04.01.2013 Views

Program and Abstracts - University of Victoria

Program and Abstracts - University of Victoria

Program and Abstracts - University of Victoria

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1<br />

IRIS-13 <strong>Victoria</strong>


IRIS-13 Schedule <strong>of</strong> Events at a Glance<br />

2<br />

IRIS-13 <strong>Victoria</strong><br />

Sunday 29 July Monday 30 July Tuesday 31 July Wednesday 1 August Thursday 2 August<br />

8:30<br />

Registration Registration Registration Registration<br />

8:40 Welcome<br />

8:50 Hsieh Jaekle Piers 8:50 Liu, S-Y Wisian-Neilson<br />

9:00 Bertr<strong>and</strong> 9:00 O19/Po65 B O20 P5 A O38 B O39<br />

9:10 P1 Sasamori Knight Fischer Vargas-Baca<br />

9:20 A O21 B O22 A O40 B O41<br />

9:30 Saito, M Rosenberg Reed 9:30 Macdonald Uhlig<br />

9:40 Bourissou 9:40 A O23 B O24 K7 A O42 B O43<br />

9:50 K1 West Tokitoh Ruzicka Less<br />

10:00 A O25 B O26 Weig<strong>and</strong> 10:00 A O44 B O45<br />

10:10 Laitinen 10:10 Percival Knapp K8 Neilson Baker<br />

10:20 K2 A O27 B O28 A O46 B O47<br />

10:30 C<strong>of</strong>fee C<strong>of</strong>fee C<strong>of</strong>fee<br />

10:40 C<strong>of</strong>fee 10:30-10:50 10:30-10:50 10:30-10:50<br />

10:50 10:40-11:00 Saito, S Rivard Aldridge 10:50 Hayward Moya-Cabrera<br />

11:00 Dehnen 11:00 A O29 B O30 K9 A O48 B O49<br />

11:10 K3 Liu, C-W Price Boere Jancik<br />

11:20 A O31 B O32 Frenking 11:20 A O50 B O51<br />

11:30 Sekiguchi 11:30 Mori Passmore K10 Masuda Jurkschat<br />

11:40 P2 A O33 B O34 A O52 B O53<br />

11:50 Tacke Dielmann Hey-Hawkins 11:50 Roesler Hasken<br />

12:00 A O35 B O36 P6 A O54 B O55<br />

12:10 Lunch 12:10-1:40 Lunch 12:10-1:40 Lunch 12:10-1:40<br />

12:20 Delta Hotel Delta Hotel Delta Hotel<br />

12:30 Harbour Room Harbour Room Free Time Harbour Room<br />

1:40 Beckmann Omae Braunschweig 1:40<br />

Jones 1:40<br />

1:50 A O1 B O2 P3 P7<br />

2:00 Scheer Gross<br />

2:10 A O3 B O4<br />

2:20 Rautianen Schulz Cummins 2:20 Ragogna 2:20<br />

2:30 A O5 B O6 K4 K11<br />

2:40 Preuss Gudat<br />

2:50 A O7 B O8 Baines 2:50 Gabbai 2:50<br />

3:00 Registration Wahler Chivers K5 K12<br />

3:10 Delta Hotel A O9 B O10<br />

3:20 Foyer C<strong>of</strong>fee C<strong>of</strong>fee C<strong>of</strong>fee<br />

3:30 3:20-3:40 3:20-3:40 3:20-3:40<br />

3:40 von Haenisch Townsend Scheschkewitz 3:40 Wright 3:40<br />

3:50 A O11 B O12 K6 K13<br />

4:00 Streubel Leitao<br />

4:10 A O13 B O14 Power 4:10 Driess 4:10<br />

4:20 Chakrahari Wolf P4 P8<br />

4:30 A O15 B O16<br />

4:40 Wazir Baumgartner<br />

4:50 A O17 B O18 Schnepf 4:50 Closing Remarks<br />

5:00 Poster Reception A O37 Reception 5:00<br />

5:10 5:00-7:30 Poster Reception B<br />

6:30 Mixer, Museum Delta Hotel 5:10-7:30 Banquet, Delta Hotel<br />

6:30-9:30<br />

Delta Hotel 6:30-9:30


IRIS-13<br />

3<br />

IRIS-13 <strong>Victoria</strong><br />

13 th International Symposium on Inorganic Ring Systems<br />

29 July – 2 August 2012<br />

at<br />

Delta <strong>Victoria</strong> Ocean Pointe Resort, 45 Songhees Road, <strong>Victoria</strong>, British Columbia<br />

V9A 6T3, Canada<br />

http://web.uvic.ca/~iris13<br />

<strong>Program</strong> <strong>and</strong> <strong>Abstracts</strong><br />

IRIS occurs every three years <strong>and</strong> is the premier international showcase for Main Group Chemistry,<br />

including Organometallic Chemistry <strong>and</strong> Inorganic Materials Chemistry. The IRIS meetings bring<br />

together leading pr<strong>of</strong>essors, postdoctoral fellows <strong>and</strong> research students from around the world.<br />

The History <strong>of</strong> IRIS<br />

Year Town Country Host/Chair<br />

IRIS-1 1975 Besancon France H. Garcia-Fern<strong>and</strong>ez<br />

IRIS-1b 1977 Madrid Spain H. Garcia-Fern<strong>and</strong>ez<br />

IRIS-2 1978 Göttingen Germany O. Glemser<br />

IRIS-3 1981 Graz Austria E. Hengge<br />

IRIS-4 1985 Paris France H. Garcia-Fern<strong>and</strong>ez<br />

IRIS-5 1988 Amherst Massachusetts, USA R. R. Holmes<br />

IRIS-6 1991 Berlin Germany R. Steudel<br />

IRIS-7 1994 Banff Alberta, Canada T. Chivers<br />

IRIS-8 1997 Loughborough UK J. D. Woollins<br />

IRIS-9 2000 Saarbrücken Germany M. Veith<br />

IRIS-10 2003 Burlington Vermont, USA C. Allen<br />

IRIS-11 2006 Oulu Finl<strong>and</strong> R. S. Laitinen<br />

IRIS-12 2009 Goa India P. Mathur


Welcome<br />

4<br />

IRIS-13 <strong>Victoria</strong><br />

Welcome to the 13th International Symposium on Inorganic Ring Systems <strong>and</strong> welcome to <strong>Victoria</strong>, BC.<br />

UVic is honoured to be hosting <strong>and</strong> sponsoring the premier international forum for Main Group<br />

Chemistry. The IRIS-13 conference provides an excellent opportunity to foster national <strong>and</strong> international<br />

collaboration in this important research field. Chemistry plays a fundamental role in many <strong>of</strong> UVic’s<br />

research strengths, across a number <strong>of</strong> disciplines. Our highly successful <strong>and</strong> internationally-recognised<br />

faculty <strong>and</strong> students in the UVic Department <strong>of</strong> Chemistry are excited to be given the opportunity at IRIS-<br />

13 to showcase their work <strong>and</strong> build on their mission <strong>of</strong> fostering world-class research <strong>and</strong> outst<strong>and</strong>ing<br />

chemical education. I hope you have a wonderful time with us in <strong>Victoria</strong>.<br />

Dr. Howard Brunt<br />

Vice-President Research<br />

<strong>University</strong> <strong>of</strong> <strong>Victoria</strong><br />

Welcome to IRIS-13 <strong>and</strong> beautiful <strong>Victoria</strong>. We are delighted to present an outst<strong>and</strong>ing scientific program<br />

that will be augmented by the picturesque setting <strong>of</strong> the inner harbour <strong>and</strong> the Olympic mountains. The<br />

program begins with a mixer on Sunday evening at the Royal BC Museum, <strong>of</strong>fering a fascinating<br />

experience <strong>of</strong> native art <strong>and</strong> displays with an array <strong>of</strong> culinary delights. The scientific oral presentations<br />

are scheduled for Monday, Tuesday, Wednesday morning <strong>and</strong> Thursday, with poster sessions on Monday<br />

<strong>and</strong> Tuesday evening. I am grateful for the excellent advice <strong>and</strong> support <strong>of</strong> my colleagues on the<br />

International Advisory Board, the National Advisory Committee <strong>and</strong> the Local Organizing Committee<br />

during the development <strong>of</strong> this exciting program.<br />

We are grateful to the Delta <strong>Victoria</strong> Ocean Pointe Resort <strong>and</strong> Spa, our host for IRIS-13, for their<br />

partnership in the organization <strong>of</strong> IRIS-13. The Delta will serve a buffet lunch for all registrants on<br />

Monday, Tuesday <strong>and</strong> Thursday, <strong>and</strong> will host the symposium banquet on Thursday evening.<br />

Wednesday lunchtime <strong>and</strong> afternoon are designated as free time to give you an opportunity for outdoor<br />

activities including golf, hiking, sailing, fishing, sight seeing <strong>and</strong> whale watching. Alternatively, the<br />

downtown <strong>of</strong>fers numerous sightseeing options within walking distance, <strong>and</strong> a wide selection <strong>of</strong> shops,<br />

restaurants <strong>and</strong> bars.<br />

We are especially grateful for the financial support <strong>of</strong> the sponsors who have made this event possible.<br />

Enjoy,<br />

N<br />

Neil Burford<br />

Symposium Chair<br />

Chair, Department <strong>of</strong> Chemistry<br />

<strong>University</strong> <strong>of</strong> <strong>Victoria</strong>


Message from Rob Lipson, Dean <strong>of</strong> Science, <strong>University</strong> <strong>of</strong> <strong>Victoria</strong><br />

5<br />

IRIS-13 <strong>Victoria</strong><br />

On behalf <strong>of</strong> the Faculty <strong>of</strong> Science <strong>of</strong> the <strong>University</strong> <strong>of</strong> <strong>Victoria</strong> I am delighted to welcome you to the<br />

13th International Symposium on Inorganic Ring Systems. The list <strong>of</strong> plenary <strong>and</strong> invited speakers is<br />

truly impressive. In addition to a strong Canadian contingent I note <strong>and</strong> welcome chemists from many<br />

other countries including the US, France, Japan, India, the Czech Republic, Finl<strong>and</strong> <strong>and</strong> Australia.<br />

The last time an IRIS conference was held in Canada was in 1994. I am particularly pleased that you are<br />

meeting in <strong>Victoria</strong> in 2012 because in the last decade UVic has emerged to be a widely acknowledged<br />

driver <strong>of</strong> research excellence both nationally <strong>and</strong> internationally. The Department <strong>of</strong> Chemistry is one the<br />

big reasons that UVic is now ranked as one <strong>of</strong> the top 200 universities in the world. I feel particularly<br />

qualified to be able to make that assertion not only in my role as Dean, but also as a chemist.<br />

I wish to congratulate my UVic colleagues Neil Burford, Robin Hicks, Scott McIndoe, <strong>and</strong> Lisa<br />

Rosenberg, as well as Derek Gates from UBC, for their efforts as members <strong>of</strong> the Local Organizing<br />

Committee in putting together such a fine program.<br />

My underst<strong>and</strong>ing is that IRIS takes place every three years. Given the rapid changes that can take place<br />

within any particular scientific discipline over that time scale, I am confident that the symposium will be<br />

highly stimulating. I wish all the participants whether they be pr<strong>of</strong>essors, postdoctoral fellows or research<br />

students a successful <strong>and</strong> enjoyable stay. And if you get the chance I invite you visit to our beautiful<br />

campus.<br />

Best regards<br />

Rob Lipson<br />

PO Box 1700 STN CSC <strong>Victoria</strong> British<br />

Columbia V8W 2Y2 Canada Tel (250)<br />

721-7062, Fax (250) 472-5012 Web<br />

http://www.uvic.ca/science/<br />

Faculty <strong>of</strong> Science<br />

Office <strong>of</strong> the Dean


6<br />

IRIS-13 <strong>Victoria</strong><br />

The organizers acknowledge the generous support <strong>of</strong> the following Sponsors:<br />

Department <strong>of</strong> Chemistry<br />

Department <strong>of</strong> Chemistry<br />

Department <strong>of</strong> Chemistry<br />

Faculty <strong>of</strong> Science<br />

Office <strong>of</strong> the Vice President Research<br />

Office <strong>of</strong> the Vice President Academic <strong>and</strong> Provost<br />

MBraun Incorporated USA<br />

John Wiley & Sons


IRIS International Advisory Board<br />

C.W. Allen (USA) H.W. Roesky (Germany)<br />

T. Chivers (Canada) R. Streubel (Germany)<br />

A.H. Cowley (USA) N. Tokitoh (Japan)<br />

R.R. Holmes (USA) F. Uhlig (Austria)<br />

R. Laitinen (Finl<strong>and</strong>) M. Veith (Germany)<br />

J.P. Majoral (France) R. West (USA)<br />

P. Mathur (India) J.D. Woollins (UK)<br />

IRIS-13 National Advisory Committee<br />

7<br />

IRIS-13 <strong>Victoria</strong><br />

Kim Baines (Western) Tom Baker (Ottawa)<br />

Thomas Baumgartner (Calgary) René Boeré (Lethbridge)<br />

Glen Bri<strong>and</strong> (Mount Allison) Tris Chivers (Calgary)<br />

Jason Clyburne (Saint Mary's) Adam Dyker (New Brunswick)<br />

Bobby Ellis (Acadia) Chuck Macdonald (Windsor)<br />

Jason Masuda (Saint Mary's) Jack Passmore (New Brunswick)<br />

Kathryn Preuss (Guelph) Paul Ragogna (Western)<br />

Jeremy Rawson (Windsor) Eric Rivard (Alberta)<br />

Rol<strong>and</strong> Roesler (Calgary) Doug Stephan (Toronto)<br />

Ignacio Vargas-Baca (McMaster)<br />

IRIS-13 Local Organizing Committee<br />

Neil Burford (<strong>Victoria</strong>), Symposium Chair<br />

Derek Gates (UBC)<br />

Robin Hicks (<strong>Victoria</strong>)<br />

Scott McIndoe (<strong>Victoria</strong>)<br />

Lisa Rosenberg (<strong>Victoria</strong>)


Registration, Mixer, Lunches <strong>and</strong> Banquet<br />

Registration: Sunday 29 July, 3:00-6:30 p.m.<br />

Monday 30 July, 8:00-8:40 a.m.<br />

Tuesday 31 July, 8:30-8:50 a.m.<br />

Wednesday 1 August, 8:30-8:50 a.m.<br />

Thursday 2 August, 8:30-8:50 a.m.<br />

at the Delta <strong>Victoria</strong> Ocean Pointe Resort, Foyer<br />

Opening Mixer: Sunday 29 July, 6:30-9:30 p.m.<br />

at the Royal BC Museum<br />

8<br />

IRIS-13 <strong>Victoria</strong><br />

Lunch: Monday 30 July, 12:10-1:40 p.m.<br />

at the Delta <strong>Victoria</strong> Ocean Pointe Resort, Harbour Room<br />

Lunch: Tuesday 31 July, 12:10-1:40 p.m.<br />

at the Delta <strong>Victoria</strong> Ocean Pointe Resort, Harbour Room<br />

Lunch: Thursday 2 August, 12:10-1:40 p.m.<br />

at the Delta <strong>Victoria</strong> Ocean Pointe Resort, Harbour Room<br />

Reception: Thursday 2 August, 5:00-6:30 p.m.<br />

at the Delta <strong>Victoria</strong> Ocean Pointe Resort, Foyer<br />

Banquet: Thursday 2 August, 6:30-9:30 p.m.<br />

at the Delta <strong>Victoria</strong> Ocean Pointe Resort, Ballroom


Monday 30 July<br />

Plenary, Keynote <strong>and</strong> Oral Contributions<br />

in the Ballroom<br />

9:00 a.m. – 12:10 p.m. (c<strong>of</strong>fee at 10:40 a.m.)<br />

Session Chair: Robin Hicks, <strong>University</strong> <strong>of</strong> <strong>Victoria</strong><br />

9<br />

IRIS-13 <strong>Victoria</strong><br />

Plenary 1: Guy Bertr<strong>and</strong>, UCR/CNRS, <strong>University</strong> <strong>of</strong> California, Riverside, USA (9:00 a.m.)<br />

Keynote 1: Didier Bourissou, Université Paul Sabatier, France (9:40 a.m.)<br />

Keynote 2: Risto Laitinen, <strong>University</strong> <strong>of</strong> Oulu, Finl<strong>and</strong> (10:10 a.m.)<br />

Keynote 3: Stefanie Dehnen, Philipps-Universität, Marburg, Germany (11:00 a.m.)<br />

Plenary 2: Akira Sekiguchi, <strong>University</strong> <strong>of</strong> Tsukuba, Japan (11:30 a.m.)<br />

Lunch: at the Delta <strong>Victoria</strong> Ocean Pointe Resort, Harbour Room (12:10-1:40 p.m.)<br />

1:40 p.m. – 5:00 p.m. (c<strong>of</strong>fee at 3:20 p.m.)<br />

Session Chairs: Room A - Charles Macdonald, <strong>University</strong> <strong>of</strong> Windsor<br />

Room B - Lisa Rosenberg, <strong>University</strong> <strong>of</strong> <strong>Victoria</strong><br />

Oral 1: Jens Beckmann, Bremen <strong>University</strong>, Germany (A-1:40 p.m.)<br />

Oral 2: Iwao Omae, Omae Research Laboratories, Sayama, Saitama, Japan (B-1:40 p.m.)<br />

Oral 3: Manfred Scheer, <strong>University</strong> <strong>of</strong> Regensburg, Germany (A-2:00 p.m.)<br />

Oral 4: Uwe Gross, Graz <strong>University</strong> <strong>of</strong> Technology, Austria (B-2:00 p.m.)<br />

Oral 5: Mikko Rautiainen, <strong>University</strong> <strong>of</strong> Oulu, Finl<strong>and</strong> (A-2:20 p.m.)<br />

Oral 6: Axel Schulz, <strong>University</strong> <strong>of</strong> Rostock, Germany (B-2:20 p.m.)<br />

Oral 7: Kathryn Preuss, <strong>University</strong> <strong>of</strong> Guelph, Canada (A-2:40 p.m.)<br />

Oral 8: Dietrich Gudat, Universität Stuttgart, Germany (B-2:40 p.m.)<br />

Oral 9: Johannes Wahler, Julius-Maximilians-<strong>University</strong> Würzburg, Germany (A-3:00 p.m.)<br />

Oral 10: Tristram Chivers, <strong>University</strong> <strong>of</strong> Calgary, Canada (B-3:00 p.m.)<br />

Oral 11: Carsten von Hänisch, Philipps-Universität-Marburg, Germany (A-3:40 p.m.)<br />

Oral 12: Nell Townsend, <strong>University</strong> <strong>of</strong> Bristol, UK (B-3:40 p.m.)<br />

Oral 13: Rainer Streubel, Rheinische Friedrich-Wilhelms Univ. Bonn, Germany (A-4:00 p.m.)<br />

Oral 14: Erin Leitao, <strong>University</strong> <strong>of</strong> Bristol, UK (B-4:00 p.m.)<br />

Oral 15: Kiran Kumar Varma Chakrahari, IIT Madras, India (A-4:20 p.m.)<br />

Oral 16: Robert Wolf, <strong>University</strong> <strong>of</strong> Regensburg, Germany (B-4:20 p.m.)<br />

Oral 17: Hameed Ullah Wazir, Hazara <strong>University</strong> Mansehra, Pakistan (A-4:40 p.m.)<br />

Oral 18: Thomas Baumgartner, <strong>University</strong> <strong>of</strong> Calgary, Canada (B-4:40 p.m.)


Plenary, Keynote <strong>and</strong> Oral Contributions (continued)<br />

in the Ballroom<br />

Tuesday 31 July<br />

8:50 a.m. – 12:10 p.m. (c<strong>of</strong>fee at 10:30 a.m.)<br />

Session Chairs: Room A - Rene Boere, <strong>University</strong> <strong>of</strong> Lethbridge<br />

Room B - Glen Bri<strong>and</strong>, Mount Allison <strong>University</strong><br />

10<br />

IRIS-13 <strong>Victoria</strong><br />

Oral 19: Tom Hsieh, <strong>University</strong> <strong>of</strong> British Columbia, Canada (A-8:50 a.m.)<br />

Oral 20: Frieder Jäkle, Rutgers <strong>University</strong>, USA (B-8:50 a.m.)<br />

Oral 21: Takahiro Sasamori, Kyoto <strong>University</strong>, Japan (A-9:10 a.m.)<br />

Oral 22: Fergus Knight, <strong>University</strong> <strong>of</strong> St Andrews, UK (B-9:10 a.m.)<br />

Oral 23: Masaichi Saito, Saitama <strong>University</strong>, Japan (A-9:30 a.m.)<br />

Oral 24: Lisa Rosenberg, <strong>University</strong> <strong>of</strong> <strong>Victoria</strong> (B-9:30 a.m.)<br />

Oral 25: Robert West, <strong>University</strong> <strong>of</strong> Wisconsin, USA (A-9:50 a.m.)<br />

Oral 26: Norihiro Tokitoh, Kyoto <strong>University</strong>, Japan (B-9:50 a.m.)<br />

Oral 27: Paul Percival, Simon Fraser <strong>University</strong>, Canada (A-10:10 a.m.)<br />

Oral 28: Carsten Knapp, Bergische Universität Wuppertal, Germany (B-10:10 a.m.)<br />

Oral 29: Shohei Saito, Nagoya <strong>University</strong>, Japan (A-10:50 a.m.)<br />

Oral 30: Eric Rivard, <strong>University</strong> <strong>of</strong> Alberta, Canada (B-10:50 a.m.)<br />

Oral 31: Chen-Wei Liu, National Dong Hwa <strong>University</strong>, Taiwan (A-11:10 a.m.)<br />

Oral 32: Jacquelyn Price, Western <strong>University</strong>, Canada (B-11:10 a.m.)<br />

Oral 33: Takao Mori, National Institute for Materials Science, Tsukuba, Japan (A-11:30 a.m.)<br />

Oral 34: Jack Passmore, <strong>University</strong> <strong>of</strong> New Brunswick, Canada (B-11:30 a.m.)<br />

Oral 35: Reinhold Tacke, Julius-Maximilians-<strong>University</strong> Würzburg, Germany (A-11:50 a.m.)<br />

Oral 36: Fabian Dielmann, <strong>University</strong> <strong>of</strong> California, Riverside, USA (B-11:50 a.m.)<br />

Lunch: at the Delta <strong>Victoria</strong> Ocean Pointe Resort, Harbour Room (12:10-1:40 p.m.)<br />

1:40 p.m. – 5:10 p.m. (c<strong>of</strong>fee at 3:20 a.m.)<br />

Session Chair: Tom Baker, <strong>University</strong> <strong>of</strong> Ottawa<br />

Plenary 3: Holger Braunschweig, <strong>University</strong> <strong>of</strong> Würzburg, Germany (1:40 p.m.)<br />

Keynote 4: Christopher Cummins, Massachusetts Institute <strong>of</strong> Technology, USA (2:20 p.m.)<br />

Keynote 5: Kim Baines, Western <strong>University</strong>, Canada (2:50 p.m.)<br />

Keynote 6: David Scheschkewitz, Saarl<strong>and</strong> <strong>University</strong>, Germany (3:40 p.m.)<br />

Plenary 4: Philip Power, <strong>University</strong> <strong>of</strong> California, Davis, USA (4:10 p.m.)<br />

Oral 37: Andreas Schnepf, <strong>University</strong> Duisburg-Essen, Germany (4:50 p.m.)<br />

Wednesday 1 August<br />

8:50 a.m. – 12:30 p.m. (c<strong>of</strong>fee at 10:30 a.m.)<br />

Session Chair: Derek Gates, <strong>University</strong> <strong>of</strong> British Columbia<br />

Plenary 5: Warren Piers, <strong>University</strong> <strong>of</strong> Calgary, Canada (8:50 a.m.)<br />

Keynote 7: Christopher Reed, <strong>University</strong> <strong>of</strong> California, Riverside, USA (9:30 a.m.)<br />

Keynote 8: Jan Weig<strong>and</strong>, Westfälische Wilhelms-Universität Münster, Germany (10:00 a.m.)<br />

Keynote 9: Simon Aldridge, <strong>University</strong> <strong>of</strong> Oxford, UK (10:50 a.m.)<br />

Keynote 10: Gernot Frenking, Philipps-Universität, Marburg, Germany (11:20 a.m.)<br />

Plenary 6: Evamarie Hey-Hawkins, Universität Leipzig, Germany (11:50 a.m.)


Thursday 2 August<br />

Plenary, Keynote <strong>and</strong> Oral Contributions (continued)<br />

in the Ballroom<br />

8:50 a.m. – 12:10 p.m. (c<strong>of</strong>fee at 10:30 a.m.)<br />

Session Chairs: Room A - Thomas Baumgartner, <strong>University</strong> <strong>of</strong> Calgary<br />

Room B - Jason Clyburne, Saint Mary’s <strong>University</strong><br />

11<br />

IRIS-13 <strong>Victoria</strong><br />

Oral 38: Shih-Yuan Liu, <strong>University</strong> <strong>of</strong> Oregon, USA (A-8:50 a.m.)<br />

Oral 39: Patty Wisian-Neilson, Southern Methodist <strong>University</strong>, USA (B-8:50 a.m.)<br />

Oral 40: Rol<strong>and</strong> Fischer, Graz <strong>University</strong> <strong>of</strong> Technology, Austria (A-9:10 a.m.)<br />

Oral 41: Ignacio Vargas-Baca, McMaster <strong>University</strong>, Canada (B-9:10 a.m.)<br />

Oral 42: Charles Macdonald, <strong>University</strong> <strong>of</strong> Windsor, Canada (A-9:30 a.m.)<br />

Oral 43: Frank Uhlig, Graz <strong>University</strong> <strong>of</strong> Technology, Austria (B-9:30 a.m.)<br />

Oral 44: Ales Ruzicka, <strong>University</strong> <strong>of</strong> Pardubice, Czech Republic (A-9:50 a.m.)<br />

Oral 45: Robert Less, Cambridge <strong>University</strong>, UK (B-9:50 a.m.)<br />

Oral 46: Robert Neilson, Texas Christian <strong>University</strong>, USA (A-10:10 a.m.)<br />

Oral 47: Tom Baker, <strong>University</strong> <strong>of</strong> Ottawa, Canada (B-10:10 a.m.)<br />

Oral 48: John Hayward, <strong>University</strong> <strong>of</strong> Windsor, Canada (A-10:50 a.m.)<br />

Oral 49: Monica Moya-Cabrera, Univ. Nacional Autónoma de México, Mexico (B-10:50 a.m.)<br />

Oral 50: Rene Boeré, <strong>University</strong> <strong>of</strong> Lethbridge, Canada (A-11:10 a.m.)<br />

Oral 51: Vojtech Jancik, Centro Conjunto de Invest. en Química Sust., Mexico (B-11:10 a.m.)<br />

Oral 52: Jason Masuda, Saint Mary's <strong>University</strong>, Canada (A-11:30 a.m.)<br />

Oral 53: Klaus Jurschat, Technische Universität Dortmund, Germany (B-11:30 a.m.)<br />

Oral 54: Rol<strong>and</strong> Roesler, <strong>University</strong> <strong>of</strong> Calgary, Canada (A-11:50 a.m.)<br />

Oral 55: Bernd Hasken, Graz <strong>University</strong> <strong>of</strong> Technology, Austria (B-11:50 a.m.)<br />

Lunch: at the Delta <strong>Victoria</strong> Ocean Pointe Resort, Harbour Room (12:10-1:40 p.m.)<br />

1:40 p.m. – 4:50 p.m. (c<strong>of</strong>fee at 3:20 p.m.)<br />

Session Chair: Tristram Chivers, <strong>University</strong> <strong>of</strong> Calgary<br />

Plenary 7: Cameron Jones, Monash <strong>University</strong>, Australia (1:40 p.m.)<br />

Keynote 11: Paul Ragogna, Western <strong>University</strong>, Canada (2:20 p.m.)<br />

Keynote 12: François P. Gabbaï, Texas A&M <strong>University</strong>, USA (2:50 p.m.)<br />

Keynote 13: Dominic Wright, Cambridge <strong>University</strong>, UK (3:40 p.m.)<br />

Plenary 8: Matthias Driess, Technische Universität Berlin, Germany (4:10 p.m.)


Contributed Poster Presentations<br />

Poster Session A, Monday 30 July, 5:00 p.m. – 7:30 p.m.<br />

1. Jason Clyburne, Saint Mary’s <strong>University</strong>, Canada<br />

2. Klaus Dück, Julius-Maximilians-<strong>University</strong> Würzburg, Germany<br />

3. Thomas Kramer, Julius-Maximilians-<strong>University</strong> Würzburg, Germany<br />

4. Katharina Ferkingh<strong>of</strong>f, Julius-Maximilians-<strong>University</strong> Würzburg, Germany<br />

5. Johannes Br<strong>and</strong>, Julius-Maximilians-<strong>University</strong> Würzburg, Germany<br />

6. Rong Shang, Julius-Maximilians-<strong>University</strong> Würzburg, Germany<br />

7. Christian Hörl, Julius-Maximilians-<strong>University</strong> Würzburg, Germany<br />

8. Ala Swidan, <strong>University</strong> <strong>of</strong> Windsor, Canada<br />

9. Michal Horáček, Institute <strong>of</strong> Physical Chemistry <strong>of</strong> Academy <strong>of</strong> Sciences, Czech Republic<br />

10. Alex<strong>and</strong>er Villinger, <strong>University</strong> <strong>of</strong> Rostock, Germany<br />

11. Michael Feierabend, Philipps-Universität Marburg, Germany<br />

12. Christian Bimbös, Philipps-Universität Marburg, Germany<br />

13. Koh Sugamata, Kyoto <strong>University</strong>, Japan<br />

14. Krista Morrow, <strong>University</strong> <strong>of</strong> <strong>Victoria</strong>, Canada<br />

15. Emma Nicholls-Allison, <strong>University</strong> <strong>of</strong> <strong>Victoria</strong>, Canada<br />

16. Hisashi Miyamoto, Kyoto <strong>University</strong>, Japan<br />

17. Antonín Lyčka, <strong>University</strong> <strong>of</strong> Pardubice, Czech Republic<br />

18. Roman Jambor, <strong>University</strong> <strong>of</strong> Pardubice, Czech Republc<br />

19. Libor Dostál, <strong>University</strong> <strong>of</strong> Pardubice, Czech Republic<br />

20. Guoxiong Hua, <strong>University</strong> <strong>of</strong> St. Andrews, UK<br />

21. Masaichi Saito, Saitama <strong>University</strong>, Japan<br />

22. Louise Diamond, <strong>University</strong> <strong>of</strong> St. Andrews, UK<br />

23. Laura Forfar, <strong>University</strong> <strong>of</strong> Bristol, UK<br />

24. José Manuel Villalba Franco, Rheinische Friedrich-Wilhelms Universität Bonn, Germany<br />

25. Johanna Flock, Graz <strong>University</strong> <strong>of</strong> Technology, Austria<br />

26. Petra Wilfling, Graz <strong>University</strong> <strong>of</strong> Technology, Austria<br />

27. Eliza ter Jung, Philipps-<strong>University</strong> Marburg, Germany<br />

28. Bastian Weinert, Philipps-<strong>University</strong> Marburg, Germany<br />

29. Vojtech Jancik, Centro Conjunto de Investigación en Química Sustentable, Mexico<br />

30. Thomas Zöller, Technische Universität Dortmund, Germany<br />

31. Andreas Nordheider, <strong>University</strong> <strong>of</strong> St. Andrews, UK <strong>and</strong> <strong>University</strong> <strong>of</strong> Calgary, Canada<br />

32. Phillip Elder, <strong>University</strong> <strong>of</strong> Calgary, Canada<br />

33. Jonathan Dube, Western <strong>University</strong>, Canada<br />

34. Elizabeth MacDonald, Dalhousie <strong>University</strong>, Canada<br />

35. Jens Eußner, Philipps-Universität Marburg, Germany<br />

36. Alex<strong>and</strong>ra Slawin, <strong>University</strong> <strong>of</strong> St. Andrews, UK<br />

37. Stewart Lucas, <strong>University</strong> <strong>of</strong> <strong>Victoria</strong>, Canada<br />

38. Yi-Chou Tsai, National Tsing-Hua <strong>University</strong>, Taiwan<br />

39. Takuya Kuwabara, Saitama <strong>University</strong>, Japan<br />

40. Derek Woollins, <strong>University</strong> <strong>of</strong> St. Andrews, UK<br />

41. Glen Bri<strong>and</strong>, Mount Allison <strong>University</strong>, Canada<br />

42. Jamie Ritch, <strong>University</strong> <strong>of</strong> Winnipeg, Canada<br />

12<br />

IRIS-13 <strong>Victoria</strong>


Contributed Poster Presentations (continued)<br />

Poster Session B, Tuesday 31 July, 5:10 p.m. – 7:30 p.m.<br />

43. Peter Lee, <strong>University</strong> <strong>of</strong> <strong>Victoria</strong>, Canada<br />

44. Beatrix Barth, Philipps-<strong>University</strong> Marburg, Germany<br />

45. Christoph Bolli, Bergische Universität Wuppertal, Germany<br />

46. Mathias Keßler, Bergische Universität Wuppertal, Germany<br />

47. Thao Tran, <strong>University</strong> <strong>of</strong> Windsor, Canada<br />

48. Khatera Hazin, <strong>University</strong> <strong>of</strong> British Columbia, Canada<br />

49. Jan Turek, <strong>University</strong> <strong>of</strong> Pardubice, Czech Republic<br />

50. Teemu Takaluoma, <strong>University</strong> <strong>of</strong> Oulu, Finl<strong>and</strong><br />

51. Roman Olejnik, <strong>University</strong> <strong>of</strong> Pardubice, Czech Republic<br />

52. Aino Eironen, <strong>University</strong> <strong>of</strong> Oulu, Finl<strong>and</strong><br />

53. Kazuhiko Nagura, Nagoya <strong>University</strong>, Japan<br />

54. Minna Karjalainen, <strong>University</strong> <strong>of</strong> Oulu, Finl<strong>and</strong><br />

55. Timothy King, <strong>University</strong> <strong>of</strong> Cambridge, UK<br />

56. Tomokatsu Kushida, Nagoya <strong>University</strong>, Japan<br />

57. Paresh Kumar Majhi, Rheinische Friedrich-Wilhelms Universität Bonn, Germany<br />

58. Arturo Espinosa, Universidad de Murcia, Spain<br />

59. Josef Binder, Graz <strong>University</strong> <strong>of</strong> Technology, Germany<br />

60. Andrew Priegert, <strong>University</strong> <strong>of</strong> British Columbia, Canada<br />

61. Hugh Cowley, <strong>University</strong> <strong>of</strong> Windsor, Canada<br />

62. Justin Wrixon, <strong>University</strong> <strong>of</strong> Windsor, Canada<br />

63. Christopher Allan, <strong>University</strong> <strong>of</strong> Windsor, Canada<br />

64. Krzyszt<strong>of</strong> Radacki, Universität Würzburg, Germany<br />

65. Tom Hsieh, <strong>University</strong> <strong>of</strong> British Columbia, Canada<br />

66. Zdenka Padelkova, <strong>University</strong> <strong>of</strong> Pardubice, Czech Republic<br />

67. Dominik Naglav, Universität Duisburg-Essen, Germany<br />

68. Christian Hering, Universität Rostock, Germany<br />

69. Thomas Wilson, <strong>University</strong> <strong>of</strong> Cambridge, UK<br />

70. Lucia Myongwon Lee, McMaster <strong>University</strong>, Canada<br />

71. Adrian Houghton, <strong>University</strong> <strong>of</strong> Calgary, Canada<br />

72. Melina Klein, Rheinische Friedrich-Wilhelms Universität Bonn, Germany<br />

73. Saurabh Chitnis, <strong>University</strong> <strong>of</strong> <strong>Victoria</strong>, Canada<br />

74. Glen Bri<strong>and</strong>, Mount Allison <strong>University</strong>, Canada<br />

75. Glen Bri<strong>and</strong>, Mount Allison <strong>University</strong>, Canada<br />

76. Benjamin Rawe, <strong>University</strong> <strong>of</strong> British Columbia, Canada<br />

77. Johann Pichler, Graz <strong>University</strong> <strong>of</strong> Technology<br />

78. Jonathan Dube, Western <strong>University</strong>, Canada<br />

79. Joseph West, <strong>University</strong> <strong>of</strong> North Dakota, USA<br />

80. Mónica Moya-Cabrera, Universidad Nacional Autónoma de México, Mexico<br />

81. Rene Boeré, <strong>University</strong> <strong>of</strong> Lethbridge, Canada<br />

82. Vojtech Jancik, Centro Conjunto de Investigación en Química Sustentable, Mexico<br />

83. Thomas Zöller, Technische Universität Dortmund, Germany<br />

84. Sarah Dane, <strong>University</strong> <strong>of</strong> Cambridge, UK<br />

85. Tomas Chlupaty, <strong>University</strong> <strong>of</strong> Pardubice, Czech Republic<br />

13<br />

IRIS-13 <strong>Victoria</strong>


Plenary 1 Monday 9:00 a.m.<br />

14<br />

IRIS-13 <strong>Victoria</strong><br />

Stable Carbenes for the Stabilization <strong>of</strong> Organoboron Lewis Bases, Phosphino<br />

Nitrenes, <strong>and</strong> for the Activation <strong>of</strong> P4<br />

Guy Bertr<strong>and</strong><br />

(guy.bertr<strong>and</strong>@ucr.edu)<br />

UCR/CNRS Joint Research Chemistry Laboratory, <strong>University</strong> <strong>of</strong> California, Riverside, CA, 92521, USA<br />

Amines <strong>and</strong> boranes are the archetypical Lewis bases <strong>and</strong> acids, respectively. We will discuss the<br />

synthesis <strong>of</strong> neutral tricoordinate boron derivatives A, which act as Lewis bases giving B, <strong>and</strong> undergo<br />

one-electron oxidation into the corresponding radical cations C. Compounds A, B <strong>and</strong> C are borylenes<br />

(R-B:), borynium (R2B + ) <strong>and</strong> borinylium (R-B +. ), respectively, stabilized by two carbenes. [1]<br />

Transition metal nitrido (or metallo nitrene) complexes LnMN have attracted considerable attention due to<br />

their implications in biological nitrogen fixation by the nitrogenase enzymes, the industrial hydrogenation<br />

<strong>of</strong> N2 into NH3, exemplified by the Haber- Bosch process, <strong>and</strong> more generally for catalytic nitrogen-atom<br />

transfer reactions. We will discuss the synthesis <strong>and</strong> reactivity <strong>of</strong> the first stable non-metallic nitrene. [2]<br />

Lastly, recent results concerning the carbene activation <strong>of</strong> white phosphorus will be discussed. [3]<br />

[1] R. Kinjo, B. Donnadieu, M. Ali Celik, G. Frenking, G. Bertr<strong>and</strong>, Science 2011, 333, 610-613.<br />

[2] F. Dielmann, O. Back, M. Elinger, G. Frenking, G. Bertr<strong>and</strong>, 2012, unpublished results.<br />

[3] D. Martin, M. Soleilhavoup, G. Bertr<strong>and</strong>, Chem. Sci. 2011, 2, 389-399<br />

[4] For the coordination <strong>and</strong> activation <strong>of</strong> σ-bonds at coinage metals, see: a) P. Gualco, S. Ladeira, K.<br />

Miqueu, A. Amgoune, D. Bourissou, J. Am. Chem. Soc. 2011, 133, 4257; b) P. Gualco, S. Ladeira,<br />

K. Miqueu, A. Amgoune, D. Bourissou, Angew. Chem. Int. Ed. 2011, 50, 8320.


Keynote 1 Monday 9:40 a.m.<br />

15<br />

IRIS-13 <strong>Victoria</strong><br />

Coordination <strong>of</strong> Lewis Acids <strong>and</strong> σ-Bonds by a Chelating Approach:<br />

Towards Original Metallacycles<br />

D. Bourissou<br />

(dbouriss@chimie.ups-tlse.fr)<br />

Université Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée<br />

118 route de Narbonne, 31062 Toulouse cedex, France<br />

Over the last few years, our group has been studying the coordination properties <strong>of</strong> ambiphilic lig<strong>and</strong>s. [1]<br />

Our approach consists in using donor groups, typically phosphines, to support original metal / lig<strong>and</strong><br />

interactions. This strategy was first used to investigate the coordination <strong>of</strong> Lewis acids as σ-acceptor<br />

lig<strong>and</strong>s (metallacycles <strong>of</strong> type A). [2] We are now extrapolating this approach to the coordination <strong>and</strong><br />

activation <strong>of</strong> inert σ-bonds (metallacycles <strong>of</strong> type B). [3]<br />

In this presentation, recent examples <strong>of</strong> both types will be discussed. Particular attention will be devoted<br />

to the structure <strong>of</strong> the isolated metallacycles that will be analyzed on the basis <strong>of</strong> spectroscopic,<br />

crystallographic <strong>and</strong> computational data.<br />

[1] For a review on the coordination <strong>of</strong> ambiphilic lig<strong>and</strong>s, see: G. Bouhadir, A. Amgoune, D. Bourissou,<br />

Adv. Organomet. Chem. 2010, 58, 1.<br />

[2] For a review on σ-acceptor lig<strong>and</strong>s, see: A. Amgoune, D. Bourissou, Chem. Commun. 2011, 47, 859.


16<br />

IRIS-13 <strong>Victoria</strong><br />

Cyclic Imido-Selenium <strong>and</strong> -Tellurium Compounds <strong>and</strong> their Transition<br />

Metal Complexes<br />

Risto S. Laitinen, a Aino Eironen, a Raija Oilunkaniemi a <strong>and</strong> Tristram Chivers b<br />

(risto.laitinen@oulu.fi)<br />

a Department <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> Oulu, P.O. Box 3000, FI-90014 Oulu, Finl<strong>and</strong>, b Department <strong>of</strong><br />

Chemistry, <strong>University</strong> <strong>of</strong> Calgary, 2500 <strong>University</strong> Drive N.W., Calgary, Alberta, T2N 1N4 Canada<br />

Recent progress in the chemistry <strong>of</strong> imido derivatives <strong>of</strong> selenium <strong>and</strong> tellurium is discussed in order to<br />

provide underst<strong>and</strong>ing in the unusual features <strong>of</strong> their structures, bonding, <strong>and</strong> reactivities. Structural<br />

trends are considered by including also comparisons with related sulfur-nitrogen compounds, where<br />

appropriate (for a recent review, see ref. 1). Cyclic sulfur imides form a well-characterized class <strong>of</strong><br />

compounds the most common examples being the eight-membered ring molecules S8-n(NH)n. While the<br />

corresponding selenium <strong>and</strong> tellurium imides are unknown, some organic derivatives have been prepared<br />

<strong>and</strong> structurally characterized.<br />

Se3(NAd)2 Se3(N t Bu)3 Se6(N t Bu)2 Se9(N t Bu)6<br />

Te3(N t Bu)3<br />

The coordination chemistry <strong>of</strong> selenium <strong>and</strong> tellurium imides is also described. Metal complexes <strong>of</strong><br />

selenium(IV) <strong>and</strong> tellurium(IV) diimides are exclusively N,N’-coordinated, whereas cyclic selenium<br />

imides behave as chelating Se,Se’-donor lig<strong>and</strong>s.<br />

[PdCl2{Se(N t Bu)2}]<br />

[PtCl2{Se(N t Bu)2}]<br />

Keynote 2 Monday 10:10 a.m.<br />

[HgCl2{ t BuNTe(µ-N t Bu)2TeN t Bu}]<br />

[CoCl2{ t BuNTe(µ-N t Bu)2TeN t Bu}]<br />

[PdCl2{Se4(N t Bu)3}]<br />

[PdCl2{Se4(N t Bu)4}]<br />

[1] Laitinen, R.S., Oilunkaniemi, R., Chivers, T., in Woollins, J.D., Laitinen, R.S. (ed.), Selenium <strong>and</strong><br />

Tellurium Chemistry: From Small Molecules to Biomolecules <strong>and</strong> Materials, Springer Verlag, Berlin<br />

2011, pp. 103-122.


Keynote 3 Monday 11:00 a.m.<br />

17<br />

IRIS-13 <strong>Victoria</strong><br />

"Take 2": An Elegant Approach To Multinary Metallates <strong>and</strong> Intermetalloid<br />

Clusters<br />

Stefanie Dehnen<br />

(dehnen@chemie.uni-marburg.de)<br />

Fachbereich Chemie <strong>and</strong> Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-Universität<br />

Marburg, Hans-Meerwein-Straße, D-35032 Marburg, Germany<br />

Multinary, non-oxidic metallates are currently actively investigated by many research groups, leading<br />

from structural studies through functional analyses to the generation <strong>of</strong> innovative materials. [1] Binary<br />

main group element aggregates proved to be useful synthetic tools for a large variety <strong>of</strong> different<br />

structural <strong>and</strong> functional motifs. [2]<br />

Whereas chalcogenido-tetrelate/trielate ions [TxChy] q– (T = Ge, Sn, In; Ch = S, Se, Te) may be basically<br />

viewed as heavier homologues <strong>of</strong> silicates or borates, the inversely polarized pnictogene-tetrelide/trielide<br />

ions [TxPny] q– (Pn = Sb, Bi) have a distinct tendency to form intermetalloid clusters. [3]<br />

However, in both cases, the products <strong>of</strong> reactions with further metal M compounds differ significantly<br />

from any lighter homologues, as they represent unprecedented, ternary clusters or networks, according to<br />

the general type [MxTyChz] q– , [(RT)xMyEz] (R = functional/bridging organic lig<strong>and</strong>) or ternary Zintl<br />

anions [MxTyPnz] q– . The physical properties <strong>of</strong> the compounds, which may represent (photo-)semiconductors,<br />

ion conductors or bond-activating nano-capsules, are dependent on the nature <strong>of</strong> the involved<br />

elements <strong>and</strong> the observed structure type. [4–6] Ionothermal techniques were successfully applied recently<br />

for the synthesis <strong>of</strong> novel salts <strong>of</strong> such complex anions. [7]<br />

[1] P. Feng, X. Bu, N. Zheng, Acc. Chem. Res. 2005, 38, 293. [2] S. Dehnen, M. Melullis, Coord. Chem.<br />

Rev. 2007, 251, 1259. [3] F. Lips, R. Clérac, S. Dehnen, J. Am. Chem. Soc. 2011, 133, 14168. [4] S.<br />

Haddadpour, M. Melullis, H. Staesche, C.R. Mariappan, B. Roling, R. Clérac, S. Dehnen, Inorg. Chem.<br />

2009, 48, 1689. [5] Z. Hassanzadeh Fard, M. Reza Halvagar, S. Dehnen, J. Am. Chem. Soc. 2010, 32,<br />

2848. [6] F. Lips, M. Hołyńska, R. Clerac, U. Linne, I. Schellenberg, R. Pöttgen, F.Weigend, S. Dehnen,<br />

J. Am. Chem. Soc. 2012, 134, 1181. [7] Y. Lin, W. Massa, S. Dehnen, J. Am. Chem Soc. 2012, 134, 4497.


Novel Ring Systems from Disilynes<br />

18<br />

IRIS-13 <strong>Victoria</strong><br />

Akira Sekiguchi<br />

(sekiguch@chem.tsukuba.ac.jp)<br />

Department <strong>of</strong> Chemistry, Graduate School <strong>of</strong> Pure <strong>and</strong> Applied Sciences, <strong>University</strong> <strong>of</strong> Tsukuba,<br />

Tsukuba, Ibaraki 305-8571, Japan<br />

The stable disilyne with a silicon-silicon triple bond bearing two bulky substituents, Si i Pr[CH(SiMe3)2]2<br />

groups have been prepared in our group, [1] <strong>and</strong> we reported a full characterization <strong>of</strong> the first isolable<br />

crystalline disilyne 1, RSi≡SiR (R = Si i Pr[CH(SiMe3)2]2), showing that the silicon–silicon triple bond is<br />

not linear, but trans-bent, which results in two nondegenerate occupied π-MOs <strong>and</strong> two unoccupied<br />

antibonding π*-MOs. [2,3] To underst<strong>and</strong> the nature <strong>of</strong> the π-bonding <strong>of</strong> the silicon–silicon triple bond, we<br />

have investigated the reactivity <strong>of</strong> the disilyne 1 toward a variety <strong>of</strong> reactants, such as alkenes, alkynes,<br />

RLi (R = Me,<br />

Plenary 2 Monday 11:30 a.m.<br />

t Bu), alkali metals, nitriles, silyl cyanides, amines, hydroboranes, 1,3,4,5-<br />

tetramethylimidazol-2-ylidene, <strong>and</strong> 4-dimethylaminopyridine, azobenzenes, carbonyl compounds, which<br />

has opened a new field <strong>of</strong> unsaturated heavier Group 14 element chemistry. The reactivity <strong>of</strong> 1 for the<br />

construction <strong>of</strong> the novel ring systems will be reported. [4]<br />

[1] Sekiguchi, A.; Kinjo, R.; Ichinohe, M. Science, 2004, 305, 1755.<br />

[2] Kravchenko, V.; Kinjo, R.; Sekiguchi, A.; Ichinohe, M.; West, R.; Balazs, Y. S.; Schmidt, A.; Karni,<br />

M.; Apeloig, Y. J. Am. Chem. Soc. 2006, 128, 14472.<br />

[3] Murata, Y.; Ichinohe, M.; Sekiguchi, A. J. Am. Chem. Soc. 2010, 132, 16768.<br />

[4] For the reactivity <strong>of</strong> 1, see: (a) Kinjo, R.; Ichinohe, M.; Sekiguchi, A.; J. Am. Chem. Soc. 2007, 129,<br />

26. (b) Kinjo, R.; Ichinohe, M.; Sekiguchi, A.; Takagi, N.; Sumimoto, M.; Nagase, S. J. Am. Chem.<br />

Soc. 2007, 129, 7766. (c) Takeuchi, K.; Ichinohe, M.; Sekiguchi, A. J. Am. Chem. Soc. 2008, 130,<br />

16848. (d) Yamaguchi, T.; Sekiguchi, A.; Driess, M. J. Am. Chem. Soc. 2010, 132, 14061. (e)<br />

Yamaguchi, T.; Sekiguchi, A. J. Am. Chem. Soc. 2011, 133, 7352. (f) Takeuchi, K.; Ichinohe, M.;<br />

Sekiguchi, J. Am. Chem. Soc. 2011, 133, 12478. (g) Yamaguchi, T.; Asay, M.; Sekiguchi, A. J. Am.<br />

Chem. Soc. 2012, 134, 836.


Oral 1 Monday 1:40 p.m.<br />

Acids <strong>of</strong> the Heavier p-Block Elements <strong>and</strong> Related Metalloxanes<br />

Jens Beckmann<br />

(j.beckmann@uni-bremen.de)<br />

Institute <strong>of</strong> Inorganic <strong>and</strong> Physical Chemistry, Bremen <strong>University</strong>, Bremen, Germany<br />

19<br />

IRIS-13 <strong>Victoria</strong><br />

Exploratory chemistry is presented <strong>of</strong> the novel p-block element acids 1-5, [1-4] which can be regarded as<br />

heavier congeners <strong>of</strong> sulfinic acids, sulfonic acids, phosphonic acids, carboxylic acids <strong>and</strong> boronic acids,<br />

respectively. In 1-5, kinetic stabilization was achieved using a bulky m-terphenyl substituent that prevents<br />

extensive aggregation. Attempts at obtaining similar acids by the electronic stabilization using an<br />

intramolecularly coordinating peri-N donor substituent were less effective <strong>and</strong> provided (partially)<br />

condensed polynuclear products, as exemplified by 6 <strong>and</strong> 7. [5] Reactions <strong>of</strong> 1-7 <strong>and</strong> related compounds<br />

gave rise to new inorganic heterocycles, such as 8-10. [6-8]<br />

[1] J. Beckmann, P. Finke, M. Hesse, B. Wettig Angew. Chem. Int. Ed. 2008, 47, 9982.<br />

[2] J. Beckmann, J. Bolsinger, M. Hesse, P. Finke Angew. Chem. Int. Ed. 2010, 49, 8030.<br />

[3] S. U. Ahmad, J. Beckmann, A. Duthie Chem. Asian J. 2010, 5, 160.<br />

[4] S. U. Ahmad, J. Beckmann Organometallics 2009, 28, 6893.<br />

[5] J. Beckmann, J. Bolsinger, A. Duthie Chem. Eur. J. 2011, 17, 930.<br />

[6] S. U. Ahmad, J. Beckmann, A. Duthie Organometallics 2012, 31, 3802.<br />

[7] J. Beckmann, J. Bolsinger, M. Hesse Organometallics 2009, 28, 4225.<br />

[8] J. Beckmann, M. Hesse Organometallics 2009, 28, 2345.


