

� more computing power in smaller devices<br />

� flat, lightweight displays with low power consumption<br />

� new user interfaces due to small dimensions<br />

� more bandwidth per cubic meter<br />

� multiple wireless interfaces: wireless LANs, wireless WANs,<br />

regional wireless telecommunication networks etc. („overlay<br />

networks“)<br />

1.1.1


University of Karlsruhe<br />

Institute of Telematics<br />

<strong>Mobile</strong> communication<br />

Aspects of mobility:<br />

� user mobility: users communicate (wireless) “anytime, anywhere, with<br />

anyone”<br />

� device portability: devices can be connected anytime, anywhere to the<br />

network<br />

Wireless vs. mobile Examples<br />

� � stationary computer<br />

� � notebook in a hotel<br />

� � wireless LANs in historic buildings<br />

� � Personal Digital Assistant (PDA)<br />

The demand for mobile communication creates the need for<br />

integration of wireless networks into existing fixed networks:<br />

� local area networks: standardization of IEEE 802.11,<br />

ETSI (HIPERLAN)<br />

� Internet: <strong>Mobile</strong> IP extension of the internet protocol IP<br />

� wide area networks: e.g., internetworking of GSM and ISDN<br />

<strong>Mobile</strong> <strong>Communications</strong>: <strong>Introduction</strong><br />

Applications I<br />

Vehicles<br />

� transmission of news, road condition, weather, music via DAB<br />

� personal communication using GSM<br />

� position via GPS<br />

<strong>Mobile</strong> <strong>Communications</strong>: <strong>Introduction</strong><br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 1: <strong>Introduction</strong><br />

Jochen H. Schiller<br />

1999 1.2<br />

1.2.1<br />

� local ad-hoc network with vehicles close-by to prevent accidents,<br />

guidance system, redundancy<br />

� vehicle data (e.g., from busses, high-speed trains) can be<br />

transmitted in advance for maintenance<br />

Emergencies<br />

� early transmission of patient data to the hospital, current status, first<br />

diagnosis<br />

� replacement of a fixed infrastructure in case of earthquakes,<br />

hurricanes, fire etc.<br />

� crisis, war, ...<br />

1.3.1


University of Karlsruhe<br />

Institute of Telematics<br />

Typical application: road traffic<br />

<strong>Mobile</strong> <strong>Communications</strong>: <strong>Introduction</strong><br />

Applications II<br />

Travelling salesmen<br />

UMTS, WLAN,<br />

DAB, GSM,<br />

TETRA, ...<br />

<strong>Mobile</strong> <strong>Communications</strong>: <strong>Introduction</strong><br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 1: <strong>Introduction</strong><br />

Jochen H. Schiller<br />

1999 1.3<br />

ad hoc<br />

Personal Travel Assistant,<br />

DAB, PDA, laptop,<br />

GSM, UMTS, WLAN,<br />

Bluetooth, ...<br />

� direct access to customer files stored in a central location<br />

� consistent databases for all agents<br />

� mobile office<br />

Replacement of fixed networks<br />

� remote sensors, e.g., weather, earth activities<br />

� flexibility for trade shows<br />

� LANs in historic buildings<br />

Entertainment, education, ...<br />

� outdoor Internet access<br />

� intelligent travel guide with up-to-date<br />

location dependent information<br />

� ad-hoc networks for<br />

multi user games<br />

Built<br />

150BC<br />

1.4.1<br />

1.5.1


University of Karlsruhe<br />

Institute of Telematics<br />

<strong>Mobile</strong> <strong>Communications</strong>: <strong>Introduction</strong><br />

Sensors,<br />

embedded<br />

controllers<br />

Location dependent services<br />

Location aware services<br />

� what services, e.g., printer, fax, phone, server etc. exist in the local<br />

environment<br />

Follow-on services<br />

� automatic call-forwarding, transmission of the actual workspace to<br />

the current location<br />

Information services<br />

� „push“: e.g., current special offers in the supermarket<br />

� „pull“: e.g., where is the Black Forrest Cherry Cake?<br />

Support services<br />

� caches, intermediate results, state information etc. „follow“ the<br />

mobile device through the fixed network<br />

Privacy<br />

� who should gain knowledge about the location<br />

<strong>Mobile</strong> devices<br />

Pager<br />

• receive only<br />

• tiny displays<br />

• simple text<br />

messages<br />

<strong>Mobile</strong> phones<br />

• voice, data<br />

• simple text displays<br />

<strong>Mobile</strong> <strong>Communications</strong>: <strong>Introduction</strong><br />

PDA<br />

• simple graphical displays<br />

• character recognition<br />

• simplified WWW<br />

performance<br />

Palmtop<br />

• tiny keyboard<br />

• simple versions<br />

of standard applications<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 1: <strong>Introduction</strong><br />

Jochen H. Schiller<br />

1999 1.4<br />

1.6.1<br />

Laptop<br />

• fully functional<br />

• standard applications<br />

1.7.1


University of Karlsruhe<br />

Institute of Telematics<br />

Effects of device portability<br />

Power consumption<br />

� limited computing power, low quality displays, small disks due to<br />

limited battery capacity<br />

� CPU: power consumption ~ CV 2 f<br />

� C: internal capacity, reduced by integration<br />

� V: supply voltage, can be reduced to a certain limit<br />

� f: clock frequency, can be reduced temporally<br />

Loss of data<br />

� higher probability, has to be included in advance into the design<br />

(e.g., defects, theft)<br />

Limited user interfaces<br />

� compromise between size of fingers and portability<br />

� integration of character/voice recognition, abstract symbols<br />

Limited memory<br />

� limited value of mass memories with moving parts<br />

� flash-memory or ? as alternative<br />

<strong>Mobile</strong> <strong>Communications</strong>: <strong>Introduction</strong><br />

Wireless networks in comparison to fixed networks<br />

Higher loss-rates due to interference<br />

� emissions of, e.g., engines, lightning<br />

Restrictive regulations of frequencies<br />

<strong>Mobile</strong> <strong>Communications</strong>: <strong>Introduction</strong><br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 1: <strong>Introduction</strong><br />

Jochen H. Schiller<br />

1999 1.5<br />

1.8.1<br />

� frequencies have to be coordinated, useful frequencies are almost<br />

all occupied<br />

Low transmission rates<br />

� local some Mbit/s, regional currently, e.g., 9.6kbit/s with GSM<br />

Higher delays, higher jitter<br />

� connection setup time with GSM in the second range, several<br />

hundred milliseconds for other wireless systems<br />

Lower security, simpler active attacking<br />

� radio interface accessible for everyone, base station can be<br />

simulated, thus attracting calls from mobile phones<br />

Always shared medium<br />

� secure access mechanisms important<br />

1.9.1


University of Karlsruhe<br />

Institute of Telematics<br />

Early history of wireless communication<br />

Many people in history used light for communication<br />

� heliographs, flags („semaphore“), ...<br />

� 150 BC smoke signals for communication;<br />

(Polybius, Greece)<br />

� 1794, optical telegraph, Claude Chappe<br />

Here electromagnetic waves are<br />

of special importance:<br />

� 1831 Faraday demonstrates electromagnetic induction<br />

� J. Maxwell (1831-79): theory of electromagnetic Fields, wave<br />

equations (1864)<br />

� H. Hertz (1857-94): demonstrates<br />

with an experiment the wave character<br />

of electrical transmission through space<br />

(1886, in Karlsruhe, Germany, at the<br />

location of today’s University of Karlsruhe)<br />

<strong>Mobile</strong> <strong>Communications</strong>: <strong>Introduction</strong><br />

History of wireless communication I<br />

1895 Guglielmo Marconi<br />

<strong>Mobile</strong> <strong>Communications</strong>: <strong>Introduction</strong><br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 1: <strong>Introduction</strong><br />

Jochen H. Schiller<br />

1999 1.6<br />

1.10.1<br />

� first demonstration of wireless<br />

telegraphy (digital!)<br />

� long wave transmission, high<br />

transmission power necessary (> 200kw)<br />

1907 Commercial transatlantic connections<br />

� huge base stations<br />

(30 100m high antennas)<br />

1915 Wireless voice transmission New York - San Francisco<br />

1920 Discovery of short waves by Marconi<br />

� reflection at the ionosphere<br />

� smaller sender and receiver, possible due to the invention of the<br />

vacuum tube (1906, Lee DeForest and Robert von Lieben)<br />

1926 Train-phone on the line Hamburg - Berlin<br />

� wires parallel to the railroad track<br />

1.11.1


University of Karlsruhe<br />

Institute of Telematics<br />

History of wireless communication II<br />

1928 many TV broadcast trials (across Atlantic, color TV, TV news)<br />

1933 Frequency modulation (E. H. Armstrong)<br />

1958 A-Netz in Germany<br />

� analog, 160MHz, connection setup only from the mobile station, no<br />

handover, 80% coverage, 1971 11000 customers<br />

1972 B-Netz in Germany<br />

� analog, 160MHz, connection setup from the fixed network too (but<br />

location of the mobile station has to be known)<br />

� available also in A, NL and LUX, 1979 13000 customer in D<br />

1979 NMT at 450MHz (Scandinavian countries)<br />

1982 Start of GSM-specification<br />

� goal: pan-European digital mobile phone system with roaming<br />

1983 Start of the American AMPS (Advanced <strong>Mobile</strong> Phone<br />

System, analog)<br />

1984 CT-1 standard (Europe) for cordless telephones<br />

<strong>Mobile</strong> <strong>Communications</strong>: <strong>Introduction</strong><br />

History of wireless communication III<br />

1986 C-Netz in Germany<br />

� analog voice transmission, 450MHz, hand-over possible, digital<br />

signaling, automatic location of mobile device<br />

<strong>Mobile</strong> <strong>Communications</strong>: <strong>Introduction</strong><br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 1: <strong>Introduction</strong><br />

Jochen H. Schiller<br />

1999 1.7<br />

1.12.1<br />

� still in use today (as T-C-Tel), services: FAX, modem, X.25, e-mail,<br />

98% coverage<br />

1991 Specification of DECT<br />

� Digital European Cordless Telephone (today: Digital Enhanced<br />

Cordless Telecommunications)<br />

� 1880-1900MHz, ~100-500m range, 120 duplex channels, 1.2Mbit/s<br />

data transmission, voice encryption, authentication, up to several<br />

10000 user/km 2 , used in more than 40 countries<br />

1992 Start of GSM<br />

� in D as D1 and D2, fully digital, 900MHz, 124 channels<br />

� automatic location, hand-over, cellular<br />

� roaming in Europe - now worldwide in more than 100 countries<br />

� services: data with 9.6kbit/s, FAX, voice, ...<br />

1.13.1


University of Karlsruhe<br />

Institute of Telematics<br />

History of wireless communication IV<br />

1994 E-Netz in Germany<br />

� GSM with 1800MHz, smaller cells, supported by 11 countries<br />

� as Eplus in D (1997 98% coverage of the population)<br />

1996 HiperLAN (High Performance Radio Local Area Network)<br />

� ETSI, standardization of type 1: 5.15 - 5.30GHz, 23.5Mbit/s<br />

� recommendations for type 2 and 3 (both 5GHz) and 4 (17GHz) as<br />

wireless ATM-networks (up to 155Mbit/s)<br />

1997 Wireless LAN - IEEE802.11<br />

� IEEE-Standard, 2.4 - 2.5GHz and infrared, 2Mbit/s<br />

� already many products (with proprietary extensions)<br />

1998 Specification of GSM successors<br />

� for UMTS (Universal <strong>Mobile</strong> Telecommunication System) as<br />

European proposals for IMT-2000<br />

Iridium<br />

� 66 satellites (+6 spare), 1.6GHz to the mobile phone<br />

<strong>Mobile</strong> <strong>Communications</strong>: <strong>Introduction</strong><br />

Wireless systems: overview of the development<br />

<strong>Mobile</strong> <strong>Communications</strong>: <strong>Introduction</strong><br />

cellular phones satellites<br />

1981:<br />

NMT 450<br />

1986:<br />

NMT 900<br />

1992:<br />

GSM<br />

1994:<br />

DCS 1800<br />

analog<br />

digital<br />

1991:<br />

CDMA<br />

1983:<br />

AMPS<br />

1991:<br />

D-AMPS<br />

1993:<br />

PDC<br />

1982:<br />

Inmarsat-A<br />

1988:<br />

Inmarsat-C<br />

2005?:<br />

UMTS/IMT-2000<br />

1992:<br />

Inmarsat-B<br />

Inmarsat-M<br />

cordless<br />

phones<br />

1980:<br />

CT0<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 1: <strong>Introduction</strong><br />

Jochen H. Schiller<br />

1999 1.8<br />

1998:<br />

Iridium<br />

1984:<br />

CT1<br />

1987:<br />

CT1+<br />

1989:<br />

CT 2<br />

1991:<br />

DECT<br />

1.14.1<br />

wireless<br />

LAN<br />

199x:<br />

proprietary<br />

1995/96/97:<br />

IEEE 802.11,<br />

HIPERLAN<br />

2005?:<br />

MBS, WATM<br />

1.15.1


University of Karlsruhe<br />

Institute of Telematics<br />

The future: ITU-R - Recommendations for IMT-2000<br />

M.687-2<br />

� IMT-2000 concepts and goals<br />

M.816-1<br />

� framework for services<br />

M.817<br />

M.818-1<br />

M.819-2<br />

M.1034-1<br />

� IMT-2000 network architectures<br />

� satellites in IMT-2000<br />

� IMT-2000 for developing countries<br />

� requirements for the radio<br />

interface(s)<br />

M.1035<br />

� framework for radio interface(s) and<br />

radio sub-system functions<br />

M.1036<br />

� spectrum considerations<br />

<strong>Mobile</strong> <strong>Communications</strong>: <strong>Introduction</strong><br />

M.1078<br />

� security in IMT-2000<br />

M.1079<br />

M.1167<br />

M.1168<br />

M.1223<br />

M.1224<br />

� speech/voiceband data performance<br />

� framework for satellites<br />

� framework for management<br />

� evaluation of security mechanisms<br />

� vocabulary for IMT-2000<br />

M.1225<br />

� evaluation of transmission technologies<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 1: <strong>Introduction</strong><br />

Jochen H. Schiller<br />

1999 1.9<br />

. . .<br />

http://www.itu.int/imt<br />

Worldwide wireless subscribers (prediction)<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

1996 1997 1998 1999 2000 2001<br />

<strong>Mobile</strong> <strong>Communications</strong>: <strong>Introduction</strong><br />

1.16.1<br />

Americas<br />

Europe<br />

Japan<br />

others<br />

total<br />

1.17.1


University of Karlsruhe<br />

Institute of Telematics<br />

<strong>Mobile</strong> phones per 100 people 1997<br />

Finland<br />

Denmark<br />

Japan<br />

USA<br />

Italy<br />

UK<br />

Spain<br />

Western Europe<br />

Germany<br />

France<br />

<strong>Mobile</strong> <strong>Communications</strong>: <strong>Introduction</strong><br />

0 10 20 30 40 50<br />

1998: 40% growth rate in Germany<br />

Areas of research in mobile communication<br />

Wireless Communication<br />

� transmission quality (bandwidth, error rate, delay)<br />

� modulation, coding, interference<br />

� media access, regulations<br />

� ...<br />

Mobility<br />

� location dependent services<br />

� location transparency<br />

� quality of service support (delay, jitter, security)<br />

� ...<br />

Portability<br />

� power consumption<br />

� limited computing power, sizes of display, ...<br />

� usability<br />

� ...<br />

<strong>Mobile</strong> <strong>Communications</strong>: <strong>Introduction</strong><br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 1: <strong>Introduction</strong><br />

Jochen H. Schiller<br />

1999 1.10<br />

1.18.1<br />

1.19.1


University of Karlsruhe<br />

Institute of Telematics<br />

Simple reference model used here<br />

Application<br />

Transport<br />

Network<br />

Data Link<br />

Physical<br />

Radio<br />

<strong>Mobile</strong> <strong>Communications</strong>: <strong>Introduction</strong><br />

<strong>Mobile</strong> <strong>Communications</strong>: <strong>Introduction</strong><br />

Network Network<br />

Data Link<br />

Physical<br />

Data Link<br />

Physical<br />

Medium<br />

Application<br />

Transport<br />

Network<br />

Data Link<br />

Physical<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 1: <strong>Introduction</strong><br />

Jochen H. Schiller<br />

1999 1.11<br />

1.20.1<br />

Influence of mobile communication to the layer model<br />

Application layer<br />

Transport layer<br />

Network layer<br />

Data link layer<br />

Physical layer<br />

� service location<br />

� new applications, multimedia<br />

� adaptive applications<br />

� congestion and flow control<br />

� quality of service<br />

� addressing, routing,<br />

device location<br />

� hand-over<br />

� authentication<br />

� media access<br />

� multiplexing<br />

� media access control<br />

� encryption<br />

� modulation<br />

� interference<br />

� attenuation<br />

� frequency<br />

1.21.1


University of Karlsruhe<br />

Institute of Telematics<br />

Overview of the chapters<br />

<strong>Chapter</strong> 4:<br />

Telecommunication<br />

Systems<br />

<strong>Chapter</strong> 5:<br />

Satellite<br />

Systems<br />

<strong>Mobile</strong> <strong>Communications</strong>: <strong>Introduction</strong><br />

<strong>Chapter</strong> 11:<br />

Support for Mobility<br />

<strong>Chapter</strong> 10:<br />

<strong>Mobile</strong> Transport Layer<br />

<strong>Chapter</strong> 9:<br />

<strong>Mobile</strong> Network Layer<br />

<strong>Chapter</strong> 6:<br />

Broadcast<br />

Systems<br />

<strong>Chapter</strong> 3:<br />

Medium Access Control<br />

<strong>Chapter</strong> 2:<br />

Wireless Transmission<br />

Overlay Networks - the global goal<br />

integration of heterogeneous fixed and<br />

mobile networks with varying<br />

transmission characteristics<br />

vertical<br />

hand-over<br />

in-house<br />

<strong>Mobile</strong> <strong>Communications</strong>: <strong>Introduction</strong><br />

campus-based<br />

<strong>Chapter</strong> 7:<br />

Wireless<br />

LAN<br />

<strong>Chapter</strong> 8:<br />

Wireless<br />

ATM<br />

metropolitan area<br />

horizontal<br />

hand-over<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 1: <strong>Introduction</strong><br />

Jochen H. Schiller<br />

1999 1.12<br />

1.22.1<br />

regional<br />

1.23.1


University of Karlsruhe<br />

Institute of Telematics<br />

<strong>Mobile</strong> Communication: Wireless Transmission<br />

twisted<br />

pair<br />

1 Mm<br />

300 Hz<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 2: Wireless Transmission<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 2: Wireless Transmission<br />

� Frequencies<br />

� Signals<br />

� Antenna<br />

� Signal propagation<br />

Frequencies for communication<br />

10 km<br />

30 kHz<br />

� Multiplexing<br />

� Spread spectrum<br />

� Modulation<br />

� Cellular systems<br />

Jochen H. Schiller<br />

1999 2.1<br />

2.0.1<br />

VLF = Very Low Frequency UHF = Ultra High Frequency<br />

LF = Low Frequency SHF = Super High Frequency<br />

MF = Medium Frequency EHF = Extra High Frequency<br />

HF = High Frequency UV = Ultraviolet Light<br />

VHF = Very High Frequency<br />

Frequency and wave length:<br />

λ = c/f<br />

coax cable<br />

100 m<br />

3 MHz<br />

1 m<br />

300 MHz<br />

10 mm<br />

30 GHz<br />

100 μm<br />

3 THz<br />

wave length λ, speed of light c ≅ 3x10 8 m/s, frequency f<br />

optical transmission<br />

1 μm<br />

300 THz<br />

VLF LF MF HF VHF UHF SHF EHF infrared<br />

visible light<br />

UV<br />

<strong>Mobile</strong> Communication: Wireless Transmission 2.1.1


University of Karlsruhe<br />

Institute of Telematics<br />

Frequencies for mobile communication<br />

� VHF-/UHF-ranges for mobile radio<br />

� simple, small antenna for cars<br />

� deterministic propagation characteristics, reliable connections<br />

<strong>Mobile</strong> Communication: Wireless Transmission<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 2: Wireless Transmission<br />

� SHF and higher for directed radio links, satellite communication<br />

� small antenna, focussing<br />

� large bandwidth available<br />

� Wireless LANs use frequencies in UHF to SHF spectrum<br />

� some systems planned up to EHF<br />

� limitations due to absorption by water and oxygen molecules<br />

(resonance frequencies)<br />

� weather dependent fading, signal loss caused by heavy rainfall etc.<br />

Frequencies and regulations<br />

ITU-R holds auctions for new frequencies, manages frequency<br />

bands worldwide (WRC, World Radio Conferences)<br />

<strong>Mobile</strong><br />

phones<br />

Cordless<br />

telephones<br />

Wireless<br />

LANs<br />

Europe USA Japan<br />

NMT 453-457MHz,<br />

463-467 MHz;<br />

GSM 890-915 MHz,<br />

935-960 MHz;<br />

1710-1785 MHz,<br />

1805-1880 MHz<br />

CT1+ 885-887 MHz,<br />

930-932 MHz;<br />

CT2<br />

864-868 MHz<br />

DECT<br />

1880-1900 MHz<br />

IEEE 802.11<br />

2400-2483 MHz<br />

HIPERLAN 1<br />

5176-5270 MHz<br />

<strong>Mobile</strong> Communication: Wireless Transmission<br />

AMPS, TDMA, CDMA<br />

824-849 MHz,<br />

869-894 MHz;<br />

TDMA, CDMA, GSM<br />

1850-1910 MHz,<br />

1930-1990 MHz;<br />

PACS 1850-1910 MHz,<br />

1930-1990 MHz<br />

PACS-UB 1910-1930 MHz<br />

IEEE 802.11<br />

2400-2483 MHz<br />

PDC<br />

810-826 MHz,<br />

940-956 MHz;<br />

1429-1465 MHz,<br />

1477-1513 MHz<br />

PHS<br />

1895-1918 MHz<br />

JCT<br />

254-380 MHz<br />

IEEE 802.11<br />

2471-2497 MHz<br />

Jochen H. Schiller<br />

1999 2.2<br />

2.2.1<br />

2.3.1


University of Karlsruhe<br />

Institute of Telematics<br />

Signals I<br />

� physical representation of data<br />

� function of time and location<br />

� signal parameters: parameters representing the value of data<br />

� classification<br />

� continuous time/discrete time<br />

� continuous values/discrete values<br />

� analog signal = continuous time and continuous values<br />

� digital signal = discrete time and discrete values<br />

� signal parameters of periodic signals:<br />

period T, frequency f=1/T, amplitude A, phase shift ϕ<br />

� sine wave as special periodic signal for a carrier:<br />

s(t) = A t sin(2 π f t t + ϕ t )<br />

<strong>Mobile</strong> Communication: Wireless Transmission<br />

1<br />

0<br />

Fourier representation of periodic signals<br />

1<br />

g(<br />

t)<br />

= c +<br />

2<br />

∑<br />

n=<br />

1<br />

<strong>Mobile</strong> Communication: Wireless Transmission<br />

∞<br />

an<br />

sin( 2πnft)<br />

+ ∑bn<br />

cos( 2πnft)<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 2: Wireless Transmission<br />

Jochen H. Schiller<br />

1999 2.3<br />

∞<br />

n=<br />

1<br />

1<br />

0<br />

2.4.1<br />

t t<br />

ideal periodic signal real composition<br />

(based on harmonics)<br />

2.5.1


University of Karlsruhe<br />

Institute of Telematics<br />

� Different representations of signals<br />

� amplitude (amplitude domain)<br />

A [V]<br />

Signals II<br />

� frequency spectrum (frequency domain)<br />

� phase state diagram (amplitude M and phase ϕ in polar coordinates)<br />

ϕ<br />

t[s]<br />

A [V]<br />

<strong>Mobile</strong> Communication: Wireless Transmission<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 2: Wireless Transmission<br />

� Composed signals transferred into frequency domain using Fourier<br />

transformation<br />

� Digital signals need<br />

� infinite frequencies for perfect transmission<br />

� modulation with a carrier frequency for transmission (analog signal!)<br />

Antennas: isotropic radiator<br />

<strong>Mobile</strong> Communication: Wireless Transmission<br />

Jochen H. Schiller<br />

1999 2.4<br />

f [Hz]<br />

Q = M sin ϕ<br />

ϕ<br />

I= M cos ϕ<br />

2.6.1<br />

� Radiation and reception of electromagnetic waves, coupling of<br />

wires to space for radio transmission<br />

� Isotropic radiator: equal radiation in all directions (three<br />

dimensional) - only a theoretical reference antenna<br />

� Real antennas always have directive effects (vertically and/or<br />

horizontally)<br />

� Radiation pattern: measurement of radiation around an antenna<br />

y<br />

z<br />

x<br />

z<br />

y x ideal<br />

isotropic<br />

radiator<br />

2.7.1


University of Karlsruhe<br />

Institute of Telematics<br />

Antennas: simple dipoles<br />

� Real antennas are not isotropic radiators but, e.g., dipoles with<br />

lengths λ/4 on car roofs or λ/2 as Hertzian dipole<br />

� shape of antenna proportional to wavelength<br />

� Example: Radiation pattern of a simple Hertzian dipole<br />

y<br />

side view (xy-plane)<br />

� Gain: maximum power in the direction of the main lobe<br />

compared to the power of an isotropic radiator (with the same<br />

average power)<br />

<strong>Mobile</strong> Communication: Wireless Transmission<br />

x<br />

λ/4<br />

y<br />

side view (yz-plane)<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 2: Wireless Transmission<br />

Jochen H. Schiller<br />

1999 2.5<br />

λ/2<br />

Antennas: directed and sectorized<br />

y<br />

side view (xy-plane)<br />

<strong>Mobile</strong> Communication: Wireless Transmission<br />

x<br />

y<br />

side view (yz-plane)<br />

z<br />

z<br />

z<br />

top view (xz-plane)<br />

z<br />

top view (xz-plane)<br />

x<br />

x<br />

simple<br />

dipole<br />

2.8.1<br />

Often used for microwave connections or base stations for mobile<br />

phones (e.g., radio coverage of a valley)<br />

z<br />

top view, 3 sector<br />

x<br />

z<br />

top view, 6 sector<br />

x<br />

directed<br />

antenna<br />

sectorized<br />

antenna<br />

2.9.1


University of Karlsruhe<br />

Institute of Telematics<br />

Antennas: diversity<br />

� Grouping of 2 or more antennas<br />

� multi-element antenna arrays<br />

� Antenna diversity<br />

� switched diversity, selection diversity<br />

� receiver chooses antenna with largest output<br />

� diversity combining<br />

� combine output power to produce gain<br />

� cophasing needed to avoid cancellation<br />

ground plane<br />

λ/4<br />

λ/2<br />

<strong>Mobile</strong> Communication: Wireless Transmission<br />

+<br />

λ/4<br />

Signal propagation ranges<br />

Transmission range<br />

� communication possible<br />

� low error rate<br />

Detection range<br />

� detection of the signal<br />

possible<br />

� no communication<br />

possible<br />

Interference range<br />

� signal may not be<br />

detected<br />

� signal adds to the<br />

background noise<br />

<strong>Mobile</strong> Communication: Wireless Transmission<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 2: Wireless Transmission<br />

Jochen H. Schiller<br />

1999 2.6<br />

λ/2<br />

λ/2<br />

+<br />

λ/2<br />

sender<br />

transmission<br />

detection<br />

interference<br />

2.10.1<br />

2.11.1<br />

distance


University of Karlsruhe<br />

Institute of Telematics<br />

Signal propagation<br />

Propagation in free space always like light (straight line)<br />

Receiving power proportional to 1/d²<br />

(d = distance between sender and receiver)<br />

Receiving power additionally influenced by<br />

� fading (frequency dependent)<br />

� shadowing<br />

� reflection at large obstacles<br />

� scattering at small obstacles<br />

� diffraction at edges<br />

shadowing<br />

<strong>Mobile</strong> Communication: Wireless Transmission<br />

Multipath propagation<br />

<strong>Mobile</strong> Communication: Wireless Transmission<br />

reflection scattering diffraction<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 2: Wireless Transmission<br />

Jochen H. Schiller<br />

1999 2.7<br />

2.12.1<br />

Signal can take many different paths between sender and receiver<br />

due to reflection, scattering, diffraction<br />

signal at sender<br />

Time dispersion: signal is dispersed over time<br />

� interference with “neighbor” symbols, Inter Symbol<br />

Interference (ISI)<br />

The signal reaches a receiver directly and phase shifted<br />

� distorted signal depending on the phases of the different<br />

parts<br />

signal at receiver<br />

2.13.1


University of Karlsruhe<br />

Institute of Telematics<br />

Effects of mobility<br />

Channel characteristics change over time and location<br />

� signal paths change<br />

� different delay variations of different signal parts<br />

� different phases of signal parts<br />

� quick changes in the power received (short term fading)<br />

Additional changes in<br />

� distance to sender<br />

� obstacles further away<br />

� slow changes in the average power<br />

received (long term fading)<br />

<strong>Mobile</strong> Communication: Wireless Transmission<br />

Multiplexing<br />

Multiplexing in 4 dimensions<br />

� space (s i )<br />

� time (t)<br />

� frequency (f)<br />

� code (c)<br />

Goal: multiple use<br />

of a shared medium<br />

Important: guard spaces needed!<br />

<strong>Mobile</strong> Communication: Wireless Transmission<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 2: Wireless Transmission<br />

short term fading<br />

long term<br />

fading<br />

Jochen H. Schiller<br />

1999 2.8<br />

power<br />

channels k i<br />

s 1<br />

k 1<br />

c<br />

t<br />

s 3<br />

f<br />

s 2<br />

t<br />

2.14.1<br />

k 2 k 3 k 4 k 5 k 6<br />

c<br />

t<br />

c<br />

f<br />

2.15.1<br />

t<br />

f


University of Karlsruhe<br />

Institute of Telematics<br />

Frequency multiplex<br />

<strong>Mobile</strong> Communication: Wireless Transmission<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 2: Wireless Transmission<br />

Separation of the whole spectrum into smaller frequency bands<br />

A channel gets a certain band of the spectrum for the whole time<br />

Advantages:<br />

� no dynamic coordination<br />

�<br />

necessary<br />

works also for analog signals<br />

c<br />

k1 k2 k3 k4 k5 k6 Disadvantages:<br />

� waste of bandwidth<br />

if the traffic is<br />

distributed unevenly<br />

� inflexible<br />

� guard spaces<br />

t<br />

Time multiplex<br />

A channel gets the whole spectrum for a certain amount of time<br />

Advantages:<br />

� only one carrier in the<br />

medium at any time<br />

� throughput high even<br />

for many users<br />

Disadvantages:<br />

� precise<br />

synchronization<br />

necessary<br />

<strong>Mobile</strong> Communication: Wireless Transmission<br />

t<br />

Jochen H. Schiller<br />

1999 2.9<br />

c<br />

k 1<br />

2.16.1<br />

k 2 k 3 k 4 k 5 k 6<br />

2.17.1<br />

f<br />

f


University of Karlsruhe<br />

Institute of Telematics<br />

Time and frequency multiplex<br />

<strong>Mobile</strong> Communication: Wireless Transmission<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 2: Wireless Transmission<br />

Combination of both methods<br />

A channel gets a certain frequency band for a certain amount of<br />

time<br />

Example: GSM<br />

Advantages:<br />

� better protection against<br />

tapping<br />

� protection against frequency<br />

k1 k2 k3 k4 k5 k6 selective interference<br />

� higher data rates compared to<br />

code multiplex<br />

but: precise coordination<br />

required<br />

c<br />

Code multiplex<br />

Each channel has a unique code<br />

All channels use the same spectrum at<br />

the same time<br />

Advantages:<br />

� bandwidth efficient<br />

� no coordination and synchronization<br />

necessary<br />

� good protection against interference<br />

and tapping<br />

Disadvantages:<br />

� lower user data rates<br />

� more complex signal regeneration<br />

Implemented using spread spectrum<br />

technology<br />

<strong>Mobile</strong> Communication: Wireless Transmission<br />

t<br />

Jochen H. Schiller<br />

1999 2.10<br />

k 1<br />

2.18.1<br />

k 2 k 3 k 4 k 5 k 6<br />

t<br />

c<br />

2.19.1<br />

f<br />

f


University of Karlsruhe<br />

Institute of Telematics<br />

Modulation<br />

Digital modulation<br />

� digital data is translated into an analog signal (baseband)<br />

� ASK, FSK, PSK - main focus in this chapter<br />

� differences in spectral efficiency, power efficiency, robustness<br />

Analog modulation<br />

� shifts center frequency of baseband signal up to the radio carrier<br />

Motivation<br />

� smaller antennas (e.g., λ/4)<br />

� Frequency Division Multiplexing<br />

� medium characteristics<br />

Basic schemes<br />

� Amplitude Modulation (AM)<br />

� Frequency Modulation (FM)<br />

� Phase Modulation (PM)<br />

<strong>Mobile</strong> Communication: Wireless Transmission<br />

Modulation and demodulation<br />

digital<br />

data digital<br />

analog<br />

baseband<br />

signal<br />

analog<br />

101101001 modulation<br />

modulation<br />

analog<br />

demodulation<br />

radio<br />

carrier<br />

analog<br />

baseband<br />

signal<br />

<strong>Mobile</strong> Communication: Wireless Transmission<br />

radio<br />

carrier<br />

synchronization<br />

decision<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 2: Wireless Transmission<br />

Jochen H. Schiller<br />

1999 2.11<br />

digital<br />

data<br />

101101001<br />

2.20.1<br />

radio transmitter<br />

radio receiver<br />

2.21.1


University of Karlsruhe<br />

Institute of Telematics<br />

Digital modulation<br />

Modulation of digital signals known as Shift Keying<br />

� Amplitude Shift Keying (ASK):<br />

1 0 1<br />

� very simple<br />

� low bandwidth requirements<br />

� very susceptible to interference<br />

� Frequency Shift Keying (FSK):<br />

� needs larger bandwidth<br />

� Phase Shift Keying (PSK):<br />

� more complex<br />

� robust against interference<br />

<strong>Mobile</strong> Communication: Wireless Transmission<br />

Advanced Frequency Shift Keying<br />

<strong>Mobile</strong> Communication: Wireless Transmission<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 2: Wireless Transmission<br />

