03.01.2013 Views

Modelling of ITER torus Vacuum system - KIT

Modelling of ITER torus Vacuum system - KIT

Modelling of ITER torus Vacuum system - KIT

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Network <strong>Modelling</strong> <strong>of</strong> Complex <strong>Vacuum</strong> <strong>system</strong>s<br />

Volker Hauer, Christian Day<br />

INSTITUTE FOR TECHNICAL PHYSICS – VACUUM DEPARTMENT<br />

<strong>KIT</strong> – University <strong>of</strong> the State <strong>of</strong> Baden-Württemberg and<br />

National Laboratory <strong>of</strong> the Helmholtz Association<br />

www.itep.kit.edu


Outline<br />

1. <strong>ITER</strong>VAC Basics<br />

2. Experimental Validation<br />

3. Simulation <strong>of</strong> the <strong>ITER</strong> Torus <strong>Vacuum</strong> System<br />

4. Conclusions and Outlook<br />

5. References<br />

2 16-19 May, 2011 64th IUVSTA Workshop on <strong>Vacuum</strong> Gas Dynamics, Leinsweiler, Germany<br />

Volker Hauer


Basic framework <strong>of</strong> the <strong>ITER</strong>VAC code<br />

<strong>ITER</strong>VAC baseline equation with 4 fitting parameter for dimensionless mass flow :<br />

�� � �<br />

�� �� � � � � ��<br />

� � ���<br />

Free molecular flow limit:<br />

lim<br />

��→� ��� � �� � �� ���<br />

Viscous flow limit:<br />

lim<br />

��→� �� �� �� ������ ����� �<br />

���� � ��� � 8�<br />

�� � ⁄ � �� 3 16-19 May, 2011 64th IUVSTA Workshop on Practical Applications and Methods <strong>of</strong> Gas Dynamics<br />

for <strong>Vacuum</strong> Science and Technology, May 16-19, 2011<br />

For isothermal, isotropic Maxwellian<br />

distribution<br />

4 �<br />

�� �� �<br />

�� � � More general<br />

approach:<br />

��� 16 �<br />

� � ���� �<br />

Volker Hauer


Interpretation <strong>of</strong> the factors c i<br />

c 1<br />

c 2 + c 3<br />

c 4<br />

→ viscous flow limit (known from CFD)<br />

→ free molecular flow limit (known from TPMC)<br />

→ fixed parameter describing the influence <strong>of</strong> the beaming effect<br />

The factors c i are known and can be used for predictive simulations.<br />

Geometry clam c2 c3 c4 Circular 1.0 1.1162 0.3291 1.4<br />

Square 1.12462 1.4862 0.5735 1.4<br />

Rectangular (2x1) 1.02907 1.6655 0.7318 1.4<br />

Triangular 1.2 1.9706 0.9632 1.4<br />

Elliptic (2x1) 0.95108 1.3404 0.5054 1.4<br />

Infinite gap 2/3 0.7133 1.1918 1.4<br />

For short channels (L/d


Kn<br />

1<br />

0.1<br />

0.01<br />

Flow regimes - Approaches<br />

�<br />

0<br />

Boltzmann<br />

equation or<br />

Kinetic<br />

equations<br />

(BGK, S)<br />

DSMC / Test particle MC / MD /<br />

Method <strong>of</strong> Angular Coefficients. etc<br />

DSMC / Empirical etc.<br />

Navier-Stokes with slip boundary conditions<br />

<strong>ITER</strong>VAC,<br />

LOPSTER Navier-Stokes with no slip boundary<br />

conditions/ Euler equations<br />

This talk<br />

ProVac3D – A Test Particle Monte<br />

Carlo Program For Complex<br />

<strong>Vacuum</strong> Systems. Xueli Luo<br />

5 16-19 May, 2011 64th IUVSTA Workshop on Practical Applications and Methods <strong>of</strong> Gas Dynamics<br />

for <strong>Vacuum</strong> Science and Technology, May 16-19, 2011<br />

Benchmark Problem.<br />

Direct Simulation Monte<br />

Carlo <strong>of</strong> Gas Flow<br />

Through an Orifice and<br />

Short Tube.<br />

Stylianos Varoutis<br />

Volker Hauer


Capabilities <strong>of</strong> <strong>ITER</strong>VAC<br />

Provide the modeling capability for networks <strong>of</strong> channels<br />

describe the flows in the whole range <strong>of</strong> the Knudsen number with an<br />

acceptable (not best possible) accuracy<br />

produce the calculation results in a short time<br />

best for use within the process <strong>of</strong> vacuum <strong>system</strong> design<br />