20<br />

IRIS-13 <strong>Victoria</strong><br />

Cyclometalation <strong>and</strong> Organometallic Intramolecular-coordination Fivemembered<br />

Ring Compounds as Universal Reagents<br />

I. Omae<br />

(um5i-oome@asahi-net.or.jp)<br />

Omae Research Laboratories, 335-23, Mizuno, Sayama, Saitama, 350 -1317, Japan<br />

Cyclometalation is a type <strong>of</strong> reactions capable <strong>of</strong> synthesizing organometallic intramolecular-coordination<br />

compounds. By the reactions, five-membered ring compounds are mostly produced. These products are<br />

mainly prepared by utilizing transition metal compounds. The first article on the transition metal<br />

compounds was reported in 1963 in that π-N=N electrons in azobenzene are donated to a nickel atom to<br />

form an intramolecular bond with UV <strong>and</strong> NMR spectra data. However, in 1965, it was reported that the<br />

intramolecular bond was the result <strong>of</strong> donation <strong>of</strong> nitrogen lone pair electrons in the azobenzene to a<br />

palladium or platinum metal with the UV <strong>and</strong> NMR spectra data. As the verification <strong>of</strong> the intramolecular<br />

coordination bond to these two contradictive reports, in 1989, it was reported that the intramolecular<br />

coordination was shown as the result <strong>of</strong> coordination <strong>of</strong> the nitrogen lone pair electrons to the metal atom,<br />

which is verified by IR, NMR spectra <strong>and</strong> X-ray diffraction data on two azobenzene chelate complexes.<br />

However, in 1966, before this verification, we already reported the clean verification on the<br />

intramolecular bond in organotin compounds as main group metal compounds in Japanese article [1] as<br />

follows:<br />

O<br />

2 BrCHCOH<br />

CH2COH O<br />

β<br />

γ<br />

O<br />

cat.<br />

β<br />

+ Sn Br2Sn CHCOH<br />

ν βC=O : 1740 cm -1<br />

ν γC=O : 1740 cm -1<br />

Oral 2 Monday 1:40 p.m.<br />

γ<br />

O<br />

C<br />

OH<br />

CH 2<br />

2<br />

ν βC=O : 1710 cm -1<br />

(shift = 30 cm -1 )<br />

ν γC=O : 1660 cm -1<br />

(shift = 80 cm -1 )<br />

Massive organometallic intramolecular-coordination five-membered ring compounds have been<br />

synthesized with not only N <strong>and</strong> O atoms but also P, As <strong>and</strong> S atoms as the coordinating atom, <strong>and</strong><br />

furthermore with coordinating groups such as C=C, C=C-C, Cp, diolefins, etc. The reports on the<br />

organometallic intramolecular-coordination compounds having these lig<strong>and</strong> atoms <strong>and</strong> lig<strong>and</strong> groups<br />

have been published as many reviews [2,3] since 1971, <strong>and</strong> a monograph for them was published from<br />

Elsevier company in 1986 [4] . Especially, the organometallic intramolecular-coordination five-membered<br />

ring compounds are surprisingly easily <strong>and</strong> regioselectively synthesized by using many kinds <strong>of</strong> metal<br />

compounds <strong>and</strong> with many kinds <strong>of</strong> substrates. Hence, these reactions are applied as the synthesis <strong>of</strong> the<br />

final products <strong>and</strong> the intermediates, the products are used as catalysts for chiral reactions, metathesis<br />

reactions, cross-coupling reactions, etc., for the production <strong>of</strong> pharmaceuticals, fine chemicals, etc. [5]<br />

Hence, the number <strong>of</strong> the published research articles is more than 7 times than each <strong>of</strong> those related to the<br />

recent Nobel Prize in synthetic chemistry such as chiral catalysts (2001), metathesis (2005) <strong>and</strong> crosscoupling<br />

reactions (2010) from the Chemical Abstract Database SciFinder Scholar 2012, 1, 26 data.<br />

[1] S. Matsuda, S. Kikkawa, I. Omae, Kogyo Kagaku Kyokaishi, 1966, 69, 646.<br />

[2] I. Omae, Rev. Silicon, Germanium, Tin <strong>and</strong> Lead Compounds, 1971, 1, 59.<br />

[3] I. Omae, Chem. Rev. , 1979, 79, 287.<br />

[4] I. Omae, Organometallic Intramoledular-coordination Compounds, Elsevier, Amsterdam, 1986.<br />

[5] I. Omae, Coord. Chem. Rev. 2004, 248, 995; J. Organomet. Chem. 2007, 692, 2608.


Oral 3 Monday 2:00 p.m.<br />

21<br />

IRIS-13 <strong>Victoria</strong><br />

Activation <strong>and</strong> Transformation <strong>of</strong> Phosphorus-Rich Rings <strong>and</strong> Cages<br />

M. Scheer, F. Dielmann, S. Welsch, C. Heindl, S. Heinl, C. Schwarzmaier<br />

(manfred.scheer@chemie.uni-regensburg.de)<br />

Institute <strong>of</strong> Inorganic Chemistry, <strong>University</strong> <strong>of</strong> Regensburg, Germany<br />

Polyphosphorus species <strong>and</strong> moieties play an important role in contemporary main group <strong>and</strong> transition<br />

metal chemistry. The talk will focus on two related areas <strong>of</strong> research: (i) the development <strong>of</strong> novel starting<br />

materials for E4 transfer reactions (E = P, As) <strong>and</strong> to acquire novel synthetic concepts <strong>of</strong> activation <strong>of</strong><br />

white P4 <strong>and</strong> yellow As4. (ii) the use <strong>of</strong> substituent-free polyphosphorus lig<strong>and</strong> complexes in an<br />

alternative supramolecular approach.<br />

The first topic deals with the synthesis <strong>of</strong> novel Ag <strong>and</strong> Zr complexes containing activated Pn <strong>and</strong> Asn<br />

units (n ≤ 4). These compounds can be used as unique reagents to transfer En moieties to transition metals<br />

under very mild conditions. Moreover, a novel concept for the aggregation <strong>of</strong> tetrahedral E4 by transition<br />

metal compounds is presented resulting in neutral En-rich complexes. [1]<br />

In the second part the chemistry <strong>of</strong> the cyclo-P5 containing complex [Cp*Fe(η 5 -P5)] is discussed. On one<br />

h<strong>and</strong> it can be transferred by redox-reactions into ionic P-rich complexes. On the other h<strong>and</strong> it shows<br />

unique supramolecular properties since under special conditions it forms together with Cu(I) halides<br />

soluble spherical aggregates <strong>and</strong> supramolecules. [2] By using carboranes or fivefold-symmetric<br />

organometallics as a third component soluble giant spheres revealing fullerene-like topology are formed<br />

as a consequence <strong>of</strong> template controlled reactions. [3] The approach to an organometallic nano-sized<br />

capsule consisting <strong>of</strong> cyclo-P5 units <strong>and</strong> Cu(I) ions is further presented. [4]<br />

[1] F. Dielmann, M. Sierka, A. V. Virovets, M. Scheer, Angew. Chem. 2010, 122, 7012–7016; Angew.<br />

Chem. Int. Ed. 2010, 49, 6860–6864.<br />

[2] M. Scheer, Dalton Trans. 2008, 4372–4386.<br />

[3] A. Schindler, C. Heindl, G. Balázs, C. Gröger, A. V. Virovets, E. V. Peresypkina, M. Scheer, Chem.<br />

Eur. J. 2012, 18, 829–835.<br />

[4] S. Welsch, C. Gröger, M. Sierka, M. Scheer, Angew. Chem. 2011, 123, 1471–1474; Angew. Chem.<br />

Int. Ed. 2011, 50, 1435–1438.


Oral 4 Monday 2:00 p.m.<br />

22<br />

IRIS-13 <strong>Victoria</strong><br />

Synthesis <strong>and</strong> Characterization <strong>of</strong> Heterocyclic Silicon Based Push-Pull<br />

Systems<br />

Uwe Walter Gross <strong>and</strong> Harald Stueger<br />

(uwe.gross@tugraz.at)<br />

Institute <strong>of</strong> Inorganic Chemistry, Graz <strong>University</strong> <strong>of</strong> Technology, Austria<br />

Donor-acceptor (D-A) interactions within various types <strong>of</strong> D-spacer-A compounds are currently studied<br />

extensively in order to address key issues like electron transfer processes, artificial photosynthesis or<br />

molecular devices. [1] In this context silicon based oligo- <strong>and</strong> polysilanes display attractive electronic<br />

properties which result from delocalized σ-electrons along the silicon backbone (σ-delocalization). [2] σdelocalization<br />

is particularly pronounced in cyclic Si-Si- bonded systems. Cyclopolysilane rings <strong>and</strong><br />

cages, therefore, are likely to serve as effective σ-conjugated bridges in bichromophoric covalently linked<br />

donor-bridge-acceptor compounds. In this work we present synthetic routes to novel cyclohexasilanes,<br />

which contain endocyclic donor atoms <strong>and</strong> acceptor substituents in para positions.<br />

Figure 1: Synthetic pathway leading to functionalized heterocyclopolysilanes<br />

Photophysical <strong>and</strong> electrochemical properties <strong>of</strong> the heterocyclic compounds 5 will be investigated in<br />

detail in order to shed light on the extent <strong>of</strong> intramolecular donor/acceptor interactions via the Si-Si<br />

skeleton.<br />

[1] Y. Shirota, H. Kageyama, Chem. Rev. 2007, 107, 953-1010.<br />

[2] R. West, Pure Appl. Chem. 1982, 54, 1041-1050.


Oral 5 Monday 2:20 p.m.<br />

23<br />

IRIS-13 <strong>Victoria</strong><br />

Reactions <strong>of</strong> Cyclodimethylsiloxanes (Me2SiO)n with Silver Salts <strong>and</strong><br />

Rationalization for Weaker Lewis Basicity <strong>of</strong> Siloxanes Compared to Ethers<br />

T. Stanley Cameron, a Andreas Decken, b Ingo Krossing, c Jack Passmore, b J. Mikko Rautiainen, d Xinping<br />

Wang, e Xiaoqing Zeng f<br />

(juha.rautiainen@oulu.fi)<br />

a Department <strong>of</strong> Chemistry, Dalhousie <strong>University</strong>, Halifax, Nova Scotia, B3H 4J3, Canada<br />

b Department <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> New Brunswick, Fredericton, NB E3B 5A3, Canada<br />

c Institute for Inorganic <strong>and</strong> Analytical Chemistry, Albert–Ludwigs–Universität Freiburg, Albertstr. 21,<br />

79104 Freiburg, Germany<br />

d Department <strong>of</strong> Chemistry, P. O. Box 3000, 90014 <strong>University</strong> <strong>of</strong> Oulu, Finl<strong>and</strong><br />

e State Key Laboratory <strong>of</strong> Coordination Chemistry, Nanjing <strong>University</strong>, Nanjing 210093, P.R.China<br />

f Division C – Inorganic Chemistry, <strong>University</strong> <strong>of</strong> Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany<br />

Reactions <strong>of</strong> cyclodimethylsiloxanes (Me2SiO)m (m = 3-6) with Ag[SbF6] in SO2(l) have been shown to<br />

give equilibrium mixtures <strong>of</strong> mainly AgDn[SbF6] (n = 6-8) complexes <strong>and</strong> afford the isolation <strong>of</strong><br />

[AgD7][SbF6] salt. [1] In contrast reactions <strong>of</strong> D6 with Ag[Al(ORF)4] <strong>and</strong> Ag[AlF(ORF)3] in SO2(l) give the<br />

corresponding AgD6 + complex salts. This suggests alternative routes to metal cyclodimethylsiloxane<br />

complex salts either via ring transformation reactions or directly from components. The energetics <strong>of</strong><br />

metal cyclodimethylsiloxane complex formation <strong>and</strong><br />

relative stabilities <strong>of</strong> different complexes will be<br />

discussed in the presentation.<br />

The differences <strong>of</strong> bonding between siloxanes <strong>and</strong><br />

ethers <strong>and</strong> reasons for the lower basicity <strong>of</strong> siloxanes<br />

will be elucidated on the basis <strong>of</strong> the observed<br />

structures <strong>and</strong> theoretical calculations. Our results<br />

show that the inherently weaker binding <strong>of</strong> siloxanes<br />

towards metal cations compared to analogous ethers is<br />

mainly due to the high polarity <strong>of</strong> the silicon oxygen<br />

bond that causes high positive atomic charges on<br />

silicon atoms <strong>and</strong> repulsion between silicon atoms <strong>and</strong><br />

metal ions. This repulsion outweighs the stronger<br />

binding between metal ions <strong>and</strong> the more negatively<br />

charged oxygen atoms in siloxanes.<br />

Figure 2 [AgD6] +<br />

[1] Decken, A., LeBlanc, F. A., Passmore, J., Wang, X., Eur. J. Inorg. Chem. 2006, 4033.


24<br />

IRIS-13 <strong>Victoria</strong><br />

Novel Four- <strong>and</strong> Five-membered Binary Pnictogen-Nitrogen-Rings:<br />

From Neutral Biradicals to cyclo-Dipnicta-Diazenium Ions<br />

Axel Schulz a,b<br />

(axel.schulz@uni-rostock.de)<br />

a Institut für Chemie, <strong>University</strong> <strong>of</strong> Rostock, b Leibniz-Institut für Katalyse e.V., A.-Einstein-Str. 3A 18059<br />

Rostock, Germany<br />

Four-membered rings <strong>of</strong> the type [XE(µ-NR)]2 (Scheme 1, species B), containing alternating<br />

pnictogen(III) <strong>and</strong> nitrogen centers, are called cyclo-1,3-dipnicta(III)-2,4-diazanes (X = halogen, R =<br />

bulky substituent). [1,2] This talk deals with the syntheses <strong>and</strong> full characterization <strong>of</strong> the whole series <strong>of</strong><br />

salts bearing the cyclo-dipnicta-diazenium ions (Scheme 1, species C for E = P, As, Sb, <strong>and</strong> Bi). [3] A new<br />

facile synthetic approach is presented for the preparation <strong>of</strong> the Bi- <strong>and</strong> Sb-species B by transmetallation<br />

reaction starting from [Sn(�-NTer)]2. [4] Access to the hitherto unknown biradicaloid species D (E = P, [5]<br />

<strong>and</strong> As [3c] ) is easily obtained by reduction with Cp2Ti(btmsa) (btmsa = bistrimethylsilylacetylene).<br />

Finally, besides tetrazaphosphols <strong>and</strong> -arsols, the tetraazastibol (species F) is presented, which could be<br />

isolated in an unusual isomerization process starting from cyclo-1,3-distiba(III)-2,4-diazane B <strong>and</strong> a<br />

strong Lewis acid such as B(C6F5)3. [6] Moreover, for the As analogue it was possible to isolate und fully<br />

characterize the R–N≡As + species E bearing a triple bond, <strong>and</strong> to react E with Me3SiN3 to tetrazaarsole<br />

F. [3c,7]<br />

R<br />

N E<br />

1/2<br />

E N<br />

D R<br />

+2e -<br />

-2X -<br />

R X<br />

N E<br />

1/2<br />

E N<br />

X B R<br />

+LA<br />

R<br />

N E<br />

1/2 LA-X<br />

E N<br />

X C R<br />

Oral 6 Monday 2:20 p.m.<br />

R<br />

N E<br />

A<br />

X<br />

LA<br />

N E<br />

E<br />

+Me3SiN3 -Me3SiX E<br />

R LA<br />

N N<br />

N N<br />

F<br />

[1] M. S. Balakrishna, D. J. Eisler, T. Chivers, Chem. Soc. Rev. 2007, 36, 650.<br />

[2] L. Stahl, Coord. Chem. Rev. 2000, 210, 203.<br />

a) D. Michalik, A. Schulz, A. Villinger, N. Weding, Angew. Chem., Int. Ed. 2008, 47, 6465; b)<br />

A. Schulz, A. Villinger, Inorg. Chem. 2009, 48, 7359; c) submitted 2012.<br />

[3] W. A. Merrill, R. J. Wright, C. S. Stanciu, M. M. Olmstead, J. C. Fettinger, P. P. Power, Inorg.<br />

Chem. 2010, 49, 7097.<br />

[4] T. Beweries, R. Kuzora, U. Rosenthal, A. Schulz, A. Villinger, Angew. Chem. Int. Ed. 2011, 50,<br />

8974.<br />

[5] M. Lehmann, A. Schulz, A. Villinger, Angew. Chem., Int. Ed. 2011, 50, 5221.<br />

[6] A. Schulz, A. Villinger, Angew. Chem., Int. Ed. 2008, 47, 603.<br />

R<br />

LA-X<br />

+Me 3SiN 3<br />

+LA<br />

-Me 3SiX<br />

LA = Lewis acid<br />

X = halogen<br />

R = bulky substituent


Oral 7 Monday 2:40 p.m.<br />

Thiazyl <strong>and</strong> Selenazyl Heterocycles as Paramagnetic Lig<strong>and</strong>s<br />

Kathryn E. Preuss<br />

(kpreuss@uoguelph.ca)<br />

Department <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> Guelph, Guelph, ON N1G 2W1, Canada<br />

25<br />

IRIS-13 <strong>Victoria</strong><br />

Our aim is to exploit the properties <strong>of</strong> well-known thiazyl <strong>and</strong> selenazyl radicals for use in the design <strong>of</strong><br />

paramagnetic lig<strong>and</strong>s. By arranging these main-group structures into familiar lig<strong>and</strong> architectures, we<br />

endeavor to contribute a variety <strong>of</strong> novel, paramagnetic lig<strong>and</strong>s <strong>and</strong> coordination complexes with unusual<br />

<strong>and</strong> potentially useful properties. [1] Specifically, we will present lig<strong>and</strong>s that incorporate 1,2,3,5dithiadiazolyl<br />

(DTDA) <strong>and</strong> 1,2,5-dithiazolyl (DTA) heterocycles, <strong>and</strong> their selenazyl analogs.<br />

Coordination complexes <strong>of</strong> these with 3d transition metal dications (M 2+ ) <strong>and</strong> lanthanide metal trications<br />

(Ln 3+ ) will be discussed. Examples that will be highlighted include a DTDA complex <strong>of</strong> Mn 2+ that forms<br />

high spin pairs in the solid state, [2] dimers <strong>of</strong> DTDA Dy 3+ complexes that act as single-molecule magnets<br />

(SMM)s, <strong>and</strong> Gd 3+ polymers <strong>of</strong> a DTA lig<strong>and</strong>.<br />

[1] Wu, J.; MacDonald, D. J.; Clérac, R.; Jeon, I.-R.; Jennings, M.; Lough, A. J.; Britten, J.; Robertson,<br />

C.; Dube, P. A.; Preuss, K. E.* Inorg. Chem. 2012, 51, 3827-3839.<br />

[2] Fatila, E. M.; Goodreid, J.; Clérac, R.; Jennings, M.; Assoud, J.; Preuss, K. E.* Chem. Commun. 2010,<br />

46, 6569.


26<br />

IRIS-13 <strong>Victoria</strong><br />

Recent Advances in the Chemistry <strong>of</strong> N-Heterocyclic Diphosphines<br />

Dietrich Gudat, Daniela Förster, Oliver Puntigam, Jan Nickolaus <strong>and</strong> Martin Nieger<br />

(gudat@iac.uni-stuttgart.de)<br />

Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70550 Stuttgart, Germany<br />

Tetraamino-substituted diphosphines featuring both acyclic (I) <strong>and</strong> cyclic (II) diphosphanyl units are well<br />

known to undergo homolytic P–P-bond cleavage to give long-lived phosphanyl radicals: [1,2]<br />

(R'RN) 2P P(NRR') 2 2 (RR'N) 2P<br />

I<br />

R<br />

N<br />

R<br />

N<br />

P P<br />

N<br />

R<br />

II<br />

N<br />

R<br />

Oral 8 Monday 2:40 p.m.<br />

2<br />

Starting from an improved synthesis which gives access to both bis-diazaphospholenyls II <strong>and</strong> the appropriate<br />

CC-saturated bis-diazaphospholidines III we present recent results on the structural <strong>and</strong> spectroscopic<br />

characterization <strong>of</strong> these species, including the determination <strong>of</strong> 1 JP,P coupling constants in<br />

symmetrical derivatives II, III where the two phosphorus atoms exhibit apparently total magnetic<br />

equivalence. Monitoring the equilibrium between bis-diazaphospholenyl IIc (R = 2,6-iPr2C6H3) <strong>and</strong> the<br />

corresponding radical by NMR <strong>and</strong> EPR spectroscopy allowed further to gather mechanistic information<br />

on the diphosphine dissociation, <strong>and</strong> to obtain experimental data which allow to assess the energetics <strong>of</strong><br />

the homolytic P–P bond cleavage process. Comparison <strong>of</strong> the experimental data with the results <strong>of</strong><br />

thermochemical calculations suggests the importance <strong>of</strong> including correlation <strong>and</strong> dispersion effects in the<br />

computational model.<br />

The ability to access N-heterocyclic diphosphines II, III on a preparative scale stimulated further studies<br />

<strong>of</strong> their chemical properties. As the first results <strong>of</strong> these investigations, we will report on the addition <strong>of</strong><br />

II, III to multiple bonds, <strong>and</strong> the characterization <strong>of</strong> pseudo-homoleptic phosphenium-metal(0)halides<br />

[(NHP)2MCl]2 (NHP = N-heterocyclic phosphenium; M = Pd, Pt). The metal atoms in these specimen are<br />

not supported by additional donor lig<strong>and</strong>s but feature according to computational studies direct bonding<br />

interaction between centers with a formal d 10 electron count.<br />

[1] Gynane, M. J. S.; Hudson, A.; Lappert, M. F.; Power, P. P.; Goldwhite, H. Chem. Commun. 1976,<br />

623; Gynane, M. J. S.; Hudson, A.; Lappert, M. F.; Power, P. P.;Goldwhite, H. Dalton Trans. 1980,<br />

2428; Bezombes, J.-P.; Hitchcock, P. B.; Lappert, M. F.; Nycz, J. E., Dalton Trans. 2004, 499;<br />

Bezombes, J.-P.; Borisenko, K. B.; Hitchcock, P. B.; Lappert, M. F.; Nycz, J. E.; Rankin, D. W. H.;<br />

Robertson, H. E., Dalton Trans. 2004, 1980.<br />

[2] Edge, R.; Less, R. J.; McInnes, E. J. L.; Müther, K.; Naseri, V.; Rawson, J. R.; Wright, D. S., Chem.<br />

Commun. 2009, 1691.<br />

R<br />

N<br />

P<br />

N<br />

R<br />

R<br />

N<br />

P<br />

N<br />

R<br />

III<br />

R<br />

N<br />

P<br />

N<br />

R


Oral 9 Monday 3:00 p.m.<br />

Boroles going Radical: An Isolable Radical Anion<br />

27<br />

IRIS-13 <strong>Victoria</strong><br />

Johannes Wahler <strong>and</strong> Holger Braunschweig<br />

(johannes.wahler@uni-wuerzburg.de)<br />

Institute <strong>of</strong> Inorganic Chemistry, Julius-Maximilians-<strong>University</strong> Würzburg, Am Hubl<strong>and</strong>, 97074<br />

Würzburg, Germany<br />

The concepts <strong>of</strong> aromaticity <strong>and</strong> antiaromaticity have evolved into some <strong>of</strong> the fundamental principles <strong>of</strong><br />

chemistry. Today, numerous experimental <strong>and</strong> theoretical techniques are available to substantiate the<br />

effect <strong>of</strong> aromatic stabilization <strong>and</strong> antiaromatic destabilization. Isolation <strong>of</strong> antiaromatic compounds,<br />

however, still remains challenging as a consequence <strong>of</strong> their highly reactive nature. The synthesis <strong>of</strong> free,<br />

non-annulated boroles, first reported by J. J. Eisch in 1969, showed that inclusion <strong>of</strong> a sp 2 hybridized<br />

B−R fragment into a planar conjugated carbacyle is a suitable strategy to approach this purpose. [1]<br />

Subsequent experiments <strong>and</strong> computational results verified not only the antiaromatic character <strong>of</strong> boroles<br />

(four π-electrons) but also the aromatic character <strong>of</strong> borole dianions (six �-electrons) generated by<br />

chemical reduction <strong>of</strong> the system. [2,3]<br />

In recent studies we showed that reduction <strong>of</strong> boroles proceeds stepwise involving an intermediate borole<br />

radical anion (five π-electrons) which could so far only be characterized by spectroscopic methods from<br />

in situ generated substance. [4] Synthesis <strong>of</strong> 1-mesityl-2,3,4,5-tetraphenylborole (1) allowed us to prepare a<br />

stable borole radical anion (2), which we have characterized by means <strong>of</strong> computational methods, EPR<br />

spectroscopy, X-ray crystallography, UV-Vis spectroscopy <strong>and</strong> a first reactivity assay. Our results<br />

indicate the presence <strong>of</strong> a boron-centered radical with pronounced spin delocalization within the borole<br />

annulus rather than to the exo-cyclic aryl groups. [5]<br />

[1] J. J. Eisch, N. K. Hota, S. Kozima, J. Am. Chem. Soc. 1969, 91, 4575−4577.<br />

[2] H. Braunschweig, I. Fernández, G. Frenking, T. Kupfer, Angew. Chem. Int. Ed. 2008, 47, 1951−1954.<br />

[3] J. J. Eisch, J. E. Galle, S. Kozima, J. Am. Chem. Soc. 1986, 108, 379−385.<br />

[4] H. Braunschweig, F. Breher, C.-W. Chiu, D. Gamon, D. Nied, K. Radacki, Angew. Chem. Int Ed.<br />

2010, 49, 8975−8978.<br />

[5] H. Braunschweig, V. Dyakonov, J. O. C. Jimenez-Halla, K. Kraft, I. Krummenacher, K. Radacki, A.<br />

Sperlich, J. Wahler, Angew. Chem. Int. Ed. 2012, 51, 2977−2980.


Oral 10 Monday 3:00 p.m.<br />

Polychalcogen Macrocycles Supported by P2N2 Rings<br />

28<br />

IRIS-13 <strong>Victoria</strong><br />

Andreas Nordheider, a,c Tristram Chivers, a Ramalingam Thirumoorthi, a Ignacio Vargas-Baca b <strong>and</strong> J. Derek<br />

Woollins c<br />

(chivers@ucalgary.ca)<br />

a Department <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> Calgary, Calgary, AB, T2N 1N4, Canada<br />

b Department <strong>of</strong> Chemistry <strong>and</strong> Chemical Biology, McMaster <strong>University</strong>, 1280 Main St. W., Hamilton,<br />

ON, Canada, L8S 4M1<br />

c Department <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> St Andrews, St Andrews UK, KY16 9ST<br />

An oxidative strategy has been successful for the generation <strong>of</strong> a variety <strong>of</strong> dichalcogenides with acyclic<br />

or spirocyclic structures from the corresponding dichalcogenido PNP-bridged monoanions. [1] Application<br />

<strong>of</strong> this methodology to the known P2N2-bridged dianions [EP2N2E] 2- [E = S, Se, Te: P2N2 = ( t BuN)P(μ-<br />

N t Bu)2P(N t Bu)] [2,3] produces novel polychalcogen macrocycles, e.g. the trimers [-P2N2-(μ-E-E-)]3 (E = S,<br />

Se) in which a planar P6E6 motif incorporating dichalcogenido groups is stabilized by P2N2 scaffolds. [4]<br />

The NMR spectra (solution <strong>and</strong> solid state) <strong>and</strong> X-ray structures <strong>of</strong> these novel polychalcogen<br />

macrocycles will be discussed in the context <strong>of</strong> DFT calculations. The extension <strong>of</strong> this chemistry to the<br />

formation <strong>of</strong> phosphorus-tellurium rings will also be<br />

described.<br />

[1] For a review, see T.Chivers, J. S. Ritch, S. E. Robertson, J. Konu <strong>and</strong> H. M. Tuononen, Acc. Chem.<br />

Res. 2010, 43, 1053.<br />

[2] T. Chivers, M. Krahn, M. Parvez <strong>and</strong> G. Schatte, Inorg. Chem., 2001, 40, 1493.<br />

[3] G. Bri<strong>and</strong>, T. Chivers <strong>and</strong> M. Parvez, Angew. Chem. Int. Ed., 2002, 41, 3468.<br />

[4] A. Nordheider, T. Chivers, R. Thirumoorthi, I. Vargas-Baca <strong>and</strong> J. D. Woollins, Chem. Commun.,<br />

2012, 48, 6346.


Oral 11 Monday 3:40 p.m.<br />

29<br />

IRIS-13 <strong>Victoria</strong><br />

Molecular Compounds with Bonds Between Heavier Group 15 Elements,<br />

Synthesis, Structures <strong>and</strong> Properties<br />

C. von Hänisch <strong>and</strong> S. Traut<br />

(haenisch@chemie.uni-marburg.de)<br />

Philipps-Universität-Marburg, Germany<br />

Homoatomic ring <strong>and</strong> cage compounds <strong>of</strong> the group 15 elements are well known for several years, [1]<br />

whereas heteroatomic rings <strong>and</strong> cages <strong>of</strong> these elements are rarely described in literature. Recently,<br />

Burford <strong>and</strong> co-workers reported some cationic compounds with bonds between different group 15<br />

elements. [2] In this talk, our results on the synthesis <strong>of</strong> neutral molecular compounds with bonds between<br />

heavier group 15 elements will be presented. Such species were obtained from the reaction <strong>of</strong> silyl or<br />

lithium functionalised phosphines or arsines with metal chlorides such as ECl3 or RECl2 (E = As, Sb, Bi;<br />

R = (Me3Si)2CH, (Me3Si)3C). [3]<br />

Figure 1 Molecular structures <strong>of</strong> the compounds [tBu2PhSiAs{BiClCH(SiMe3)2}2] (left) <strong>and</strong><br />

[As2{BiClCH(SiMe3)2}4] (right) obtained from the reaction <strong>of</strong> (Me3Si)2CHBiCl2 with<br />

tBu2PhSiAs(SiMe3)2 <strong>and</strong> As(SiMe3)3, respectively.<br />

[1] a) M. Baudler, Angew. Chem. 1987, 99, 429-451; b) L.Balázs, H. J. Breunig, Coord. Chem. Rev.<br />

2004, 248, 603-621; c) M. Westerhausen, S. Weinrich, P. Mayer, Z. Anorg. Allg. Chem. 2003, 629,<br />

1153-1156; d) G. Linti, W. Köstler, Z. Anorg. Allg. Chem. 2002, 628, 63-66.<br />

[2] a) E. Conrad, N. Burford, R. McDonald, M. J. Ferguson, Inorg. Chem. 2008, 47, 2952-2954; b) E.<br />

Conrad, N. Burford, R. McDonald, M. J. Ferguson, J. Am. Chem. Soc. 2009, 131, 5066-5067; c) E.<br />

Conrad, N. Burford, R. McDonald, M. J. Ferguson, Chem. Commun. 2010, 46, 4598-4560.<br />

[3] a) D. Nikolova, C. von Hänisch, Eur. J. Inorg. Chem. 2005, 378-382; b) C. von Hänisch, D.<br />

Nikolova, Eur. J. Inorg. Chem. 2006, 4770-4773; c) C. von Hänisch, S. Stahl, Z. Anorg. Allg.<br />

Chem. 2009, 635, 2230-2235; d) S. Traut, A. P. Hähnel, C. von Hänisch, Dalton Trans. 2011, 40,<br />

1365-1371.


Oral 12 Monday 3:40 p.m.<br />

Manipulation <strong>of</strong> Low Coordinate Phosphorus Environments<br />

N. S. Townsend <strong>and</strong> C. A. Russell<br />

(nell.townsend@bristol.ac.uk)<br />

School <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> Bristol, Bristol, BS8 1TS, UK<br />

30<br />

IRIS-13 <strong>Victoria</strong><br />

Main group chemistry which mimics that <strong>of</strong> carbon is key to exp<strong>and</strong>ing the boundaries <strong>of</strong> both inorganic<br />

<strong>and</strong> organic chemistry. The isolobal relationship between a CH moiety <strong>and</strong> a P atom has been used in<br />

predicting <strong>and</strong> rationalizing many novel compounds. Tert-butylphosphaalkyne, P≡C t Bu, is commonly<br />

worked with due to its relative ease <strong>of</strong> synthesis on a large scale <strong>and</strong> its isolobal relationship to an alkyne,<br />

which <strong>of</strong> course are abundant, versatile substrates in organic synthesis. [1] As with alkynes, oligomerisation<br />

can occur <strong>and</strong> one particular oligomer <strong>of</strong> interest is 2,4,6-tri-tertbutyl-1,3,5-triphosphabenzene. These sixmembered<br />

rings with aromatic character are isolobal to benzene <strong>and</strong> thus would be expected to mimic the<br />

diverse chemistry <strong>of</strong> the prototypical aromatic compound. However, the presence <strong>of</strong> phosphorus in the<br />

aromatic ring leads to additional reaction possibilities such as coordination through the phosphorus lone<br />

pair.<br />

Figure 3 Novel species derived from 2,4,6-tri-tertbutyl- 1,3,5-triphosphabenzene.<br />

The work presented exp<strong>and</strong>s upon the coordination <strong>of</strong> this interesting lig<strong>and</strong>, demonstrating the unusual<br />

ŋ 1 coordination mode. [2,3] Furthermore, the addition <strong>of</strong> reactive main group moieties based on pnictenium<br />

ions, which are isolable to carbenes, is investigated leading to rare examples <strong>of</strong> cationic P/C cages. Novel<br />

P/C cages are also accessible via the reaction <strong>of</strong> P≡C t Bu with these reactive pnictenium species.<br />

[1] Becker, G.; Schmidt, H.; Uhl, G.; Uhl, W., Inorg. Synth. 1990, 27, 243.<br />

[2] Clenndenning, S. B.; Hitchcock, P. B.; Nixon, J. F., Chem. Commun. 1999, 1377.<br />

[3] Townsend, N. S.; Green, M.; Russell, C. A., Organometallics, 2012, 31, 2543.


Oral 13 Monday 4:00 p.m.<br />

Bond-Selective Cleavage in Oxaphosphirane Complexes<br />

Rainer Streubel<br />

(r.streubel@uni-bonn.de)<br />

Institut für Anorganische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn<br />

Gerhard-Domagk Str. 1, 53121 Bonn, Germany<br />

31<br />

IRIS-13 <strong>Victoria</strong><br />

Whereas unligated oxaphosphiranes possessing a σ 3 λ 3 -phosphorus (I) are still unknown, their com-plexes<br />

II have been reported in the early nineties. [1,2] The development <strong>of</strong> a new <strong>and</strong> facile protocol for the<br />

synthesis <strong>of</strong> oxaphosphirane complexes using Li/Cl phosphinidenoid complexes [3] paved the way to a<br />

broad systematic study <strong>and</strong>, hence, a wealth <strong>of</strong> new structures became available.<br />

This report will present the scope <strong>of</strong> this methodology [4] including investigations <strong>of</strong> reaction courses that<br />

lead to oxaphosphirane complexes. Furthermore, we will address the problem <strong>of</strong> bond-selective reactions<br />

<strong>of</strong> complexes II using various substrates [5] while focussing on endocyclic bonds (i-iii). In the last part, we<br />

will present first investigations on exocyclic bond cleavages (iv-v) in II, [6] thus entering the new areas <strong>of</strong><br />

P-functional complexes (via iv) <strong>and</strong> free oxaphosphiranes (via v). Further-more, we will provide first<br />

examples <strong>of</strong> deoxygenation processes <strong>of</strong> complexes II which formally represent a combination <strong>of</strong> i) <strong>and</strong><br />

ii). [7]<br />

Scheme: Oxaphosphiranes I <strong>and</strong> complexes II (M = Cr-W; R 1 = alkyl; R 2 , R 3 = alkyl, aryl)<br />

[1] Bauer, S.; Marinetti, A.; Ricard, L.; Mathey, F.; Angew. Chem. 1990, 102, 10, 1188.<br />

[2] Streubel, R.; Kusenberg, A.; Jeske, J.; Jones, P. G.; Angew. Chem. 1994, 106, 2564.<br />

[3] a) Özbolat-Schön, A.; von Frantzius, G.; Marinas Pérez, J.; Nieger, M.; Streubel, R.; Angew. Chem.<br />

Int. Ed. 2007, 46, 9327; b) Bode, M.; Daniels, J.; Streubel, R.; Organometallics 2009, 28, 4636.<br />

[4] a) Streubel, R.; Bode, M.; Marinas Pérez, J.; Schnakenburg, G.; Daniels, J.; Jones, P. G.; Z. Anorg.<br />

Allg. Chem. 2009, 635, 1163; b) Albrecht, C.; Bode, M.; Marinas Pérez, J.; Schnakenburg, G.;<br />

Streubel, R.; Dalton Trans. 2011, 40, 2654; c) Marinas Pérez, J.; Klein, M.; Kyri, A.; Schnakenburg,<br />

G.; Streubel, R.; Organometallics 2011, 30, 5636; d) Streubel, R.; Schneider, E.; Schnakenburg, G.;<br />

submitted.<br />

[5] a) Helten, H.; Marinas Pérez, J.; Schnakenburg, G.; Streubel, R.; Organometallics, 2009, 28, 1221;<br />

b) Marinas Pérez, J.; Helten, H.; Donnadieu, B.; Reed, C. A.; Streubel, R.; Angew. Chem. Int. Ed.<br />

2010, 49, 2615; c) Marinas Pérez, J.; Albrecht, C.; Helten, H.; Schnakenburg, G.; Streubel, R.;<br />

Chem. Commun. 2010, 46, 7244; d) Marinas Pérez, J.; Helten, H.; Schnakenburg, G.; Streubel, R.;<br />

Chem. Asian J. 2011, 6, 1539.<br />

[6] Espinosa, A.; Streubel, R.; submitted.<br />

[7] Albrecht, C.; Shi, L.; Marinas Pérez, J.; van Gastel, M.; Schwieger, S.; Neese, F.; Streubel, R.;<br />

submitted.


Oral 14 Monday 4:00 p.m.<br />

32<br />

IRIS-13 <strong>Victoria</strong><br />

Insights into the Mechanisms <strong>of</strong> Metal-Free Hydrogen Transfer between<br />

Amine-Boranes <strong>and</strong> Aminoboranes <strong>and</strong> Diborazane Redistribution:<br />

Implications for Polyaminoborane Synthesis<br />

Erin M. Leitao, Alasdair P. M. Robertson, Naomi E. Stubbs, Guy C. Lloyd-Jones, <strong>and</strong> Ian Manners<br />

(chzeml@bristol.ac.uk, ian.manners@bristol.ac.uk)<br />

School <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> Bristol, Cantock’s Close, BS8 1TS, UK<br />

Over the past decade, the development <strong>of</strong> amine-borane (RR’NH·BH 3, R = R’ = H or alkyl)<br />

dehydrogenation chemistry has accelerated due to the use <strong>of</strong> these adducts as precursors to boron-nitrogen<br />

containing polymers, in addition to their potential as hydrogen storage <strong>and</strong> transfer materials. [1]<br />

Polyaminoboranes, [RHN-BH2]n (R = alkyl), isoelectronic analogues <strong>of</strong> linear polyolefins [RHC-CH2]n,<br />

one <strong>of</strong> the most important synthetic polymers today, are an exciting class <strong>of</strong> main-group polymers with<br />

potentially interesting properties. These polymers have recently become accessible from a limited range<br />

<strong>of</strong> amine-borane adducts, facilitated by an iridium catalyst under mild conditions. [2] However, in order to<br />

increase the scope through polymerization <strong>of</strong> a wider variety <strong>of</strong> monomers, the mechanism <strong>of</strong> catalysis<br />

must be fully probed <strong>and</strong> understood. This is explored by studying simpler systems, such as the<br />

remarkable metal-free hydrogen transfer between aminoboranes (RR’N=BH2, R = R’ = alkyl) <strong>and</strong> amineboranes<br />

as well as model linear diborazanes (RR’NH-BH2-NRR’-BH3, R = R’ = H or alkyl), at room<br />

temperature, thermolytically, <strong>and</strong> catalytically. [3] This presentation will communicate pertinent<br />

mechanistic details <strong>of</strong> the hydrogen transfer <strong>and</strong> redistribution processes, relevant to the formation <strong>of</strong><br />

polyaminoboranes.<br />

iPr 2N=BH 2<br />

+<br />

Me 2NHįBH 3<br />

iPr2NHįBH3 +<br />

Me2N-BH2 iPr2NHįBH2 +<br />

1 /2[Me2N-BH2] 2<br />

MeNH 2-BH 2-NHMe-BH 3 MeNH 2įBH 3 + MeNH=BH2<br />

[1] Staubitz, A. et al. Chem. Rev. 2010, 110, 4023. Whittell, G.; Manners, I. Angew. Chem. Int. Ed. 2011,<br />

50, 10288. Staubitz, A. et al. Chem. Rev. 2010, 110, 4079.<br />

[2] Staubitz, A. et al. Angew. Chem. Int. Ed. 2008, 47, 6212. Staubitz, A. et al. J. Am. Chem. Soc. 2010,<br />

132, 13332.<br />

[3] Robertson, A. P. M. et al. J. Am. Chem. Soc. 2011, 133, 19322.


Oral 15 Monday 4:20 p.m.<br />

33<br />

IRIS-13 <strong>Victoria</strong><br />

Chemistry <strong>of</strong> Dimolybdaheteroboranes Containing group 16 Elements<br />

Kiran Kumar Varma Chakrahari <strong>and</strong> Sundargopal Ghosh<br />

(sghosh@iitm.ac.in)<br />

Department <strong>of</strong> Chemistry, Indian Institute <strong>of</strong> Technology Madras, Chennai 600 036, India<br />

Pyrolysis <strong>of</strong> [(Cp * Mo)2B4H8], (Cp * = η 5 -C5Me5), a possible intermediate generated by the reaction <strong>of</strong><br />

[Cp * MoCl4] <strong>and</strong> [LiBH4.thf] at -40 ºC, with chalcogen sources yielded [(Cp * Mo)2B4H6E], (where E = S,<br />

Se <strong>and</strong> Te). Cluster [(Cp * Mo)2B4H6E] on reaction with [Fe2(CO)9] led to the formation <strong>of</strong><br />

[(Cp * Mo)2B4H6EFe(CO)3]. Further, a new class <strong>of</strong> metallaheteroborane clusters, oblatocloso-<br />

[(Cp * Mo)2B3H3S(µ-CO)3Co2(CO)3] <strong>and</strong> hypoelectronic [(Cp * Mo)2B4H4S(µ3-CO)Co2(CO)4] have been<br />

isolated from the reaction <strong>of</strong> [(Cp * Mo)2B4H6E] with [Co2(CO)8]. The geometry <strong>of</strong> cluster<br />

[(Cp * Mo)2B3H3S(µ-CO)3Co2(CO)3] is unique, which can be generated from a 8 vertex closododecahedron<br />

by performing two diamond-square-diamond (dsd) rearrangements. The key results <strong>of</strong> this<br />

work will be discussed.<br />

[1] Aldridge, S.; Shang, M.; Fehlner, T. P. J. Am. Chem. Soc. 1998, 120, 2586.<br />

[2] Dhayal, R. S.; Chakrahari, K. K. V.; Varghese, B.; Mobin, S. M.; Ghosh, S. Inorg. Chem. 2010, 49,<br />

7741.<br />

[3] Chakrahari, K. K. V.; Ghosh, S. J. Chem. Sci. 2011, 123, 847.


Oral 16 Monday 4:20 p.m.<br />

34<br />

IRIS-13 <strong>Victoria</strong><br />

Transition Metal Anion Reagents for the Preparation <strong>of</strong> Inorganic <strong>and</strong><br />

(Phospha)organometallic Ring Systems<br />

Robert Wolf, a,b Eva-Maria Schnöckelborg, b Jennifer Malberg a <strong>and</strong> Katharina Weber b<br />

(robert.wolf@ur.de)<br />

a <strong>University</strong> <strong>of</strong> Regensburg, Institute <strong>of</strong> Inorganic Chemistry, Universitätsstr. 31, 93053 Regensburg,<br />

Germany<br />

b <strong>University</strong> <strong>of</strong> Münster, Institute <strong>of</strong> Inorganic <strong>and</strong> Analytical Chemistry, Corrensstraße 30, 48149<br />

Münster, Germany<br />

Our research group investigates anionic polyarene transition metal complexes that may be used as<br />

synthetic equivalents <strong>of</strong> transition metal anions. Only few representatives <strong>of</strong> this promising class <strong>of</strong><br />

compounds have previously been reported. [1] In this contribution, we describe the synthesis <strong>and</strong><br />

characterisation <strong>of</strong> the new iron complex [K(18-Krone-6){Cp*Fe(η 4 -C10H8)}] (1, Cp* = C5Me5). [2]<br />

Selected synthetic applications <strong>of</strong> this complex <strong>and</strong> related metalates are discussed. The synthetic<br />

potential <strong>of</strong> such reagents is demonstrated by the reaction <strong>of</strong> „Cp*Fe − equivalent” 1 with white<br />

phosphorus, which gave unusual anionic polyphosphido iron complexes 2 <strong>and</strong> 3 under mild conditions. [3]<br />

[1] a) Review: J. E. Ellis, Inorg. Chem. 2006, 45, 3167-3186; b) recent examples: R. E. Jilek, M. Jang, E.<br />

D. Smolensky, J. D. Britton, J. E. Ellis, Angew. Chem. Int. Ed. 2008, 47, 8692-8695, <strong>and</strong> refs.<br />

therein.<br />

[2] R. Wolf, E.-M. Schnöckelborg, Chem. Commun. 2010, 46, 2832-2834.<br />

[3] E.-M. Schnöckelborg, J. J. Weig<strong>and</strong>, R. Wolf, Angew. Chem. Int. Ed. 2011, 50, 6657-6660.


Oral 17 Monday 4:40 p.m.<br />

35<br />

IRIS-13 <strong>Victoria</strong><br />

Synthesis <strong>and</strong> Characterization <strong>of</strong> Lig<strong>and</strong>-Modified Aluminium Alkoxide<br />

Hameed Ullah Wazir †‡ <strong>and</strong> Michael Veith †<br />

(hameedwazir@yahoo.co.uk)<br />

† Institute <strong>of</strong> Inorganic <strong>and</strong> General Chemistry, <strong>University</strong> <strong>of</strong> Saarl<strong>and</strong>, 66125 Saarbruecken Germany<br />

‡ Department <strong>of</strong> Chemistry Hazara <strong>University</strong> Mansehra 21300, KPK, Pakistan<br />

Development <strong>of</strong> designed molecular compounds <strong>of</strong> metals is <strong>of</strong> significant interest as single source<br />

precursors (SSPs) in material synthesis, specifically in synthesis <strong>of</strong> functional metal oxides. However,<br />

certain variable parameters hinder the development <strong>of</strong> the designed compounds. These variables include<br />

reaction temperature <strong>and</strong> time, nature <strong>of</strong> central metal atoms, solvents <strong>and</strong> lig<strong>and</strong>s etc. Therefore, it is<br />

reasonable to say that a good control over these parameters assures the materialization <strong>of</strong> the designed<br />

SSPs. We have tested this hypothesis by synthesizing liag<strong>and</strong>-modified aluminum alkoxides <strong>of</strong> the<br />

general formula, [XxAl(OR)y-x]n, where X = H ˉ (1, 2) <strong>and</strong> Cl ˉ( 3), R=cyclohexyl (1, 2) <strong>and</strong> 1methylcyclohexyl<br />

(3), x varies from 1-2 <strong>and</strong> n=2 (3), 5 (1) <strong>and</strong> n (2) . The novel compounds, 1, 2, <strong>and</strong> 3<br />

were synthesized under varying reaction conditions using lig<strong>and</strong>s <strong>of</strong> different bulk. The compounds 1, 2,<br />

<strong>and</strong> 3 were all obtained as colorless crystals in the parent solvent upon storing in refrigerator at -30°C.<br />

The Al–H bonds in the compounds 1 <strong>and</strong> 2 were confirmed by measuring their IR spectra, which give<br />

characteristic peaks ranging between 1830 cm -1 to 1865 cm -1 . [1] The structures in solution <strong>of</strong> the<br />

compounds 1, 2, <strong>and</strong> 3 were determined by 1 H- <strong>and</strong> 13 C-NMR spectroscopy. MAS-NMR spectrum was<br />

recorded for compound 2 which is in good agreement to the solid state structure determined by single<br />

crystal X-rays analysis. The compounds were analyzed by single crystal X-rays diffraction <strong>and</strong> solid state<br />

structures were established for 1, 2, <strong>and</strong> 3. Compound 1 is pseudo pentamer while compound 2 is a two<br />

dimensional polymer. Here, it is important to note that the reactants <strong>and</strong> their stoichiometries were kept<br />

same during the synthesis <strong>of</strong> compounds 1 <strong>and</strong> 2. However, by varying the rate <strong>of</strong> dropping alcohol into<br />

the reaction mixture (3LiAlH4 + AlCl3) <strong>and</strong> the reaction time, two different compounds 1 <strong>and</strong> 2 were<br />

obtained. Compound 3 is dimer having central four-membered Al2O2 cyclic ring. The lower degree <strong>of</strong><br />

polymerization in compound 3 is attributed to the bulky Clˉ lig<strong>and</strong> substituted for Hˉ <strong>and</strong> more sterically<br />

crowded 1-methylcyclohexoxy group. The elemental compositions <strong>of</strong> the compounds 1, 2, <strong>and</strong> 3 were<br />

determined using CHN analyzer for carbon <strong>and</strong> hydrogen. The experimentally determined carbon <strong>and</strong><br />

hydrogen contents <strong>of</strong> the compounds 1, 2, <strong>and</strong> 3 were in good agreement to that calculated theoretically.<br />

The aluminum contents <strong>of</strong> the compounds 1, 2, <strong>and</strong> 3 were determined by complexometric titration<br />

method using EDTA as complexing agent while the chlorine in compound 3 was determined by titrimetry<br />

with AgNO3. [2-3]<br />

[1] M. Veith, S. Faber, H. Wolfanger <strong>and</strong> V. Huch, Chem. Ber., (1996), 129, 381.<br />

[2] Komplexometrische Bestimmungsmethoden mit Titriplex, Merck, 3. Auflage.<br />

[3] E. Gerdes, Qualitative Anorganische Analyse, Verlag Vieweg, 1995.


Oral 18 Monday 4:40 p.m.<br />

36<br />

IRIS-13 <strong>Victoria</strong><br />

Synthesis <strong>and</strong> Properties <strong>of</strong> Phosphole-Based Smart Molecular Materials<br />

Yi Ren <strong>and</strong> Thomas Baumgartner<br />

(thomas.baumgartner@ucalgary.ca)<br />

Department <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> Calgary, 2500 <strong>University</strong> Dr. NW, Calgary, AB T2N 1N4,<br />

Canada<br />

Phosphole-based π-conjugated compounds have recently attracted significant attention, due their unique<br />

electronic properties. [1] The materials have shown considerable potential for a variety <strong>of</strong> practical<br />

applications, such as organic light-emitting diodes, field-effect transistors, <strong>and</strong> solar cells. Equally<br />

desirable for practical applications are highly ordered bulk phases <strong>of</strong> the materials, <strong>and</strong> self-assembly<br />

features have been found to play an important role in the efficient charge-, ion-, <strong>and</strong> charge-transfer<br />

properties <strong>of</strong> organic electronics.<br />

This presentation will highlight our efforts in efficiently designing ring-fused phosphole building blocks<br />

that provide access to smart molecular materials. [2] Our multi-pronged approach addresses their intrinsic<br />

properties, such as electronics <strong>and</strong> photophysics, but also some extrinsic properties that have opened up a<br />

path to utilizing these functional building blocks in the generation <strong>of</strong> highly ordered nano/microstructures.<br />

[1] (a) M. G. Hobbs, T. Baumgartner, Eur. J. Inorg. Chem. 2007, 3611. (b) Y. Matano, H. Imahori, Org.<br />

Biomol. Chem. 2009, 7, 1258.<br />

[2] (a) Y. Ren, W. H. Kan, M. A. Henderson, P. G. Bomben, C. P. Berlinguette, V. Thangadurai, T.<br />

Baumgartner, J. Am. Chem. Soc. 2011, 133, 17014. (b) Y. Ren, W. H. Kan, V. Thangadurai, T.<br />

Baumgartner, Angew. Chem. Int. Ed. 2012, 51, 3964.


Oral 19 Tuesday 8:50 a.m. <strong>and</strong> Poster 65<br />

Phosphorus-Containing Copolymers for Suzuki Cross-Coupling<br />

37<br />

IRIS-13 <strong>Victoria</strong><br />

Tom H. H. Hsieh, Thomas W. Hey <strong>and</strong> Derek P. Gates<br />

(thsieh@chem.ubc.ca)<br />

Department <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> British Columbia, 2036 Main Mall, Vancouver, British Columbia,<br />

V6T 1Z1, Canada<br />

Traditionally, monodentate <strong>and</strong> bidentate phosphines have comprised the majority <strong>of</strong> phosphoruscontaining<br />

lig<strong>and</strong>s in catalysis. The use <strong>of</strong> hybrid inorganic/organic phosphorus-containing polymers have<br />

been largely unexplored. We have previously reported that copolymers formed from the addition<br />

polymerization <strong>of</strong> phosphaalkene <strong>and</strong> styrene are capable <strong>of</strong> supporting transition metal cross-coupling<br />

catalysis. [1] We now report the recent developments in the ease <strong>of</strong> purification, increased substrate <strong>and</strong><br />

catalyst scope, <strong>and</strong> ability to recycle the poly(methylenephosphine)-polystyrene copolymer (PMP-PS).<br />

Furthermore, copolymer microstructure <strong>and</strong> modifications, such as crosslinking with divinylbenzene, will<br />

be presented.<br />

[1] Tsang, C.-W.; Baharloo, B.; Riendl, D.; Yam, M.; Gates, D.P. Angew. Chem. Int. Ed. 2004, 43, 5682.


Oral 20 Tuesday 8:50 a.m.<br />

Conjugated Boracycles: Electron-Deficient Ring Systems<br />

Pangkuan Chen, Jiawei Chen, Didier A. Murillo <strong>and</strong> Frieder Jäkle<br />

(fjaekle@rutgers.edu)<br />

Department <strong>of</strong> Chemistry, Rutgers <strong>University</strong> – Newark, Newark, NJ 07302\<br />

38<br />

IRIS-13 <strong>Victoria</strong><br />

Electron-deficient organoboranes play important roles in various organic transformations, as activators <strong>of</strong><br />

transition metal complexes in olefin polymerization, <strong>and</strong> in the activation <strong>of</strong> small molecules when<br />

combined with bulky Lewis bases (so-called frustrated Lewis pairs). The Lewis acidic properties are also<br />

exploited in the recognition <strong>of</strong> anions. Especially attractive are bidentate <strong>and</strong> polyfunctional species,<br />

which tend to exhibit the strongest affinities due to cooperative <strong>and</strong>/or chelate effects. Conjugated<br />

systems that feature multiple tricoordinate borane moieties, on the other h<strong>and</strong>, are attractive in optical <strong>and</strong><br />

electronic applications (e.g. nonlinear optics, luminescent imaging materials, OLEDs, OFETs,<br />

photovoltaics), due to extension <strong>of</strong> conjugation via the empty p-orbital <strong>and</strong> the electron-acceptor effect <strong>of</strong><br />

boranes. [1]<br />

In this presentation we will discuss our efforts toward conjugated cyclics in which multiple electrondeficient<br />

boranes interact with each other through π-conjugated organic or organometallic bridging<br />

groups. [2,3] Among these is the intriguing new class <strong>of</strong> boracyclophanes <strong>and</strong> related macrocycles that are<br />

highly electron-deficient, yet can be switched into electron-rich systems by anion coordination. [3]<br />

[1] W. E. Piers, G. J. Irvine, V. C. Williams, Eur. J. Inorg. Chem. 2000, 2131. F. Jäkle, “Boron:<br />

Organoboranes” in Encyclopedia <strong>of</strong> Inorganic Chemistry, 2 nd edition, Ed. B. King, Wiley-VCH,<br />

Weinheim, 2005; pp 560-598. D. W. Stephan, G. Erker, Angew. Chem., Int. Ed. 2009, 49, 46. C. R.<br />

Wade, A. E. J. Broomsgrove, S. Aldridge, F. P. Gabbai, Chem. Rev. 2010, 110, 3958. F. Jäkle, Chem.<br />

Rev. 2010, 110, 3985-4022<br />

[2] K. Venkatasubbaiah, T. Pakkirisamy, A. Doshi, R. A. Lalancette, F. Jäkle, Dalton Trans. 2008, 4507-<br />

4513; T. Pakkirisamy, K. Venkatasubbaiah, W. S. Kassel, A. L. Rheingold, F. Jäkle,<br />

Organometallics 2008, 27, 3056-3064; T. Pakkirisamy, J. Chen, R. A. Lalancette, F. Jäkle,<br />

Organometallics 2011, 33, 6734-6741; J. Chen, Didier A. Murillo, R. A. Lalancette, F. Jäkle,<br />

unpublished results.<br />

[3] P. Chen, R. A. Lalancette, F. Jäkle, J. Am. Chem. Soc. 2011, 133, 8802-8805; P. Chen, F. Jäkle, J. Am.<br />

Chem. Soc. 2011, 133, 20142-20145; P. Chen, R. A. Lalancette, F. Jäkle, 2012, submitted.