1 0 1<br />

1 0 1<br />

Jochen H. Schiller<br />

1999 2.12<br />

t<br />

t<br />

t<br />

2.22.1<br />

� bandwidth needed for FSK depends on the distance between<br />

the carrier frequencies<br />

� special pre-computation avoids sudden phase shifts<br />

� MSK (Minimum Shift Keying)<br />

� bit separated into even and odd bits, the duration of each bit is<br />

doubled<br />

� depending on the bit values (even, odd) the higher or lower<br />

frequency, original or inverted is chosen<br />

� the frequency of one carrier is twice the frequency of the other<br />

� even higher bandwidth efficiency using a Gaussian low-pass<br />

filter � GMSK (Gaussian MSK), used in GSM<br />

2.23.1


University of Karlsruhe<br />

Institute of Telematics<br />

data<br />

even bits<br />

odd bits<br />

low<br />

frequency<br />

high<br />

frequency<br />

MSK<br />

signal<br />

Example of MSK<br />

1 0 1 1 0 1 0<br />

No phase shifts!<br />

<strong>Mobile</strong> Communication: Wireless Transmission<br />

Advanced Phase Shift Keying<br />

BPSK (Binary Phase Shift Keying):<br />

� bit value 0: sine wave<br />

� bit value 1: inverted sine wave<br />

� very simple PSK<br />

� low spectral efficiency<br />

� robust, used e.g. in satellite systems<br />

QPSK (Quadrature Phase Shift Keying):<br />

� 2 bits coded as one symbol<br />

� symbol determines shift of sine wave<br />

� needs less bandwidth compared to<br />

BPSK<br />

A<br />

� more complex<br />

Often also transmission of relative, not<br />

absolute phase shift: DQPSK -<br />

Differential QPSK (IS-136, PACS, PHS)<br />

<strong>Mobile</strong> Communication: Wireless Transmission<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 2: Wireless Transmission<br />

Jochen H. Schiller<br />

1999 2.13<br />

10<br />

00<br />

1<br />

t<br />

Q<br />

Q<br />

bit<br />

11 10 00 01<br />

even 0 1 0 1<br />

odd 0 0 1 1<br />

signal h n n h<br />

value - - + +<br />

h: high frequency<br />

n: low frequency<br />

+: original signal<br />

-: inverted signal<br />

0<br />

2.24.1<br />

I<br />

11<br />

I<br />

01<br />

t<br />

2.25.1


University of Karlsruhe<br />

Institute of Telematics<br />

Quadrature Amplitude Modulation<br />

<strong>Mobile</strong> Communication: Wireless Transmission<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 2: Wireless Transmission<br />

Quadrature Amplitude Modulation (QAM): combines amplitude and<br />

phase modulation<br />

� it is possible to code n bits using one symbol<br />

� 2 n discrete levels, n=2 identical to QPSK<br />

� bit error rate increases with n, but less errors compared to<br />

comparable PSK schemes<br />

Q<br />

0010<br />

0011<br />

0001<br />

0000<br />

I<br />

1000<br />

Spread spectrum technology<br />

<strong>Mobile</strong> Communication: Wireless Transmission<br />

Example: 16-QAM (4 bits = 1 symbol)<br />

Symbols 0011 and 0001 have the same phase,<br />

but different amplitude. 0000 and 1000 have<br />

different phase, but same amplitude.<br />

� used in standard 9600 bit/s modems<br />

Jochen H. Schiller<br />

1999 2.14<br />

2.26.1<br />

Problem of radio transmission: frequency dependent fading can<br />

wipe out narrow band signals for duration of the interference<br />

Solution: spread the narrow band signal into a broad band signal<br />

using a special code<br />

protection against narrow band interference<br />

power interference spread<br />

signal<br />

power<br />

Side effects:<br />

detection at<br />

receiver<br />

f f<br />

protection against narrowband interference<br />

� coexistence of several signals without dynamic coordination<br />

� tap-proof<br />

Alternatives: Direct Sequence, Frequency Hopping<br />

signal<br />

spread<br />

interference<br />

2.27.1


University of Karlsruhe<br />

Institute of Telematics<br />

Effects of spreading and interference<br />

i)<br />

iii)<br />

P<br />

<strong>Mobile</strong> Communication: Wireless Transmission<br />

channel<br />

quality<br />

channel<br />

quality<br />

P<br />

f<br />

f<br />

ii)<br />

sender<br />

iv)<br />

receiver<br />

Spreading and frequency selective fading<br />

1<br />

narrow band<br />

signal<br />

spread<br />

spectrum<br />

2<br />

<strong>Mobile</strong> Communication: Wireless Transmission<br />

3<br />

4<br />

guard space<br />

2<br />

2<br />

2<br />

2<br />

2<br />

1<br />

P<br />

P<br />

5 6<br />

frequency<br />

frequency<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 2: Wireless Transmission<br />

Jochen H. Schiller<br />

1999 2.15<br />

f<br />

f<br />

v)<br />

user signal<br />

broadband interference<br />

narrowband interference<br />

P<br />

f<br />

2.28.1<br />

narrowband channels<br />

spread spectrum channels<br />

2.29.1


University of Karlsruhe<br />

Institute of Telematics<br />

DSSS (Direct Sequence Spread Spectrum) I<br />

<strong>Mobile</strong> Communication: Wireless Transmission 2.30.1<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 2: Wireless Transmission<br />

XOR of the signal with pseudo-random number (chipping sequence)<br />

� many chips per bit (e.g., 128) result in higher bandwidth of the signal<br />

Advantages<br />

� reduces frequency selective<br />

fading<br />

� in cellular networks<br />

� base stations can use the<br />

same frequency range<br />

� several base stations can<br />

detect and recover the signal<br />

� soft handover<br />

Disadvantages<br />

� precise power control necessary<br />

0 1<br />

0 1 1 0 1 0 1 0 1 1 0 1 0 1<br />

user data<br />

chipping<br />

sequence<br />

resulting<br />

signal<br />

Jochen H. Schiller<br />

1999 2.16<br />

t b<br />

t c<br />

0 1 1 0 1 0 1 1 0 0 1 0 1 0<br />

t b : bit period<br />

t c : chip period<br />

DSSS (Direct Sequence Spread Spectrum) II<br />

received<br />

signal<br />

user data<br />

chipping<br />

sequence<br />

radio<br />

carrier<br />

<strong>Mobile</strong> Communication: Wireless Transmission<br />

X<br />

demodulator<br />

spread<br />

spectrum<br />

signal<br />

transmitter<br />

receiver<br />

lowpass<br />

filtered<br />

signal<br />

radio<br />

carrier<br />

chipping<br />

sequence<br />

modulator<br />

X<br />

correlator<br />

products<br />

transmit<br />

signal<br />

integrator<br />

sampled<br />

sums<br />

decision<br />

data<br />

XOR<br />

=<br />

2.31.1


University of Karlsruhe<br />

Institute of Telematics<br />

<strong>Mobile</strong> Communication: Wireless Transmission 2.32.1<br />

f<br />

f 3<br />

f 2<br />

f 1<br />

f<br />

f 3<br />

f 2<br />

f 1<br />

FHSS (Frequency Hopping Spread Spectrum) I<br />

Discrete changes of carrier frequency<br />

� sequence of frequency changes determined via pseudo random<br />

number sequence<br />

Two versions<br />

� Fast Hopping:<br />

several frequencies per user bit<br />

� Slow Hopping:<br />

several user bits per frequency<br />

Advantages<br />

� frequency selective fading and interference limited to short period<br />

� simple implementation<br />

� uses only small portion of spectrum at any time<br />

Disadvantages<br />

� not as robust as DSSS<br />

� simpler to detect<br />

FHSS (Frequency Hopping Spread Spectrum) II<br />

0 1<br />

t d<br />

<strong>Mobile</strong> Communication: Wireless Transmission<br />

t b<br />

t d<br />

0 1 1 t<br />

t b : bit period t d : dwell time<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 2: Wireless Transmission<br />

user data<br />

slow<br />

hopping<br />

(3 bits/hop)<br />

fast<br />

hopping<br />

(3 hops/bit)<br />

Jochen H. Schiller<br />

1999 2.17<br />

t<br />

t<br />

2.33.1


University of Karlsruhe<br />

Institute of Telematics<br />

FHSS (Frequency Hopping Spread Spectrum) III<br />

user data<br />

hopping<br />

sequence<br />

received<br />

signal<br />

modulator<br />

<strong>Mobile</strong> Communication: Wireless Transmission<br />

Cell structure<br />

transmitter<br />

demodulator<br />

frequency<br />

synthesizer<br />

narrowband<br />

signal<br />

<strong>Mobile</strong> Communication: Wireless Transmission<br />

narrowband<br />

signal<br />

modulator<br />

frequency<br />

synthesizer<br />

demodulator<br />

spread<br />

transmit<br />

signal<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 2: Wireless Transmission<br />

hopping<br />

sequence<br />

receiver<br />

Jochen H. Schiller<br />

1999 2.18<br />

data<br />

2.34.1<br />

Implements space division multiplex: base station covers a certain<br />

transmission area (cell)<br />

<strong>Mobile</strong> stations communicate only via the base station<br />

Advantages of cell structures:<br />

� higher capacity, higher number of users<br />

� less transmission power needed<br />

� more robust, decentralized<br />

� base station deals with interference, transmission area etc. locally<br />

Problems:<br />

� fixed network needed for the base stations<br />

� handover (changing from one cell to another) necessary<br />

� interference with other cells<br />

Cell sizes from some 100 m in cities to, e.g., 35 km on the country<br />

side (GSM) - even less for higher frequencies<br />

2.35.1


University of Karlsruhe<br />

Institute of Telematics<br />

Frequency planning I<br />

Frequency reuse only with a certain distance between the base<br />

stations<br />

Standard model using 7 frequencies:<br />

f 4<br />

f 3<br />

Fixed frequency assignment:<br />

� certain frequencies are assigned to a certain cell<br />

� problem: different traffic load in different cells<br />

Dynamic frequency assignment:<br />

� base station chooses frequencies depending on the frequencies<br />

already used in neighbor cells<br />

� more capacity in cells with more traffic<br />

� assignment can also be based on interference measurements<br />

<strong>Mobile</strong> Communication: Wireless Transmission<br />

f 3<br />

f 1<br />

f 2<br />

f 3<br />

<strong>Mobile</strong> Communication: Wireless Transmission<br />

f 5<br />

f 1<br />

f 2<br />

Frequency planning II<br />

f 2<br />

f 3<br />

f 1<br />

f 3<br />

f 1<br />

f 2<br />

f 3<br />

f 2<br />

f 3<br />

f 1<br />

f 3<br />

f 1<br />

f 2<br />

f 3<br />

f2 f2 f2 f1 f<br />

f1 f<br />

f1 3 h 3 f 2 h2 3<br />

h h<br />

g 1 g 1<br />

2 h3 2 h3 g1 g<br />

g 1<br />

3 g3 g2 g1 g3 f 3<br />

f 6<br />

f 7<br />

f 2<br />

f 4<br />

f 5<br />

f 1<br />

3 cell cluster<br />

7 cell cluster<br />

3 cell cluster<br />

with 3 sector antennas<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 2: Wireless Transmission<br />

Jochen H. Schiller<br />

1999 2.19<br />

f 2<br />

f 4<br />

f 3<br />

f 6<br />

f 5<br />

f 1<br />

f 2<br />

f 3<br />

f 6<br />

f 7<br />

f 5<br />

f 2<br />

f 4<br />

f 3<br />

2.36.1<br />

f 7<br />

f 5<br />

f 1<br />

f 2<br />

2.37.1


University of Karlsruhe<br />

Institute of Telematics<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 3 : Media Access<br />

� Motivation<br />

� SDMA, FDMA, TDMA<br />

� Aloha<br />

� Reservation schemes<br />

<strong>Mobile</strong> <strong>Communications</strong>: Media Access<br />

Motivation<br />

� Collision avoidance, MACA<br />

� Polling<br />

� CDMA<br />

� SAMA<br />

� Comparison<br />

Can we apply media access methods from fixed networks?<br />

Example CSMA/CD<br />

� Carrier Sense Multiple Access with Collision Detection<br />

� send as soon as the medium is free, listen into the medium if a<br />

collision occurs (original method in IEEE 802.3)<br />

Problems in wireless networks<br />

<strong>Mobile</strong> <strong>Communications</strong>: Media Access<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 3: Media Access<br />

Jochen H. Schiller<br />

1999 3.1<br />

3.0.1<br />

� signal strength decreases proportional to the square of the distance<br />

� the sender would apply CS and CD, but the collisions happen at the<br />

receiver<br />

� it might be the case that a sender cannot “hear” the collision, i.e.,<br />

CD does not work<br />

� furthermore, CS might not work if, e.g., a terminal is “hidden”<br />

3.1.1


University of Karlsruhe<br />

Institute of Telematics<br />

Motivation - hidden and exposed terminals<br />

Hidden terminals<br />

� A sends to B, C cannot receive A<br />

� C wants to send to B, C senses a “free” medium (CS fails)<br />

� collision at B, A cannot receive the collision (CD fails)<br />

� A is “hidden” for C<br />

Exposed terminals<br />

� B sends to A, C wants to send to another terminal (not A or B)<br />

� C has to wait, CS signals a medium in use<br />

� but A is outside the radio range of C, therefore waiting is not<br />

necessary<br />

� C is “exposed” to B<br />

<strong>Mobile</strong> <strong>Communications</strong>: Media Access<br />

Motivation - near and far terminals<br />

Terminals A and B send, C receives<br />

<strong>Mobile</strong> <strong>Communications</strong>: Media Access<br />

A B C<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 3: Media Access<br />

Jochen H. Schiller<br />

1999 3.2<br />

3.2.1<br />

� signal strength decreases proportional to the square of the distance<br />

� the signal of terminal B therefore drowns out A’s signal<br />

� C cannot receive A<br />

A B<br />

If C for example was an arbiter for sending rights, terminal B would<br />

drown out terminal A already on the physical layer<br />

Also severe problem for CDMA-networks - precise power control<br />

needed!<br />

C<br />

3.3.1


University of Karlsruhe<br />

Institute of Telematics<br />

Access methods SDMA/FDMA/TDMA<br />

SDMA (Space Division Multiple Access)<br />

� segment space into sectors, use directed antennas<br />

� cell structure<br />

FDMA (Frequency Division Multiple Access)<br />

� assign a certain frequency to a transmission channel between a<br />

sender and a receiver<br />

� permanent (e.g., radio broadcast), slow hopping (e.g., GSM), fast<br />

hopping (FHSS, Frequency Hopping Spread Spectrum)<br />

TDMA (Time Division Multiple Access)<br />

� assign the fixed sending frequency to a transmission channel<br />

between a sender and a receiver for a certain amount of time<br />

The multiplexing schemes presented in chapter 2 are now used to<br />

control medium access!<br />

<strong>Mobile</strong> <strong>Communications</strong>: Media Access 3.4.1<br />

FDD/FDMA - general scheme, example GSM<br />

960 MHz<br />

935.2 MHz<br />

915 MHz<br />

890.2 MHz<br />

<strong>Mobile</strong> <strong>Communications</strong>: Media Access<br />

f<br />

124<br />

1<br />

124<br />

1<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 3: Media Access<br />

Jochen H. Schiller<br />

1999 3.3<br />

20 MHz<br />

200 kHz<br />

t<br />

3.5.1


University of Karlsruhe<br />

Institute of Telematics<br />

TDD/TDMA - general scheme, example DECT<br />

417 µs<br />

1 2 3 11 12 1 2 3 11 12<br />

<strong>Mobile</strong> <strong>Communications</strong>: Media Access<br />

Aloha/slotted aloha<br />

Mechanism<br />

<strong>Mobile</strong> <strong>Communications</strong>: Media Access<br />

downlink uplink<br />

� random, distributed (no central arbiter), time-multiplex<br />

� Slotted Aloha additionally uses time-slots, sending must always<br />

start at slot boundaries<br />

Aloha<br />

collision<br />

sender A<br />

sender B<br />

sender C<br />

Slotted Aloha<br />

sender A<br />

sender B<br />

sender C<br />

collision<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 3: Media Access<br />

Jochen H. Schiller<br />

1999 3.4<br />

t<br />

t<br />

t<br />

3.6.1<br />

3.7.1


University of Karlsruhe<br />

Institute of Telematics<br />

DAMA - Demand Assigned Multiple Access<br />

Channel efficiency only 18% for Aloha, 36% for Slotted Aloha<br />

(assuming Poisson distribution for packet arrival and packet<br />

length)<br />

Reservation can increase efficiency to 80%<br />

� a sender reserves a future time-slot<br />

� sending within this reserved time-slot is possible without collision<br />

� reservation also causes higher delays<br />

� typical scheme for satellite links<br />

Examples for reservation algorithms:<br />

� Explicit Reservation according to Roberts (Reservation-ALOHA)<br />

� Implicit Reservation (PRMA)<br />

� Reservation-TDMA<br />

<strong>Mobile</strong> <strong>Communications</strong>: Media Access<br />

Access method DAMA: Explicit Reservation<br />

Explicit Reservation (Reservation Aloha):<br />

� two modes:<br />

� ALOHA mode for reservation:<br />

competition for small reservation slots, collisions possible<br />

<strong>Mobile</strong> <strong>Communications</strong>: Media Access<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 3: Media Access<br />

Jochen H. Schiller<br />

1999 3.5<br />

3.8.1<br />

� reserved mode for data transmission within successful reserved slots<br />

(no collisions possible)<br />

� it is important for all stations to keep the reservation list consistent at<br />

any point in time and, therefore, all stations have to synchronize from<br />

time to time<br />

collision<br />

Aloha reserved Aloha reserved Aloha reserved Aloha<br />

t<br />

3.9.1


University of Karlsruhe<br />

Institute of Telematics<br />

Access method DAMA: PRMA<br />

Implicit reservation (PRMA - Packet Reservation MA):<br />

� a certain number of slots form a frame, frames are repeated<br />

� stations compete for empty slots according to the slotted aloha<br />

principle<br />

� once a station reserves a slot successfully, this slot is automatically<br />

assigned to this station in all following frames as long as the station<br />

has data to send<br />

� competition for this slots starts again as soon as the slot was empty<br />

in the last frame<br />

reservation<br />

1 2 3 4 5 6 7 8 time-slot<br />

ACDABA-F<br />

frame1 A C D A B A F<br />

ACDABA-F<br />

frame2 A C A B A<br />

AC-ABAFframe<br />

collision at<br />

3 A B A F<br />

A---BAFD<br />

reservation<br />

frame4 A B A F D attempts<br />

ACEEBAFD<br />

frame5 A C E E B A F D<br />

t<br />

<strong>Mobile</strong> <strong>Communications</strong>: Media Access<br />

Access method DAMA: Reservation-TDMA<br />

Reservation Time Division Multiple Access<br />

� every frame consists of N mini-slots and x data-slots<br />

<strong>Mobile</strong> <strong>Communications</strong>: Media Access<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 3: Media Access<br />

Jochen H. Schiller<br />

1999 3.6<br />

3.10.1<br />

� every station has its own mini-slot and can reserve up to k data-slots<br />

using this mini-slot (i.e. x = N * k).<br />

� other stations can send data in unused data-slots according to a<br />

round-robin sending scheme (best-effort traffic)<br />

N mini-slots<br />

reservations<br />

for data-slots<br />

N * k data-slots<br />

e.g. N=6, k=2<br />

other stations can use free data-slots<br />

based on a round-robin scheme<br />

3.11.1


University of Karlsruhe<br />

Institute of Telematics<br />

MACA - collision avoidance<br />

MACA (Multiple Access with Collision Avoidance) uses short<br />

signaling packets for collision avoidance<br />

� RTS (request to send): a sender request the right to send from a<br />

receiver with a short RTS packet before it sends a data packet<br />

� CTS (clear to send): the receiver grants the right to send as soon<br />

as it is ready to receive<br />

Signaling packets contain<br />

� sender address<br />

� receiver address<br />

� packet size<br />

Variants of this method can be found in IEEE802.11 as DFWMAC<br />

(Distributed Foundation Wireless MAC)<br />

<strong>Mobile</strong> <strong>Communications</strong>: Media Access<br />

MACA examples<br />

MACA avoids the problem of hidden terminals<br />

� A and C want to<br />

send to B<br />

� A sends RTS first<br />

� C waits after receiving<br />

CTS from B<br />

MACA avoids the problem of exposed terminals<br />

� B wants to send to A, C<br />

to another terminal<br />

� now C does not have<br />

to wait for it cannot<br />

RTS RTS<br />

receive CTS from A<br />

CTS<br />

A B C<br />

<strong>Mobile</strong> <strong>Communications</strong>: Media Access<br />

A B C<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 3: Media Access<br />

Jochen H. Schiller<br />

1999 3.7<br />

RTS<br />

CTS<br />

CTS<br />

3.12.1<br />

3.13.1


University of Karlsruhe<br />

Institute of Telematics<br />

MACA variant: DFWMAC in IEEE802.11<br />

ACK<br />

idle<br />

wait for ACK<br />

<strong>Mobile</strong> <strong>Communications</strong>: Media Access<br />

sender receiver<br />

RxBusy<br />

time-out ∨<br />

NAK;<br />

RTS<br />

packet ready to send; RTS<br />

wait for the<br />

right to send<br />

CTS; data<br />

ACK: positive acknowledgement<br />

NAK: negative acknowledgement<br />

Polling mechanisms<br />

<strong>Mobile</strong> <strong>Communications</strong>: Media Access<br />

time-out;<br />

RTS<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 3: Media Access<br />

Jochen H. Schiller<br />

1999 3.8<br />

data;<br />

ACK<br />

time-out ∨<br />

data;<br />

NAK<br />

RxBusy: receiver busy<br />

idle<br />

wait for<br />

data<br />

RTS; RxBusy<br />

3.14.1<br />

If one terminal can be heard by all others, this “central” terminal<br />

(a.k.a. base station) can poll all other terminals according to a<br />

certain scheme<br />

� now all schemes known from fixed networks can be used (typical<br />

mainframe - terminal scenario)<br />

Example: Randomly Addressed Polling<br />

� base station signals readiness to all mobile terminals<br />

RTS;<br />

CTS<br />

� terminals ready to send can now transmit a random number without<br />

collision with the help of CDMA or FDMA (the random number can<br />

be seen as dynamic address)<br />

� the base station now chooses one address for polling from the list of<br />

all random numbers (collision if two terminals choose the same<br />

address)<br />

� the base station acknowledges correct packets and continues polling<br />

the next terminal<br />

� this cycle starts again after polling all terminals of the list<br />

3.15.1


University of Karlsruhe<br />

Institute of Telematics<br />

ISMA (Inhibit Sense Multiple Access)<br />

Current state of the medium is signaled via a “busy tone”<br />

� the base station signals on the downlink (base station to terminals)<br />

if the medium is free or not<br />

� terminals must not send if the medium is busy<br />

� terminals can access the medium as soon as the busy tone stops<br />

� the base station signals collisions and successful transmissions via<br />

the busy tone and acknowledgements, respectively (media access<br />

is not coordinated within this approach)<br />

� mechanism used, e.g.,<br />

for CDPD<br />

(USA, integrated<br />

into AMPS)<br />

<strong>Mobile</strong> <strong>Communications</strong>: Media Access<br />

Access method CDMA<br />

CDMA (Code Division Multiple Access)<br />

<strong>Mobile</strong> <strong>Communications</strong>: Media Access<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 3: Media Access<br />

Jochen H. Schiller<br />

1999 3.9<br />

3.16.1<br />

� all terminals send on the same frequency probably at the same time and<br />

can use the whole bandwidth of the transmission channel<br />

� each sender has a unique random number, the sender XORs the signal<br />

with this random number<br />

� the receiver can “tune” into this signal if it knows the pseudo random<br />

number, tuning is done via a correlation function<br />

Disadvantages:<br />

� higher complexity of a receiver (receiver cannot just listen into the<br />

medium and start receiving if there is a signal)<br />

� all signals should have the same strength at a receiver<br />

Advantages:<br />

� all terminals can use the same frequency, no planning needed<br />

� huge code space (e.g. 2 32 ) compared to frequency space<br />

� interferences (e.g. white noise) is not coded<br />

� forward error correction and encryption can be easily integrated<br />

3.17.1


University of Karlsruhe<br />

Institute of Telematics<br />

CDMA in theory<br />

Sender A<br />

� sends A d = 1, key A k = 010011 (assign: „0“= -1, „1“= +1)<br />

� sending signal A s = A d * A k = (-1, +1, -1, -1, +1, +1)<br />

Sender B<br />

� sends B d = 0, key B k = 110101 (assign: „0“= -1, „1“= +1)<br />

� sending signal B s = B d * B k = (-1, -1, +1, -1, +1, -1)<br />

Both signals superimpose in space<br />

� interference neglected (noise etc.)<br />

� A s + B s = (-2, 0, 0, -2, +2, 0)<br />

Receiver wants to receive signal from sender A<br />

� apply key A k bitwise (inner product)<br />

� A e = (-2, 0, 0, -2, +2, 0) • A k = 2 + 0 + 0 + 2 + 2 + 0 = 6<br />

� result greater than 0, therefore, original bit was „1“<br />

� receiving B<br />

� B e = (-2, 0, 0, -2, +2, 0) • B k = -2 + 0 + 0 - 2 - 2 + 0 = -6, i.e. „0“<br />

<strong>Mobile</strong> <strong>Communications</strong>: Media Access<br />

CDMA on signal level I<br />

data A<br />

key A<br />

signal A<br />

<strong>Mobile</strong> <strong>Communications</strong>: Media Access<br />

1 0 1<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 3: Media Access<br />

Jochen H. Schiller<br />

1999 3.10<br />

3.18.1<br />

key<br />

0<br />

sequence A<br />

1 0 1 0 0 1 0 0 0 1 0 1 1 0 0 1 1<br />

data ⊕ key 1 0 1 0 1 1 1 0 0 0 1 0 0 0 1 1 0 0<br />

Real systems use much longer keys resulting in a larger distance<br />

between single code words in code space.<br />

3.19.1<br />

A d<br />

A k<br />

A s


University of Karlsruhe<br />

Institute of Telematics<br />

CDMA on signal level II<br />

signal A<br />

data B<br />

key B<br />

key<br />

sequence B<br />

data ⊕ key<br />

signal B<br />

A s + B s<br />

<strong>Mobile</strong> <strong>Communications</strong>: Media Access<br />

1 0 0<br />

0 0 0 1 1 0 1 0 1 0 0 0 0 1 0 1 1 1<br />

1 1 1 0 0 1 1 0 1 0 0 0 0 1 0 1 1 1<br />

CDMA on signal level III<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 3: Media Access<br />

Jochen H. Schiller<br />

1999 3.11<br />

3.20.1<br />

data A<br />

1 0 1<br />

Ad A s + B s<br />

A k<br />

(A s + B s )<br />

* A k<br />

integrator<br />

output<br />

comparator<br />

output<br />

<strong>Mobile</strong> <strong>Communications</strong>: Media Access<br />

0 1 0<br />

3.21.1<br />

A s<br />

B d<br />

B k<br />

B s


University of Karlsruhe<br />

Institute of Telematics<br />

CDMA on signal level IV<br />

data B 1 0 0<br />

Bd A s + B s<br />

B k<br />

(A s + B s )<br />

* B k<br />

integrator<br />

output<br />

comparator<br />

output<br />

<strong>Mobile</strong> <strong>Communications</strong>: Media Access<br />

CDMA on signal level V<br />

A s + B s<br />

wrong<br />

key K<br />

(A s + B s )<br />

* K<br />

integrator<br />

output<br />

comparator<br />

output<br />

<strong>Mobile</strong> <strong>Communications</strong>: Media Access<br />

0 1 1<br />

(1) (1) ?<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 3: Media Access<br />

Jochen H. Schiller<br />

1999 3.12<br />

3.22.1<br />

3.23.1


University of Karlsruhe<br />

Institute of Telematics<br />

SAMA - Spread Aloha Multiple Access<br />

Aloha has only a very low efficiency, CDMA needs complex<br />

receivers to be able to receive different senders with individual<br />

codes at the same time<br />

Idea: use spread spectrum with only one single code (chipping<br />

sequence) for spreading for all senders accessing according to<br />

aloha<br />

collision<br />

sender A<br />

sender B<br />

<strong>Mobile</strong> <strong>Communications</strong>: Media Access<br />

1<br />

0<br />

0<br />

1<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 3: Media Access<br />

Jochen H. Schiller<br />

1999 3.13<br />

t<br />

narrow<br />

band<br />

spread the signal e.g. using the chipping sequence 110101 („CDMA without CD“)<br />

Problem: find a chipping sequence with good characteristics<br />

Comparison SDMA/TDMA/FDMA/CDMA<br />

<strong>Mobile</strong> <strong>Communications</strong>: Media Access<br />

1<br />

1<br />

send for a<br />

shorter period<br />

with higher power<br />

3.24.1<br />

Approach SDMA TDMA FDMA CDMA<br />

Idea<br />

segment space into segment sending segment the spread the spectrum<br />

cells/sectors<br />

time into disjoint frequency band into using orthogonal codes<br />

time-slots, demand<br />

driven or fixed<br />

patterns<br />

disjoint sub-bands<br />

Terminals only one terminal can all terminals are every terminal has its all terminals can be active<br />

be active in one active for short own frequency, at the same place at the<br />

cell/one sector periods of time on uninterrupted same moment,<br />

the same frequency<br />

uninterrupted<br />

Signal cell structure, directed synchronization in filtering in the code plus special<br />

separation antennas<br />

the time domain frequency domain receivers<br />

Advantages very simple, increases<br />

capacity per km²<br />

Disadvantages<br />

Comment<br />

inflexible, antennas<br />

typically fixed<br />

only in combination<br />

with TDMA, FDMA or<br />

CDMA useful<br />

established, fully<br />

digital, flexible<br />

guard space<br />

needed (multipath<br />

propagation),<br />

synchronization<br />

difficult<br />

standard in fixed<br />

networks, together<br />

with FDMA/SDMA<br />

used in many<br />

mobile networks<br />

simple, established,<br />

robust<br />

inflexible,<br />

frequencies are a<br />

scarce resource<br />

typically combined<br />

with TDMA<br />

(frequency hopping<br />

patterns) and SDMA<br />

(frequency reuse)<br />

flexible, less frequency<br />

planning needed, soft<br />

handover<br />

complex receivers, needs<br />

more complicated power<br />

control for senders<br />

still faces some problems,<br />

higher complexity,<br />

lowered expectations; will<br />

be integrated with<br />

TDMA/FDMA<br />

3.25.1


University of Karlsruhe<br />

Institute of Telematics<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

subscribers (x 1000)<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 4: Wireless Telecommunication Systems<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 4: Wireless<br />

Telecommunication Systems<br />

� Market<br />

� GSM<br />

� Overview<br />

� Services<br />

� Sub-systems<br />

� Components<br />

� DECT<br />

� TETRA<br />

� UMTS/IMT-2000<br />

<strong>Mobile</strong> phone subscribers worldwide<br />

700000<br />

600000<br />

500000<br />

400000<br />

300000<br />

200000<br />

100000<br />

0<br />

1996 1997 1998 1999 2000 2001<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

Jochen H. Schiller<br />

1999 4.1<br />

4.0.1<br />

Analog total<br />

GSM total<br />

CDMA total<br />

TDMA total<br />

PDC/PHS total<br />

total<br />

4.1.1


University of Karlsruhe<br />

Institute of Telematics<br />

GSM: Overview<br />

GSM<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 4: Wireless Telecommunication Systems<br />

� formerly: Groupe Spéciale <strong>Mobile</strong> (founded 1982)<br />

� now: Global System for <strong>Mobile</strong> Communication<br />

� Pan-European standard (ETSI, European Telecommunications<br />

Standardisation Institute)<br />

� simultaneous introduction of essential services in three phases<br />

(1991, 1994, 1996) by the European telecommunication<br />

administrations (Germany: D1 and D2)<br />

➔ seamless roaming within Europe possible<br />

� today many providers all over the world use GSM (more than 130<br />

countries in Asia, Africa, Europe, Australia, America)<br />

� more than 100 million subscribers<br />

Performance characteristics of GSM<br />

Communication<br />

� mobile, wireless communication; support for voice and data<br />

services<br />

Total mobility<br />

� international access, chip-card enables use of access points of<br />

different providers<br />

Worldwide connectivity<br />

� one number, the network handles localization<br />

High capacity<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

Jochen H. Schiller<br />

1999 4.2<br />

4.2.1<br />

� better frequency efficiency, smaller cells, more customers per cell<br />

High transmission quality<br />

� high audio quality and reliability for wireless, uninterrupted phone<br />

calls at higher speeds (e.g., from cars, trains)<br />

Security functions<br />

� access control, authentication via chip-card and PIN<br />

4.3.1


University of Karlsruhe<br />

Institute of Telematics<br />

Disadvantages of GSM<br />

There is no perfect system!!<br />

� no end-to-end encryption of user data<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

MS<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 4: Wireless Telecommunication Systems<br />

� no full ISDN bandwidth of 64 kbit/s to the user, no transparent Bchannel<br />

� reduced concentration while driving<br />

� electromagnetic radiation<br />

� abuse of private data possible<br />

� roaming profiles accessible<br />

� high complexity of the system<br />

� several incompatibilities within the GSM standards<br />

GSM: <strong>Mobile</strong> Services<br />

GSM offers<br />

� several types of connections<br />

� voice connections, data connections, short message service<br />

� multi-service options (combination of basic services)<br />

Three service domains<br />

� Bearer Services<br />

� Telematic Services<br />

� Supplementary Services<br />

bearer services<br />

transit<br />

source/<br />

TE MT GSM-PLMN network destination<br />

TE<br />

R, S (PSTN, ISDN) network (U, S, R)<br />

U m<br />

tele services<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

Jochen H. Schiller<br />

1999 4.3<br />

4.4.1<br />

4.5.1


University of Karlsruhe<br />

Institute of Telematics<br />

Bearer Services<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 4: Wireless Telecommunication Systems<br />