6 16-19 May, 2011 64th IUVSTA Workshop on <strong>Vacuum</strong> Gas Dynamics, Leinsweiler, Germany<br />

Volker Hauer


<strong>ITER</strong>VAC networking<br />

<strong>ITER</strong>VAC provides the user with all tools to build up 2D networks.<br />

gas source<br />

binding node<br />

channel<br />

<strong>ITER</strong>VAC calculates the mass flow rate through every channel depending on the<br />

pressure <strong>of</strong> the gas source and inside the pumps.<br />

7 16-19 May, 2011 64th IUVSTA Workshop on Practical Applications and Methods <strong>of</strong> Gas Dynamics<br />

for <strong>Vacuum</strong> Science and Technology, May 16-19, 2011<br />

pump<br />

Volker Hauer


Experimental validation <strong>of</strong> <strong>ITER</strong>VAC<br />

� Simulations with <strong>ITER</strong>VAC were performed and compared with the experimental<br />

results <strong>of</strong> measurements with circular channels with a length to diameter ratio <strong>of</strong><br />

80, 60, 40, 10.<br />

� The diameter <strong>of</strong> all test channel is 16 mm. The lengths are 1280, 963, 644 and 157<br />

mm, respectively.<br />

� Knudsen numbers and conductances are calculated for 273 K.<br />

� The experiments were performed in the TRANSFLOW test rig (see presentation <strong>of</strong><br />

T. Giegerich at Monday).<br />

8 16-19 May, 2011 64th IUVSTA Workshop on Practical Applications and Methods <strong>of</strong> Gas Dynamics<br />

for <strong>Vacuum</strong> Science and Technology, May 16-19, 2011<br />

Volker Hauer


Conductance [l/s]<br />

Results L/d=80 and 60<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0,00 0,01 0,10<br />

Knudsen number<br />

1,00 10,00<br />

9 16-19 May, 2011 64th IUVSTA Workshop on Practical Applications and Methods <strong>of</strong> Gas Dynamics<br />

for <strong>Vacuum</strong> Science and Technology, May 16-19, 2011<br />

L/d=80; Experiment<br />

l/d=80; Simulation<br />

L/d=60; Experiment<br />

L/d=60; Simulation<br />

Volker Hauer


Conductance [l/s]<br />

Results L/d=40 and 10<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0,00 0,01 0,10 1,00 10,00 100,00<br />

Knudsen number<br />

10 16-19 May, 2011 64th IUVSTA Workshop on Practical Applications and Methods <strong>of</strong> Gas Dynamics<br />

for <strong>Vacuum</strong> Science and Technology, May 16-19, 2011<br />

L/d=40; Experiment<br />

l/d=40; Simulation<br />

L/d=10; Experiment<br />

L/d=10; Simulation<br />

Volker Hauer


<strong>Modelling</strong> <strong>of</strong> <strong>ITER</strong> <strong>torus</strong> <strong>Vacuum</strong> <strong>system</strong> (1)<br />

Complex vacuum <strong>system</strong>s in <strong>ITER</strong><br />

11 16-19 May, 2011 64th IUVSTA Workshop on Practical Applications and Methods <strong>of</strong> Gas Dynamics<br />

for <strong>Vacuum</strong> Science and Technology, May 16-19, 2011<br />

Torus vacuum <strong>system</strong><br />

Throughputs and pressure differences are needed in all flow regimes.<br />

Volker Hauer


<strong>Modelling</strong> <strong>of</strong> <strong>ITER</strong> <strong>torus</strong> <strong>Vacuum</strong> <strong>system</strong> (2)<br />