Oral 21 Tuesday 9:10 a.m.<br />

Synthesis <strong>and</strong> Properties <strong>of</strong> 1-Phospha-2-boraacenaphthene<br />

39<br />

IRIS-13 <strong>Victoria</strong><br />

Takahiro Sasamori, 1 Akihiro Tsurusaki, 1 Atsushi Wakamiya, 1,2 Kazuhiro Nagura, 2 Stephan Irle, 2<br />

Shigehiro Yamaguchi 2 <strong>and</strong> Norihiro Tokitoh 1<br />

(sasamori@boc.kuicr.kyoto-u.ac.jp)<br />

1 Institute for Chemical Research, Kyoto <strong>University</strong>, Gokasho, Uji, Kyoto 611-0011, JAPAN<br />

2 Department <strong>of</strong> Chemistry, Graduate School <strong>of</strong> Science, Nagoya <strong>University</strong>, Furo, Chikusa, Nagoya 464-<br />

8602, Japan<br />

Combinations <strong>of</strong> group 13 <strong>and</strong> 15 elements have attracted much attention in recent years from the<br />

viewpoint <strong>of</strong> material science such as π-electron conjugated molecules. [1] In such series with both<br />

phosphorus <strong>and</strong> boron atoms, phosphaborine [2a] <strong>and</strong> phosphonium- <strong>and</strong> borate-bridged stilbene [2b] have<br />

been reported. On the other h<strong>and</strong>, we have recently reported the synthesis <strong>and</strong> properties <strong>of</strong> 1,2-dimesityl-<br />

1-phospha-2-boraacenaphthene (1), which is a unique heterocyclic compound bearing −B a bond P<br />

tethered with a naphthyl unit at the 1,8-positions. [3] We report here the synthesis <strong>and</strong> properties <strong>of</strong> the first<br />

stable 1-phospha-2-boraacenaphthene 1.<br />

Reduction <strong>of</strong> 1-dimesitylboryl-8-dichlorophosphinonaphthalene 2 with magnesium metal in THF at r.t.<br />

gave 1-phospha-2-boraacenaphthene 1 as orange crystals in 91% yield via the migration <strong>of</strong> the Mes group<br />

from the B atom to the P atom. The structure <strong>of</strong> 1 was characterized by the spectroscopic <strong>and</strong> X-ray<br />

crystallographic analyses. It is worth noting that 1 was found to be orange in color, both in the crystalline<br />

state <strong>and</strong> in solution, in contrast to the previously reported phosphinoboranes, which are colorless or<br />

yellow crystals. Furthermore, 1 exhibited weak but apparent orange emission in solution. The chemical<br />

<strong>and</strong> physical properties <strong>of</strong> 1 will be discussed in detail.<br />

[1] A. Fukazawa, S. Yamaguchi, Chem. Asian J. 2009, 4, 1386.<br />

[2] a) T. Agou, J. Kobayashi, T. Kawashima, Org. Lett. 2005, 7, 4373. b) A. Fukazawa, H. Yamada, S.<br />

Yamaguchi, Angew. Chem. Int. Ed. 2008, 47, 5582.<br />

[3] A. Tsurusaki, T. Sasamori, A. Wakamiya, S. Yamaguchi, K. Nagura, S. Irle, N. Tokitoh, Angew.<br />

Chem. Int. Ed. 2011, 50, 10940.


Oral 22 Tuesday 9:10 a.m.<br />

40<br />

IRIS-13 <strong>Victoria</strong><br />

Exploring Non-Covalent Interactions <strong>and</strong> Hypervalency: Reactions <strong>of</strong><br />

Acenaphthene Chalcogen Compounds<br />

Fergus R. Knight, Rebecca A. M. R<strong>and</strong>all, Kasun S. Athukorala Arachchige, Lucy Wakefield, L. K.<br />

Aschenbach, D. B. Cordes, A. Baggott, John M. Griffin, Sharon E. Ashbrook, Michael Bühl, Alex<strong>and</strong>ra<br />

M. Z. Slawin <strong>and</strong> J. Derek Woollins (frk@st-<strong>and</strong>rews.ac.uk)<br />

EaStCHEM, School <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> St Andrews, St Andrews, Fife, KY16 9ST, UK<br />

The interaction <strong>of</strong> atoms is an integral aspect <strong>of</strong> chemistry, biology <strong>and</strong> materials science. Whilst there<br />

have been great advances in the knowledge <strong>of</strong> covalent <strong>and</strong> ionic bonding, ambiguity over “hypervalent”<br />

species still remains a topic <strong>of</strong> interest <strong>and</strong> a full underst<strong>and</strong>ing <strong>of</strong> non-covalent interactions has yet to be<br />

developed. When bulky heteroatoms are constrained in unavoidably congested environments, non-bonded<br />

interactions arise as a consequence <strong>of</strong> a direct overlap <strong>of</strong> orbitals. Such bonding situations can be<br />

accomplished by positioning members <strong>of</strong> Groups 16 <strong>and</strong> 17 at suitable locations in a rigid organic<br />

framework, for example naphthalene <strong>and</strong> related 1,2-dihydroacenaphthylene (acenaphthene).<br />

Acenaphthene compounds (Acenap[X][EPh] (Acenap = acenaphthene-5,6-diyl; X = Br, I; E = S, Se, Te)<br />

<strong>and</strong> Acenap[EPh][E`Ph] E/E` = S, Se, Te) experience a general increase in peri-separation for molecules<br />

accommodating heavier congeners <strong>and</strong> maps the trends observed previously for analogous naphthalene<br />

derivatives. [1,2] Nevertheless, conformation <strong>of</strong> the aromatic ring systems dominates the geometry <strong>of</strong> the<br />

peri-region, with the anomalies observed correlated to the ability <strong>of</strong> the frontier orbitals <strong>of</strong> the halogen or<br />

chalcogen atoms to take part in attractive or repulsive interactions. [1,2] The parent chalcogen compounds<br />

react with dibromine <strong>and</strong> diiodine acceptors to afford a group <strong>of</strong> structurally diverse addition products<br />

containing hypervalent three-body fragments; insertion adducts (X-R2Te-X) exhibiting molecular see-saw<br />

geometries, neutral charge-transfer (CT) spoke adducts (R2Se-I-I), bromoselanyl cations [R2Se-Br] + ···[Br-<br />

Br2] - . [3] Reaction with methyl triflate afforded a series <strong>of</strong> monocation chalconium salts containing quasilinear<br />

three-body CMe-E···Z (E = Te, Se, S; Z = Br/E) fragments, confirmed by DFT as the onset <strong>of</strong> threecenter,<br />

four-electron bonding. The increasingly large J values for Se-Se, Te-Se <strong>and</strong> Te-Te coupling<br />

observed in the 77 Se <strong>and</strong> 125 Te NMR spectra give further evidence for the existence <strong>of</strong> a weakly-attractive<br />

through-space interaction. [4] ‘Electrochemically informed synthesis’ led to the oxidation <strong>of</strong> ditellurium<br />

compound Acenap(TePh)2 with AgBF4 <strong>and</strong> AgOTf affording two dication salts. [5] Similar reactions with<br />

derivatives containing lighter members <strong>of</strong> Group 16 afforded a series <strong>of</strong> silver(I) coordination<br />

compounds, generating 3D metal-organic frameworks (MOFs), 1D polymeric chains <strong>and</strong> simple<br />

monomeric complexes. [6]<br />

[1] F. R. Knight, A. L. Fuller, M. Bühl, A. M. Z. Slawin <strong>and</strong> J. D. Woollins, Chem. Eur. J., 2010, 16,<br />

7503; F. R. Knight, A. L. Fuller, M. Bühl, A. M. Z. Slawin <strong>and</strong> J. D. Woollins, Chem. Eur. J., 2010, 16,<br />

7605. [2] L. K. Aschenbach, F. R. Knight, R. A. M. R<strong>and</strong>all, D. B. Cordes, A. Baggott, M. Bühl, A. M.<br />

Z. Slawin <strong>and</strong> J. D. Woollins, Dalton Trans., 2012, 41, 3141. [3] F. R. Knight, K. S. Athukorala<br />

Arachchige, R. A. M. R<strong>and</strong>all, M. Bühl, A. M. Z. Slawin <strong>and</strong> J. D. Woollins, Dalton Trans., 2012, 41,<br />

3154. [4] F. R. Knight, R. A. M. R<strong>and</strong>all, K. S. Athukorala Arachchige, L. Wakefield, J. M. Griffin, S. E.<br />

Ashbrook, M. Bühl, A. M. Z. Slawin <strong>and</strong> J. D. Woollins, 2012, J. Am. Chem. Soc., submitted. [5] R. T.<br />

Boeré, T. L. Roemmele, L. K. Aschenbach, R. A. M. R<strong>and</strong>all, F. R. Knight, M. Bühl, A. M. Z. Slawin<br />

<strong>and</strong> J. D. Woollins, unpublished work. [6] F. R. Knight, R. A. M. R<strong>and</strong>all, L. Wakefield, A. M. Z. Slawin<br />

<strong>and</strong> J. D. Woollins, Chem. Eur. J., submitted.


Oral 23 Tuesday 9:30 a.m.<br />

41<br />

IRIS-13 <strong>Victoria</strong><br />

Synthesis, Structures <strong>and</strong> Reactions <strong>of</strong> Stannylene-bridged Ru Complexes<br />

Derived from Tetraethyldilithiostannole<br />

Masaichi Saito, a Takuya Kuwabara, a Jing Dong Guo, b Shigeru Nagase b<br />

(masaichi@chem.saitama-u.ac.jp)<br />

a Department <strong>of</strong> Chemistry, Graduate School <strong>of</strong> Science <strong>and</strong> Engineering, Saitama <strong>University</strong>, Shimookubo,<br />

Sakura-ku, Saitama-city, Saitama, 338-8570, Japan<br />

b Fukui Institute for Fundamental Chemistry, Kyoto <strong>University</strong>, Takano-Nishihiraki-cho, Sakyou-ku,<br />

Kyoto, 606-8103, Japan<br />

Group 14 metallole anions <strong>and</strong> dianions have received considerable attention in terms <strong>of</strong> their aromaticity<br />

<strong>and</strong> their potential usefulness as lig<strong>and</strong>s for transition metal complexes. [1] There have already been<br />

reported several transition metal complexes coordinated by metallole lig<strong>and</strong>s in η 5 fashions, [2] which were<br />

synthesized by the reactions <strong>of</strong> monoanion equivalents <strong>of</strong> metalloles with transition metal reagents. In<br />

contrast, there are no reports on the reactions <strong>of</strong> dianion equivalents <strong>of</strong> metalloles with transition metal<br />

reagents. We therefore examined the reactions <strong>of</strong> dilithiotetraphenylstannole [3] with various transition<br />

metal reagents. However, no identifiable products were obtained. We next investigated the reactions <strong>of</strong><br />

tetraethyldilithiostannole 1 [4] with [Cp*RuCl]4, <strong>and</strong> unexpected products were produced.<br />

After addition <strong>of</strong> diethyl ether to a mixture <strong>of</strong> tetraethyldilithiostannole 1 <strong>and</strong> [Cp*RuCl]4 (0.5 eq),<br />

bis(stannylene)-bridged dinuclear Ru complex 2 was isolated in 13% yield. To investigate the mechanism<br />

for the formation <strong>of</strong> 2, the reaction <strong>of</strong> 1 with 0.2 equivalent <strong>of</strong> [Cp*RuCl]4 was examined, <strong>and</strong><br />

dilithiobis(stannylene)-bridged dinuclear Ru complex 3 was isolated in 80% yield. The nature <strong>of</strong> the<br />

Ru−Ru bonds in 2 was clarified by theoretical calculations.<br />

Et<br />

Et Li Et Et<br />

Et<br />

Et Et<br />

Sn<br />

Et<br />

Sn<br />

Et Et<br />

Ru<br />

Sn Et<br />

Li<br />

Ru<br />

Cp*<br />

Cp* Et<br />

1 2<br />

Li<br />

Cp*<br />

Et<br />

Et<br />

Ru<br />

Sn Sn<br />

Ru<br />

EtCp* Et<br />

Li<br />

[1] For example <strong>of</strong> recent reviews, see: (a) Saito, M.; Yoshioka, M. Coord. Chem. Rev. 2005, 249, 765.<br />

(b) Lee, V. Y.; Sekiguchi, A. Angew. Chem., Int. Ed. 2007, 46, 6596. (c) Lee, V. Y.; Sekiguchi, A. In<br />

Organometallic Compounds <strong>of</strong> Low-coordinate Si, Ge, Sn <strong>and</strong> Pb, Wiley, Chichester, p335. (d)<br />

Saito, M. Coord. Chem. Rev. 2012, 256, 627.<br />

[2] (a) Freeman, W. P.; Tilley, T. D.; Rheigold, A. L.; Ostr<strong>and</strong>er, R. L. Angew. Chem., Int. Ed. Engl.<br />

1993, 32, 1744. (b) Freeman, W. P.; Tilley, T. D. J. Am. Chem. Soc. 1994, 116, 8428. (c) Dysard, J.<br />

M.; Tilley, T. D. J. Am. Chem. Soc. 1998, 120, 8245. (d) Dysard, J. M.; Tilley, T. D. J. Am. Chem.<br />

Soc. 2000, 122, 3097. (e) Freeman, W. P.; Dysard, J. M.; Tilley, T. D. Organometallics 2002, 21,<br />

1734. (f) Lee, V. Y.; Kato, R.; Sekiguchi, A.; Krapp, A.; Frenking, G. J. Am. Chem. Soc. 2007, 129,<br />

10340. (g) Yasuda, H.; Lee, V. Y.; Sekiguchi, A. J. Am. Chem. Soc. 2009, 131, 9902.<br />

[3] Saito, M.; Haga, R.; Yoshioka, M.; Ishimura, K.; Nagase, S. Angew. Chem., Int. Ed. 2005, 44, 6553.<br />

[4] Saito, M.; Kuwabara, T.; Kambayashi, C.; Yoshioka, M.; Ishimura, K. Nagase, S. Chem. Lett. 2010,<br />

39, 700.<br />

Et<br />

Et<br />

3<br />

Et<br />

Et


Oral 24 Tuesday 9:30 a.m.<br />

42<br />

IRIS-13 <strong>Victoria</strong><br />

Subsitution: Multiple Roles <strong>of</strong> a Ru=Pr2 Complex in P-C Bond Forming Reactions<br />

Krista M.E. Morrow, a Dimitrios A. Pantazis, b Robert McDonald, c Marc-André M. Hoyle, Sophie Langis-<br />

Barsetti, a Roman Belli, a Lisa Rosenberg<br />

a Department <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> <strong>Victoria</strong>, <strong>Victoria</strong>, Canada. b Max Plank Institute for Bioinorganic<br />

Chemistry, Mülheim an der Ruhr, Germany. c X-ray Crystallography Laboratory, <strong>University</strong> <strong>of</strong> Alberta,<br />

Edmonton, Canada. E-mail:lisarose@uvic.ca<br />

Homogeneously catalyzed stereoselective hydrophosphination <strong>of</strong> alkenes <strong>and</strong> alkynes can allow the<br />

synthesis <strong>of</strong> enantiomerically pure chiral phosphines, but this atom-economic process remains underdeveloped<br />

relative to analogous hydroamination reactions. Terminal phosphido complexes have been<br />

identified as important intermediates in the hydrophosphination <strong>of</strong> simple alkenes <strong>and</strong> alkenes mediated by<br />

early-metal catalysts, <strong>and</strong> <strong>of</strong> activated, Michael-type substrates mediated by late-metal catalysts. We have<br />

prepared a ruthenium phosphido complex containing a Ru=PR2 double bond that undergoes [2+2]<br />

cycloaddition reactions with both simple <strong>and</strong> activated alkenes[1] <strong>and</strong> alkynes[2]. Our kinetic <strong>and</strong><br />

computational studies point to kinetic rather than thermodynamic control <strong>of</strong> diastereomer ratios in the<br />

product metallacycles, <strong>and</strong> a change in rate-determining step for the cycloaddition <strong>of</strong> electron-poor, relative<br />

to electron-rich, unsaturated substrates. For the former, nucleophilicity <strong>of</strong> the phosphido lig<strong>and</strong> is critical,<br />

for the latter, the Ru-P double bond character plays a major role. This presentation will describe our<br />

mechanistic studies <strong>of</strong> these reactions <strong>and</strong> our recent efforts to extend these critical P-C bond-forming steps<br />

to a full hydrophosphination catalytic cycle.<br />

[1] E. J. Derrah, D.A. Pantazis, R. McDonald, L. Rosenberg, Angew. Chem. Int. Ed. 2010, 49, 3367. [2] E.<br />

J. Derrah, R. McDonald, L. Rosenberg, Chem. Commun., 2010, 46, 4592.<br />

Withdrawn: N-alkylpyridine <strong>and</strong> Oxobenzene Bridged Bis-dithiazolyls, by A.<br />

Mailman, X. Yu, K. Lekin, S. M. Winter, J. Wong, A. R. Balo, R. Roberts <strong>and</strong> R. T. Oakley<br />

(amailman@uwaterloo.ca), Department <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> Waterloo, Canada


Oral 25 Tuesday 9:50 a.m.<br />

43<br />

IRIS-13 <strong>Victoria</strong><br />

Exploring the Free Radical Reactivity <strong>of</strong> Cyclic Silylenes, Germylenes <strong>and</strong><br />

Silenes using Muon Spin Spectroscopy<br />

Robert West, a Amitabha Mitra, a Paul Percival b,c <strong>and</strong> Jean-Claude Brodovitch b,c<br />

(west@chem.wisc.edu)<br />

a Organosilicon Research Center, <strong>University</strong> <strong>of</strong> Wisconsin, Madison WI 53706 USA<br />

b Department <strong>of</strong> Chemistry, Simon Fraser <strong>University</strong>, Burnaby, BC, V5A 1S6, Canada<br />

c TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada<br />

The TRIUMF cyclotron facility in Vancouver BC is one <strong>of</strong> only four sites in the world capable <strong>of</strong><br />

providing intense beams <strong>of</strong> spin-polarized positive muons suitable for muon spin resonance spectroscopy<br />

(µSR). [1,2] Positive muons are particles <strong>of</strong> antimatter, resembling protons but with mass about 1/9 <strong>of</strong> a<br />

proton. They have a lifetime <strong>of</strong> only 2.2 µs, decaying into positrons. Muons capture an electron to form<br />

muonium atoms, which can add to unsaturated molecules much like H atoms. The sample is placed in a<br />

magnetic field transverse to the muon spin polarization, so that the muon spins precess in similar manner<br />

to nuclei in NMR <strong>and</strong> electrons in ESR. The precession frequencies, which constitute the µSR spectrum,<br />

are derived from the time dependence <strong>of</strong> the angular distribution <strong>of</strong> positrons emitted on muon decay.<br />

The muon hyperfine splitting constant for a muoniated radical is readily obtained from frequency splitting<br />

in the µSR spectrum; this constant is a measure <strong>of</strong> the interaction between the muon <strong>and</strong> the unpaired<br />

electron, <strong>and</strong> provides structural <strong>and</strong> bonding information.<br />

We have studied the µSR spectra <strong>of</strong> free radicals formed by muonium addition to several cyclic silylenes,<br />

germylenes <strong>and</strong> silenes. [2,3] The results provide much information about the free-radical chemistry <strong>of</strong><br />

cyclic silylenes <strong>and</strong> silenes, as well as new discoveries about the behavior <strong>of</strong> muon-containing molecules.<br />

[1] McKenzie, I.; Roduner, E., Using polarized muons as ultrasensitive spin labels in free radical<br />

chemistry, Naturwissenschaften, 2009, 96, 873-887.<br />

[2] West, R.; Percival, P. W., Organosilicon Compounds Meet Suabtomic Physics: Muon Spin<br />

Resonance, Dalton Trans., 2010, 39, 9209-9216.<br />

[3] McCollum, B. M.; Brodovitch, J.-C.; Clyburne, J. A. C.; Percival, P. W.; Tomasik, A. C.; West, R.,<br />

Reaction <strong>of</strong> Stable N-heterocyclic Silylenes <strong>and</strong> Germylenes with Muonium, Chem.- Eur. J., 2009,<br />

15, 8409-8412.


Oral 26 Tuesday 9:50 a.m.<br />

Synthesis <strong>and</strong> Properties <strong>of</strong> Stannabenzenes<br />

44<br />

IRIS-13 <strong>Victoria</strong><br />

Norihiro Tokitoh, Yoshiyuki Mizuhata <strong>and</strong> Naoya Noda<br />

(tokitoh@boc.kuicr.kyoto-u.ac.jp)<br />

Institute for Chemical Research, Kyoto <strong>University</strong>, Gokasho, Uji, Kyoto 611-0011, Japan<br />

Aromatic hydrocarbons such as benzene <strong>and</strong> naphthalene are among the most fundamental class <strong>of</strong><br />

organic compounds <strong>and</strong> play very important roles in organic chemistry. We have already succeeded in<br />

the synthesis <strong>and</strong> isolation <strong>of</strong> the first stable examples for neutral sila- <strong>and</strong> germaaromatic compounds<br />

(e.g. compounds 1 <strong>and</strong> 2) by taking advantage <strong>of</strong> kinetic stabilization afforded by an efficient steric<br />

protection group, Tbt <strong>and</strong> Bbt. [1] In view <strong>of</strong> the recent progress in the chemistry <strong>of</strong> sila- <strong>and</strong><br />

germaaromatic compounds, the synthesis <strong>of</strong> stannaaromatic compounds is <strong>of</strong> great interest from the<br />

st<strong>and</strong>point <strong>of</strong> systematic elucidation <strong>of</strong> the properties <strong>of</strong> metallaaromatic systems <strong>of</strong> heavier group 14<br />

elements. Recently, we have succeeded in the synthesis <strong>and</strong> isolation <strong>of</strong> 2-stannanaphthalene 3 as a stable<br />

compound <strong>and</strong> revealed its high aromaticity. [2] However, neutral stannaaromatic compounds are still<br />

elusive <strong>and</strong> their properties have not been disclosed yet so far. We report here the synthesis <strong>of</strong><br />

stannabenzenes 4 having a more fundamental stannaaromatic skeleton.<br />

Generation <strong>of</strong> stannabenzenes 4 was examined by the reaction <strong>of</strong> bulky bromostannanes 5 with lithium<br />

diisopropylamide in hexane at –40 °C. In the cases using 5a-c as a precursor, only [4 + 2] dimers 6a-c<br />

were observed at room temperature, indicating the generation <strong>of</strong> the corresponding stannabenzenes 4ac.<br />

[3] Thus, the thermal stability<br />

<strong>of</strong> 4a <strong>and</strong> 4b was completely<br />

different from that <strong>of</strong> the sila-<br />

<strong>and</strong> germabenzenes bearing the<br />

same substituent. In the case<br />

using 5d as a precursor, on the<br />

other h<strong>and</strong>, NMR analysis <strong>of</strong> the reaction<br />

products at room temperature showed the<br />

co-existence <strong>of</strong> monomeric stannabenzene<br />

4d together with the corresponding dimer<br />

6d. The properties <strong>of</strong> stannabenzene 4d<br />

will be described along with an attempt at<br />

introducing an additional substituent to the<br />

stannabenzene ring.<br />

[1] Tokitoh, N. Acc. Chem. Res. 2004,<br />

37, 86.<br />

[2] a) Mizuhata, Y.; Sasamori, T.; Takeda, N.; Tokitoh, N. J. Am. Chem. Soc. 2006, 128, 1050. b)<br />

Mizuhata, Y.; Sasamori, T.; Nagahora, N.; Watanabe, Y.; Furukawa, Y.; Tokitoh, N. Dalton Trans.<br />

2008, 4409.<br />

[3] Mizuhata, Y.; Noda, N.; Tokitoh, N. Organometallics 2010, 29, 4781.


Oral 27 Tuesday 10:10 a.m.<br />

45<br />

IRIS-13 <strong>Victoria</strong><br />

Free Radicals formed by H Atom Addition to Cyclic Carbenes, Silylenes <strong>and</strong><br />

Germylenes<br />

Paul Percival, a,b Graeme Langille, a Iain McKenzie a,b <strong>and</strong> Robert West c<br />

(percival@sfu.ca)<br />

a Department <strong>of</strong> Chemistry, Simon Fraser <strong>University</strong>, Burnaby, BC, V5A 1S6, Canada<br />

b TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada<br />

c Organosilicon Research Center, <strong>University</strong> <strong>of</strong> Wisconsin, Madison WI 53706 USA<br />

Over the past few years we have studied the free radicals formed by H atom addition to carbenes,<br />

silylenes <strong>and</strong> germylenes. Our experimental method employs the exotic atom muonium, which is<br />

effectively a light isotope <strong>of</strong> hydrogen [1] . Muoniated radicals can be characterized by muon spin<br />

spectroscopy: muon spin rotation (µSR) to determine the muon hyperfine constant (hfc), <strong>and</strong> muon<br />

avoided level-crossing resonance (µLCR) to determine the hyperfine constants <strong>of</strong> other magnetic nuclei in<br />

the radical. We apply these techniques at the TRIUMF cyclotron facility, in Vancouver, the only site in the<br />

Americas with the necessary intense beams <strong>of</strong> spin-polarized muons. Our original focus was on radicals<br />

formed by H(Mu) addition to N-heterocyclic (NHC) ylidenes, as indicated below. However, we could not<br />

reconcile the muon hfcs <strong>of</strong> the radicals formed from silylenes with the predictions <strong>of</strong> quantum<br />

calculations. Part <strong>of</strong> the explanation lies in a coupling <strong>of</strong> the primary radical with a second silylene, so<br />

that a disilanyl product radical is observed [2] . This was confirmed in subsequent experiments on a series<br />

<strong>of</strong> NHC silylenes with different substituents on the nitrogens. The largest (diisopropylphenyl) served to<br />

slow the silyl coupling reaction so that we were able to detect the primary silyl radical, as evident from<br />

the muon hfc (931 MHz) [3] . The muon hfc in the primary silyl radical is much higher than for equivalent<br />

NHC alkyl (262 MHz, R = t-butyl) <strong>and</strong> germyl (650 MHz, R = t-butyl) radicals. The reasons for the nonintuitive<br />

order <strong>of</strong> hfcs will be discussed in terms <strong>of</strong> radical structure <strong>and</strong> dynamics. In particular, the<br />

lowest frequency vibrations are key to underst<strong>and</strong>ing the temperature dependence <strong>of</strong> the hfcs <strong>and</strong> the<br />

isotope effect on the muon/proton hfcs.<br />

[1] R. West <strong>and</strong> P.W. Percival, Dalton Trans. 39, 9209-9216 (2010).<br />

[2] B.M. McCollum, J.-C. Brodovitch, J.A.C. Clyburne, P.W. Percival, A. Tomasik, R. West, Chem. Eur.<br />

J. 15, 8409-8412 (2009).<br />

[3] A. Mitra, J.-C. Brodovitch, C. Krempner, P.W. Percival, P. Vyas <strong>and</strong> R. West, Angew. Chem. Int. Ed.<br />

49, 2893-2895 (2010).


Oral 28 Tuesday 10:10 a.m.<br />

46<br />

IRIS-13 <strong>Victoria</strong><br />

New Homopolyatomic Sulfur Cations Stabilized by Halogenated Boron<br />

Clusters<br />

Carsten Knapp,<br />

Janis Derendorf, Mathias Keßler <strong>and</strong> Christoph Bolli<br />

(cknapp@uni-wuppertal.de)<br />

Fachbereich C – Anorganische Chemie, Bergische Universität Wuppertal, Gaußstr. 20, 42119<br />

Wuppertal, Germany<br />

Perhalogenated closo-dodecaborate anions [B12X12] 2- (X = F, Cl, Br, I) are valuable weakly coordinating<br />

dianions for the stabilization <strong>of</strong> unusual cations <strong>and</strong> dications. [1] Improved syntheses for the<br />

perchlorinated dodecaborate [B12Cl12] 2- were reported, which now make this anion available on a large<br />

scale. [2,3] The first solid diprotic super acid H2B12Cl12, [4] the strong methylating agent Me2B12Cl12, [5] <strong>and</strong><br />

the silylium compounds (R3Si)2B12Cl12 [6] are useful reagents. Oxidation <strong>of</strong> [B12Cl12] 2- leads to the radical<br />

anion [B12X12] •- <strong>and</strong> neutral B12Cl12, both being strong oxidizing agents themselves. [7]<br />

Combining the [B12Cl12] 2- anion with iodine <strong>and</strong> sulfur homopolyatomic cations followed by<br />

crystallization from supercritical sulfur dioxide lead to the isolation <strong>of</strong> salts containing the [I3] + cation <strong>and</strong><br />

the novel [S20] 2+ <strong>and</strong> [S8] + cations. The dication [S20] 2+ has a structure similar to that <strong>of</strong> the known [S19] 2+<br />

<strong>and</strong> consists <strong>of</strong> two seven-membered sulfur rings bridged by a six-membered sulfur chain. The [S8] +<br />

structure is similar that <strong>of</strong> [S8] 2+ but contains a significantly longer transannular sulfur-sulfur contact.<br />

[1] C. Knapp, Comprehensive Inorganic Chemistry II 2012, in press.<br />

[2] V. Geis, K. Guttsche, C. Knapp, H. Scherer, R. Uzun, Dalton Trans. 2009, 2687.<br />

[3] W. Gu, O, V. Ozerov, Inorg. Chem. 2011, 50, 2726.<br />

[4] A. Avelar, F. S. Tham, C. A. Reed, Angew. Chem. Int. Ed. 2009, 48, 3491.<br />

[5] C. Bolli, J. Derendorf , M. Keßler, C. Knapp, H. Scherer, C. Schulz, J. Warneke, Angew. Chem. Int.<br />

Ed. 2010, 49, 3536.<br />

[6] M Keßler, C. Knapp, V. Sagawe, H. Scherer, R. Uzun, Inorg. Chem. 2010, 49, 5223.<br />

[7] R. T. Boeré, S. Kacprzak, M. Keßler, C. Knapp, R. Riebau, S. Riedel, T. L. Roemmele, M. Rühle, H.<br />

Scherer, S. Weber, Angew. Chem. Int. Ed. 2011, 50, 549.


Oral 29 Tuesday 10:50 a.m.<br />

Polycyclic π-Electron System with Boron at its Center<br />

47<br />

IRIS-13 <strong>Victoria</strong><br />

Shohei Saito,<br />

Kyohei Matsuo <strong>and</strong> Shigehiro Yamaguchi<br />

(s_saito@chem.nagoya-u.ac.jp.com)<br />

Department <strong>of</strong> Chemistry, Graduate School <strong>of</strong> Science, Nagoya <strong>University</strong>, Nagoya 464-8602, Japan<br />

We disclose a new planarized triarylborane in which the tricoordinated<br />

boron atom is embedded in a fully fused polycyclic<br />

π-conjugated skeleton. [1] The compound 1 shows high stability<br />

toward oxygen, water, <strong>and</strong> silica gel, despite the absence <strong>of</strong><br />

steric protection around the boron atom. Reflecting the electrondonating<br />

character <strong>of</strong> the π-skeleton <strong>and</strong> the electron-accepting<br />

character <strong>of</strong> the boron atom, this compound shows broad<br />

absorption b<strong>and</strong>s that cover the entire visible region <strong>and</strong> a<br />

fluorescence in the visible/near-IR region. In addition, this<br />

compound shows dramatic property changes upon formation <strong>of</strong> a tetracoordinated borate, such as<br />

thermochromic behavior in the presence <strong>of</strong> pyridine. Further studies on the application <strong>of</strong> this<br />

boron π-system as well as the controlled synthesis <strong>of</strong> Boron-Doped Nanographene are currently<br />

underway in our laboratory.<br />

[1] Saito, S.; Matsuo, K.; Yamaguchi, S. J. Am. Chem. Soc. 2012, 134, 9130. (highlighted in<br />

Spotlights)


Oral 30 Tuesday 10:50 a.m.<br />

48<br />

IRIS-13 <strong>Victoria</strong><br />

Donor-Acceptor Stabilization <strong>of</strong> Unusual Low Oxidation State Main Group<br />

Species: Placing Chemical Genies in a Bottle<br />

Eric Rivard, Ibrahim Al-Rafia, Adam Malcolm, Michael Ferguson <strong>and</strong> Robert McDonald<br />

(erivard@ualberta.ca)<br />

Department <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> Alberta, 11227 Saskatchewan Drive, Edmonton, AB, T6G 2G2,<br />

Canada<br />

This talk will address the use <strong>of</strong> a general donor-acceptor protocol for the isolation <strong>of</strong> unusual main group<br />

hydrides, such as SiH2, GeH2 <strong>and</strong> SnH2 <strong>and</strong> the ethylene analogues H2SiEH2 (E = Ge <strong>and</strong> Sn) at ambient<br />

temperature. [1] In addition, we will detail our attempts to access stable complexes <strong>of</strong> unsaturated main<br />

group species such as BN <strong>and</strong> PN. [2]<br />

[1] (a) Thimer, K.; Al-Rafia, S. M. I.; Ferguson, M. J.; McDonald R.; Rivard, E. Chem. Commun. 2009,<br />

7119. (b) Al-Rafia, S. M. I.; Malcolm, A. C.; Liew, S. K.; Ferguson, M. J.; Rivard, E. J. Am. Chem.<br />

Soc. 2011, 133, 777. (c) Al-Rafia, S. M. I.; Malcolm, A. C.; Liew, S. K.; Ferguson, M. J.; McDonald<br />

R.; Rivard, E. Chem. Commun. 2011, 6987. (d) Al-Rafia, S. M. I.; Malcolm, A. C.; McDonald R.;<br />

Ferguson, M. J.; Rivard, E. Angew. Chem., Int . Ed. 2011, 50, 8354. (e) Al-Rafia, S. M. I.; Malcolm,<br />

A. C,; McDonald R.; Ferguson, M. J.; Rivard, E. Chem. Commun. 2012, 1308.<br />

[2] Al-Rafia, S. M. I.; Ferguson, M. J.; Rivard, E. Inorg. Chem. 2011, 50, 10543.


Oral 31 Tuesday 11:10 a.m.<br />

Cu24 Rhombicuboctahedral Clusters with Oh Symmetry<br />

Chen-Wei Liu<br />

(chenwei@mail.ndhu.edu.tw)<br />

Department <strong>of</strong> Chemistry, National Dong Hwa <strong>University</strong>, Hualien, Taiwan 97401<br />

49<br />

IRIS-13 <strong>Victoria</strong><br />

While the geometry <strong>of</strong> rhombicuboctahedron, an Archimedean polyhedron composed <strong>of</strong> eighteen square<br />

faces <strong>and</strong> eight triangular faces (83 + 64 + 124), has been observed in metal organic polyhedral network<br />

structures, discrete metal clusters having this sort <strong>of</strong> ascetically pleasing structure, to the best <strong>of</strong> our<br />

knowledge, have never been identified. Herein we report the first Cu24 rhombicuboctahedral cluster<br />

formulated as [Cu24(S8)(H)15(S2CNR2)12] + with Oh symmetry, a reduction product <strong>of</strong> hydrido copper<br />

clusters with borohydrides.<br />

Molecules <strong>of</strong> the type, [Cu8(µ4-H)(dtc)6] + , having a hydride-centered, tetracapped tetrahedral copper<br />

cluster topology, can be further reduced to yield Cu24 rhombicuboctahedral clusters. Their composition is<br />

primarily determined by ESI mass spectrometry <strong>and</strong> conformation by single crystal X-ray diffraction<br />

analysis. These highly symmetric molecules display an onion-type structure which consists <strong>of</strong> an<br />

idealized rhombicuboctahedral Cu24 core that is further surrounded by a truncated octahedral polyhedron<br />

consisting <strong>of</strong> twenty-four sulfur atoms from twelve dithiocarbamate (dtc) lig<strong>and</strong>s. In addition, a catenated<br />

sulphur cage whose eight S atoms disorder dynamically at twelve positions <strong>of</strong> a cuboctahedron is trapped<br />

inside the Cu24 capsule. Finally neutron diffraction analysis clearly suggests there are eight threecoordinate<br />

(µ3-H) hydrides <strong>and</strong> six four-coordinate hydrides (µ4-H), which capped the eight triangular<br />

faces (83) <strong>and</strong> six square faces (64) <strong>of</strong> a rhombicuboctahedron, respectively.


Oral 32 Tuesday 11:10 a.m.<br />

50<br />

IRIS-13 <strong>Victoria</strong><br />

Dithienylethenes Containing Diazabutadiene Functionality <strong>and</strong> their Main<br />

Group Derivatives<br />

Jacquelyn T. Price <strong>and</strong> Paul J. Ragogna<br />

(jprice6@uwo.ca pragogna@uwo.ca)<br />

Department <strong>of</strong> Chemistry <strong>and</strong> the Center for Materials <strong>and</strong> Biomaterials Research<br />

Western <strong>University</strong>, 1151 Richmond St, London, Ontario, N6A 5B7, Canada<br />

Within the past decade photochromic materials have received a large amount <strong>of</strong> interest because <strong>of</strong> their<br />

ability to function as potential photoswitchable molecular devices <strong>and</strong> optical memory storage systems. [1]<br />

Among these materials, diaryethenes have proven to have the greatest potential in this field because <strong>of</strong><br />

their excellent fatigue resistance <strong>and</strong> thermal irreversibility. [2] There have been extensive studies focused<br />

on these systems containing mostly organic frameworks <strong>and</strong> only recently the coordination <strong>of</strong> these<br />

systems to transition metal centers, which enhance the stability <strong>of</strong> the photochromic system <strong>and</strong> modulate<br />

the photochromic reactivity has been explored. [3] While diazabutadiene lig<strong>and</strong>s are well known for their<br />

ability to be redox active lig<strong>and</strong>s, bind to transition metals [4] <strong>and</strong> support low valent, low oxidation state<br />

main group elements [5,6] there has been no report on the functionalization <strong>of</strong> this lig<strong>and</strong> type with<br />

diarylethenes. We have synthesized a new class <strong>of</strong> diazabutadiene lig<strong>and</strong>s with photochromic thiophene<br />

rings in the backbone <strong>and</strong> have synthesized the borane <strong>and</strong> phosphine complexes. Their synthesis <strong>and</strong><br />

ability to undergo reversible photochromic ring closing <strong>and</strong> opening reactions will be discussed.<br />

[1] Feringa, B. L., Ed. Molecular Switches; Wiley-VCH: Weinheim, Germany, 1990. [2] Irie,<br />

M. Chemical Reviews 2000, 100, 1685-1716. [3] Hasegawa, Y.; Nakagawa, T.; Kawai, T.<br />

Coordination Chemistry Reviews, 254, 2643-2651. [4] Van, K. G.; Vrieze, K. Adv. Organomet.<br />

Chem. 1982, 21, 151-239. [5] Gudat, D. Accounts <strong>of</strong> Chemical Research 2010, 43, 1307-1316.<br />

[6] Asay, M.; Jones, C.; Driess, M. Chemical Reviews 2011, 111, 354-396.


Oral 33 Tuesday 11:30 a.m.<br />

51<br />

IRIS-13 <strong>Victoria</strong><br />

Large Effect <strong>of</strong> Subtle Building Defects on the Physical Properties <strong>of</strong> 2D<br />

Boron Layered “Tiling” Compounds<br />

1-3 1 4 4 5<br />

Takao Mori , Ievgen Kuzmych-Ianchuk , Kunio Yubuta , Toetsu Shishido , Shigeru Okada , Kunio<br />

Kudou<br />

(<br />

6 , Yurii Prots 7 <strong>and</strong> Yuri Grin 7<br />

mori.takao@nims.go.jp)<br />

1<br />

National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, 305-0044 Japan<br />

2<br />

Hiroshima <strong>University</strong>, 1-7-1 Kagamiyama, Higashi-Hiroshima, 739-8514 Japan<br />

3<br />

<strong>University</strong> <strong>of</strong> Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 Japan<br />

4<br />

Tohoku <strong>University</strong>, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 Japan<br />

5<br />

Kokushikan <strong>University</strong>, 4-28-1 Setagaya, Tokyo, 154-8515 Japan<br />

6<br />

Kanagawa <strong>University</strong>, 3-27-1 Rokkakubashi, Yokohama, 221-8686 Japan<br />

7<br />

Max Planck Institute Chemical Physics <strong>of</strong> Solids, Nothnitzer Str. 40, 01187 Dresden, Germany<br />

Rare earth borides have yielded intriguing systems for f-electron physics <strong>and</strong> chemistry [1] . We have taken<br />

a systematic approach to the AlB2-type analogous “tiling” compounds, composed <strong>of</strong> 2D boron atomic<br />

sheets (based on hexagonal graphitic structure) s<strong>and</strong>wiching rare-earth (R) <strong>and</strong> transition metal (Tr) atoms<br />

(Fig. 1). By selecting unexplored combinations <strong>of</strong> metal constituents, synthesis <strong>of</strong> myriad new<br />

compounds <strong>of</strong> these structure types can be envisioned. [2] REAlB4 in particular has attracted attention with<br />

recent discoveries, such as frustrated magnetism in α-HoAlB4 <strong>and</strong> ErAlB4, [3] <strong>and</strong> multiple magnetic<br />

anomalies in α-TmAlB4 below the Neel temperature indicated to be due to building defects. [4] The two<br />

main structure types <strong>of</strong> REAlB4; α- <strong>and</strong> β- , simply differ in their in-plane “tiling” arrangement <strong>of</strong> [5] <strong>and</strong><br />

[7] B rings. Tm2AlB6 with [5], [6], [7] B rings was also successfully synthesized <strong>and</strong> a magnetic field<br />

induced state with extreme stability versus field observed. [2] With a counterintuitive approach to crystal<br />

growth, single crystals <strong>of</strong> α-TmAlB4 were successfully grown, which were indicated from TEM <strong>and</strong><br />

advanced XRD analysis to be virtually free from<br />

the ubiquitous building defects. The physical<br />

properties show a striking difference from those<br />

<strong>of</strong> conventional α-TmAlB4 crystals, <strong>and</strong> the large<br />

effect <strong>of</strong> the building defects on the physical<br />

properties could be directly confirmed, such as the<br />

origin <strong>of</strong> “missing entropy” [5]. These building<br />

defects are quite subtle <strong>and</strong> may in some cases be<br />

unperceived, <strong>and</strong> might possibly be the origin <strong>of</strong><br />

anomalous behavior in other layered systems also.<br />

Fig. 1 AlB 2 -type analogous “tiling” compounds<br />

[1] e.g. T. Mori, in: H<strong>and</strong>book on the Physics <strong>and</strong> Chemistry <strong>of</strong> Rare Earths, Vol. 38, North-Holl<strong>and</strong>,<br />

Amsterdam, 2008 p. 105-173.<br />

[2] T. Mori, T. Shishido, K. Nakajima, K. Kieffer, <strong>and</strong> K. Siemensmeyer, J. Appl. Phys. 105, 07E124<br />

(2009), T. Mori, in: The Rare Earth Elements: Fundamentals <strong>and</strong> Application, J. Wiley & Sons, New<br />

York, in press (2012).<br />

[3] T. Mori, J. Appl. Phys. 109, 07E111 (2011).<br />

[4] T. Mori, H. Borrmann, S. Okada, K. Kudou, A. Leithe-Jasper, U. Burkhardt, Yu. Grin, Phys. Rev. B<br />

76, 064404 (2007).<br />

[5] T. Mori, I. Kuzmych-Ianchuk, K. Yubuta, T. Shishido, S. Okada, K. Kudou, Yu. Grin, J. Appl. Phys.<br />

111 07E127 (2012).


Oral 34 Tuesday 11:30 a.m.<br />

New Oxyanions <strong>of</strong> Sulfur<br />

52<br />

IRIS-13 <strong>Victoria</strong><br />

S. Greer, F. Grein, F. Leblanc, A. Mailman, B.Müller, J. Passmore, T. A. P. Paulose, M. Rautiainen <strong>and</strong><br />

S. Richardson<br />

(passmore@unb.ca)<br />

Department <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> New Brunswick, Fredericton, NB, E3B 5A3, Canada<br />

The binary oxyanions <strong>of</strong> sulfur were mostly prepared at least 100 years ago <strong>and</strong> are part <strong>of</strong> the backbone<br />

<strong>of</strong> basic chemistry <strong>of</strong> the elements <strong>and</strong> are <strong>of</strong> industrial importance. However we estimated that the<br />

energetics <strong>of</strong> reaction <strong>of</strong> sulfate <strong>and</strong> dithionite salts with SO2 become increasingly favorable as the size <strong>of</strong><br />

the cation increases as shown in figure 1 leading to two new classes <strong>of</strong> oxyanions, the polythionites,<br />

(SO2)n 2- <strong>and</strong> the mixed S(VI) <strong>and</strong> S(IV) oxyanions, O3SO(SO2)n 2- . This also provides a new way to<br />

reversibly sequester SO2 an atmospheric pollutant. Our experimental results will be presented.


Oral 35 Tuesday 11:50 a.m.<br />

Bis[N,N´-diisopropylbenzamidinato(–)]silicon(II):<br />

A Novel Donor-Stabilized Silicon(II) Species<br />

53<br />

IRIS-13 <strong>Victoria</strong><br />

R. Tacke,<br />

K. Junold, J. A. Baus, C. Burschka<br />

(r.tacke@uni-wuerzburg.de)<br />

Universität Würzburg, Institut für Anorganische Chemie, Am Hubl<strong>and</strong>, D-97074 Würzburg, Germany<br />

Starting from the six-coordinate bis(amidinato)silicon(IV) complex 1, the novel three-coordinate<br />

bis(amidinato)silicon(II) compound 4 was synthesized by reductive HCl elimination. The donor-stabilized<br />

silylene 4 reacts with W(CO)6 as a nucleophile to give the five-coordinate silicon(II) compound 5.<br />

Treatment <strong>of</strong> 4 with I2, PhSe–SePh, N2O, S8, Se, or Te results in an oxidative addition to give the five- (6–<br />

9) <strong>and</strong> six-coordinate (2, 3) bis(amidinato)silicon(IV) complexes 2, 3, <strong>and</strong> 6–9. The studies reported here<br />

were performed in context with our systematic investigations on higher-coordinate silicon compounds<br />

(for recent publications, see refs. [1–4]).<br />

Molecular structures <strong>of</strong> 4 (left), 5 (middle), <strong>and</strong> 7 (right) in the crystal.<br />

[1] K. Junold, C. Burschka, R. Tacke, Eur. J. Inorg. Chem. 2012, 189–193.<br />

[2] C. Kobelt, C. Burschka, R. Bertermann, C. Fonseca Guerra, F. M. Bickelhaupt, R. Tacke, Dalton<br />

Trans. 2012, 41, 2148–2162.<br />

[3] B. Theis, J. Weiß, W. P. Lippert, R. Bertermann, C. Burschka, R. Tacke, Chem. Eur. J. 2012, 18,<br />

2202–2206.<br />

[4] K. Junold, J. A. Baus, C. Burschka, R. Tacke, DOI: 10.1002/ange.201203109; Angew. Chem. Int. Ed.<br />

2012, DOI: 10.1002/anie.201203109.


Oral 36 Tuesday 11:50 a.m.<br />

A Crystalline Room Temperature-stable Singlet Nitrene<br />

54<br />

IRIS-13 <strong>Victoria</strong><br />

Fabian Dielmann, Olivier Back, Martin Henry-Ellinger <strong>and</strong> Guy Bertr<strong>and</strong><br />

(fabian.d@gmx.de)<br />

Department <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> California, Riverside, Riverside, CA 92521-0403, USA<br />

More than two decades after the discovery <strong>of</strong> the first stable carbene, [1] we report the isolation <strong>and</strong> full<br />

characterization <strong>of</strong> a nitrogen analogue, namely a nitrene. [2] The bonding situation is reminiscent to that <strong>of</strong><br />

metallonitrenes (nitrido metal complexes), which have extensively been studied due to their implications<br />

in biological nitrogen fixation by the nitrogenase enzymes, <strong>and</strong> the industrial Haber-Bosch hydrogenation<br />

process <strong>of</strong> converting N2 into NH3. The reactivity <strong>of</strong> this novel compound will be discussed, e.g. we<br />

demonstrate that the nitrene can activate P4 <strong>and</strong> is capable <strong>of</strong> complete nitrogen atom transfer to an<br />

organic fragment.<br />

[1] A. Igau, H. Grützmacher, A. Baceiredo, G. Bertr<strong>and</strong>, J. Am. Chem. Soc. 1988, 110, 6463; A. Igau, A.<br />

Baceiredo, G. Trinquier, G. Bertr<strong>and</strong>, Angew. Chem. Int. Ed. Engl. 1989, 28, 621-622.<br />

[2] F. Dielmann, O. Back, M. Henry-Ellinger, P. Jerabek, G. Frenking, G. Bertr<strong>and</strong>, Science (submitted).


B1–B2 = 159.2(5) pm<br />

B1–B2 = 144.9(3) pm<br />

55<br />

IRIS-13 <strong>Victoria</strong><br />

Single, Double, Triple, Chains: New Forays into Boron-Boron-Bond<br />

Formation<br />

Holger Braunschweig<br />

(holger.braunschweig@uni-wuerzburg.de)<br />

Institute <strong>of</strong> Inorganic Chemistry, <strong>University</strong> <strong>of</strong> Würzburg, Am Hubl<strong>and</strong>, D-97074 Würzburg, Germany<br />

Due to its inherent electron deficiency, boron prefers non-classical bonding regimes when combined to<br />

molecules with itself - in other words, boron forms polyhedral boranes, made up <strong>of</strong> multicenter bonds,<br />

rather than chains or rings with electron-precise boron-boron bonds. In the case <strong>of</strong> the latter, only very<br />

few well-defined examples have been published over the past decades, which all suffer from lowyielding,<br />

non-selective syntheses that solely rely on reductive coupling <strong>of</strong> amino(halo)boranes.<br />

Consequently, the area <strong>of</strong> classical boron-boron multiple bonds is relatively undeveloped. Over the past<br />

two years we have put significant effort into the development <strong>of</strong> new synthetic strategies to overcome this<br />

seemingly element-specific deficiency. Here, initial results on the following topics will be presented:<br />

metal-mediated dehydrocoupling <strong>of</strong> boranes [1]<br />

O<br />

catalyst<br />

O O<br />

B H<br />

B B<br />

O<br />

– H2 O O<br />

e.g. 0.05 mol% Pt (20 h); 11600 TON B2pin2<br />

improved reduction protocols for NHC-stabilized diborenes<br />

<strong>and</strong> diborynes [2]<br />

metal-promoted catenation <strong>of</strong> borylenes [3]<br />

Plenary 3 Tuesday 1:40 p.m.<br />

O<br />

O<br />

=<br />

cat<br />

O<br />

O ,<br />

[1] Angew. Chem. Int. Ed. 2011, 50, 12613; Eur. Patent EP 11176448.6, 2011, submitted; Chem. Eur. J.<br />

2012, in press.<br />

[2] Science, 2012, in press.<br />

[3] Nature Chemistry, 2012, in press; Angew. Chem. Int. Ed. 2012, 51, in press.<br />

Me Me<br />

O<br />

Me Me O<br />

pin<br />

λmax = 599<br />

iPr<br />

iPr<br />

iPr<br />

N iPr<br />

B B<br />

N iPr<br />

iPr<br />

N<br />

N<br />

iPr<br />

iPr


Keynote 4 Tuesday 2:20 p.m.<br />

56<br />

IRIS-13 <strong>Victoria</strong><br />

Synthetic Investigations involving Unsaturated Phosphorus Intermediates<br />

Alex<strong>and</strong>ra Velian, Daniel T<strong>of</strong>an, Lee-Ping Wang <strong>and</strong> Christopher C. Cummins<br />

(ccummins@mit.edu)<br />

Department <strong>of</strong> Chemistry, Massachusetts Institute <strong>of</strong> Technology, USA<br />

Ultraviolet irradiation <strong>of</strong> P4 in the presence <strong>of</strong> 2,3-dimethylbutadiene (dmb) affords bicyclic<br />

organophosphorus ring systems containing a diphosphane P—P bond at the [4.4.0] ring fusion.<br />

Multireference CASSCF(4,9)-RSPT3 calculations have been carried out to investigate the P4 excited state<br />

potential energy surface; these theoretical studies have uncovered a direct dissociation pathway for<br />

conversion <strong>of</strong> P4 into two P2 molecules, making P2 a plausible intermediate in the observed reaction with<br />

2,3-dimethylbutadiene. New synthetic investigations stemming from the P2 double Diels-Alder adduct<br />

with dmb will be described, including single <strong>and</strong> double oxidation, reactions with sulfur-atom sources,<br />

<strong>and</strong> organic azide reactions. The latter have provided new bis-iminophosphane molecules suited to serve<br />

as transition-metal lig<strong>and</strong>s by virtue <strong>of</strong> pre-organization. Studies <strong>of</strong> a nickel complex will be presented. In<br />

addition, bicyclo[2.2.2] group 10 complexes <strong>of</strong> the type L2M2P2(dmb)6 (see Figure; M = Ni, Pd, <strong>and</strong> Pt)<br />

will be discussed in terms <strong>of</strong> their self-assembly <strong>and</strong> lig<strong>and</strong> exchange reactions <strong>of</strong> the axial lig<strong>and</strong>s L,<br />

where L = PPh3, AsPh3, SbPh3, CN(2,6-xylyl) etc.