� Telecommunication services to transfer data between access<br />

points<br />

� Specification of services up to the terminal interface (OSI layers<br />

1-3)<br />

� Different data rates for voice and data (original standard)<br />

� data service (circuit switched)<br />

� synchronous: 2.4, 4.8 or 9.6 kbit/s<br />

� asynchronous: 300 - 1200 bit/s<br />

� data service (packet switched)<br />

� synchronous: 2.4, 4.8 or 9.6 kbit/s<br />

� asynchronous: 300 - 9600 bit/s<br />

Tele Services I<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

Jochen H. Schiller<br />

1999 4.4<br />

4.6.1<br />

� Telecommunication services that enable voice communication<br />

via mobile phones<br />

� All these basic services have to obey cellular functions, security<br />

measurements etc.<br />

� Offered services<br />

� mobile telephony<br />

primary goal of GSM was to enable mobile telephony offering the<br />

traditional bandwidth of 3.1 kHz<br />

� Emergency number<br />

common number throughout Europe (112); mandatory for all<br />

service providers; free of charge; connection with the highest<br />

priority (preemption of other connections possible)<br />

� Multinumbering<br />

several ISDN phone numbers per user possible<br />

4.7.1


University of Karlsruhe<br />

Institute of Telematics<br />

Tele Services II<br />

Additional services<br />

� Non-Voice-Teleservices<br />

� group 3 fax<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 4: Wireless Telecommunication Systems<br />

� voice mailbox (implemented in the fixed network supporting the mobile<br />

terminals)<br />

� electronic mail (MHS, Message Handling System, implemented in the fixed<br />

network)<br />

� ...<br />

� Short Message Service (SMS)<br />

alphanumeric data transmission to/from the mobile terminal using the<br />

signaling channel, thus allowing simultaneous use of basic services and<br />

SMS<br />

Supplementary services<br />

� Services in addition to the basic services, cannot be offered<br />

stand-alone<br />

� Similar to ISDN services besides lower bandwidth due to the<br />

radio link<br />

� May differ between different service providers, countries and<br />

protocol versions<br />

� Important services<br />

� identification: forwarding of caller number<br />

� suppression of number forwarding<br />

� automatic call-back<br />

� conferencing with up to 7 participants<br />

� locking of the mobile terminal (incoming or outgoing calls)<br />

� ...<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

Jochen H. Schiller<br />

1999 4.5<br />

4.8.1<br />

4.9.1


University of Karlsruhe<br />

Institute of Telematics<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

NSS<br />

with OSS<br />

Architecture of the GSM system<br />

GSM is a PLMN (Public Land <strong>Mobile</strong> Network)<br />

RSS<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 4: Wireless Telecommunication Systems<br />

� several providers setup mobile networks following the GSM<br />

standard within each country<br />

� components<br />

� MS (mobile station)<br />

� BS (base station)<br />

� MSC (mobile switching center)<br />

� LR (location register)<br />

� subsystems<br />

� RSS (radio subsystem): covers all radio aspects<br />

� NSS (network and switching subsystem): call forwarding, handover,<br />

switching<br />

� OSS (operation subsystem): management of the network<br />

GSM: overview<br />

OMC, EIR,<br />

AUC<br />

VLR<br />

BSC<br />

HLR<br />

GMSC<br />

MSC MSC<br />

VLR<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

Jochen H. Schiller<br />

1999 4.6<br />

BSC<br />

4.10.1<br />

fixed network<br />

4.11.1


University of Karlsruhe<br />

Institute of Telematics<br />

GSM: elements and interfaces<br />

RSS<br />

NSS<br />

OSS<br />

A bis<br />

A<br />

EIR<br />

BSC<br />

MS MS<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

U m<br />

radio cell<br />

BTS<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 4: Wireless Telecommunication Systems<br />

OMC<br />

BSC<br />

GMSC<br />

Jochen H. Schiller<br />

1999 4.7<br />

BTS<br />

MSC MSC<br />

VLR VLR<br />

HLR<br />

AUC<br />

GSM: system architecture<br />

radio<br />

subsystem<br />

MS MS<br />

BTS<br />

BTS<br />

BTS<br />

BTS<br />

BSS<br />

U m<br />

A bis<br />

BSC<br />

BSC<br />

O<br />

BSS<br />

radio cell<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

A<br />

MS<br />

IWF<br />

signaling<br />

ISDN, PSTN<br />

network and<br />

switching subsystem<br />

MSC<br />

SS7<br />

MSC<br />

IWF<br />

EIR<br />

HLR<br />

VLR<br />

PDN<br />

fixed<br />

partner networks<br />

ISDN<br />

PSTN<br />

ISDN<br />

PSTN<br />

PSPDN<br />

CSPDN<br />

4.12.1<br />

4.13.1


University of Karlsruhe<br />

Institute of Telematics<br />

System architecture: radio subsystem<br />

radio<br />

subsystem<br />

MS MS<br />

BTS<br />

BTS<br />

BTS<br />

BTS<br />

BSS<br />

U m<br />

A bis<br />

BSC MSC<br />

BSC<br />

A<br />

network and switching<br />

subsystem<br />

MSC<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 4: Wireless Telecommunication Systems<br />

Components<br />

� MS (<strong>Mobile</strong> Station)<br />

� BSS (Base Station Subsystem):<br />

consisting of<br />

� BTS (Base Transceiver Station):<br />

sender and receiver<br />

� BSC (Base Station Controller):<br />

controlling several transceivers<br />

Interfaces<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

� U m : radio interface<br />

� A bis : standardized, open interface with<br />

16 kbit/s user channels<br />

� A: standardized, open interface with<br />

64 kbit/s user channels<br />

Jochen H. Schiller<br />

1999 4.8<br />

4.14.1<br />

System architecture: network and switching subsystem<br />

MSC<br />

network<br />

subsystem<br />

SS7<br />

MSC<br />

IWF<br />

EIR<br />

HLR<br />

VLR<br />

fixed partner<br />

networks<br />

ISDN<br />

PSTN<br />

ISDN<br />

PSTN<br />

PSPDN<br />

CSPDN<br />

Components<br />

❏ MSC (<strong>Mobile</strong> Services Switching Center):<br />

❏ IWF (Interworking Functions)<br />

❏ ISDN (Integrated Services Digital Network)<br />

❏ PSTN (Public Switched Telephone Network)<br />

❏ PSPDN (Packet Switched Public Data Net.)<br />

❏ CSPDN (Circuit Switched Public Data Net.)<br />

Databases<br />

❏ HLR (Home Location Register)<br />

❏ VLR (Visitor Location Register)<br />

❏ EIR (Equipment Identity Register)<br />

4.15.1


University of Karlsruhe<br />

Institute of Telematics<br />

Radio subsystem<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 4: Wireless Telecommunication Systems<br />

The Radio Subsystem (RSS) comprises the cellular mobile network<br />

up to the switching centers<br />

� Components<br />

� Base Station Subsystem (BSS):<br />

� Base Transceiver Station (BTS): radio components including sender,<br />

receiver, antenna - if directed antennas are used one BTS can cover<br />

several cells<br />

� Base Station Controller (BSC): switching between BTSs, controlling<br />

BTSs, managing of network resources, mapping of radio channels (U m )<br />

onto terrestrial channels (A interface)<br />

� BSS = BSC + sum(BTS) + interconnection<br />

� <strong>Mobile</strong> Stations (MS)<br />

GSM: cellular network<br />

segmentation of the area into cells<br />

cell<br />

� use of several carrier frequencies<br />

� not the same frequency in adjoining cells<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

possible radio coverage of the cell<br />

idealized shape of the cell<br />

Jochen H. Schiller<br />

1999 4.9<br />

4.16.1<br />

� cell sizes vary from some 100 m up to 35 km depending on user<br />

density, geography, transceiver power etc.<br />

� hexagonal shape of cells is idealized (cells overlap, shapes depend on<br />

geography)<br />

� if a mobile user changes cells<br />

➪ handover of the connection to the neighbor cell<br />

4.17.1


University of Karlsruhe<br />

Institute of Telematics<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 4: Wireless Telecommunication Systems<br />

Base Transceiver Station and Base Station Controller<br />

Tasks of a BSS are distributed over BSC and BTS<br />

� BTS comprises radio specific functions<br />

� BSC is the switching center for radio channels<br />

Functions BTS BSC<br />

Management of radio channels X<br />

Frequency hopping (FH) X X<br />

Management of terrestrial channels X<br />

Mapping of terrestrial onto radio channels X<br />

Channel coding and decoding X<br />

Rate adaptation X<br />

Encryption and decryption X X<br />

Paging X X<br />

Uplink signal measurements X<br />

Traffic measurement X<br />

Authentication X<br />

Location registry, location update X<br />

Handover management X<br />

<strong>Mobile</strong> station<br />

Terminal for the use of GSM services<br />

� A mobile station (MS) comprises several functional groups<br />

� MT (<strong>Mobile</strong> Terminal):<br />

� offers common functions used by all services the MS offers<br />

� corresponds to the network termination (NT) of an ISDN access<br />

� end-point of the radio interface (U m )<br />

� TA (Terminal Adapter):<br />

� terminal adaptation, hides radio specific characteristics<br />

� TE (Terminal Equipment):<br />

� peripheral device of the MS, offers services to a user<br />

� does not contain GSM specific functions<br />

� SIM (Subscriber Identity Module):<br />

� personalization of the mobile terminal, stores user parameters<br />

TE TA MT<br />

R S<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

Jochen H. Schiller<br />

1999 4.10<br />

U m<br />

4.18.1<br />

4.19.1


University of Karlsruhe<br />

Institute of Telematics<br />

Network and switching subsystem<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 4: Wireless Telecommunication Systems<br />

NSS is the main component of the public mobile network GSM<br />

� switching, mobility management, interconnection to other networks,<br />

system control<br />

� Components<br />

� <strong>Mobile</strong> Services Switching Center (MSC)<br />

controls all connections via a separated network to/from a mobile<br />

terminal within the domain of the MSC - several BSC can belong to<br />

a MSC<br />

� Databases (important: scalability, high capacity, low delay)<br />

� Home Location Register (HLR)<br />

central master database containing user data, permanent and semipermanent<br />

data of all subscribers assigned to the HLR (one provider<br />

can have several HLRs)<br />

� Visitor Location Register (VLR)<br />

local database for a subset of user data, including data about all user<br />

currently in the domain of the VLR<br />

<strong>Mobile</strong> Services Switching Center<br />

The MSC (mobile switching center) plays a central role in GSM<br />

� switching functions<br />

� additional functions for mobility support<br />

� management of network resources<br />

� interworking functions via Gateway MSC (GMSC)<br />

� integration of several databases<br />

� Functions of a MSC<br />

� specific functions for paging and call forwarding<br />

� termination of SS7 (signaling system no. 7)<br />

� mobility specific signaling<br />

� location registration and forwarding of location information<br />

� provision of new services (fax, data calls)<br />

� support of short message service (SMS)<br />

� generation and forwarding of accounting and billing information<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

Jochen H. Schiller<br />

1999 4.11<br />

4.20.1<br />

4.21.1


University of Karlsruhe<br />

Institute of Telematics<br />

Operation subsystem<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 4: Wireless Telecommunication Systems<br />

The OSS (Operation Subsystem) enables centralized operation,<br />

management, and maintenance of all GSM subsystems<br />

� Components<br />

� Authentication Center (AUC)<br />

� generates user specific authentication parameters on request of a VLR<br />

� authentication parameters used for authentication of mobile terminals<br />

and encryption of user data on the air interface within the GSM system<br />

� Equipment Identity Register (EIR)<br />

� registers GSM mobile stations and user rights<br />

� stolen or malfunctioning mobile stations can be locked and sometimes<br />

even localized<br />

� Operation and Maintenance Center (OMC)<br />

� different control capabilities for the radio subsystem and the network<br />

subsystem<br />

GSM - TDMA/FDMA<br />

frequency<br />

GSM TDMA frame<br />

higher GSM frame structures<br />

1 2 3 4 5 6 7 8<br />

GSM time-slot (normal burst)<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

935-960 MHz<br />

124 channels (200 kHz)<br />

downlink<br />

890-915 MHz<br />

124 channels (200 kHz)<br />

uplink<br />

Jochen H. Schiller<br />

1999 4.12<br />

time<br />

4.615 ms<br />

guard<br />

space tail user data S Training S user data tail<br />

546.5 µs<br />

577 µs<br />

guard<br />

space<br />

3 bits 57 bits 1 26 bits 1 57 bits 3<br />

4.22.1<br />

4.23.1


University of Karlsruhe<br />

Institute of Telematics<br />

GSM hierarchy of frames<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 4: Wireless Telecommunication Systems<br />

hyperframe<br />

0 1 2 ... 2045 2046 2047<br />

superframe<br />

0 1 2 ... 48 49 50<br />

0 1 ...<br />

24 25<br />

multiframe<br />

0 1 ...<br />

24 25<br />

0 1 2 ... 48 49 50<br />

frame<br />

0 1 ...<br />

6 7<br />

slot<br />

burst<br />

GSM protocol layers for signaling<br />

CM<br />

MM<br />

RR<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

3 h 28 min 53.76 s<br />

120 ms<br />

235.4 ms<br />

4.615 ms<br />

Jochen H. Schiller<br />

1999 4.13<br />

6.12 s<br />

577 µs<br />

Um Abis A<br />

MS BTS BSC MSC<br />

LAPD m<br />

radio<br />

RR’ BTSM<br />

LAPD m<br />

radio<br />

LAPD<br />

PCM<br />

RR’<br />

BTSM<br />

16/64 kbit/s<br />

LAPD<br />

PCM<br />

BSSAP<br />

SS7<br />

PCM<br />

CM<br />

MM<br />

BSSAP<br />

SS7<br />

PCM<br />

64 kbit/s /<br />

2.048 Mbit/s<br />

4.24.1<br />

4.25.1


University of Karlsruhe<br />

Institute of Telematics<br />

<strong>Mobile</strong> Terminated Call<br />

1: calling a GSM subscriber<br />

2: forwarding call to GMSC<br />

3: signal call setup to HLR<br />

4, 5: request MSRN from VLR<br />

6: forward responsible<br />

MSC to GMSC<br />

7: forward call to<br />

current MSC<br />

8, 9: get current status of MS<br />

10, 11: paging of MS<br />

12, 13: MS answers<br />

14, 15: security checks<br />

16, 17: set up connection<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

<strong>Mobile</strong> Originated Call<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 4: Wireless Telecommunication Systems<br />

calling<br />

station<br />

1, 2: connection request<br />

3, 4: security check<br />

5-8: check resources (free circuit)<br />

9-10: set up call<br />

PSTN<br />

1 2<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

4<br />

HLR VLR<br />

5<br />

8 9<br />

3 6 14 15<br />

Jochen H. Schiller<br />

1999 4.14<br />

GMSC<br />

10<br />

7<br />

MSC<br />

10 13<br />

16<br />

BSS BSS BSS<br />

11 11 11<br />

6 5<br />

PSTN GMSC<br />

7 8<br />

MS<br />

11 12<br />

17<br />

1<br />

10<br />

MS<br />

4.26.1<br />

VLR<br />

3 4<br />

MSC<br />

2<br />

9<br />

BSS<br />

4.27.1<br />

10


University of Karlsruhe<br />

Institute of Telematics<br />

MTC/MOC<br />

MS<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 4: Wireless Telecommunication Systems<br />

MTC BTS MS MOC<br />

paging request<br />

channel request<br />

immediate assignment<br />

paging response<br />

authentication request<br />

authentication response<br />

ciphering command<br />

ciphering complete<br />

setup<br />

call confirmed<br />

assignment command<br />

assignment complete<br />

alerting<br />

connect<br />

connect acknowledge<br />

data/speech exchange<br />

4 types of handover<br />

1<br />

BTS<br />

channel request<br />

immediate assignment<br />

service request<br />

authentication request<br />

authentication response<br />

ciphering command<br />

ciphering complete<br />

Jochen H. Schiller<br />

1999 4.15<br />

setup<br />

call confirmed<br />

assignment command<br />

assignment complete<br />

alerting<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

connect<br />

connect acknowledge<br />

data/speech exchange<br />

2 3 4<br />

MS MS MS MS<br />

BTS BTS BTS<br />

BSC<br />

BSC BSC<br />

MSC MSC<br />

BTS<br />

4.28.1<br />

4.29.1


University of Karlsruhe<br />

Institute of Telematics<br />

Handover decision<br />

receive level<br />

BTS old<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 4: Wireless Telecommunication Systems<br />

HO_MARGIN<br />

MS MS<br />

BTS old<br />

Handover procedure<br />

MS<br />

measurement<br />

report<br />

HO command<br />

BTS old<br />

measurement<br />

result<br />

HO command<br />

clear command<br />

clear complete<br />

BSC old<br />

HO decision<br />

HO required<br />

HO command<br />

HO access<br />

Link establishment<br />

clear command<br />

clear complete<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

BTS new<br />

receive level<br />

BTS old<br />

Jochen H. Schiller<br />

1999 4.16<br />

MSC<br />

HO request<br />

BSC new<br />

resource allocation<br />

ch. activation<br />

4.30.1<br />

BTS new<br />

HO request ack<br />

ch. activation ack<br />

HO complete<br />

HO complete<br />

4.31.1


University of Karlsruhe<br />

Institute of Telematics<br />

Security in GSM<br />

Security services<br />

� access control/authentication<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 4: Wireless Telecommunication Systems<br />

� user → SIM (Subscriber Identity Module): secret PIN (personal<br />

identification number)<br />

� SIM → network: challenge response method<br />

� confidentiality<br />

� voice and signaling encrypted on the wireless link (after successful<br />

authentication)<br />

� anonymity<br />

� temporary identity TMSI<br />

(Temporary <strong>Mobile</strong> Subscriber Identity)<br />

� newly assigned at each new location update (LUP)<br />

� encrypted transmission<br />

3 algorithms specified in GSM<br />

� A3 for authentication (“secret”, open interface)<br />

� A5 for encryption (standardized)<br />

� A8 for key generation (“secret”, open interface)<br />

GSM - authentication<br />

AC<br />

MSC<br />

mobile network<br />

K i<br />

A3<br />

RAND<br />

128 bit 128 bit<br />

SRES* 32 bit<br />

RAND<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

RAND K i<br />

128 bit 128 bit<br />

“secret”:<br />

• A3 and A8<br />

available via the<br />

Internet<br />

• network providers<br />

can use stronger<br />

mechanisms<br />

Jochen H. Schiller<br />

1999 4.17<br />

SIM<br />

A3<br />

SRES 32 bit<br />

SRES<br />

SRES* =? SRES SRES<br />

32 bit<br />

K i : individual subscriber authentication key SRES: signed response<br />

4.32.1<br />

SIM<br />

4.33.1


University of Karlsruhe<br />

Institute of Telematics<br />

GSM - key generation and encryption<br />

AC<br />

cipher<br />

key<br />

BTS<br />

mobile network (BTS)<br />

K i<br />

A8<br />

RAND<br />

128 bit 128 bit<br />

K c<br />

64 bit<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

Data services in GSM I<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 4: Wireless Telecommunication Systems<br />

RAND<br />

MS with SIM<br />

RAND K i<br />

128 bit 128 bit<br />

Jochen H. Schiller<br />

1999 4.18<br />

K c<br />

64 bit<br />

A8<br />

data encrypted<br />

data<br />

SRES data<br />

A5<br />

A5<br />

Data transmission standardized with only 9.6 kbit/s<br />

� advanced coding allows 14,4 kbit/s<br />

� not enough for Internet and multimedia applications<br />

HSCSD (High-Speed Circuit Switched Data)<br />

� already standardized<br />

� bundling of several time-slots to get higher<br />

AIUR (Air Interface User Rate)<br />

(e.g., 57.6 kbit/s using 4 slots, 14.4 each)<br />

� advantage: ready to use, constant quality, simple<br />

� disadvantage: channels blocked for voice transmission<br />

AIUR [kbit/s] TCH/F4.8 TCH/F9.6 TCH/F14.4<br />

4.8 1<br />

9.6 2 1<br />

14.4 3 1<br />

19.2 4 2<br />

28.8 3 2<br />

38.4 4<br />

43.2 3<br />

57.6 4<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

SIM<br />

MS<br />

4.34.1<br />

4.35.1


University of Karlsruhe<br />

Institute of Telematics<br />

Data services in GSM II<br />

GPRS (General Packet Radio Service)<br />

� packet switching<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 4: Wireless Telecommunication Systems<br />

� using free slots only if data packets ready to send<br />

(e.g., 115 kbit/s using 8 slots temporarily)<br />

� standardization 1998, introduction 2000?<br />

� advantage: one step towards UMTS, more flexible<br />

� disadvantage: more investment needed<br />

GPRS network elements<br />

� GSN (GPRS Support Nodes): GGSN and SGSN<br />

� GGSN (Gateway GSN)<br />

� interworking unit between GPRS and PDN (Packet Data Network)<br />

� SGSN (Serving GSN)<br />

� supports the MS (location, billing, security)<br />

� GR (GPRS Register)<br />

� user addresses<br />

GPRS quality of service<br />

Reliability<br />

class<br />

Lost SDU<br />

probability<br />

1 10 -9<br />

2 10 -4<br />

3 10 -2<br />

Duplicate<br />

SDU<br />

probability<br />

10 -9<br />

10 -5<br />

10 -5<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

Out of<br />

sequence<br />

SDU<br />

probability<br />

Jochen H. Schiller<br />

1999 4.19<br />

10 -9<br />

10 -5<br />

10 -5<br />

4.36.1<br />

Corrupt SDU<br />

probability<br />

10 -9<br />

10 -6<br />

10 -2<br />

Delay SDU size 128 byte SDU size 1024 byte<br />

class mean 95 percentile mean 95 percentile<br />

1 < 0.5 s < 1.5 s < 2 s < 7 s<br />

2 < 5 s < 25 s < 15 s < 75 s<br />

3 < 50 s < 250 s < 75 s < 375 s<br />

4 unspecified<br />

4.37.1


University of Karlsruhe<br />

Institute of Telematics<br />

GPRS architecture and interfaces<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 4: Wireless Telecommunication Systems<br />

MS BSS SGSN<br />

GGSN<br />

U m<br />

VLR<br />

MSC<br />

SGSN<br />

G b G n G i<br />

EIR<br />

GPRS protocol architecture<br />

Jochen H. Schiller<br />

1999 4.20<br />

G n<br />

HLR/<br />

GR<br />

MS<br />

U BSS<br />

m G SGSN<br />

b G GGSN<br />

n<br />

apps.<br />

IP/X.25<br />

SNDCP<br />

LLC<br />

MAC<br />

radio<br />

MAC<br />

radio<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

FR<br />

SNDCP GTP<br />

LLC UDP/TCP<br />

IP/X.25<br />

GTP<br />

RLC BSSGP IP IP<br />

RLC BSSGP<br />

FR<br />

UDP/TCP<br />

L1/L2 L1/L2<br />

PDN<br />

4.38.1<br />

G i<br />

4.39.1


University of Karlsruhe<br />

Institute of Telematics<br />

DECT<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 4: Wireless Telecommunication Systems<br />

DECT (Digital European Cordless Telephone) standardized by<br />

ETSI (ETS 300.175-x) for cordless telephones<br />

� standard describes air interface between base-station and<br />

mobile phone<br />

� DECT has been renamed for international marketing reasons<br />

into „Digital Enhanced Cordless Telecommunication“<br />

� Characteristics<br />

� frequency: 1880-1990 MHz<br />

� channels: 120 full duplex<br />

� duplex mechanism: TDD (Time Division Duplex) with 10 ms frame<br />

length<br />

� multplexing scheme: FDMA with 10 carrier frequencies,<br />

TDMA with 2x 12 slots<br />

� modulation: digital, Gaußian Minimum Shift Key (GMSK)<br />

� power: 10 mW average (max. 250 mW)<br />

� range: ca 50 m in buildings, 300 m open space<br />

DECT system architecture reference model<br />

PA<br />

PA<br />

D 4<br />

PT<br />

PT<br />

D 3<br />

local<br />

network<br />

local<br />

network<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

FT<br />

FT<br />

D 2<br />

global<br />

network<br />

Jochen H. Schiller<br />

1999 4.21<br />

VDB<br />

D 1<br />

HDB<br />

4.40.1<br />

4.41.1


University of Karlsruhe<br />

Institute of Telematics<br />

DECT reference model<br />

C-Plane<br />

signaling,<br />

interworking<br />

network<br />

layer<br />

data link<br />

control<br />

management<br />

medium access control<br />

physical layer<br />

U-Plane<br />

data link<br />

control<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

DECT layers I<br />

� Physical layer<br />

application<br />

processes<br />

� modulation/demodulation<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 4: Wireless Telecommunication Systems<br />

OSI layer 3<br />

OSI layer 2<br />

OSI layer 1<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

� close to the OSI reference<br />

model<br />

� management plane over<br />

all layers<br />

� several services in<br />

C(ontrol)- and U(ser)plane<br />

� generation of the physical channel structure with a guaranteed<br />

throughput<br />

� controlling of radio transmission<br />

� channel assignment on request of the MAC layer<br />

� MAC layer<br />

� detection of incoming signals<br />

� sender/receiver synchronization<br />

� collecting status information for the management plane<br />

� maintaining basic services, activating/deactivating physical<br />

channels<br />

� multiplexing of logical channels<br />

� e.g., C: signaling, I: user data, P: paging, Q: broadcast<br />

� segmentation/reassembly<br />

� error control/error correction<br />

Jochen H. Schiller<br />

1999 4.22<br />

4.42.1<br />

4.43.1


University of Karlsruhe<br />

Institute of Telematics<br />

DECT time multiplex frame<br />

A: network control<br />

B: user data<br />

X: transmission quality<br />

25.6 kbit/s<br />

simplex bearer<br />

32 kbit/s<br />

slot guard<br />

0 419<br />

sync D field<br />

0 31 0 387<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

DECT layers II<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 4: Wireless Telecommunication Systems<br />

1 frame = 10 ms<br />

12 down slots 12 up slots<br />

A field B field X field<br />

0 63 0 3190<br />

3<br />

protected<br />

mode<br />

unprotected<br />

mode<br />

� Data link control layer<br />

DATA<br />

64<br />

420 bit + 52 µs guard time („60 bit“)<br />

in 0.4167 ms<br />

Jochen H. Schiller<br />

1999 4.23<br />

C<br />

16<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

DATA<br />

64<br />

C<br />

16<br />

DATA<br />

DATA<br />

64<br />

C<br />

16<br />

DATA<br />

64<br />

4.44.2<br />

� creation and keeping up reliable connections between the mobile<br />

terminal and basestation<br />

� two DLC protocols for the control plane (C-Plane)<br />

� connectionless broadcast service:<br />

paging functionality<br />

� Lc+LAPC protocol:<br />

in-call signaling (similar to LAPD within ISDN), adapted to the<br />

underlying MAC service<br />

� several services specified for the user plane (U-Plane)<br />

� null-service: offers unmodified MAC services<br />

� frame relay: simple packet transmission<br />

� frame switching: time-bounded packet transmission<br />

� error correcting transmission: uses FEC, for delay critical, timebounded<br />

services<br />

� bandwidth adaptive transmission<br />

� „Escape“ service: for further enhancements of the standard<br />

4.45.1<br />

C<br />

16


University of Karlsruhe<br />

Institute of Telematics<br />

DECT layers III<br />

� Network layer<br />

� similar to ISDN (Q.931) and GSM (04.08)<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 4: Wireless Telecommunication Systems<br />

� offers services to request, check, reserve, control, and release<br />

resources at the basestation and mobile terminal<br />

� resources<br />

� necessary for a wireless connection<br />

� necessary for the connection of the DECT system to the fixed network<br />

� main tasks<br />

� call control: setup, release, negotiation, control<br />

� call independent services: call forwarding, accounting, call redirecting<br />

� mobility management: identity management, authentication,<br />

management of the location register<br />

Enhancements of the standard<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

Jochen H. Schiller<br />

1999 4.24<br />

4.46.2<br />

Several „DECT Application Profiles“ in addition to the DECT<br />

specification<br />

� GAP (Generic Access Profile) standardized by ETSI in 1997<br />

� assures interoperability between DECT equipment of different<br />

manufacturers (minimal requirements for voice communication)<br />

� enhanced management capabilities through the fixed network: Cordless<br />

Terminal Mobility (CTM)<br />

fixed network<br />

DECT<br />

basestation<br />

DECT<br />

Common<br />

Air Interface<br />

GAP<br />

� DECT/GSM Interworking Profile (GIP): connection to GSM<br />

� ISDN Interworking Profiles (IAP, IIP): connection to ISDN<br />

� Radio Local Loop Access Profile (RAP): public telephone service<br />

� CTM Access Profile (CAP): support for user mobility<br />

DECT<br />

Portable Part<br />

4.47.1


University of Karlsruhe<br />

Institute of Telematics<br />

TETRA - Terrestrial Trunked Radio<br />

Trunked radio systems<br />

� many different radio carriers<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 4: Wireless Telecommunication Systems<br />

� assign single carrier for a short period to one user/group of users<br />

� taxi service, fleet management, rescue teams<br />

� interfaces to public networks, voice and data services<br />

� very reliable, fast call setup, local operation<br />

TETRA - ETSI standard<br />

� formerly: Trans European Trunked Radio<br />

� offers Voice+Data and Packet Data Optimized service<br />

� point-to-point and point-to-multipoint<br />

� ad-hoc and infrastructure networks<br />

� several frequencies: 380-400 MHz, 410-430 MHz<br />

� FDD, DQPSK<br />

� group call, broadcast, sub-second group-call setup<br />

TDMA structure of the voice+data system<br />

hyperframe<br />

0 1 2 ... 57 58 59<br />

0 1 2 ... 15 16 17<br />

frame<br />

multiframe<br />

0 1 2 3<br />

0 slot 509<br />

56.67 ms<br />

14.17 ms<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

Jochen H. Schiller<br />

1999 4.25<br />

CF<br />

61.2 s<br />

1.02 s<br />

4.48.1<br />

Control Frame<br />

4.49.1


University of Karlsruhe<br />

Institute of Telematics<br />

UMTS and IMT-2000<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 4: Wireless Telecommunication Systems<br />

Proposals for IMT-2000 (International <strong>Mobile</strong> Telecommunications)<br />

� UWC-136, cdma2000, WP-CDMA<br />

� UMTS (Universal <strong>Mobile</strong> Telecommunications System) from ETSI<br />

UMTS<br />

� UTRA (UMTS Terrestrial Radio Access)<br />

� enhancements of GSM<br />

� EDGE (Enhanced Data rates for GSM Evolution): GSM up to 384 kbit/s<br />

� CAMEL (Customized Application for <strong>Mobile</strong> Enhanced Logic)<br />

� VHE (virtual Home Environment)<br />

� fits into GMM (Global Multimedia Mobility) initiative from ETSI<br />

� requirements<br />

� min. 144 kbit/s rural (goal: 384 kbit/s)<br />

� min. 384 kbit/s suburban (goal: 512 kbit/s)<br />

� up to 2 Mbit/s city<br />

UMTS architecture<br />

UTRAN (UTRA Network)<br />

� cell level mobility<br />

� Radio Network Subsystem (RNS)<br />

UE (User Equipment)<br />

CN (Core Network)<br />

� inter system handover<br />

UE UTRAN CN<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

U u<br />

Jochen H. Schiller<br />

1999 4.26<br />

I u<br />

4.50.1<br />

4.51.1


University of Karlsruhe<br />

Institute of Telematics<br />

720 ms<br />

10 ms<br />

625 µs<br />

625 µs<br />

625 µs<br />

UMTS FDD frame structure<br />

superframe<br />

0 1 2 ... 69 70 71<br />

frame<br />

0 1 2 ... 13 14 15<br />

pilot<br />

slot<br />

pilot TPC TFI<br />

data<br />

TPC TFI data<br />

DPCCH DPDCH<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

UMTS TDD frame structure<br />

10 ms<br />

625 µs<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 4: Wireless Telecommunication Systems<br />

uplink DPCCH<br />

uplink DPDCH<br />

downlink DPCH<br />

0 1 2 ... 13 14 15<br />

slot<br />

frame<br />

data midample data<br />

GP: Guard Period<br />

GP<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

W-CDMA<br />

• 1920-1980 MHz uplink<br />

• 2110-2170 MHz downlink<br />

• chipping rate:<br />

4.096 Mchip/s<br />

• soft handover<br />

• localization of<br />

MS (ca. 20 m precision)<br />

• complex power control<br />

(1600 power control<br />

cycles/s)<br />

TPC: Transmit Power Control<br />

TFI: Transport Format Identifier<br />

DPCCH: Dedicated Physical Control Channel<br />

DPDCH: Dedicated Physical Data Channel<br />

DPCH: Dedicated Physical Channel<br />

traffic burst<br />

Jochen H. Schiller<br />

1999 4.27<br />

4.52.1<br />

W-TDMA/CDMA<br />

• 2560 chips per slot<br />

• symmetric or asymmetric<br />

slot assignment to up/downlink<br />

• tight synchronization needed<br />

• simpler power control<br />

(100-800 power control<br />

cycles/s)<br />

4.53.1


University of Karlsruhe<br />

Institute of Telematics<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless Telecommunication Systems<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 4: Wireless Telecommunication Systems<br />

Future mobile telecommunication networks<br />

terminal<br />

mobility<br />

fast<br />

mobile<br />

slow<br />

portable<br />

fixed<br />

UMTS<br />

GSM DECT<br />

SAMBA<br />

WAND MEDIAN<br />

MBS<br />

(<strong>Mobile</strong> Broadband System)<br />

ISDN B-ISDN<br />

10 kbit/s 2 Mbit/s 20 Mbit/s 30 Mbit/s 150 Mbit/s<br />

Jochen H. Schiller<br />

1999 4.28<br />

4.54.1


University of Karlsruhe<br />

Institute of Telematics<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 5: Satellite Systems<br />

� History<br />

� Basics<br />

� Localization<br />

� Handover<br />

� Routing<br />

� Systems<br />

History of satellite communication<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 5: Satellite Systems<br />