12 16-19 May, 2011 64th IUVSTA Workshop on Practical Applications and Methods <strong>of</strong> Gas Dynamics<br />

for <strong>Vacuum</strong> Science and Technology, May 16-19, 2011<br />

The <strong>ITER</strong>VAC model includes:<br />

� The flow path <strong>of</strong> the 54<br />

divertor cassettes,<br />

� 4 pumping ducts and the<br />

connection to the 8<br />

cryopumps,<br />

� The flow path caused by bypass<br />

leaks,<br />

� The blockage by diagnostic<br />

tools.<br />

Volker Hauer


<strong>Modelling</strong> <strong>of</strong> <strong>ITER</strong> <strong>torus</strong> <strong>Vacuum</strong> <strong>system</strong> (3)<br />

Maximum Throughput [Pa m³/s]<br />

Resulted maximum throughput for deuterium:<br />

4500<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

Torus pumps<br />

Plasma<br />

0 2 4 6 8 10 12<br />

Divertor dome pressure [Pa]<br />

13 16-19 May, 2011 64th IUVSTA Workshop on Practical Applications and Methods <strong>of</strong> Gas Dynamics<br />

for <strong>Vacuum</strong> Science and Technology, May 16-19, 2011<br />

Input parameter:<br />

� divertor pressure 1-10 Pa<br />

� deuterium (single gas)<br />

� temperature 420 K<br />

Volker Hauer


Conclusions and Outlook<br />

� In all cases, a good agreement is observed between corresponding numerical and<br />

experimental results for specific range <strong>of</strong> Knudsen number. The best agreement<br />

was found for the channel with L/d=10.<br />

� The average relative error is <strong>of</strong> the order <strong>of</strong> 20%.<br />

� The largest discrepancies between experimental and numerical results are<br />

observed in laminar flows, whereas in the free molecular regime the smallest<br />

differences are found.<br />

� The present work will be extended to the study <strong>of</strong> different cross sections and in the<br />

intermediate length range <strong>of</strong> 5< L/D h


References (1)<br />

Proceedings:<br />

1. C. Day, V. Hauer, G. Class, D. Valougeorgis, and M. Wykes, “Development <strong>of</strong> a<br />

simulation code for <strong>ITER</strong> vacuum flows”, IAEA Fusion Energy Conference,<br />

Chengdu, China (2006).<br />

2. S. Varoutis, V. Hauer, C. Day, “Investigation <strong>of</strong> gas flows in fusion reactors”. AVS<br />

56th International Symposium, San Jose-California, USA (2009).<br />

3. S. Varoutis, V. Hauer, C. Day, S. Pantazis and D. Valougeorgis, “Experimental and<br />

numerical investigation in flow configurations related to the vacuum <strong>system</strong>s <strong>of</strong><br />

fusion reactors”. 9th International Symposium on Fusion Nuclear Technology,<br />

Dalian, China (2009).<br />

15 16-19 May, 2011 64th IUVSTA Workshop on Practical Applications and Methods <strong>of</strong> Gas Dynamics<br />

for <strong>Vacuum</strong> Science and Technology, May 16-19, 2011<br />

Volker Hauer


References (2)<br />

Journals:<br />

4. S. Varoutis, S. Naris, V. Hauer, C. Day and D. Valougeorgis, “Experimental and<br />

computational investigation <strong>of</strong> gas flows through long channels <strong>of</strong> various cross<br />

sections in the whole range <strong>of</strong> the Knudsen number”, JVSTA, 27 (1), 89-100<br />

(2009).<br />

5. S. Varoutis, V. Hauer, C. Day, S. Pantazis and D. Valougeorgis, “Experimental<br />

and numerical investigation in flow configurations related to the vacuum<br />

<strong>system</strong>s <strong>of</strong> fusion reactors”, FED, 85, 1798–1802 (2010).<br />

6. V. Hauer, Chr. Day, “Conductance modelling <strong>of</strong> <strong>ITER</strong> vacuum <strong>system</strong>s”, FED, 84,<br />

903–907 (2009).<br />

16 16-19 May, 2011 64th IUVSTA Workshop on Practical Applications and Methods <strong>of</strong> Gas Dynamics<br />

for <strong>Vacuum</strong> Science and Technology, May 16-19, 2011<br />

Volker Hauer

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!