Keynote 5 Tuesday 2:50 p.m.<br />

57<br />

IRIS-13 <strong>Victoria</strong><br />

The Influence <strong>of</strong> Donors on the Reactivity <strong>of</strong> Group 14 (Di)metallenes<br />

Kim M. Baines<br />

(kbaines2@uwo.ca)<br />

Department <strong>of</strong> Chemistry, Western <strong>University</strong>, London, Ontario, N6A 5B7, Canada<br />

One <strong>of</strong> the most important advances in inorganic chemistry over the last 30 years was the discovery <strong>of</strong><br />

stable (at rt under an inert atmosphere) multiply bonded species <strong>of</strong> the heavier main group elements. The<br />

spectroscopic <strong>and</strong> structural characterization <strong>of</strong> these unsaturated species has pr<strong>of</strong>oundly influenced our<br />

underst<strong>and</strong>ing <strong>of</strong> structure, bonding <strong>and</strong> reactivity. [1] Multiply bonded compounds <strong>of</strong> the heavier main<br />

group elements have also proven to be powerful building blocks in organometallic/inorganic synthesis<br />

just as alkenes <strong>and</strong> alkynes are in organic synthesis. An impressive array <strong>of</strong> previously inaccessible<br />

compounds, particularly ring systems, has been made from (di)metallenes(ynes) (referring to metallenes<br />

[2]<br />

(M=C), dimetallenes (M=M) <strong>and</strong> dimetallynes ≡M)). (M Even more exciting are the innovative<br />

applications <strong>of</strong> this chemistry that are now being explored. Some addition reactions <strong>of</strong> distannynes<br />

(RSn≡SnR) have been found to be reversible suggesting that the use <strong>of</strong> multiply bonded compounds in<br />

catalysis is now in the realm <strong>of</strong> possibility. [3] Other intriguing examples include the exploitation <strong>of</strong> the<br />

highly regiospecific cycloaddition reactions <strong>of</strong> silenes (R2Si=CR2) in organic synthesis, [4] the addition<br />

polymerization <strong>of</strong> silenes, [5] germenes (R2Ge=CR2) [6] <strong>and</strong> phosphaalkenes (RP=CR2) [7] to give novel<br />

inorganic materials.<br />

To achieve the full potential <strong>of</strong> unsaturated heavier main group compounds, it is critical to have a broad<br />

underst<strong>and</strong>ing <strong>of</strong> their reactivity. Although it has long been recognized that polarized silenes <strong>and</strong><br />

germenes form complexes with donors, over the past few years, we have noted a few striking examples <strong>of</strong><br />

how a complexed donor can dramatically influence the reaction pathway <strong>of</strong> a (di)metallene. In this<br />

presentation, the influence <strong>of</strong> donors on the reactivity <strong>of</strong> (di)metallenes will be discussed.<br />

[1] For authoritative reviews see: Power et al. Chem. Rev. 2010 110, 3877; Robinson et al. Chem.<br />

Commun. 2009 5201.<br />

[2] Numerous reviews have been published: Si: Weidenbruch in “Chem <strong>of</strong> Organic Si Cmpds” (Eds<br />

Rappoport, Apeloig) Wiley, 3 (2001) 391; Kira J. Organomet. Chem. 2004 689, 4475; Mueller et al.<br />

in “Chem <strong>of</strong> Organic Si Cmpds” (Eds Rappoport, Apeloig) Wiley, 2 (1998) 857. Ge: Tokitoh et al. in<br />

“Chem <strong>of</strong> Organic Ge, Sn <strong>and</strong> Pb Cmpds” (Eds Rappoport, Apeloig) Wiley, 2 (2002) 843;<br />

Weidenbruch, Organomet. 2003 22, 4348 P: Dillon et al. “P: the carbon copy” Wiley 1998.<br />

[3] Power Nature 2010 263, 171.<br />

[4] Ottosson et al. Chem. Eur. J. 2006 12, 1576.<br />

[5] Baines et al. Chem. Mat. 2008 20, 5948.<br />

[6] Baines et al. Chem. Commun. 2008 2346.<br />

[7] Gates et al. Dalton Trans. 2010 39, 3151.


58<br />

IRIS-13 <strong>Victoria</strong><br />

The Effect <strong>of</strong> Base-coordination to the Si=Si Double Bonds <strong>of</strong> Cyclotrisilenes<br />

Michael J. Cowley, a Anukul Jana, a Kinga Leszczyńska, b Kai Abersfelder, a Peter Jutzi, b<br />

<strong>and</strong> David Scheschkewitz a<br />

(scheschkewitz@mx.uni-saarl<strong>and</strong>.de)<br />

a Krupp-Chair <strong>of</strong> General <strong>and</strong> Inorganic Chemistry, Saarl<strong>and</strong> <strong>University</strong>, D-66125 Saarbrücken,<br />

Germany<br />

b Faculty <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> Bielefeld, D-33613 Bielefeld, Germany,<br />

Unsaturated compounds with heavier main group elements have received considerable attention in the last<br />

few decades. Recently, low-coordinate main-group compounds have been likened to transition metals<br />

because <strong>of</strong> their vacant coordination site. [1] Such similarities raise the possibility <strong>of</strong> main group systems<br />

filling roles previously taken by transition metal compounds, for example in applications such as<br />

homogeneous catalysis. For this reason, main-group compounds displaying typical transition-metal type<br />

behaviour are <strong>of</strong> great interest. We will discuss recent results arising from our investigations into the<br />

reactivity <strong>of</strong> cyclotrisilenes <strong>and</strong> related germanium-containing compounds with Lewis bases.<br />

For example, N-heterocyclic carbene 2 binds reversibly to cyclotrisilene 1, forming the NHCcyclotrisilene<br />

adduct 3, which constitutes the first example <strong>of</strong> reversible base coordination to a Si-Si<br />

double bond. Compound 3 can be considered an experimental example <strong>of</strong> the charge separated resonance<br />

structures frequently used in bonding models <strong>of</strong> heavier main group multiple bonds. Furthermore, the<br />

reversibility <strong>of</strong> the NHC coordination <strong>of</strong> 1 by 2 evokes reversible lig<strong>and</strong> coordination at transition metal<br />

centres, a prerequisite for catalytic activity in such systems.<br />

[1] Power, P. P. Nature. 2010, 463, 171-177.<br />

Keynote 6 Tuesday 3:40 p.m.


Plenary 4 Tuesday 4:10 p.m.<br />

59<br />

IRIS-13 <strong>Victoria</strong><br />

Reactions <strong>of</strong> Small Molecules with Main Group Compounds Under Ambient<br />

Conditions<br />

Philip P. Power<br />

(pppower@ucdavis.edu)<br />

Department <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> California, One Shields Avenue, Davis, CA 95616 USA<br />

The lecture will summarize the work <strong>of</strong> the author <strong>and</strong> his group in the title area beginning with their<br />

discovery <strong>of</strong> the reaction <strong>of</strong> hydrogen with a digermyne in 2005. Recent work involving the addition <strong>and</strong><br />

insertion reactions <strong>of</strong> cyclic <strong>and</strong> acyclic olefins with group 13 <strong>and</strong> group 14 unsaturated, multiple bonded<br />

species <strong>and</strong> the observation <strong>of</strong> C-H bond activation will also be a major theme <strong>of</strong> the presentation.


Oral 37 Tuesday 4:50 p.m.<br />

60<br />

IRIS-13 <strong>Victoria</strong><br />

Ge12{FeCp(CO)2}8[FeCpCO]: A Metalloid Germanium Cluster on the Way to<br />

an α-Polonium Structure <strong>of</strong> Germanium<br />

A. Schnepf <strong>and</strong> C. Schenk<br />

<strong>and</strong>reas.schnepf@uni-due.de<br />

Institute <strong>of</strong> Inorganic Chemistry, <strong>University</strong> Duisburg-Essen, Universitätsstrasse 5-7, 45117 Essen,<br />

Germany<br />

Starting from Ge(I) halides, we have been able to establish a fruitful synthetic route to metalloid cluster<br />

compounds <strong>of</strong> germanium during the last years, opening a direct insight into the fascinating borderl<strong>and</strong><br />

between molecules <strong>and</strong> the solid state. [1-5] Thereby we could show that novel structural motives are<br />

realized in this area, e.g. the fullerene-like compound Ge14[Ge(SiMe3)3]5Li3(THF)6 1, where the 14<br />

germanium atoms are arranged in a hollow form. [6]<br />

Beside novel structural motives also novel bonding is<br />

present within these compounds, e.g. a multiradicaloid<br />

bonding character is present within 1. [7]<br />

Here we will describe a novel metalloid cluster<br />

compound <strong>of</strong> germanium Ge12{FeCp(CO)2}8[FeCpCO]2<br />

2, where transition metal lig<strong>and</strong>s are present <strong>and</strong> where<br />

the polyhedron build up <strong>of</strong> the 12 germanium atoms in<br />

the cluster core represents a novel structural motive in<br />

germanium chemistry, indicating a structural transition<br />

onto the cubic primitive structure <strong>of</strong> α polonium.<br />

Ge14[Ge(SiMe3)3]5Li3(THF)6 1<br />

(without hydrogen atoms)<br />

[1] A. Schnepf, Angew. Chem. Int. Ed. 2004 43, 664 – 666. [2] A. Schnepf, Coord. Chem. Rev. 2006, 250,<br />

2758 – 2770. [3] A. Schnepf, Chem. Soc. Rev. 2007, 36, 745 – 758. [4] A. Schnepf, Eur. J. Inorg. Chem.<br />

2008, 1007 – 1018. [5] A. Schnepf, New J. Chem. 2010, 34, 2079 – 2092. [6] C. Schenk, A. Schnepf,<br />

Chem. Commun. 2008, 4643 – 4645. [7] C. Schenk, A. Kracke, K. Fink, A. Kubas, W. Klopper, M.<br />

Neumaier, H. Schnöckel, A. Schnepf, J. Am. Chem. Soc. 2011, 133, 2518 – 2524.


Plenary 5 Wednesday 8:50 a.m.<br />

Boron Containing Heteroacenes<br />

61<br />

IRIS-13 <strong>Victoria</strong><br />

Thomas K. Wood, Lauren G. Mercier, Juan F. Araneda, Benedikt Neue, Warren E. Piers <strong>and</strong> Masood<br />

Parvez<br />

(wpiers@ucalgary.ca)<br />

Department <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> Calgary, 2500 <strong>University</strong> Drive NW, Calgary, Alberta, T2N 1N4<br />

Canada<br />

One way to modify the properties <strong>of</strong> extended aromatic hydrocarbons is to transpose one or more carbon<br />

atoms with other elements in the framework <strong>of</strong> the organic molecule. We have thus been investigating<br />

the chemistry <strong>of</strong> extended aromatic <strong>and</strong> antiaromatic systems that utilize boron atoms in place <strong>of</strong> CH units<br />

<strong>and</strong> observe the changes in properties <strong>of</strong> the resulting boracycles. Further, exchange <strong>of</strong> C-C units for<br />

isoelectronic B-N units is another approach we have been exploring. In order to do this, new synthetic<br />

methods are required; in providing an overview <strong>of</strong> our recent results in this area, this lecture will<br />

emphasize synthetic methodology as well as the unique properties <strong>of</strong> the boron containing analogs <strong>of</strong> the<br />

all carbon frameworks. Materials using antiaromatic 5 membered boroles <strong>and</strong> aromatic 6 membered<br />

borabenzene or 7 membered borepin rings as building blocks in heteroacenes will be discussed.


Keynote 7 Wednesday 9:30 a.m.<br />

C-H····X Hydrogen Bonding in Carbocation Salts<br />

62<br />

IRIS-13 <strong>Victoria</strong><br />

Christopher A Reed, Evgenii S. Stoyanov, Irina V. Stoyanova <strong>and</strong> Fook S. Tham<br />

(chris.reed@ucr.edu)<br />

Center for s <strong>and</strong> p Block Chemistry, <strong>University</strong> <strong>of</strong> California, Riverside, California 92521, USA<br />

The textbook explanation for the stability <strong>of</strong> t-butyl cation is positive charge delocalization via<br />

hyperconjugation. Aligned C-H bonds donate electron density into the formally empty pz orbital. There is<br />

no doubt that this is correct for the isolated (gas phase) cation because the gas phase IR spectrum <strong>of</strong> t-Bu +<br />

shows truly outst<strong>and</strong>ing agreement with that calculated for the Cs symmetry structure. [1]<br />

Hyperconjugation was invoked by Olah in 1964 to explain the unusually low IR frequency <strong>of</strong> the C-H<br />

stretch (νmax 2830 cm -1 ) <strong>of</strong> t-Bu + in an SbF5 superacid matrix. [2] Near coincidence with νmax in the gas<br />

phase (2834 cm -1 ) has left the impression that the same explanation solely rationalizes the stability <strong>of</strong> t-<br />

Bu + in condensed phases. We now show that this convergence <strong>of</strong> gas <strong>and</strong> condensed phase spectral data<br />

was entirely fortuitous. The C-H stretch in the IR spectrum <strong>of</strong> t-Bu + in the solid state varies linearly as a<br />

function <strong>of</strong> anion basicity on the νNH scale 3 <strong>and</strong> requires explanation not only in terms <strong>of</strong><br />

hyperconjugation but also <strong>of</strong> H-bonding (Figure). H-bonding also stabilizes benzenium ion (C6H7 + ) salts.<br />

[1] G. E. Douberly, A. M. Ricks, B. W. Ticknor, P. v. R. Schleyer, M. A. Duncan, J. Am. Chem. Soc.,<br />

2007, 129, 13782.<br />

[2] G. A. Olah, E. B. Baker, J. C. Evans, W. S. Tolgyesi, J. S. McIntyre, Bastien, I. J. J. Am .Chem. Soc.<br />

1964, 86, 1360.<br />

[3] E. S. Stoyanov, K.-C. Kim, C. A. Reed, J. Am. Chem. Soc. 2006, 128, 8500.


Keynote 8 Wednesday 10:00 a.m.<br />

Cationic Polyphosphorus Ring- <strong>and</strong> Cage-Compounds from P4<br />

63<br />

IRIS-13 <strong>Victoria</strong><br />

Jan J. Weig<strong>and</strong>, 1 Michael H. Holthausen, 1 Kai-Oliver Feldmann, 1 Gernot Frenking, 2 Maximilian Donath 1<br />

<strong>and</strong> Stephen Schulz 1<br />

(jweig<strong>and</strong>@uni-muenster.de)<br />

1 Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster,<br />

Corrensstraße 30, 48149 Münster, Germany<br />

2 Institut für Anorganische Chemie, Philipps Universität Marburg, Germany<br />

White phosphorus is the most notable allotrope <strong>of</strong> elemental phosphorus in terms <strong>of</strong> reactivity <strong>and</strong><br />

represents the entry point for the synthesis <strong>of</strong> organophosphorus compounds (OPCs). Substantial efforts<br />

have been devoted to the development <strong>of</strong> direct P4 functionalization to escape the traditional stages via the<br />

intermediacy <strong>of</strong> PCl3 <strong>and</strong> subsequent transformation reactions. In this respect we are developing general<br />

protocols for the formation <strong>of</strong> cationic phosphorus cages by consecutive insertion <strong>of</strong> phoshenium<br />

cations [1] into P-P bonds <strong>of</strong> P4 to form monocationic cages <strong>of</strong> the type [R2P5] + , [RP5Cl] + <strong>and</strong> [P5Cl2] + (R =<br />

alky, aryl, NR2) as well as dicationic [R4P6] 2+ <strong>and</strong> tricationic [R6P7] 3+ species. [2-5] Recently, we have been<br />

able to stepwise breakdown our cationic [RP5Cl] + (R = Dipp) cages by the nucleophilic reaction with<br />

NHCs (N-heterocyclic carbenes, L) into cationic [L2P4] 2+ , [L2P3] + , <strong>and</strong> [DippP2] + fragments which<br />

represent novel [P] building blocks. [6]<br />

[1] Weig<strong>and</strong>, J. J.; Burford, N.; Decken, A.; Schulz, A. Eur. J. Inorg. Chem., 2007, 4868.<br />

[2] Weig<strong>and</strong>, J. J.; Holthausen, M. H.; Fröhlich, R. Angew. Chem. Int. Ed. 2009, 48, 295.<br />

[3] Weig<strong>and</strong>, J. J.; Holthausen, M. H. J. Am. Chem. Soc. 2009, 131, 14210.<br />

[4] Holthausen, M. H.; Weig<strong>and</strong>, J. J. Z. Anorg. Allg. Chem. 2012, DOI: 10.1002/zaac.201200123.<br />

[5] Holthausen, M. H.; Feldmann, K.-O.; Schulz, S.; Hepp, A.; Weig<strong>and</strong>, J. J. Inorg. Chem. 2012, 131,<br />

3374.<br />

[6] Holthausen, M. H.; Richter, R.; Hepp, A.; Weig<strong>and</strong>, J. J Chem. Commun. 2010, 46, 6921.


Keynote 9 Wednesday 10:50 a.m.<br />

64<br />

IRIS-13 <strong>Victoria</strong><br />

Exploitation <strong>of</strong> Boryl Substituents for the Stabilization <strong>of</strong> Novel Sub-valent<br />

Main Group Systems<br />

Andrey Protchenko, a Liban Saleh, a Krishna Hassomal Birjkumar, b Nikolas Kaltsoyannis, b Cameron<br />

Jones, c Philip Mountford a <strong>and</strong> Simon Aldridge a<br />

(Simon.Aldridge@chem.ox.ac.uk)<br />

a Inorganic Chemistry Laboratory, Department <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> Oxford, South Parks Road,<br />

Oxford, OX1 3QR, UK<br />

b Department <strong>of</strong> Chemistry, <strong>University</strong> College London, Christopher Ingold Laboratories, 20 Gordon<br />

Street, London, WC1H 0AJ, UK<br />

c School <strong>of</strong> Chemistry, Monash <strong>University</strong>, Melbourne, VIC, 3800, Australia<br />

The extremely strong σ-donor capabilities <strong>of</strong> the boryl lig<strong>and</strong>, BX2 - , have been well documented in<br />

transition metal chemistry, as a result <strong>of</strong> extensive studies <strong>of</strong> structure <strong>and</strong> reactivity made over the last 20<br />

years. The use <strong>of</strong> highly sterically dem<strong>and</strong>ing variants as spectator lig<strong>and</strong>s in the stabilization <strong>of</strong> low<br />

coordinate species, however, has been facilitated only recently through the synthesis <strong>of</strong> nucleophilic boryl<br />

reagents. [1] As a result <strong>of</strong> the availability <strong>of</strong> boryllithium species such as {(HCNDipp)2B}Li(thf)2 (Dipp =<br />

2,6- i Pr2C6H3), for example, the introduction <strong>of</strong> the BX2 function by reaction with metal electrophiles has<br />

been opened up as a new synthetic methodology. In recent work we have exploited this approach,<br />

together with the strong σ-donor capabilities <strong>and</strong> high steric dem<strong>and</strong>s <strong>of</strong> the [(HCNDipp)2B] - lig<strong>and</strong> in the<br />

synthesis <strong>of</strong> novel Main Group systems featuring unusual coordination numbers <strong>and</strong>/or oxidation states.<br />

The current presentation will focus on such systems from Groups 12-14. [2]<br />

As an example, boryl ancillary lig<strong>and</strong>s have been exploited in the synthesis <strong>of</strong> the first example <strong>of</strong> a<br />

simple two-coordinate acyclic silylene, SiR2, a class <strong>of</strong> compound which has hitherto been identified only<br />

as a transient intermediate or thermally labile species. By making use <strong>of</strong> the [(HCNDipp)2B] substituent,<br />

an isolable monomeric species, Si{B(NDippCH)2}{N(SiMe3)Dipp}, can be synthesized which is stable in<br />

the solid state up to 130 o C (see Scheme). This silylene species undergoes facile oxidative addition<br />

reactions with dihydrogen (at sub-ambient temperatures) <strong>and</strong> with alkyl C-H bonds, consistent with a low<br />

singlet-triplet gap (103.9 kJ mol -1 ), thus demonstrating fundamental modes <strong>of</strong> reactivity more<br />

characteristic <strong>of</strong> Transition Metal systems.<br />

[1] Segawa, Y.; Yamashita, M.; Nozaki, K. Science 2006, 314, 113.<br />

[2] Protchenko, A.; Birjkumar, K. H.; Dange, D.; Schwarz, A. D.; Vidovic, D.; Jones, C.; Kaltsoyannis,<br />

N.; Mountford, P.; Aldridge, S. submitted.


Keynote 10 Wednesday 11:20 a.m.<br />

Unusual Chemical Bonds in Cyclic Ditetrylenes<br />

65<br />

IRIS-13 <strong>Victoria</strong><br />

Gernot Frenking<br />

(frenking@chemie.uni-marburg.de)<br />

Fachbereich Chemie, Philipps-Universität, Hans-Meerwein-Strasse, D-35043 Marburg, Germany<br />

Very recently, the dimer <strong>of</strong> a silaisonitrile (1) which possesses two divalent silicon atoms in a fourmembered<br />

ring could become isolated <strong>and</strong> structurally characterized. [1] Compound 1 which is the first<br />

example <strong>of</strong> a base-free disilylene has two amido groups in 1,3-position bonded to the silicon atoms.<br />

Another four-membered compound with two divalent group14 atoms is the digermylene 2 where the<br />

germanium atoms are bonded to gallium. Compound 2 has also been synthesized <strong>and</strong> its geometry could<br />

become determined by x-ray crystallography. [2] The lecture focuses on the unusual bonding situation in 1<br />

<strong>and</strong> 2 <strong>and</strong> their group-14 homologues.<br />

1 2<br />

[1] R. S. Ghadwal, H. W. Roesky, K. Pröpper, B. Dittrich, S. Klein, G. Frenking, Angew. Chem. Int. Ed.<br />

2011, 50, 5374–5378.<br />

[2] A. Doddi, C. Gemel, K. Freitag, M. Winter, R. A Fischer,C. Goedecke, H. S. Rzepa, G. Frenking,<br />

Angew. Chem. Int. Ed., submitted for publ.


P<br />

O<br />

Na<br />

Plenary 6 Wednesday 11:50 a.m.<br />

Phosphorus-rich Inorganic Ring Systems<br />

66<br />

IRIS-13 <strong>Victoria</strong><br />

Evamarie Hey-Hawkins, a Santiago Gómez-Ruiz, a,b Aslihan Kircali, a Ivana Jevtovich a <strong>and</strong> Peter Lönnecke a<br />

(hey@uni-leipzig.de)<br />

a Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany,<br />

b Departamento de Química Inorgánica y Analítica, E.S.C.E.T. Universidad Rey Juan Carlos, Calle<br />

Tulipán sn, 28933, Móstoles, Spain<br />

The chemistry <strong>of</strong> polyphosphorus compounds has developed impressively over the last four decades.<br />

Thus, a great number <strong>of</strong> cyclic <strong>and</strong> catenated polyphosphanes (both as hydrides <strong>and</strong> as organic<br />

derivatives) have been synthesised <strong>and</strong> successfully characterised. [1] The chemistry <strong>of</strong> these compounds<br />

can be analogous to that <strong>of</strong> related carbon compounds. [2] On the other h<strong>and</strong>, the chemistry <strong>of</strong> cyclic <strong>and</strong><br />

catenated oligophosphanide anions has hardly been explored until recently, as selective <strong>and</strong> facile<br />

syntheses were mostly unknown. We have developed a simple synthetic route to the alkali metal salts<br />

M2(P4R4) (M = Na, K; R = Ph, t Bu, Mes) <strong>and</strong> cyclo-(P5 t Bu4) – anion, [3] which display unusual reactivity<br />

<strong>and</strong> intriguing chemistry. [4]<br />

Na(THF)3{cyclo-(P5 t Bu4)} {cyclo-(P5 t Bu4)}2 Manganese(I) complex<br />

Au4P20 framework <strong>of</strong><br />

[Au4{P t Bu(P4 t Bu3)}4]<br />

Thus, MCl2 (M = Sn, Pb) <strong>and</strong> BiCl3 react with cyclo-(P5 t Bu4) – to form the novel dimers {cyclo-(P5 t Bu4)}2<br />

<strong>and</strong> {cyclo-(P4 t Bu3)P t Bu2}2, as well as the secondary phosphine cyclo-(P5 t Bu4H). Furthermore, a wide<br />

range <strong>of</strong> transition metal complexes (e.g., Zr, Ta, Cr, Mo, W, Mn, Fe, Rh, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd)<br />

with linear <strong>and</strong> cyclic oligophosphanide lig<strong>and</strong>s is known. Besides the academic challenge, metal<br />

complexes with anionic polyphosphorus lig<strong>and</strong>s are <strong>of</strong> interest as potential precursors for the<br />

development <strong>of</strong> rational syntheses <strong>of</strong> binary metal phosphides (MxPy), which are a fascinating class <strong>of</strong><br />

compounds with unusual structures <strong>and</strong> interesting properties for materials science. [5] Financial support<br />

from the Deutsche Forschungsgemeinschaft (He 1376/22-3 <strong>and</strong> within the Graduate School <strong>of</strong> Excellence<br />

BuildMoNa) <strong>and</strong> the EU-COST Action CM0802 PhoSciNet is gratefully acknowledged.<br />

[1] See for example: M. Baudler, K. Glinka, Chem. Rev. 1993, 93,1623-1667.<br />

[2] K.B. Dillon, F. Mathey, J.F. Nixon, Phosphorus the Carbon Copy: From Organophosphorus to<br />

Phospha-organic Chemistry. Wiley, Chichester, 1998.<br />

[3] A. Schisler, U. Huniar, P. Lönnecke, R. Ahlrichs, E. Hey-Hawkins, Angew. Chem. Int. Ed. 2001, 40,<br />

4217-4219.<br />

[4] S. Gómez-Ruiz, E. Hey-Hawkins, in: Phosphorus Chemistry: Catalysis <strong>and</strong> Material Science<br />

Applications, ed. M. Peruzzini, L. Gonsalvi, Springer, Volume 37, 2011, 85-120; S. Gómez-Ruiz, E.<br />

Hey-Hawkins, New J. Chem. 2010, 34, 1525-1532; S. Gómez-Ruiz, E. Hey-Hawkins, in: Recent<br />

Trends in Main Group Chemistry, ed. T. Chivers, Coord. Chem. Rev. 2011, 255, 1360-1386; A.<br />

Kircali, R. Frank, S. Gómez-Ruiz, B. Kirchner, E. Hey-Hawkins, ChemPlusChem 2012 (in press,<br />

DOI: 10.1002/cplu.201200013).<br />

[5] H.-G. von Schnering, W. Hönle, Chem. Rev. 1988, 88, 243-273.


Oral 38 Thursday 8:50 a.m.<br />

67<br />

IRIS-13 <strong>Victoria</strong><br />

Development <strong>of</strong> a Single-Component Liquid-Phase Hydrogen Storage<br />

Material<br />

Wei Luo, Patrick G. Campbell <strong>and</strong> Shih-Yuan Liu<br />

(lsy@uoregon.edu)<br />

Department <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> Oregon, Eugene, Oregon 97403, USA<br />

The development <strong>of</strong> sustainable energy platforms is an important task because <strong>of</strong> national security,<br />

environmental, <strong>and</strong> financial concerns related to energy supply. New materials for hydrogen storage<br />

continue to be attractive toward establishing a carbon-neutral energy infrastructure. The field <strong>of</strong> chemical<br />

hydrogen storage has been dominated by ammonia borane (NH3–BH3, AB) <strong>and</strong> its derivatives. A<br />

potential new hydrogen storage platform based on well-defined carbon(C)-boron(B)-nitrogen(N)<br />

heterocyle materials is described. Specifically, I will discuss the development <strong>of</strong> a liquid-phase hydrogen<br />

storage material that is a liquid under ambient conditions, releases H2 controllably <strong>and</strong> cleanly at 80 °C,<br />

<strong>and</strong> does not undergo a phase change upon H2 desorption. Preliminary investigations into the mechanism<br />

<strong>of</strong> H2 desorption will also be discussed.<br />

[1] Luo, W.; Campbell, P. G.; Zakharov, L. N.; Liu, S.-Y. "A Single-Component Liquid-Phase Hydrogen<br />

Storage Material" J. Am. Chem. Soc. 2011, 133, 19326-19329.<br />

[2] Luo, W.; Zakharov, L. N.; Liu, S.-Y. "1,2-BN Cyclohexane: Synthesis, Structure, Dynamics, <strong>and</strong><br />

Reactivity" J. Am. Chem. Soc. 2011, 133, 13006-13009.<br />

[3] Campbell, P. G.; Zakharov, L. N.; Grant, D.; Dixon, D. A.; Liu, S.-Y. "Hydrogen Storage by<br />

Boron-Nitrogen Heterocycles: A Simple Route for Spent Fuel Regeneration" J. Am. Chem. Soc.<br />

2010, 132, 3289-3291.<br />

[4] Staubitz, A.; Robertson, A. P.; Manners, I. “Ammonia-borane <strong>and</strong> related compounds as<br />

dihydrogen sources” Chem. Rev. 2010, 110, 4079-4124.


68<br />

IRIS-13 <strong>Victoria</strong><br />

Phosphazenes as Scaffolds for the Synthesis <strong>of</strong> New Molecules by Palladium<br />

<strong>and</strong> Copper Catalyzed Reactions<br />

Cemile Kumas <strong>and</strong> Patty Wisian-Neilson<br />

(pwisian@smu.edu)<br />

Department <strong>of</strong> Chemistry, Southern Methodist <strong>University</strong>, Dallas, TX 75275-0414 USA<br />

Both cyclic <strong>and</strong> polymeric phosphazenes with simple alkyl <strong>and</strong> aryl substituents attached by direct P-C<br />

bonds have been prepared by condensation reactions <strong>of</strong> N-silylphosphoranimines, Me3SiN=P(X)RR'.<br />

Although post-modification <strong>of</strong> methyl groups in the simple preformed phosphazenes has facilitated the<br />

incorporation <strong>of</strong> a variety <strong>of</strong> functional groups, variation <strong>of</strong> the aromatic groups has been more<br />

challenging. Several new phosphazenes with more elaborate aryl groups have now been prepared by<br />

condensation reactions. In addition, post-modification <strong>of</strong> the cyclic <strong>and</strong> polymeric bromophenyl<br />

phosphazenes, [NP(C6H4Br)CH3]n, by palladium-catalyzed cross coupling reactions have afforded a<br />

series <strong>of</strong> phosphazenes with wide variety <strong>of</strong> functional groups attached to the aryl ring by C-C bonds<br />

(Suzuki, Sonogashira, <strong>and</strong> Mizoroki-Heck reactions) <strong>and</strong> C-N bonds (Buchwald-Hartwig reactions).<br />

Synthetic routes to prepare cyclo- <strong>and</strong> polyphosphazenes with alkyne units attached directly to the P<br />

atom, [NP(C≡CR)(C6H6)]n (R = H, SiMe3, C6H5) have also been developed. Post-modification via coppercatalyzed<br />

alkyne-azide cycloaddition reactions was used to attach benzyl, anthracene <strong>and</strong><br />

methoxyethoxyethylene groups. Preliminary studies indicated that thiol-yne <strong>and</strong> Cadiot-Chodkiewicz<br />

alkyne cross-metathesis reactions also have potential utility.<br />

Br<br />

N P<br />

CH 3<br />

3,n<br />

Pd catalyst<br />

Oral 39 Thursday 8:50 a.m.<br />

R<br />

N P<br />

CH 3<br />

3,n<br />

N<br />

P<br />

C<br />

C<br />

R<br />

3,n<br />

+<br />

N 3<br />

R'<br />

Cu catalyst<br />

R'<br />

N<br />

P<br />

3,n<br />

N<br />

N N


Oral 40 Thursday 9:10 a.m.<br />

69<br />

IRIS-13 <strong>Victoria</strong><br />

Heavier Group 14 Homologues <strong>of</strong> Carbenes in The Synthesis <strong>of</strong> Heavier<br />

Aromatic <strong>and</strong> E(0) Compounds<br />

Johanna Flock, Michaela Flock, Amra Suljanovic, Petra Wilfling <strong>and</strong> Rol<strong>and</strong> C. Fischer<br />

(rol<strong>and</strong>.fischer@tugraz.at)<br />

Institute <strong>of</strong> Inorganic Chemistry, Graz <strong>University</strong> <strong>of</strong> Technology<br />

Stremayrgasse 9 V, A-8010 Graz, Austria<br />

The reactions <strong>of</strong> heavier group 14 homologues <strong>of</strong> carbenes with various substrates continue to be a key<br />

topic in main group chemistry. [1] In this context, we set out to investigate the reaction between sterically<br />

encumbered heavier group 14 tetrylenes Ar*2E, (E=Ge, Sn, Pb; Ar*=C6H3-2,6-Mes2) with<br />

phosphaalkynes, R-C≡P. In contrast to E=Sn <strong>and</strong> Pb, where bis-phosphaalkene substituted stannylenes<br />

<strong>and</strong> plumbylenes where isolated in good to moderate yields, the germylenes provided clean access to the<br />

respective germadiphospholes. [2]<br />

Reaction <strong>of</strong> amino pyridine lig<strong>and</strong> 1 with E[N(SiMe3)2]2 (E=Ge, Sn, Pb) provided clean access to the<br />

heteroleptic tetrylenes 2 <strong>and</strong> 3 for E=Sn, Pb. In the case <strong>of</strong> germanium, however, we obtained compound<br />

4 in good yields. [3]<br />

Ultimately, this chemistry enabled us to isolate compounds 5 [4] <strong>and</strong> 6, which are unprecedented examples<br />

<strong>of</strong> mononuclear main group element compounds in which the heavier main group atoms adopts a formal<br />

oxidation state <strong>of</strong> zero.<br />

[1] P. P. Power, Nature, 2010, 463, 171.<br />

[2] P. Wilfling, R. C. Fischer manuscript in preparation<br />

[3] J.Flock, M. Flock, R. C. Fischer, manuscript in preparation<br />

[4] J.Flock, A.Suljanovic, A. Torvisco, W. Schoefberger, M. Flock, R. C. Fischer, submitted


Oral 41 Thursday 9:10 a.m.<br />

(-O-Te-N-)4 Macrocycles<br />

70<br />

IRIS-13 <strong>Victoria</strong><br />

Patrick Szydlowski, Phillip J.W. Elder, Joachim Kübel, Chris Gendy, Derek R. Morim, Ignacio Vargas-<br />

Baca<br />

(vargas@chemistry.mcmaster.ca)<br />

Department <strong>of</strong> Chemistry <strong>and</strong> Chemical Biology, McMaster <strong>University</strong>, 1280 Main Street West,<br />

Hamilton, Ontario, Canada L8S4M1<br />

Stringing heavy elements in a periodic sequence is key to the design <strong>and</strong> preparation <strong>of</strong> new<br />

macromolecular materials with unusual properties. In many cases, even when suitable precursors can be<br />

synthesized <strong>and</strong> reaction conditions optimized to promote the formation <strong>of</strong> long chains, the final result is<br />

the formation <strong>of</strong> small molecules because <strong>of</strong> the lability <strong>of</strong> the bonds made by the heaviest elements. For<br />

example, Te-N <strong>and</strong> Te-O combinations most commonly produce four-membered rings. An interesting<br />

exception was observed in the structure <strong>of</strong> 1a, [1] which formally is assembled by the spontaneous<br />

concatenation <strong>of</strong> tellurazole-N-oxide molecules formed in-situ. A second example (1b) <strong>of</strong> this type <strong>of</strong><br />

macrocycle was recently characterized. [2] This molecule, however, features a chair conformation in<br />

contrast to the twisted boat <strong>of</strong> 1a. Spectroscopic studies, supported by DFT calculations, were applied to<br />

study the dynamic equilibrium between such conformations. The chemistry <strong>of</strong> these species, including the<br />

prospects <strong>of</strong> an extension to host-guest systems, will be discussed.<br />

[1] J. Kübel, P. J. W. Elder, H. A. Jenkins <strong>and</strong> I. Vargas-Baca, Dalton Trans, 2010, 39, 11126.<br />

[2] P. Szydlowski, Senior Undergraduate Thesis, McMaster <strong>University</strong>, 2012.


Oral 42 Thursday 9:30 a.m.<br />

Macrocyclic Phosphorus(I) Oligomers<br />

71<br />

IRIS-13 <strong>Victoria</strong><br />

Gregory J. Farrar, Erin L. Norton, Bobby D. Ellis <strong>and</strong> Charles L. B. Macdonald<br />

(cmacd@uwindsor.ca)<br />

Department <strong>of</strong> Chemistry & Biochemistry, <strong>University</strong> <strong>of</strong> Windsor, Windsor, Ontario, Canada<br />

Over the last decade, we have been investigating the chemistry <strong>of</strong> compounds containing p-block<br />

elements in unusually low oxidation states. [1-2] For group 15, we previously developed convenient<br />

syntheses for compounds containing donor-stabilized P(I) ions. [3-5] Most <strong>of</strong> these compounds are air- <strong>and</strong><br />

moisture-stable <strong>and</strong> some are valuable reagents for the synthesis <strong>of</strong> other stable low-oxidation state<br />

species using lig<strong>and</strong> replacement reactions. Importantly, the amphoteric nature <strong>of</strong> the P(I) ions makes<br />

them ideal main group linkers for the formation <strong>of</strong> coordination polymers using judiciously-designed<br />

lig<strong>and</strong>s (both neutral <strong>and</strong> anionic). Some <strong>of</strong> our recent efforts regarding the synthesis <strong>and</strong> characterization<br />

<strong>of</strong> oligomers/macrocrocycles containing such univalent phosphorus centers, which include the<br />

phosphorus-rich analogues <strong>of</strong> phosphazenes, will be presented.<br />

[1] C. L. B. Macdonald, B. D. Ellis, in Encyclopedia <strong>of</strong> Inorganic Chemsitry, 2nd ed. (Ed.: R. B.<br />

King), John Wiley & Sons Ltd., 2005.<br />

[2] B. D. Ellis, C. L. B. Macdonald, Coord. Chem. Rev. 2007, 251, 936-973.<br />

[3] B. D. Ellis, M. Carlesimo, C. L. B. Macdonald, Chem. Commun. 2003, 1946-1947.<br />

[4] B. D. Ellis, C. L. B. Macdonald, Inorg. Chem. 2006, 45, 6864-6874.<br />

[5] E. L. Norton, K. L. S. Szekely, J. W. Dube, P. G. Bomben, C. L. B. Macdonald, Inorg. Chem.<br />

2008, 47, 1196-1203.


Oral 43 Thursday 9:30 a.m.<br />

Novel Stannacyclopentanes – Effective Catalysts or Dead End?<br />

J. Binder, R. Fischer, J. Pichler, B. Seibt, A. Torvisco <strong>and</strong> F. Uhlig<br />

(frank.uhlig@tugraz.at)<br />

Institute <strong>of</strong> Inorganic Chemistry, Graz <strong>University</strong> <strong>of</strong> Technology,<br />

Stremayrgasse 9, A-8010 Graz, Austria<br />

72<br />

IRIS-13 <strong>Victoria</strong><br />

Recently dibutyltindilaureate one <strong>of</strong> the most popular catalysts for a wide variety <strong>of</strong> chemical reactions<br />

<strong>and</strong> applications was banned for public use in many countries worldwide. Although this was announced<br />

since a couple <strong>of</strong> year’s attempts to develop a real alternative were only partially successful so fare.<br />

Therefore, one <strong>of</strong> the main research interest <strong>of</strong> our group is focused currently on the development <strong>of</strong> novel<br />

cyclic, catalytic active species containing the heavy group 14 elements germanium or tin. We discuss<br />

here on the synthesis <strong>and</strong> analytical characterization <strong>of</strong> a series <strong>of</strong> 5-membered tin-containing ring<br />

systems (A - B) displaying in some cases a surprising reaction behavior. Furthermore a brief introduction<br />

about the catalytic activity <strong>of</strong> such derivatives will be given as well.<br />

Sn Sn<br />

z z<br />

Sn NH<br />

Scheme 1: stannacyclopentanes <strong>of</strong> type A – C (Z = Me2Si, O)


Oral 44 Thursday 9:50 a.m.<br />

73<br />

IRIS-13 <strong>Victoria</strong><br />

Germanium(II),Tin(II) <strong>and</strong> Lead(II) Amides Containing an Adjacent<br />

Coordination Group<br />

Hana Vankatova, Jan Turek, Martin Novotny, Zdenka Padelkova <strong>and</strong> Ales Ruzicka<br />

(ales.ruzicka@upce.cz)<br />

Department <strong>of</strong> General <strong>and</strong> Inorganic Chemistry, Faculty <strong>of</strong> Chemical Technology, <strong>University</strong> <strong>of</strong><br />

Pardubice, Studentska 573, Pardubice 532 10, Czech Republic<br />

Tetrylenes, low-valent group 14 compounds including carbenes, silylenes, germylenes, stannylenes <strong>and</strong><br />

plumbylenes, are subject <strong>of</strong> growing research interest. [1] In particular, metal amides are among the most<br />

studied <strong>and</strong> used compounds in catalysis <strong>and</strong> new materials preparation. [2] The heavier elements <strong>of</strong> group<br />

14 metal amides with the metal atom in a lower oxidation state are widely accepted as carbene [3]<br />

(M(NR2)), radical [4] (M(NR2)3) or alkyne [5] analogs.<br />

Our current interest is focused on the structure <strong>and</strong> reactivity <strong>of</strong> different group 14 metal complexes<br />

containing [2-(dimethylamino)methyl]aniline which is able to stabilize target compounds as a bidentate<br />

lig<strong>and</strong> by the formation <strong>of</strong> six-membered diazametallacycle. [6] New results on this field including the<br />

formation <strong>of</strong> higher aggregates (dimers, trimers <strong>and</strong> tetramers) or clusters will be discussed together with<br />

relevant findings in groups <strong>of</strong> closely related C,N- <strong>and</strong> O,N-chelated compounds.<br />

Fig. 1: Schematical example <strong>of</strong> reactivity studied<br />

The authors would like to thank the Grant Agency <strong>of</strong> the Czech Republic (grant no. P207/12/0223) for the<br />

financial support.<br />

[1] For one <strong>of</strong> recent reviews see: Asay, M.; Jones, C.; Driess, M. Chem. Rev. 2011, 111, 254-296.<br />

[2] Lappert, M. F.; Protchenko, A. V.; Power, P. P.; Seeber, A. Metal Amide Chemistry; Chapter 9,<br />

Wiley, John Wiley <strong>and</strong> Sons, Ltd: Chichester, UK, 2009.<br />

[3] (a) Harris, D. H.; Lappert, M. F. J. Chem. Soc., Chem. Commun. 1974, 895-896. (b) Davidson, P. J.;<br />

Harris, D. H.; Lappert, M. F. J. Chem. Soc., Dalton Trans. 1976, 2268-2274.<br />

[4] Davidson, P. J.; Hudson, A.; Lappert M. F.; Lednor, P. W. J. Chem. Soc., Chem. Commun. 1973, 21,<br />

829-830.<br />

[5] Power, P. P. Nature 2010, 463, 171-177.<br />

[6] Vankatova, H; Broeckaert, L; De Pr<strong>of</strong>t, F; Olejnik, R; Turek, J; Padelkova, Z; Ruzicka, A, Inorg.<br />

Chem. 2011, 50, 9454-9464.


74<br />

IRIS-13 <strong>Victoria</strong><br />

Metallo-Organic Clathrates from Self-Assembly <strong>of</strong> a Five-Fold Symmetric<br />

Lig<strong>and</strong><br />

Robert J. Less, [a] Thomas C. Wilson, [a] Bihan Guan, [a] Mary McPartlin, [a] Alex<strong>and</strong>er Steiner, [b] Paul T.<br />

Wood <strong>and</strong> Dominic S. Wright [a]<br />

(rjl1003@cam.ac.uk, dsw1000@cam.ac.uk)<br />

[a] Chemistry Department, Cambridge <strong>University</strong>, Lensfield Rd., Cambridge CB2 1EW, UK<br />

[b] Chemistry Department, <strong>University</strong> <strong>of</strong> Liverpool, Crown Street, Liverpool L69 3BX, UK<br />

The pentacyanocyclopentadienide anion, Cp(CN)5 - can act as a five-fold symmetric node when<br />

coordinated to metal cations. This forces curvature <strong>and</strong> directs the formation polyhedral cages.<br />

1<br />

Oral 45 Thursday 9:50 a.m.<br />

Figure 1. Pentacyanocyclopentadienide anion (1) Figure 2. Cubic-Na[1] showing channels<br />

(orange) <strong>and</strong> voids (yellow).<br />

A series <strong>of</strong> group 1 metal (Na, K, Rb, Cs) complexes with the pentacyanocyclopentadienide anion (1,<br />

Figure 1) have been prepared <strong>and</strong> structurally characterised. Their solid-state structures are highly<br />

dependent on the solvent systems used for crystallisation.<br />

Crystallisation <strong>of</strong> Na[1] from nitromethane / diethyl ether results in the formation <strong>of</strong><br />

Na46{1}48]Na2·(MeNO2)x(Et2O)y (cubic-Na[1], Figure 2), a highly porous metallo-organic framework<br />

(MOF) comprising <strong>of</strong> tetrahedrally close-packed (TCP) arrangements <strong>of</strong> pentagonal-based dodecahedra<br />

(D) <strong>and</strong> 14-hedra (T) strongly reminiscent <strong>of</strong> type I gas hydrates 46H2O·6X·2Y (X, Y = CO2, CH4). [1]<br />

If, however, Na[1] is crystallised from propan-2-ol / pentane, the resulting MOF formed<br />

[Na{1}]45·(H2O)9·( i PrOH)x(C5H12)y is <strong>of</strong> hexagonal symmetry (hexagonal-Na[1]) <strong>and</strong> includes 15-hedra<br />

(P) in addition to D <strong>and</strong> T polyhedra. Heavier group 1 metal salts form highly condensed phases with no<br />

solvent present when crystallised under the same conditions.<br />

Na[1] also provides a valuable starting material with which to access a number <strong>of</strong> other metal derivatives.<br />

Metathesis with metal chlorides allowed the preparation <strong>of</strong> Co, Cu, Ag <strong>and</strong> Au complexes <strong>of</strong> 1. [2]<br />

Notably, in these complexes 1 behaves as a σ-CN donor rather than a π-donor, reflecting the electronwithdrawing<br />

effect <strong>of</strong> the C≡N groups on the C5-ring.<br />

[1] J. Bacsa, R. J. Less, H. E. Skelton, Z. Soracevic, A. Steiner, T. C. Wilson, P. T. Wood, D. S. Wright,<br />

Angew. Chem. Int. Ed. 2011, 50, 8279-8282.<br />

[2] R. J. Less, T. C. Wilson, M. McPartlin, P. T. Wood, D. S. Wright, Chem. Commun. 2011, 47, 10007-<br />

10009; R. J. Less, B. Guan, N. M. Mureson, M. McPartlin, E. Reisner, T. C. Wilson, D. S. Wright,<br />

Dalton Trans. 2012, 41, 5919-5924.


75<br />

IRIS-13 <strong>Victoria</strong><br />

Inorganic Rings <strong>and</strong> Chains via Condensation Reactions <strong>of</strong> Silylamino,<br />

Silylimino, <strong>and</strong> Silylanilino Derivatives <strong>of</strong> Phosphorus <strong>and</strong> Boron<br />

Robert H. Neilson<br />

(R.Neilson@tcu.edu)<br />

Department <strong>of</strong> Chemistry, Texas Christian <strong>University</strong>, Fort Worth, TX 76129, USA<br />

The chemistry <strong>of</strong> phosphorus <strong>and</strong> boron compounds that contain silicon-nitrogen functional groups is<br />

both diverse <strong>and</strong> synthetically useful. The variety <strong>of</strong> reactions that occur at phosphorus or boron, in<br />

combination with facile cleavage <strong>of</strong> the Si-N bond, makes them potential precursors to many types <strong>of</strong><br />

acyclic, cyclic, <strong>and</strong> polymeric P-N <strong>and</strong> B-N systems. For example, most condensation polymerization<br />

routes to phosphazene polymers are based on the high reactivity <strong>of</strong> Si-N=P compounds known as Nsilylphosphoranimines.<br />

In a similar vein, we have also been investigating related systems in which the<br />

Si-N moiety is attached to a 4-substituted phenyl group as in the title silylanilino derivatives. Some <strong>of</strong><br />

these systems are being studied as precursors to new types <strong>of</strong> inorganic ring systems <strong>and</strong>/or inorganicorganic<br />

hybrid polymers. Within this broad context, representative examples <strong>of</strong> the synthesis <strong>and</strong><br />

reactivity <strong>of</strong> precursors <strong>of</strong> types 1 - 3 will be discussed.<br />

R<br />

Me 3 Si N P<br />

R'<br />

N P OR f<br />

R' R"<br />

Oral 46 Thursday 10:10 a.m.<br />

1: R, R', R" = Me, Ph, ORf , CH2SiMe3 Rf = CH2CF3 R<br />

Me3Si N P X<br />

R'<br />

Me3Si R<br />

N E<br />

R'<br />

X<br />

3: X = Br, OCH 2 CF 3<br />

R, R' = Me, Ph, OCH 2 CF 3<br />

2: E = P, B<br />

X = Br, SiMe 3


Oral 47 Thursday 10:10 a.m.<br />

76<br />

IRIS-13 <strong>Victoria</strong><br />

Synthesis <strong>and</strong> Reactivity <strong>of</strong> the BN Analog <strong>of</strong> Ethylcyclobutane, (Bcyclodiborazanyl)amine-borane:<br />

Implications for Selective Catalyzed<br />

Dehydrogenation <strong>of</strong> Ammonia-borane<br />

Hassan Kalviri, Felix Gaertner <strong>and</strong> R. Tom Baker<br />

(rbaker@uottawa.ca)<br />

Department <strong>of</strong> Chemistry <strong>and</strong> Centre for Catalysis Research <strong>and</strong> Innovation, <strong>University</strong> <strong>of</strong> Ottawa,<br />

Ottawa, ON K1N 6N5 Canada<br />

Ammonia-borane (H3N•BH3, AB) has been identified as a promising material for chemical hydrogen<br />

storage. [1] Previous work has demonstrated that metal complexes serving as catalysts to release > 2 equiv.<br />

<strong>of</strong> H2 from AB selectively produce the unusual aminoborane trimer, (B-cyclodiborazanyl)amine-borane,<br />

1, the BN analogue <strong>of</strong> ethylcyclobutane. [2] Both computational [2] <strong>and</strong> experimental work [3] indicate that 1<br />

arises from the unconventional oligomerization <strong>of</strong> reactive aminoborane, H2B=NH2, through the<br />

intermediacy <strong>of</strong> the unsymmetrical linear ‘dimer’, H3BNH2BHNH2 that results from the well-known<br />

basicity <strong>of</strong> H on B. After some years <strong>of</strong> effort, a new synthetic route using the Schwartz reagent,<br />

Cp2ZrHCl, <strong>and</strong> AB affords a 40% yield <strong>of</strong> 1 <strong>and</strong> allows for detailed studies <strong>of</strong> its reactivity <strong>and</strong> a<br />

comparison with its well-known BN cyclohexane isomer, cyclotriborazane, 2.<br />

[1] Stephens, F. H.; Pons, V.; Baker, R. T. Dalton Trans. 2007, 2613; Marder, T. B. Angew. Chem. Int.<br />

Ed. 2007, 46, 8116; Hamilton, C. H.; Baker, R. T.; Staubitz, A.; Manners, I. Chem. Soc. Rev. 2009,<br />

38, 279; Staubitz, A.; Robertson, A. P. M.; Manners, I. Chem. Rev. 2010, 110, 4079.<br />

[2] Pons, V.; Baker, R. T.; Szymczak, N. K.; Heldebrant, D. J.; Linehan, J. C.; Matus, M. H.; Grant, D. J.;<br />

Dixon, D. A. Chem. Commun. 2008, 6597.<br />

[3] Shaw, W. J.; Linehan, J. C.; Szymczak, N. K.; Heldebrant, D. J.; Yonker, C.; Camaioni, D. M.; Baker,<br />

R. T.; Autrey, T. Angew. Chem. Int. Ed. 2008, 47, 7493.


Oral 48 Thursday 10:50 a.m.<br />

77<br />

IRIS-13 <strong>Victoria</strong><br />

Exploring the Isoelectronic <strong>and</strong> Isolobal Analogies in Inorganic Ring Systems<br />

– Studies in Free Radical Chemistry<br />

John J. Hayward <strong>and</strong> Jeremy M. Rawson<br />

(jhayward@uwindsor.ca, jmrawson@uwindsor.ca)<br />

Department <strong>of</strong> Chemistry & Biochemistry, <strong>University</strong> <strong>of</strong> Windsor, 401 Sunset Avenue, Windsor, ON, N9B<br />

3P4, Canada<br />

A variety <strong>of</strong> 7π-electron inorganic free radicals are known <strong>and</strong> their physical properties are well<br />

documented. [1] The design <strong>of</strong> new ring systems involves the application <strong>of</strong> concepts <strong>of</strong> isomerism,<br />

isolobalism <strong>and</strong> isoelectronicity; the use <strong>of</strong> alternative p-block elements therefore provides many different<br />

options for the construction <strong>of</strong> new ring systems. The different aspects <strong>of</strong> the bonding in such systems<br />

which have recently been studied by the Rawson group will be presented, particularly with respect to<br />

radical stabilisation.<br />

[1] J. M. Rawson , A. Alberola <strong>and</strong> A. Whalley, J. Mater. Chem., 2006, 16, 2560 – 2575.


Oral 49 Thursday 10:50 a.m.<br />

Molecular Heterobimetallic Gallo- <strong>and</strong> Alumoxanes<br />

78<br />

IRIS-13 <strong>Victoria</strong><br />

Monica Moya-Cabrera § , Ricardo Peyrot, Er<strong>and</strong>i Bernabé-Pablo <strong>and</strong> Vojtech Jancik §<br />

(monica.moya@unam.mx)<br />

Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carr. Toluca-Atlacomulco,<br />

C.P. 50200, Toluca, Estado de México, México. § Academic staff from the Universidad Nacional<br />

Autónoma de México<br />

Alumoxanes are important catalysts <strong>and</strong> co-catalysts in the polymerization <strong>of</strong> a broad variety <strong>of</strong> organic<br />

molecules <strong>and</strong> their chemistry has been thoroughly under investigation in the last decades. [1] Nonetheless,<br />

structurally modified alumoxanes remain a synthetic challenge, mainly due to their difficulty to crystallize<br />

in low aggregation <strong>and</strong> crystalline forms. Indeed, tailor-made alumoxanes, particularly those bearing s<strong>of</strong>t<br />

atoms are unknown to date. Albeit, the presence <strong>of</strong> both hard <strong>and</strong> s<strong>of</strong>t donor atoms bound to Al can lead<br />

to a change in the properties <strong>of</strong> the metal center <strong>and</strong> thus, to an overall modification <strong>of</strong> their chemical<br />

behavior. In this regard, we have reported on the preparation <strong>of</strong> the molecular alumoxane hydroxide <strong>and</strong><br />

hydrogen sulfide [{LAl(EH)}2(µ-O)] ((L = HC[(CMe)N(2,4,6-Me3C6H2)]2 – ); E = O(1), S(2)) under very<br />

mild conditions. [2]<br />

Herein, we report on the preparation <strong>of</strong> the unique group 4 <strong>and</strong> lanthanide heterobimetallic ring systems<br />

derived from 1 <strong>and</strong> 2, as well as on the molecular galloxane [{LGa(OH)}2(µ-O)] (3) <strong>and</strong> its group 4<br />

heterobimetallic complexes (Figure 1). These heterobimetallic systems may be used as model compounds<br />

for structural analyses, elucidation <strong>of</strong> catalytic mechanisms, as well as precursors in the synthesis <strong>of</strong><br />

heterogeneous systems. Furthermore, the presence <strong>of</strong> two different metals arranged in close proximity can<br />

lead to a cooperative or simultaneous activation <strong>of</strong> substrate molecules. [3]<br />

Figure 1. Molecular alumoxanes <strong>and</strong> galloxanes containing Nd <strong>and</strong> Zr, respectively.<br />

[1] (a) Sinn, H.; Kaminsky, W. Adv. Organomet. Chem. 1980, 18, 99. (b) Feng, T. L.; Gurian, P. L.;<br />

Healy, M. D.; Barron, A. R. Inorg. Chem. 1990, 29, 408. c) Y. Koide, S. G. Bott, A. R. Barron,<br />

Organometallics 1996, 15, 2213. (d) Galimberti, M.; Destro, M.; Fusco, O.; Piemontesi, F.; Camurai,<br />

I. Macromolecules 1999, 32, 258. (e) Kaminsky, W. Catal. Today 2000, 62, 23. (f) Watanabi, M.;<br />

McMahon, C. N.; Harlan, C. J.; Barron, A. R. Organometallics 2001, 20, 460.<br />

[2] González-Gallardo, S. Jancik, V. Cea-Olivares, R. Toscano, R. A. Moya-Cabrera M., Angew. Chem.<br />

Int. Ed. 2007, 46, 2895 – 2898.<br />

[3] M<strong>and</strong>al, S. K.; Roesky, H. Acc. Chem. Res. 2010, 43, 248, <strong>and</strong> references cited therein.