Jochen H. Schiller<br />

1999 5.1<br />

5.0.1<br />

1945 Arthur C. Clarke publishes an essay about „Extra<br />

Terrestrial Relays“<br />

1957 first satellite SPUTNIK<br />

1960 first reflecting communication satellite ECHO<br />

1963 first geostationary satellite SYNCOM<br />

1965 first commercial geostationary satellite Satellit „Early Bird“<br />

(INTELSAT I): 240 duplex telephone channels or 1 TV<br />

channel, 1.5 years lifetime<br />

1976 three MARISAT satellites for maritime communication<br />

1982 first mobile satellite telephone system INMARSAT-A<br />

1988 first satellite system for mobile phones and data<br />

communication INMARSAT-C<br />

1993 first digital satellite telephone system<br />

1998 global satellite systems for small mobile phones<br />

<strong>Mobile</strong> <strong>Communications</strong>: Satellite Systems 5.1.1


University of Karlsruhe<br />

Institute of Telematics<br />

Applications<br />

� Traditionally<br />

� weather satellites<br />

� radio and TV broadcast satellites<br />

� military satellites<br />

� satellites for navigation and localization (e.g., GPS)<br />

� Telecommunication<br />

� global telephone connections<br />

� backbone for global networks<br />

� connections for communication in remote places or<br />

underdeveloped areas<br />

� global mobile communication<br />

� satellite systems to extend cellular phone systems (e.g., GSM or<br />

AMPS)<br />

<strong>Mobile</strong> <strong>Communications</strong>: Satellite Systems<br />

footprint<br />

Typical satellite systems<br />

Inter Satellite Link<br />

(ISL)<br />

<strong>Mobile</strong> User<br />

Link (MUL) Gateway Link<br />

(GWL)<br />

PSTN: Public Switched<br />

Telephone Network<br />

small cells<br />

(spotbeams)<br />

<strong>Mobile</strong> <strong>Communications</strong>: Satellite Systems<br />

base station<br />

or gateway<br />

replaced by fiber optics<br />

ISDN PSTN<br />

GSM<br />

User data<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 5: Satellite Systems<br />

Jochen H. Schiller<br />

1999 5.2<br />

GWL<br />

MUL<br />

5.2.1<br />

5.3.1


University of Karlsruhe<br />

Institute of Telematics<br />

Basics<br />

Satellites in circular orbits<br />

� attractive force F g = m g (R/r)²<br />

� centrifugal force F c = m r ω²<br />

� m: mass of the satellite<br />

� R: radius of the earth (R = 6370 km)<br />

� r: distance to the center of the earth<br />

� g: acceleration of gravity (g = 9.81 m/s²)<br />

� ω: angular velocity (ω = 2 π f, f: rotation frequency)<br />

Stable orbit<br />

� F g = F c<br />

r<br />

<strong>Mobile</strong> <strong>Communications</strong>: Satellite Systems<br />

=<br />

Satellite period and orbits<br />

24<br />

20<br />

16<br />

12<br />

8<br />

4<br />

<strong>Mobile</strong> <strong>Communications</strong>: Satellite Systems<br />

3<br />

( 2π<br />

f<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 5: Satellite Systems<br />

Jochen H. Schiller<br />

1999 5.3<br />

gR<br />

2<br />

)<br />

velocity [ x1000 km/h]<br />

2<br />

synchronous distance<br />

35,786 km<br />

5.4.1<br />

satellite<br />

period [h]<br />

10 20 30 40 x106 m<br />

radius<br />

5.5.1


University of Karlsruhe<br />

Institute of Telematics<br />

Basics<br />

� elliptical or circular orbits<br />

� complete rotation time depends on distance satellite-earth<br />

� inclination: angle between orbit and equator<br />

� elevation: angle between satellite and horizon<br />

� LOS (Line of Sight) to the satellite necessary for connection<br />

� high elevation needed, less absorption due to e.g. buildings<br />

� Uplink: connection base station - satellite<br />

� Downlink: connection satellite - base station<br />

� typically separated frequencies for uplink and downlink<br />

� transponder used for sending/receiving and shifting of frequencies<br />

� transparent transponder: only shift of frequencies<br />

� regenerative transponder: additionally signal regeneration<br />

<strong>Mobile</strong> <strong>Communications</strong>: Satellite Systems<br />

Inclination<br />

perigee<br />

satellite orbit<br />

<strong>Mobile</strong> <strong>Communications</strong>: Satellite Systems<br />

plane of satellite orbit<br />

equatorial plane<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 5: Satellite Systems<br />

Jochen H. Schiller<br />

1999 5.4<br />

δ<br />

5.6.1<br />

inclination δ<br />

5.7.1


University of Karlsruhe<br />

Institute of Telematics<br />

Elevation<br />

minimal elevation:<br />

elevation needed at least<br />

to communicate with the satellite<br />

<strong>Mobile</strong> <strong>Communications</strong>: Satellite Systems<br />

Link budget of satellites<br />

<strong>Mobile</strong> <strong>Communications</strong>: Satellite Systems<br />

Elevation:<br />

angle ε between center of satellite beam<br />

and surface<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 5: Satellite Systems<br />

Jochen H. Schiller<br />

1999 5.5<br />

ε<br />

footprint<br />

5.8.1<br />

Parameters like attenuation or received power determined by four<br />

parameters:<br />

� sending power<br />

� gain of sending antenna<br />

� distance between sender<br />

and receiver<br />

� gain of receiving antenna<br />

Problems<br />

� varying strength of received signal due to multipath propagation<br />

� interruptions due to shadowing of signal (no LOS)<br />

Possible solutions<br />

L: Loss<br />

f: carrier frequency<br />

r: distance<br />

c: speed of light<br />

⎛ 4πr<br />

f<br />

L = ⎜<br />

⎝ c<br />

� Link Margin to eliminate variations in signal strength<br />

� satellite diversity (usage of several visible satellites at the same<br />

time) helps to use less sending power<br />

2<br />

⎞<br />

⎟<br />

⎠<br />

5.9.1


University of Karlsruhe<br />

Institute of Telematics<br />

Atmospheric attenuation<br />

ε<br />

<strong>Mobile</strong> <strong>Communications</strong>: Satellite Systems<br />

Orbits I<br />

Attenuation of<br />

the signal in %<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Example: satellite systems at 4-6 GHz<br />

rain absorption<br />

atmospheric<br />

absorption<br />

5° 10° 20° 30° 40° 50°<br />

elevation of the satellite<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 5: Satellite Systems<br />

fog absorption<br />

Four different types of satellite orbits can be identified depending<br />

on the shape and diameter of the orbit:<br />

� GEO: geostationary orbit, ca. 36000 km above earth surface<br />

� LEO (Low Earth Orbit): ca. 500 - 1500 km<br />

<strong>Mobile</strong> <strong>Communications</strong>: Satellite Systems<br />

Jochen H. Schiller<br />

1999 5.6<br />

5.10.1<br />

� MEO (Medium Earth Orbit) or ICO (Intermediate Circular Orbit):<br />

ca. 6000 - 20000 km<br />

� HEO (Highly Elliptical Orbit) elliptical orbits<br />

5.11.1


University of Karlsruhe<br />

Institute of Telematics<br />

Orbits II<br />

Van-Allen-Belts:<br />

ionized particels<br />

2000 - 6000 km and<br />

15000 - 30000 km<br />

above earth surface<br />

<strong>Mobile</strong> <strong>Communications</strong>: Satellite Systems<br />

HEO<br />

LEO<br />

(Globalstar,<br />

Irdium)<br />

Geostationary satellites<br />

<strong>Mobile</strong> <strong>Communications</strong>: Satellite Systems<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 5: Satellite Systems<br />

Jochen H. Schiller<br />

1999 5.7<br />

earth<br />

1000<br />

10000<br />

35768<br />

km<br />

GEO (Inmarsat)<br />

MEO (ICO)<br />

inner and outer Van<br />

Allen belts<br />

5.12.1<br />

Orbit 35.786 km distance to earth surface, orbit in equatorial plane<br />

(inclination 0°)<br />

� complete rotation exactly one day, satellite is synchronous to<br />

earth rotation<br />

� fix antenna positions, no adjusting necessary<br />

� satellites typically have a large footprint (up to 34% of earth<br />

surface!), therefore difficult to reuse frequencies<br />

� bad elevations in areas with latitude above 60° due to fixed<br />

position above the equator<br />

� high transmit power needed<br />

� high latency due to long distance (ca. 275 ms)<br />

� not useful for global coverage for small mobile phones and data<br />

transmission, typically used for radio and TV transmission<br />

5.13.1


University of Karlsruhe<br />

Institute of Telematics<br />

LEO systems<br />

Orbit ca. 500 - 1500 km above earth surface<br />

� visibility of a satellite ca. 10 - 40 minutes<br />

� global radio coverage possible<br />

� latency comparable with terrestrial long distance connections,<br />

ca. 5 - 10 ms<br />

� smaller footprints, better frequency reuse<br />

� but now handover necessary from one satellite to another<br />

� many satellites necessary for global coverage<br />

� more complex systems due to moving satellites<br />

Examples:<br />

Iridium (start 1998, 66 satellites)<br />

Globalstar (start 1999, 48 satellites)<br />

<strong>Mobile</strong> <strong>Communications</strong>: Satellite Systems<br />

MEO systems<br />

Orbit ca. 5000 - 12000 km above earth surface<br />

comparison with LEO systems:<br />

� slower moving satellites<br />

� less satellites needed<br />

� simpler system design<br />

� for many connections no hand-over needed<br />

� higher latency, ca. 70 - 80 ms<br />

� higher sending power needed<br />

� special antennas for small footprints needed<br />

Example:<br />

ICO (Intermediate Circular Orbit, Inmarsat) start ca. 2000<br />

<strong>Mobile</strong> <strong>Communications</strong>: Satellite Systems<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 5: Satellite Systems<br />

Jochen H. Schiller<br />

1999 5.8<br />

5.14.1<br />

5.15.1


University of Karlsruhe<br />

Institute of Telematics<br />

Routing<br />

One solution: inter satellite links (ISL)<br />

� reduced number of gateways needed<br />

� forward connections or data packets within the satellite network<br />

as long as possible<br />

� only one uplink and one downlink per direction needed for the<br />

connection of two mobile phones<br />

Problems:<br />

� more complex focussing of antennas between satellites<br />

� high system complexity due to moving routers<br />

� higher fuel consumption<br />

� thus shorter lifetime<br />

Iridium and Teledesic planned with ISL<br />

Other systems use gateways and additionally terrestrial networks<br />

<strong>Mobile</strong> <strong>Communications</strong>: Satellite Systems<br />

Localization of mobile stations<br />

Mechanisms similar to GSM<br />

Gateways maintain registers with user data<br />

� HLR (Home Location Register): static user data<br />

<strong>Mobile</strong> <strong>Communications</strong>: Satellite Systems<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 5: Satellite Systems<br />

Jochen H. Schiller<br />

1999 5.9<br />

5.16.1<br />

� VLR (Visitor Location Register): (last known) location of the mobile<br />

station<br />

� SUMR (Satellite User Mapping Register):<br />

� satellite assigned to a mobile station<br />

� positions of all satellites<br />

Registration of mobile stations<br />

� Localization of the mobile station via the satellite’s position<br />

� requesting user data from HLR<br />

� updating VLR and SUMR<br />

Calling a mobile station<br />

� localization using HLR/VLR similar to GSM<br />

� connection setup using the appropriate satellite<br />

5.17.1


University of Karlsruhe<br />

Institute of Telematics<br />

Handover in satellite systems<br />

Several additional situations for handover in satellite systems<br />

compared to cellular terrestrial mobile phone networks caused<br />

by the movement of the satellites<br />

� Intra satellite handover<br />

� handover from one spot beam to another<br />

� mobile station still in the footprint of the satellite, but in another cell<br />

� Inter satellite handover<br />

� handover from one satellite to another satellite<br />

� mobile station leaves the footprint of one satellite<br />

� Gateway handover<br />

� Handover from one gateway to another<br />

� mobile station still in the footprint of a satellite, but gateway leaves the<br />

footprint<br />

� Inter system handover<br />

� Handover from the satellite network to a terrestrial cellular network<br />

� mobile station can reach a terrestrial network again which might be<br />

cheaper, has a lower latency etc.<br />

<strong>Mobile</strong> <strong>Communications</strong>: Satellite Systems<br />

Overview of LEO/MEO systems<br />

<strong>Mobile</strong> <strong>Communications</strong>: Satellite Systems<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 5: Satellite Systems<br />

Jochen H. Schiller<br />

1999 5.10<br />

5.18.1<br />

Iridium Globalstar ICO Teledesic<br />

# satellites 66 + 6 48 + 4 10 + 2 288<br />

altitude<br />

(km)<br />

780 1414 10390 ca. 700<br />

coverage global ±70° latitude global global<br />

min.<br />

elevation<br />

8° 20° 20° 40°<br />

frequencies 1.6 MS 1.6 MS ↑ 2 MS ↑ 19 ↓<br />

[GHz 29.2 ↑ 2.5 MS ↓ 2.2 MS ↓ 28.8 ↑<br />

(circa)] 19.5 ↓ 5.1 ↑<br />

5.2 ↑<br />

62 ISL<br />

23.3 ISL 6.9 ↓<br />

7 ↓<br />

access<br />

method<br />

FDMA/TDMA CDMA FDMA/TDMA FDMA/TDMA<br />

ISL yes no no yes<br />

bit rate 2.4 kbit/s 9.6 kbit/s 4.8 kbit/s 64 Mbit/s ↓<br />

2/64 Mbit/s ↑<br />

# channels 4000 2700 4500 2500<br />

Lifetime<br />

[years]<br />

5-8 7.5 12 10<br />

cost<br />

estimation<br />

4.4 B$ 2.9 B$ 4.5 B$ 9 B$<br />

5.19.1


University of Karlsruhe<br />

Institute of Telematics<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 6: Broadcast Systems<br />

<strong>Mobile</strong> <strong>Communications</strong>: Broadcast Systems<br />

� Unidirectional distribution systems<br />

� DAB<br />

� DVB<br />

� architecture<br />

� Container<br />

� High-speed Internet<br />

Unidirectional distribution systems<br />

Asymmetric communication environments<br />

� bandwidth limitations of the transmission medium<br />

� depends on applications, type of information<br />

� examples<br />

� wireless networks with basestation and mobile terminals<br />

� client-server environments (diskless terminal)<br />

� cable TV with set-top box<br />

� information services (pager, SMS)<br />

Special case: unidirectional distribution systems<br />

� high bandwidth from server to client (downstream), but no<br />

bandwidth viceversa (upstream)<br />

� problems of unidirectional broadcast systems<br />

<strong>Mobile</strong> <strong>Communications</strong>: Broadcast Systems<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 6: Broadcast Systems<br />

Jochen H. Schiller<br />

1999 6.1<br />

6.0.1<br />

� a sender can optimize transmitted information only for one group of<br />

users/terminals<br />

� functions needed to individualize personal requirements/applications<br />

6.1.1


University of Karlsruhe<br />

Institute of Telematics<br />

Unidirectional distribution<br />

service provider service user<br />

sender<br />

A B<br />

optimized for expected<br />

access pattern<br />

of all users<br />

<strong>Mobile</strong> <strong>Communications</strong>: Broadcast Systems<br />

unidirectional<br />

distribution<br />

medium<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 6: Broadcast Systems<br />

receiver<br />

receiver<br />

receiver<br />

Jochen H. Schiller<br />

1999 6.2<br />

A<br />

A<br />

A<br />

B<br />

B<br />

B<br />

A<br />

A<br />

A<br />

individual access<br />

pattern of one user<br />

Structuring transmissions - broadcast disks<br />

Sender<br />

<strong>Mobile</strong> <strong>Communications</strong>: Broadcast Systems<br />

≠<br />

� cyclic repetition of data blocks<br />

.<br />

.<br />

.<br />

6.2.1<br />

� different patterns possible (optimization possible only if the content<br />

is known)<br />

Receiver<br />

flat disk<br />

skewed disk<br />

multi-disk<br />

� use of caching<br />

A B C A B C<br />

A A B C A A<br />

A B A C A B<br />

� cost-based strategy: what are the costs for a user (waiting time) if a<br />

data block has been requested but is currently not cached<br />

� application and cache have to know content of data blocks<br />

and access patterns of user to optimize<br />

6.3.1


University of Karlsruhe<br />

Institute of Telematics<br />

DAB: Digital Audio Broadcasting<br />

� Media access<br />

� COFDM (Coded Orthogonal Frequency Division Multiplex)<br />

� SFN (Single Frequency Network)<br />

� 192 to 1536 subcarriers within a 1.5 MHz frequency band<br />

� Frequencies<br />

� first phase: one out of 32 frequency blocks for terrestrial TV<br />

channels 5 to 12 (174 - 230 MHz, 5A - 12D)<br />

� second phase: one out of 9 frequency blocks in the L-band<br />

(1452- 1467.5 MHz, LA - LI)<br />

� Sending power: 6.1 kW (VHF, Ø 120 km) or<br />

4 kW (L-band, Ø 30 km)<br />

� Date-rates: 2.304 Mbit/s (net 1.2 to 1.536 Mbit/s)<br />

� Modulation: Differential 4-phase modulation (D-QPSK)<br />

� Audio channels per frequency block: typ. 6, max. 192 kbit/s<br />

� Digital services: 0.6 - 16 kbit/s (PAD), 24 kbit/s (NPAD)<br />

<strong>Mobile</strong> <strong>Communications</strong>: Broadcast Systems<br />

DAB transport mechanisms<br />

MSC (Main Service Channel)<br />

� carries all user data (audio, multimedia, ...)<br />

� consists of CIF (Common Interleaved Frames)<br />

<strong>Mobile</strong> <strong>Communications</strong>: Broadcast Systems<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 6: Broadcast Systems<br />

Jochen H. Schiller<br />

1999 6.3<br />

6.4.1<br />

� each CIF 55296 bit, every 24 ms (depends on transmission mode)<br />

� CIF contains CU (Capacity Units), 64 bit each<br />

FIC (Fast Information Channel)<br />

� carries control information<br />

� consists of FIB (Fast Information Block)<br />

� each FIB 256 bit (incl. 16 bit checksum)<br />

� defines configuration and content of MSC<br />

Stream mode<br />

� transparent data transmission with a fixed bit rate<br />

Packet mode<br />

� transfer addressable packets<br />

6.5.1


University of Karlsruhe<br />

Institute of Telematics<br />

SC<br />

Transmission frame<br />

null<br />

symbol<br />

phase<br />

reference<br />

symbol<br />

synchronization<br />

channel<br />

symbol T u<br />

data<br />

symbol<br />

<strong>Mobile</strong> <strong>Communications</strong>: Broadcast Systems<br />

frame duration T F<br />

guard interval T d<br />

FICfast<br />

information<br />

FIC channel<br />

main service<br />

channel<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 6: Broadcast Systems<br />

L 0 1 2 . . . . . . L-1 L 0 1<br />

Audio<br />

Services<br />

Data<br />

Services<br />

DAB sender<br />

Audio<br />

Encoder<br />

Packet<br />

Mux<br />

Service<br />

Information FIC<br />

Multiplex<br />

Information<br />

Channel<br />

Coder<br />

Channel<br />

Coder<br />

MSC<br />

Multiplexer<br />

<strong>Mobile</strong> <strong>Communications</strong>: Broadcast Systems<br />

TransmissionMultiplexer<br />

Jochen H. Schiller<br />

1999 6.4<br />

MSC<br />

data<br />

symbol<br />

ODFM<br />

Transmitter<br />

data<br />

symbol<br />

6.6.1<br />

DAB Signal<br />

Radio Frequency<br />

FIC: Fast Information Channel<br />

MSC: Main Service Channel<br />

OFDM: Orthogonal Frequency Division Multiplexing<br />

6.7.1


University of Karlsruhe<br />

Institute of Telematics<br />

DAB receiver<br />

Tuner<br />

Control Bus<br />

<strong>Mobile</strong> <strong>Communications</strong>: Broadcast Systems<br />

Audio coding<br />

� Goal<br />

ODFM<br />

Demodulator<br />

FIC<br />

Controller<br />

(partial)<br />

MSC<br />

Channel<br />

Decoder<br />

User Interface<br />

� audio transmission almost with CD quality<br />

� robust against multipath propagation<br />

Audio<br />

Decoder<br />

Packet<br />

Demux<br />

� minimal distortion of audio signals during signal fading<br />

� Mechanisms<br />

� fully digital audio signals (PCM, 16 Bit, 48 kHz, stereo)<br />

� MPEG compression of audio signals, compression ratio 1:10<br />

� redundancy bits for error detection and correction<br />

<strong>Mobile</strong> <strong>Communications</strong>: Broadcast Systems<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 6: Broadcast Systems<br />

Audio<br />

Service<br />

Independent<br />

Data<br />

Service<br />

Jochen H. Schiller<br />

1999 6.5<br />

6.8.1<br />

� burst errors typical for radio transmissions, therefore signal<br />

interleaving - receivers can now correct single bit errors resulting<br />

from interference<br />

� low symbol-rate, many symbols<br />

� transmission of digital data using long symbol sequences, separated by<br />

guard spaces<br />

� delayed symbols, e.g., reflection, still remain within the guard space<br />

6.9.1


University of Karlsruhe<br />

Institute of Telematics<br />

Bit rate management<br />

� a DAB ensemble combines audio programs and data services<br />

with different requirements for transmission quality and bit rates<br />

� the standard allows dynamic reconfiguration of the DAB<br />

multiplexing scheme (i.e., during transmission)<br />

� data rates can be variable, DAB can use free capacities for other<br />

services<br />

� the multiplexer performs this kind of bit rate management,<br />

therefore, additional services can come from different providers<br />

<strong>Mobile</strong> <strong>Communications</strong>: Broadcast Systems<br />

Example of a reconfiguration<br />

DAB - Multiplex<br />

Audio 1<br />

192 kbit/s<br />

PAD<br />

Audio 2<br />

192 kbit/s<br />

PAD<br />

Audio 3<br />

192 kbit/s<br />

PAD<br />

D1 D2 D3 D4 D5 D6 D7 D8 D9<br />

DAB - Multiplex - reconfigured<br />

Audio 1<br />

192 kbit/s<br />

PAD<br />

Audio 2<br />

192 kbit/s<br />

PAD<br />

Audio 3<br />

128 kbit/s<br />

PAD<br />

D10 D11<br />

<strong>Mobile</strong> <strong>Communications</strong>: Broadcast Systems<br />

Audio 4<br />

160 kbit/s<br />

PAD<br />

Audio 4<br />

160 kbit/s<br />

PAD<br />

Audio 5<br />

160 kbit/s<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 6: Broadcast Systems<br />

Jochen H. Schiller<br />

1999 6.6<br />

PAD<br />

Audio 5<br />

160 kbit/s<br />

PAD<br />

Audio 6<br />

128 kbit/s<br />

PAD<br />

Audio 7<br />

96 kbit/s<br />

PAD<br />

Audio 8<br />

96 kbit/s<br />

PAD<br />

D1 D2 D3 D4 D5 D6 D7 D8 D9<br />

6.10.1<br />

6.11.1


University of Karlsruhe<br />

Institute of Telematics<br />

Multimedia Object Transfer Protocol (MOT)<br />

Problem<br />

� broad range of receiver capabilities<br />

audio-only devices with single/multiple line text display, additional<br />

color graphic display, PC adapters etc.<br />

� different types of receivers should at least be able to recognize all<br />

kinds of program associated and program independent data and<br />

process some of it<br />

Solution<br />

� common standard for data transmission: MOT<br />

� important for MOT is the support of data formats used in other<br />

multimedia systems (e.g., online services, Internet, CD-ROM)<br />

� DAB can therefore transmit HTML documents from the WWW with<br />

very little additional effort<br />

<strong>Mobile</strong> <strong>Communications</strong>: Broadcast Systems<br />

MOT structure<br />

MOT formats<br />

<strong>Mobile</strong> <strong>Communications</strong>: Broadcast Systems<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 6: Broadcast Systems<br />

Jochen H. Schiller<br />

1999 6.7<br />

6.12.1<br />

� MHEG, Java, JPEG, ASCII, MPEG, HTML, HTTP, BMP, GIF, ...<br />

Header core<br />

� size of header and body, content type<br />

Header extension<br />

Body<br />

� handling information, e.g., repetition distance, segmentation,<br />

priority<br />

� information supports caching mechanisms<br />

� arbitrary data<br />

7 byte<br />

header<br />

core<br />

header<br />

extension<br />

DAB allows for many repetition schemes<br />

� objects, segments, headers<br />

body<br />

6.13.1


University of Karlsruhe<br />

Institute of Telematics<br />

Digital Video Broadcasting<br />

� 1991 foundation of the ELG (European Launching Group)<br />

goal: development of digital television in Europe<br />

� 1993 renaming into DVB (Digital Video Broadcasting)<br />

goal: introduction of digital television based on<br />

� satellite transmission<br />

Terrestrial<br />

Receiver<br />

� cable network technology<br />

� later also terrestrial transmission<br />

Satellites DVB<br />

Multipoint<br />

Distribution<br />

System<br />

Cable<br />

<strong>Mobile</strong> <strong>Communications</strong>: Broadcast Systems<br />

DVB Container<br />

Integrated<br />

Receiver-Decoder<br />

B-ISDN, ADSL,etc. DVD, etc. DVTR, etc.<br />

DVB transmits MPEG-2 container<br />

MPEG-2/DVB<br />

container<br />

HDTV<br />

Digital Video<br />

Broadcasting<br />

� high flexibility for the transmission of digital data<br />

� no restrictions regarding the type of information<br />

<strong>Mobile</strong> <strong>Communications</strong>: Broadcast Systems<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 6: Broadcast Systems<br />

SDTV<br />

EDTV<br />

HDTV<br />

Multimedia PC<br />

Jochen H. Schiller<br />

1999 6.8<br />

6.14.1<br />

� DVB Service Information specifies the content of a container<br />

� NIT (Network Information Table): lists the services of a provider,<br />

contains additional information for set-top boxes<br />

� SDT (Service Description Table): list of names and parameters for each<br />

service within a MPEG multiplex channel<br />

� EIT (Event Information Table): status information about the current<br />

transmission, additional information for set-top boxes<br />

� TDT (Time and Date Table): Update information for set-top boxes<br />

single channel<br />

high definition television<br />

MPEG-2/DVB<br />

container<br />

EDTV<br />

multiple channels<br />

enhanced definition<br />

MPEG-2/DVB<br />

container<br />

SDTV<br />

multiple channels<br />

standard definition<br />

MPEG-2/DVB<br />

container<br />

multimedia<br />

data broadcasting<br />

6.15.1


University of Karlsruhe<br />

Institute of Telematics<br />

Example: high-speed Internet<br />

Asymmetric data exchange<br />

satellite receiver<br />

� downlink: DVB receiver, data rate per user 6-38 Mbit/s<br />

� return channel from user to service provider: e.g., modem with 33<br />

kbit/s, ISDN with 64 kbit/s, ADSL with several 100 kbit/s etc.<br />

DVB adapter<br />

service<br />

provider<br />

PC<br />

TCP/IP<br />

<strong>Mobile</strong> <strong>Communications</strong>: Broadcast Systems<br />

Internet<br />

leased line<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 6: Broadcast Systems<br />

DVB/MPEG2 multiplex<br />

simultaneous to digital TV<br />

satellite<br />

provider<br />

information<br />

provider<br />

Jochen H. Schiller<br />

1999 6.9<br />

6.16.1


University of Karlsruhe<br />

Institute of Telematics<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 7: Wireless LANs<br />

� Characteristics<br />

� IEEE 802.11<br />

� PHY<br />

� MAC<br />

� Roaming<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

� HIPERLAN<br />

� Standards<br />

� PHY<br />

� MAC<br />

� Ad-hoc networks<br />

� Bluetooth<br />

Characteristics of wireless LANs<br />

Advantages<br />

� very flexible within the reception area<br />

� Ad-hoc networks without previous planning possible<br />

� (almost) no wiring difficulties (e.g. historic buildings, firewalls)<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 7: Wireless LANs<br />

Jochen H. Schiller<br />

1999 7.1<br />

7.0.1<br />

� more robust against disasters like, e.g., earthquakes, fire - or users<br />

pulling a plug...<br />

Disadvantages<br />

� typically very low bandwidth compared to wired networks<br />

(1-10 Mbit/s)<br />

� many proprietary solutions, especially for higher bit-rates,<br />

standards take their time (e.g. IEEE 802.11)<br />

� products have to follow many national restrictions if working<br />

wireless, it takes a vary long time to establish global solutions like,<br />

e.g., IMT-2000<br />

7.1.1


University of Karlsruhe<br />

Institute of Telematics<br />

Design goals for wireless LANs<br />

� global, seamless operation<br />

� low power for battery use<br />

� no special permissions or licenses needed to use the LAN<br />

� robust transmission technology<br />

� simplified spontaneous cooperation at meetings<br />

� easy to use for everyone, simple management<br />

� protection of investment in wired networks<br />

� security (no one should be able to read my data), privacy (no one<br />

should be able to collect user profiles), safety (low radiation)<br />

� transparency concerning applications and higher layer protocols,<br />

but also location awareness if necessary<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

Comparison: infrared vs. radio transmission<br />

Infrared<br />

� uses IR diodes, diffuse light,<br />

multiple reflections (walls,<br />

furniture etc.)<br />

Advantages<br />

� simple, cheap, available in<br />

many mobile devices<br />

� no licenses needed<br />

� simple shielding possible<br />

Disadvantages<br />

� interference by sunlight, heat<br />

sources etc.<br />

� many things shield or absorb IR<br />

light<br />

� low bandwidth<br />

Example<br />

� IrDA (Infrared Data Association)<br />

interface available everywhere<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 7: Wireless LANs<br />

Jochen H. Schiller<br />

1999 7.2<br />

Radio<br />

7.2.1<br />

� typically using the license free<br />

ISM band at 2.4 GHz<br />

Advantages<br />

� experience from wireless WAN<br />

and mobile phones can be used<br />

� coverage of larger areas<br />

possible (radio can penetrate<br />

walls, furniture etc.)<br />

Disadvantages<br />

� very limited license free<br />

frequency bands<br />

� shielding more difficult,<br />

interference with other electrical<br />

devices<br />

Example<br />

� WaveLAN, HIPERLAN,<br />

Bluetooth<br />

7.3.1


University of Karlsruhe<br />

Institute of Telematics<br />

Comparison: infrastructure vs. ad-hoc networks<br />

infrastructure<br />

network<br />

ad-hoc network<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

STA 1<br />

ESS<br />

AP<br />

AP<br />

wired network<br />

AP: Access Point<br />

802.11 - Architecture of an infrastructure network<br />

802.11 LAN<br />

BSS 1<br />

STA 2<br />

Access<br />

Point<br />

BSS 2<br />

Distribution System<br />

Access<br />

Point<br />

802.11 LAN<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

802.x LAN<br />

Portal<br />

STA 3<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 7: Wireless LANs<br />

Jochen H. Schiller<br />

1999 7.3<br />

AP<br />

Station (STA)<br />

7.4.1<br />

� terminal with access mechanisms<br />

to the wireless medium and radio<br />

contact to the access point<br />

Basic Service Set (BSS)<br />

� group of stations using the same<br />

radio frequency<br />

Access Point<br />

� station integrated into the wireless<br />

LAN and the distribution system<br />

Portal<br />

� bridge to other (wired) networks<br />

Distribution System<br />

� interconnection network to form<br />

one logical network (EES:<br />

Extended Service Set) based<br />

on several BSS<br />

7.5.1


University of Karlsruhe<br />

Institute of Telematics<br />

STA 1<br />

802.11 - Architecture of an ad-hoc network<br />

802.11 LAN<br />

BSS 1<br />

STA 2<br />

STA 4<br />

BSS 2<br />

STA 3<br />

802.11 LAN<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

STA 5<br />

IEEE standard 802.11<br />

mobile terminal<br />

application<br />

TCP<br />

IP<br />

802.11 MAC<br />

802.11 PHY<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

802.11 MAC<br />

802.11 PHY<br />

Direct communication within a<br />

limited range<br />

� Station (STA):<br />

terminal with access<br />

mechanisms to the wireless<br />

medium<br />

� Basic Service Set (BSS):<br />

group of stations using the<br />

same radio frequency<br />

access point<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 7: Wireless LANs<br />

Jochen H. Schiller<br />

1999 7.4<br />

server<br />

802.3 MAC<br />

802.3 PHY<br />

infrastructure network<br />

7.6.1<br />

application<br />

TCP<br />

LLC LLC<br />

LLC<br />

IP<br />

802.3 MAC<br />

802.3 PHY<br />

fixed terminal<br />

7.7.1


University of Karlsruhe<br />

Institute of Telematics<br />

PHY DLC<br />

802.11 - Layers and functions<br />

MAC<br />

� access mechanisms,<br />

fragmentation, encryption<br />

MAC Management<br />

� synchronization, roaming, MIB,<br />

power management<br />

LLC<br />

MAC<br />

PLCP<br />

PMD<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

MAC Management<br />

PHY Management<br />

802.11 - Physical layer<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

PLCP Physical Layer Convergence Protocol<br />

� clear channel assessment<br />

signal (carrier sense)<br />

PMD Physical Medium Dependent<br />

� modulation, coding<br />

PHY Management<br />

� channel selection, MIB<br />

Station Management<br />

� coordination of all management<br />

functions<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 7: Wireless LANs<br />

Jochen H. Schiller<br />

1999 7.5<br />

Station Management<br />

3 versions: 2 radio (typ. 2.4 GHz), 1 IR<br />

� data rates 1 or 2 Mbit/s<br />

FHSS (Frequency Hopping Spread Spectrum)<br />

� spreading, despreading, signal strength, typ. 1 Mbit/s<br />

� min. 2.5 frequency hops/s (USA), two-level GFSK modulation<br />

DSSS (Direct Sequence Spread Spectrum)<br />

7.8.1<br />

� DBPSK modulation for 1 Mbit/s (Differential Binary Phase Shift Keying),<br />

DQPSK for 2 Mbit/s (Differential Quadrature PSK)<br />

� preamble and header of a frame is always transmitted with 1 Mbit/s, rest<br />

of transmission 1 or 2 Mbit/s<br />

� chipping sequence: +1, -1, +1, +1, -1, +1, +1, +1, -1, -1, -1 (Barker code)<br />