Oral 50 Thursday 11:10 a.m.<br />

79<br />

IRIS-13 <strong>Victoria</strong><br />

Electrochemical <strong>and</strong> Spectroelectrochemical Sharacterization <strong>of</strong> Redox-active<br />

Main Group Compounds: Monomers, Dimers, Rings <strong>and</strong> Cages<br />

R. T. Boeré<br />

(boere@uleth.ca)<br />

Department <strong>of</strong> Chemistry & Biochemistry, <strong>University</strong> <strong>of</strong> Lethbridge, Lethbridge, AB, Canada<br />

The application <strong>of</strong> modern electrochemical methods to air- <strong>and</strong> moisture-sensitive main group compounds<br />

provides powerful ways to characterize redox changes <strong>and</strong> electron transfer reactions. I will discuss the<br />

practice <strong>and</strong> promise <strong>of</strong> such techniques, including voltammetry (CV, square wave, rotated-disk),<br />

electrolysis, UV-visible spectroelectrochemistry <strong>and</strong> simultaneous electrochemistry electron paramagnetic<br />

resonance (SEEPR) spectroscopy. The application <strong>of</strong> such methods to a variety <strong>of</strong> main group compounds<br />

will feature, by way <strong>of</strong> illustration, monomers, dimers, rings <strong>and</strong> cage compounds <strong>of</strong> elements drawn<br />

largely from Groups 15 <strong>and</strong> 16.<br />

[1] R. T. Boeré, T. L. Roemmele <strong>and</strong> X. Yu, Inorg. Chem., 2011, 50, 5123-5136.<br />

[2] , T. Chivers, T. L. Roemmele <strong>and</strong> H. M. Tuononen, Inorg. Chem., 2009, 48, 7294-7306.<br />

[3] . Chivers, Inorg. Chem., 2009, 48, 9454-9462.<br />

[4] R. T. Boeré, A. M. Bond, T. Chivers, S. W. Feldberg <strong>and</strong> T. L. Roemmele, Inorg. Chem., 2007, 46,<br />

5596-5607.<br />

[5] R. T. Boeré, A. M. Bond, S. Cronin, N. W. Duffy, P. Hazendonk, J. D. Masuda, K. Pollard, T. L.<br />

Roemmele, P. Tran <strong>and</strong> Y. Zhang, New. J. Chem., 2008, 32, 214.


Oral 51 Thursday 11:10 a.m.<br />

Nanometric Molecular Heterometallic Silicates<br />

80<br />

IRIS-13 <strong>Victoria</strong><br />

Vojtech Jancik, * Miguel A. Velázquez-Carmona, Libia González-Mirelles, Eduardo Herappe-Mejía, Raúl<br />

Huerta-Lavorie, Diego Solis-Ibarra, Marisol Reyes-Lezama, Nieves Zavala-Segovia<br />

(vjancik@unam.mx)<br />

Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carr. Toluca Atlacomulco km.<br />

14.5, C.P. 50200, Toluca, Estado de México, México. *Academic staff from the Universidad Nacional<br />

Autónoma de México<br />

An important component <strong>of</strong> the earth’s crust are multimetallic silicates <strong>and</strong> alumosilicates, which is<br />

reflected in its elemental composition (46.6% O, 27.8% Si, 8.1% Al). Many <strong>of</strong> these minerals belong to<br />

the family <strong>of</strong> zeolites <strong>and</strong> contain different tridimensional connectivity <strong>and</strong> arrangements, which <strong>of</strong>ten<br />

result in the formation <strong>of</strong> infinite channels in the structure. The preparation <strong>of</strong> materials <strong>of</strong> this nature,<br />

which contain silicon <strong>and</strong> one or more different metals directly incorporated in the inorganic framework<br />

is still a challenge, mainly due to the lack <strong>of</strong> control over their distribution. Thus, it is desirable to have a<br />

single source precursors with all necessary metal atoms already connected to silicate moieties. Herein,<br />

we report on molecular heterobimetallic alumo- <strong>and</strong> gallosilicates with group 4 or lanthanide metals with<br />

inorganic cores <strong>of</strong> 0.8 – 1.3 nm. Figure 1 presents one example <strong>of</strong> such alumotitanosilicate with 3R <strong>and</strong><br />

4R rings connected in a spiro fashion, based on molecular precursors reported recently by our group. [1]<br />

Figure 1. Molecular structure <strong>of</strong> an aluminotitanosilicate with thermal ellipsoids at 50 % probability only<br />

for noncarbon atoms. Hydrogen atoms have been omitted for clarity.<br />

[1] a) F. Rascón-Cruz, R. Huerta-Lavorie, V. Jancik, R. A. Toscano, R. Cea-Olivares, Dalton Trans.<br />

2009, 1195–1200. b) V. Jancik, F. Rascón-Cruz, R. A. Toscano, R. Cea-Olivares, Chem. Commun.<br />

2007, 4528–4530. c) R. Huerta-Lavorie, F. Rascón-Cruz, D. Solis-Ibarra, N. Zavala-Segovia, V.<br />

Jancik, Eur. J. Inorg. Chem. 2011, 4795–4799. d) D. Solis-Ibarra, M. de J. Velasquez-Hern<strong>and</strong>ez, R.<br />

Huerta-Lavorie, V. Jancik, Inorg. Chem. 2011, 50, 8907–8917. e) M. A. Velásquez-Carmona, Libia<br />

González-Mireles, Vojtech Jancik, manuscript en preparation. f) R. Huerta-Lavorie, D, V. Báez-<br />

Rodríguez, V. Jancik, manuscript en preparation.


Oral 52 Thursday 11:30 a.m.<br />

Oxidation <strong>of</strong> Heterocyclic Phosphenium Cations<br />

81<br />

IRIS-13 <strong>Victoria</strong><br />

Arthur D. Hendsbee, Nick A. Giffin <strong>and</strong> Jason D. Masuda<br />

(Jason.masuda@smu.ca)<br />

The Maritimes Centre for Green Chemistry <strong>and</strong> the Department <strong>of</strong> Chemistry, Saint Mary's <strong>University</strong>,<br />

Halifax, Nova Scotia, B3H 3C3, Canada<br />

In the continuing research <strong>of</strong> low valent <strong>and</strong> low oxidation state carbon <strong>and</strong> phosphorus centers, our<br />

research group has recently focused on the chemistry <strong>of</strong> cationic heterocyclic phosphorus systems.<br />

Our developments in the reactivity <strong>of</strong> heterocyclic phosphenium cations with terminal O-N compounds<br />

<strong>and</strong> various heterocycles has proven to be fruitful.<br />

1. We have explored the reactivity <strong>of</strong> these systems with N-oxides. In particular, we have isolated a series<br />

<strong>of</strong> Lewis base stabilized oxophosphonium (aka phosphacylium) cations that have terminal P=O<br />

fragments.<br />

2. We also see oxygen abstraction from the stable radical TEMPO ((2,2,6,6-Tetramethylpiperidin-1yl)oxyl).<br />

The possible formation <strong>of</strong> a transient nitrenium cation will be discussed


Oral 53 Thursday 11:30 a.m.<br />

82<br />

IRIS-13 <strong>Victoria</strong><br />

Stabilization by O,C,O-Coordinating Pincer-Type Lig<strong>and</strong>s: From Tin(IV) to<br />

Sn(0)? Low-valent Organotin Compounds <strong>and</strong> their Transition Metal<br />

Complexes<br />

Klaus Jurkschat<br />

(klaus.jurkschat@tu-dortmund.de)<br />

Lehrstuhl für Anorganische Chemie II der Technischen Universität, Otto-Hahn-Str. 6,<br />

44227 Dortmund, Germany<br />

The syntheses, characterization by state-<strong>of</strong>-the-art analytical methods, <strong>and</strong> evaluation by DFT<br />

calculations <strong>of</strong> the bonding situations <strong>of</strong> the compounds A – K is reported. Of particular interest are the<br />

organotin(I) compounds <strong>of</strong> types C <strong>and</strong> D, <strong>and</strong> the unprecedented platinum complexes H – K.<br />

[1] a) V. Deáky, M. Schürmann, K. Jurkschat, Z. Anorg. Allg. Chem., 2009, 635, 1380; (b) M. Henn, V.<br />

Deáky, S. Krabbe, M. Schürmann, M. H. Prosenc, S. Herres-Pawlis, B. Mahieu, K. Jurkschat, Z.<br />

Anorg. Allg. Chem., 2011, 637, 211; (c) M. Wagner, K. Dorogov, M. Schürmann, K. Jurkschat,<br />

Dalton Trans., 2011, 40, 8839; (d) M. Wagner, C. Dietz, S. Krabbe, S. G. Koller, C. Strohmann, K.<br />

Jurkschat, Inorg. Chem., 2012, DOI: 10.1021/ic3005954.


83<br />

IRIS-13 <strong>Victoria</strong><br />

Revisiting a Highly Unusual Phosphine: Structure <strong>and</strong> Reactivity <strong>of</strong> P7H3<br />

Hongsui Sun, a Javier Borau-Garcia, a Gary D. Enright b <strong>and</strong> Rol<strong>and</strong> Roesler a<br />

(roesler@ucalgary.ca)<br />

Department <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> Calgary, 2500 <strong>University</strong> Drive NW, Calgary, Alberta, T2N 1N4<br />

Canada, <strong>and</strong> Steacie Institute for Molecular Sciences, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6,<br />

Canada<br />

P7H3 is a highly unusual phosphine that was described by Baudler more than three decades ago. It is a<br />

yellow crystalline solid that resembles sulfur in appearance, it is air stable <strong>and</strong> lacks the typical<br />

phosphines smell, <strong>and</strong> it does not sublime or melt without decomposition. It proved insoluble in all 15<br />

solvents tested by the authors, including P2H4 <strong>and</strong> molten white phosphorus. [1] A solution 31 P NMR<br />

spectrum conducted on freshly prepared P7H3 before its precipitation from solution confirmed the<br />

presence <strong>of</strong> two diastereoisomers featuring the same bicyclic framework. [2] This was in good agreement<br />

with the synthesis <strong>of</strong> P7H3 via hydrolysis <strong>of</strong> P7(SiMe3)3, however, it did not account for its chemical <strong>and</strong><br />

physical properties.<br />

Assuming that the unusual properties <strong>of</strong> P7H3 would be due to either strong intermolecular interactions or<br />

polymerization, leading to the formation <strong>of</strong> a very stable crystal lattice, we set to determine the solid state<br />

structure <strong>of</strong> this material using diffraction techniques, as well as mass spectrometry. The results <strong>of</strong> these<br />

studies, as well as the reactivity <strong>of</strong> P7H3 towards N-heterocyclic carbenes, will be presented.<br />

Figure<br />

Oral 54 Thursday 11:50 a.m.<br />

[1] M. Baudler, H. Ternberger, W. Faber, J. Hahn, Z. Naturforsch. 1979, 34B, 1690-1697.<br />

[2] M. Baudler, R. Riekenh<strong>of</strong>-Böhmer, Z. Naturforsch. 1985, 40B, 1424-1429.


Oral 55 Thursday 11:50 a.m.<br />

Synthesis <strong>of</strong> Functionalized Bicyclo[222]octasilanes<br />

84<br />

IRIS-13 <strong>Victoria</strong><br />

B. Hasken <strong>and</strong> H. Stüger<br />

(bernd.hasken@tugraz.at)<br />

Institute for Inorganic Chemistry, Graz <strong>University</strong> <strong>of</strong> Technology, Stremayrgasse 9, A-8010 Graz<br />

There exists pronounced evidence, that electronic coupling <strong>of</strong> donor <strong>and</strong> acceptor substituent groups via<br />

rigid oligosilane bridges can be a rather effective process. [1] In this context the present paper describes<br />

novel preparative approaches to dipolar oligosilane model substances with donor <strong>and</strong> acceptor moieties<br />

connected by the dodecamethylbicyclo-[2.2.2]-octasilane framework (1), which has been successfully<br />

prepared <strong>and</strong> functionalized just recently by Marschner et al. in a pioneering study. [2] Our initial results,<br />

however, quickly revealed that the rigid structure <strong>of</strong> 1 apparently prevent successful nucleophilic<br />

substitution reactions at the brominated bridgehead silicon atoms from 3. 1, however, can be successfully<br />

functionalized when the polarity <strong>of</strong> the precursors is reversed.<br />

Scheme 1: Functionalization <strong>of</strong> a bicyclo[222]octasilane.<br />

A totally different approach is to synthesize already functionalized bycyclo[222]octasilane cages as<br />

shown in scheme 2. [3]<br />

Scheme 2: Synthesis <strong>of</strong> a phenylated bicyclo[222]octasilane.<br />

[1] H. Tsuji, J. Michl, K. Tamao, J. Organomet. Chem.685 (2003) 9<br />

[2] R. Fischer, T. Konopa, S. Ully, J. Baumgartner, C. Marschner, J. Organomet. Chem.685 (2003) 79<br />

[3] C. Krempner, U. Jäger-Fiedler, C. Mamat, A. Spannenberg, K. Weichert New J. Chem., 29 (2005)<br />

1581


Plenary 7 Thursday 1:40 p.m.<br />

85<br />

IRIS-13 <strong>Victoria</strong><br />

Accessing the Inaccessible: Molecular Magnesium(I) Compounds as Specialist<br />

Reducing Agents for the Synthetic Chemist<br />

Cameron Jones<br />

(cameron.jones@monash.edu)<br />

School <strong>of</strong> Chemistry, Monash <strong>University</strong>, Melbourne, VIC, 3800, Australia<br />

The chemistry <strong>of</strong> compounds containing p-block elements in very low oxidation states has rapidly<br />

advanced over the last two decades. More than being just chemical curiosities, these species have begun<br />

to find a variety <strong>of</strong> applications in synthesis, small molecule activations etc. [1] In 2007, we extended this<br />

field to the s-block with the preparation <strong>of</strong> the first room temperature stable molecular compounds<br />

containing magnesium-magnesium covalent bonds, viz. LMgMgL (L = bulky guanidinate or βdiketiminate<br />

1). [2] Subsequently, we have found such magnesium(I) compounds to have considerable<br />

utility as soluble, selective, stoichiometric reducing agents in organic <strong>and</strong> inorganic synthesis. In many<br />

cases, the products obtained from reactions involving these compounds are not accessible using<br />

traditional reducing agents, e.g. alkali metals or SmI2. This is especially so for reductions <strong>of</strong> p-block<br />

element precursors, which have yielded a variety <strong>of</strong> unprecedented low oxidation state group 13 <strong>and</strong> 14<br />

complex types, e.g. 2-5. [3] Examples <strong>of</strong> these compounds, e.g. 5, are emerging as powerful reagents for<br />

the facile, "transition metal-like" activation <strong>of</strong> H2, CO2, NH3 etc. In this lecture, our recent efforts to<br />

develop the chemistry <strong>of</strong> magnesium(I) dimers <strong>and</strong> very low oxidation state p-block compounds will be<br />

presented.<br />

[1] (a) P.P. Power, Nature, 2010, 463, 171; (b) M. Asay, C. Jones, M. Driess, Chem. Rev., 2011, 111,<br />

354.<br />

[2] S.P. Green, C. Jones, A. Stasch, Science, 2007, 305, 1136.<br />

[3] (a) J. Li, C. Schenk, C. Goedecke, G. Frenking, C. Jones, J. Am. Chem. Soc., 2011, 133, 18622; (b)<br />

W.D. Woodul, E. Carter, R. Müller, A.F. Richards, A. Stasch, M. Kaupp, D.M. Murphy, M. Driess,<br />

C. Jones, J. Am. Chem. Soc., 2011, 133, 10074; (c) S.J. Bonhady, D. Collis, G. Frenking, N.<br />

Holzmann, C. Jones, A. Stasch, Nature Chem., 2010, 2, 865.


Keynote 11 Thursday 2:20 p.m.<br />

Simple Lig<strong>and</strong>s, Not so Simple Chemistry!<br />

86<br />

IRIS-13 <strong>Victoria</strong><br />

Paul J. Ragogna <strong>and</strong> Allison L. Brazeau<br />

(pragogna@uwo.ca)<br />

Department <strong>of</strong> Chemistry <strong>and</strong> the Center for Advanced Materials <strong>and</strong> Biomaterials Research<br />

Western <strong>University</strong>, 1151 Richmond St, London, Ontario, N6A 5B7, Canada<br />

Over the last several years, work in our group has centered on developing new structure <strong>and</strong> bonding<br />

motifs for the main group elements, specifically for elements in group 15 <strong>and</strong> 16. To push forward in this<br />

area, we have adapted simple lig<strong>and</strong> sets used widely within the d-block, for use in our chemistry. Two<br />

such examples are the pyridyl tethered 1,2-bis(imino)acenaphthene (1) (a.k.a. “clamshell”) <strong>and</strong> the<br />

dianionic guanidinate lig<strong>and</strong>s (2). Both display rather predictable chemistry for the transition metals, but<br />

not so for the group 15 elements (P, As, Sb). Specific examples for each lig<strong>and</strong> set will be presented,<br />

where most interesting is the reluctance <strong>of</strong> the P-X bond (X = Cl, Br) within the 4-membered<br />

diguanidainate rings to undergo halide abstraction.<br />

N<br />

N N<br />

N<br />

R<br />

R N N R<br />

1 2<br />

[1] D. H. Leung, J. W. Ziller <strong>and</strong> Z. Guan, J. Am. Chem. Soc., 2008, 130, 7538–7539.<br />

[2] A. L. Brazeau, M. Hänninen, H. Tuononen, N. D. Jones, P. J. Ragogna J. Am. Chem. Soc. 2012, 134,<br />

5398-5414.<br />

[3] A. L. Brazeau, N. D. Jones, P. J. Ragogna Dalton. Trans. 2012 41 7890-7896.<br />

[4] A. L. Brazeau, A. S. Nikouline, P. J. Ragogna Chem. Commun. 2011, 47, 4817-4819.<br />

[5] A. L. Brazeau, C. A. Caputo, C. D. Martin, N. D. Jones <strong>and</strong> P. J. Ragogna Dalton Trans. 2010, 39,<br />

11069-11073.


Keynote 12 Thursday 2:50 p.m.<br />

Lewis Acidic Properties <strong>of</strong> Heavy Group 15 <strong>and</strong> 16 Compounds<br />

87<br />

IRIS-13 <strong>Victoria</strong><br />

Casey Wade, Tzu-Pin Lin, Iou-Sheng Ke, James Jones <strong>and</strong> François P. Gabbaï<br />

(francois@tamu.edu)<br />

Department <strong>of</strong> Chemistry, Texas A&M <strong>University</strong>, 3255 TAMU, College Station, Texas 77843-3255, USA<br />

As part <strong>of</strong> our ongoing investigations in the chemistry <strong>of</strong> main group Lewis acids, we have recently<br />

become interested in the properties <strong>of</strong> heavy pnictogenium [1] <strong>and</strong> chalcogenium ions. [2] Owing to the<br />

electropositive character <strong>of</strong> the central atom as well as to the presence <strong>of</strong> low lying vacant orbitals, these<br />

onium ions behave as unusual Lewis acids. In this presentation, we will illustrate some <strong>of</strong> these<br />

characteristics by describing how derivatives containing stibonium or telluronium ions can be used for the<br />

selective complexation <strong>of</strong> fluoride ions in protic solvents. We will also show that heavy pnictogen can<br />

behave as Z-lig<strong>and</strong>s <strong>and</strong> engage electron rich transition metals in unusual donor acceptor interactions. [3]<br />

B<br />

F<br />

Sb<br />

Left: Fluoride anion complexation by a bidentate stibonium borane. Right: Synthesis <strong>of</strong> a gold-antimony<br />

derivative featuring a Au→Sb bond.<br />

[1] a) C. R. Wade, F. P. Gabbaï, Organometallics 2011, 30, 4479-4481; b) C. R. Wade, I.-S. Ke, F. P.<br />

Gabbaï, Angew. Chem. 2012, 124, 493-496; Angew. Chem. Int. Ed. 2012, 51, 478-481.<br />

[2] H. Zhao, F. P. Gabbaï, Nat. Chem. 2010, 2, 984-990.<br />

[3] a) C. R. Wade, F. P. Gabbaï, Angew. Chem., 2011, 123, 7507-7510; Angew. Chem. Int. Ed. 2011, 50,<br />

7369-7372; b) C. R. Wade, T.-P. Lin, R. C. Nelson, E. A. Mader, J. T. Miller, F. P. Gabbaï, J. Am.<br />

Chem. Soc. 2011, 133, 8948-8955; c) T.-P. Lin, C. R. Wade, L. M. Pérez, F. P. Gabbaï, Angew.<br />

Chem., 2010, 122, 6501-6504; Angew. Chem. Int. Ed. 2010, 49, 6357-6360; d) T.-P. Lin, R. C.<br />

Nelson, T. Wu, J. T. Miller, F. P. Gabbai, Chem. Sci. 2012, 3, 1128-1136; e) T.-P. Lin, I.-S. Ke, F. P.<br />

Gabbaï, Angew. Chem. Int. Ed. 2012, early view.


Keynote 13 Thursday 3:40 p.m.<br />

88<br />

IRIS-13 <strong>Victoria</strong><br />

Catalytic <strong>and</strong> Stoichiometric Bond-Forming Reactions Using Main Group<br />

Metals<br />

Dominic S. Wright<br />

(dsw1000@cam.ac.uk)<br />

Chemistry Department, Cambridge <strong>University</strong>, Lensfield Rd., Cambridge CB2 1EW UK<br />

The dehydrocoupling <strong>of</strong> element-H bonds (equ. 1) has been dominated by transition metal reagents <strong>and</strong><br />

catalysts. However, it is becoming clear that high reactivity <strong>and</strong> catalytic activity can also be obtained in<br />

this type <strong>of</strong> reaction using main group metal-based systems (even in the absence accessible d-orbitals in<br />

the valence shell). Redox-active main group bases like M(NMe2)n (M = can be highly effective in the<br />

stoichiometric dehydrocoupling <strong>of</strong> P-P <strong>and</strong> even N-N bonds, with some unusual reactivity being<br />

observed. [1,2] Surprisingly, even simple Sn(IV) organometallics like Cp*2SnCl2 can function as catalysts<br />

in the formation <strong>of</strong> P-P bonds <strong>and</strong> are directly analogous in their behaviour to transition metal systems<br />

based on Zr(IV). [3] This behaviour can also be extended to other dehydrocoupling reactions. Al(III)<br />

amides have been shown to be as active as a number <strong>of</strong> precious metal catalysts in the dehydrocoupling <strong>of</strong><br />

B-N bonds, <strong>and</strong> exhibit closely related reaction characteristics. [4,5] Where more redox-active group 13<br />

metals are employed unique chemistry can be observed (which is not seen for transition metals). A case in<br />

point is the reaction <strong>of</strong> Ga{N(SiMe3)2}3 with NH3BH3 which gives the unusual product 1 (below), in<br />

which a combination <strong>of</strong> B-N coupling <strong>and</strong> N(SiMe3)2 lig<strong>and</strong> rearrangement has occurred. [5,6]<br />

[1] R. J. Less, R. Melen, V. Naseri, D. S. Wright, Chem. Commun., 2009, 4929.<br />

[2] R. J. Less, .V. Naseri, M. McPartlin, D. S. Wright, Chem. Commun. 2011, 47, 6129.<br />

[3] V. Naseri, R. J. Less, M. McPartlin, R. E. Mulvey, D. S. Wright, J. Chem. Soc., Chem. Commun.,<br />

2010, 46, 5000.<br />

[4] H. Cowley, R. L. Melen, J. M. Rawson, D. S. Wright, Chem Commun., 2011, 47, 2682.<br />

[5] M. M. Hansmann, R. L. Melen, D S. Wright, Chem. Sci., 2011, 2, 1554.<br />

[6] see also, R. J. Less, R. L. Melen, D. S. Wright, RSC Adv., 2012, review, in press.<br />

1


Plenary 8 Thursday 4:10 p.m.<br />

89<br />

IRIS-13 <strong>Victoria</strong><br />

Challenges in Metal Oxo Cluster Chemistry for Energy-Saving Materials <strong>and</strong><br />

Catalysis<br />

Yilmaz Aksu, Kerim Samedov, Johannes Pfrommer <strong>and</strong> Matthias Driess<br />

(matthias.driess@tu-berlin.de)<br />

Technische Universität Berlin, Institute <strong>of</strong> Chemistry: Metalorganics <strong>and</strong> Inorganic Materials, Strasse<br />

des 17. Juni 135, Sekr. C2, 10623 Berlin, Germany<br />

Current research activities in materials chemistry are devoted to the development <strong>of</strong> innovative <strong>and</strong><br />

abundant materials suitable for conversion <strong>and</strong> storage <strong>of</strong> solar energy into chemicals (artificial<br />

photosynthesis). At the same time, there is an enormous dem<strong>and</strong> for innovative new materials for energysaving<br />

in electronic devices. Transparent conducting oxides (TCOs) are key components in organic light<br />

emitting diodes (OLED’s) for solar cells, photocatalysts, transparent electrodes in displays <strong>and</strong> Field<br />

Effect Transistors (FET). Unfortunately, transparent electrodes in flat-panel technology, photovoltaics or<br />

FETs rely on expensive indium tin oxide (ITO; In2O3:Sn doped with 5% Sn) which generate a bottleneck<br />

for the growing dem<strong>and</strong>, combined with the relatively low abundance <strong>of</strong> indium. Changing the chemistry<br />

<strong>and</strong> using alternative materials systems based on abundant metal oxides provides a solution: Applying the<br />

concept <strong>of</strong> molecular metalorganic single-source precursors opened new doorways to innovative new<br />

TCO materials for various applications, including bioelectrocatalysis (Fig. 1). [1-6] In my talk the synthesis<br />

<strong>of</strong> new main group metal-oxo cluster precursors for reliable access to inexpensive <strong>and</strong> urgently needed<br />

multi-metal oxides for energy-saving <strong>and</strong> photocatalysis (artificial photosynthesis) will be discussed.<br />

Fig. 1. From a molecular In(I)-Sn(II) oxo cage<br />

to a bioelectrocatalytic device.[5]<br />

[1] Y. Aksu, M. Driess, Angew. Chem. Int. Ed. 2009, 48, 7778.<br />

[2] Y. Aksu, T. Lüthge, R. Fügemann, M. Inhester, M. Driess, „Transparent electrical conducting layers:<br />

Procedure to prepare the layers <strong>and</strong> their applications”, Patent Appl. 2006E00310DE (Germany) <strong>and</strong><br />

102007013181.1 (China, USA)<br />

[3] Y. Aksu, S. Jana, M. Driess, Dalton Trans. 2009, 1516.<br />

[4] M. Tsaroucha, Y. Aksu, E. Irran, M. Driess, Chem. Mater. 2011, 23, 2428–2438.<br />

[5] Y. Aksu, S. Frasca, U. Wollenberger, M. Driess, A. Thomas, Chem. Mater. 2011, 23, 1798–1804.<br />

[6] K. Samedov, Y. Aksu, M. Driess, Chem. Eur. J. 2012, accepted.<br />

Acknowledgment: We thank the Cluster <strong>of</strong> Excellence “UniCat”, financed by the DFG <strong>and</strong> administered<br />

by the TU Berlin, <strong>and</strong> the BMBF (L2H) for financial support.


Poster 1<br />

90<br />

IRIS-13 <strong>Victoria</strong><br />

Merging the Chemistry <strong>of</strong> Electron-Rich Olefins (ERO) with Imidazolium<br />

Ionic Liquids<br />

Cody N. Sherren, a Changhua Mu, b Michael I. Webb, b Iain McKenzie, b Brett M. McCollum, b Jean-Claude<br />

Brodovitch, b Paul W. Percival, b Tim Storr, b Kenneth R. Seddon, c Jason A. C. Clyburne a <strong>and</strong> Charles J.<br />

Walsby b<br />

(Jason.Clyburne@smu.ca)<br />

a Maritimes Centre for Green Chemistry, Department <strong>of</strong> Chemistry, Saint Mary’s <strong>University</strong>, Halifax, NS,<br />

B3H 3C3, Canada,<br />

b Department <strong>of</strong> Chemistry, Simon Fraser <strong>University</strong>, Burnaby, BC V5A 1S6, Canada<br />

c School <strong>of</strong> Chemistry <strong>and</strong> Chemical Engineering, Queen’s <strong>University</strong>, Belfast, BT7 1NN, Northern<br />

Irel<strong>and</strong>, UK<br />

Ionic liquids (ILs) have attracted attention because <strong>of</strong> their potential applications in various industrial<br />

settings. This report will survey some chemistry <strong>of</strong> simple molecular species with structurally simple<br />

reagents in ionic media. The chemistry <strong>of</strong> N-heterocyclic carbenes is intimately associated with chemistry<br />

observed in imidazolium based ionic liquids. Likewise, the chemistry <strong>of</strong> Electron-Rich Olefins (ERO)<br />

was important in the early underst<strong>and</strong>ing <strong>of</strong> NHCs, <strong>and</strong> EROs possess chemistry that is unique among<br />

alkenes. The link <strong>and</strong> relevance <strong>of</strong> EROs <strong>and</strong> IL chemistry has been ignored even though there is some<br />

evidence indicating its role. Here we report that the ionic liquid 1-ethyl-3-methylimidazolium<br />

tetrachloroaluminate(III) reacts with lithium to produce a persistent radical, which can be considered a<br />

hydrogen-atom adduct <strong>of</strong> an electron-rich olefin (ERO). Reaction <strong>of</strong> tetrakis(dimethylamino)ethene, a<br />

bona fide ERO, with muonium, produces a structurally similar radical. These results demonstrate the<br />

importance <strong>of</strong> ERO chemistry to applications <strong>of</strong> ionic liquids, particularly where charge carrying in basic<br />

conditions is important, such as in photocells.


Poster 2<br />

Synthesis, Reactivity <strong>and</strong> Ring-opening Polymerization (ROP) <strong>of</strong><br />

[V(η 5 -C5H4)(η 7 -C7H6)Sn t Bu2]<br />

91<br />

IRIS-13 <strong>Victoria</strong><br />

Klaus Dück <strong>and</strong> Holger Braunschweig<br />

(klaus.dueck@uni-wuerzburg.de)<br />

Institute <strong>of</strong> Inorganic Chemistry, Julius-Maximilians-<strong>University</strong> Würzburg, Am Hubl<strong>and</strong>, 97074<br />

Würzburg, Germany<br />

During the last decades the interest in poly(metallocenes) considerably increased, because these materials<br />

have proven their suitability in technical applications, such as nanotechnologies or metal-based<br />

ceramics. [1−3] Due to the weakness <strong>of</strong> the bond between the ipso-carbon <strong>and</strong> the tin-atom, tin-bridged<br />

ansa-complexes are attractive for ROP reactions. [4]<br />

The first tin-bridged [1]trovacenophane, [V(η 5 -C5H4)(η 7 -C7H6)Sn t Bu2] (2), is synthesized by saltelimination<br />

reaction between [V(η 5 -C5H4Li)(η 7 -C7H6Li)]⋅pmdta (1) <strong>and</strong> Cl2Sn t Bu2. The purple crystalline<br />

solid is isolated in moderate yields <strong>and</strong> characterized by common spectroscopic methods, which confirm<br />

the strained nature <strong>of</strong> the molecule. The treatment <strong>of</strong> [V(η 5 -C5H4)(η 7 -C7H6)Sn t Bu2] with [Pt(PEt3)3]<br />

affords the platinastanna[2]trovacenophane 3, whereupon the Pt(0)-fragment exclusively inserts into the<br />

bond between the ipso-Carbon <strong>of</strong> the C7H6-ring <strong>and</strong> the bridging tin-atom. Ring-opening polymerization<br />

reaction <strong>of</strong> [V(η 5 -C5H4)(η 7 -C7H6)Sn t Bu2] was performed in the presence <strong>of</strong> Karstedt catalyst, yielding the<br />

corresponding poly(trovacenylstannan) 4.<br />

[1] Arsenault, A. C.; Miguez, H.; Kitaev, V.; Ozin, G.A.; Manners, I.; Adv. Mater. 2003, 15, 503.<br />

[2] Rehahn, M.; Bellas, V.; Angew. Chem., 2007, 119, 5174; Angew. Chem. Int. Ed. 2007, 46, 5082.<br />

[3] Adams, J. A.; Braunschweig, H.; Fuß, M.; Kraft, K.; Kupfer, T.; Manners, I.; Radacki, K.; Whittel,<br />

G. R.; Chem. Eur. J. 2011, 17, 10379.<br />

[4] Elschenbroich, C.; Organometallchemie 2008, 6. überarbeitete Auflage, Teubner Verlag / GWV<br />

Fachverlage GmbH, Wiesbaden.


Poster 3<br />

92<br />

IRIS-13 <strong>Victoria</strong><br />

Probing the Effect <strong>of</strong> Base-stabilization in Boryl <strong>and</strong> Borylene Complexes<br />

Holger Braunschweig <strong>and</strong> Thomas Kramer<br />

(thomas.kramer@uni-wuerzburg.de)<br />

Institute <strong>of</strong> Inorganic Chemistry, Julius-Maximilians-<strong>University</strong> Würzburg, Am Hubl<strong>and</strong>, 97074<br />

Würzburg, Germany<br />

Fundamental studies on transition metal complexes containing well-defined two-electron-two-centre M–B<br />

bonds have become an area <strong>of</strong> great interest due to the appearance <strong>of</strong> boryl complexes as key<br />

intermediates in a range <strong>of</strong> catalytic reactions <strong>and</strong> their remarkably strong σ-donation abilities. The extent<br />

<strong>of</strong> π-backdonation in these complexes was first determined by occupying the vacant p orbital <strong>of</strong> an iron<br />

dihaloboryl complex by a Lewis base, <strong>and</strong> the resulting changes in the M−B bond distance were<br />

compared to the parent compound (see following scheme). [1-3]<br />

The reaction <strong>of</strong> the base-stabilized dichloroboryl complex with a halide abstracting reagent provided<br />

access to the first cationic base-stabilized chloroborylene complex analogous to literature-reported basestabilized<br />

aminoborylene complexes <strong>of</strong> Aldridge. Though these compounds are formally borylene<br />

species, a trigonal planar coordination at the boron atom is observed, similar to boryl complexes. [4]<br />

Abstraction <strong>of</strong> the Lewis base leading to the first cationic chloroborylene complex is a future goal <strong>of</strong> this<br />

project.<br />

[1] G. J. Irvine, M. J. G. Lesley, T. B. Marder, N. C. Norman, C. R. Rice, E. G. Robins, W. R. Roper, G.<br />

R. Whittell, L. J. Wright, Chem. Rev. 1998, 98, 2685–2722.<br />

[2] H. Braunschweig, R. D. Dewhurst, A. Schneider Chem. Rev. 2010, 110, 3924–3957.<br />

[3] H. Braunschweig, K. Radacki, F. Seeler, G. R. Whittell, Organometallics 2006, 25, 4605–4610.<br />

[4] S. Aldridge, C. Jones, T. Gans-Eichler, A. Stasch, D. L. Kays (nee Coombs), N. D. Coombs, D. J.<br />

Willock, Angew. Chem. Int. Ed. 2006, 118, 6264–6268.


Poster 4<br />

Metalloborylene Complexes Showing a Wide Range <strong>of</strong> Reactivity<br />

93<br />

IRIS-13 <strong>Victoria</strong><br />

Holger Braunschweig <strong>and</strong> Katharina Ferkingh<strong>of</strong>f<br />

(katharina.ferkingh<strong>of</strong>f@uni-wuerzburg.de)<br />

Institute <strong>of</strong> Inorganic Chemistry, Julius-Maximilians-<strong>University</strong> Würzburg, Am Hubl<strong>and</strong>, 97074<br />

Würzburg, Germany<br />

The highly reactive borylene base-free lig<strong>and</strong> −BR, only stabilized in the coordination sphere <strong>of</strong> transition<br />

metal fragments, established the class <strong>of</strong> bridged [1] <strong>and</strong> terminal [2] borylene complexes. These compounds<br />

do not only show an amazing thermodynamic stability, but also a widespread pattern <strong>of</strong> reactivity. For<br />

instance, the terminal ferroborylene unit <strong>of</strong> [{(η 5 -C5Me5)Fe(CO)2)} (µ2-B){Cr(CO)5}] (1) can either be<br />

transferred to an alkyne fragment to form ferroborirenes 2-5, [3] or via intermetallic borylene transfer to<br />

further metal fragments to obtain so far unknown terminal metalloborylenes 6.<br />

Adding the transition metal base [Pt(PCy3)2] to 6 results in the formation <strong>of</strong> [{(η 5 -C5Me5) (CO)2Fe}(µ-<br />

B)(µ-H){CpW(CO)2}], showing an exceptional T-shaped coordination mode. Hence, this compound is<br />

best to be described as a metal-base stabilized metalloborylene.<br />

[1] P. Bissinger, H. Braunschweig, F. Seeler; Organometallics 2007, 26, 4700. H. Braunschweig,<br />

C. Kollann, K. W. Klinkhammer; Eur. J. Inorg. Chem. 1999, 9, 1523.<br />

[2] H. Braunschweig, K. Radacki, D. Scheschkewitz, G. R. Whittell; Angew. Chem. Int. Ed. 2005, 44,<br />

1658.<br />

[3] H. Braunschweig, I. Fernández, G. Frenking, K. Radacki, F. Seeler; Angew. Chem. 2007, 119, 5307.


Poster 5<br />

94<br />

IRIS-13 <strong>Victoria</strong><br />

Synthesis <strong>and</strong> Reactivity <strong>of</strong> Platinum Oxoboryl <strong>and</strong> Platinum Alkylideneboryl<br />

Complexes<br />

Johannes Br<strong>and</strong>, Holger Braunschweig, Krzyszt<strong>of</strong> Radacki <strong>and</strong> Achim Schneider<br />

(johannes.br<strong>and</strong>@uni-wuerzburg.de)<br />

Institute <strong>of</strong> Inorganic Chemistry, Julius-Maximilians-<strong>University</strong> Würzburg, Am Hubl<strong>and</strong>, 97074<br />

Würzburg, Germany<br />

Until recently monomeric oxoboranes have been detected only as short-lived species in gas-phase [1] or<br />

low-temperature matrix experiments. [2] The reaction <strong>of</strong> Br 2 BOSiMe 3 with [Pt(PCy 3 ) 2 ] yielded the<br />

oxoboryl complex trans-[(Cy 3 P) 2 BrPt(B≡O)] via oxidative addition <strong>of</strong> a B−Br bond <strong>and</strong> spontaneous<br />

elimination <strong>of</strong> BrSiMe 3 . [3]<br />

Evidence for the remarkable stability <strong>of</strong> the oxoboryl lig<strong>and</strong> is demonstrated by its reaction with<br />

[Bu4N]SPh. The nucleophile does not react with the BO moiety but instead substitutes the lig<strong>and</strong> trans to<br />

the BO. [3] In contrast, abstraction <strong>of</strong> the bromide lig<strong>and</strong> with Ag[Al(pftb) 4 ] (pftb = perfluoro-tert-butoxy)<br />

induces instant cyclodimerization <strong>of</strong> the oxoboryl complex. [4] With Ag[BAr f<br />

4 ] (Arf = 3,5bis(trifluoromethyl)phenyl)<br />

<strong>and</strong> an excess <strong>of</strong> acetonitrile the cationic complex trans-<br />

[(Cy3P)2(MeCN)Pt(B≡O)][BAr f<br />

4 ] could be obtained.[5] With B(C6F5 ) 3 the oxoboryl complex yielded the<br />

Lewis acid-base adduct trans-[(Cy3P)2BrPt{B≡O B(C6F5 ) 3 }]. [5] Recently a 1,2-dipolar addition <strong>of</strong><br />

Me3SiNCS to the oxoboryl moiety was also observed. [6]<br />

Analogously to the synthesis <strong>of</strong> the oxoboryl complex the reaction <strong>of</strong> Br2BCH(SiMe3 ) 2 with [Pt(PCy3 ) 2 ]<br />

yielded the first platinum alkylideneboryl complex trans-[(Cy3P) 2BrPt{B=C(H)SiMe3 }]. [6] In this<br />

complex the bromide lig<strong>and</strong> could be substituted with a methyl group by the reaction with methyllithium<br />

to obtain trans-[(Cy P) MePt{B=C(H)SiMe }]. Additionally the synthesis <strong>of</strong> the boryl complex trans-<br />

3 2 3<br />

[(Cy 3 P) 2 BrPt{B(Br)CH 2 SiMe 3 }] could be carried out via oxidative addition <strong>of</strong> one B�Br bond <strong>of</strong><br />

Br 2 BCH 2 SiMe 3 to [Pt(PCy 3 ) 2 ]. However due to the lack <strong>of</strong> steric dem<strong>and</strong>, no elimination <strong>of</strong> bromosilane<br />

was observed.<br />

[1] H. F. Bettinger, Organometallics 2007, 26, 6263–6267.<br />

[2] L. Andrews, T. R. Burkholder, J. Phys. Chem. 1991, 95, 8554–8560.<br />

[3] H. Braunschweig, K. Radacki, A. Schneider, Science 2010, 328, 345-347.<br />

[4] H. Braunschweig, K. Radacki, A. Schneider, Angew. Chem. Int. Ed. 2010, 49, 5993-5996.<br />

[5] H. Braunschweig, K. Radacki, A. Schneider, Chem. Commun. 2010, 46, 6473-6475.<br />

[6] J. Br<strong>and</strong>, Diploma thesis 2010, Julius-Maximilians-<strong>University</strong> Würzburg.


Poster 6<br />

95<br />

IRIS-13 <strong>Victoria</strong><br />

Novel Reactivity <strong>of</strong> Terminal Borylene Complex [Cp(CO)2Mn=B-tBu]<br />

Rong Shang, Holger Braunschweig <strong>and</strong> Krzyszt<strong>of</strong> Radack<br />

(rong.shang@uni-wuerzburg.de)<br />

Institute <strong>of</strong> Inorganic Chemistry, Julius-Maximilians-<strong>University</strong> Würzburg, Am Hubl<strong>and</strong>, 97074<br />

Würzburg, Germany<br />

It has been shown that the reaction <strong>of</strong> the terminal borylene complex [Cp(CO)2Mn=B�tBu] (1) with<br />

platinum <strong>and</strong> palladium(0) complexes [M’(PCy3)2] (M’ = Pt, Pd) results in formation <strong>of</strong> heterodinuclear<br />

complexes [Cp(CO)Mn(μ-CO){μ-B(tBu)}M’(PCy3)2], [1] in a similar fashion to those reported for the<br />

Group 6 metal borylene complexes [(OC)5M=BN(SiMe3)2] (M = Cr, W). [2] Furthermore, complex 1<br />

undergoes metathesis reactions with polarized unsaturated substrates, such as benzophenone, to form<br />

exotic manganese carbene complexes via a [2+2] cycloaddition/cycloreversion mechanism. [3]<br />

Recent studies revealed vastly different behavior <strong>of</strong> 1 with seemingly similar substrates. The reaction<br />

with [AuClL] (L = PCy3, PPh3, ITol, ITol = [Tol-NCH]2C:) results in formation <strong>of</strong> heterodinuclear<br />

complexes [Cp(CO)2Mn(AuL){B(tBu)(Cl)}] (2), which are best viewed as products <strong>of</strong> 1,2-addition <strong>of</strong> the<br />

Au−Cl bond across the Mn=B bond. Furthermore, addition <strong>of</strong> two equivalents <strong>of</strong> super mesityl isonitrile<br />

(CNMes*, Mes* = 2,4,6-tri(tert)butylphenyl) to 1 induces coupling between its borylene moiety <strong>and</strong> the<br />

carbonyl lig<strong>and</strong>s to form complex 3, which features a 11 B NMR shift <strong>of</strong> −57 ppm. Upon treatment with a<br />

strong Lewis acid, complex 3 converts back to the terminal borylene complex 1 quantitatively. Also,<br />

treatment <strong>of</strong> 2 with two equivalents <strong>of</strong> CNMes* results in loss <strong>of</strong> <strong>of</strong> AuClL <strong>and</strong> formation <strong>of</strong> 3.<br />

[1] H. Braunschweig, M. Burzler, T. Kupfer, K. Radacki <strong>and</strong> F. Seeler, Angew. Chem. Int. Ed. 2007, 46,<br />

7785–7787.<br />

[2] (a) H. Braunschweig, D. Rais <strong>and</strong> K. Uttinger, Angew. Chem. Int. Ed. 2005, 44, 3763-3766.<br />

(b) H. Braunschweig, K. Radacki, D. Rais <strong>and</strong> K. Uttinger, Organometallics 2006, 25, 5159-5164.<br />

[3] H. Braunschweig, M. Burzler, T. Kupfer, K. Radacki <strong>and</strong> F. Seeler, Angew. Chem. Int. Ed. 2007, 46,<br />

8071-8073.


Poster 7<br />

Stable Radicals from π-Conjugated Boroles<br />

96<br />

IRIS-13 <strong>Victoria</strong><br />

Holger Braunschweig <strong>and</strong> Christian Hörl<br />

(christian.hoerl@uni-wuerzburg.de)<br />

Institut <strong>of</strong> Inorganic Chemistry, Julius-Maximilians-Universität Wuerzburg, Am Hubl<strong>and</strong>, 97074<br />

Wuerzburg, Germany<br />

Owing to their isoelectronic relationship to neutral methyl radicals, stable boron-radicals anions [BR3] • ˉ<br />

have attracted considerable attention. The most prominent representative is the trimesitylborane radical<br />

anion which has been investigated since the 1950s <strong>and</strong> characterized as a fairly stable species. [1] Stable<br />

boron diradicals have been studied to a lesser extent <strong>and</strong> only a few examples have been reported.<br />

Boroles are known for their strong electron deficiency <strong>and</strong> their antiaromaticity due to the 4π electron<br />

system. [4] In addition, boroles exhibit interesting spectroscopic properties which arise from the small<br />

HOMO-LUMO gap. Our group showed recently, that a stepwise reduction <strong>of</strong> boroles to their dianions is<br />

possible. Even the isolation <strong>of</strong> an unusual borole radical anion, bearing 5π electrons, was successful. [5]<br />

Starting from the thiophene bridged bisborole 1 we were able to isolate a stable borole-based diradical<br />

dianion 2. Herein we wish to present the structure <strong>and</strong> properties <strong>of</strong> the diradical 2.<br />

[1] H. C. Brown, V. H. Dodson, J. Am. Chem. Soc. 1957, 79, 2302.<br />

[2] D. Scheschkewitz, H. Amii, H. Gornitzka, W. W. Schoeller, D. Bourissou, G. Bertr<strong>and</strong>, Science 2002,<br />

295, 1880.<br />

[3] A. Racja, S. Racja, S. R. Desai, J. Am. Chem. Soc. 1995, 1957.<br />

[4] H. Braunschweig, T. Kupfer, Chem. Comm. 2011, 47, 10903.<br />

[5] H. Braunschweig, V. Dyakonov, J. O. C. Jimenez-Halla, K. Kraft, I. Krummenacher, K. Radacki, A.<br />

Sperlich, J. Wahler, Angew. Chem. Int. Ed. 2012, 51, 2977.<br />

[2, 3]


Poster 8<br />

97<br />

IRIS-13 <strong>Victoria</strong><br />

Synthesis <strong>and</strong> Characterisation <strong>of</strong> N-heterocyclic carbene adducts <strong>of</strong> P(I)<br />

cations<br />

Ala Swidan, Jennifer Nguyen, Bobby D. Ellis <strong>and</strong> Charles L.B. Macdonald<br />

(swidan@uwindsor.ca, cmacd@uwindsor.ca)<br />

Department <strong>of</strong> Chemistry <strong>and</strong> Biochemistry<br />

<strong>University</strong> <strong>of</strong> Windsor<br />

Our research group have long been interested in the synthesis <strong>of</strong> compounds containing low-valent main<br />

group elements. [1] Our recent progress toward the preparation <strong>of</strong> dye-like molecules that incorporate<br />

phosphorus in its +1 oxidation state (P I ) stabilized by N-heterocyclic carbenes (NHCs) is reported. Our<br />

group previously reported several approaches to the synthesis <strong>of</strong> base-stabilized univalent phosphorus<br />

halide reagents containing cations such as [(dppe)P] + . [2] Furthermore, we discovered that the reaction <strong>of</strong><br />

two equivalents <strong>of</strong> many NHCs with such P I salts produces salts containing [(NHC)2P] + cations (Figure 1)<br />

through a lig<strong>and</strong> replacement mechanism in which the weaker phosphine lig<strong>and</strong>s are displaced by the<br />

stronger NHC donors. [3] The structures, properties <strong>and</strong> reactivities <strong>of</strong> these molecules is detailed.<br />

[1] Ellis, B. D.; Macdonald, C. L. B., Coordination Chemistry Reviews, 2007, 251, 936-973.<br />

[2] Ellis, B. D.; Macdonald, C. L. B. Inorg. Chem. 2006, 45, 6864-6874.<br />

[3] Ellis, B. D.; Dyker, C. A.; Decken, A.; Macdonald, C. L. B. Chem. Commun. 2005, 1965-1967.


Poster 9<br />

98<br />

IRIS-13 <strong>Victoria</strong><br />

Formation <strong>and</strong> Reactivity <strong>of</strong> Intramolecular Ti-C Bond in Substituted<br />

Titanocene Derivatives<br />

Michal Horáček <strong>and</strong> Karel Mach<br />

(michal.horacek@jh-inst.cas.cz)<br />

J. Heyrovský Institute <strong>of</strong> Physical Chemistry <strong>of</strong> Academy <strong>of</strong> Sciences <strong>of</strong> the Czech Republic,v.v.i.,<br />

Dolejškova 2155/3, 182 23, Prague 8, Czech Republic<br />

The paramagnetic singly tucked-in permethyltitanocene [Ti(III){η 5 :η 1 -C5Me4(CH2)}(η 5 -C5Me5)] (1) was<br />

first observed when an equilibrium mixture <strong>of</strong> decamethyltitanocene [Ti(η 5 -C5Me5)2] with its singly<br />

tucked-in hydride [TiH{η 6 -C5Me4(CH2)}(η 5 -C5Me5)] was sublimed under vacuum. [1] Later on,<br />

thermolysis <strong>of</strong> the decamethyltitanocene monoalkyl compounds [Ti(III)R(η 5 -C5Me5)2] (R = Me, Et, Pr,<br />

CH2CMe3) appeared to be another clean <strong>and</strong> convenient method for obtaining 1. [2]<br />

This contribution reports on the formation <strong>of</strong> intramolecular Ti-C bond in variously substituted titanocene<br />

derivatives <strong>and</strong> reactivity <strong>of</strong> the singly tucked-in permethyltitanocene 1 towards the series <strong>of</strong> various<br />

molecules. Particularly, the protolysis with hydrogen sulphide, silanols or alcohols opened an access to<br />

new titanocene sulphide compounds [3] or permethyltitanocene silanolates <strong>and</strong> alcoholates [4] , respectively.<br />

[1] J. E Bercaw, J. Am. Chem. Soc. 1974, 96, 5087.<br />

[2] G. A Luinstra, J. H Teuben, J. Am. Chem. Soc. 1992, 114, 3361.<br />

[3] J. Pinkas, I. Císařová, M. Horáček, J. Kubišta, K. Mach, Organometallics 2011, 30, 1034.<br />

[4] V. Varga, I. Císařová, R. Gyepes, M. Horáček, J. Kubišta, K. Mach, Organometallics 2009, 8(6),<br />

1748. M. Horáček, R. Gyepes, I. Císařová, J. Kubišta, J. Pinkas, K. Mach, J. Organomet. Chem.<br />

2010, 695, 2338. R. Gyepes, V. Varga, M. Horáček, J. Kubišta, J. Pinkas, K. Mach, Organometallics<br />

2010, 29, 3780.


Poster 10<br />

99<br />

IRIS-13 <strong>Victoria</strong><br />

Catalytic Trimerisation <strong>of</strong> Bissilylated Diazomethane <strong>and</strong> Aminoisonitrile<br />

Alex<strong>and</strong>er Villinger, a Muhammad Ibad, a Peter Langer, a,b Fabian Reiß a <strong>and</strong> Axel Schulz a,b<br />

(alex<strong>and</strong>er.villinger@uni-rostock.de)<br />

a Department <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> Rostock, Albert-Einstein Str. 3a, D-18059 Rostock, Germany; b<br />

Leibniz Institute for Catalysis at the <strong>University</strong> <strong>of</strong> Rostock, Albert-Einstein Str. 29a, D-18059 Rostock,<br />

Germany<br />

The silylium ion [Me3Si] + might be regarded as a sterically dem<strong>and</strong>ing big proton, <strong>and</strong>, similar to a<br />

proton, the bulky silylium ion is always solvated forming the [Me3Si(solv.)] + ion. [1] Only recently, the full<br />

series <strong>of</strong> salts containing the bissilylated halonium/pseudohalonium cations [Me3Si–X–SiMe3] + (X = F,<br />

Cl, Br, <strong>and</strong> I; CN, N3, OCN, SCN) were generated <strong>and</strong> fully characterized using the super Lewis acidic<br />

silylating media Me3Si–X <strong>and</strong> [Me3Si(solv.)] + salt. [2] In view <strong>of</strong> the success <strong>of</strong> the pseudohalogen concept in<br />

super Lewis acidic silylating media, we were intrigued by the idea to utilize the enormous Lewis acidity<br />

<strong>of</strong> the [Me3Si] + ion, to activate small molecules, such as bissilylated diazomethane (Me3Si)2CNN, which<br />

can be considered as a pseudochalkogen. In the present study, the three constitutional isomers with a<br />

NNC unit, (Me3Si)2CNN, (Me3Si)2NNC <strong>and</strong> (Me3Si)NCN(SiMe3) were reacted with<br />

[Me3Si(solv.)][B(C6F5)4] (solv. = HSiMe3, toluene) to afford the silylated pseudochalkogen salts. However,<br />

while the aminonitrilium cation [Me3SiNCN(SiMe3)2] + was obtained as colourless crystals, a more<br />

complex reaction was observed for the diazomethane <strong>and</strong> aminoisonitrile derivates, finally yielding the<br />

silylated 4-diazenyl-3-hydrazinyl-1H-pyrazole (1) which can be considered the formal trimerization<br />

product (Figure 1). Nevertheless, in both reactions, the [Me3SiCNN(SiMe3)2] + salt (2) could be identified<br />

as catalyst which crystallized out at the end <strong>of</strong> the reactions <strong>and</strong> indicated an isomerization <strong>of</strong><br />

diazomethane to aminoisonitrile. The catalytic process can be carried out with catalyst concentrations less<br />

than 1 mole% <strong>and</strong> is completely selective.<br />

Figure 1. ORTEP drawing <strong>of</strong> the molecular structure <strong>of</strong> 1 <strong>and</strong> 2 in the crystal.<br />

[1] J. B. Lambert, S. Zhang, S. M. Ciro, Organomet. 1994, 13, 2430–2443; b) J. B. Lambert, S. Zhang,<br />

J. Chem. Soc., Chem. Commun. 1993, 383–384; C. A. Reed, Z. Xie, R. Bau, A. Benesi, Science<br />

1993, 262, 402–404.<br />

[2] M. Lehmann, A. Schulz, <strong>and</strong> A. Villinger, Angew. Chem. Int. Ed., 2009, 48, 7444–7447; A. Schulz,<br />

A. Villinger, Chemistry – Eur. J. 2010, 16, 7276–7281.


100<br />

IRIS-13 <strong>Victoria</strong><br />

Metallation <strong>of</strong> Cyclotetrasilyldiphosphin with Earthalkaline Silazanides<br />

Michael Feierabend <strong>and</strong> Carsten von Hänisch<br />

(michael.feierabend@chemie.uni-marburg.de)<br />

Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4<br />

35032 Marburg, Germany<br />

In recent studies, we were able to synthesise the branched oligosilan tris(di-isopropyl-chlorosilyl)phenylsilan<br />

1. In a reaction <strong>of</strong> 1 with [Li(DME)PH2], the cyclic tetrasilyldiphospin 2 can be isolated,<br />

which is the result <strong>of</strong> a rearrangement <strong>of</strong> one <strong>of</strong> the di-isopropyl-silyl-groups.<br />

In this poster, we present the synthesis <strong>and</strong> characterization <strong>of</strong> 1 <strong>and</strong> 2 as well as the metallation <strong>of</strong><br />

compound 2 with alkaline earth metal silazanides.<br />

The product <strong>of</strong> these reactions were characterised by multi nuclear NMR spectroscopy <strong>and</strong> single crystal<br />

X-ray structure analysis. They show a different degree <strong>of</strong> oligomerization depending on the metal used.<br />

SiiPr 2<br />

Cl<br />

Si<br />

SiiPr 2<br />

SiiPr 2<br />

Cl<br />

[Li(DME)PH 2]<br />

SiH<br />

Cl<br />

1 2<br />

M = alkaline earth metal<br />

Poster 11<br />

Si<br />

iPr 2<br />

PH<br />

Si<br />

iPr 2<br />

Si<br />

iPr 2<br />

PH<br />

M{N(SiMe 3) 2} 2


101<br />

IRIS-13 <strong>Victoria</strong><br />

Synthesis <strong>and</strong> Coordination Chemistry <strong>of</strong> Cagelike Siloxane Compounds <strong>of</strong><br />

Elements <strong>of</strong> the 15th Group<br />

Christian Bimbös <strong>and</strong> Carsten von Hänisch<br />

(Bimboes@students.uni-marburg.de)<br />

Fachbereich Chemie, Philipps-Universität Marburg, Hans Meerwein-Straße 4, 35032 Marburg, Germany<br />

Recently, we reported the synthesis <strong>of</strong> the cage like compound P2[{SiMe2}2O]3 <strong>and</strong> its coordination<br />

properties. Further investigations on the coordination within the cage compound showed a dimerisation to<br />

the larger compound P4[{SiMe2}2O]6 after treating with the lithium salt <strong>of</strong> the weakly coordinating anion<br />

Li[Al{OC(CF3)3}4]. [1]<br />

On this poster, we report about the synthesis <strong>of</strong> the analogous arsenic <strong>and</strong> stibane compounds<br />

E2[{SiMe2}2O]3 (with E = As, Sb). The arsenic cage compound 1 was obtained by the reaction <strong>of</strong><br />

Li[(dme)AsH2] with the dichlorodisiloxane (ClSiMe2)2O. We were able to obtain the complex 2 by the<br />

reaction <strong>of</strong> the arsenic cage compound As2[{SiMe2}2O]3 with a strong lewis acid AlEt3. On treating the<br />

arsenic cage compound As2[{SiMe2}2O]3 (1) with the lithium salt <strong>of</strong> the weakly coordinating anion<br />

Li[Al{OC(CF3)3}4], a dimerisation reaction to As4[{SiMe2}2O]6 (3) was observed similar to the<br />

corresponding phosphoric compound. Further it was possible to obtain the analogous Sb cage compound<br />

Sb2[{SiMe2}2O]3 (3) by the reaction <strong>of</strong> Na3Sb with the dichlorodisiloxane (ClSiMe2)2O.<br />

6 [Li(dme)AsH 2] + 3 O(SiMe 2Cl) 2<br />

2 Na 3Sb + 3 O(SiMe 2Cl) 2<br />

- 4 AsH 3<br />

- 6 LiCl<br />

- 6 NaCl<br />

Et 3Al<br />

Poster 12<br />

Me2Si O<br />

SiMe2 As O As<br />

1. Li[Al{OC(CF3) 3} 4]<br />

2. THF<br />

SiMe2 SiMe2 SiMe2 O<br />

1<br />

SiMe2 Me2Si SiMe2 O<br />

As O As<br />

SiMe2 SiMe2 SiMe2 O<br />

2<br />

SiMe2 Me2Si SiMe2 O<br />

Sb O Sb<br />

SiMe2 SiMe2 SiMe2 O<br />

4<br />

SiMe2 AlEt 3<br />

Me 2Si<br />

O<br />

Me 2Si<br />

As<br />

O<br />

Me 2<br />

Si<br />

O<br />

Me 2<br />

Si<br />

SiMe 2<br />

Me2Si As O<br />

Si<br />

Me2 Si<br />

Me2<br />

As<br />

SiMe2 O<br />

3<br />

SiMe2 [1] C. von Hänisch, F. Weigend, O. Hampe, S. Stahl, Chem. Eur. J. 2009, 15, 9642.<br />

As SiMe 2<br />

O<br />

SiMe 2


Poster 13<br />

102<br />

IRIS-13 <strong>Victoria</strong><br />

Generation <strong>of</strong> Tellurenyl Cation Species (RTe + ): Structures <strong>and</strong> Properties<br />

<strong>of</strong> Tellurophenium Salts<br />

Koh Sugamata, Takahiro Sasamori <strong>and</strong> Norihiro Tokoitoh<br />

(sugamata@boc.kuicr.kyoto-u.ac.jp)<br />

Institute for Chemical Research, Kyoto <strong>University</strong>, Gokasho, Uji, Kyoto 611-0011, Japan<br />

Tellurenyl cations, RTe + , have attracted much attention for a long time. However, only a few stable<br />

examples are known due to their difficulty to isolate because <strong>of</strong> their intrinsic high reactivity. Although a<br />

tellurenyl cation derivative, [2,6-(Me2NCH2)2C6H3Te] + PF6 – , stabilized by intramolecular coordination <strong>of</strong><br />

amino group was reported, no structural feature has been disclosed. [1] On the other h<strong>and</strong>, methyl- or 4fluorophenyl-substituted<br />

ditelluride was reported to be oxidized by a nitrosonium salt giving the<br />

corresponding transient species <strong>of</strong> tellurenyl cation. [2] In recent studies, the synthesis <strong>of</strong> an aryltellurenyl<br />

cation stabilized by the coordination <strong>of</strong> NHC was reported by Beckmann. [3] We expected that the<br />

chemical trapping products <strong>of</strong> low-coordinated tellurenyl cation species can be kinetically stabilized by a<br />

bulky aryl group such as Bbt group (see Figure). The dehalogenation reactions <strong>of</strong> Bbt-substituted<br />

tellurium halides [4] are rational to postulate the formation <strong>of</strong> a tellurenyl cation species as an<br />

intermediate. [5] In this presentation, we present the successful trapping reactions <strong>of</strong> a tellurenyl cation<br />

species with butadienes to give the corresponding 2,5-dihydrotellurophenium salts as stable colorless<br />

compounds. The re-generation <strong>of</strong> the tellurenyl cation species by its thermal retro[1+4]cycloaddition will<br />

also be described.<br />

[1] H. Fujihara, H. Mima, N. Furukawa, J. Am. Chem. Soc. 1995, 117, 10153.<br />

[2] C. Kollemann, F. Sladky, J. Organomet. Chem. 1990, 396, C1.<br />

[3] J. Beckmann, P. Finke, S. Heitz, M. Hesse, Eur. J. Inorg. Chem. 2008, 1921.<br />

[4] a) T. Sasamori, Y. Arai, N. Takeda, R. Okazaki, Y. Furukawa, M. Kimura, S. Nagase, N. Tokitoh,<br />

Bull. Chem. Soc. Jpn. 2002, 75, 661; b) T. Sasamori, Y. Arai, N. Takeda, R. Okazaki, N. Tokitoh,<br />

Chem. Lett. 2001, 42.<br />

[5] a) T. Sasamori, K. Sugamata, N. Tokitoh, Heteroatom Chem. 2011, 22, 405; b) K. Sugamata, T.<br />

Sasamori, N. Tokitoh, Chem. Asian J. 2011, 6, 2301. [6] K. Sugamata, T. Sasamori, N. Tokitoh, Eur.<br />

J. Inorg. Chem. 2011, 5, 775.


103<br />

IRIS-13 <strong>Victoria</strong><br />

Mechanistic Insights into the Formation <strong>of</strong> Phosphorus-Containing<br />

Ruthenacycles<br />

K. Morrow a , L. Rosenberg a , D. Pantazis b <strong>and</strong> R. McDonald c<br />

(kmorrow@uvic.ca)<br />

a) <strong>University</strong> <strong>of</strong> <strong>Victoria</strong>, Department <strong>of</strong> Chemistry,<br />

b) Max Plank Institute for Bioinorganic Chemistry<br />

c) <strong>University</strong> <strong>of</strong> Alberta, X-Ray Crystallography Department<br />

Phosphorus-containing metallacycles formed from the overall [2+2]-cycloaddition <strong>of</strong> terminal alkenes at<br />

a Ru-P π-bond [1] show promise as possible intermediates relevant to catalytic hydrophosphination. We<br />

have investigated the formation <strong>of</strong> these complexes in detail. In confirmation <strong>of</strong> DFT predictions, we have<br />

directly observed an η 2 -alkene adduct as an intermediate in the [2+2] cycloaddition. We have also<br />

demonstrated, through the construction <strong>of</strong> a Hammett plot showing non-linearity, that the mechanism <strong>of</strong><br />

ruthenacycle formation is dependent on alkene substituent electronics. The formation <strong>of</strong> these<br />

phosphorus-containing ruthenacycles may occur via a more stepwise mechanism for electron-deficient<br />

alkenes as opposed to the concerted [2+2] cycloaddition <strong>of</strong> electron-rich alkenes.<br />

Ph3P Ru<br />

+<br />

PCy2 R<br />

Ph 3P<br />

Ru<br />

HC CH2 R<br />

PCy 2<br />

Poster 14<br />

Ph3P H<br />

Ru R<br />

+<br />

PCy2 Ph3P R<br />

Ru<br />

syn anti<br />

[1] Derrah, E. J.; Pantazis, D. A.; McDonald, R.; Rosenberg, L. Angew. Chem., Int. Ed. 2010, 49, 3367.<br />

H<br />

PCy 2


Poster 15<br />

104<br />

IRIS-13 <strong>Victoria</strong><br />

Functionalized Tris(pyrazolyl)borate <strong>and</strong> Tris(pyrazolyl)borate lig<strong>and</strong>s as<br />

Potential PARACEST MRI Contrast Agents<br />

Emma Nicholls-Allison <strong>and</strong> David Berg<br />

(ecna@uvic.ca)<br />

Department <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> <strong>Victoria</strong>, <strong>Victoria</strong>, BC, Canada<br />

Traditional MRI contrast agents employ high dosages <strong>of</strong> gadolinium containing chelates in order to<br />

generate a suitable image in situ. However, toxicity concerns <strong>and</strong> depleting resources <strong>of</strong> the gadolinium<br />

metal have promoted studies into a new type <strong>of</strong> contrast agent utilizing a PARACEST mechanism. The<br />

crucial features <strong>of</strong> the lig<strong>and</strong> design are strong lig<strong>and</strong>-metal binding, exchangeable protons on the<br />

periphery, <strong>and</strong> water solubility. It is with these features in mind that we are studying both the<br />

tris(pyrazolyl)borate <strong>and</strong> tris(triazolyl)borate lig<strong>and</strong> systems. By installing a chelating group at the three<br />

position, the borate lig<strong>and</strong> can act as a hexacoordinate system, thus decreasing the lig<strong>and</strong>-metal lability.<br />

By introducing novel, functionalized groups at the three position, exchangeable protons can be introduced<br />

in order both participate in the PARACEST mechanism <strong>and</strong> increase the water solubility. Thus far, the<br />

coordination chemistry <strong>of</strong> a variety <strong>of</strong> novel, chelating tris(pyrazolyl)borate lig<strong>and</strong>s has been studied.


Poster 16<br />

Synthesis <strong>of</strong> 1,2:3,4-Bis(ferrocene-1,1’-diyl)tetragermetane <strong>and</strong> its<br />

Photochemical Reaction<br />

Hisashi Miyamoto, Takahiro Sasamori <strong>and</strong> Norihiro Tokitoh<br />

(miyamoto@boc.kuicr.kyoto-u.ac.jp)<br />

Institute for Chemical Research, Kyoto <strong>University</strong>, Japan<br />

105<br />

IRIS-13 <strong>Victoria</strong><br />

There has been much interest in intramolecular electronic interaction between transition metals (delectrons)<br />

through an organic π-electron conjugated system. [1] On the other h<strong>and</strong>, double-bond<br />

compounds between heavier group 14 elements are known to exhibit higher HOMO <strong>and</strong> lower LUMO<br />

levels relative to those in olefins. We have already reported the synthesis <strong>and</strong> properties <strong>of</strong> 1,2bis(ferrocenyl)digermene<br />

as a novel d-π conjugated system. [2] Recently, we have shifted our attention<br />

towards the synthesis <strong>of</strong> 1,2-ferrocene-1,1’-diyldigermene 1. Attempted reductive ring-closing reactions<br />

<strong>of</strong> 1,1’-bis(dibromogermyl)ferrocene 3 resulted in the formation <strong>of</strong> the dimer <strong>of</strong> digermene 1, 1,2:3,4bis(ferrocene-1,1’-diyl)tetragermetane<br />

2 as a stable crystalline compound. We would like to report herein<br />

the detailed synthesis <strong>and</strong> photochemical reactivity <strong>of</strong> tetragermetane 2.<br />

When tetragermetane 2 was exposed to photo-irradiation from a medium pressure Hg lamp in benzene at<br />

room temperature, trigermirane 4 was exclusively obtained. Photochemical reactions <strong>of</strong> 2 in the presence<br />

<strong>of</strong> trapping reagents such as methanol <strong>and</strong> triethylsilane will also be described.<br />

ORTEP drawing <strong>of</strong> 2 (left) <strong>and</strong> 4 (right) at 30% probability.<br />

Hydrogen atoms <strong>and</strong> i-Pr groups are omitted for clarity.<br />

[1] Demadis, K. D.; Hartshorn, C. M.; Meyer, T. J. Chem. Rev. 2001, 101, 2655.<br />

[2] Sasamori, T.; Miyamoto, H.; Sakai, H.; Furukawa, Y.; Tokitoh, N. Organometallics 2012, 31, 3904.


Poster 17<br />

106<br />

IRIS-13 <strong>Victoria</strong><br />

Unexpected Formation <strong>of</strong> Novel 1,2,3-Tri-substituted 1H-2,1-Benzazaboroles<br />

by Amidolithiation <strong>of</strong> Dichloroboro-substituted N,C-Chelating Lig<strong>and</strong>s<br />

Martin Hejda a , Antonín Lyčka b , Roman Jambor a , Aleš Růžička a <strong>and</strong> Libor Dostál a*<br />

(libor.dostal@upce.cz)<br />

a Department <strong>of</strong> General <strong>and</strong> Inorganic Chemistry, Faculty <strong>of</strong> Chemical Technology, <strong>University</strong> <strong>of</strong><br />

Pardubice, Studentská 573, Pardubice CZ-532 10, Czech Republic,<br />

b Research Institute for Organic Syntheses, Rybitví 296, CZ-533 54 Pardubice, Czech Republic<br />

An attempt to prepare precursors <strong>of</strong> intramolecularly coordinated boramidinates [1] (top <strong>of</strong> Fig. 1)<br />

containing N,C-chelating lig<strong>and</strong>s via nucleophilic substitution <strong>of</strong> chlorine atoms by lithium anilides led, in<br />

one step <strong>and</strong> good yields, to unexpected <strong>and</strong> unprecedented formation <strong>of</strong> B-N heterocyclic compounds:<br />

novel 1,2,3-tri-substituted 1H-2,1-benzazaborols (bottom <strong>of</strong> Fig. 1). These structures are rare; only a few<br />

1H-2,1-benzazaboroles substituted in the positions 1,2 <strong>and</strong> 3 are known [2] . However, these already known<br />

1H-2,1-benzazaboroles are generally accessible by more complicated reaction protocols. Furthermore, the<br />

observed compounds contain two NH functionalities, which may be deprotonized <strong>and</strong> used as reactants<br />

for further reactions. Depending on the temperature <strong>and</strong> the stoichiometry used in the studied reactions,<br />

the substitution <strong>of</strong> two anilide groups can be directed to either 1,3- or 1,2- positions <strong>of</strong> benzazaborole<br />

cycle (bottom <strong>of</strong> Fig. 1). The hot results extending this topic will be presented <strong>and</strong> discussed.<br />

Figure 1<br />

The authors thank the Grant Agency <strong>of</strong> the Czech Republic for financial support (Projects No.<br />

P207/10/0130 <strong>and</strong> P207/12/0223).<br />

[1] C. Fedorchuk, M. Copsey, T. Chivers, Coord. Chem. Rev. 2007, 251, 897-924.<br />

[2] (a) A. Rydzewska, K. Ślepokura, T. Lis, P. Kafarski, P. Młynartz, Tetrahedron Lett. 2009, 50, 132-<br />

134. (b) A. M. Genaev, S. M. Nagy, G. E. Salnikov, V. G. Shubin, Chem. Commun. 2000, 1587-<br />

1588.


Synthesis <strong>of</strong> Heteroboroxines <strong>of</strong> 14 <strong>and</strong> 15 Group Elements<br />

107<br />

IRIS-13 <strong>Victoria</strong><br />

Barbora Mairychová, Tomáš Svoboda, Roman Jambor <strong>and</strong> Libor Dostál<br />

(roman.jambor@upce.cz)<br />

Department <strong>of</strong> General <strong>and</strong> Inorganic Chemistry, Faculty <strong>of</strong> Chemical Technology, <strong>University</strong> <strong>of</strong><br />

Pardubice, Studentská 573, Pardubice CZ-532 10, Czech Republic<br />

Boroxines are well known species, easily accessible by dehydration <strong>of</strong> the corresponding organoboronic<br />

acids. [1] In 2005, Yaghi <strong>and</strong> coworkers reported on the synthesis <strong>and</strong> characterization <strong>of</strong> the first<br />

crystalline boroxine covalent organic framework (COF). [2] Since the disclosure <strong>of</strong> this COF many COFrelated<br />

materials emerged, which significantly exp<strong>and</strong>ed the interest in material properties <strong>of</strong> boroxines.<br />

The chemistry <strong>of</strong> heteroboroxines, in which one <strong>of</strong> the boron atom is substituted by a heteroatom M to<br />

form a MB2O3 six-membered ring, remains nearly unexplored despite <strong>of</strong> an extensive research in the<br />

field. [2] As the result <strong>of</strong> our investigation <strong>of</strong> main group organometallic compounds, [3] we report herein a<br />

straightforward synthetic strategy for the synthesis <strong>of</strong> unprecedented heteroboroxines LM[(OBR)2O] <strong>and</strong><br />

L(Ph)Sn[(OBR)2O], where M = Sb <strong>and</strong> Bi, L = [2,6-bis(dimethylamino)methyl]phenyl, R = Ph, 4-<br />

CF3C6H4 <strong>and</strong> ferrocenyl), comprising the MB2O3 six membered rings (Figure 1).<br />

NMe 2<br />

= L<br />

NMe 2<br />

Poster 18<br />

R<br />

O<br />

L<br />

M<br />

O<br />

B O B<br />

R<br />

R<br />

L Ph<br />

Sn<br />

O O<br />

B B<br />

O<br />

R M<br />

Ph Sb: 1a Bi: 2a 3a<br />

4-CF 3 C 6 H 4 Sb: 1b Bi: 2b 3b<br />

1-ferrocenyl Sb: 1c Bi: 2c 3c<br />

Figure 1<br />

The authors wish to thank the Grant agency <strong>of</strong> the Czech Republic project no. P106/10/0443.<br />

[1] D. G. Hall, G. C. Frye, in Boronic Acids, WILEY-VCH, Weinheim, 2005.<br />

[2] (a) X. Ma, Z. Yang, X. Wang, H. W. Roesky, F. Wu, H. Zhu, Inorg. Chem. 2011, 50, 2010-2014; (b)<br />

Z. Yang, X. Ma, R.B. Oswald, H. W. Roesky, M. Noltemeyer, J. Am. Chem. Soc. 2006, 128, 12406-<br />

12407.<br />

[3] (a) P. Šimon, F. de Pr<strong>of</strong>t, R. Jambor, A. Růžička, L. Dostál, Angew. Chem. Int. Ed. 2010, 49, 5468. (b)<br />

M. Bouška, L. Dostál, A. Růžička, L. Beneš, R. Jambor, Chem. Eur. J. 2011, 17, 450. (c) M. Bouška,<br />

L. Dostál, F. de Pr<strong>of</strong>t, A. Růžička, A. Lyčka, R. Jambor, Chem. Eur. J. 2011, 17, 455. (d) M. Bouška,<br />

L. Dostál, Z. Padělková, A. Lyčka, S. Herres-Pawlis, K. Jurkschat, R. Jambor, Angew. Chem. Int. Ed.<br />

2012, 51, 3478.<br />

R


Poster 19<br />

108<br />

IRIS-13 <strong>Victoria</strong><br />

Organometallic Group 14 And 15 Chalcogenides <strong>and</strong> Phenylchalcogenides<br />

Marek Bouška, Petr Šimon, Roman Jambor, Antonín Lyčka <strong>and</strong> Libor Dostál<br />

(libor.dostal@upce.cz)<br />

Department <strong>of</strong> General <strong>and</strong> Inorganic Chemistry, Faculty <strong>of</strong> Chemical Technology, <strong>University</strong> <strong>of</strong><br />

Pardubice, Studentská 573, Pardubice CZ-532 10, Czech Republic, Research Institute for Organic<br />

Syntheses, Rybitví 296, CZ-533 54 Pardubice, Czech Republic<br />

We have recently demonstrated that using <strong>of</strong> NCN chelating, so called pincer type, lig<strong>and</strong>s allowed<br />

isolation <strong>of</strong> several group 14 <strong>and</strong> 15 element molecular chalcogenides (E = S, Se, Te), that in some cases<br />

contain unprecedented terminal M-E bonds or unprecedented ring systems such as M(µ-S5)M or MS4. [1]<br />

These compounds were prepared either by oxidative addition <strong>of</strong> elemental chalcogens to low valent metal<br />

precursors or by the reaction <strong>of</strong> the parent organometallic chlorides with alkali metal chalcogenides Li2E<br />

(E = S, Se, Te). As a part <strong>of</strong> our ongoing interest in the group 14 <strong>and</strong> 15 element chalcogenides, we are<br />

also interested in preparation <strong>of</strong> group 15 chalcogenides kinetically stabilized by a bulky lig<strong>and</strong> (Fig. 1) or<br />

in corresponding arylchalcogenides synthesized by the oxidation <strong>of</strong> low valent precursors, especially<br />

tin(I), antimony(I) <strong>and</strong> bismuth(I) compounds, with diaryldichalcogenides (Fig. 1). The fresh results<br />

targeting these two targets will be presented <strong>and</strong> discussed.<br />

Figure 1<br />

The authors wish to thank the Grant agency <strong>of</strong> the Czech Republic project no. P207/10/0130.<br />

[1] (a) P. Šimon, F. de Pr<strong>of</strong>t, R. Jambor, A. Růžička, L. Dostál, Angew. Chem. Int. Ed. 2010, 49, 5468.<br />

(b) L. Dostál, R. Jambor, A. Růžička, A. Lyčka, J. Brus, F. de Pr<strong>of</strong>t, Organometallics 2008, 27, 6059.<br />

(c) L. Dostál, R. Jambor, A. Růžička, R. Jirásko, V. Lochař, L. Beneš, F. de Pr<strong>of</strong>t, Inorg. Chem.<br />

2009, 48, 10495. (d) M. Bouška, L. Dostál, A. Růžička, L. Beneš, R. Jambor, Chem. Eur. J. 2011, 17,<br />

450. (e) M. Bouška, L. Dostál, F. de Pr<strong>of</strong>t, A. Růžička, A. Lyčka, R. Jambor, Chem. Eur. J. 2011, 17,<br />

455. (f) P. Šimon, R. Jambor, A. Růžička, A. Lyčka F. de Pr<strong>of</strong>t, L. Dostál, Dalton Trans. 2012, 41,<br />

5140. (g) M. Bouška, L. Dostál, Z. Padělková, A. Lyčka, S. Herres-Pawlis, K. Jurkschat, R. Jambor,<br />

Angew. Chem. Int. Ed. 2012, 51, 3478.


Poster 20<br />

109<br />

IRIS-13 <strong>Victoria</strong><br />

New Applications <strong>of</strong> Woollins’ Reagent for the Synthesis <strong>of</strong> Small<br />

Organoselenium Heterocycles to Macro Phosphorus/Selenium Heterocycles<br />

Guoxiong Hua, Junyi Du, Rebecca A. M. R<strong>and</strong>all, Alex<strong>and</strong>ra M. Z. Slawin <strong>and</strong> J. Derek Woollins<br />

(gh15@st-<strong>and</strong>rews.ac.uk)<br />

School <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> St Andrews, Fife, KY16 9ST, UK<br />

2,4-Bis(phenyl)-1,3-diselenadiphosphetane-2,4-diselenide [{PhP(Se)(µ-Se)}2], Woollins’ Reagent, WR, a<br />

selenium analogue <strong>of</strong> the well-known Lawesson’s Reagent (2,4-bis(p-methoxyphenyl)-1,3dithioadiphosphetane-2,4-disulfide,<br />

LR), has less unpleasant chemical properties <strong>and</strong> can be prepared<br />

readily <strong>and</strong> safely h<strong>and</strong>led. [1] Now it is commercial available in the Sigma-Aldrich catalogue (No:<br />

572543). WR has been becoming a very useful selenium source or building block in synthetic chemistry<br />

in recent years. [2] In this poster, we demonstrate its new reactivities towards the organic substituents.<br />

Refluxing a mixture <strong>of</strong> equimolar amount <strong>of</strong> WR <strong>and</strong> cyanamides in toluene, followed by quenching with<br />

water led to the formation <strong>of</strong> phenethylselenoureas, the latter were treated with equimolar ArCOCH2X<br />

giving a series <strong>of</strong> 4-aryl-N-alkyl-N-phenethyl-1,3-selenazol-2-amines in excellent yields; meanwhile,<br />

reacting WR with an equivalent <strong>of</strong> disodium alkyldiols, followed by ring-closure treatment with<br />

appropriate dihaloalkanes resulted in the corresponding nine- to fifteen-membered phosphorus-selenium<br />

heterocycles in medium to good yields.<br />

[1] P. Gray, P. Bhattacharyya, A. M. Z. Slawin, J. D. Woollins, Chem. Eur. J. 2005, 11, 6221.<br />

[2] (a) A. Rothenberger, W. Shi, M. Shafaei-Fallah, Chem. Eur. J. 2007, 13, 5974. (b) P. Amaladass, N.<br />

S. Kumar, A. K. Mohanakrishnan, Tetrahedron 2008, 64, 7992. (c) G. Hua, J. D. Woollins, Angew.<br />

Chem. Int. Ed. 2009, 48, 1368. (d) G. Hua, J. B. Henry, Y. Li, A. R. Mount, A. M. Z. Slawin, J. D.<br />

Woollins, Org. Biomol. Chem. 2010, 8, 1655. (e) G. Hua, J. M. Griffin, S. E. Ashbroom, A. M. Z.<br />

Slawin, J. D. Woollins, Angew. Chem. Int. Ed. 2011, 50, 4123. (f) G. Hua, A. M. Z. Slawin, J. D.<br />

Woollins, Synlett 2012, 23, 1170. (g) J. A. Gómez Castaño, R. M. Romano, H. Beckers, H. Willner,<br />

C. O. Della Védova, Inorg. Chem. 2012, 51(4), 2608.


110<br />

IRIS-13 <strong>Victoria</strong><br />

Unexpected Dehalogenation Reactions <strong>of</strong> Dichloroborane Bearing a NCN-<br />

Pincer Lig<strong>and</strong><br />

Masaichi Saito, a Kaori Matsumoto a <strong>and</strong> Mao Minoura b<br />

(masaichi@chem.saitama-u.ac.jp)<br />

a Department <strong>of</strong> Chemistry, Graduate School <strong>of</strong> Science <strong>and</strong> Engineering, Saitama <strong>University</strong>, Shimookubo,<br />

Sakura-ku, Saitama-city, Saitama, 338-8570, Japan<br />

b Department <strong>of</strong> Chemistry, School <strong>of</strong> Science, Kitasato <strong>University</strong>, Kitasato, Sagamihara, Kanagawa,<br />

228-8555, Japan<br />

The synthesis <strong>of</strong> cationic <strong>and</strong> anionic boron species is <strong>of</strong> considerable interest from the viewpoint <strong>of</strong><br />

fundamental curiosity <strong>and</strong> their potential usefulness as lig<strong>and</strong>s <strong>and</strong> catalysts. In the course <strong>of</strong> our studies<br />

on the synthesis <strong>of</strong> dianionic species <strong>of</strong> main group elements, [1] we became interested in the synthesis <strong>of</strong><br />

dicationic <strong>and</strong> dianionic boron species that have the same carbon lig<strong>and</strong>s on the boron atoms. We then<br />

chose 2,6-bis[(diisopropylamino)methyl]- phenyl group, an NCN-pincer lig<strong>and</strong>, as a protecting group on<br />

the reactive boron center, which is utilized to stabilize reactive species <strong>of</strong> Group 13 elements. [2] We report<br />

herein the synthesis <strong>of</strong> novel dichloroborane 1 bearing an NCN-pincer lig<strong>and</strong>, which reacts with AgBF4 in<br />

the absence <strong>and</strong> the presence <strong>of</strong> pyridine to afford unexpected borenium salt 2 <strong>and</strong> difluoroborane 3,<br />

respectively. Reduction <strong>of</strong> 1 is also demonstrated.<br />

2,6-Bis[(diisopropylamino)methyl]phenyllithium 4 reacted with trichloroborane etherate to afford<br />

dichloroarylborane 1. Reaction <strong>of</strong> 1 with AgBF4, however, afforded an unexpected product, borenium salt<br />

2. In the presence <strong>of</strong> pyridine, difluoroborane 3 was obtained. The formation <strong>of</strong> 2 <strong>and</strong> 3 suggests the<br />

generation <strong>of</strong> intermediary boron dication 5.<br />

iPr2N Br NiPr2 tBuLi Et2O AgBF4 (2 equiv.)<br />

CH2Cl2, r. t.<br />

AgBF 4 (2 equiv.)<br />

pyridine<br />

CH 2Cl 2, r. t.<br />

iPr2N Ni N<br />

Pr2 i iPr2N Pr<br />

Li Li 2<br />

i Pr2N<br />

F<br />

4<br />

B<br />

O<br />

B<br />

2<br />

F<br />

N i Pr 2<br />

iPr2N B NiPr2 3<br />

Poster 21<br />

F 2<br />

BCl 3-OEt 2<br />

iPr2N B NiPr2 [1] For a review, see: Saito, M. Coord. Chem. Rev. 2012, 256, 627.<br />

[2] (a) Contreras, L.; Cowley, A. H.; Gabbaï, F. P.; Jones, R. A.; Carrano, C. J.; Bond M. R. J.<br />

Organomet. Chem. 1995, 489, C1. (b) Schlengerann, R.; Sieler, J.; Hey-Hawkins, E. Main Group<br />

Chem. 1997, 2, 141. (c) Dostál, L.; Jambor, R.; Růžička, A.; Jirásko, R.; Císařová, I.; Holeček, J. J.<br />

Organomet. Chem. 2006, 691, 35.<br />

+<br />

BF 4 −<br />

Cl<br />

5<br />

1<br />

Cl<br />

iPr2N B NiPr2 2+


Poster 22<br />

Studies on Platinum Complexes <strong>of</strong> 1,8-Naphthosultone <strong>and</strong> 1,8-<br />

Naphthosultam<br />

111<br />

IRIS-13 <strong>Victoria</strong><br />

Louise M. Diamond, Fergus R. Knight, Alex<strong>and</strong>ra M. Z. Slawin <strong>and</strong> J. Derek Woollins<br />

(ld397@st-<strong>and</strong>rews.ac.uk)<br />

School <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> St Andrews, St Andrews, Fife, KY16 9ST, Scotl<strong>and</strong>, UK<br />

In the late 1970’s <strong>and</strong> early 1980’s Teo <strong>and</strong> co-workers [1] coordinated tetrathionaphthalene (TTN),<br />

tetrachlorotetrathionaphthalene (TCTTN) <strong>and</strong> tetrathiotetracene (TTT) to a Pt(PPh3)2 motif through an<br />

oxidative addition reaction with [Pt(PPh3)4]. We [2] have used this oxidative reaction to study the<br />

coordination chemistry <strong>of</strong> 1, 8-dichalcogen naphthalenes <strong>and</strong> the oxidised derivatives <strong>of</strong> naphtho [1,8-cd]<br />

1,2-dithiole, to platinum bisphosphines.<br />

Here, a series <strong>of</strong> platinum bisphosphine complexes bearing 1,8-naphthosultone as a bidentate lig<strong>and</strong> have<br />

been prepared. An analogous reaction was studied with 1,8-naphthosultam. However, it was found that<br />

1,8-naphthosultam acts as a monodentate lig<strong>and</strong>. Thus, for example, reaction <strong>of</strong> 1,8-naphthosultone with<br />

[PtCl2(PPh3)2] gives [Pt(1-(SO2),8-(O)-nap)(PPh3)2] (1) whereas reaction <strong>of</strong> 1,8-naphthosultam with<br />

[PtCl2(PPh3)2] gives [Pt(1-(SO2),8-(N)-nap)(PPh3)(Cl)] (2).<br />

Figure. X-ray crystal structures <strong>of</strong> complexes (1) <strong>and</strong> (2) with hydrogen atoms omitted for clarity<br />

Further studies into more electron rich peri substituted systems will also be reported.<br />

[1] B. K. Teo, F. Wudl, J. H. Marshall <strong>and</strong> A. Krugger, J. Am. Chem. Soc., 1977, 99, 2349; B. K. Teo, P.<br />

A. Snyder-Robinson, Inorg. Chem., 1978, 17, 3489; B. K. Teo, P. A. Snyder-Robinson, Inorg.<br />

Chem., 1979, 18, 1490; B. K. Teo, P. A. Snyder-Robinson, Inorg. Chem., 1981, 20, 4235.<br />

[2] S. M. Aucott, H. L. Milton, S. D. Robertson, A. M. Z. Slawin, G. D. Walker <strong>and</strong> J. D. Woollins,<br />

Chem. Eur. J., 2004, 10, 1666.


Activation <strong>of</strong> White Phosphorus<br />

Laura Forfar, Nicholas Norman <strong>and</strong> Chris Russell<br />

(laura.forfar@bristol.ac.uk)<br />

School <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> Bristol, Bristol, BS8 1TS, UK<br />

112<br />

IRIS-13 <strong>Victoria</strong><br />

The activation <strong>of</strong> white phosphorus is a topic <strong>of</strong> current interest <strong>and</strong> seeks to find a more sustainable <strong>and</strong><br />

environmentally friendly route into the production <strong>of</strong> organophosphorus compounds which have uses in<br />

the food, agricultural <strong>and</strong> pharmaceutical industries. This can be done by early transition metals, late<br />

transition metals <strong>and</strong> main group elements <strong>and</strong> compounds.<br />

In this work we sought to activate white phosphorus using the group 11 metals. We achieved this by<br />

reaction <strong>of</strong> equimolar amounts <strong>of</strong> simple inorganic salts, MX (M = Au, Cu, X = Cl; M = Ag, X = OTf)<br />

with a Lewis acid (GaCl3) <strong>and</strong> P4 in a CH2Cl2 solution. 31 P NMR spectroscopy showed a downfield shift<br />

in all cases, being more pronounced for Au (-452) than for Cu (-499) <strong>and</strong> Ag (-513 ppm). In the solid<br />

state, the compounds showed remarkably different structures. Cu <strong>and</strong> Ag formed coordination polymers<br />

based on P4MGaCl4 in ion-contacted structures. For copper, Cu + , GaCl4 <strong>and</strong> P4 units are all involved in<br />

the central framework forming the first example <strong>of</strong> a coordination polymer where P4 is an integral part <strong>of</strong><br />

the bonding network. For silver, Ag + <strong>and</strong> GaCl4 - units are linked through bridging chloride lig<strong>and</strong>s to form<br />

a ladder structure with each Ag bonded η 2 - to a P4 unit.<br />

Cu<br />

P<br />

P<br />

P<br />

P<br />

For gold, different chemistry resulting in an ion-separated structure is observed. [Au(η 2 -P4)2] + cations ionseparated<br />

from [GaCl4] - anions form the first homoleptic P4 complex <strong>of</strong> gold. [1] This complex, predicted to<br />

be the most stable homoleptic group 11 cation <strong>of</strong> the type [(η 2 -P4)2M] + is the final member <strong>of</strong> the series to<br />

be found. [2]<br />

Ga<br />

Cu<br />

Cl<br />

Cl<br />

P<br />

Cl<br />

P<br />

P<br />

Ga<br />

P<br />

Poster 23<br />

P<br />

Cl<br />

Au<br />

P<br />

P<br />

[1] Forfar, L; Clark, T; Green, M; Mansell, S; Russell, C; Sanguramath, R; Slattery, J, Chem Commun,<br />

2012¸ 48, 1970<br />

[2] a) Krossing, I; J. Am. Chem. Soc., 2001, 123, 4603 b) Santiso-Quiñones, G; Reisinger, A; Slattery, J;<br />

Krossing, I, Chem Commun, 2007, 5046<br />

Cl<br />

Ga<br />

P<br />

Cl<br />

P<br />

Cl<br />

Cl Ga<br />

Ag<br />

Cl<br />

P<br />

P<br />

P<br />

Cl


Poster 24<br />

113<br />

IRIS-13 <strong>Victoria</strong><br />

Novel P,N Cage Lig<strong>and</strong>s via Rearrangement <strong>of</strong> Azaphosphiridine Complexes<br />

José Manuel Villalba Franco <strong>and</strong> Rainer Streubel<br />

(villalba@uni-bonn.de)<br />

Institut für Anorganische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn<br />

Gerhard-Domagk Str. 1, 53121 Bonn, Germany<br />

2H-Azaphosphirene [1] <strong>and</strong> azaphosphiridine [2] complexes were reported first by Streubel <strong>and</strong> co-workers.<br />

The former have provided access to various P,N- <strong>and</strong> P,O-cage lig<strong>and</strong>s via thermally induced<br />

rearrangements. [3] Very recently, new derivatives <strong>of</strong> azaphosphiridine complexes were synthesized via<br />

reaction <strong>of</strong> a transient Li/Cl phosphinidenoid complex (route i) or a thermally generated terminal<br />

phosphinidene complex (route ii) <strong>and</strong> N-methyl C-aryl imines. [4] Here, we report on generation <strong>and</strong><br />

rearrangements <strong>of</strong> labile P-Cp* substituted azaphosphiridine complex 4a,b that lead to two novel type <strong>of</strong><br />

P,N cage complexes 5a,b <strong>and</strong> 6a,b. The 31 P NMR spectroscopic reaction monitoring for route i in the b<br />

case, showed transient P-Cp* aza-phosphiridine complex 4b at low temperature which undergoes rapid<br />

isomerisation to com-plex 5b. Under thermal conditions the formation <strong>of</strong> the novel P-N cage complexes<br />

6a-b was observed. Further studies revealed a unique equilibrium between both cage-type lig<strong>and</strong>s. [5]<br />

NMR data as well as X-ray structures <strong>of</strong> the new complexes will be reported.<br />

[1] R. Streubel, Coord. Chem. Rev. 2002, 227, 175-192.<br />

[2] R. Streubel, A. Ostrowski, H. Wilkens, F. Ruthe, J. Jeske, P. G. Jones, Angew. Chem. Int. Ed. Engl.<br />

1997, 36, 378-381.<br />

[3] a) R. Streubel, U. Schiemann, N. H<strong>of</strong>fmann, Y. Schiemann, P. G. Jones, D. Gudat, Organometallics<br />

2000, 19, 475-481 ; b) M. Bode, G. Schnakenburg, P. G. Jones, R. Streubel, Organometallics, 2008,<br />

27, 2664-2667.<br />

[4] a) S. Fankel, H. Helten, G. von Frantzius, G. Schnakenburg, J. Daniels, V. Chu, C. Müller, R.<br />

Streubel. Dalton Trans. 2010, 39, 3472-3481; b) R. Streubel, J. M. Villalba Franco, G.<br />

Schnakenburg, A. Espinosa Ferao, Chem. Commun., 2012,48, 5986-5988.<br />

[5] J.M. Villalba Franco, A. Espinosa, G. Schnakenburg, R. Streubel, manuscript in preparation.


114<br />

IRIS-13 <strong>Victoria</strong><br />

Role <strong>of</strong> Non-Innocent Pyridine Lig<strong>and</strong>s in the Isolation <strong>of</strong> Unprecedented<br />

Ge(0) <strong>and</strong> Sn(0) Complexes<br />

Johanna Flock, Amra Suljanovic, Ana Torvisco, Michaela Flock <strong>and</strong> Rol<strong>and</strong> C. Fischer<br />

(johanna.flock@tugraz.at)<br />

Institut für Anorganische Chemie, TU-Graz, Stremayrgasse 9, A-8010 Graz, Austria<br />

Recently, a novel type <strong>of</strong> Group 14 compounds has been developed, where the Group 14 elements are in<br />

the formal oxidation state <strong>of</strong> zero. [1] Group 14 elements in an formal oxidation state <strong>of</strong> zero are found in<br />

compounds where, for example, the E=E core (E= Si 2 , Ge 3 ) is coordinated by two Lewis base carbene<br />

lig<strong>and</strong>s. Other examples <strong>of</strong> formal E(0) species are “non classical” allenes R2E=E’=ER2 (E, E’= C, Si, Ge,<br />

Sn). [2] However, in literature no example <strong>of</strong> a neutral mononuclear compound is reported where a heavier<br />

main group atom is stabilized by only one donor molecule in an oxidation state <strong>of</strong> zero.<br />

Herein, we report neutral <strong>and</strong> mononuclear Ge 0 (1a) <strong>and</strong> Sn 0 (1b) complexes, which are stabilized by the<br />

DIMPY lig<strong>and</strong>, a Ge 0 complex (2) stabilized by MIMPY (2-[ArN=C(H or Me)](NC5H3) (Ar= C6H3-2,6iPr2))<br />

[3] <strong>and</strong> further low valent Sn II species, as a MeDIMPYSn II (3) (Figure 1). The experimental results<br />

were also supplied by theoretical studies. The DIMPY lig<strong>and</strong> (2,6-[ArN=C(H)]2(NC5H3) (Ar= C6H3-2,6i<br />

Pr2) had previously been employed in the synthesis <strong>of</strong> highly reactive main group element complexes in<br />

low oxidation states, which are exclusively cationic. [3] The particular property <strong>of</strong> these lig<strong>and</strong>s is the fact<br />

that these are non-innocent lig<strong>and</strong>s <strong>and</strong> undergo electron-transfer reactions. [4]<br />

The Synthetic pathways, spectroscopic <strong>and</strong> structural features as well as computational results <strong>of</strong> these<br />

Ge 0 , Sn 0 <strong>and</strong> Sn II complexes will be discussed.<br />

N2<br />

N3<br />

Sn<br />

(1b)<br />

N1<br />

C1<br />

C2<br />

Poster 25<br />

N1<br />

N2<br />

Ge<br />

(2) (3)<br />

Figure 1.: Crystal structure <strong>of</strong> Sn(0) di(imino)pyridine complex (1b), the Sn(I) chloride<br />

di(imino)pyridine complex (2b) (L= 2,6-[DippN=C(H or Me)]2(NC5H3)) <strong>and</strong> the aromatic germylene (3)<br />

(L= 2-[DippN=C(H or Me)](NC5H3)).<br />

[1] Martin D., Soleilhavoup M., Bertr<strong>and</strong> G. Chem. Sci. 2011, 2, 389-399.<br />

[2] (a) Tonner R., Frenking G. Angew. Chem., Int. Ed 2007, 46, 8695-9698. (b) Tonner R., Frenking G.<br />

Chem. Eur. J. 2010, 16, 10160 – 10170. (c) Dyker C. A., Lavallo V., Donnadieu B., Bertr<strong>and</strong> G.<br />

Angew. Chem. Int. Ed. 2008, 47, 3206 –3209. (d) Ishida S., Iwamoto T., Kabuto C., Kira M., Nature,<br />

2003, 421, 725-727. (e) Wiberg N., Lerner H. W., Vasisht S. K., Wagner S., Karaghioso K., Nöth H.,<br />

Ponikwar W. Eur. J. Inorg. Chem. 1999, 1211-1218<br />

[3] (a) Benko, Z.; Burck, S.; Gudat, D.; Nieger, M.; Nyulaszi, L.; Shore, N., Dalton Trans. 2008, 4937-<br />

4945. (b) D. L. Reger, T. D. Wright, M. D. Smith, A. L. Rheingold, S. Kassel, T. Concolino, B.<br />

Rhagitan, Polyhedron 2002, 21, 1795-1807.<br />

[4] a) Martin C. D., Ragogna P. J., Dalton Trans. 2011, 11976-11980. b) Ragogna, P. J., J. Am. Chem.<br />

Soc. 2009, 131, 15126-15127; Reeske, G.; Cowley, A. H., Chem. Commun. 2006, 1784-1786. c)<br />

Baker, R. J.; Jones, C.; Kloth, M.; Mills, D. P., New. J. Chem. 2004, 28, 207-213. d) Ullah, F.; Oprea,<br />

A. I.; Kindermann, M. K.; Bajor, G.; Veszpremi, T.; Heinicke, J., J. Organom. Chem., 2009, 694, 397-<br />

403.<br />

N2<br />

Si<br />

N3<br />

Sn<br />

N1


115<br />

IRIS-13 <strong>Victoria</strong><br />

Cyclization <strong>of</strong> Low Valent Main Group 3 <strong>and</strong> 4 Element Compounds<br />

Petra Wilfling,<br />

Stefan Müller, Michaela Flock <strong>and</strong> Rol<strong>and</strong> C. Fischer<br />

(petra.wilfling@tugraz.at)<br />

Institut für Anorganische Chemie, TU Graz, Stremayrgasse 9/IV, 8010 Graz, Austria<br />

A significant approach towards the synthesis <strong>of</strong> main group element compounds in unusual oxidation<br />

states is the use <strong>of</strong> sterically dem<strong>and</strong>ing lig<strong>and</strong>s, particularly <strong>of</strong> terphenyl systems. [1] Among the various<br />

kinds <strong>of</strong> compounds containing main group 4 elements in unusual oxidation states, molecules including<br />

heavier elements in aromatic systems take an especially interesting position due to their rareness. [2]<br />

This presentation will mainly focus on the synthetic routes towards cyclic <strong>and</strong> aromatic Ge containing<br />

compounds stabilized by terphenyl lig<strong>and</strong>s as well as their heavier analogues (see figure 1). Furthermore,<br />

the synthesis <strong>of</strong> metalloid Ga clusters [3] , which are outst<strong>and</strong>ing due to their exceptional intermediate state<br />

between elemental metal <strong>and</strong> molecular compound [4] , will be discussed. Characterization <strong>of</strong> the products<br />

was performed employing spectroscopic (multinuclear NMR, UV-Vis, X-ray diffraction) <strong>and</strong><br />

computational methods. Experimental <strong>and</strong> computational trends concerning structures, stabilities, NMR<br />

shifts <strong>and</strong> UV-Vis spectra but also chemical reactivity will be presented.<br />

Figure 1:<br />

Poster 26<br />

Cyclization <strong>of</strong> precursors containing heavier group 4 elements, obtained by conversion <strong>of</strong> terphenyl<br />

stabilized tetrylenes with phosphaalkynes .<br />

[1] see e.g.: Rivard, E.; Power, P.P. Inorg. Chem. 2007, 32, 10047-10064.<br />

[2] see e.g.: Tokitoh, N. Acc. Chem. Res. 2004, 37, 86-94.<br />

[3] Wilfling, P.; Fischer, R.C. unpublished results.<br />

[4] Driess, M.; Nöth, H. Molecular Clusters <strong>of</strong> the Main Group Elements, 1st ed.; Wiley- VCH:<br />

Weinheim, 2004.


Poster 27<br />

116<br />

IRIS-13 <strong>Victoria</strong><br />

Toward Connection <strong>of</strong> Ruthenium Complexes to Tin/Sulfur Clusters.<br />

Eliza ter Jung <strong>and</strong> Stefanie Dehnen<br />

(Jungel@students.uni-marburg.de)<br />

Department <strong>of</strong> Chemistry, Philipps-<strong>University</strong> Marburg, Hans-Meerwein-Straße,<br />

D-35043 Marburg, Germany<br />

In recent years, the design <strong>of</strong> ruthenium complexes has attracted great interest due to their properties,<br />

which are useful for diverse applications: the utilization <strong>of</strong> Ru(II) complexes ranges from dye-sensitized<br />

solar cells [1] <strong>and</strong> chromophores [2] to water oxidation [3] , for instance. Many <strong>of</strong> these complexes include Ndonor-,<br />

chelating lig<strong>and</strong>s like terpyridines. [1] In our group, we have developed the lig<strong>and</strong>s <strong>of</strong> organotetrelchalcogenide<br />

cages, especially a double-decker-like RSn/S cluster <strong>and</strong> an adamantane-like RGe/S cluster,<br />

both <strong>of</strong> which are based on an inorganic Tt4S6 core (Tt = tetrel), to make the organic shell reactive toward<br />

further functionalization. Starting out from a keto-functionalized lig<strong>and</strong> R = CMe2CH2COMe, reactions<br />

with hydrazines, hydrazones or hydrazides have been successful (scheme 1). [4]<br />

Scheme 1: Core-Rearrangement <strong>and</strong>/or functionalization <strong>of</strong> the double-decker-like cage [(RSn)4S6] (R =<br />

CMe2CH2COMe) with phenylhydrazine (left) or hydrazine (right), respectively.<br />

To combine the versatile properties <strong>of</strong> the inorganic cluster core with the potentially applicable properties<br />

<strong>of</strong> Ru(II) complexes, one <strong>of</strong> our current aims is to attach these to an Sn/S cage. This can be achieved<br />

following different ways, either by functionalization <strong>of</strong> the Sn/S cluster with a suitable donor lig<strong>and</strong> <strong>and</strong><br />

subsequent Ru(II) semi-sequestration, or by attachment <strong>of</strong> one <strong>of</strong> the lig<strong>and</strong>s <strong>of</strong> a pre-formed Ru(II)<br />

complex to the cluster. So far, it was possible to connect a bipyridyl lig<strong>and</strong> to the cluster via an azine<br />

bond. This precursor is currently tested in reactions with coordinatively unsaturated Ru(II) complexes,<br />

according to the first synthetic route (scheme 2).<br />

Scheme 2: Conversion <strong>of</strong> a donor-functionalized Sn/S precursor with a Ru(II) complex.<br />

[1] P. G. Bomben, T. J. Gordon, E. Schott, C. P. Berlinguette, Angew. Chem. 2011, 123, 10870-10873. [2]<br />

K. C. D. Robson, C. P. Berlinguette et al., Inorg. Chem. 2011, 50, 5494-5508. [3] B. Radaram, X. Zhao et<br />

al., Inorg. Chem. 2011, 50, 10564-10571. [4] Z. Hassanzadeh Fard, L. Xiong, C. Müller, M. Holynska, S.<br />

Dehnen, Chem. Eur. J. 2009, 15, 6595-6604.