� max. radiated power 1 W (USA), 100 mW (EU), min. 1mW<br />

Infrared<br />

� 850-950 nm, diffuse light, typ. 10 m range<br />

� carrier detection, energy detection, synchonization<br />

7.9.1


University of Karlsruhe<br />

Institute of Telematics<br />

FHSS PHY packet format<br />

Synchronization<br />

� synch with 010101... pattern<br />

SFD (Start Frame Delimiter)<br />

� 0000110010111101 start pattern<br />

PLW (PLCP_PDU Length Word)<br />

� length of payload incl. 32 bit CRC of payload, PLW < 4096<br />

PSF (PLCP Signaling Field)<br />

� data of payload (1 or 2 Mbit/s)<br />

HEC (Header Error Check)<br />

� CRC with x 16 +x 12 +x 5 +1<br />

synchronization SFD PLW PSF HEC payload<br />

PLCP preamble PLCP header<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

80 16 12 4 16 variable bits<br />

DSSS PHY packet format<br />

Synchronization<br />

synchronization SFD signal service length HEC payload<br />

PLCP preamble PLCP header<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 7: Wireless LANs<br />

Jochen H. Schiller<br />

1999 7.6<br />

7.10.1<br />

� synch., gain setting, energy detection, frequency offset compensation<br />

SFD (Start Frame Delimiter)<br />

� 1111001110100000<br />

Signal<br />

� data rate of the payload (0A: 1 Mbit/s DBPSK; 14: 2 Mbit/s DQPSK)<br />

Service Length<br />

� future use, 00: 802.11 compliant � length of the payload<br />

HEC (Header Error Check)<br />

� protection of signal, service and length, x 16 +x 12 +x 5 +1<br />

128 16 8 8 16 16 variable bits<br />

7.11.1


University of Karlsruhe<br />

Institute of Telematics<br />

802.11 - MAC layer I - DFWMAC<br />

Traffic services<br />

� Asynchronous Data Service (mandatory)<br />

� exchange of data packets based on “best-effort”<br />

� support of broadcast and multicast<br />

� Time-Bounded Service (optional)<br />

� implemented using PCF (Point Coordination Function)<br />

Access methods<br />

� DFWMAC-DCF CSMA/CA (mandatory)<br />

� collision avoidance via randomized „back-off“ mechanism<br />

� minimum distance between consecutive packets<br />

� ACK packet for acknowledgements (not for broadcasts)<br />

� DFWMAC-DCF w/ RTS/CTS (optional)<br />

� Distributed Foundation Wireless MAC<br />

� avoids hidden terminal problem<br />

� DFWMAC- PCF (optional)<br />

� access point polls terminals according to a list<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

802.11 - MAC layer II<br />

Priorities<br />

� defined through different inter frame spaces<br />

� no guaranteed, hard priorities<br />

� SIFS (Short Inter Frame Spacing)<br />

� highest priority, for ACK, CTS, polling response<br />

� PIFS (PCF IFS)<br />

� medium priority, for time-bounded service using PCF<br />

� DIFS (DCF, Distributed Coordination Function IFS)<br />

� lowest priority, for asynchronous data service<br />

DIFS<br />

medium busy<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

PIFS<br />

SIFS<br />

direct access if<br />

medium is free ≥ DIFS<br />

DIFS<br />

contention<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 7: Wireless LANs<br />

next frame<br />

Jochen H. Schiller<br />

1999 7.7<br />

7.12.1<br />

7.13.1<br />

t


University of Karlsruhe<br />

Institute of Telematics<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

station 1<br />

station 2<br />

station 3<br />

station 4<br />

station 5<br />

802.11 - CSMA/CA access method I<br />

DIFS<br />

medium busy<br />

DIFS<br />

direct access if<br />

medium is free ≥ DIFS<br />

slot time<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 7: Wireless LANs<br />

contention window<br />

(randomized back-off<br />

mechanism)<br />

next frame<br />

� station ready to send starts sensing the medium (Carrier Sense<br />

based on CCA, Clear Channel Assessment)<br />

� if the medium is free for the duration of an Inter-Frame Space (IFS),<br />

the station can start sending (IFS depends on service type)<br />

� if the medium is busy, the station has to wait for a free IFS, then the<br />

station must additionally wait a random back-off time (collision<br />

avoidance, multiple of slot-time)<br />

� if another station occupies the medium during the back-off time of<br />

the station, the back-off timer stops (fairness)<br />

802.11 - competing stations - simple version<br />

busy<br />

DIFS<br />

busy<br />

DIFS<br />

bo e<br />

bo e<br />

packet arrival at MAC<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

bo r<br />

boe bor busy<br />

medium not idle (frame, ack etc.)<br />

DIFS<br />

boe bor Jochen H. Schiller<br />

1999 7.8<br />

bo e<br />

bo e<br />

busy<br />

busy<br />

bo e<br />

DIFS<br />

bo e<br />

bo e<br />

bo e<br />

bo r<br />

busy<br />

bo r<br />

elapsed backoff time<br />

bo r residual backoff time<br />

7.14.1<br />

t<br />

7.15.1<br />

t


University of Karlsruhe<br />

Institute of Telematics<br />

802.11 - CSMA/CA access method II<br />

Sending unicast packets<br />

sender<br />

receiver<br />

other<br />

stations<br />

� station has to wait for DIFS before sending data<br />

� receivers acknowledge at once (after waiting for SIFS) if the packet<br />

was received correctly (CRC)<br />

� automatic retransmission of data packets in case of transmission<br />

errors<br />

DIFS<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

802.11 - DFWMAC<br />

Sending unicast packets<br />

sender<br />

receiver<br />

other<br />

stations<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

data<br />

waiting time<br />

SIFS<br />

ACK<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 7: Wireless LANs<br />

Jochen H. Schiller<br />

1999 7.9<br />

DIFS<br />

contention<br />

data<br />

t<br />

7.16.1<br />

� station can send RTS with reservation parameter after waiting for DIFS<br />

(reservation determines amount of time the data packet needs the medium)<br />

� acknowledgement via CTS after SIFS by receiver (if ready to receive)<br />

� sender can now send data at once, acknowledgement via ACK<br />

� other stations store medium reservations distributed via RTS and CTS<br />

DIFS<br />

RTS<br />

SIFS<br />

CTS<br />

SIFS<br />

data<br />

NAV (RTS)<br />

NAV (CTS)<br />

defer access<br />

SIFS<br />

ACK<br />

DIFS<br />

contention<br />

data<br />

t<br />

7.17.1


University of Karlsruhe<br />

Institute of Telematics<br />

sender<br />

receiver<br />

other<br />

stations<br />

Fragmentation<br />

DIFS<br />

RTS<br />

SIFS<br />

CTS<br />

SIFS<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

DFWMAC-PCF I<br />

point<br />

coordinator<br />

wireless<br />

stations<br />

stations‘<br />

NAV<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

t 0<br />

medium busy<br />

t 1<br />

PIFS<br />

frag 1<br />

SIFS<br />

NAV (RTS)<br />

NAV (CTS)<br />

D 1<br />

SIFS<br />

U 1<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 7: Wireless LANs<br />

Jochen H. Schiller<br />

1999 7.10<br />

ACK 1<br />

SIFS<br />

SuperFrame<br />

SIFS<br />

NAV<br />

frag 2<br />

SIFS ACK2<br />

NAV (frag 1 )<br />

NAV (ACK 1 )<br />

D 2<br />

SIFS<br />

U 2<br />

DIFS<br />

contention<br />

SIFS<br />

7.18.1<br />

7.19.1<br />

data<br />

t


University of Karlsruhe<br />

Institute of Telematics<br />

DFWMAC-PCF II<br />

point<br />

coordinator<br />

wireless<br />

stations<br />

stations‘<br />

NAV<br />

D 3<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

bytes<br />

PIFS<br />

D 4<br />

SIFS<br />

NAV<br />

contention free period<br />

802.11 - Frame format<br />

Types<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 7: Wireless LANs<br />

Jochen H. Schiller<br />

1999 7.11<br />

U 4<br />

SIFS CFend<br />

� control frames, management frames, data frames<br />

Sequence numbers<br />

� important against duplicated frames due to lost ACKs<br />

Addresses<br />

t 2 t 3 t 4<br />

contention<br />

period<br />

� receiver, transmitter (physical), BSS identifier, sender (logical)<br />

Miscellaneous<br />

Frame<br />

Control<br />

� sending time, checksum, frame control, data<br />

Duration<br />

ID<br />

Address<br />

1<br />

Address<br />

2<br />

Address<br />

3<br />

Sequence<br />

Control<br />

Address<br />

4<br />

t<br />

7.20.1<br />

2 2 6 6 6 2 6 0-2312 4<br />

version, type, fragmentation, security, ...<br />

Data CRC<br />

7.21.1


University of Karlsruhe<br />

Institute of Telematics<br />

MAC address format<br />

scenario to DS from<br />

DS<br />

address 1 address 2 address 3 address 4<br />

ad-hoc network 0 0 DA SA BSSID -<br />

infrastructure<br />

network, from AP<br />

0 1 DA BSSID SA -<br />

infrastructure<br />

network, to AP<br />

1 0 BSSID SA DA -<br />

infrastructure<br />

network, within DS<br />

1 1 RA TA DA SA<br />

DS: Distribution System<br />

AP: Access Point<br />

DA: Destination Address<br />

SA: Source Address<br />

BSSID: Basic Service Set Identifier<br />

RA: Receiver Address<br />

TA: Transmitter Address<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

802.11 - MAC management<br />

Synchronization<br />

� try to find a LAN, try to stay within a LAN<br />

� timer etc.<br />

Power management<br />

� sleep-mode without missing a message<br />

� periodic sleep, frame buffering, traffic measurements<br />

Association/Reassociation<br />

� integration into a LAN<br />

� roaming, i.e. change networks by changing access points<br />

� scanning, i.e. active search for a network<br />

MIB - Management Information Base<br />

� managing, read, write<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 7: Wireless LANs<br />

Jochen H. Schiller<br />

1999 7.12<br />

7.22.1<br />

7.23.1


University of Karlsruhe<br />

Institute of Telematics<br />

Synchronization using a Beacon (infrastructure)<br />

access<br />

point<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

station 1<br />

station 2<br />

medium<br />

medium<br />

beacon interval<br />

B<br />

busy<br />

B B B<br />

busy busy busy<br />

value of the timestamp B beacon frame<br />

Synchronization using a Beacon (ad-hoc)<br />

beacon interval<br />

B 1<br />

busy<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

B 2<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 7: Wireless LANs<br />

Jochen H. Schiller<br />

1999 7.13<br />

B 2<br />

busy busy busy<br />

value of the timestamp B beacon frame<br />

B 1<br />

random delay<br />

t<br />

t<br />

7.24.1<br />

7.25.1


University of Karlsruhe<br />

Institute of Telematics<br />

Power management<br />

Idea: switch the transceiver off if not needed<br />

States of a station: sleep and awake<br />

Timing Synchronization Function (TSF)<br />

� stations wake up at the same time<br />

Infrastructure<br />

Ad-hoc<br />

� Traffic Indication Map (TIM)<br />

� list of unicast receivers transmitted by AP<br />

� Delivery Traffic Indication Map (DTIM)<br />

� list of broadcast/multicast receivers transmitted by AP<br />

� Ad-hoc Traffic Indication Map (ATIM)<br />

� announcement of receivers by stations buffering frames<br />

� more complicated - no central AP<br />

� collision of ATIMs possible (scalability?)<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

Power saving with wake-up patterns (infrastructure)<br />

access<br />

point<br />

medium<br />

station<br />

TIM interval<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

D<br />

B<br />

busy<br />

T TIM D DTIM<br />

B broadcast/multicast<br />

DTIM interval<br />

T T d<br />

D B<br />

busy busy busy<br />

p PS poll<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 7: Wireless LANs<br />

Jochen H. Schiller<br />

1999 7.14<br />

p<br />

awake<br />

d<br />

d<br />

data transmission<br />

to/from the station<br />

7.26.1<br />

t<br />

7.27.1


University of Karlsruhe<br />

Institute of Telematics<br />

Power saving with wake-up patterns (ad-hoc)<br />

station 1<br />

station 2<br />

awake<br />

B 1<br />

B beacon frame<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

ATIM<br />

window beacon interval<br />

802.11 - Roaming<br />

B 2<br />

random delay<br />

t<br />

A transmit ATIM D transmit data<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 7: Wireless LANs<br />

Jochen H. Schiller<br />

1999 7.15<br />

B 2<br />

a acknowledge ATIM d acknowledge data<br />

No or bad connection? Then perform:<br />

Scanning<br />

� scan the environment, i.e., listen into the medium for beacon<br />

signals or send probes into the medium and wait for an answer<br />

Reassociation Request<br />

� station sends a request to one or several AP(s)<br />

Reassociation Response<br />

� success: AP has answered, station can now participate<br />

� failure: continue scanning<br />

AP accepts Reassociation Request<br />

� signal the new station to the distribution system<br />

� the distribution system updates its data base (i.e., location<br />

information)<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

A<br />

a<br />

D<br />

d<br />

B 1<br />

7.28.1<br />

� typically, the distribution system now informs the old AP so it can<br />

release resources<br />

7.29.1


University of Karlsruhe<br />

Institute of Telematics<br />

Future developments<br />

IEEE 802.11a<br />

� compatible MAC, but now 5 GHz band<br />

� transmission rates up to 20 Mbit/s<br />

� close cooperation with BRAN (ETSI Broadband Radio Access<br />

Network)<br />

IEEE 802.11b<br />

� higher data rates at 2.4 GHz<br />

� proprietary solutions already offer 10 Mbit/s<br />

IEEE WPAN (Wireless Personal Area Networks)<br />

� market potential<br />

� compatibility<br />

� low cost/power, small form factor<br />

� technical/economic feasibility<br />

� Bluetooth<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

ETSI - HIPERLAN<br />

ETSI standard<br />

� European standard, cf. GSM, DECT, ...<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 7: Wireless LANs<br />

Jochen H. Schiller<br />

1999 7.16<br />

7.30.1<br />

� Enhancement of local Networks and interworking with fixed networks<br />

� integration of time-sensitive services from the early beginning<br />

HIPERLAN family<br />

� one standard cannot satisfy all requirements<br />

� range, bandwidth, QoS support<br />

� commercial constraints<br />

� HIPERLAN 1 standardized since 1996<br />

medium access<br />

control layer<br />

channel access<br />

control layer<br />

physical layer<br />

higher layers<br />

network layer<br />

data link layer<br />

physical layer<br />

HIPERLAN layers OSI layers<br />

logical link<br />

control layer<br />

medium access<br />

control layer<br />

physical layer<br />

IEEE 802.x layers<br />

7.31.1


University of Karlsruhe<br />

Institute of Telematics<br />

Overview: original HIPERLAN protocol family<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

HIPERLAN 1 HIPERLAN 2 HIPERLAN 3 HIPERLAN 4<br />

Application wireless LAN access to ATM<br />

fixed networks<br />

wireless local<br />

loop<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 7: Wireless LANs<br />

point-to-point<br />

wireless ATM<br />

connections<br />

Frequency 5.1-5.3GHz 17.2-17.3GHz<br />

Topology decentralized ad- cellular, point-to- point-to-point<br />

hoc/infrastructure centralized multipoint<br />

Antenna omni-directional directional<br />

Range 50 m 50-100 m 5000 m 150 m<br />

QoS statistical ATM traffic classes (VBR, CBR, ABR, UBR)<br />

Mobility 20 Mbit/s 155 Mbit/s<br />

Power<br />

conservation<br />

yes not necessary<br />

Check out Wireless ATM for new names!<br />

HIPERLAN 1 - Characteristics<br />

Data transmission<br />

� point-to-point, point-to-multipoint, connectionless<br />

� 23.5 Mbit/s, 1 W power, 2383 byte max. packet size<br />

Services<br />

� asynchronous and time-bounded services with hierarchical<br />

priorities<br />

� compatible with ISO MAC<br />

Topology<br />

� infrastructure or ad-hoc networks<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

Jochen H. Schiller<br />

1999 7.17<br />

7.32.1<br />

� transmission range can be larger then coverage of a single node<br />

(„forwarding“ integrated in mobile terminals)<br />

Further mechanisms<br />

� power saving, encryption, checksums<br />

7.33.1


University of Karlsruhe<br />

Institute of Telematics<br />

HIPERLAN 1 - Services and protocols<br />

CAC service<br />

� definition of communication services over a shared medium<br />

� specification of access priorities<br />

� abstraction of media characteristics<br />

MAC protocol<br />

� MAC service, compatible with ISO MAC and ISO MAC bridges<br />

� uses HIPERLAN CAC<br />

CAC protocol<br />

� provides a CAC service, uses the PHY layer, specifies hierarchical<br />

access mechanisms for one or several channels<br />

Physical protocol<br />

� send and receive mechanisms, synchronization, FEC, modulation,<br />

signal strength<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

HIPERLAN layers, services, and protocols<br />

MSAP<br />

HM-entity<br />

HCSAP<br />

HC-entity<br />

MSDU<br />

HCSDU<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

MAC service<br />

HMPDU<br />

MAC protocol<br />

CAC service<br />

HCPDU<br />

CAC protocol<br />

PHY service<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 7: Wireless LANs<br />

Jochen H. Schiller<br />

1999 7.18<br />

MSDU<br />

HCSDU<br />

MSAP<br />

HM-entity<br />

HCSAP<br />

HC-entity<br />

data bursts<br />

HP-entity HP-entity<br />

PHY protocol<br />

LLC layer<br />

MAC layer<br />

CAC layer<br />

PHY layer<br />

7.34.1<br />

7.35.1


University of Karlsruhe<br />

Institute of Telematics<br />

HIPERLAN 1 - Physical layer<br />

Scope<br />

� modulation, demodulation, bit and frame synchronization<br />

� forward error correction mechanisms<br />

� measurements of signal strength<br />

� channel sensing<br />

Channels<br />

� 3 mandatory and 2 optional channels (with their carrier frequencies)<br />

� mandatory<br />

� channel 0: 5.1764680 GHz<br />

� channel 1: 5.1999974 GHz<br />

� channel 2: 5.2235268 GHz<br />

� optional (not allowed in all countries)<br />

� channel 3: 5.2470562 GHz<br />

� channel 4: 5.2705856 GHz<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

HIPERLAN 1 - Physical layer frames<br />

Maintaining a high data-rate (23.5 Mbit/s) is power consuming -<br />

problematic for mobile terminals<br />

� packet header with low bit-rate comprising receiver information<br />

� only receiver(s) address by a packet continue receiving<br />

Frame structure<br />

� LBR (Low Bit-Rate) header with 1.4 Mbit/s<br />

� 450 bit synchronization<br />

� minimum 1, maximum 47 frames with 496 bit each<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 7: Wireless LANs<br />

Jochen H. Schiller<br />

1999 7.19<br />

7.36.1<br />

� for higher velocities of the mobile terminal (> 1.4 m/s) the maximum<br />

number of frames has to be reduced<br />

HBR<br />

LBR synchronization data0 data1 . . . datam-1 Modulation<br />

� GMSK for high bit-rate, FSK for LBR header<br />

7.37.1


University of Karlsruhe<br />

Institute of Telematics<br />

HIPERLAN 1 - CAC sublayer<br />

Channel Access Control (CAC)<br />

� assure that terminal does not access forbidden channels<br />

� priority scheme, access with EY-NPMA<br />

Priorities<br />

� 5 priority levels for QoS support<br />

� QoS is mapped onto a priority level with the help of the packet<br />

lifetime (set by an application)<br />

� if packet lifetime = 0 it makes no sense to forward the packet to the<br />

receiver any longer<br />

� standard start value 500ms, maximum 16000ms<br />

� if a terminal cannot send the packet due to its current priority, waiting<br />

time is permanently subtracted from lifetime<br />

� based on packet lifetime, waiting time in a sender and number of hops to<br />

the receiver, the packet is assigned to one out of five priorities<br />

� the priority of waiting packets, therefore, rises automatically<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

HIPERLAN 1 - EY-NPMA I<br />

prioritization<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 7: Wireless LANs<br />

Jochen H. Schiller<br />

1999 7.20<br />

7.38.1<br />

EY-NPMA (Elimination Yield Non-preemptive Priority Multiple Access)<br />

� 3 phases: priority resolution, contention resolution, transmission<br />

� finding the highest priority<br />

� every priority corresponds to a time-slot to send in the first phase, the<br />

higher the priority the earlier the time-slot to send<br />

� higher priorities can not be preempted<br />

� if an earlier time-slot for a higher priority remains empty, stations with the<br />

next lower priority might send<br />

� after this first phase the highest current priority has been determined<br />

IPS IPA IES IESV IYS synchronization<br />

transmission<br />

priority detection<br />

priority assertion<br />

elimination burst<br />

elimination survival<br />

verifivcation<br />

yield listening<br />

user data<br />

contention transmission<br />

t<br />

7.39.1


University of Karlsruhe<br />

Institute of Telematics<br />

HIPERLAN 1 - EY-NPMA II<br />

Several terminals can now have the same priority and wish to send<br />

� contention phase<br />

� Elimination Burst: all remaining terminals send a burst to eliminate<br />

contenders (11111010100010011100000110010110, high bit- rate)<br />

� Elimination Survival Verification: contenders now sense the channel, if the<br />

channel is free they can continue, otherwise they have been eliminated<br />

� Yield Listening: contenders again listen in slots with a nonzero probability,<br />

if the terminal senses its slot idle it is free to transmit at the end of the<br />

contention phase<br />

� the important part is now to set the parameters for burst duration and<br />

channel sensing (slot-based, exponentially distributed)<br />

� data transmission<br />

� the winner can now send its data (however, a small chance of collision<br />

remains)<br />

� if the channel was idle for a longer time (min. for a duration of 1700 bit) a<br />

terminal can send at once without using EY-NPMA<br />

� synchronization using the last data transmission<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

LBR<br />

HBR<br />

HIPERLAN 1 - DT-HCPDU/AK-HCPDU<br />

0 1 2 3 4 5 6 7 bit<br />

1 0 1 0 1 0 1 0<br />

0 1 HI HDA<br />

IRCS<br />

HDA HDACS<br />

BLIR = n<br />

1<br />

BL-<br />

0 1 2 3 4 5 6 7 bit<br />

byte<br />

TI BLI = n<br />

PLI = m<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

1<br />

2<br />

HID<br />

3 - 6<br />

DA 7 - 12<br />

SA 13 - 18<br />

UD 19 - (52n-m-4)<br />

PAD (52n-m-3) - (52n-4)<br />

CS (52n-3) - 52n<br />

Data HCPDU<br />

1 0 1 0 1 0 1 0<br />

0 1 HI AID<br />

AID AIDCS<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 7: Wireless LANs<br />

Jochen H. Schiller<br />

1999 7.21<br />

LBR<br />

7.40.1<br />

0 1 2 3 4 5 6 7 bit<br />

Acknowledgement HCPDU<br />

HI: HBR-part Indicator<br />

HDA: Hashed Destination HCSAP Address<br />

HDACS: HDA CheckSum<br />

BLIR: Block Length Indicator<br />

BLIRCS: BLIR CheckSum<br />

TI: Type Indicator<br />

BLI: Block Length Indicator<br />

HID: HIPERLAN IDentifier<br />

DA: Destination Address<br />

SA: Source Address<br />

UD: User Data (1-2422 byte)<br />

PAD: PADding<br />

CS: CheckSum<br />

AID: Acknowledgement IDentifier<br />

AIDS: AID CheckSum<br />

7.41.1


University of Karlsruhe<br />

Institute of Telematics<br />

HIPERLAN 1 - MAC layer<br />

Compatible to ISO MAC<br />

Supports time-bounded services via a priority scheme<br />

Packet forwarding<br />

� support of directed (point-to-point) forwarding and broadcast<br />

forwarding (if no path information is available)<br />

� support of QoS while forwarding<br />

Encryption mechanisms<br />

� mechanisms integrated, but without key management<br />

Power conservation mechanisms<br />

� mobile terminals can agree upon awake patterns (e.g., periodic<br />

wake-ups to receive data)<br />

� additionally, some nodes in the networks must be able to buffer<br />

data for sleeping terminals and to forward them at the right time (so<br />

called stores)<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

HIPERLAN 1 - DT-HMPDU<br />

0 1 2 3 4 5 6 7 bit<br />

byte<br />

LI = n<br />

TI = 1<br />

RL<br />

UP ML<br />

KID<br />

1 - 2<br />

n= 40–2422<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

3<br />

4 - 5<br />

PSN 6 - 7<br />

DA 8 - 13<br />

SA 14 - 19<br />

ADA 20 - 25<br />

ASA 26 - 31<br />

ML<br />

IV<br />

UD<br />

SC<br />

IV<br />

Data HMPDU<br />

32<br />

33<br />

34<br />

35 - 37<br />

38 - (n-2)<br />

(n-1) - n<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 7: Wireless LANs<br />

Jochen H. Schiller<br />

1999 7.22<br />

7.42.1<br />

LI: Length Indicator<br />

TI: Type Indicator<br />

RL: Residual Lifetime<br />

PSN: Sequence Number<br />

DA: Destination Address<br />

SA: Source Address<br />

ADA: Alias Destination Address<br />

ASA: Alias Source Address<br />

UP: User Priority<br />

ML: MSDU Lifetime<br />

KID: Key Identifier<br />

IV: Initialization Vector<br />

UD: User Data, 1–2383 byte<br />

SC: Sanity Check (for the<br />

unencrypted PDU)<br />

7.43.1


University of Karlsruhe<br />

Institute of Telematics<br />

Information bases<br />

Route Information Base (RIB) - how to reach a destination<br />

� [destination, next hop, distance]<br />

Neighbor Information Base (NIB) - status of direct neighbors<br />

� [neighbor, status]<br />

Hello Information Base (HIB) - status of destination (via next hop)<br />

� [destination, status, next hop]<br />

Alias Information Base (AIB) - address of nodes outside the net<br />

� [original MSAP address, alias MSAP address]<br />

Source Multipoint Relay Information Base (SMRIB) - current MP status<br />

� [local multipoint forwarder, multipoint relay set]<br />

Topology Information Base (TIB) - current HIPERLAN topology<br />

� [destination, forwarder, sequence]<br />

Duplicate Detection Information Base (DDIB) - remove duplicates<br />

� [source, sequence]<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

Ad-hoc networks using HIPERLAN 1<br />

RIB<br />

NIB<br />

HIB<br />

AIB<br />

SMRIB<br />

TIB<br />

DDIB<br />

RIB<br />

NIB<br />

HIB<br />

AIB<br />

DDIB<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

5<br />

1<br />

neighborhood<br />

(i.e., within radio range)<br />

Forwarder<br />

RIB<br />

NIB<br />

HIB<br />

AIB<br />

SMRIB<br />

TIB<br />

DDIB<br />

2<br />

RIB<br />

NIB<br />

HIB<br />

AIB<br />

SMRIB<br />

TIB<br />

DDIB<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 7: Wireless LANs<br />

Jochen H. Schiller<br />

1999 7.23<br />

4<br />

RIB<br />

NIB<br />

HIB<br />

AIB<br />

DDIB<br />

Forwarder<br />

7.44.1<br />

Information Bases (IB):<br />

RIB: Route<br />

NIB: Neighbor<br />

HIB: Hello<br />

AIB: Alias<br />

SMRIB: Source Multipoint Relay<br />

TIB: Topology<br />

DDIB: Duplicate Detection<br />

6<br />

3<br />

RIB<br />

NIB<br />

HIB<br />

AIB<br />

DDIB<br />

Forwarder<br />

7.45.1


University of Karlsruhe<br />

Institute of Telematics<br />

Bluetooth<br />

Consortium: Ericsson, Intel, IBM, Nokia, Toshiba - many members<br />

Scenarios<br />

� connection of peripheral devices<br />

� loudspeaker, joystick, headset<br />

� support of ad-hoc networking<br />

� small devices, low-cost<br />

� bridging of networks<br />

� e.g., GSM via mobile phone - Bluetooth - laptop<br />

Simple, cheap, replacement of IrDA, low range, lower data rates<br />

� 2.4 GHz, FHSS, TDD, CDMA<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

States of a Bluetooth device (PHY layer)<br />

STANDBY<br />

transmit<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

inquiry page<br />

connected<br />

PARK HOLD SNIFF<br />

unconnected<br />

connecting<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 7: Wireless LANs<br />

Jochen H. Schiller<br />

1999 7.24<br />

active<br />

low power<br />

7.46.1<br />

7.47.1


University of Karlsruhe<br />

Institute of Telematics<br />

Bluetooth MAC layer<br />

Synchronous Connection-Oriented link (SCO)<br />

� symmetrical, circuit switched, point-to-point<br />

Asynchronous Connectionless Link (ACL)<br />

� packet switched, point-to-multipoint, master polls<br />

Access code<br />

� synchronization, derived from master, unique per channel<br />

Packet header<br />

� 1/3-FEC, MAC address (1 master, 7 slaves), link type, alternating<br />

bit ARQ/SEQ, checksum<br />

access code packet header payload<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

72 54 0-2745 bits<br />

3 4 1 1 1 8 bits<br />

MAC address type flow ARQN SEQN HEC<br />

Scatternets<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless LANs<br />

piconets<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 7: Wireless LANs<br />

Jochen H. Schiller<br />

1999 7.25<br />

7.48.1<br />

Each piconet has one master and up to 7 slaves<br />

Master determines hopping sequence, slaves have to synchronize<br />

Participation in a piconet = synchronization to hopping sequence<br />

Communication between piconets = devices jumping back and<br />

forth between the piconets<br />

7.49.1


University of Karlsruhe<br />

Institute of Telematics<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 8: Wireless ATM<br />

� ATM<br />

� Basic principle<br />

� B-ISDN<br />

� Protocols<br />

� Adaptation layer<br />

� Wireless ATM<br />

� Reference model<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless ATM<br />

Why wireless ATM?<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless ATM<br />

� Enhanced functionality<br />

� Architecture<br />

� Radio Access Layer<br />

� BRAN<br />

� Handover<br />

� Addressing<br />

� QoS<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 8: Wireless ATM<br />

Jochen H. Schiller<br />

1999 8.1<br />

8.0.1<br />

� seamless connection to wired ATM, a integrated services highperformance<br />

network supporting different types a traffic streams<br />

� ATM networks scale well: private and corporate LANs, WAN<br />

� B-ISDN uses ATM as backbone infrastructure and integrates<br />

several different services in one universal system<br />

� mobile phones and mobile communications have an ever<br />

increasing importance in everyday life<br />

� current wireless LANs do not offer adequate support for<br />

multimedia data streams<br />

� merging mobile communication and ATM leads to wireless ATM<br />

from a telecommunication provider point of view<br />

� goal: seamless integration of mobility into B-ISDN<br />

Problem: high complexity of the system<br />

8.1.1


University of Karlsruhe<br />

Institute of Telematics<br />

ATM - basic principle<br />

� favored by the telecommunication industry for advanced highperformance<br />

networks, e.g., B-ISDN, as transport mechanism<br />

� statistical (asynchronous, on demand) TDM (ATDM, STDM)<br />

� cell header determines the connection the user data belongs to<br />

� mixing of different cell-rates is possible<br />

➔ different bit-rates, constant or variable, feasible<br />

� interesting for data sources with varying bit-rate:<br />

� e.g., guaranteed minimum bit-rate<br />

� additionally bursty traffic if allowed by the network<br />

ATM cell:<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless ATM<br />

5 48 [byte]<br />

cell header user data<br />

connection identifier, checksum etc.<br />

Cell-based transmission<br />

� asynchronous, cell-based transmission as basis for ATM<br />

� continuous cell-stream<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless ATM<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 8: Wireless ATM<br />

Jochen H. Schiller<br />

1999 8.2<br />

8.2.1<br />

� additional cells necessary for operation and maintenance of the<br />

network (OAM cells; Operation and Maintenance)<br />

� OAM cells can be inserted after fixed intervals to create a logical<br />

frame structure<br />

� if a station has no data to send it automatically inserts idle cells that<br />

can be discarded at every intermediate system without further<br />

notice<br />

� if no synchronous frame is available for the transport of cells (e.g.,<br />

SDH or Sonet) cell boundaries have to be detected separately<br />

(e.g., via the checksum in the cell header)<br />

8.3.1


University of Karlsruhe<br />

Institute of Telematics<br />

B-ISDN protocol reference model<br />

3 dimensional reference model<br />

� three vertical planes (columns)<br />

� user plane<br />

� control plane<br />

� management plane<br />

� three hierarchical layers<br />

� physical layer<br />

� ATM layer<br />

� ATM adaptation layer<br />

Out-of-Band-Signaling: user data is<br />

transmitted separately from control<br />

information<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless ATM<br />

ATM layers<br />

layers<br />

control<br />

plane<br />

higher<br />

layers<br />

Physical layer, consisting of two sub-layers<br />

� physical medium dependent sub-layer<br />

� coding<br />

� bit timing<br />

� transmission<br />

� transmission convergence sub-layer<br />

ATM layer<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless ATM<br />

ATM adaptation layer<br />

ATM layer<br />

user<br />

plane<br />

higher<br />

layers<br />

physical layer<br />

management plane<br />

planes<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 8: Wireless ATM<br />

Jochen H. Schiller<br />

1999 8.3<br />

layer management<br />

8.4.1<br />

� HEC (Header Error Correction) sequence generation and verification<br />

� transmission frame adaptation, generation, and recovery<br />

� cell delineation, cell rate decoupling<br />

� cell multiplexing/demultiplexing<br />

� VPI/VCI translation<br />

� cell header generation and verification<br />

� GFC (Generic Flow Control)<br />

ATM adaptation layer (AAL)<br />

plane management<br />

8.5.1


University of Karlsruhe<br />

Institute of Telematics<br />

ATM adaptation layer (AAL)<br />

Provides different service classes on top of ATM based on:<br />

� bit rate:<br />

� constant bit rate: e.g. traditional telephone line<br />

� variable bit rate: e.g. data communication, compressed video<br />

� time constraints between sender and receiver:<br />

� with time constraints: e.g. real-time applications, interactive voice and video<br />

� without time constraints: e.g. mail, file transfer<br />

� mode of connection:<br />

� connection oriented or connectionless<br />

AAL consists of two sub-layers:<br />

� Convergence Sublayer (CS): service dependent adaptation<br />

� Common Part Convergence Sublayer (CPCS)<br />

� Service Specific Convergence Sublayer (SSCS)<br />

� Segmentation and Reassembly Sublayer (SAR)<br />

� sub-layers can be empty<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless ATM<br />