Poster 28<br />

117<br />

IRIS-13 <strong>Victoria</strong><br />

An Efficient Approach to Ternary Intermetalloid Clusters:<br />

Reactions <strong>of</strong> Binary Zintl Anions with Transition Metal Complexes<br />

Bastian Weinert, Rodica Ababei <strong>and</strong> Stefanie Dehnen<br />

(Weinertb@students.uni-marburg.de)<br />

Department <strong>of</strong> Chemistry, Philipps-<strong>University</strong> Marburg, Hans-Meerwein-Straße, D-35043 Marburg,<br />

Germany<br />

Intermetalloid clusters, [1] which combine main group (semi-)metals with transition metal clusters, belong<br />

to the most recent developments in the field <strong>of</strong> Zintl anion chemistry <strong>and</strong> physics. [2] So far, the clusters<br />

have usually been obtained by reacting solutions <strong>of</strong> Zintl phases A4Tt9 or A3Pn7 (A: alkali metal, Tt:<br />

tetrel, Pn: pnictogen), which comprise homoatomic anions, in liquid NH3 or en/[2.2.2]crypt with<br />

transition metal compounds. However, due to a relatively high charge, most <strong>of</strong> the phases with molecular<br />

tetrel polyanions, e.g. A4Tt4, show poor solubility, [3] which has complicated reactions <strong>of</strong> further species.<br />

To overcome this problem, <strong>and</strong> to add another degree <strong>of</strong> freedom regarding the electron number <strong>of</strong> the<br />

resulting clusters, we recently extended this approach by using binary Zintl anions with a combination <strong>of</strong><br />

Group 14/15 elements as well-soluble precursors, namely [Sn2Sb2] 2− , [Sn2Bi2] 2− , with only 2− charge<br />

according to the Zintl-Klemm-Busmann [4] pseudo element concept. This has led to the generation <strong>of</strong> a<br />

large variety <strong>of</strong> ternary anions such as [Pd3@Sn8Bi6] 4– , [Ln@Sn7Bi7] 4− <strong>and</strong> [Ln@Sn4Bi9] 4− (Ln = La,<br />

Ce). [5,6] Our current investigations again extent this field by transferring our approach to the employment<br />

<strong>of</strong> pseudo-homoatomic precursors [Sn2Sb2] 2− [7] <strong>and</strong> [Pb2Bi2] 2− , <strong>and</strong> to the Group 13/15 element<br />

combination [GaBi3] 2− <strong>and</strong> [InBi3] 2− . [8] Here, we present first results <strong>of</strong> this variation that indicate the<br />

subtle influence <strong>of</strong> charges, atomic radii <strong>and</strong> Lewis basicities <strong>of</strong> the involved elements. Isostructural<br />

element substitutions were observed in [Zn@Zn5Pb3Bi3@Bi5] 4– , [Ni2@Pb7Bi5] 3– , [Ln@Pb7Bi7] 4− <strong>and</strong><br />

[Ln@Pb4Bi9] 4− . Interestingly with Ln = La, Ce, Nd, we also obtained clusters with novel structures or<br />

different charges, {[La@In2Bi11](µ-Bi)2[La@In2Bi11]} 6− or [La@Sn6Sb8] 3– . Besides characterization <strong>of</strong><br />

the compounds, our studies include formation mechanisms <strong>and</strong> electronic structures <strong>of</strong> the uncommon<br />

intermetalloid cages.<br />

[1] T. F. Fässler, S. D. H<strong>of</strong>fmann, Angew. Chem. Int. Ed. 2004, 43, 6242; [2] S. Scharfe, F. Kraus, S.<br />

Stegmaier, A. Schier, T. F. Fässler Angew. Chem. Int. Ed. 2011, 50, 3630; [3] M. Waibel, F. Kraus, S.<br />

Scharfe, B. Wahl, T. F. Fässler, Angew. Chem. Int. Ed. 2010, 49, 6611; [4] W. Klemm, E. Busmann, Z.<br />

Anorg. Allg. Chem. 1963, 319, 297; [5] F. Lips, R. Clérac, S. Dehnen, J. Am. Chem. Soc. 2011, 133,<br />

14168; [6] F. Lips, M. Hołyńska, R. Clerac, U. Linne, I. Schellenberg, R. Pöttgen, F.Weigend, S. Dehnen,<br />

J. Am. Chem. Soc. 2012, 134, 1181; [7] F. Lips, I. Schellenberg, R. Pöttgen, S. Dehnen, Chem. Eur.<br />

J. 2009, 15, 12968; [8] L. Xu, S. C. Sevov, Inorg. Chem. 2000, 39, 5383.


Poster 29<br />

118<br />

IRIS-13 <strong>Victoria</strong><br />

Synthesis <strong>of</strong> Alumosilicates with Lanthanides <strong>and</strong> the Influence <strong>of</strong> Anagostic<br />

Interactions on the Conformation <strong>of</strong> their Rings<br />

Vojtech Jancik, * Kimberly Thompson Montero, Marisol Reyes Lezama<br />

(vjancik@unam.mx)<br />

Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carr. Toluca Atlacomulco km.<br />

14.5, C.P. 50200, Toluca, Estado de México, México. *Academic staff from the Universidad Nacional<br />

Autónoma de México<br />

A two-step synthesis from easily accessible precursors (AlMe3, ( t BuO)2Si(OH)2 <strong>and</strong> Cp3Ln) leads to a<br />

facile formation <strong>of</strong> alumolsilicates with lanthanides containing a central 4R alumosilicate ring. [1] This ring<br />

is fused with two four-membered lanthanidosilicate rings to form a centrosymmetric molecule. The<br />

conformation <strong>of</strong> the molecules depends on the metal covalent radii <strong>and</strong> the presence <strong>and</strong> number <strong>of</strong> the<br />

anagostic interactions. These interactions are formed between one <strong>of</strong> the methyl groups <strong>of</strong> the AlMe2 unit<br />

<strong>and</strong> the lanthanide metal.<br />

Figure 1. Molecular structure <strong>of</strong> the alumosilicate with gadolinium, comparison <strong>of</strong> the three different ring<br />

conformations <strong>and</strong> the deviation <strong>of</strong> the methyl group from the ideal orientation towards the aluminum<br />

atom. Thermal ellipsoids at 50 % probability only for noncarbon atoms. Hydrogen atoms have been<br />

omitted for clarity.<br />

[1] Kimberly Thompson Montero, Marisol Reyes Lezama, Vojtech Jancik, manuscript en preparation.


Poster 30<br />

119<br />

IRIS-13 <strong>Victoria</strong><br />

Tin Aminoalkoxides <strong>and</strong> their Platinum Complexes: Structural Diversity <strong>and</strong><br />

Catalytic Activity in Polymerisation Reactions<br />

T. Zöller, C. Dietz, L. Iovkova-Berends <strong>and</strong> K. Jurkschat<br />

(thomas.zoeller@tu-dortmund.de)<br />

Lehrstuhl für Anorganische Chemie II der Technischen Universität Dortmund,<br />

Otto-Hahn-Str. 6, 44227 Dortmund, Germany<br />

In cooperation with Bayer Material Science we found an excellent latent catalytic activity in polyurethane<br />

synthesis <strong>of</strong> inorganic tin compounds based on amino alcohol lig<strong>and</strong>s. [1] Prominent representatives <strong>of</strong><br />

these tin(II) <strong>and</strong> tin(IV) derivates are 2,8-dioxa-5-aza-1-stannabicyclo[3.3.0]octanes <strong>of</strong> the types<br />

R 1 N(CH2CR 2 2O)2Sn <strong>and</strong> R 1 N(CH2CR 2 2O)2SnX2 (R = alkyl, Ph, Me2NCH2CH2, MeOCH2CH2; X =<br />

halogen, alkoxide etc.). These non-toxic compounds hold great potential to replace the commonly used<br />

mercury-based catalysts. A systematic variation <strong>of</strong> the substituents X <strong>and</strong> R allows controlling the switchtemperature<br />

<strong>of</strong> the catalysts but gives also access to great structural diversity.<br />

The tin aminoalkoxides are suitable to stabilize molecular tin(II) compounds such as tin(II) chloride oxide<br />

(1). Reactions with platinum complexes give unusual tin platinum clusters such as 2. The tin(II)<br />

compounds may act as σ-donor lig<strong>and</strong>s, insert into Pt–Cl bonds or take part in rearrangement reactions.<br />

We also report enantiopure tin aminoalkoxides that hold potential for asymmetric induction in catalytic<br />

processes. [2]<br />

[1] J. Krause, S. Reiter, S. Lindner, A. Schmidt, K. Jurkschat, M. Schürmann, G. Bradtmöller,<br />

DE 102008021980, 2008.<br />

[2] (a) T. Zöller, L. Iovkova-Berends, T. Berends, C. Dietz, G. Bradtmöller, K. Jurkschat, Inorg. Chem.<br />

2011, 50, 8645. (b) T. Zöller, L. Iovkova-Berends, C. Dietz, T. Berends, K. Jurkschat, Chem. Eur. J.<br />

2011, 17, 2361. (c) K. Jurkschat, M. Schürmann, T. Zöller, L. Iovkova-Berends, DE 102010012237,<br />

2010. (d) T. Zöller, C. Dietz, L. Iovkova-Berends, O. Karsten, G. Bradtmöller, A.-K. Wieg<strong>and</strong>, Y.<br />

Wang, V. Jouikov, K. Jurkschat, Inorg. Chem. 2012, 51, 1041.


Poster 31<br />

Tellurium-Containing Heterocycles Stabilized by P2N2 Rings<br />

120<br />

IRIS-13 <strong>Victoria</strong><br />

Andreas Nordheider †‡ , Tristram Chivers ‡ , Thirumoorthi Ramalingam, ‡ Ignacio Vargas-Baca # , Alex<strong>and</strong>ra<br />

M. Z. Slawin † <strong>and</strong> J. Derek Woollins †<br />

(an349@st-<strong>and</strong>rews.ac.uk)<br />

† <strong>University</strong> <strong>of</strong> St Andrews, Purdie Building, St Andrews, KY16 9ST, Scotl<strong>and</strong>, UK<br />

‡ <strong>University</strong> <strong>of</strong> Calgary, Calgary, AB T2N 1N4, Canada<br />

# McMaster <strong>University</strong>, Hamilton, L8S 4M1, Canada<br />

Recently, we decribed a mild oxidative approach to generate the trimeric macrocycles [P2N2(µ-E–E–)]3 (E<br />

= S, Se) with a planar P6E6 framework in which dichalcogenido (–E–E–) groups are linked by<br />

perpendicular P (V) 2N2 rings. [1] This poster presents the results <strong>of</strong> the application <strong>of</strong> this approach to<br />

tellurium derivatives, [2] which provide important insights into the initial oxidation process, as well as<br />

notable differences in the final outcome <strong>of</strong> the oxidation compared to that observed for sulfur- or<br />

selenium-containing systems. Furthermore, we report metathetical reactions between the precursor<br />

dianion <strong>and</strong> various dihalides, which lead to a series <strong>of</strong> new heterocyclic tellurium compounds<br />

incorporating P2N2 rings. The products <strong>of</strong> these metatheses were characterized by multinuclear NMR<br />

spectroscopy ( 31 P, 77 Se, 125 Te NMR.) <strong>and</strong>, in some cases, by X-ray crystallography.<br />

Figure 1: Novel phosphorus-tellurium heterocycles (left: representative scheme, right: crystal structure <strong>of</strong><br />

a cyclic phosphorus-tritelluride).<br />

These novel compounds provide an opportunity for an in-depth investigation <strong>of</strong> the chemical behavior<br />

<strong>and</strong> structural parameters <strong>of</strong> phosphorus-tellurium heterocycles. Furthermore, the compounds <strong>of</strong>fer<br />

considerable scope for new phosphorus-tellurium chemistry.<br />

http://chemistry.st-<strong>and</strong>rews.ac.uk/staff/jdw/group/pr<strong>of</strong>jdwoollins.html<br />

[1] A. Nordheider, T. Chivers, R. Thirumoorthi, I. Vargas-Baca <strong>and</strong> J. D. Woollins, Chem. Commun.,<br />

2012, 48, 6346.<br />

[2] G. G. Bri<strong>and</strong>, T. Chivers <strong>and</strong> M. Parvez, Angew. Chem. Int. Ed., 2002, 41, 3468.


Poster 32<br />

Experimental <strong>and</strong> Computational Studies <strong>of</strong> the Oxidation <strong>and</strong><br />

Chalcogenation <strong>of</strong> the 1,4-C2P4 Ring<br />

121<br />

IRIS-13 <strong>Victoria</strong><br />

P. J. W. Elder a , T. Chivers, a T. L. Roemmele b <strong>and</strong> R. T. Boeré b<br />

(chivers@ucalgary.ca)<br />

a Department <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> Calgary, Calgary AB, Canada<br />

b Department <strong>of</strong> Chemistry & Biochemistry, <strong>University</strong> <strong>of</strong> Lethbridge, Lethbridge AB, Canada<br />

The chemistry <strong>of</strong> cyclophosphanes (RP)n (R = alkyl, aryl n = 3-6) has been extensively investigated in<br />

terms <strong>of</strong> both their tendency to undergo insertion <strong>and</strong> rearrangements with chalcogens [1] <strong>and</strong> their<br />

electrochemical properties. [2] The closely related cyclocarbaphosphanes however, have been less well<br />

studied. While insertion reactions have been reported for the CP4 ring with both selenium <strong>and</strong> sulphur,<br />

the PCP moiety has been shown to remain intact. [1,3] By contrast with these systems, there have been no<br />

reports <strong>of</strong> the chemical <strong>and</strong>/or redox properties <strong>of</strong> the related C2P4 six-membered ring, 1.<br />

The tert-butyl derivative 1 (R = t Bu) is obtained in good yield from the reaction <strong>of</strong><br />

Cl2PCH2PCl2 with four equivalents <strong>of</strong> t BuMgCl. Computational studies using DFT<br />

suggest a weak cross-ring P-P interaction for the radical cation <strong>of</strong> 1 (R = t Bu), <strong>and</strong> a<br />

bicyclic system for the corresponding dication. Cyclic voltammetry shows two wellseparated,<br />

but irreversible, waves at (a) 0.49 V (GC), 0.52 V (Pt) <strong>and</strong> (b) 1.08 V (GC), 1.16 V (Pt) in<br />

dichloromethane consistent with the formation <strong>of</strong> the mono- <strong>and</strong> di-cations. Experimental investigations<br />

<strong>of</strong> the oxidation <strong>of</strong> 1 (R = t Bu) <strong>and</strong> a comparison <strong>of</strong> the chemical reactivity toward chalcogens will be<br />

presented.<br />

[1] Review: G. Hua <strong>and</strong> J.D. Woollins, Angew. Chem. Int. Ed., 2009, 48, 1368.<br />

[2] H.-G. Schäfer, W. W. Schoeller, J. Niemann, W. Haug, T. Dabisch <strong>and</strong> E. Niecke, J. Am. Chem.<br />

Soc. 1986, 108, 7481.<br />

[3] (a) P. Kilian, A. M. Z. Slawin <strong>and</strong> J. D. Woollins, Chem. Commun., 2001, 2288; (b) P. Kilian P.<br />

Bhattacharyya, A. M. Z. Slawin <strong>and</strong> J. D. Woollins, Eur. J. Inorg. Chem., 2003, 1461.


Poster 33<br />

122<br />

IRIS-13 <strong>Victoria</strong><br />

Synthesis <strong>and</strong> Coordination Chemistry <strong>of</strong> Zwitterionic Pnictogen(I) Centers<br />

Jonathan W. Dube 1 , Charles L.B. Macdonald 2 <strong>and</strong> Paul J. Ragogna 1<br />

(jdube7@uwo.ca, pragogna@uwo.ca)<br />

1 Department <strong>of</strong> Chemistry <strong>and</strong> the Center for Materials <strong>and</strong> Biomaterials Research<br />

Western <strong>University</strong>, 1151 Richmond St, London, Ontario, N6A 5B7, Canada, 2 Department <strong>of</strong> Chemistry<br />

<strong>and</strong> Biochemistry, The <strong>University</strong> <strong>of</strong> Windsor, 401 Sunset Ave, Windsor, Ontario, N9B 3P4, Canada<br />

The recent developments <strong>of</strong> triphosphenium cations (1), [1] have focused on their convenient synthesis as<br />

opposed to their coordination chemistry. [2,3] This is surprising as they formally possess two lone pairs <strong>of</strong><br />

electrons <strong>and</strong> are isoelectronic to the carbodiphosphorane, a compound well known to be a strong lig<strong>and</strong>.<br />

We have prepared <strong>and</strong> fully characterized a new class <strong>of</strong> zwitterionic Pn(I) (Pn = P, As) centers (2)<br />

utilizing the anionic bis(phosphino)borate lig<strong>and</strong> class developed by Peters et al. [4,5] Without the external<br />

counterion necessary for traditional triphosphenium cations, 2P has shown increased solubility in<br />

nonpolar solvents <strong>and</strong> enhanced Lewis basic behaviour when compared to 1. The unique coordination to<br />

gold (3) <strong>and</strong> rhodium (4) as well as calculations on these complexes will be discussed.<br />

[1] A. Schmidpeter, S. Lochschmidt, W.S. Sheldrick, Angew. Chem. Int. Ed. 1982, 21, 63.<br />

[2] B.D. Ellis, M. Carlesimo, C.L.B. Macdonald, Chem. Commun. 2003, 1946.<br />

[3] E.L. Norton, K.L.S. Szekely, J.W. Dube, P.G. Bomben, C.L.B. Macdonald, Inorg. Chem. 2008, 47,<br />

1196.<br />

[4] J.C. Thomas, J.C. Peters, J. Am. Chem. Soc. 2001, 123, 5100. 5) J.C. Thomas, J.C. Peters, Inorg.<br />

Chem. 2003, 42, 5055.


Poster 34<br />

Stannylphosphonium Salts<br />

123<br />

IRIS-13 <strong>Victoria</strong><br />

E. P. MacDonald, a L. Doyle, a S. Chitnis, b N. Burford, b * U. Werner-Zwanziger a <strong>and</strong> A. Decken c<br />

(lizmac@dal.ca)<br />

a<br />

Department <strong>of</strong> Chemistry, Dalhousie <strong>University</strong>, Halifax, NS, B3H 4J3, Canada<br />

b<br />

Department <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> <strong>Victoria</strong>, <strong>Victoria</strong>, BC, V8W 3V6, Canada<br />

c<br />

Department <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> New Brunswick, Fredericton, NB, E3A 6E2, Canada<br />

The first examples <strong>of</strong> stannylphosphonium salts have been prepared as coordination complexes <strong>of</strong><br />

stannylium cations with phosphine lig<strong>and</strong>s. Synthetic procedures involve activation <strong>of</strong> a Sn _ Cl bond by<br />

chloride ion abstraction promote donation from the phosphine, <strong>and</strong> by virtue <strong>of</strong> the cationic charge the<br />

Sn _ P interaction is enhanced. Examples <strong>of</strong> complexes include tin centers that adopt, tetracoordinate <strong>and</strong><br />

pentacoordinate geometries, <strong>and</strong> cations can be mono or dicationic.<br />

Stannylphosphonium (I <strong>and</strong> II) <strong>and</strong> stannyldiphosphonium cations (III <strong>and</strong> IV).<br />

[1] MacDonald, E.; Doyle, L.; Burford, N.; Werner-Zwanziger, U.; Decken, A. Angew. Chem. Int. Ed.,<br />

2011, 50, 11474-11477.


Poster 35<br />

124<br />

IRIS-13 <strong>Victoria</strong><br />

Functionalized Tin-Sulfur Clusters: Synthesis, Characterization <strong>and</strong><br />

Investigations <strong>of</strong> the Formation Pathway<br />

Jens P. Eußner <strong>and</strong> Stefanie Dehnen<br />

(jens.eussner@chemie.uni-marburg.de)<br />

Department <strong>of</strong> Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße,<br />

D-35043 Marburg, Germany<br />

Organic-inorganic hybrid materials attract attention in current research for a variety <strong>of</strong> different reasons.<br />

Inorganic building units linked by organic substituents show very interesting chemical <strong>and</strong> physical<br />

properties, that are different from those <strong>of</strong> the single components alone − well known from metal-organic<br />

frameworks. Organic decorated clusters (RT)xEy (T = Si, Ge, Sn; E = O, S, Se, Te) represent the basic<br />

building units, aiming at the extension into even more versatile multinary clusters as inorganic nodes,<br />

potential applications <strong>and</strong> hybrid networks. Recent work <strong>of</strong> our group describe the synthesis,<br />

characterization <strong>and</strong> derivatization <strong>of</strong> various binary clusters with functionalized lig<strong>and</strong>s R, terminated by<br />

reactive groups like C=O or COOH. [1−3] According to Scheme 1, an organotin-trihalide furnishs the<br />

desired functionality <strong>of</strong> the clusters. To synthesize novel clusters with different functional groups, <strong>and</strong> to<br />

establish a library <strong>of</strong> according clusters, we generated organotetrel-trichlorides with alkene, alkyne <strong>and</strong><br />

acid anhydride functional groups. These are to be transferred into the corresponding binary <strong>and</strong> multinary<br />

clusters, with a preliminary focus on T = Sn <strong>and</strong> E = S. Besides their chemical <strong>and</strong> physical properties,<br />

the formation <strong>and</strong> dynamics <strong>of</strong> functionalized clusters in solution is <strong>of</strong> interest. [4] By application <strong>of</strong><br />

different reactants <strong>and</strong> reaction conditions, several intermediates could be observed <strong>and</strong> isolated. Based<br />

on this, we can propose the following route <strong>of</strong> condensation (Scheme 2).<br />

Scheme 1: Synthetic route into functionalized chalcogenidometallate clusters (R F = functional organic<br />

substituent; R x = functional molecule with complementary reactivity; T = Ge, Sn; X = Cl, Br, I; E = S, Se,<br />

Te; A = alkali metal, E = S, Se, Te, TMS).<br />

Scheme 2: Proposed formation pathway from an organotintrichloride through several intermediates to an<br />

according organotinsulfide cluster.<br />

[1] Z. Hassanzadeh Fard, L. Xiong, C. Muller, M. Holynska, S. Dehnen, Chem. Eur. J. 2009, 15, 6595-<br />

6604. [2] Z. Hassanzadeh Fard, R. Clerac, S. Dehnen, Chem. Eur. J. 2010, 16, 2050-2053. [3] Z.<br />

Hassanzadeh Fard, M. R. Halvagar, S. Dehnen, J. Am. Chem. Soc. 2010, 132, 2845-2849. [4] M. Bouška,<br />

L. Dostál, Z. Padělková, A. Lyčka, S. Herres-Pawlis, K. Jurkschat, R. Jambor, Angew. Chem. 2012, 124,<br />

3535-3540.


Poster 36<br />

125<br />

IRIS-13 <strong>Victoria</strong><br />

Silver(I) Coordination Complexes: Controlling Self-assembly in the<br />

Construction <strong>of</strong> Supramolecular Networks<br />

Fergus R. Knight, Rebecca A. M. R<strong>and</strong>all, Lucy Wakefield, Alex<strong>and</strong>ra M. Z. Slawin <strong>and</strong> J. Derek<br />

Woollins<br />

(frk@st-<strong>and</strong>rews.ac.uk)<br />

EaStCHEM, School <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> St Andrews, St Andrews, Fife, KY16 9ST, U.K<br />

Coordination chemistry is an integral feature <strong>of</strong> inorganic <strong>and</strong> bioinorganic chemistry, with many<br />

applications in polymer design <strong>and</strong> materials science. In recent times, the metal-lig<strong>and</strong> interaction has<br />

emerged as an important tool for the manufacture <strong>of</strong> supramolecular metal complexes <strong>and</strong> is prominent in<br />

the design <strong>of</strong> organic solids <strong>and</strong> metal-organic frameworks (MOFs). Crystal engineering utilises the<br />

metal-lig<strong>and</strong> coordination bond to construct coordination networks, generally through the self-assembly<br />

<strong>of</strong> tuneable building blocks. Bridging organic lig<strong>and</strong>s acting as rigid supports are linked in an ordered<br />

lattice, building extended <strong>and</strong> <strong>of</strong>ten multidimensional networks with central metal ions. Self-assembly,<br />

which dictates the structural motif <strong>of</strong> the final complex is controlled by experimental conditions. Factors<br />

such as the central metal ion oxidation state, the coordination geometry, the metal-to-lig<strong>and</strong> ratio, the<br />

nature <strong>and</strong> spacer length <strong>of</strong> the bridging lig<strong>and</strong>, the presence <strong>of</strong> solvents <strong>and</strong> the type <strong>of</strong> counter-anions,<br />

all play a significant role. Silver has become a fashionable building block for connecting organic lig<strong>and</strong>s<br />

in supramolecular networks.<br />

The series <strong>of</strong> chalcogen-donor lig<strong>and</strong>s Acenap[EPh][E`Ph] (Acenap = acenaphthene-5,6-diyl; E/E` = S,<br />

Se, Te) 1 coupled with silver(I) salts provide ideal building blocks for constructing coordination networks<br />

due to the diversity <strong>of</strong> the silver coordination geometry <strong>and</strong> the contrasting donor functionalities <strong>of</strong> the<br />

rigid acenaphthene supports. Acenaphthene derivatives [Acenap(EPh)(E`Ph)] (Acenap = acenaphthene-<br />

5,6-diyl; E/E` = S, Se, Te) [1] were each independently treated with silver tetrafluoroborate [AgBF4] <strong>and</strong><br />

silver trifluoromethanesulfonate [AgOTf]. The coordinating ability <strong>of</strong> the counter-anions, the type <strong>of</strong><br />

donor atoms available to the silver(I) metal centre <strong>and</strong> the nature <strong>of</strong> the solvents used during the reaction<br />

<strong>and</strong> recrystallisation stages have a dramatic effect on the final solid state structure <strong>and</strong> leads to the<br />

formation <strong>of</strong> unusual coordination architectures; 3D supramolecular metal-organic frameworks, 1D<br />

extended helical chain polymers, mononuclear, monomeric, silver(I) s<strong>and</strong>wich complexes, threecoordinate<br />

monomeric, silver(I) complexes. [2]<br />

[1] L. K. Aschenbach, F. R. Knight, R. A. M. R<strong>and</strong>all, D. B. Cordes, A. Baggott, M. Bühl, A. M. Z.<br />

Slawin <strong>and</strong> J. D. Woollins, Dalton Trans., 2012, 41, 3141.<br />

[2] F. R. Knight, R. A. M. R<strong>and</strong>all, L. Wakefield, A. M. Z. Slawin <strong>and</strong> J. D. Woollins, Chem. Eur. J.,<br />

submitted.


126<br />

IRIS-13 <strong>Victoria</strong><br />

Synthesis <strong>and</strong> Characterization <strong>of</strong> Chalcogenophosphonium Cations<br />

S.H. Lucas <strong>and</strong> N. Burford<br />

(shlucas@uvic.ca)<br />

Department <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> <strong>Victoria</strong>, <strong>Victoria</strong>, British Columbia, Canada<br />

The Burford group has developed synthetic procedures to phosphinophosphonium [1] ,<br />

pnictinopnictonium [2,3] , <strong>and</strong> stannylphosphonium cations [4] . An extension <strong>of</strong> this previous work involves<br />

the group 16 elements (the chalcogens, Ch), with the intention <strong>of</strong> applying high yield synthetic<br />

approaches to Ch-P bond formation giving thio, seleno, <strong>and</strong> tellurophosphonium cations.<br />

Through the use <strong>of</strong> chalcogen halides, <strong>and</strong> halide abstracting agents, chalcogen cations are generated in<br />

situ (Figure 1a), which then react with phosphines to form chalcohenophosphonium cations (Figure 1b).<br />

The chalcohenophosphonium cations are characterized using 31 P{ 1 H}, 1 H, 13 C{ 1 H}, 77 Se{ 1 H}, <strong>and</strong><br />

125 Te{ 1 H} NMR spectroscopy <strong>and</strong> X-ray crystallography.<br />

a<br />

R Ch X + ABS Ch<br />

R Ch + ABSX -<br />

b<br />

H +<br />

+ PR' 3<br />

Poster 37<br />

R + ABSX -<br />

H +<br />

R<br />

Ch<br />

+ PR'3+ ABSX -<br />

Figure 1: Proposed synthetic approach for the formation <strong>of</strong> chalcohenophosphonium cations. a) Halide<br />

abstraction <strong>of</strong> RChX. b) Formation <strong>of</strong> chalcohenophosphonium cation.<br />

R, R′ = Alkyl, Aryl, ABS = Halide abstraction agent, X= F, Cl, Br<br />

[1] Dyker <strong>and</strong> Burford., Chem. Asian J., 2008, 3, 28.<br />

[2] Conrad, Burford, et al., J. Am. Chem. Soc., 2009, 131, 5066.<br />

[3] Chitnis, Peters, et al., Chem. Commun., 2011, 47, 12331.<br />

[4] Macdonald, Doyle, et al., Angew. Chem. Int. Ed., 2011, 50, 11474.


Poster 38<br />

Ge(I)-Ge(I) as a Building Unit to Construct Oligomeric Germanes<br />

Hsien-Chen Yu, Fan-Shan Yang <strong>and</strong> Yi-Chou Tsai<br />

(yictsai@mx.nthu.edu.tw)<br />

Department <strong>of</strong> Chemistry, National Tsing-Hua <strong>University</strong>, Hsinchu, Taiwan 30013<br />

127<br />

IRIS-13 <strong>Victoria</strong><br />

Stabilized by sterically hindered lig<strong>and</strong>s, the univalent germanium dimers <strong>of</strong> the type RGeGeR have been<br />

recognized, <strong>and</strong> they all exist in a trans-bent conformation. [1-3] Notably, the Ge(I)–Ge(I) bond order is in<br />

the range <strong>of</strong> 1-3. Herein, we report the employment <strong>of</strong> a terdentate 2,6-diamidopyridyl lig<strong>and</strong> to stabilize<br />

a Ge2 2+ motif <strong>and</strong> give an unprecedented cis-bent complex. The separation <strong>of</strong> the single bonded Ge–Ge is<br />

2.5168(6) Å. This dimeric germanium(I) species turns out to be a good synthon for the preparation <strong>of</strong><br />

oligomeric germanes. For example, linear mixed-valent homotetranuclear Ge I 2Ge II 2 <strong>and</strong> mixed-valent<br />

heterotetranuclear Ge I 2Sn II 2 <strong>and</strong> Ge I 2Zn II 2 complexes can be prepared via salt metathesis. Furthermore, a<br />

bent trinuclear Ge II Ge III 2 <strong>and</strong> cyclic homo-divalent tetranuclear <strong>and</strong> pentanuclear germanes can also be<br />

prepared through redox reactions.<br />

[1] Stender, M.; Phillips, A. D.; Wright, R. J.; Power, P. P. Angew. Chem., Int. Ed. 2002, 41, 1785.<br />

[2] Sugijama, Y.; Sasamori, T.; Hosoi, Y.; Furukawa, Y.; Takagi, N.; Nagase, S.; Tokitoh, N. J. Am.<br />

Chem. Soc. 2006, 128, 1023.<br />

[3] Green, S. P.; Jones, C.; Junk, P. C.; Lippert, K.-A.; Stasch, A. Chem. Commun. 2006, 3978.


128<br />

IRIS-13 <strong>Victoria</strong><br />

Synthesis <strong>and</strong> Structures <strong>of</strong> Titanastannene Coordinated by a Stannylene <strong>and</strong><br />

Ti2Sn4 Ring Compound<br />

Takuya Kuwabara, a Masaichi Saito, a Jing Dong Guo b <strong>and</strong> Shigeru Nagase b<br />

(s11ds003@mail.saitama-u.ac.jp)<br />

a Department <strong>of</strong> Chemistry, Graduate School <strong>of</strong> Science <strong>and</strong> Engineering, Saitama <strong>University</strong>, Shimookubo,<br />

Sakura-ku, Saitama-city, Saitama, 338-8570, Japan<br />

b Fukui Institute for Fundamental Chemistry, Kyoto <strong>University</strong>, Takano-Nishihiraki-cho, Sakyou-ku,<br />

Kyoto, 606-8103, Japan<br />

Heavier congeners <strong>of</strong> the cyclopentadienyl anion have received much attention in view <strong>of</strong> their<br />

aromaticity. [1] Our group has succeeded in the synthesis <strong>of</strong> dilithio-stannole [2] <strong>and</strong> –plumbole [3] <strong>and</strong><br />

concluded that they have considerable aromatic character, based on the X-ray analyses, NMR studies <strong>and</strong><br />

theoretical calculations. We next investigate the reactions <strong>of</strong> dilithiostannole with various metal reagents<br />

to obtain stannole complexes<br />

Reactions <strong>of</strong> dilithiostannole 1 [4] with Cp2TiCl2 followed by recrystallization provided two different<br />

crystals, one <strong>of</strong> which is dark purple <strong>and</strong> diamagnetic, <strong>and</strong> the other <strong>of</strong> which is dark red <strong>and</strong><br />

paramagnetic. X-ray diffraction analysis revealed that the products are titanastannene complex 2 <strong>and</strong><br />

compound 3 bearing a Ti2Sn4 six-membered ring with s<strong>and</strong>wich structures. The Ti−Sn bond lengths in 2<br />

are 2.6860(17) <strong>and</strong> 2.7255(18) Å, which are much shorter than those in 3 (2.9080(11), 2.9245(10) Å) <strong>and</strong><br />

the Ti−Sn bond lengths ever reported (2.842−2.984 Å). In the 119 Sn NMR <strong>of</strong> 2, a sharp signal was<br />

observed at 1332.5 ppm, which indicates that the tin atoms have stannylene character. Theoretical<br />

calculations revealed that the Ti−Sn bond is a double bond consisting <strong>of</strong> σ-donation <strong>of</strong> a stannylene<br />

moiety to the Ti center <strong>and</strong> back-donation from d(Ti) to p(Sn). Interestingly, a unique interaction between<br />

the two p orbitals on the tin atoms is also found.<br />

Li(Et2O) Et Et<br />

Sn<br />

Et<br />

Et<br />

Li<br />

1<br />

Cp<br />

Cp<br />

Ti<br />

Sn<br />

Sn<br />

2<br />

Poster 39<br />

[1] For example <strong>of</strong> recent reviews, see: (a) Saito, M.; Yoshioka, M. Coord. Chem. Rev. 2005, 249, 765.<br />

(b) Lee, V. Y.; Sekiguchi, A. Angew. Chem., Int. Ed. 2007, 46, 6596. (c) Lee, V. Y.; Sekiguchi, A. In<br />

Organometallic Compounds <strong>of</strong> Low-coordinate Si, Ge, Sn <strong>and</strong> Pb, Wiley, Chichester, p335. (d)<br />

Saito, M. Coord. Chem. Rev. 2012, 256, 627.<br />

[2] Saito, M.; Haga, R.; Yoshioka, M.; Ishimura, K.; Nagase, S. Angew. Chem., Int. Ed. 2005, 44, 6553.<br />

[3] Saito, M.; Sakaguchi, M.; Tajima, T.; Ishimura, K.; Nagase, S.; Hada, M. Science 2010, 328, 339.<br />

[4] Saito, M.; Kuwabara, T.; Kambayashi, C.; Yoshioka, M.; Ishimura, K. Nagase, S. Chem. Lett. 2010,<br />

39, 700.<br />

Li<br />

Sn<br />

Sn<br />

Cp<br />

Ti<br />

Cp<br />

Cp<br />

Ti<br />

Cp<br />

3<br />

Sn<br />

Sn<br />

Li


129<br />

IRIS-13 <strong>Victoria</strong><br />

Weak Te,Te Bonding Through the Looking Glass <strong>of</strong> NMR Spin-Spin Coupling<br />

Michael Bühl, a Fergus Knight, a Anezka Krístková, b Olga L. Malkina b <strong>and</strong> J. Derek Woollins a<br />

(jdw3@st-<strong>and</strong>rews.ac.uk)<br />

a EaStCHEM School <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> St. Andrews, North Haugh, St. Andrews, Fife, KY16<br />

9ST, UK<br />

b Slovak Academy <strong>of</strong> Sciences, Institute <strong>of</strong> Inorganic Chemistry, SK-84536 Bratislava, Slovakia<br />

NMR spin-spin coupling between two nuclei can be a probe for the chemical bonding between them. The<br />

"through-space" coupling between formally nonbonded atoms can be assessed computationally. [1] Pnictogen<br />

<strong>and</strong> chalgocen substituents, placed in peripositions on a naphthalene scaffold (Chart I), show onset <strong>of</strong> multicentre<br />

bonding. [2] To explore possible relationships between these two aspects, we now report a joint DFT <strong>and</strong><br />

experimental study <strong>of</strong> J(Te,Te) couplings in peri-napthalene ditellurides.<br />

Chart I<br />

Poster 40<br />

Huge "across-the bay" Te,Te couplings in the kHz range have been predicted computationally at<br />

appropriate levels <strong>of</strong> DFT (ZORA-SO), <strong>and</strong> have been confirmed experimentally for N1 <strong>and</strong> A1. These<br />

couplings turn out to be strongly dependent on the molecular conformation <strong>and</strong> can be related to the spatial<br />

overlap <strong>of</strong> lone-pair orbitals (assessed through the coupling deformation density pathway [1] ) <strong>and</strong> the onset <strong>of</strong><br />

multicentre bonding (through natural bond orbital analysis). J(Te,Te) couplings can thus be a sensitive probe<br />

("looking glass") into electronic <strong>and</strong> geometrical structure <strong>of</strong> ditellurides.<br />

[1] O. L. Malkina, A. Kristkova, E. Malkin, S. Komorovsky, V. G. Malkin, Phys. Chem. Chem. Phys.<br />

2011, 13, 16015.<br />

[2] L. K. Aschenbach, F. R. Knight, R. A. M. R<strong>and</strong>all, D. B. Cordes, A. Baggott, M. Bühl, A. M. Z.<br />

Slawin, J. D. Woollins, Dalton Trans. 2012, 41, 3141.


Poster 41<br />

130<br />

IRIS-13 <strong>Victoria</strong><br />

Mono- <strong>and</strong> Binuclear Organoindium Thiolate Complexes <strong>and</strong> their Reactivity<br />

as Catalysts in Lactone Polymerization<br />

Glen G. Bri<strong>and</strong> a , Jessica D. Marks a , Ryan G. Wareham a , Andreas Decken b , Laura E.N. Allen c <strong>and</strong><br />

Michael P. Shaver c<br />

(gbri<strong>and</strong>@mta.ca)<br />

a Department <strong>of</strong> Chemistry <strong>and</strong> Biochemistry, Mount Allison <strong>University</strong>, Sackville NB Canada<br />

b Department <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> New Brunswick, Fredericton, NB Canada<br />

c Department <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> Prince Edward Isl<strong>and</strong>, Charlottetown, PE Canada<br />

Polylactides have been identified as possible c<strong>and</strong>idates as alternative biodegradable <strong>and</strong> bio-renewable<br />

polymers (plastics) with specialized applications in the pharmaceutical <strong>and</strong> microelectronics industries<br />

(Dove et al. Chem. Soc. Rev. 2010, ). Ring opening polymerization (ROP) has been found to be a superior<br />

method for the preparation <strong>of</strong> these materials in that it allows for a greater degree <strong>of</strong> control over the<br />

molecular parameters <strong>of</strong> the resulting polymer, including lower polydispersities, higher molecular weights<br />

<strong>and</strong> higher end group fidelity. Recently, some compounds <strong>of</strong> indium have been shown to facilitate the<br />

ROP <strong>of</strong> both rac-lactide (Mehrkhodav<strong>and</strong>i et al. Angew. Chem., 2008; Tolman et al., J. Am. Chem. Soc.,<br />

2010) <strong>and</strong> ε-caprolactone (Huang et al. Inorg. Chim. Acta, 2006), though there have been very few studies<br />

in this area. Indium based catalysts are attractive due to their new reactivity pr<strong>of</strong>ile, low toxicity <strong>and</strong><br />

stability in water. In this context, we have prepared a series <strong>of</strong> methylbis(thiolato)indium compounds<br />

containing bifunctional ester-, amine- <strong>and</strong> ether-thiolate lig<strong>and</strong>s which exhibit mono- or binuclear<br />

structures. Their syntheses, structures <strong>and</strong> reactivity as ROP catalysts toward cyclic lactones will be<br />

discussed.


Poster 42<br />

131<br />

IRIS-13 <strong>Victoria</strong><br />

Synthesis <strong>of</strong> Selenium- <strong>and</strong> Tellurium-Containing Aminosilane Lig<strong>and</strong>s<br />

Jamie S. Ritch<br />

(j.ritch@uwinnipeg.ca)<br />

Department <strong>of</strong> Chemistry, The <strong>University</strong> <strong>of</strong> Winnipeg, 515 Portage Avenue, Winnipeg, MB R3B 2E9<br />

Canada<br />

Materials featuring selenium or tellurium are <strong>of</strong> great contemporary interest as components in advanced<br />

electronic devices. Commercial examples include low-cost solar cells (CdTe), [1] <strong>and</strong> fast response IR<br />

detectors (PbSe). [2] While p-block <strong>and</strong> late d-block chalcogenides are generally well-studied, [3] there<br />

exists a great potential for development <strong>of</strong> novel Se- <strong>and</strong> Te-containing materials <strong>of</strong> the early <strong>and</strong> mid dblock<br />

elements.<br />

A new class <strong>of</strong> heavy chalcogen-containing lig<strong>and</strong>, 1, is being developed to enable the synthesis <strong>of</strong> CVD<br />

precursors to transition metal selenides <strong>and</strong> tellurides. This contribution will discuss the preparation <strong>of</strong><br />

aminosilane lig<strong>and</strong>s 1, <strong>and</strong> some preliminary studies <strong>of</strong> their coordination chemistry towards transition<br />

metals.<br />

[1] First Solar website. http://www.firstsolar.com/en/Innovation/CdTe-Technology (accessed June 13,<br />

2012).<br />

[2] Hamamatsu Photonics website. http://jp.hamamatsu.com/products/sensor-ssd/pd128/pd134/<br />

index_en.html (accessed June 13, 2012).<br />

[3] See, for example: (a) Dey, S.; Jain, V. K. Platinum Metals Rev. 2004, 48, 16-29; (b) Bochmann,<br />

Chem. Vap. Deposition 1996, 2, 85-96.


Borane Catalyzed Post-polymerization Modification <strong>of</strong> Polysilanes<br />

132<br />

IRIS-13 <strong>Victoria</strong><br />

Peter T. K. Lee, Mir<strong>and</strong>a K. Skjel <strong>and</strong> Lisa Rosenberg<br />

(peterlee@uvic.ca)<br />

Department <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> <strong>Victoria</strong>, P.O. Box 3065, Stn CSC <strong>Victoria</strong>, BC, V8W 3V6,<br />

Canada<br />

We previously reported the borane-catalysed chemoselective Si-H activation to make new Si-S containing<br />

oligosilanes. [1] We report here the catalytic post-polymerization modification <strong>of</strong> poly(phenylsilylene) by<br />

hydrosilation <strong>and</strong> heterodehydrocoupling reactions with thioketone <strong>and</strong> thiols, respectively, catalysed by<br />

B(C6F5)3. Three new r<strong>and</strong>om copolymers with up to 40% -SR sidechain incorporation were isolated <strong>and</strong><br />

characterized by 1 H/ 13 C/ 29 Si NMR, IR, GPC, UV-Vis, <strong>and</strong> elemental analysis. Importantly, the borane<br />

catalyst is chemoselective for Si-H activation over Si-Si bond cleavage: no small molecular weight<br />

oligosilanes were detected by GC/MS or 1 H NMR, <strong>and</strong> an increase in molecular weight from the starting<br />

poly(phenylsilylene) to S-substituted polysilane was determined by light scattering GPC. These results<br />

along with recent efforts to extend the post-polymerization modification method to other organic<br />

substrates, such as chelating sidechains to make Si• radical recombination competitive with Si-Si chain<br />

scission, will be presented.<br />

5 mol % B(C 6F 5) 3<br />

HS-p-C6H4CH3<br />

-H2<br />

H<br />

Si<br />

Ph n'<br />

H S<br />

p-C6H4CH 3<br />

Si<br />

n<br />

Ph<br />

Si<br />

m<br />

Ph<br />

C 6 D 6<br />

J=188 Hz<br />

29 Si: 99 MHz<br />

1 H: 500 MHz<br />

DEPT90<br />

H-Si-S polymer endcaps<br />

Poster 43<br />

PhSiH<br />

PhSiH<br />

-10 -20 -30 -40 -50 -60 -70<br />

Figure: 29 Si DEPT NMR <strong>of</strong> Starting <strong>and</strong> S-modified Poly(phenylsilylene)<br />

[1] Harrison, D. J.; Edwards, D. R.; McDonald, R.; Rosenberg, L. Dalton Trans. 2008, 3401<br />

ppm


H2N<br />

N<br />

N N<br />

Poster 44<br />

133<br />

IRIS-13 <strong>Victoria</strong><br />

Networking <strong>of</strong> Semiconductor Clusters by Non-metal Linkage or Transition Metal<br />

Coordination<br />

Beatrix Barth <strong>and</strong> Stefanie Dehnen<br />

(barthb@students.uni-marburg.de)<br />

Department <strong>of</strong> Chemistry, Philipps-<strong>University</strong> Marburg, Hans-Meerwein-Straße,<br />

D-35043 Marburg, Germany<br />

In the last decade, the design <strong>of</strong> metal-organic frameworks (MOFs) has attracted considerable attention in<br />

supramolecular <strong>and</strong> materials chemistry due to their enormous variety <strong>of</strong> interesting structural topologies<br />

<strong>and</strong> wide potential applications as functional materials. [1] In spite <strong>of</strong> the known <strong>and</strong> outst<strong>and</strong>ing<br />

characteristics <strong>of</strong> chalcogenidometallate phases, the synthesis <strong>of</strong> chalcogenidometallate-organic<br />

frameworks is not studied extensively so far. [2] Our group recently investigated the synthesis <strong>and</strong><br />

reactivity <strong>of</strong> new ω-carbonyl-functionalized thiostannate clusters <strong>of</strong> the general type [(R 1 Sn)4(µ-S)6] (with<br />

R 1 = CMe2CH2COMe in 1) [3] that possess good prerequisites to form chalcogenido-MOFs. The<br />

functionalized Sn/S cages not only enable an approach to a new class <strong>of</strong> hybrid materials; they also<br />

exhibit a suitable reactivity for non-metal linkage via hydrazine-functionalized organic units, such as<br />

realized at the synthesis <strong>of</strong> 2 (Scheme 1). [4]<br />

1 2<br />

Scheme 1: Synthesis <strong>of</strong> compound 2, consisting <strong>of</strong> [Sn6S10] units that are linked by 1,5-bis[(E)-2-<br />

(4-methylpentan-2-ylidene)hydrazinyl]naphthalene organic spacers.<br />

Consequently, there is a high interest in the further development <strong>of</strong> the synthetic pathways to interconnect<br />

these clusters not only by bis-, but also via tris- <strong>and</strong> tetra-functionalized organic units, such as hydrazinefunctionalized<br />

adamantanes. Another approach towards networks with chalcogenidometallate cages as<br />

nodes is accessible by choosing R 1 as a chelating lig<strong>and</strong> to form according clusters like 3. After cluster<br />

formation, the network will be formed by transition metal coordination. Precursors to these pathways<br />

have been synthesized. As an alternative, the metals can be incorporated in the metallate cages, such as<br />

observed at a reaction <strong>of</strong> 3 with Zn 2+ , thus producing new ternary systems like 4 that still provide donorlig<strong>and</strong>s<br />

for further metal coordination. [5]<br />

1 3 4<br />

Scheme 2: Introduction <strong>of</strong> a bidentate lig<strong>and</strong> <strong>and</strong> coordination <strong>and</strong> insertion <strong>of</strong> ZnX2 (X = Cl, Br, I) into 3.<br />

[1] J. L. C. Rowsell, O. M. Yaghi, Microp. Mesop. Mat. 2004, 73, 3. [2] S. Dehnen, M. Melullis, Coord.<br />

Chem. Rev. 2007, 251, 1259; X. Bu, N. Zheng, P. Feng, Chem. Eur. J. 2004, 10, 3356. [3] Z. H. Fard, L.<br />

Xiong, C. Müller, M. Holynska, S. Dehnen, Chem. Eur. J. 2009, 15, 6595. [4] Z. H. Fard, M. R.<br />

Halvagar, S. Dehnen, J. Am. Chem. Soc. 2010, 132, 2848. [5] B. Barth, E. ter Jung, S. Dehnen, in<br />

preparation.<br />

ZnX2<br />

X = Cl, Br, I


134<br />

IRIS-13 <strong>Victoria</strong><br />

Investigation <strong>of</strong> Redox Potentials <strong>of</strong> the Three-dimensional Aromatic<br />

Carborate Anions [1-R-CB11X5Y6] - (R = H, Me; X = H, Me, Hal, Y = H, Hal)<br />

Christoph Bolli a , Carsten Knapp a , René T. Boeré b , Maik Finze c , Alex<strong>and</strong>er Himmelspach c <strong>and</strong> Tracey L.<br />

Roemmele b<br />

(cbolli@uni-wuppertal.de)<br />

a Fachbereich C - Anorganische Chemie, Bergische Universität Wuppertal<br />

Gaußstraße 20, 42119 Wuppertal, Germany<br />

b <strong>University</strong> <strong>of</strong> Lethbridge<br />

c Universität Würzburg<br />

Halogenated 1-carba-closo-dodecaborate anions are three-dimensional aromatic clusters which were<br />

widely used as weakly coordinating anions. (WCAs). [1-6] The weakly coordinating nature <strong>of</strong> these anions<br />

allows to stabilize the highly reactive fullerene cation, [C60] + , [7] <strong>and</strong> the first free silylium cation,<br />

[Mes3Si] + . [8] Their high resistance to oxidation is demonstrated by the successful preparation <strong>of</strong> salts<br />

containing strong oxidizers such as oxidized hexabromophenylcarbazole [7] <strong>and</strong> [NO] + . [9]<br />

In this contribution, we report the first systematic experimental <strong>and</strong> theoretical study on the oxidation <strong>and</strong><br />

reduction <strong>of</strong> 1-carba-closo-dodecaborate anions. The gas-phase ionization enthalpies <strong>and</strong> the electron<br />

affinities for the parent [1-H-CB11H11] - , the undecahalogenated derivates [1-H-CB11X11] - (X = F, Cl, Br<br />

<strong>and</strong> I), the hexabrominated anions [1-H-CB11H5Br6] - <strong>and</strong> [1-H-CB11Me5Br6] - as well as for the Cmethylated,<br />

undecabrominated anion [1-Me-CB11Br11] - were assessed by quantum-chemical calculations.<br />

Therefore, full geometry optimizations <strong>of</strong> each anion along with the neutral <strong>and</strong> dianionic radicals were<br />

undertaken at the PBE0/def2-TZVPP level <strong>of</strong> theory. The electrochemical oxidation or reduction,<br />

respectively, <strong>of</strong> these anions in SO2 <strong>and</strong> CH3CN was investigated by square wave <strong>and</strong> cyclic voltammetry.<br />

Figure 4: CV (A) (ν = 0.2 V s −1 ) <strong>and</strong> SWV (B) <strong>of</strong><br />

1.9 mM [nBu 4N][1-H-CB 11F 11] with 1.9 mM Fc in<br />

CH 3CN at 20±2 °C.<br />

Poster 45<br />

[1] I. Krossing, I. Raabe, Angew. Chem. Int. Ed. 2004, 43, 2066-2090; Angew. Chem. 2004, 116, 2116-<br />

2142;<br />

[2] S. H. Strauss, Chem. Rev. 1993, 93, 927-942;<br />

[3] K. Seppelt, Angew. Chem. Int. Ed. 1993, 32, 1025-1027; Angew. Chem. 1993, 105, 1074-1076;<br />

[4] S. Körbe, P. J. Schreiber, J. Michl, Chem. Rev. 2006, 106, 5208-5249<br />

[5] C. A. Reed, Acc. Chem. Res. 2010, 43, 121-128;<br />

[6] C. Knapp, Comprehensive Inorganic Chemistry II, 2012, Vol. 1, Chapter 1.25, in press.<br />

[7] C. A. Reed, K.-C. Kim, R. D. Bolskar, L. J. Mueller, Science, 2000, 289, 101-104;<br />

[8] K.-C. Kim, C. A. Reed, D. W. Elliott, L. J. Mueller, F. Tham, L. Lin, J. B. Lambert, Science, 2002,<br />

297, 825-827;<br />

[9] C. Bolli, C. Knapp, T. Köchner, Z. Allg. Anorg. Chem. 2012, 638, 559-564.


Poster 46<br />

Fig. 1. Part <strong>of</strong> the crystal structure <strong>of</strong><br />

[Na(SO2)6]B12Br12[B12Br12]<br />

135<br />

IRIS-13 <strong>Victoria</strong><br />

The Oxidation <strong>of</strong> Perhalogenated Boron Clusters [B12X12] 2- (X = F, Cl, Br)<br />

Mathias Keßler <strong>and</strong> Carsten Knapp<br />

(mkessler@uni-wuppertal.de)<br />

Fachbereich C – Anorganische Chemie, Bergische Universität Wuppertal, Gaußstr. 20, 42119<br />

Wuppertal, Germany<br />

Deltahedral closo-borane dianions [BnHn] 2- feature a special binding situation which can be well<br />

understood by MO theory. [1] The perhalogenated closo-dodecaborates [B12X12] 2- (X = F, Cl, Br, I) st<strong>and</strong><br />

out due to their exceptional stability resulting from their strong halogen-boron bonds.<br />

The oxidation <strong>of</strong> the closo-dodecaborates [B12R12] 2- (R = Me, alkoxy, aryloxy, hydroxy) <strong>and</strong> the structural<br />

characterization <strong>of</strong> the corresponding radical anions <strong>and</strong> the neutral hypercloso clusters could be<br />

accomplished up to now. [2-4] Oxidation <strong>of</strong> the perhalogenated closo-dodecaborates [B12X12] 2- (X = F, Cl,<br />

Br) is a challenging task due to the electron withdrawing effect <strong>of</strong> the halogens. However the replacement<br />

<strong>of</strong> conventional organic solvents by liquid sulfur dioxide <strong>and</strong> the usage <strong>of</strong> oxidation agents like arsenic<br />

pentafluoride allows the oxidation <strong>and</strong> the characterization <strong>of</strong> the radical [B12Cl12] ·- <strong>and</strong> neutral B12Cl12. [5]<br />

The oxidation <strong>of</strong> the perhalogenated closo-dodecaborates [B12X12] 2- (X = F, Cl, Br) <strong>and</strong> the<br />

characterization <strong>of</strong> the resulting radical anions [B12F12] ·- , [B12Cl12] ·- <strong>and</strong> [B12Br12] ·- <strong>and</strong> the hypercloso<br />

clusters B12Cl12 <strong>and</strong> B12Br12 will be presented.<br />

[1] M. A. Fox, K. Wade, Pure Appl. Chem. 2003, 1315.<br />

[2] T. Peymann, C. B. Knobler, M. F. Hawthorne, Chem. Commun. 1999, 2039.<br />

[3] a) T. Peymann, C. B. Knobler, S. I. Khan, M. F. Hawthorne, Angew. Chem. Int. Ed. 2001, 40, 1664 b)<br />

O. K. Farha, R. L. Julius, M. W. Lee, R. H. Huertas, C. B. Knobler, M. F. Hawthorne, J. Am. Chem.<br />

Soc. 2005, 127, 18243 c) M. W. Lee, O. K. Farha, M. F. Hawthorne, C. H. Hansch, Angew. Chem.<br />

Int. Ed. 2007, 46, 3018<br />

[4] N.-D. Van, I. Tiritiris, R. F. Winter, B. Sarkar, P. Singh, C. Duboc, A. Muñoz-Castro, R. Arratia-<br />

Pérez, W. Kaim, T. Schleid, Chem. Eur. J. 2010, 16, 11242.<br />

[5] R. T. Boeré, S. Kacprzak, M. Keßler, C. Knapp, R. Riebau, S. Riedel, T. L. Roemmele, M. Rühle, H.<br />

Scherer, S. Weber, Angew. Chem. Int. Ed. 2011, 50, 549.