ATM and AAL connections<br />

� ATM layer:<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless ATM<br />

end-system A end-system B<br />

AAL<br />

ATM<br />

physical<br />

layer<br />

service dependent<br />

AAL connections<br />

service independent<br />

ATM connections<br />

ATM network<br />

� service independent transport of ATM cells<br />

� multiplex and demultiplex functionality<br />

� AAL layer: support of different services<br />

physical<br />

layer<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 8: Wireless ATM<br />

Jochen H. Schiller<br />

1999 8.4<br />

AAL<br />

ATM<br />

8.6.1<br />

application<br />

8.7.1


University of Karlsruhe<br />

Institute of Telematics<br />

ATM Forum Wireless ATM Working Group<br />

� ATM Forum founded the Wireless ATM Working Group June 1996<br />

� Task: development of specifications to enable the use of ATM<br />

technology also for wireless networks with a large coverage of<br />

current network scenarios (private and public, local and global)<br />

� compatibility to existing ATM Forum standards important<br />

� it should be possible to easily upgrade existing ATM networks with<br />

mobility functions and radio access<br />

� two sub-groups of work items<br />

Radio Access Layer (RAL) Protocols<br />

� radio access layer<br />

� wireless media access control<br />

� wireless data link control<br />

� radio resource control<br />

� handover issues<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless ATM<br />

WATM services<br />

Office environment<br />

<strong>Mobile</strong> ATM Protocol Extensions<br />

� handover signaling<br />

� location management<br />

� mobile routing<br />

� traffic and QoS Control<br />

� network management<br />

� multimedia conferencing, online multimedia database access<br />

Universities, schools, training centers<br />

� distance learning, teaching<br />

Industry<br />

� database connection, surveillance, real-time factory management<br />

Hospitals<br />

Home<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless ATM<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 8: Wireless ATM<br />

Jochen H. Schiller<br />

1999 8.5<br />

8.8.1<br />

� reliable, high-bandwidth network, medical images, remote monitoring<br />

� high-bandwidth interconnect of devices (TV, CD, PC, ...)<br />

Networked vehicles<br />

� trucks, aircraft etc. interconnect, platooning, intelligent roads<br />

8.9.1


University of Karlsruhe<br />

Institute of Telematics<br />

WATM components<br />

WMT (Wireless <strong>Mobile</strong> ATM Terminal)<br />

RT (Radio Transceiver)<br />

AP (Access Point)<br />

EMAS-E (End-user Mobility-supporting ATM Switch - Edge)<br />

EMAS-N (End-user Mobility-supporting ATM Switch - Network)<br />

APCP (Access Point Control Protocol)<br />

UNI+M (User-to-Network Interface with Mobility support)<br />

NNI+M (Network-to-Network Interface with Mobility support)<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless ATM<br />

Reference model<br />

WMT<br />

WMT<br />

RT<br />

RT<br />

RT<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless ATM<br />

AP<br />

AP<br />

APCP<br />

UNI+M<br />

EMAS-E<br />

NNI+M<br />

EMAS-N<br />

EMAS-N<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 8: Wireless ATM<br />

Jochen H. Schiller<br />

1999 8.6<br />

8.10.1<br />

8.11.1


University of Karlsruhe<br />

Institute of Telematics<br />

User plane protocol layers<br />

MATM<br />

terminal<br />

user<br />

process<br />

AAL<br />

ATM<br />

PHY<br />

MATM<br />

terminal<br />

radio segment fixed network segment<br />

WATM<br />

terminal<br />

adapter<br />

ATM<br />

PHY RAL<br />

WATM<br />

adapter<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless ATM<br />

WATM<br />

access<br />

point<br />

ATM<br />

RAL PHY<br />

WATM<br />

access point<br />

ATM<br />

PHY PHY<br />

Control plane protocol layers<br />

MATM<br />

terminal<br />

SIG,<br />

UNI+M<br />

SAAL<br />

ATM<br />

PHY<br />

MATM<br />

terminal<br />

W-CTRL<br />

RAL<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless ATM<br />

APCP<br />

SAAL<br />

ATM<br />

PHY<br />

EMAS-E EMAS-N<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 8: Wireless ATM<br />

Jochen H. Schiller<br />

1999 8.7<br />

ATM<br />

PHY PHY<br />

ATM<br />

switch<br />

ATM<br />

PHY PHY<br />

EMAS-E EMAS-N ATM switch<br />

radio segment fixed network segment<br />

WATM<br />

terminal<br />

adapter<br />

ATM W-CTRL<br />

PHY RAL<br />

WATM<br />

adapter<br />

WATM<br />

access<br />

point<br />

WATM<br />

access point<br />

EMAS-E EMAS-N<br />

SIG, APCP<br />

UNI+M<br />

NNI+M<br />

SAAL<br />

ATM<br />

PHY PHY<br />

SIG,<br />

NNI+M<br />

SAAL<br />

ATM<br />

PHY PHY<br />

ATM<br />

switch<br />

SIG,<br />

NNI, UNI<br />

SAAL<br />

ATM<br />

PHY PHY<br />

EMAS-E EMAS-N ATM switch<br />

fixed<br />

end<br />

system<br />

user<br />

process<br />

AAL<br />

ATM<br />

PHY<br />

ATM<br />

terminal<br />

fixed<br />

end<br />

system<br />

SIG,<br />

UNI<br />

SAAL<br />

ATM<br />

PHY<br />

ATM<br />

terminal<br />

8.12.1<br />

8.13.1


University of Karlsruhe<br />

Institute of Telematics<br />

Enhanced functionality I<br />

Additional protocols needed for the support of mobility<br />

� <strong>Mobile</strong> Connection Management Protocol<br />

� supports a user for connection setup, specifies, reserves, and controls<br />

QoS for a connection<br />

� controls the assignment of VCIs to connections on the wireless and<br />

wired segment<br />

� supports setup of new or partially new paths during handover<br />

� <strong>Mobile</strong> Handover Management Protocol<br />

� support of user mobility<br />

– find a new base station<br />

– redirect the data stream during handover<br />

– return unused VCIs after a handover<br />

– provide buffers and functions to sort packets out of sequence<br />

(ATM guarantees in-sequence delivery of cells!)<br />

� standard functions of user and control plane still needed<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless ATM<br />

Enhanced functionality II<br />

� <strong>Mobile</strong> Location Management Protocol<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless ATM<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 8: Wireless ATM<br />

Jochen H. Schiller<br />

1999 8.8<br />

8.14.1<br />

� terminals can change their access points, therefore, several location<br />

functions are needed<br />

– where is a mobile user, what is the current access point, what is the current<br />

sub-network of a mobile terminal etc.<br />

� <strong>Mobile</strong> Routing Protocol<br />

� access points change over time<br />

– dynamic topologies influence routing protocols, not supported by traditional<br />

routing protocols<br />

– routing has to support wireless and fixed part of the network<br />

� example: connection setup between two mobile hosts<br />

– with the help of the addresses and location registries the current access<br />

points can be located<br />

– routing within fixed network without changes<br />

8.15.1


University of Karlsruhe<br />

Institute of Telematics<br />

Enhanced functionality III<br />

� <strong>Mobile</strong> Media Access Control Protocol<br />

� a single base station serves as access point for many mobile terminals<br />

within radio range<br />

– coordination of channel access<br />

– coordination of QoS requirements<br />

– traditional access schemes do not support different traffic classes with a<br />

larger variety of QoS requirements<br />

� <strong>Mobile</strong> Data-Link Control Protocol<br />

� transmission and acknowledgement of frames<br />

� frame synchronization and retransmission<br />

� flow control<br />

Also fixed networks need many of these functions, however,<br />

wireless networks require many adaptations and different<br />

mechanisms due to higher error rates and frequent interruptions.<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless ATM<br />

Functional model for the modular access scheme<br />

IMF T<br />

UIM<br />

MTSA<br />

CCF T<br />

MMF T<br />

ATMC T<br />

RTR T<br />

WMT<br />

ACF T<br />

RRC T<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless ATM<br />

ACF<br />

RRC<br />

EMAS-E<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 8: Wireless ATM<br />

Jochen H. Schiller<br />

1999 8.9<br />

RTR<br />

AP<br />

APCF<br />

ATMC<br />

CCF<br />

NSA<br />

MMF SCF<br />

APCF<br />

ATMC<br />

8.16.1<br />

8.17.1


University of Karlsruhe<br />

Institute of Telematics<br />

Wireless mobile terminal side<br />

Mobility Management Function (MMF T )<br />

� analysis and monitoring of the network, paging response, location update<br />

Call control and Connection control Function (CCF T )<br />

� call set-up and release, access control, connection control<br />

Identity Management Function (IMF T )<br />

� security related information, user dependent<br />

<strong>Mobile</strong> Terminal Security Agent (MTSA)<br />

� additional security information, user independent<br />

Radio Transmission and Reception (RTR T )<br />

� LLC, MAC, PHY layers for radio transmission<br />

Radio Resource Control function (RRC T )<br />

� trigger handovers, monitor radio access, control radio resources<br />

Association Control Function (ACF T )<br />

� set-up and release access to access point<br />

ATM Connection function (ATMC T )<br />

� responsible for ATM connections, standard services (CBR, VBR, ABR,<br />

UBR)<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless ATM<br />

Mobility supporting network side<br />

Access Point Control Function (APCF)<br />

� paging, handover, AP management<br />

Call control and Connection control Function (CCF)<br />

� call set-up and release, connection control, requests network and radio resources<br />

Network Security Agent (NSA)<br />

� identity management, authentication, encryption, confidentiality control<br />

Service Control Function (SCF)<br />

� management of service profiles, consistency checks<br />

Mobility Management Function (MMF)<br />

� location management, handover, location data, subscriber identity<br />

Association Control Function (ACF)<br />

� set-up and release access to mobile terminal<br />

Radio Resource Control function (RRC)<br />

� management of radio channels, initiate handover<br />

Radio Transmission and Reception function (RTR)<br />

� LLC, MAC, PHY layers, support of ATM traffic parameters<br />

ATM Connection function (ATMC)<br />

� responsible for ATM connections, standard services (CBR, VBR, ABR, UBR)<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless ATM<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 8: Wireless ATM<br />

Jochen H. Schiller<br />

1999 8.10<br />

8.18.1<br />

8.19.1


University of Karlsruhe<br />

Institute of Telematics<br />

Radio Access Layer (RAL) requirements: PHY layer<br />

� Definition of cell characteristics<br />

� frequencies, efficient re-use of frequencies, antennas, power, range<br />

� Carrier frequency, symbol rate, modulation, coding, training<br />

sequences etc.<br />

� Data and control interfaces to the radio unit<br />

� Requirements<br />

� Bit Error Rate (BER)


University of Karlsruhe<br />

Institute of Telematics<br />

Radio Access Layer (RAL) requirements: LLC layer<br />

� Layer between ATM and MAC/PHY layers to solve specific<br />

problems of the wireless transmission<br />

� Definition of LLC protocol and syntax<br />

� wireless header, control messages<br />

� Special functions for ATM service classes<br />

� error control<br />

� error detection and correction<br />

� selective retransmission<br />

� forward error correction<br />

� Requirements<br />

� mandatory: ARQ (Automatic Repeat Request)<br />

� optional: FEC for real-time services<br />

� optional: meta-signaling to support handover<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless ATM<br />

ETSI Broadband Radio Access Network (BRAN)<br />

Motivation<br />

� deregulation, privatization, new companies, new services<br />

� How to reach the customer?<br />

Radio access<br />

Market<br />

� alternatives: xDSL, cable, satellite, radio<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless ATM<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 8: Wireless ATM<br />

Jochen H. Schiller<br />

1999 8.12<br />

8.22.1<br />

� flexible (supports traffic mix, multiplexing for higher efficiency, can be<br />

asymmetrical)<br />

� quick installation<br />

� economic (incremental growth possible)<br />

� private customers (Internet access, tele-xy...)<br />

� small and medium sized business (Internet, MM conferencing, VPN)<br />

Scope of standardization<br />

� access networks, indoor/campus mobility, 25-155 Mbit/s, 50 m-5 km<br />

� coordination with ATM Forum, IETF, ETSI, IEEE, ....<br />

8.23.1


University of Karlsruhe<br />

Institute of Telematics<br />

Broadband network types<br />

Common characteristics<br />

� ATM QoS (CBR, VBR, UBR, ABR)<br />

HIPERLAN 2<br />

� short range (< 200 m), indoor/campus, 25 Mbit/s<br />

� extension of HIPERLAN 1, access to telecommunication systems,<br />

multimedia applications, mobility (


University of Karlsruhe<br />

Institute of Telematics<br />

ETSI Broadband Radio Access Network (BRAN)<br />

� wireless access with bit rates ≥ 25 Mbit/s<br />

� connection to private and public networks<br />

� scope of specifications<br />

� physical layer<br />

� data link control layer<br />

� interworking, especially to fixed ATM networks and TCP/IP protocols<br />

� coordination with ATM Forum, IEEE 802.11, IETF, ITU-R, ...<br />

� reference points<br />

user<br />

wireless<br />

terminal<br />

adapter<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless ATM<br />

Handover<br />

mobility<br />

H2.0 H2.1.1 H2.1.1.1 H2.2 enhanced<br />

switch<br />

H2.3<br />

mobile node<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless ATM<br />

H2.1.2<br />

AP<br />

transceiver<br />

AP<br />

controller<br />

wireless access point<br />

wireless sub-system<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 8: Wireless ATM<br />

external<br />

network<br />

Jochen H. Schiller<br />

1999 8.14<br />

8.26.1<br />

Procedure to hand over connection(s) from a mobile ATM terminal<br />

from one access point to another access point<br />

Support of an handover domain<br />

� several access points cover a certain area<br />

� common handover protocol and strategy<br />

� all access points and switches belong to one administrative domain<br />

Requirements<br />

� multiple connection handover<br />

� point-to-point and point-to-multipoint<br />

� QoS support<br />

� data integrity and security<br />

� signaling and routing support<br />

� high performance and low complexity<br />

8.27.1


University of Karlsruhe<br />

Institute of Telematics<br />

Simple handover reference model<br />

WMT<br />

handover<br />

domain<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless ATM<br />

Types of handover<br />

Hard handover<br />

RT<br />

RT<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless ATM<br />

RT<br />

handover<br />

segment<br />

AP<br />

anchor<br />

point<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 8: Wireless ATM<br />

Jochen H. Schiller<br />

1999 8.15<br />

AP<br />

� only one connection to one access point possible<br />

Terminal initiated<br />

� WTM initiates HO based on, e.g., signal quality<br />

Network initiated<br />

� Network initiates HO based on, e.g., network load<br />

Network initiated, terminal assisted<br />

� WTM provides information about radio conditions<br />

Network controlled<br />

� HO decision always at network<br />

Backward handover<br />

fixed<br />

segment<br />

� standard type, WMT initiates HO, everything is prepared for HO<br />

before HO takes place<br />

Forward handover<br />

� WMT suddenly arrives at a new AP, connection loss possible<br />

8.28.1<br />

8.29.1


University of Karlsruhe<br />

Institute of Telematics<br />

Handover scenarios<br />

Intra-EMAS-E/<br />

Intra-AP<br />

WMT<br />

Intra-EMAS-E/<br />

Inter-AP<br />

RT 2<br />

RT 1<br />

RT 3<br />

Inter-EMAS-E/<br />

Inter-AP<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless ATM<br />

AP 1<br />

RT 4<br />

RT 5<br />

EMAS-E 1<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 8: Wireless ATM<br />

Jochen H. Schiller<br />

1999 8.16<br />

AP 2<br />

RT 6<br />

EMAS-N<br />

COS<br />

EMAS-E 2<br />

Backward handover with multiple possible APs<br />

WMT<br />

AP 1<br />

AP 2<br />

BW_HO_REQUEST<br />

APCP_EnquiryReq<br />

APCP_EnquiryRes<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless ATM<br />

EMAS-E 1<br />

APCP_EnquiryReq<br />

APCP_EnquiryRes<br />

BW_HO_RESPONSE<br />

AP 3<br />

EMAS-E 2<br />

HO_REQUEST_QUERY<br />

APCP_EnquiryReq<br />

APCP_EnquiryRes<br />

HO_REQUEST_RESPONSE<br />

Selection of RT<br />

AP 3<br />

COS<br />

8.30.1<br />

8.31.1


University of Karlsruhe<br />

Institute of Telematics<br />

BW handover - Intra-EMAS-E/Intra-AP<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless ATM<br />

WMT AP EMAS-E<br />

BW_HO_REQUEST<br />

APCP_EnquiryReq<br />

APCP_EnquiryRes<br />

BW_HO_RESPONSE<br />

APCP_DisassocReq<br />

APCP_DisassocCnf<br />

APCP_AssocReq<br />

APCP_AssocCnf<br />

CONN_ACTIVATE<br />

CONN_ACTIVE<br />

BW handover - Intra-EMAS-E/Inter-AP<br />

WMT<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless ATM<br />

AP 1<br />

AP 2<br />

BW_HO_REQUEST<br />

BW_HO_RESPONSE<br />

APCP_EnquiryReq<br />

APCP_EnquiryRes<br />

APCP_DisassocReq<br />

APCP_DisassocCnf<br />

CONN_ACTIVATE<br />

CONN_ACTIVE<br />

APCP_EnquiryReq<br />

APCP_EnquiryRes<br />

APCP_AssocReq<br />

APCP_AssocCnf<br />

EMAS-E<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 8: Wireless ATM<br />

Jochen H. Schiller<br />

1999 8.17<br />

8.32.1<br />

8.33.1


University of Karlsruhe<br />

Institute of Telematics<br />

BW handover - Inter-EMAS-E/Inter-AP<br />

WMT<br />

AP 1<br />

BW_HO_REQUEST<br />

BW_HO_RESPONSE<br />

HO_RELEASE<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless ATM<br />

EMAS-E 1<br />

APCP_DisassocReq<br />

APCP_DisassocCnf<br />

CONN_ACTIVATE<br />

CONN_ACTIVE<br />

AP 2<br />

EMAS-E 2<br />

HO_REQUEST_QUERY<br />

APCP_EnquiryReq<br />

APCP_EnquiryRes<br />

HO_REQUEST_RESPONSE<br />

HO_COMMAND<br />

APCP_EnquiryReq<br />

APCP_EnquiryRes SETUP<br />

HO_COMPLETE CONNECT<br />

RELEASE<br />

RELEASE_COMPLETE<br />

APCP_AssocReq<br />

APCP_AssocCnf<br />

FW handover - Intra-EMAS-E/Intra-AP<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless ATM<br />

WMT AP EMAS-E<br />

APCP_DisassocReq<br />

APCP_DisassocCnf<br />

APCP_AssocReq<br />

APCP_AssocCnf<br />

FW_HO_REQUEST<br />

APCP_EnquiryReq<br />

APCP_EnquiryRes<br />

FW_HO_RESPONSE<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 8: Wireless ATM<br />

Jochen H. Schiller<br />

1999 8.18<br />

COS<br />

8.34.1<br />

8.35.1


University of Karlsruhe<br />

Institute of Telematics<br />

FW handover - Intra-EMAS-E/Inter-AP<br />

WMT<br />

AP 1<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless ATM<br />

AP 2<br />

APCP_DisassocReq<br />

APCP_DisassocCnf<br />

FW_HO_REQUEST<br />

APCP_AssocReq<br />

APCP_AssocCnf<br />

FW_HO_RESPONSE<br />

APCP_EnquiryReq<br />

APCP_EnquiryRes<br />

EMAS-E<br />

BW handover - Inter-EMAS-E/Inter-AP<br />

WMT<br />

AP 1<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless ATM<br />

EMAS-E 1<br />

APCP_DisassocReq<br />

APCP_DisassocCnf<br />

FW_HO_REQUEST<br />

FW_HO_RESPONSE<br />

CONN_ACTIVE<br />

AP 2<br />

APCP_AssocReq<br />

APCP_AssocCnf<br />

HO_NOTIFY<br />

EMAS-E 2<br />

APCP_EnquiryReq<br />

APCP_EnquiryRes<br />

HO_COMPLETE<br />

RELEASE<br />

RELEASE_COMPLETE<br />

SETUP<br />

CONNECT<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 8: Wireless ATM<br />

Jochen H. Schiller<br />

1999 8.19<br />

COS<br />

8.36.1<br />

8.37.1


University of Karlsruhe<br />

Institute of Telematics<br />

Location management<br />

Requirements<br />

� transparent for users<br />

� privacy of location and user information<br />

� cell and network identification<br />

� minimum of additional signaling required<br />

� access control, accounting<br />

� roaming<br />

� scalability<br />

� standardized method for registration (i.e, a new user joins the<br />

network)<br />

� mobile terminals get temporary, routable addresses<br />

� common protocol for database/registry updates<br />

� location management must cooperate with unchanged ATM<br />

routing<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless ATM<br />

Registration and location update<br />

WMT AP<br />

Broadcast_ID<br />

Association<br />

Register<br />

Loc_Update_Reply<br />

visited<br />

EMAS-E<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless ATM<br />

Loc_Update_Home<br />

Loc_Update_Home_Reply<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 8: Wireless ATM<br />

Jochen H. Schiller<br />

1999 8.20<br />

8.38.1<br />

home<br />

EMAS home<br />

LS<br />

Auth_Req<br />

Auth_Req_Reply<br />

Loc_Update_LS<br />

Loc_Update_LS_Reply<br />

8.39.1<br />

home<br />

AUS


University of Karlsruhe<br />

Institute of Telematics<br />

Incoming connection setup, WMT in foreign network<br />

WMT RT1 8<br />

7<br />

EMAS-E 1<br />

AP 1<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless ATM<br />

6<br />

Addressing<br />

LS<br />

EMAS<br />

visited network<br />

5<br />

4<br />

LS: Location Server<br />

LS<br />

EMAS-E 2<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 8: Wireless ATM<br />

Jochen H. Schiller<br />

1999 8.21<br />

2<br />

3<br />

AP 2<br />

RT 2<br />

home network<br />

� should support all formats of ATM end-system addresses<br />

(AESA)<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless ATM<br />

1<br />

T<br />

network without<br />

mobility support<br />

8.40.1<br />

� uses a permanent, location independent address which has to<br />

correspond with a routable address from the “home network”<br />

� supports the assignment of temporary, routable addresses<br />

during registration of the mobile terminal in a foreign domain<br />

8.41.1


University of Karlsruhe<br />

Institute of Telematics<br />

<strong>Mobile</strong> Quality of Service (M-QoS)<br />

Main difference to, e.g., <strong>Mobile</strong> IP<br />

M-QoS main reason for high complexity<br />

M-QoS parts<br />

� Wired QoS<br />

� same as in wired ATM networks<br />

� Wireless QoS<br />

� delay and error rates higher, multiplexing and reservation important<br />

� Handover QoS<br />

� blocking, cell loss during handover, duration of handover<br />

Hard handover QoS<br />

� no QoS guarantee after handover<br />

� disconnect if not enough resources in new cell<br />

Soft handover QoS<br />

� only statistical guarantees<br />

� applications have to adapt<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless ATM<br />

Access Point Control Protocol<br />

Interface between a wireless aware segment and an unchanged<br />

segment of the ATM network<br />

� Switch protocol to control wireless access points<br />

WCAC<br />

� reservation and release of resources<br />

� preparation of access points for new connections<br />

� handover support<br />

� announcement of new mobile terminals<br />

RRM APCM CC CAC MM<br />

radio<br />

sub-system<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless ATM<br />

AP EMAS-E<br />

RM<br />

APCP<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 8: Wireless ATM<br />

Jochen H. Schiller<br />

1999 8.22<br />

8.42.1<br />

RM: switch resource management<br />

CC: call control<br />

CAC: connection admission control<br />

MM: mobility management<br />

RRM: radio resource management<br />

WCAC: wireless CAC<br />

APCM: AP connection management<br />

APCP: AP control protocol<br />

8.43.1


University of Karlsruhe<br />

Institute of Telematics<br />

Reference model with further access scenarios I<br />

1: wireless ad-hoc ATM network<br />

2: wireless mobile ATM terminals<br />

3: mobile ATM terminals<br />

4: mobile ATM switches<br />

5: fixed ATM terminals<br />

6: fixed wireless ATM terminals<br />

WMT: wireless mobile terminal<br />

WT: wireless terminal<br />

MT: mobile terminal<br />

T: terminal<br />

AP: access point<br />

EMAS: end-user mobility supporting ATM switch (-E: edge, -N: network)<br />

NMAS: network mobility supporting ATM switch<br />

MS: mobile ATM switch<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless ATM 8.44.1<br />

WMT<br />

Reference model with further access scenarios II<br />

2<br />

MS<br />

AP<br />

MT<br />

T<br />

AP<br />

<strong>Mobile</strong> <strong>Communications</strong>: Wireless ATM<br />

3<br />

EMAS<br />

-E<br />

EMAS<br />

-E<br />

4<br />

1<br />

WMT<br />

AP ACT WMT<br />

AP<br />

EMAS<br />

-N<br />

NMAS<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 8: Wireless ATM<br />

Jochen H. Schiller<br />

1999 8.23<br />

AP<br />

T<br />

6<br />

5<br />

WT<br />

8.45.1


University of Karlsruhe<br />

Institute of Telematics<br />

<strong>Mobile</strong> <strong>Communications</strong> <strong>Chapter</strong> 9:<br />

Network Protocols/<strong>Mobile</strong> IP<br />

� Motivation<br />

� Data transfer<br />

� Encapsulation<br />

� Security<br />

� IPv6<br />

<strong>Mobile</strong> <strong>Communications</strong>: Network Protocols/<strong>Mobile</strong> IP<br />

Motivation for <strong>Mobile</strong> IP<br />

Routing<br />

<strong>Mobile</strong> <strong>Communications</strong>: Network Protocols/<strong>Mobile</strong> IP<br />

� Problems<br />

� DHCP<br />

� Ad-hoc networks<br />

� Routing protocols<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 9: Network Protocols<br />

Jochen H. Schiller<br />

1999 9.1<br />

9.0.1<br />

� based on IP destination address, network prefix (e.g. 129.13.42)<br />

determines physical subnet<br />

� change of physical subnet implies change of IP address to have a<br />

topological correct address (standard IP) or needs special entries in<br />

the routing tables<br />

Specific routes to end-systems?<br />

� change of all routing table entries to forward packets to the right<br />

destination<br />

� does not scale with the number of mobile hosts and frequent<br />

changes in the location, security problems<br />

Changing the IP-address?<br />

� adjust the host IP address depending on the current location<br />

� almost impossible to find a mobile system, DNS updates take to<br />

long time<br />

� TCP connections break, security problems<br />

9.1.1


University of Karlsruhe<br />

Institute of Telematics<br />

Requirements to <strong>Mobile</strong> IP (RFC 2002)<br />

Transparency<br />

� mobile end-systems keep their IP address<br />

� continuation of communication after interruption of link possible<br />

� point of connection to the fixed network can be changed<br />

Compatibility<br />

� support of the same layer 2 protocols as IP<br />

� no changes to current end-systems and routers required<br />

� mobile end-systems can communicate with fixed systems<br />

Security<br />

� authentication of all registration messages<br />

Efficiency and scalability<br />

� only little additional messages to the mobile system required<br />

(connection typically via a low bandwidth radio link)<br />

� world-wide support of a large number of mobile systems in the<br />

whole Internet<br />

<strong>Mobile</strong> <strong>Communications</strong>: Network Protocols/<strong>Mobile</strong> IP<br />

Terminology<br />

<strong>Mobile</strong> Node (MN)<br />

� system (node) that can change the point of connection<br />

to the network without changing its IP address<br />

Home Agent (HA)<br />

� system in the home network of the MN, typically a router<br />

<strong>Mobile</strong> <strong>Communications</strong>: Network Protocols/<strong>Mobile</strong> IP<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 9: Network Protocols<br />

Jochen H. Schiller<br />

1999 9.2<br />

9.2.1<br />

� registers the location of the MN, tunnels IP datagrams to the COA<br />

Foreign Agent (FA)<br />

� system in the current foreign network of the MN, typically a router<br />

� forwards the tunneled datagrams to the MN, typically also the<br />

default router for the MN<br />

Care-of Address (COA)<br />

� address of the current tunnel end-point for the MN (at FA or MN)<br />

� actual location of the MN from an IP point of view<br />

� can be chosen, e.g., via DHCP<br />

Correspondent Node (CN)<br />

� communication partner<br />

9.3.1


University of Karlsruhe<br />

Institute of Telematics<br />

Example network<br />

home network<br />

HA<br />

router<br />

(physical home network<br />

for the MN)<br />

CN<br />

end-system<br />

Internet<br />

router<br />

<strong>Mobile</strong> <strong>Communications</strong>: Network Protocols/<strong>Mobile</strong> IP<br />

Data transfer to the mobile system<br />

home network<br />

CN<br />

sender<br />

HA<br />

1<br />

<strong>Mobile</strong> <strong>Communications</strong>: Network Protocols/<strong>Mobile</strong> IP<br />

2<br />

Internet<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 9: Network Protocols<br />

mobile end-system<br />

Jochen H. Schiller<br />

1999 9.3<br />

3<br />

router<br />

FA<br />

foreign<br />

network<br />

MN<br />

(current physical network<br />

for the MN)<br />

FA<br />

9.4.1<br />

receiver<br />

foreign<br />

network<br />

MN<br />

1. Sender sends to the IP address of MN,<br />

HA intercepts packet (proxy ARP)<br />

2. HA tunnels packet to COA, here FA,<br />

by encapsulation<br />

3. FA forwards the packet<br />

to the MN<br />

9.5.1


University of Karlsruhe<br />

Institute of Telematics<br />

Data transfer from the mobile system<br />

home network<br />

CN<br />

receiver<br />

HA<br />

Internet<br />

<strong>Mobile</strong> <strong>Communications</strong>: Network Protocols/<strong>Mobile</strong> IP<br />

Overview<br />

home<br />

network<br />

CN<br />

home<br />

network<br />

CN<br />

1.<br />

router<br />

HA<br />

router<br />

router<br />

HA<br />

router<br />

<strong>Mobile</strong> <strong>Communications</strong>: Network Protocols/<strong>Mobile</strong> IP<br />

2.<br />

Internet<br />

Internet<br />

COA<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 9: Network Protocols<br />

Jochen H. Schiller<br />

1999 9.4<br />

FA<br />

1<br />

sender<br />

foreign<br />

network<br />

1. Sender sends to the IP address<br />

of the receiver as usual,<br />

FA works as default router<br />

router<br />

FA<br />

router<br />

FA<br />

3.<br />

4.<br />

MN<br />

foreign<br />

network<br />

MN<br />

foreign<br />

network<br />

9.6.1<br />

9.7.1<br />

MN


University of Karlsruhe<br />

Institute of Telematics<br />

Network integration<br />

Agent Advertisement<br />

� HA and FA periodically send advertisement messages into their<br />

physical subnets<br />

� MN listens to these messages and detects, if it is in the home or a<br />

foreign network (standard case for home network)<br />

� MN reads a COA from the FA advertisement messages<br />

Registration (always limited lifetime!)<br />

� MN signals COA to the HA via the FA, HA acknowledges via FA to MN<br />

� these actions have to be secured by authentication<br />

Advertisement<br />

� HA advertises the IP address of the MN (as for fixed systems), i.e.<br />

standard routing information<br />

� routers adjust their entries, these are stable for a longer time (HA<br />

responsible for a MN over a longer period of time)<br />

� packets to the MN are sent to the HA,<br />

� independent of changes in COA/FA<br />

<strong>Mobile</strong> <strong>Communications</strong>: Network Protocols/<strong>Mobile</strong> IP<br />

Agent advertisement<br />

0 7 8 15 16 23 24 31<br />

type code<br />

checksum<br />

#addresses addr. size<br />

router address 1<br />

lifetime<br />

preference level 1<br />

router address 2<br />

preference level 2<br />

. . .<br />

type length sequence number<br />

registration lifetime R B H F M G V<br />

COA 1<br />

COA 2<br />

reserved<br />

. . .<br />

<strong>Mobile</strong> <strong>Communications</strong>: Network Protocols/<strong>Mobile</strong> IP<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 9: Network Protocols<br />

Jochen H. Schiller<br />

1999 9.5<br />

9.8.1<br />

9.9.1


University of Karlsruhe<br />

Institute of Telematics<br />

Registration<br />

t<br />

MN FA HA<br />

registration<br />

request<br />

registration<br />

reply<br />

registration<br />

request<br />

registration<br />

reply<br />

<strong>Mobile</strong> <strong>Communications</strong>: Network Protocols/<strong>Mobile</strong> IP<br />

<strong>Mobile</strong> IP registration request<br />

<strong>Mobile</strong> <strong>Communications</strong>: Network Protocols/<strong>Mobile</strong> IP<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 9: Network Protocols<br />

Jochen H. Schiller<br />

1999 9.6<br />

t<br />

MN HA<br />

registration<br />

request<br />

registration<br />

reply<br />

0 7 8 15 16 23 24 31<br />

type S B DMG V rsv<br />

home address<br />

home agent<br />

COA<br />

lifetime<br />

identification<br />

extensions . . .<br />

9.10.1<br />

9.11.1


University of Karlsruhe<br />

Institute of Telematics<br />

Encapsulation<br />

new IP header<br />

<strong>Mobile</strong> <strong>Communications</strong>: Network Protocols/<strong>Mobile</strong> IP<br />

Encapsulation I<br />

original IP header original data<br />

new data<br />

outer header inner header original data<br />

Encapsulation of one packet into another as payload<br />

� e.g. IPv6 in IPv4 (6Bone), Multicast in Unicast (Mbone)<br />

<strong>Mobile</strong> <strong>Communications</strong>: Network Protocols/<strong>Mobile</strong> IP<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 9: Network Protocols<br />

Jochen H. Schiller<br />

1999 9.7<br />

9.12.1<br />

� here: e.g. IP-in-IP-encapsulation, minimal encapsulation or GRE<br />

(Generic Record Encapsulation)<br />

IP-in-IP-encapsulation (mandatory in RFC 2003)<br />

� tunnel between HA and COA<br />

ver. IHL TOS<br />

length<br />

IP identification flags fragment offset<br />

TTL IP-in-IP IP checksum<br />

IP address of HA<br />

Care-of address COA<br />

ver. IHL TOS<br />

length<br />

IP identification flags fragment offset<br />

TTL lay. 4 prot. IP checksum<br />

IP address of CN<br />

IP address of MN<br />

TCP/UDP/ ... payload<br />

9.13.1


University of Karlsruhe<br />

Institute of Telematics<br />

Encapsulation II<br />

Minimal encapsulation (optional)<br />

� avoids repetition of identical fields<br />

� e.g. TTL, IHL, version, TOS<br />

� only applicable for unfragmented packets, no space left for<br />

fragment identification<br />

ver. IHL TOS<br />

length<br />

IP identification flags fragment offset<br />

TTL min. encap. IP checksum<br />

IP address of HA<br />

care-of address COA<br />

lay. 4 protoc. S reserved IP checksum<br />

IP address of MN<br />

original sender IP address (if S=1)<br />

TCP/UDP/ ... payload<br />

<strong>Mobile</strong> <strong>Communications</strong>: Network Protocols/<strong>Mobile</strong> IP<br />

Generic Routing Encapsulation<br />

ver. IHL TOS<br />

length<br />

IP identification flags fragment offset<br />

TTL GRE IP checksum<br />

IP address of HA<br />

Care-of address COA<br />

CR K S s rec. rsv. ver.<br />

protocol<br />

checksum (optional)<br />

key (optional)<br />

offset (optional)<br />

sequence number (optional)<br />

routing (optional)<br />

ver. IHL TOS<br />

length<br />

IP identification flags fragment offset<br />

TTL lay. 4 prot. IP checksum<br />

IP address of CN<br />

IP address of MN<br />

TCP/UDP/ ... payload<br />

<strong>Mobile</strong> <strong>Communications</strong>: Network Protocols/<strong>Mobile</strong> IP<br />

outer header<br />

new header<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 9: Network Protocols<br />

Jochen H. Schiller<br />

1999 9.8<br />

GRE<br />

header<br />

original<br />

header<br />

original<br />

header<br />

new data<br />

9.14.1<br />

original data<br />

original data<br />

9.15.1


University of Karlsruhe<br />

Institute of Telematics<br />

Optimization of packet forwarding<br />

Triangular Routing<br />

� sender sends all packets via HA to MN<br />

� higher latency and network load<br />

“Solutions”<br />

� sender learns the current location of MN<br />

� direct tunneling to this location<br />

� HA informs a sender about the location of MN<br />

� big security problems!<br />

Change of FA<br />

� packets on-the-fly during the change can be lost<br />

� new FA informs old FA to avoid packet loss, old FA now forwards<br />

remaining packets to new FA<br />

� this information also enables the old FA to release resources for the<br />

MN<br />

<strong>Mobile</strong> <strong>Communications</strong>: Network Protocols/<strong>Mobile</strong> IP<br />

Change of foreign agent<br />

CN HA FA old FA new MN<br />

request<br />

update<br />

update<br />

ACK<br />

data<br />

ACK<br />

data data<br />

registration<br />

warning<br />

data<br />

<strong>Mobile</strong> <strong>Communications</strong>: Network Protocols/<strong>Mobile</strong> IP<br />

update<br />

registration<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 9: Network Protocols<br />

Jochen H. Schiller<br />

1999 9.9<br />

ACK<br />

data data<br />

data<br />

t<br />

9.16.1<br />

MN changes<br />

location<br />

9.17.1


University of Karlsruhe<br />

Institute of Telematics<br />

Reverse tunneling (RFC 2344)<br />

home network<br />

CN<br />

receiver<br />

HA<br />

3<br />

Internet<br />

<strong>Mobile</strong> <strong>Communications</strong>: Network Protocols/<strong>Mobile</strong> IP<br />

2<br />

<strong>Mobile</strong> IP with reverse tunneling<br />

<strong>Mobile</strong> <strong>Communications</strong>: Network Protocols/<strong>Mobile</strong> IP<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 9: Network Protocols<br />

Jochen H. Schiller<br />

1999 9.10<br />

1<br />

FA<br />

sender<br />

foreign<br />

network<br />

1. MN sends to FA<br />

2. FA tunnels packets to HA<br />

by encapsulation<br />

3. HA forwards the packet to the<br />

receiver (standard case)<br />

9.18.1<br />

Router accept often only “topological correct“ addresses (firewall!)<br />

� a packet from the MN encapsulated by the FA is now topological<br />

correct<br />

� furthermore multicast and TTL problems solved (TTL in the home<br />

network correct, but MN is to far away from the receiver)<br />

Reverse tunneling does not solve<br />

� problems with firewalls, the reverse tunnel can be abused to<br />

circumvent security mechanisms (tunnel hijacking)<br />

� optimization of data paths, i.e. packets will be forwarded through<br />

the tunnel via the HA to a sender (double triangular routing)<br />

The new standard is backwards compatible<br />

� the extensions can be implemented easily and cooperate with<br />

current implementations without these extensions<br />

9.19.1<br />

MN


University of Karlsruhe<br />

Institute of Telematics<br />

<strong>Mobile</strong> IP and IPv6<br />

<strong>Mobile</strong> IP was developed for IPv4, but IPv6 simplifies the protocols<br />

� security is integrated and not an add-on, authentication of<br />

registration is included<br />

� COA can be assigned via auto-configuration (DHCPv6 is one<br />

candidate), every node has address autoconfiguration<br />

� no need for a separate FA, all routers perform router advertisement<br />

which can be used instead of the special agent advertisement<br />

� MN can signal a sender directly the COA, sending via HA not<br />

needed in this case (automatic path optimization)<br />

� „soft“ hand-over, i.e. without packet loss, between two subnets is<br />

supported<br />

� MN sends the new COA to its old router<br />

� the old router encapsulates all incoming packets for the MN and<br />

forwards them to the new COA<br />

� authentication is always granted<br />

<strong>Mobile</strong> <strong>Communications</strong>: Network Protocols/<strong>Mobile</strong> IP<br />

Problems with mobile IP<br />

Security<br />

<strong>Mobile</strong> <strong>Communications</strong>: Network Protocols/<strong>Mobile</strong> IP<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 9: Network Protocols<br />

Jochen H. Schiller<br />

1999 9.11<br />

9.20.1<br />

� authentication with FA problematic, for the FA typically belongs to<br />

another organization<br />

� no protocol for key management and key distribution has been<br />

standardized in the Internet<br />

� patent and export restrictions<br />

Firewalls<br />

� typically mobile IP cannot be used together with firewalls, special<br />

set-ups are needed (such as reverse tunneling)<br />

QoS<br />

� many new reservations in case of RSVP<br />

� tunneling makes it hard to give a flow of packets a special<br />

treatment needed for the QoS<br />

Security, firewalls, QoS etc. are topics of current research and<br />

discussions!<br />

9.21.1


University of Karlsruhe<br />

Institute of Telematics<br />

Security in <strong>Mobile</strong> IP<br />

Security requirements (Security Architecture for the Internet<br />

Protocol, RFC 1825)<br />

� Integrity<br />

any changes to data between sender and receiver can be detected<br />

by the receiver<br />

� Authentication<br />

sender address is really the address of the sender and all data<br />

received is really data sent by this sender<br />

� Confidentiality<br />

only sender and receiver can read the data<br />

� Non-Repudiation<br />

sender cannot deny sending of data<br />

� Traffic Analysis<br />

creation of traffic and user profiles should not be possible<br />

� Replay Protection<br />

receivers can detect replay of messages<br />

<strong>Mobile</strong> <strong>Communications</strong>: Network Protocols/<strong>Mobile</strong> IP<br />

IP security architecture I<br />

not encrypted encrypted<br />

<strong>Mobile</strong> <strong>Communications</strong>: Network Protocols/<strong>Mobile</strong> IP<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 9: Network Protocols<br />

Jochen H. Schiller<br />

1999 9.12<br />

9.22.1<br />

� Two or more partners have to negotiate security mechanisms to<br />

setup a security association<br />

� typically, all partners choose the same parameters and<br />

mechanisms<br />

� Two headers have been defined for securing IP packets:<br />

� Authentication-Header<br />

� guarantees integrity and authenticity of IP packets<br />

� if asymmetric encryption schemes are used, non-repudiation can also<br />

be guaranteed<br />

IP-Header IP header Authentification-Header<br />

authentication header UDP/TCP-Paket<br />

UDP/TCP data<br />

� Encapsulation Security Payload<br />

� protects confidentiality between communication partners<br />

IP header ESP header<br />

encrypted data<br />

9.23.1


University of Karlsruhe<br />

Institute of Telematics<br />

IP security architecture II<br />

� <strong>Mobile</strong> Security Association for registrations<br />

� parameters for the mobile host (MH), home agent (HA), and foreign<br />

agent (FA)<br />

� Extensions of the IP security architecture<br />

� extended authentication of registration<br />

registration request<br />

MH FA registration reply HA<br />

registration reply<br />

� prevention of replays of registrations<br />

� time stamps: 32 bit time stamps + 32 bit random number<br />

� nonces: 32 bit random number (MH) + 32 bit random number (HA)<br />

<strong>Mobile</strong> <strong>Communications</strong>: Network Protocols/<strong>Mobile</strong> IP<br />

Key distribution<br />

MH-FA authentication FA-HA authentication<br />

MH-HA authentication<br />

Home agent distributes session keys<br />

HA<br />

FA MH<br />

response:<br />

E HA-FA {session key}<br />

E HA-MH {session key}<br />

<strong>Mobile</strong> <strong>Communications</strong>: Network Protocols/<strong>Mobile</strong> IP<br />

registration request<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 9: Network Protocols<br />

Jochen H. Schiller<br />

1999 9.13<br />

9.24.1<br />

� foreign agent has a security association with the home agent<br />

� mobile host registers a new binding at the home agent<br />

� home agent answers with a new session key for foreign agent<br />

and mobile node<br />

9.25.1


University of Karlsruhe<br />

Institute of Telematics<br />

DHCP: Dynamic Host Configuration Protocol<br />

Application<br />

� simplification of installation and maintenance of networked<br />

computers<br />

� supplies systems with all necessary information, such as IP<br />

address, DNS server address, domain name, subnet mask, default<br />

router etc.<br />

� enables automatic integration of systems into an Intranet or the<br />

Internet, can be used to acquire a COA for <strong>Mobile</strong> IP<br />

Client/Server-Model<br />

� the client sends via a MAC broadcast a request to the DHCP server<br />

(might be via a DHCP relay)<br />

DHCPDISCOVER<br />

DHCPDISCOVER<br />

client relay<br />

<strong>Mobile</strong> <strong>Communications</strong>: Network Protocols/<strong>Mobile</strong> IP<br />

DHCP - protocol mechanisms<br />

server<br />

(not selected)<br />

determine the<br />

configuration<br />

time<br />

DHCPDISCOVER<br />

DHCPOFFER<br />

DHCPREQUEST<br />

(reject)<br />

<strong>Mobile</strong> <strong>Communications</strong>: Network Protocols/<strong>Mobile</strong> IP<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 9: Network Protocols<br />

Jochen H. Schiller<br />

1999 9.14<br />

server<br />

client<br />

client server<br />

initialization<br />

(selected)<br />

collection of replies<br />

selection of configuration<br />

initialization completed<br />

release<br />

DHCPDISCOVER<br />

DHCPOFFER<br />

DHCPREQUEST<br />

(options)<br />

DHCPACK<br />

DHCPRELEASE<br />

determine the<br />

configuration<br />

confirmation of<br />

configuration<br />

delete context<br />

9.26.1<br />

9.27.1


University of Karlsruhe<br />

Institute of Telematics<br />

DHCP characteristics<br />

Server<br />

� several servers can be configured for DHCP, coordination not yet<br />

standardized (i.e., manual configuration)<br />

Renewal of configurations<br />

Options<br />

� IP addresses have to be requested periodically, simplified protocol<br />

� available for routers, subnet mask, NTP (network time protocol)<br />

timeserver, SLP (service location protocol) directory,<br />

DNS (domain name system)<br />

Big security problems!<br />

� no authentication of DHCP information specified<br />

<strong>Mobile</strong> <strong>Communications</strong>: Network Protocols/<strong>Mobile</strong> IP<br />

Ad hoc networks<br />

Standard <strong>Mobile</strong> IP needs an infrastructure<br />

� Home Agent/Foreign Agent in the fixed network<br />

� DNS, routing etc. are not designed for mobility<br />

Sometimes there is no infrastructure!<br />

� remote areas, ad-hoc meetings, disaster areas<br />

� cost can also be an argument against an infrastructure!<br />

Main topic: routing<br />

� no default router available<br />

� every node should be able to forward<br />

A B C<br />

<strong>Mobile</strong> <strong>Communications</strong>: Network Protocols/<strong>Mobile</strong> IP<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 9: Network Protocols<br />

Jochen H. Schiller<br />

1999 9.15<br />

9.28.1<br />

9.29.1


University of Karlsruhe<br />

Institute of Telematics<br />

Routing examples for an ad-hoc network<br />

N 1<br />

N 4<br />

time = t 1<br />

N 2<br />

N 5<br />

N 3<br />

good link<br />

weak link<br />

<strong>Mobile</strong> <strong>Communications</strong>: Network Protocols/<strong>Mobile</strong> IP<br />

Traditional routing algorithms<br />

Distance Vector<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 9: Network Protocols<br />

Jochen H. Schiller<br />

1999 9.16<br />

N 1<br />

N 4<br />

N 2<br />

time = t 2<br />

� periodic exchange of messages with all physical neighbors that<br />

contain information about who can be reached at what distance<br />

� selection of the shortest path if several paths available<br />

Link State<br />

� periodic notification of all routers about the current state of all<br />

physical links<br />

� router get a complete picture of the network<br />

Example<br />

� ARPA packet radio network (1973), DV-Routing<br />

� every 7.5s exchange of routing tables including link quality<br />

� updating of tables also by reception of packets<br />

� routing problems solved with limited flooding<br />

<strong>Mobile</strong> <strong>Communications</strong>: Network Protocols/<strong>Mobile</strong> IP<br />

N 5<br />

N 3<br />

9.30.1<br />

9.31.1


University of Karlsruhe<br />

Institute of Telematics<br />

Problems of traditional routing algorithms<br />

Dynamic of the topology<br />

� frequent changes of connections, connection quality, participants<br />

Limited performance of mobile systems<br />

� periodic updates of routing tables need energy without contributing<br />

to the transmission of user data, sleep modes difficult to realize<br />

� limited bandwidth of the system is reduced even more due to the<br />

exchange of routing information<br />

� links can be asymmetric, i.e., they can have a direction dependent<br />

transmission quality<br />

Problem<br />

� protocols have been designed for fixed networks with infrequent<br />

changes and typically assume symmetric links<br />

<strong>Mobile</strong> <strong>Communications</strong>: Network Protocols/<strong>Mobile</strong> IP<br />

DSDV (Destination Sequenced Distance Vector)<br />

Expansion of distance vector routing<br />

Sequence numbers for all routing updates<br />

� assures in-order execution of all updates<br />

� avoids loops and inconsistencies<br />

Decrease of update frequency<br />

� store time between first and best announcement of a path<br />

<strong>Mobile</strong> <strong>Communications</strong>: Network Protocols/<strong>Mobile</strong> IP<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 9: Network Protocols<br />

Jochen H. Schiller<br />

1999 9.17<br />

9.32.1<br />

� inhibit update if it seems to be unstable (based on the stored time<br />

values)<br />

9.33.1


University of Karlsruhe<br />

Institute of Telematics<br />

Dynamic source routing I<br />

Split routing into discovering a path and maintainig a path<br />

Discover a path<br />

� only if a path for sending packets to a certain destination is needed<br />

and no path is currently available<br />

Maintaining a path<br />

� only while the path is in use one has to make sure that it can be<br />

used continuously<br />

No periodic updates needed!<br />

<strong>Mobile</strong> <strong>Communications</strong>: Network Protocols/<strong>Mobile</strong> IP<br />

Dynamic source routing II<br />

Path discovery<br />

� broadcast a packet with destination address and unique ID<br />

� if a station receives a broadcast packet<br />

<strong>Mobile</strong> <strong>Communications</strong>: Network Protocols/<strong>Mobile</strong> IP<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 9: Network Protocols<br />

Jochen H. Schiller<br />

1999 9.18<br />

9.34.1<br />

� if the station is the receiver (i.e., has the correct destination address)<br />

then return the packet to the sender (path was collected in the packet)<br />

� if the packet has already been received earlier (identified via ID) then<br />

discard the packet<br />

� otherwise, append own address and broadcast packet<br />

� sender receives packet with the current path (address list)<br />

Optimizations<br />

� limit broadcasting if maximum diameter of the network is known<br />

� caching of address lists (i.e. paths) with help of passing packets<br />

� stations can use the cached information for path discovery (own paths<br />

or paths for other hosts)<br />

9.35.1


University of Karlsruhe<br />

Institute of Telematics<br />

Dynamic Source Routing III<br />

Maintaining paths<br />

� after sending a packet<br />

� wait for a layer 2 acknowledgement (if applicable)<br />

� listen into the medium to detect if other stations forward the packet (if<br />

possible)<br />

� request an explicit acknowledgement<br />

� if a station encounters problems it can inform the sender of a<br />

packet or look-up a new path locally<br />

<strong>Mobile</strong> <strong>Communications</strong>: Network Protocols/<strong>Mobile</strong> IP<br />

Clustering of ad-hoc networks<br />

super cluster<br />

Internet<br />

<strong>Mobile</strong> <strong>Communications</strong>: Network Protocols/<strong>Mobile</strong> IP<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 9: Network Protocols<br />

Jochen H. Schiller<br />

1999 9.19<br />

cluster<br />

9.36.1<br />

9.37.1


University of Karlsruhe<br />

Institute of Telematics<br />

Interference-based routing<br />

Routing based on assumptions about interference between signals<br />

S 1<br />

S 2<br />

neighbors<br />

(i.e. within radio range)<br />

N 7<br />

N 1<br />

N 5<br />

N 3<br />

<strong>Mobile</strong> <strong>Communications</strong>: Network Protocols/<strong>Mobile</strong> IP<br />

Examples for interference based routing<br />

Least Interference Routing (LIR)<br />

<strong>Mobile</strong> <strong>Communications</strong>: Network Protocols/<strong>Mobile</strong> IP<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 9: Network Protocols<br />

Jochen H. Schiller<br />

1999 9.20<br />

N 8<br />

N 6<br />

N 2<br />

N 4<br />

N 9<br />

R 2<br />

R 1<br />

9.38.1<br />

� calculate the cost of a path based on the number of stations that<br />

can receive a transmission<br />

Max-Min Residual Capacity Routing (MMRCR)<br />

� calculate the cost of a path based on a probability function of<br />

successful transmissions and interference<br />

Least Resistance Routing (LRR)<br />

� calculate the cost of a path based on interference, jamming and<br />

other transmissions<br />

LIR is very simple to implement, only information from direct<br />

neighbors is necessary<br />

9.39.1


University of Karlsruhe<br />

Institute of Telematics<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 10: <strong>Mobile</strong> Transport Layer<br />

� Motivation<br />

� TCP-mechanisms<br />

� Indirect TCP<br />

� Snooping TCP<br />

� <strong>Mobile</strong> TCP<br />

<strong>Mobile</strong> <strong>Communications</strong>: <strong>Mobile</strong> Transport Layer<br />

Motivation I<br />

Transport protocols typically designed for<br />

� Fixed end-systems<br />

� Fixed, wired networks<br />

Research activities<br />

� Performance<br />

� Congestion control<br />

� Efficient retransmissions<br />

TCP congestion control<br />

<strong>Mobile</strong> <strong>Communications</strong>: <strong>Mobile</strong> Transport Layer<br />

� Fast retransmit/recovery<br />

� Transmission freezing<br />

� Selective retransmission<br />

� Transaction oriented TCP<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 10: Transport Protocols<br />

Jochen H. Schiller<br />

1999 10.1<br />

10.0.1<br />

� packet loss in fixed networks typically due to (temporary) overload<br />

situations<br />

� router have to discard packets as soon as the buffers are full<br />

� TCP recognizes congestion only indirect via missing<br />

acknowledgements, retransmissions unwise, they would only<br />

contribute to the congestion and make it even worse<br />

� slow-start algorithm as reaction<br />

10.1.1


University of Karlsruhe<br />

Institute of Telematics<br />

Motivation II<br />

TCP slow-start algorithm<br />

� sender calculates a congestion window for a receiver<br />

� start with a congestion window size equal to one segment<br />

� exponential increase of the congestion window up to the congestion<br />

threshold, then linear increase<br />

� missing acknowledgement causes the reduction of the congestion<br />

threshold to one half of the current congestion window<br />

� congestion window starts again with one segment<br />

TCP fast retransmit/fast recovery<br />

� TCP sends an acknowledgement only after receiving a packet<br />

� if a sender receives several acknowledgements for the same<br />

packet, this is due to a gap in received packets at the receiver<br />

� however, the receiver got all packets up to the gap and is actually<br />

receiving packets<br />

� therefore, packet loss is not due to congestion, continue with<br />

current congestion window (do not use slow-start)<br />

<strong>Mobile</strong> <strong>Communications</strong>: <strong>Mobile</strong> Transport Layer<br />

Influences of mobility on TCP-mechanisms<br />

TCP assumes congestion if packets are dropped<br />

� typically wrong in wireless networks, here we often have packet<br />

loss due to transmission errors<br />

<strong>Mobile</strong> <strong>Communications</strong>: <strong>Mobile</strong> Transport Layer<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 10: Transport Protocols<br />

Jochen H. Schiller<br />

1999 10.2<br />

10.2.1<br />

� furthermore, mobility itself can cause packet loss, if e.g. a mobile<br />

node roams from one access point (e.g. foreign agent in <strong>Mobile</strong> IP)<br />

to another while there are still packets in transit to the wrong<br />

access point and forwarding is not possible<br />

The performance of an unchanged TCP degrades severely<br />

� however, TCP cannot be changed fundamentally due to the large<br />

base of installation in the fixed network, TCP for mobility has to<br />

remain compatible<br />

� the basic TCP mechanisms keep the whole Internet together<br />

10.3.1


University of Karlsruhe<br />

Institute of Telematics<br />

Indirect TCP I<br />

Indirect TCP or I-TCP segments the connection<br />

� no changes to the TCP protocol for hosts connected to the wired<br />

Internet, millions of computers use (variants of) this protocol<br />

� optimized TCP protocol for mobile hosts<br />

� splitting of the TCP connection at, e.g., the foreign agent into 2 TCP<br />

connections, no real end-to-end connection any longer<br />

� hosts in the fixed part of the net do not notice the characteristics of<br />

the wireless part<br />

mobile host<br />

„wireless“ TCP<br />

<strong>Mobile</strong> <strong>Communications</strong>: <strong>Mobile</strong> Transport Layer<br />

access point<br />

(foreign agent)<br />

I-TCP socket and state migration<br />

mobile host<br />

socket migration<br />

and state transfer<br />

<strong>Mobile</strong> <strong>Communications</strong>: <strong>Mobile</strong> Transport Layer<br />

access point 1<br />

access point 2<br />

„wired“ Internet<br />

standard TCP<br />

Internet<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 10: Transport Protocols<br />

Jochen H. Schiller<br />

1999 10.3<br />

10.4.1<br />

10.5.1


University of Karlsruhe<br />

Institute of Telematics<br />

Indirect TCP II<br />

Advantages<br />

� no changes in the fixed network necessary, no changes for the hosts<br />

(TCP protocol) necessary, all current optimizations to TCP still work<br />

� transmission errors on the wireless link do not propagate into the fixed<br />

network<br />

� simple to control, mobile TCP is used only for one hop between, e.g.,<br />

a foreign agent and mobile host<br />

� therefore, a very fast retransmission of packets is possible, the short<br />

delay on the mobile hop is known<br />

Disadvantages<br />

� loss of end-to-end semantics, an acknowledgement to a sender does<br />

now not any longer mean that a receiver really got a packet, foreign<br />

agents might crash<br />

� higher latency possible due to buffering of data within the foreign<br />

agent and forwarding to a new foreign agent<br />

<strong>Mobile</strong> <strong>Communications</strong>: <strong>Mobile</strong> Transport Layer<br />

Snooping TCP I<br />

„Transparent“ extension of TCP within the foreign agent<br />

� buffering of packets sent to the mobile host<br />

mobile<br />

host<br />

� lost packets on the wireless link (both directions!) will be<br />

retransmitted immediately by the mobile host or foreign agent,<br />

respectively (so called “local” retransmission)<br />

<strong>Mobile</strong> <strong>Communications</strong>: <strong>Mobile</strong> Transport Layer<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 10: Transport Protocols<br />

Jochen H. Schiller<br />

1999 10.4<br />

10.6.1<br />

� the foreign agent therefore “snoops” the packet flow and recognizes<br />

acknowledgements in both directions, it also filters ACKs<br />

� changes of TCP only within the foreign agent<br />

local retransmission<br />

snooping of ACKs<br />

foreign<br />

agent<br />

buffering of data<br />

end-to-end TCP connection<br />

„wired“ Internet<br />

correspondent<br />

host<br />

10.7.1


University of Karlsruhe<br />

Institute of Telematics<br />

Snooping TCP II<br />

Data transfer to the mobile host<br />

� FA buffers data until it receives ACK of the MH, FA detects packet<br />

loss via duplicated ACKs or time-out<br />

� fast retransmission possible, transparent for the fixed network<br />

Data transfer from the mobile host<br />

� FA detects packet loss on the wireless link via sequence numbers,<br />

FA answers directly with a NACK to the MH<br />

� MH can now retransmit data with only a very short delay<br />

Integration of the MAC layer<br />

� MAC layer often has similar mechanisms to those of TCP<br />

� thus, the MAC layer can already detect duplicated packets due to<br />

retransmissions and discard them<br />

Problems<br />

� snooping TCP does not isolate the wireless link as good as I-TCP<br />

� snooping might be useless depending on encryption schemes<br />

<strong>Mobile</strong> <strong>Communications</strong>: <strong>Mobile</strong> Transport Layer<br />

<strong>Mobile</strong> TCP<br />

Special handling of lengthy and/or frequent disconnections<br />

M-TCP splits as I-TCP does<br />

� unmodified TCP fixed network to supervisory host (SH)<br />

� optimized TCP SH to MH<br />

Supervisory host<br />

� no caching, no retransmission<br />

� monitors all packets, if disconnection detected<br />

� set sender window size to 0<br />

� sender automatically goes into persistent mode<br />

� old or new SH reopen the window<br />

Advantages<br />

<strong>Mobile</strong> <strong>Communications</strong>: <strong>Mobile</strong> Transport Layer<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 10: Transport Protocols<br />

Jochen H. Schiller<br />

1999 10.5<br />

10.8.1<br />

� maintains semantics, supports disconnection, no buffer forwarding<br />

Disadvantages<br />

� loss on wireless link propagated into fixed network<br />

� adapted TCP on wireless link<br />

10.9.1


University of Karlsruhe<br />

Institute of Telematics<br />

Fast retransmit/fast recovery<br />

Change of foreign agent often results in packet loss<br />

� TCP reacts with slow-start although there is no congestion<br />

Forced fast retransmit<br />

� as soon as the mobile host has registered with a new foreign agent,<br />

the MH sends duplicated acknowledgements on purpose<br />

� this forces the fast retransmit mode at the communication partners<br />

� additionally, the TCP on the MH is forced to continue sending with<br />

the actual window size and not to go into slow-start after<br />

registration<br />

Advantage<br />

� simple changes result in significant higher performance<br />

Disadvantage<br />

� further mix of IP and TCP, no transparent approach<br />

<strong>Mobile</strong> <strong>Communications</strong>: <strong>Mobile</strong> Transport Layer<br />

Transmission/time-out freezing<br />

<strong>Mobile</strong> hosts can be disconnected for a longer time<br />

<strong>Mobile</strong> <strong>Communications</strong>: <strong>Mobile</strong> Transport Layer<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 10: Transport Protocols<br />

Jochen H. Schiller<br />

1999 10.6<br />

10.10.1<br />

� no packet exchange possible, e.g., in a tunnel, disconnection due<br />

to overloaded cells or mux. with higher priority traffic<br />

� TCP disconnects after time-out completely<br />

TCP freezing<br />

� MAC layer is often able to detect interruption in advance<br />

� MAC can inform TCP layer of upcoming loss of connection<br />

� TCP stops sending, but does now not assume a congested link<br />

� MAC layer signals again if reconnected<br />

Advantage<br />

� scheme is independent of data<br />

Disadvantage<br />

� TCP on mobile host has to be changed, mechanism depends on<br />

MAC layer<br />

10.11.1


University of Karlsruhe<br />

Institute of Telematics<br />

Selective retransmission<br />

TCP acknowledgements are often cumulative<br />

� ACK n acknowledges correct and in-sequence receipt of packets<br />

up to n<br />

� if single packets are missing quite often a whole packet sequence<br />

beginning at the gap has to be retransmitted (go-back-n), thus<br />

wasting bandwidth<br />

Selective retransmission as one solution<br />

� RFC2018 allows for acknowledgements of single packets, not only<br />

acknowledgements of in-sequence packet streams without gaps<br />

� sender can now retransmit only the missing packets<br />

Advantage<br />

� much higher efficiency<br />

Disadvantage<br />

� more complex software in a receiver, more buffer needed at the<br />

receiver<br />

<strong>Mobile</strong> <strong>Communications</strong>: <strong>Mobile</strong> Transport Layer<br />

Transaction oriented TCP<br />

TCP phases<br />

� connection setup, data transmission, connection release<br />

� using 3-way-handshake needs 3 packets for setup and release,<br />

respectively<br />

� thus, even short messages need a minimum of 7 packets!<br />

Transaction oriented TCP<br />

<strong>Mobile</strong> <strong>Communications</strong>: <strong>Mobile</strong> Transport Layer<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 10: Transport Protocols<br />

Jochen H. Schiller<br />

1999 10.7<br />

10.12.1<br />

� RFC1644, T-TCP, describes a TCP version to avoid this overhead<br />

� connection setup, data transfer and connection release can be<br />

combined<br />

� thus, only 2 or 3 packets are needed<br />

Advantage<br />

� efficiency<br />

Disadvantage<br />

� requires changed TCP<br />

� mobility not longer transparent<br />

10.13.1


University of Karlsruhe<br />

Institute of Telematics<br />

Comparison of different approaches for a “mobile” TCP<br />

Approach Mechanism Advantages Disadvantages<br />

Indirect TCP splits TCP connection<br />

into two connections<br />

Snooping TCP “snoops” data and<br />

acknowledgements, local<br />

retransmission<br />

M-TCP splits TCP connection,<br />

chokes sender via<br />

window size<br />

<strong>Mobile</strong> <strong>Communications</strong>: <strong>Mobile</strong> Transport Layer<br />

isolation of wireless<br />

link, simple<br />

transparent for end-toend<br />

connection, MAC<br />

integration possible<br />

Maintains end-to-end<br />

semantics, handles<br />

long term and frequent<br />

disconnections<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 10: Transport Protocols<br />

loss of TCP semantics,<br />

higher latency at<br />

handover<br />

problematic with<br />

encryption, bad isolation<br />

of wireless link<br />

Bad isolation of wireless<br />

link, processing<br />

overhead due to<br />

bandwidth management<br />

Fast retransmit/ avoids slow-start after simple and efficient mixed layers, not<br />

fast recovery roaming<br />

transparent<br />

Transmission/ freezes TCP state at independent of content changes in TCP<br />

time-out freezing disconnect, resumes or encryption, works for required, MAC<br />

after reconnection longer interrupts dependant<br />

Selective retransmit only lost data very efficient slightly more complex<br />

retransmission<br />

receiver software, more<br />

buffer needed<br />

Transaction combine connection Efficient for certain changes in TCP<br />

oriented TCP setup/release and data<br />

transmission<br />

applications<br />

required, not transparent<br />

10.14.1<br />

Jochen H. Schiller<br />

1999 10.8


University of Karlsruhe<br />

Institute of Telematics<br />

<strong>Mobile</strong> <strong>Communications</strong> <strong>Chapter</strong><br />

11: Support for Mobility<br />

� File systems<br />

� Data bases<br />

� WWW and Mobility<br />

� WAP - Wireless Application Protocol<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

File systems - Motivation<br />

Goal<br />

� efficient and transparent access to shared files within a mobile<br />

environment while maintaining data consistency<br />

Problems<br />

� limited resources of mobile computers (memory, CPU, ...)<br />

� low bandwidth, variable bandwidth, temporary disconnection<br />

� high heterogeneity of hardware and software components (no<br />

standard PC architecture)<br />

� wireless network resources and mobile computer are not very<br />

reliable<br />

� standard file systems (e.g., NFS, network file system) are very<br />

inefficient, almost unusable<br />

Solutions<br />

� replication of data (copying, cloning, caching)<br />

� data collection in advance (hoarding, pre-fetching)<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 11: Support for Mobility<br />

Jochen H. Schiller<br />

1999 11.1<br />

11.0.1<br />

11.1.1


University of Karlsruhe<br />

Institute of Telematics<br />

File systems - consistency problems<br />

THE big problem of distributed, loosely coupled systems<br />

� are all views on data the same?<br />

� how and when should changes be propagated to what users?<br />

Weak consistency<br />

� many algorithms offering strong consistency (e.g., via atomic<br />

updates) cannot be used in mobile environments<br />

� invalidation of data located in caches through a server is very<br />

problematic if the mobile computer is currently not connected to the<br />

network<br />

� occasional inconsistencies have to be tolerated, but conflict<br />

resolution strategies must be applied afterwards to reach<br />

consistency again<br />

Conflict detection<br />

� content independent: version numbering, time-stamps<br />

� content dependent: dependency graphs<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

File systems for limited connectivity I<br />

Symmetry<br />

� Client/Server or Peer-to-Peer relations<br />

� support in the fixed network and/or mobile computers<br />

� one file system or several file systems<br />

� one namespace for files or several namespaces<br />

Transparency<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 11: Support for Mobility<br />

Jochen H. Schiller<br />

1999 11.2<br />

11.2.1<br />

� hide the mobility support, applications on mobile computers should<br />

not notice the mobility<br />

� user should not notice additional mechanisms needed<br />

Consistency model<br />

� optimistic or pessimistic<br />

Caching and Pre-fetching<br />

� single files, directories, subtrees, partitions, ...<br />

� permanent or only at certain points in time<br />

11.3.1


University of Karlsruhe<br />

Institute of Telematics<br />

File systems for limited connectivity II<br />

Data management<br />

� management of buffered data and copies of data<br />

� request for updates, validity of data<br />

� detection of changes in data<br />

Conflict solving<br />

� application specific or general<br />

� errors<br />

Several experimental systems exist<br />

� Coda (Carnegie Mellon University), Little Work (University of<br />

Michigan), Ficus (UCLA) etc.<br />

Many systems use ideas from distributed file systems such as, e.g.,<br />

AFS (Andrew File System)<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

File systems - Coda I<br />

Application transparent extensions of client and server<br />

� changes in the cache manager of a client<br />

� applications use cache replicates of files<br />

� extensive, transparent collection of data in advance for possible<br />

future use („Hoarding“)<br />

Consistency<br />

mobile client<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 11: Support for Mobility<br />

Jochen H. Schiller<br />

1999 11.3<br />

11.4.1<br />

� system keeps a record of changes in files and compares files after<br />

reconnection<br />

� if different users have changed the same file a manual reintegration<br />

of the file into the system is necessary<br />

� optimistic approach, coarse grained (file size)<br />

application cache<br />

server<br />

11.5.1


University of Karlsruhe<br />

Institute of Telematics<br />

File systems - Coda II<br />

Hoarding<br />

� user can pre-determine a file list with<br />

priorities<br />

� contents of the cache determined by<br />

the list and LRU strategy (Last<br />

Recently Used)<br />

� explicit pre-fetching possible<br />

� periodic updating<br />

Comparison of files<br />

� asynchronous, background<br />

� system weighs speed of updating<br />

against minimization of network<br />

traffic<br />

Cache misses<br />

� modeling of user patience: how long<br />

can a user wait for data without an<br />

error message?<br />

� function of file size and bandwidth<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

File systems - Little Work<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

States of a client<br />

disconnection<br />

hoarding<br />

emulating<br />

� Only changes in the cache manager of the client<br />

� Connection modes and use<br />

Connected Partially<br />

Connected<br />

Method normal delayed write optimistic<br />

to the server replication of files<br />

Network continuous continuous connection on<br />

requirements high<br />

bandwidth<br />

bandwidth demand<br />

Application office, WLAN packet radio cellular systems<br />

(e.g., GSM) with<br />

costs per call<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 11: Support for Mobility<br />

weak<br />

connection<br />

connection<br />

strong<br />

connection<br />

write<br />

disconnected<br />

disconnection<br />

Jochen H. Schiller<br />

1999 11.4<br />

11.6.1<br />

Fetch only Disconnected<br />

abort at cache<br />

miss<br />

none<br />

independent<br />

11.7.1


University of Karlsruhe<br />

Institute of Telematics<br />

File systems - further examples<br />

Mazer/Tardo<br />

Ficus<br />

� file synchronization layer between application and local file system<br />

� caching of complete subdirectories from the server<br />

� “Redirector” responses to requests locally if necessary, via the<br />

network if possible<br />

� periodic consistency checks with bi-directional updating<br />

� not a client/server approach<br />

� optimistic approach based on replicates, detection of write conflicts,<br />

conflict resolution<br />

� use of „gossip“ protocols: a mobile computer does not necessarily<br />

need to have direct connection to a server, with the help of other<br />

mobile computers updates can be propagated through the network<br />

MIo-NFS (<strong>Mobile</strong> Integration of NFS)<br />

� NFS extension, pessimistic approach, only token holder can write<br />

� connected/loosely connected/disconnected<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

Database systems in mobile environments<br />

Request processing<br />

� power conserving, location dependent, cost efficient<br />

� example: find the fastest way to a hospital<br />

Replication management<br />

� similar to file systems<br />

Location management<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 11: Support for Mobility<br />

Jochen H. Schiller<br />

1999 11.5<br />

11.8.1<br />

� tracking of mobile users to provide replicated or location dependent<br />

data in time at the right place (minimize access delays)<br />

� example: with the help of the HLR (Home Location Register) in<br />

GSM a mobile user can find a local towing service<br />

Transaction processing<br />

� “mobile” transactions can not necessarily rely on the same models<br />

as transactions over fixed networks (ACID: atomicity, consistency,<br />

isolation, durability)<br />

� therefore models for “weak” transaction<br />

11.9.1


University of Karlsruhe<br />

Institute of Telematics<br />

World Wide Web and mobility<br />

Protocol (HTTP, Hypertext Transfer Protocol) and language<br />

(HTML, Hypertext Markup Language) of the Web have not been<br />

designed for mobile applications and mobile devices, thus<br />

creating many problems!<br />

Typical transfer sizes<br />

� HTTP request: 100-350 byte<br />

� responses avg.


University of Karlsruhe<br />

Institute of Telematics<br />

HTTP 1.0 and mobility I<br />

Characteristics<br />

� stateless, client/server, request/response<br />

� needs a connection oriented protocol (TCP), one connection per<br />

request (some enhancements in HTTP 1.1)<br />

� primitive caching and security<br />

Problems<br />

� designed for large bandwidth (compared to wireless access) and<br />

low delay<br />

� big and redundant protocol headers (readable for humans,<br />

stateless, therefore big headers in ASCII)<br />

� uncompressed content transfer<br />

� using TCP<br />

� huge overhead per request (3-way-handshake) compared with the<br />

content, e.g., of a GET request<br />

� slow-start problematic<br />

� DNS lookup by client causes additional traffic<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

HTTP 1.0 and mobility II<br />

Caching<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 11: Support for Mobility<br />

Jochen H. Schiller<br />

1999 11.7<br />

11.12.1<br />

� quite often disabled by information providers to be able to create<br />

user profiles, usage statistics etc.<br />

� dynamic objects cannot be cached<br />

� numerous counters, time, date, personalization, ...<br />

� mobility quite often inhibits caches<br />

� security problems<br />

� how to use SSL/TLS together with proxies?<br />

� today: many user customized pages, dynamically generated on<br />

request via CGI, ASP, ...<br />

POSTing (i.e., sending to a server)<br />

� can typically not be buffered, very problematic if currently<br />

disconnected<br />

Many unsolved problems!<br />

11.13.1


University of Karlsruhe<br />

Institute of Telematics<br />

HTML and mobile devices<br />

HTML<br />

� designed for computers with “high” performance, color highresolution<br />

display, mouse, hard disk<br />

� typically, web pages optimized for design, not for communication<br />

<strong>Mobile</strong> devices<br />

� often only small, low-resolution displays, very limited input<br />

interfaces (small touch-pads, soft-keyboards)<br />

Additional “features”<br />

� animated GIF, Java AWT, Frames, ActiveX Controls, Shockwave,<br />

movie clips, audio, ...<br />

� many web pages assume true color, multimedia support, highresolution<br />

and many plug-ins<br />

Web pages ignore the heterogeneity of end-systems!<br />

� e.g., without additional mechanisms, large high-resolution pictures<br />

would be transferred to a mobile phone with a low-resolution<br />

display causing high costs<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

Approaches toward WWW for mobile devices<br />

Application gateways, enhanced servers<br />

� simple clients, pre-calculations in the fixed network<br />

� compression, filtering, content extraction<br />

� automatic adaptation to network characteristics<br />

Examples<br />

� picture scaling, color reduction, transformation of the document<br />

format (e.g., PS to TXT)<br />

� detail studies, clipping, zoom<br />

� headline extraction, automatic abstract generation<br />

� HDML (handheld device markup language): simple language<br />

similar to HTML requiring a special browser<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 11: Support for Mobility<br />

Jochen H. Schiller<br />

1999 11.8<br />

11.14.1<br />

� HDTP (handheld device transport protocol): transport protocol for<br />

HDML, developed by Unwired Planet<br />

Problems<br />

� proprietary approaches, require special enhancements for browsers<br />

� heterogeneous devices make approaches more complicated<br />

11.15.1


University of Karlsruhe<br />

Institute of Telematics<br />

Some new issues that might help mobility?<br />

� Push technology<br />

� real pushing, not a client pull needed, channels etc.<br />

� HTTP/1.1<br />

� client/server use the same connection for several request/response<br />

transactions<br />

� multiple requests at beginning of session, several responses in<br />

same order<br />

� enhanced caching of responses (useful if equivalent responses!)<br />

� semantic transparency not always achievable: disconnected,<br />

performance, availability -> most up-to-date version...<br />

� several more tags and options for controlling caching<br />

(public/private, max-age, no-cache etc.)<br />

� relaxing of transparency on app. request or with warning to user<br />

� encoding/compression mechanism, integrity check, security of<br />

proxies, authentication, authorization...<br />

� Cookies: well..., stateful sessions, not really integrated...<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

System support for WWW in a mobile world I<br />

Enhanced browsers<br />

� Pre-fetching, caching, off-line use<br />

� e.g. Internet Explorer<br />

Additional, accompanying application<br />

� Pre-fetching, caching, off-line use<br />

� e.g. original WebWhacker<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

mobile client<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 11: Support for Mobility<br />

browser<br />

mobile client<br />

browser<br />

web<br />

server<br />

Jochen H. Schiller<br />

1999 11.9<br />

11.16.1<br />

integrated<br />

enhancement<br />

web<br />

server<br />

additional<br />

application<br />

11.17.1


University of Karlsruhe<br />

Institute of Telematics<br />

System support for WWW in a mobile world II<br />

Client Proxy<br />

� Pre-fetching, caching, off-line use<br />

� e.g., Caubweb, TeleWeb, Weblicator,<br />

WebWhacker, WebEx, WebMirror,<br />

...<br />

Network Proxy<br />

� adaptive content transformation<br />

for bad connections, pre-fetching,<br />

caching<br />

� e.g., TranSend, Digestor<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

mobile client<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 11: Support for Mobility<br />

mobile client<br />

web<br />

server<br />

browser<br />

web<br />

server<br />

browser<br />

System support for WWW in a mobile world III<br />

Client and network proxy<br />

� combination of benefits plus<br />

simplified protocols<br />

� e.g., MobiScape, WebExpress<br />

Special network subsystem<br />

� adaptive content transformation<br />

for bad connections, pre-fetching,<br />

caching<br />

� e.g., Mowgli<br />

Additional many proprietary server<br />

extensions possible<br />

� “channels”, content negotiation, ...<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

mobile client<br />

browser<br />

web<br />

server<br />

mobile client<br />

browser<br />

web<br />

server<br />

network<br />

proxy<br />

Jochen H. Schiller<br />

1999 11.10<br />

client<br />

proxy<br />

11.18.1<br />

client<br />

proxy<br />

network<br />

proxy<br />

client<br />

proxy<br />

network<br />

proxy<br />

11.19.1


University of Karlsruhe<br />

Institute of Telematics<br />

WAP - Wireless Application Protocol<br />

Goals<br />

� deliver Internet content and enhanced services to mobile devices<br />

and users (mobile phones, PDAs)<br />

� independence from wireless network standards<br />

� open for everyone to participate, protocol specifications will be<br />

proposed to standardization bodies<br />

� applications should scale well beyond current transport media and<br />

device types and should also be applicable to future developments<br />

Platforms<br />

� e.g., GSM (900, 1800, 1900), CDMA IS-95, TDMA IS-136, 3rd generation systems (IMT-2000, UMTS, W-CDMA)<br />

Forum<br />

� WAP Forum, co-founded by Ericsson, Motorola, Nokia, Unwired<br />

Planet<br />

� further information http://www.wapforum.org<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

WAP - scope of standardization<br />

Browser<br />

� “micro browser”, similar to existing, well-known browsers in the<br />

Internet<br />

Script language<br />

� similar to Java script, adapted to the mobile environment<br />

WTA/WTAI<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 11: Support for Mobility<br />

Jochen H. Schiller<br />

1999 11.11<br />

11.20.1<br />

� Wireless Telephony Application (Interface): access to all telephone<br />

functions<br />

Content formats<br />

� e.g., business cards (vCard), calendar events (vCalender)<br />

Protocol layers<br />

� transport layer, security layer, session layer etc.<br />

Working Groups<br />

� WAP Architecture Working Group, WAP Wireless Protocol Working<br />

Group, WAP Wireless Security Working Group, WAP Wireless<br />

Application Working Group<br />

11.21.1


University of Karlsruhe<br />

Institute of Telematics<br />

WAP - reference model and protocols<br />

Internet<br />

A-SAP<br />

WAP<br />

HTML, Java<br />

HTTP<br />

SSL/TLS<br />

TCP/IP,<br />

UDP/IP,<br />

media<br />

Application Layer (WAE)<br />

S-SAP<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

Session Layer (WSP)<br />

TR-SAP<br />

SEC-SAP<br />

T-SAP<br />

Transaction Layer (WTP)<br />

Security Layer (WTLS)<br />

Transport Layer (WDP)<br />

Bearers (GSM, CDPD, ...)<br />

WAE comprises WML (Wireless Markup Language), WML Script, WTAI etc.<br />

WAP - network elements<br />

Internet<br />

HTML<br />

web<br />

server<br />

fixed network<br />

HTML<br />

HTML<br />

PSTN<br />

filter<br />

WML<br />

WML<br />

HTML<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

WAP<br />

proxy<br />

filter/<br />

WAP<br />

proxy<br />

WTA<br />

server<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 11: Support for Mobility<br />

additional services<br />

and applications<br />

WCMP<br />

wireless network<br />

Binary WML<br />

Binary WML<br />

Binary WML<br />

Binary WML: binary file format for clients<br />

Jochen H. Schiller<br />

1999 11.12<br />

11.22.1<br />

11.23.1


University of Karlsruhe<br />

Institute of Telematics<br />

WDP - Wireless Datagram Protocol<br />

Protocol of the transport layer within the WAP architecture<br />

� uses directly transports mechanisms of different network<br />

technologies<br />

� offers a common interface for higher layer protocols<br />

� allows for transparent communication using different transport<br />

technologies<br />

Goals of WDP<br />

� create a worldwide interoperable transport system with the help of<br />

WDP adapted to the different underlying technologies<br />

� transmission services such as SMS in GSM might change, new<br />

services can replace the old ones<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

WDP - Service Primitives<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

T-SAP T-SAP<br />

T-DUnitdata.req<br />

(DA, DP, SA, SP, UD) T-DUnitdata.ind<br />

(SA, SP, UD)<br />

T-DUnitdata.req<br />

(DA, DP, SA, SP, UD)<br />

T-DError.ind<br />

(EC)<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 11: Support for Mobility<br />

Jochen H. Schiller<br />

1999 11.13<br />

11.24.1<br />

11.25.1


University of Karlsruhe<br />

Institute of Telematics<br />

WTLS - Wireless Transport Layer Security<br />

Goals<br />

WTLS<br />

� data integrity<br />

� prevention of changes in data<br />

� privacy<br />

� prevention of tapping<br />

� authentication<br />

� creation of authenticated relations between a mobile device and a<br />

server<br />

� protection against denial-of-service attacks<br />

� protection against repetition of data and unverified data<br />

� is based on the TLS (Transport Layer Security) protocol (former<br />

SSL, Secure Sockets Layer)<br />

� optimized for low-bandwidth communication channels<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

Secure session, full handshake<br />

SEC-Create.req<br />

(SA, SP, DA, DP, KES, CS, CM)<br />

SEC-Create.cnf<br />

(SNM, KR, SID, KES‘, CS‘, CM‘)<br />

SEC-Exchange.ind<br />

originator<br />

SEC-SAP<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

peer<br />

SEC-SAP<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 11: Support for Mobility<br />

Jochen H. Schiller<br />

1999 11.14<br />

11.26.1<br />

SEC-Create.ind<br />

(SA, SP, DA, DP, KES, CS, CM)<br />

SEC-Create.res<br />

(SNM, KR, SID, KES‘, CS‘, CM‘)<br />

SEC-Exchange.req<br />

SEC-Exchange.res<br />

(CC)<br />

SEC-Commit.req SEC-Exchange.cnf<br />

(CC)<br />

SEC-Commit.ind<br />

SEC-Commit.cnf<br />

11.27.1


University of Karlsruhe<br />

Institute of Telematics<br />

SEC-Unitdata - transferring datagrams<br />

SEC-Unitdata.req<br />

(SA, SP, DA, DP, UD) SEC-Unitdata.ind<br />

(SA, SP, DA, DP, UD)<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

Goals<br />

sender<br />

SEC-SAP<br />

receiver<br />

SEC-SAP<br />

WTP - Wireless Transaction Protocol<br />

� different transaction services, offloads applications<br />

� application can select reliability, efficiency<br />

� support of different communication scenarios<br />

� class 0: unreliable message transfer<br />

� class 1: reliable message transfer without result message<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 11: Support for Mobility<br />

Jochen H. Schiller<br />

1999 11.15<br />

11.28.1<br />

� class 2: reliable message transfer with exactly one reliable result message<br />

� supports peer-to-peer, client/server and multicast applications<br />

� low memory requirements, suited to simple devices (< 10kbyte )<br />

� efficient for wireless transmission<br />

� segmentation/reassembly<br />

� selective retransmission<br />

� header compression<br />

� optimized connection setup (setup with data transfer)<br />

11.29.1


University of Karlsruhe<br />

Institute of Telematics<br />

WTP Class 0 transaction<br />

TR-Invoke.req<br />

(SA, SP, DA, DP, A, UD, C=0, H)<br />

initiator<br />

TR-SAP<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

Invoke PDU<br />

responder<br />

TR-SAP<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 11: Support for Mobility<br />

TR-Invoke.ind<br />

(SA, SP, DA, DP, A, UD, C=0, H‘)<br />

WTP Class 1 transaction, no user ack & user ack<br />

TR-Invoke.req<br />

(SA, SP, DA, DP, A, UD, C=1, H)<br />

TR-Invoke.cnf<br />

(H)<br />

TR-Invoke.req<br />

(SA, SP, DA, DP, A, UD, C=1, H)<br />

TR-Invoke.cnf<br />

(H)<br />

initiator<br />

TR-SAP<br />

initiator<br />

TR-SAP<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

Invoke PDU<br />

Ack PDU<br />

Invoke PDU<br />

Ack PDU<br />

responder<br />

TR-SAP<br />

responder<br />

TR-SAP<br />

Jochen H. Schiller<br />

1999 11.16<br />

11.30.1<br />

TR-Invoke.ind<br />

(SA, SP, DA, DP, A, UD, C=1, H‘)<br />

TR-Invoke.ind<br />

(SA, SP, DA, DP, A, UD, C=1, H‘)<br />

TR-Invoke.res<br />

(H‘)<br />

11.31.1


University of Karlsruhe<br />

Institute of Telematics<br />

WTP Class 2 transaction, no user ack, no hold on<br />

TR-Invoke.req<br />

(SA, SP, DA, DP, A, UD, C=2, H)<br />

TR-Invoke.cnf<br />

(H)<br />

TR-Result.ind<br />

(UD*, H)<br />

TR-Result.res<br />

(H)<br />

initiator<br />

TR-SAP<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

Invoke PDU<br />

Result PDU<br />

Ack PDU<br />

responder<br />

TR-SAP<br />

WTP Class 2 transaction, user ack<br />

TR-Invoke.req<br />

(SA, SP, DA, DP, A, UD, C=2, H)<br />

TR-Invoke.cnf<br />

initiator<br />

TR-SAP<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

Invoke PDU<br />

(H)Ack PDU<br />

TR-Result.ind<br />

(UD*, H)<br />

TR-Result.res<br />

(H)<br />

Result PDU<br />

Ack PDU<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 11: Support for Mobility<br />

TR-Invoke.ind<br />

(SA, SP, DA, DP, A, UD, C=2, H‘)<br />

TR-Result.req<br />

(UD*, H‘)<br />

TR-Result.cnf<br />

(H‘)<br />

responder<br />

TR-SAP<br />

Jochen H. Schiller<br />

1999 11.17<br />

11.32.1<br />

TR-Invoke.ind<br />

(SA, SP, DA, DP, A, UD, C=2, H‘)<br />

TR-Invoke.res<br />

(H‘)<br />

TR-Result.req<br />

(UD*, H‘)<br />

TR-Result.cnf<br />

(H‘)<br />

11.33.1


University of Karlsruhe<br />

Institute of Telematics<br />

WTP Class 2 transaction, hold on, no user ack<br />

TR-Invoke.req<br />

(SA, SP, DA, DP, A, UD, C=2, H)<br />

TR-Invoke.cnf<br />

(H)<br />

TR-Result.ind<br />

(UD*, H)<br />

TR-Result.res<br />

(H)<br />

initiator<br />

TR-SAP<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

Invoke PDU<br />

Ack PDU<br />

Result PDU<br />

Ack PDU<br />

responder<br />

TR-SAP<br />

WSP - Wireless Session Protocol<br />

Goals<br />

� HTTP 1.1 functionality<br />

� Request/reply, content type negotiation, ...<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 11: Support for Mobility<br />

TR-Invoke.ind<br />

(SA, SP, DA, DP, A, UD, C=2, H‘)<br />

TR-Result.req<br />

(UD*, H‘)<br />

TR-Result.cnf<br />

(H‘)<br />

� support of client/server, transactions, push technology<br />

� key management, authentication, Internet security services<br />

� session management (interruption, resume,...)<br />

Services<br />

� session management (establish, release, suspend, resume)<br />

� capability negotiation<br />

� content encoding<br />

WSP/B (Browsing)<br />

� HTTP/1.1 functionality - but binary encoded<br />

� exchange of session headers<br />

� push and pull data transfer<br />

� asynchronous requests<br />

Jochen H. Schiller<br />

1999 11.18<br />

11.34.1<br />

11.35.1


University of Karlsruhe<br />

Institute of Telematics<br />

WSP/B session establishment<br />

S-Connect.req<br />

(SA, CA, CH, RC)Connect PDU<br />

S-Connect.cnf<br />

(SH, NC)<br />

client<br />

S-SAP<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

ConnReply PDU<br />

WTP Class 2<br />

transaction<br />

server<br />

S-SAP<br />

WSP/B session suspend/resume<br />

S-Connect.ind<br />

(SA, CA, CH, RC)<br />

S-Connect.res<br />

(SH, NC)<br />

S-Suspend.reqSuspend PDU S-Suspend.ind<br />

S-Suspend.ind<br />

(R)<br />

client<br />

S-SAP<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

server<br />

S-SAP<br />

~ ~<br />

S-Resume.req<br />

(SA, CA) S-Resume.ind<br />

(SA, CA)<br />

S-Resume.cnf<br />

WTP Class 0<br />

transaction<br />

Resume PDU<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 11: Support for Mobility<br />

Jochen H. Schiller<br />

1999 11.19<br />

(R)<br />

Reply PDU S-Resume.res<br />

WTP Class 2<br />

transaction<br />

11.36.1<br />

11.37.1


University of Karlsruhe<br />

Institute of Telematics<br />

WSP/B session termination<br />

S-Disconnect.req<br />

(R)<br />

client<br />

S-SAP<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

Disconnect PDU<br />

S-Disconnect.ind<br />

(R) WTP Class 0<br />

transaction<br />

WSP/B method invoke<br />

S-MethodInvoke.req<br />

(CTID, M, RU)Method PDU<br />

S-MethodInvoke.cnf<br />

(CTID)<br />

S-MethodResult.ind<br />

(CTID, S, RH, RB)<br />

client<br />

S-SAP<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

Reply PDU<br />

WTP Class 2<br />

transaction<br />

server<br />

S-SAP<br />

server<br />

S-SAP<br />

S-Disconnect.ind<br />

(R)<br />

S-MethodInvoke.ind<br />

(STID, M, RU)<br />

S-MethodInvoke.res<br />

(STID)<br />

S-MethodResult.req<br />

(STID, S, RH, RB)<br />

S-MethodResult.res<br />

(CTID) S-MethodResult.cnf<br />

(STID)<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 11: Support for Mobility<br />

Jochen H. Schiller<br />

1999 11.20<br />

11.38.1<br />

11.39.1


University of Karlsruhe<br />

Institute of Telematics<br />

WSP/B over WTP - method invocation<br />

S-MethodInvoke.req<br />

S-MethodInvoke.cnf<br />

S-MethodResult.ind<br />

S-MethodResult.res<br />

client<br />

S-SAP<br />

TR-Invoke.req<br />

TR-Invoke.cnf<br />

TR-Result.ind<br />

TR-Result.res<br />

initiator<br />

TR-SAP<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

Invoke(Method)<br />

Ack PDU<br />

Result(Reply)<br />

Ack PDU<br />

responder<br />

TR-SAP<br />

server<br />

S-SAP<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 11: Support for Mobility<br />

TR-Invoke.ind S-MethodInvoke.ind<br />

TR-Invoke.res S-MethodInvoke.res<br />

TR-Result.req S-MethodResult.req<br />

TR-Result.cnf<br />

S-MethodResult.cnf<br />

Jochen H. Schiller<br />

1999 11.21<br />

11.40.1<br />

WSP/B over WTP - asynchronous, unordered requests<br />

S-MethodInvoke_1.req<br />

S-MethodInvoke_2.req<br />

S-MethodInvoke_3.req<br />

S-MethodResult_1.ind<br />

S-MethodResult_3.ind<br />

S-MethodInvoke_4.req<br />

S-MethodResult_4.ind<br />

S-MethodResult_2.ind<br />

client<br />

S-SAP<br />

server<br />

S-SAP<br />

S-MethodInvoke_2.ind<br />

S-MethodInvoke_1.ind<br />

S-MethodResult_1.req<br />

S-MethodInvoke_3.ind<br />

S-MethodResult_3.req<br />

S-MethodResult_2.req<br />

S-MethodInvoke_4.ind<br />

S-MethodResult_4.req<br />

11.41.1


University of Karlsruhe<br />

Institute of Telematics<br />

WSP/B - confirmend/non-confirmed push<br />

S-Push.ind<br />

(PH, PB)<br />

S-ConfirmedPush.ind<br />

(CPID, PH, PB)<br />

S-ConfirmedPush.res<br />

(CPID)<br />

client<br />

S-SAP<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

WSP/B over WDP<br />

S-Unit-MethodInvoke.req<br />

(SA, CA, TID, M, RU)<br />

S-Unit-MethodResult.ind<br />

(CA, SA, TID, S, RH, RB)<br />

S-Unit-Push.ind<br />

(CA, SA, PID, PH, PB)<br />

client<br />

S-SAP<br />

client<br />

S-SAP<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

Push PDU<br />

WTP Class 0<br />

transaction<br />

ConfPush PDU<br />

WTP Class 1<br />

transaction<br />

Method PDU<br />

Reply PDU<br />

Push PDU<br />

WDP Unitdata<br />

service<br />

server<br />

S-SAP<br />

S-Push.req<br />

(PH, PB)<br />

server<br />

S-SAP<br />

S-ConfirmedPush.req<br />

(SPID, PH, PB)<br />

server<br />

S-SAP<br />

S-ConfirmedPush.cnf<br />

(SPID)<br />

S-Unit-MethodInvoke.ind<br />

(SA, CA, TID, M, RU)<br />

S-Unit-MethodResult.req<br />

(CA, SA, TID, S, RH, RB)<br />

S-Unit-Push.req<br />

(CA, SA, PID, PH, PB)<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 11: Support for Mobility<br />

Jochen H. Schiller<br />

1999 11.22<br />

11.42.1<br />

11.43.1


University of Karlsruhe<br />

Institute of Telematics<br />

WAE - Wireless Application Environment<br />

Goals<br />

� network independent application environment for low-bandwidth,<br />

wireless devices<br />

� integrated Internet/WWW programming model with high interoperability<br />

Requirements<br />

� device and network independent, international support<br />

� manufacturers can determine look-and-feel, user interface<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 11: Support for Mobility<br />

� considerations of slow links, limited memory, low computing power, small<br />

display, simple user interface (compared to desktop computers)<br />

Components<br />

� architecture: application model, browser, gateway, server<br />

� WML: XML-Syntax, based on card stacks, variables, ...<br />

� WMLScript: procedural, loops, conditions, ... (similar to JavaScript)<br />

� WTA: telephone services, such as call control, text messages, phone<br />

book, ... (accessible from WML/WMLScript)<br />

� content formats: vCard, vCalendar, Wireless Bitmap, WML, ...<br />

WAE logical model<br />

Origin Servers<br />

web<br />

server<br />

other content<br />

server<br />

response<br />

with<br />

content<br />

push<br />

content<br />

request<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

Jochen H. Schiller<br />

1999 11.23<br />

11.44.1<br />

Gateway Client<br />

encoders<br />

&<br />

decoders<br />

encoded<br />

response<br />

with<br />

content<br />

encoded<br />

push<br />

content<br />

encoded<br />

request<br />

WTA<br />

user agent<br />

WML<br />

user agent<br />

other<br />

WAE<br />

user agents<br />

11.45.1


University of Karlsruhe<br />

Institute of Telematics<br />

Wireless Markup Language (WML)<br />

WML follows deck and card metaphor<br />

� WML document consists of many cards, cards are grouped to<br />

decks<br />

� a deck is similar to an HTML page, unit of content transmission<br />

� WML describes only intent of interaction in an abstract manner<br />

� presentation depends on device capabilities<br />

Features<br />

� text and images<br />

� user interaction<br />

� navigation<br />

� context management<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

WML - example<br />

<br />

<br />

<br />

<br />

<br />

This is a simple first card!<br />

On the next you can choose ...<br />

<br />

<br />

... your favorite pizza:<br />

<br />

Margherita<br />

Funghi<br />

Vulcano<br />

<br />

<br />

<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 11: Support for Mobility<br />

Jochen H. Schiller<br />

1999 11.24<br />

11.46.1<br />

11.47.1


University of Karlsruhe<br />

Institute of Telematics<br />

WMLScript<br />

Complement to WML<br />

Provides general scripting capabilities<br />

Features<br />

� validity check of user input<br />

� check input before sent to server<br />

� access to device facilities<br />

� hardware and software (phone call, address book etc.)<br />

� local user interaction<br />

� interaction without round-trip delay<br />

� extensions to the device software<br />

� configure device, download new functionality after deployment<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

WMLScript - example<br />

function pizza_test(pizza_type) {<br />

var taste = "unknown";<br />

if (pizza_type = "Margherita") {<br />

taste = "well... ";<br />

}<br />

else {<br />

if (pizza_type = "Vulcano") {<br />

taste = "quite hot";<br />

};<br />

};<br />

return taste;<br />

};<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 11: Support for Mobility<br />

Jochen H. Schiller<br />

1999 11.25<br />

11.48.1<br />

11.49.1


University of Karlsruhe<br />

Institute of Telematics<br />

Wireless Telephony Application (WTA)<br />

Collection of telephony specific extensions<br />

Extension of basic WAE application model<br />

� content push<br />

� server can push content to the client<br />

� client may now be able to handle unknown events<br />

� handling of network events<br />

� table indicating how to react on certain events from the network<br />

� access to telephony functions<br />

Example<br />

� any application on the client may access telephony functions<br />

� calling a number (WML)<br />

wtai://wp/mc;07216086415<br />

� calling a number (WMLScript)<br />

WTAPublic.makeCall("07216086415");<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

WTA logical architecture<br />

WTA Origin Server<br />

WML<br />

Scripts<br />

WML<br />

decks<br />

WTA & WML<br />

server<br />

WTA<br />

services<br />

network operator<br />

trusted domain<br />

third party<br />

origin servers<br />

other origin<br />

servers<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

other telephone networks<br />

mobile<br />

network<br />

WAP Gateway<br />

encoders<br />

&<br />

decoders<br />

firewall<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 11: Support for Mobility<br />

Jochen H. Schiller<br />

1999 11.26<br />

11.50.1<br />

Client<br />

WTA<br />

user agent<br />

WAE<br />

services<br />

11.51.1


University of Karlsruhe<br />

Institute of Telematics<br />

Voice box example<br />

WTA client WTA server mobile network voice box server<br />

push deck<br />

display deck;<br />

user selects<br />

wait for call<br />

accept call<br />

request<br />

generate<br />

new deck<br />

translate<br />

call indication<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

indicate new voice message<br />

play requested voice message<br />

voice connection<br />

setup call<br />

accept call accept call<br />

WTAI - example with WML only<br />

<br />

<br />

<br />

Please vote for your champion!<br />

<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 11: Support for Mobility<br />

setup call<br />

incoming voice<br />

message<br />

Jochen H. Schiller<br />

1999 11.27<br />

11.52.1<br />

<br />

<br />

Please choose:<br />

<br />

Mickey<br />

Donald<br />

Pluto<br />

<br />

<br />

<br />

11.53.1


University of Karlsruhe<br />

Institute of Telematics<br />

WTAI - example with WML and WMLScript I<br />

function voteCall(Nr) {<br />

var j = WTACallControl.setup(Nr,1);<br />

if (j>=0) {<br />

WMLBrowser.setVar("Message", "Called");<br />

WMLBrowser.setVar("No", Nr);<br />

}<br />

else {<br />

WMLBrowser.setVar("Message", "Error!");<br />

WMLBrowser.setVar("No", j);<br />

}<br />

WMLBrowser.go("showResult");<br />

}<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

WTAI - example with WML and WMLScript II<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 11: Support for Mobility<br />

Jochen H. Schiller<br />

1999 11.28<br />

11.54.1<br />

<br />

<br />

<br />

Please vote for your champion!<br />

<br />

<br />

<br />

Please choose:<br />

<br />

Mickey<br />

Donald<br />

Pluto<br />

<br />

<br />

<br />

Status of your call: $Message $No<br />

<br />

<br />

11.55.1


University of Karlsruhe<br />

Institute of Telematics<br />

Examples for WAP protocol stacks<br />

WAE user agent<br />

UDP<br />

WAE<br />

WSP<br />

WTP<br />

IP<br />

(GPRS, ...)<br />

WTLS<br />

WDP<br />

non IP<br />

(SMS, ...)<br />

<strong>Mobile</strong> <strong>Communications</strong>: Support for Mobility<br />

transaction based<br />

application<br />

UDP<br />

WTP<br />

IP<br />

(GPRS, ...)<br />

WTLS<br />

WDP<br />

non IP<br />

(SMS, ...)<br />

WAP standardization<br />

outside WAP<br />

<strong>Mobile</strong> <strong>Communications</strong><br />

<strong>Chapter</strong> 11: Support for Mobility<br />

datagram based<br />

application<br />

Jochen H. Schiller<br />

1999 11.29<br />

UDP<br />

IP<br />

(GPRS, ...)<br />

1. 2. 3.<br />

typical WAP<br />

application with<br />

complete protocol<br />

stack<br />

WTLS<br />

WDP<br />

non IP<br />

(SMS, ...)<br />

pure data application<br />

with/without<br />

additional security<br />

11.56.1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!