Poster 47<br />

Heavy p-Block Analogues <strong>of</strong> Thiazyl Radicals<br />

136<br />

IRIS-13 <strong>Victoria</strong><br />

Thao T. P. Tran <strong>and</strong> Jeremy M. Rawson<br />

(tran1y@uwindsor.ca, jmrawson@uwindsor.ca)<br />

Department <strong>of</strong> Chemistry <strong>and</strong> Biochemistry, <strong>University</strong> <strong>of</strong> Windsor, 273-1 Essex Hall, 401 Sunset Avenue,<br />

Windsor, ON Canada N9B 3P4, Canada<br />

The physical properties <strong>of</strong> dithiazolyl radicals (A) have attracted considerable interest as magnetic <strong>and</strong><br />

spin-switching devices [1] . We report here recent investigations into phosphorus-containing heterocycles<br />

with a view to generating the isoelectronic phosphorus radicals (B). Reaction <strong>of</strong> benzene or toluenedithiol<br />

with PCl3 using a modification <strong>of</strong> the literature method [2] affords the corresponding heterocycles C (R =<br />

H, Me). The reactivity <strong>of</strong> the chloride derivatives C is discussed including their reduction with elemental<br />

sodium to form the P-P σ-bonded dimer D <strong>and</strong> their Lewis acid character in reaction with AlCl3/GaCl3 to<br />

afford phosphenium-phosphine/arsine complexes F [3] . Oxidation <strong>of</strong> D with X2 (X = Br <strong>and</strong> I) occurs with<br />

P-P bond cleavage.<br />

[1] A. Alberola, J.M. Rawson <strong>and</strong> A.L. Whalley, J. Mater. Chem., 2006, 16, 2560.<br />

[2] M. Baudler, A. Moog, K. Glinka, U. Kelsch, Z. Naturforsch., Teil B, 1973, 28, 363.<br />

[3] N. Burford, P. J. Ragogna, J. Chem. Soc., Dalton Trans., 2002, 4307–4315.


Poster 48<br />

Brønsted Acids Containing Hexacoordinated Phosphorus Anions<br />

137<br />

IRIS-13 <strong>Victoria</strong><br />

Khatera Hazin, Paul W. Siu <strong>and</strong> Derek P. Gates<br />

(dgates@chem.ubc.ca)<br />

Department <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> British Columbia, 2036 Main Mall, Vancouver, British Columbia,<br />

V6T 1Z1, Canada<br />

The development <strong>of</strong> solid, weighable Brønsted acids is <strong>of</strong> particular interest due to their potential use in<br />

bond activation reactions. [1] However, systems <strong>of</strong> the type H + [X] - are not generally isolable due to the<br />

inherent high reactivity <strong>of</strong> most anions with H + . The successful isolation <strong>of</strong> a Brønsted acid requires a<br />

weakly coordinating anion (WCA). For example, WCAs such as [B(C6F5)4] - <strong>and</strong> [Al{OC(CF3)3}4] - have<br />

successfully been employed to obtain isolable solid Brønsted acids. We have been interested in<br />

employing the known phosphorus (V) anion [1] - [2] as a charge balancing anion to afford isolable Brønsted<br />

acids. The synthesis <strong>and</strong> characterization <strong>of</strong> the solid, weighable HL2[1] (Figure 1, L = donor solvent) will<br />

be discussed in this presentation. [3] In addition, the reactivity <strong>and</strong> potential applications <strong>of</strong> HL2[1] will be<br />

surveyed.<br />

Figure 1: Hexacoordinated phosphorus (V) framework HL2[1].<br />

[1] I. Krossing, I. Raabe, Angew. Chem. Int. Ed. Engl. 2004, 43, 2066-2090.<br />

[2] J. Lacour, C. Ginglinger, C. Grivet, G. Bernardinelli, Angew. Chem. Int. Ed. Engl. 1997, 36,<br />

608-610.<br />

[3] (a) P. W. Siu, D.P. Gates, Organometallics, 2009, 28, 4491-4499; (b) P.W. Siu, D.P. Gates,<br />

Can. J. Chem. 2012, In Press.


Poster 49<br />

Improved N-Heterocyclic Carbenes <strong>and</strong> Its Metal Complexes.<br />

138<br />

IRIS-13 <strong>Victoria</strong><br />

Jan Turek 1 , Illia Panov 2 , Zdeňka Padělková 1 <strong>and</strong> Aleš Růžička 1<br />

(jan.turek@upce.cz)<br />

1 Department <strong>of</strong> General <strong>and</strong> Inorganic Chemistry, Faculty <strong>of</strong> Chemical Technology, <strong>University</strong> <strong>of</strong><br />

Pardubice, Studentska 573, Pardubice 532 10, Czech Republic<br />

2 Institute <strong>of</strong> Organic Chemistry <strong>and</strong> Technology, Faculty <strong>of</strong> Chemical Technology, <strong>University</strong> <strong>of</strong><br />

Pardubice, Studentska 573, Pardubice 532 10, Czech Republic<br />

N-heterocyclic carbenes (NHCs) have been known since the late 1960s when the pioneering work <strong>of</strong><br />

Öfele <strong>and</strong> Wanzlick [1, 2] was published. But the real breakthrough in this field <strong>of</strong> chemistry came nearly<br />

thirty years later with the work ‘’A Stable Crystalline Carbene’’ published by Arduengo in 1991 [3] . NHCs<br />

have attracted worldwide attention not only because <strong>of</strong> their excellent bonding properties (coordination to<br />

various elements across the whole periodic system) but also because <strong>of</strong> their possible use as catalytically<br />

active lig<strong>and</strong>s [4] comparable with cyclopentadienyls <strong>and</strong> phosphines.<br />

The main goals <strong>of</strong> the presented work were the synthesis <strong>of</strong> a set <strong>of</strong> new hybrid N-heteroleptic carbenes,<br />

among which one has an extra coordinating functional group, as well as their complexes with various<br />

metals. Afterwards, selected palladium complexes were tested for their possible catalytic activity.<br />

Fig. 1 Molecular structure <strong>of</strong> one <strong>of</strong> the studied compounds (Hydrogen atoms are omitted for clarity).<br />

The Science Foundation <strong>of</strong> Czech Republic is gratefully acknowledged for the financial support (Project<br />

no. P207/12/0223)<br />

[1] K. Öfele J. Organomet. Chem. 1968, 12, P42.<br />

[2] H. W. Wanzlick, H.-J. Schönherr Angew. Chem.Int. Ed. Engl. 1968, 7, 141.<br />

[3] A. J. Arduengo, R. L. Harlow, M. Kline J. Am. Chem. Soc. 1991, 113, 361.<br />

[4] D. Enders, O. Niemeier, A. Henseler, Chem. Rev. 2007, 107, 5606.


Poster 50<br />

139<br />

IRIS-13 <strong>Victoria</strong><br />

Theoretical Investigation <strong>of</strong> S2N2 Polymerization Employing Solid State<br />

Molecular Dynamics Simulations<br />

Teemu T. Takaluoma † , Kari Laasonen ‡ <strong>and</strong> Risto S. Laitinen †<br />

(teemu.takaluoma@oulu.fi)<br />

† Department <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> Oulu, P.O Box 3000, FIN-90014, <strong>University</strong> <strong>of</strong> Oulu, Finl<strong>and</strong><br />

‡ Department <strong>of</strong> Chemistry, Aalto <strong>University</strong>, P.O Box 16100, FIN-00076 Aalto, Finl<strong>and</strong><br />

(SN)x is a unique metallic polymer with superconducting properties at low temperatures (Tc < 0.3 K). [1,2]<br />

The classical synthetic route to produce the crystalline polymer goes through spontaneous topotactical<br />

polymerization <strong>of</strong> S2N2 ring molecules. [1,3,4]<br />

The topotactical polymerization reaction <strong>of</strong> crystalline S2N2 to (SN)x has been investigated with quantum<br />

mechanical solid state molecular dynamics simulations for the first time. Simulations have been<br />

performed using a simulation cell (17.94 Å, 15.07 Å, 16.99 Å) composing <strong>of</strong> 64 S2N2 molecules.<br />

The polymerization <strong>of</strong> S2N2 is a very slow reaction <strong>and</strong> usually takes hours to reach completion at RT.<br />

Such timescales are beyond conventional MD approaches, where the usual simulation time limits are<br />

measured in pico- or nanoseconds. Practical simulation timescales are achieved by compression <strong>of</strong> the<br />

crystalline ring material with high isotropic pressure <strong>of</strong> 50 GPa (<strong>and</strong> at 600 K).<br />

When the ring polymerization is initiated, the whole system undergoes a very rapid reaction to a fully<br />

polymerized crystalline material. Polymerization takes place in direction <strong>of</strong> the crystallographic a axis.<br />

The rings undergo single-bond cleavage <strong>and</strong> react along row <strong>of</strong> rings in ac-plane. Metastable side<br />

reactions are observed in the direction <strong>of</strong> b <strong>and</strong> c axes. Out-<strong>of</strong>-plane ring opening is also observed as a<br />

possible pathway. Towards the end <strong>of</strong> the reaction, the metastable species dissociate <strong>and</strong> in the final<br />

product only polymers in direction <strong>of</strong> a axis remain.<br />

Figure 1: Progress <strong>of</strong> polymerization at 0 %, 25 % <strong>and</strong> 100 % <strong>of</strong> completion. (revPBE/DZVP-MOLOPT-<br />

SR with CP2K)<br />

[1] Chivers, T.; Laitinen, R. S. In H<strong>and</strong>book <strong>of</strong> Chalcogen Chemistry: New Perspectives in Sulfur,<br />

Selenium <strong>and</strong> Tellurium; Devillanova, F. A., Ed.; Royal Society <strong>of</strong> Chemistry Publishing: Cambridge,<br />

U.K., 2007; p 223.<br />

[2] Greene, R. L.; Street, G. B.; Suter, L. J. Phys Rev. Lett. 1975, 34, 577.<br />

[3] Labes, M. M.; Love, P.; Nichols, L. F. Chem. Rev. 1979, 79, 1.<br />

[4] Cohen, M. J.; Garito, A. F.; Heeger, A. J.; MacDiarmid, A. G.; Mikulski, C. M.; Saran, M. S.;<br />

Kleppinger, J. J. Am. Chem. Soc. 1976, 98, 3844.


140<br />

IRIS-13 <strong>Victoria</strong><br />

Six Membered N,N-Diazastanna Cycles Based On Β-Diketiminate Complexes<br />

Roman Olejnik, Zdenka Padelkova <strong>and</strong> Ales Ruzicka<br />

(roman.olejnik@email.cz)<br />

Department <strong>of</strong> General <strong>and</strong> Inorganic Chemistry, Faculty <strong>of</strong> Chemical Technology, <strong>University</strong> <strong>of</strong><br />

Pardubice, Studentska 573, CZ-532 10, Pardubice, Czech Republic<br />

β-Diketiminates (BDI) play important role in organic <strong>and</strong> organometallic chemistry. Bifunctional BDI<br />

contain appropriate functional groups which can extra coordinate metal centre <strong>and</strong> it can affect higher<br />

stability <strong>of</strong> final metal complexes. These metal-containing species can be used in many areas <strong>of</strong><br />

chemistry [1] . Divalent tin complexes were used for carbon dioxide activation [2] or as initiators for<br />

polymerization <strong>of</strong> rac-lactide [3] . Lig<strong>and</strong>s can be prepared generally from 1,3-diones <strong>and</strong> primary aromatic<br />

amines [4] . We are interested in BDI lig<strong>and</strong>, which is prepared from acetylacetone <strong>and</strong> o-anisidine (L CO H)<br />

because <strong>of</strong> donor groups in convenient positions. This type <strong>of</strong> lig<strong>and</strong> forms six-membered diazametalla<br />

rings by transmetallation reaction <strong>of</strong> lithium complexes with metal chlorides (M = Sn, Ge, Bi) or direct<br />

synthesis from L CO H BDI <strong>and</strong> metal amides (M = Sn, Nd, La, Sm). Prepared heterocyclic tin(II)<br />

complexes were further tested especially in terms <strong>of</strong> reactivity with organic substrates. All prepared<br />

compounds were characterized by multinuclear NMR spectroscopy <strong>and</strong> when it was possible by XRD<br />

techniques.<br />

Si4<br />

N3<br />

Si3<br />

C1 C3<br />

N1 N2<br />

O1<br />

Poster 51<br />

C2<br />

Nd1<br />

Figure. The molecular structure <strong>of</strong> one <strong>of</strong> compounds studied.<br />

Authors would like to thank the Czech Science Foundation (grant no. 104/09/0829) for financial support.<br />

[1] M. H. Chisholm, J. C. Gallucci <strong>and</strong> K. Phomphrai; Inorg. Chem. 2005, 44, 8004.<br />

[2] L. Ferro, P. B. Hitchcock, M. P. Coles, H. Cox <strong>and</strong> J. R. Fulton; Inorg. Chem. 2011, 50, 1879.<br />

[3] A. P. Dove, V. C. Gibbon, E. L. Marshall, H. Rzepa, A. J. P. White, D. J. J. Williams; J. Am. Chem.<br />

Soc. 2006, 128, 9834.<br />

[4] R. Olejnik, Z. Padelkova, M. Horacek <strong>and</strong> A. Ruzicka; Main Group Met. Chem. 2012, 35, 13.<br />

O2<br />

N4<br />

Si2<br />

Si1


Poster 52<br />

141<br />

IRIS-13 <strong>Victoria</strong><br />

Structural Characterization <strong>of</strong> a [Pd3Cl9(μ3-Se6)] 3- Anion Containing the Se6ring<br />

A. Eironen, R. Oilunkaniemi <strong>and</strong> R. S. Laitinen<br />

(aino.eironen@oulu.fi)<br />

Department <strong>of</strong> Chemistry, P.O. Box 3000, FI-90014, <strong>University</strong> <strong>of</strong> Oulu, Finl<strong>and</strong><br />

We have recently reported the structures <strong>of</strong> two palladium complexes [PdCl2{Se,Se′-Se4(N t Bu)n}] (n = 3,<br />

4) containing novel cyclic selenium imides. [1] These two complexes were isolated from the 1:2 reaction <strong>of</strong><br />

[PdCl2(NCPh)2] with Se(N t Bu)2 which was synthesized in situ by the reaction <strong>of</strong> SeCl4 with t BuNH2 in a<br />

molar ratio <strong>of</strong> 1:6. We have also studied the related complexation reaction <strong>of</strong> SeCl2 <strong>and</strong> t BuNH2 with<br />

[PdCl2(NCPh)2]. The reaction resulted in the formation <strong>of</strong> a new palladium complex,<br />

( t BuNH3)3[Pd3Cl9(μ3-Se6)], containing a neutral μ3-bridging cyclohexaselenium lig<strong>and</strong> coordinating to<br />

three PdCl3 fragments. There are only a few transition metal complexes containing the cyclohexaselenium<br />

lig<strong>and</strong>: [PdCl2(Se6)], [2] [PdBr2(Se6)], [2] [(AgI)2Se6)], [3] [Ag2(Se6)(SO2)2][Sb(OTeF5)6]2, [4]<br />

[Ag2(Se6)(SO2)4][Al(OC(CF3)3)4]2, [4] [Ag2(Se6)][AsF6]2, [4] [Ag(Se6)][Ag2(SbF6)3] [4] .<br />

[1] M. Risto, A. Eironen, E. Männistö, R. Oilunkaniemi, R. S. Laitinen, <strong>and</strong> T. Chivers, Dalton Trans.,<br />

2009, 8473.<br />

[2] K. Neiniger, H. W. Rotter, <strong>and</strong> G. Thiele, Z. Anorg. Allg. Chem., 1996, 622, 1814.<br />

[3] H.-J. Deiseroth, M. Wagener, <strong>and</strong> E. Neumann, Eur. J. Inorg. Chem. 2004, 4755.<br />

[4] D. Aris, J. Beck, A. Decken, I. Dionne, J. Schmedt auf der Günne, W. H<strong>of</strong>fbauer, T. Köchner, I.<br />

Krossing, J. Passmore, E. Rivard, F. Steden, <strong>and</strong> X. Wang, Dalton Trans., 2011, 40, 5865.


142<br />

IRIS-13 <strong>Victoria</strong><br />

N-Heterocyclic Carbene Borane-Containing π-Conjugated Systems<br />

Kazuhiko Nagura<br />

<strong>and</strong> Shigehiro Yamaguchi a<br />

, a Shohei Saito, a Rol<strong>and</strong> Fröhlich, b Frank Glorius, b<br />

(yamaguchi@chem.nagoya-u.ac.jp)<br />

a<br />

Department <strong>of</strong> Chemistry, Graduate School <strong>of</strong> Science, Nagoya <strong>University</strong>, Furo, Chikusa, Nagoya, 464-<br />

8602, Japan, b Organisch-Chemisches Institut, Westfälische Wilheims-Universität Münster, Corrensstrasse<br />

40, 48149 Münster, Germany<br />

N-Heterocyclic carbenes (NHCs) react with trivalent boranes<br />

to form Lewis base/acid complexes. Recently, the NHCborane<br />

chemistry has attracted increasing attention because <strong>of</strong><br />

their intriguing reactivity as the catalysts <strong>and</strong> reactants. In this<br />

work, we focus our attention on the NHC-boranes from a<br />

materials point <strong>of</strong> view. We designed <strong>and</strong> synthesized<br />

thiophene-based π-conjugated systems 1–3 bearing NHCborane<br />

moieties at the terminal positions. [1] The<br />

intramolecular coordination <strong>of</strong> the NHC to the boryl group<br />

fixes the NHC-thiophene skeleton in a coplanar fashion,<br />

ensuring the effective π-conjugation with each other. In<br />

addition, the zwitterionic structure <strong>of</strong> the NHC-borane moiety endows the thiophene π skeleton with<br />

highly polar <strong>and</strong> electron-donating characters.<br />

In the absorption spectra, the thiophene derivative 1a shows negative solvatochromism from λmax 349 nm<br />

in cyclohexane to λmax 327 nm in DMSO, which demonstrates the large dipole moment in the ground<br />

state. Notably, upon irradiation <strong>of</strong> a UV light to 1a under a nitrogen atmosphere, a photoreaction<br />

smoothly took place to form a borabicyclo[4.1.0]heptadiene skeleton with a drastic color change from<br />

colorless to deep yellow (λmax 429 nm). In contrast, the exp<strong>and</strong>ed bithiophene derivatives 2 <strong>and</strong> 3 were<br />

inert to this photoreaction. The cyclic voltammograms <strong>of</strong> 2 <strong>and</strong> 3 show low oxidation potentials at E1/2 =<br />

+0.28 V <strong>and</strong> Epc = +0.27 V, respectively, which indicate the NHC-borane moiety is a powerful unit to<br />

make the π skeleton electron-donating. X-ray crystal analysis <strong>of</strong> 1a <strong>and</strong> 2 confirmed the coplanar<br />

geometry between the thiophene <strong>and</strong> the NHC rings. In addition, as a consequence <strong>of</strong> a completely planar<br />

conformation <strong>of</strong> the bithiophene moiety, 2 forms a slipped face-to-face π-stacking array, in which the<br />

electron-rich thiophene rings are overlapped with the electron-deficient benzimidazolidene moieties <strong>of</strong> the<br />

adjacent molecules with the interfacial distance <strong>of</strong> 3.51 Å.<br />

Figure 1. Absorption spectral change <strong>of</strong><br />

1a in CH2Cl2 upon irradiation <strong>of</strong> a UV<br />

Poster 53<br />

Figure 2. Packing structure <strong>of</strong> 2.<br />

[1] K. Nagura, S. Saito, R. Fröhlich, F. Glorius, S. Yamaguchi, Angew. Chem. Int. Ed., in press.


Oxidative Addition <strong>of</strong> Aryl- <strong>and</strong> Alkylditellurides to Pt(0) Centres<br />

143<br />

IRIS-13 <strong>Victoria</strong><br />

M. M. Karjalainen 1 , T. Wieg<strong>and</strong>, 2 A. Wagner, 2 H. Görls, 2 R. Oilunkaniemi, 1 R. S. Laitinen, 1 W. Weig<strong>and</strong> 2<br />

(minna.karjalainen@oulu.fi)<br />

1 Department <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> Oulu, P. O. Box 3000, FI-90014 <strong>University</strong> <strong>of</strong> Oulu, Finl<strong>and</strong>,<br />

2 Institut für Anorganische und Analytische Chemie, Humboldstrasse 8, 07743, Friedrich-Schiller-<br />

Universität, Jena, Germany<br />

Oxidative addition <strong>of</strong> aryl- <strong>and</strong> alkyldiselenides to zerovalent platinum <strong>and</strong> palladium centres occurs<br />

usually with the cleavage <strong>of</strong> chalcogen-chalcogen bond. In the corresponding reactions <strong>of</strong> ditellurides, the<br />

[1, 2]<br />

Te-C bond cleavage is also possible.<br />

In this contribution the oxidative addition <strong>of</strong> ditellurides R2Te2 to [Pt(nb)(PP)] (nb = norbornylene) using<br />

various ditellurides (R = phenyl, 2-thienyl, n-butyl, t-butyl) <strong>and</strong> chelating diphosphines (PP = 1,2bis(diphenylphosphino)ethane,<br />

1,2-bis(diphenylphosphino)benzene, 1,2-bis(diphenylphosphino)<br />

naphthalene, 1,2-bis(diphenylphosphino)propane). The reactions produce two types <strong>of</strong> tellurolato<br />

complexes [Pt(TeR)2(PP)](1) <strong>and</strong> [Pt(TeR)(R)(PP)](2). The product distribution was monitored by<br />

31 1<br />

P{ H} NMR spectroscopy <strong>and</strong> was found to depend strongly on the electron withdrawing or donating<br />

nature <strong>of</strong> the organic substituent <strong>of</strong> the ditelluride, as well as on the bite angle <strong>of</strong> diphosphine <strong>and</strong> the<br />

rigidity <strong>of</strong> diphosphine structure. In the reaction <strong>of</strong> (TePh)2 with [Pt(nb)(dppn)] the formation <strong>of</strong> 1 <strong>and</strong> 2<br />

depend on the molar ratio <strong>of</strong> the reactants with excess <strong>of</strong> ditelluride, 1 is formed <strong>and</strong> with that <strong>of</strong><br />

[Pt(nb)(dppn)], 2 is the main product.<br />

1<br />

Poster 54<br />

[1] R. Oilunkaniemi, R. S. Laitinen, M. Ahlgrén, J. Organomet. Chem. 2001, 623, 168.<br />

[2] A. Wagner, L. Vigo, R. Oilunkaniemi, R. S. Laitinen, W. Weig<strong>and</strong>, Dalton Trans. 2008, 3535.<br />

2


Poster 55<br />

Single Source Precursors as a Route to Doped Graphites<br />

Timothy C. King <strong>and</strong> Dominic S. Wright<br />

(tk405@cam.ac.uk)<br />

Department <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> Cambridge, UK<br />

144<br />

IRIS-13 <strong>Victoria</strong><br />

Boron-doped graphite provides a range <strong>of</strong> technological differences compared to undoped graphite,<br />

including reduced oxidation <strong>and</strong> erosion rates (specifically with respect to plasma facing materials used in<br />

fusion reactors) <strong>and</strong> improved electrode performance in Li ion batteries. However, numerous previous<br />

invesigations have succeeded only with limited boron doping <strong>and</strong> normally samples are only several<br />

monolayers thick. Interest has recently been piqued in this area due to several computational studies on<br />

the hydrogen storage ability <strong>of</strong> boron-doped graphite, specifically BC3. These studies have stressed the<br />

importance <strong>of</strong> developing a reliable synthetic method <strong>of</strong> obtaining bulk samples <strong>of</strong> boron-rich material<br />

since chemisorption <strong>of</strong> H2 relies on cooperativity between the layers within the bulk <strong>and</strong>, for example,<br />

boron-doped monolayers <strong>and</strong> graphite itself are inactive in H-H bond cleavage.<br />

We describe here a single-source method <strong>of</strong> obtaining bulk amounts <strong>of</strong> ‘BC3’. This involves a facile<br />

carbonisation/graphitisation step that produces a material capable <strong>of</strong> storing 5 wt% hydrogen (only slight<br />

below the US-DoE minimum target).<br />

Figure 5. The synthesis <strong>of</strong> boron doped graphites from a single-source precursor.<br />

[1] J. Kouvetakis, R. Kaner, M. Sattler, <strong>and</strong> N. Bartlett, J. Chem. Soc., Chem., 1986, 1758-1759.<br />

[2] C. Lowell, J. Am. Ceram. Soc., 1967, 50, 142-144.<br />

[3] C. Zhang <strong>and</strong> A. Alavi, J. Chem. Phys., 2007, 127, 214704.<br />

[4] X. Sha, A. Cooper, <strong>and</strong> W. B. III, J. Phys. Chem., 2010, 3260-3264.


Poster 56<br />

145<br />

IRIS-13 <strong>Victoria</strong><br />

Planarized Triphenylboranes: Unique Structural Change in the Excited State<br />

Tomokatsu Kushida,<br />

a<br />

Department <strong>of</strong> Chemistry, Nagoya <strong>University</strong>,<br />

a Ayumi Shuto, a Tetsuro Katayama, b,d Syoji Ito, b Hiroshi Miyasaka, b Eri Sakuda, c<br />

Noboru Kitamura, c Cristoher Camacho Le<strong>and</strong>ro, a Stephan Irle, a,e <strong>and</strong> Shigehiro Yamaguchi a,e<br />

(yamaguchi@chem.nagoya-u.ac.jp)<br />

kushida@chem.nagoya-u.ac.jp b Department <strong>of</strong> Chemistry<br />

<strong>and</strong> Center for Quantum Material Science under Extreme Conditions, Osaka <strong>University</strong>, c Department <strong>of</strong><br />

Chemistry, Hokkaido <strong>University</strong>, d JST-PRESTO, e JST-CREST, Furo, Chikusa, Nagoya, 464-8602, Japan<br />

We have recently reported the synthesis <strong>of</strong> triphenylboranes planarized with three methylene tethers. [1] In<br />

the study <strong>of</strong> photophysical properties, we found that the compound exhibited dual emissions at room<br />

temperature, as shown in Figure 1. This phenomenon is unique for the planarized skeleton <strong>and</strong> not<br />

observed for normal unconstrained triarylboranes, such as trimesitylborane. To elucidate the origin <strong>of</strong> the<br />

luminescence properties, we have now measured the emission lifetimes as well as the transient absorption<br />

spectra, <strong>and</strong> rationalized those results based on the theoretical calculations in the excited state.<br />

The emission lifetimes were determined for each emission b<strong>and</strong>. In the transient absorption spectra, two<br />

transient species corresponding to each lifetime <strong>of</strong> the two emission b<strong>and</strong>s were successfully observed.<br />

Based on these experimental results as well as the structural optimization in the excited state, we<br />

concluded that this compound can have two local minimum structures, planar <strong>and</strong> bowl-shaped structures,<br />

in the lowest singlet excited state, each <strong>of</strong> which emits a fluorescence at the different wavelength (Figure<br />

2). Phosphorescence properties at a low temperature will also be described.<br />

[1] Z. Zhou, A. Wakamiya, T. Kushida, S. Yamaguchi J. Am. Chem. Soc., 2012, 134, 4529.


Poster 57<br />

146<br />

IRIS-13 <strong>Victoria</strong><br />

Easy Access to Backbone P-functionalized N-heterocyclic Carbenes <strong>and</strong><br />

Complexes There<strong>of</strong> – en route to Novel Functional Ionic Liquids<br />

Paresh Kumar Majhi, Susanne Sauerbrey <strong>and</strong> Rainer Streubel<br />

( pmajhi@uni-bonn.de)<br />

Institut für Anorganische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn,<br />

Gerhard-Domagk-Str.1, 53121 Bonn, Germany<br />

Since the discovery <strong>of</strong> “bottleable” NHC’s by Arduengo et al., [1] carbene chemistry has received renewed<br />

attention in coordination <strong>and</strong> main group chemistry, homogenous catalysis, <strong>and</strong> beyond. In recent years,<br />

introduction <strong>of</strong> an additional donor atom into an NHC has been subject <strong>of</strong> increased attention. In this<br />

regard, we will present the synthesis <strong>of</strong> mono- <strong>and</strong> di-phosphanyl <strong>and</strong> phosphoryl (n = 1, 2) (<strong>and</strong>/or P V ; E<br />

= O, S, Se) substituted imidazol-2-thiones [2] (1, 4) <strong>and</strong> imidazolium salts (2, 5), obtained via oxidative<br />

desul-furization [3] <strong>of</strong> 1 <strong>and</strong> 4, respectively. Furthermore, reactions <strong>of</strong> 2 allow for in situ com-plexation to<br />

yield 3 (Scheme); evidence for P-functional NHC’s 6 will be also provided. [4]<br />

[1] Arduengo III, A. J.; Harlow, R.L.; Kline, M. J. Am. Chem. Soc.1991, 113, 361-363.<br />

[2] Sauerbrey, S.; Majhi, P.K.; Schnakenburg, G.; Arduengo III, A. J.; Streubel, R. Dalton Trans. 2012,<br />

41, 5368-5376 <strong>and</strong> Heteroatom Chem. 2012, accepted.<br />

[3] Morel, G. Synlett. 2003, 14, 2167-2170.<br />

[4] Majhi, P.K.; Schnakenburg, G.; Arduengo III, A. J.; Streubel, R. to be published.


Poster 58<br />

Theoretical Study on SET-mediated Selective Bond Activation in<br />

Oxaphosphirane Complexes<br />

147<br />

IRIS-13 <strong>Victoria</strong><br />

Arturo Espinosa a <strong>and</strong> Rainer Streubel b<br />

(artuesp@um.es)<br />

a Depto. Química Orgánica, Universidad de Murcia, Spain<br />

b Institut für Anorganische Chemie, Rheinischen Friedrich-Wilhelms-Universität Bonn, Germany<br />

Despite their potential use as powerful building blocks in organic synthesis, there is still scarce<br />

knowledge about heterocycles possessing three differently polar ring bonds such as in oxaphosphirane [1]<br />

<strong>and</strong> azaphosphiridines, [2] featuring a three-coordinated phosphorus centre. The chemistry <strong>of</strong><br />

oxaphosphirane [3] (as well as azaphosphiridine [4] ) complexes 1 is now emer-ging in lig<strong>and</strong>-centered ring<br />

forming reactions, as ring enlargement [5] <strong>and</strong> opening [6] reactions, taking advantage <strong>of</strong> the pentacarbonylmetal(0)<br />

moieties as "inorganic protecting groups". Full exploration <strong>of</strong> oxaphosphirane chemistry would<br />

require the development <strong>of</strong> highly selective methods for exocyclic P-M <strong>and</strong> P-R bond cleavage while<br />

retaining the ring structure.<br />

In this work, we provide first-time<br />

insights into the intrinsic strength <strong>of</strong><br />

exocyclic bonds <strong>of</strong> phosphorus in<br />

oxaphosphirane complexes 1,<br />

following the me-thodology used in<br />

the case <strong>of</strong> azaphosphiridine<br />

analogues. [7] The heterolytic cleavage<br />

in 1 leading to a carbocation R + <strong>and</strong> a<br />

oxaphosphiranide complex 2 -<br />

constitutes the lowest energy process <strong>of</strong> exocyclic P-R bond dissociation, especially if the group R is<br />

bulky <strong>and</strong> able to efficiently stabilize the positive charge, i.e. triphenylmethyl (trityl). The energies<br />

required for a P-M bond cleavage are about 30 kcal mol -1 <strong>and</strong> decrease with increasing bulk <strong>of</strong> the R<br />

substituent <strong>and</strong> on going from Cr to Mo. The reactivity <strong>of</strong> complexes 1 towards SET reactions was<br />

analysed using the facile VBSD (Variation on Bond Strength Descriptors) methodology, thus enabling the<br />

design <strong>of</strong> synthetically useful strategies addressing decomplexation <strong>and</strong> P-functionalization: reductive<br />

SET reactions (sodium naphthalenide) enable selective P-M bond cleavage (= decomplexation) for the<br />

case <strong>of</strong> P-Me <strong>and</strong> P- t Bu substitution, whereas reductive P-R bond cleavage is favored in the case <strong>of</strong> the Ptrityl<br />

complexes <strong>and</strong> results in the formation <strong>of</strong> the (anionic) oxaphosphiranide complex 2 - which may be<br />

regarded as a potential key intermediate for further P-functionalization.<br />

[1] For σ 3 λ 3 -oxaphosphiranes proposed as reactive intermediates: Bartlett, P. A.; Carruthers, N. I.;<br />

Winter, B. M. <strong>and</strong> Long, K. P. J. Org. Chem. 47 (1982) 1284.<br />

[2] For 1,2λ 3 -azaphosphiridines, see: a) Niecke, E.; Seyer, A. <strong>and</strong> Wildbredt, D.-A. Angew. Chem. 96<br />

(1981) 687. b) Dufour, N.; Camminade, A.-M. <strong>and</strong> Majoral, J.-P. Tetrahedron Lett. 30 (1989) 4813.<br />

[3] a) Bauer, S.; Marinetti, A.; Ricard, L. <strong>and</strong> Mathey, F. Angew. Chem. Int. Ed. Engl. 29 (1990) 1166; b)<br />

Streubel, R.; Kusenberg, A.; Jeske, J. <strong>and</strong> Jones, P.G. Angew. Chem. Int. Ed. Engl. 33 (1994) 2427.<br />

[4] a) Streubel, R.; Ostrowski, A.; Wilkens, H.; Ruthe, F.; Jeske, J. <strong>and</strong> Jones, P. G. Angew. Chem. Int.<br />

Ed. Engl. 36 (1997), 378; Vlaar, M. J. M.; Valkier, P.; de Kanter, F. J. J.; Schakel, M.; Ehlers, A. W.;<br />

Spek, A. L.; Lutz, M. <strong>and</strong> Lammertsma, K. Chem. Eur. J. 7 (2001) 3552.<br />

[5] a) Helten, H.; Marinas Pérez, J.; Daniels, J. <strong>and</strong> Streubel R. Organometallics 28 (2009) 1221; b)<br />

Pérez, J. M.; Helten, H.; Schnakenburg, G. <strong>and</strong> Streubel, R. Chem. Asian J. 6 (2011) 1539.<br />

[6] a) Pérez, J. M.; Helten, H.; Donnadieu, B.; Reed, C. <strong>and</strong> Streubel, R. Angew. Chem. Int. Ed. 49 (2010)<br />

2615; b) Pérez, J. M.; Albrecht, C.; Helten, H.; Schnakenburg, G. <strong>and</strong> Streubel, R. Chem. Commun. 46<br />

(2010) 7244.<br />

[7] a) Espinosa, A.; Gómez, C. <strong>and</strong> Streubel, R. Inorg. Chem. (2012) DOI: 10.1021/ic300522g.


Poster 59<br />

148<br />

IRIS-13 <strong>Victoria</strong><br />

Synthesis <strong>and</strong> Characterization <strong>of</strong> Novel Cyclic Organotin Compounds<br />

J. Binder, B. Seibt, R. Fischer <strong>and</strong> F. Uhlig<br />

(binder@tugraz.at)<br />

Institute <strong>of</strong> Inorganic Chemistry, Graz <strong>University</strong> <strong>of</strong> Technology, Stremayrgasse 9, A-8010 Graz, Austria<br />

A large number <strong>of</strong> reports concerning derivatives with silicon <strong>and</strong> carbon groups<br />

(-R2Si-CH2-)n in the ring skeleton has been published in literature. However, only few studies are focused<br />

on the synthesis <strong>and</strong> reaction behavior <strong>of</strong> similar compounds containing also the higher elements <strong>of</strong> group<br />

14.<br />

For that purpose different “flexible" spacers <strong>of</strong> type α-ω-bis(chlorodimethylsilyl)alkane (alkane chain<br />

length n = 2, 3, 4) [1] are used with diphenyltindichloride in the presence <strong>of</strong> magnesium in a Wurtz-type<br />

reaction yielding derivatives with various ring sizes. Also "rigid" spacers <strong>of</strong> type α-ωbis(chlorodimethylsilyl)xylene/benzene<br />

are used in a similar reaction resulting in a series <strong>of</strong> siliconbridged<br />

tin-indane derivatives. Furthermore the formation <strong>of</strong> analogous tin-indane derivatives with carbon<br />

as bridging atoms is reported.<br />

The preparation <strong>of</strong> these carbon bridged tin-indane derivatives using Wurtz-type coupling reactions<br />

does not lead to the selective formation <strong>of</strong> tin-indane derivates. Tetraline derivatives are formed as major<br />

byproduct. Therefore, we report here also on a novel reaction pathway towards the selective formation <strong>of</strong><br />

tin-indane derivates (Scheme 1).<br />

Scheme 1: Formation <strong>of</strong> carbon bridged tin-indane derivatives<br />

[1] Binder, J., Diplomarbeit, TU Graz, 2008<br />

[2] Zarl, E., Ph. D. Dissertation, TU Graz, 2008<br />

[3] Zarl, E., Uhlig, F., Zeitschrift für Naturforschung / B 64b, 2009, 1591 - 1596<br />

[2, 3]


Poster 60<br />

Phosphorus-Based Flame Retardants for Paper<br />

149<br />

IRIS-13 <strong>Victoria</strong><br />

Andrew M. Priegert, 1 Paul W. Siu, 1 Thomas Q. Hu 2 <strong>and</strong> Derek P. Gates 1<br />

(aprieger@chem.ubc.ca, dgates@chem.ubc.ca, thomas.hu@fpinnovations.ca)<br />

1 Department <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> British Columbia, 2036 Main Mall, Vancouver, British<br />

Columbia, V6T 1Z1, Canada<br />

2 FPInnovations – Pulp <strong>and</strong> Paper Division, 3800 Wesbrook Mall, Vancouver, British Columbia, V6S<br />

2L9, Canada<br />

Traditional halogenated flame retardants such as polybrominated diphenyl ethers (PBDEs) are either<br />

being phased out or have already been banned in many jurisdictions worldwide. To replace them, there is<br />

a growing need for non-halogenated <strong>and</strong> non-leachable alternatives. As part <strong>of</strong> the growing interest in<br />

phosphorus-based flame retardants, novel phosphorus-containing polymers have been synthesized from<br />

the phosphaalkene MesP=CPh2 (Mes = 2,4,6-trimethylphenyl, Ph = C6H5). Discussed herein are the<br />

results <strong>of</strong> tests to evaluate their flame retardant properties when used to treat paper. The TAPPI<br />

(Technical Association <strong>of</strong> Pulp <strong>and</strong> Paper Industry) St<strong>and</strong>ard Method T461 cm-00 was followed using<br />

paper made from thermomechanical pulp coated with polymer. Also to be presented are the results <strong>of</strong><br />

thermogravimetric analyses (TGA) carried out on treated paper samples to evaluate thermal stability.<br />

[1] Yam, M.; Chong, J. H.; Tsang, C.-W.; Patrick, B. O.; Lam, A. E.; Gates, D. P. Inorg. Chem. 2006,<br />

45, 5225-5234<br />

[2] Noonan, K. J. T.; Gates, D. P. Angew. Chem. Int. Ed. 2006, 45, 7271-7274<br />

[3] Bates, J. I.; Dugal-Tessier, J.; Gates, D. P. Dalton Trans, 2010, 39, 3151-3159


Poster 61<br />

Zeolite Inclusion Compounds <strong>of</strong> 1,2,3,5-Dithiadiazolyl Radicals<br />

150<br />

IRIS-13 <strong>Victoria</strong><br />

Hugh J. Cowley, Douglas R. Pratt <strong>and</strong> Jeremy M. Rawson<br />

(cowleyh@uwindsor.ca, jmrawson@uwindsor.ca)<br />

Department <strong>of</strong> Chemistry <strong>and</strong> Biochemistry, <strong>University</strong> <strong>of</strong> Windsor, 401 Sunset Avenue, Windsor, ON<br />

N9B 3P4, Canada<br />

A range <strong>of</strong> 1,2,3,5-dithiazolyl radicals such as 1 were synthesised <strong>and</strong> included within a faujasite (zeolite<br />

Y) lattice. Thermal gravimetric analysis <strong>and</strong> differential scanning calorimetry were used to determine<br />

radical loading within the lattice as well as the enthalpy <strong>of</strong> inclusion. The materials were characterised by<br />

powder X-ray diffraction <strong>and</strong> their magnetic character was determined by EPR spectroscopy. The effect<br />

<strong>of</strong> inclusion upon radical dimerisation <strong>and</strong> stabilisation will be discussed.


Poster 62<br />

Synthesis <strong>and</strong> Characterization <strong>of</strong> 1,3,2-Diathiazolyl Radicals<br />

151<br />

IRIS-13 <strong>Victoria</strong><br />

Justin D. Wrixon, John J. Hayward <strong>and</strong> Jeremy M. Rawson<br />

(wrixon@uwindsor.ca, jmrawson@uwindsor.ca)<br />

Department <strong>of</strong> Chemistry & Biochemistry, <strong>University</strong> <strong>of</strong> Windsor, 401 Sunset Avenue, Windsor, ON, N9B<br />

3P4, Canada<br />

A cost-efficient synthetic route to dialkoxy-benzene-substituted 1,3,2-dithiazolyl radicals has recently<br />

been developed by the Rawson group. [1] This methodology has been extended to a series <strong>of</strong> dialkoxysubstituted<br />

1,3,2-benzodithiazolyl radicals, including dioxyl-benzo-1,3,2-dithiazolyl (DOXBDTA) <strong>and</strong><br />

dioxepinyl-benzo-1,3,2-dithiazolyl (DOXEBDTA). The characterisation <strong>of</strong> these systems <strong>and</strong> the<br />

application <strong>of</strong> this methodology to more complex systems will be discussed.<br />

[1] Alberola, A., Eisler, D., Less, R.J., Navarro-Moratalla, E., Rawson, J.M., Chem. Comm. 2010, 46,<br />

6114-6116.


152<br />

IRIS-13 <strong>Victoria</strong><br />

Structure <strong>and</strong> Reactivity <strong>of</strong> Low Oxidation State Indium Compounds with<br />

“Non-Innocent” Lig<strong>and</strong>s<br />

Christopher J. Allan, Benjamin F. T. Cooper, Hugh J. Cowley, Jeremy M. Rawson, Charles L. B.<br />

Macdonald<br />

(allanc@uwindsor.ca, cmacd@uwindsor.ca)<br />

<strong>University</strong> <strong>of</strong> Windsor, Canada<br />

In addition to exhibiting interesting fundamental chemistry, low oxidation state indium(I) compounds<br />

have proven to be effective catalysts in a variety <strong>of</strong> organic transformations (e.g. allylations at carbonyls,<br />

imines, benzylic ethers). [1] However, the coordination <strong>of</strong> neutral lig<strong>and</strong>s, which may tune the selectivity or<br />

activity <strong>of</strong> such catalysts, to low-oxidation state indium halides generally results in disproportionation,<br />

producing indium metal <strong>and</strong> higher oxidative species. [2-4] In contrast, we report that the reaction <strong>of</strong> InOTf<br />

(OTf = trifluoromethanesulfonate) 5 with “non-innocent” α-diimine (DAB) lig<strong>and</strong>s afforded coloured<br />

products with no signs <strong>of</strong> indium metal being generated. We find that substituents present on the lig<strong>and</strong><br />

can play a large role in the electronics <strong>of</strong> the system <strong>and</strong> in some instances yields radical <strong>and</strong>/or polymeric<br />

materials. In this work we present computational investigations, EPR spectra, cyclic voltammetry <strong>and</strong> Xray<br />

crystal structures in order to elucidate the structure <strong>and</strong> chemistry <strong>of</strong> these InDAB complexes.<br />

Ar<br />

OTf<br />

In<br />

N N<br />

Ar<br />

R=Me<br />

Ar=Mes or Dipp<br />

Ar<br />

Poster 63<br />

InOTf<br />

+<br />

N N<br />

R R<br />

Ar<br />

R=H<br />

Ar=Mes<br />

[1] Schneider, W.; Kobayashi, S. Acc. Chem. Res. 2012 ASAP<br />

[2] Pardoe, J. A. J.; Downs, A. J. Chem Rev. 2007, 107, 2.<br />

[3] Green, S.; Jones, C.; Stasch, A. Angew, Chem. Int. Ed. 2007, 46, 8618<br />

[4] Cole, M. L.; Jones, C.; Kloth, M. Inorg. Chem. 2005, 44, 4909.<br />

[5] Cooper, B. F. T.; Macdonald, C. L. B. New J. Chem. 2010, 34, 1551.<br />

N<br />

N<br />

Mes<br />

In<br />

Mes<br />

OTf<br />

TfO<br />

Mes<br />

In<br />

N<br />

N<br />

Mes n


Poster 64<br />

EED studies on Chromium borylene<br />

H. Braunschweig † , Ch. Lehmann ‡ , K. Radacki<br />

(K.Radacki@uni-wuerzburg.de)<br />

†<br />

Universität Würzburg, Am Hubl<strong>and</strong>, 97074 Würzburg<br />

‡<br />

Max-Planck-Institut für Kohlenforschung; Mülheim an der Ruhr, Germany<br />

153<br />

†<br />

IRIS-13 <strong>Victoria</strong><br />

Transition metal complexes <strong>of</strong> boron with electron-precise (2c,2e) M−B bonds have become an area <strong>of</strong><br />

widespread interest in the past decade. Terminal <strong>and</strong> dinuclear borylene complexes LxM=BR,<br />

LxM−B(R)−M’Lx in particular owe much <strong>of</strong> their importance to the fact that they are closely related to<br />

pivotal organometallics such as carbonyl or vinylidene complexes. The structure <strong>of</strong> [(CO)5Cr=B=NR2] (1)<br />

was characterized by conventional single crystal diffraction already in 2001, [1] <strong>and</strong> analyzed in detailed by<br />

means <strong>of</strong> theoretical chemistry in 2007. [2] The investigation <strong>of</strong> the electronic structure on the basis <strong>of</strong><br />

experimental electron densities (EED) in [{Cp(CO)2Mn}2(µ-BtBu)] (2), comprising bridging borylene<br />

lig<strong>and</strong>, showed unexpected features in Laplacian distribution <strong>of</strong> the central Mn2B-ring. [3] Recently, we<br />

were able to perform a high resolution X-Ray experiment on 1 <strong>and</strong> subsequent refinement in multipole<br />

formalism <strong>of</strong> Hansen <strong>and</strong> Coppens. [4] That gave us opportunity to analyze both theoretical <strong>and</strong><br />

experimental data <strong>of</strong> 1, as well as to compare experimental densities <strong>of</strong> terminal borylene 1 with these <strong>of</strong><br />

bridging borylen 2.<br />

Experimental molecular graph (left) <strong>and</strong> Distribution <strong>of</strong> ∇ 2 ρ (right) <strong>of</strong> 1.<br />

[1] H. Braunschweig, M. Colling, C. Kollann, H.G. Stammler, B. Neumann Angew. Chem. Int. Ed. 2001,<br />

40, 2298−2300.<br />

[2] B. Blank, H. Braunschweig, M. Colling-Hendelkens, C. Kollann, K. Radacki, D. Rais, K. Uttinger,<br />

G. Whittell Chem. Eur. J. 2007, 13, 4770−4781.<br />

[3] U. Flierler et al. Angew. Chem. Int. Ed. 2008, 47, 4321−4325.<br />

[4] N.K. Hansen, P. Coppens Acta Cryst. 1978, A34, 909−921.<br />

Acknowledgment: This work was supported by the Deutsche Forschungsgemeinschaft within SPP1178.


Poster 65<br />

Phosphorus-Containing Copolymers for Suzuki Cross-Coupling<br />

154<br />

IRIS-13 <strong>Victoria</strong><br />

Tom H. H. Hsieh, Thomas W. Hey <strong>and</strong> Derek P. Gates<br />

(thsieh@chem.ubc.ca)<br />

Department <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> British Columbia, 2036 Main Mall, Vancouver, British Columbia,<br />

V6T 1Z1, Canada<br />

Traditionally, monodentate <strong>and</strong> bidentate phosphines have comprised the majority <strong>of</strong> phosphoruscontaining<br />

lig<strong>and</strong>s in catalysis. The use <strong>of</strong> hybrid inorganic/organic phosphorus-containing polymers have<br />

been largely unexplored. We have previously reported that copolymers formed from the addition<br />

polymerization <strong>of</strong> phosphaalkene <strong>and</strong> styrene are capable <strong>of</strong> supporting transition metal cross-coupling<br />

catalysis. [1] We now report the recent developments in the ease <strong>of</strong> purification, increased substrate <strong>and</strong><br />

catalyst scope, <strong>and</strong> ability to recycle the poly(methylenephosphine)-polystyrene copolymer (PMP-PS).<br />

Furthermore, copolymer microstructure <strong>and</strong> modifications, such as crosslinking with divinylbenzene, will<br />

be presented.<br />

[1] Tsang, C.-W.; Baharloo, B.; Riendl, D.; Yam, M.; Gates, D.P. Angew. Chem. Int. Ed. 2004, 43, 5682.


Poster 66<br />

Tin Catecholates<br />

155<br />

IRIS-13 <strong>Victoria</strong><br />

Zdenka Padelkova, Jan Turek, Hana Vankatova, Tomas Chlupaty <strong>and</strong> Ales Ruzicka<br />

(Zdenka.Padelkova@upce.cz)<br />

Department <strong>of</strong> General <strong>and</strong> Inorganic Chemistry, Faculty <strong>of</strong> Chemical Technology, <strong>University</strong> <strong>of</strong><br />

Pardubice, Studentska 573, Pardubice 532 10, Czech Republic<br />

The chemistry <strong>of</strong> organotin(IV) diols (making five- or six-membered α, ω-dioxastanna cycles) was<br />

extensively studied in the past in order to investigate the influence <strong>of</strong> mainly glycolic or catecholic<br />

arrangement to the geometrical as well as optical properties <strong>of</strong> the tin central atom. In these days, tin<br />

catecholates are thoroughly investigated in many fields <strong>of</strong> applications, mainly for their possible use in<br />

catalysis. They can be used for example in radical polymerization processes [1] because <strong>of</strong> their unique<br />

ability <strong>of</strong> accepting various radicals, including carbon ones. This was proved by polymerization <strong>of</strong> styrene<br />

<strong>and</strong> methylmetacrylate in presence <strong>of</strong> bis(catecholate)tin(IV) complex. In addition these complexes play<br />

an important role in regulation <strong>of</strong> chain length <strong>and</strong> they also provide linear growth <strong>of</strong> molecular weight <strong>of</strong><br />

product with growing conversion rates <strong>of</strong> reaction. The preparation, structure <strong>and</strong> reactivity <strong>of</strong> different<br />

tin <strong>and</strong> germanium catecholates have been studied by Barrau, Jurkschat <strong>and</strong> others. [2]<br />

Our current interest is focused on the reaction products <strong>of</strong> different C,N- <strong>and</strong> N,N-chelated tin(II <strong>and</strong> IV)<br />

complexes (Fig. 1) with quinones or catecholates.<br />

Fig. 1 Fragments <strong>of</strong> compounds studied<br />

The authors would like to thank the Grant Agency <strong>of</strong> the Czech Republic (grant no. P207/10/P092) for<br />

the financial support.<br />

[1] For example: L. B. Vaganova, E. V. Kolyakina, A. V. Lado, A. V. Piskunov, D. F. Grishin, Polymer<br />

Science, Ser. B, 2009, 51, 96.<br />

[2] For example: K. Jurkschat, N. Pieper, S. Seemeyer, M. Schuermann M. Biesemans, I. Verbruggen, R.<br />

Willem Organometallics 2001, 20, 868; J. Barrau, G. Rima, T. El-Amraoui, J. Organomet. Chem. 1998,<br />

561, 167.


Poster 67<br />

Cp big Complexes <strong>of</strong> Low Valent Main Group Metals<br />

Dominik Naglav <strong>and</strong> Andreas Schnepf<br />

(dominik.naglav@stud.uni-due.de, <strong>and</strong>reas.schnepf@uni-due.de)<br />

Fakultät für Chemie, Universität Duisburg-Essen, 45141 Essen, Germany<br />

156<br />

IRIS-13 <strong>Victoria</strong><br />

The reaction <strong>of</strong> KCp big [Cp big = C5(CH2C6H4- i Pr)5, C5(C6H5)5] with low valent main group metal sources<br />

like “Ga (+1) I” <strong>and</strong> Ge (+1) Cl under mild conditions yielded in the formation <strong>of</strong> novel cp big complexes.<br />

Depending on the low valent metal precursor the increased sterical dem<strong>and</strong> <strong>of</strong> the lig<strong>and</strong> can not only<br />

avoid the formation <strong>of</strong> oligomeric species (in case <strong>of</strong> “GaI”) but can also enforce the formation <strong>of</strong> large<br />

cluster compounds (in case <strong>of</strong> GeCl). [1-3]<br />

We were able to synthesize a dynamic s<strong>and</strong>wich complex <strong>of</strong> germanium in the oxidation state +2 as a<br />

product <strong>of</strong> the controlled disproportionation reaction <strong>of</strong> Ge (+1) Cl with KCp big to Ge(Cp big )2 <strong>and</strong> metalloid<br />

cluster compounds (GenLm with n > m) <strong>and</strong> KCl. The solid state structure <strong>of</strong> (1) shows that in the case <strong>of</strong><br />

the Cp iPr Bz5 lig<strong>and</strong> the formation <strong>of</strong> a bent conformation is preferred in solid state due to the lone-pair-π<br />

interaction <strong>of</strong> the carbenoid Ge 2+ metal center with two <strong>of</strong> the aromatic benzyl substituents <strong>of</strong> the cp.<br />

Theoretical investigations confirm that the parallel conformation is preferred by 3.4 kJ/mol in comparison<br />

to the bent conformation, which indicates that the parallel structure is mainly present in solution.<br />

Cryogenic 1 H-NMR studies verify this assumption as all benzyl substituents are equivalent in solution<br />

even at −80 °C . [1]<br />

Molecular structure <strong>of</strong> GeCp big 2 [Cp big = C5(CH2C6H4- i Pr)5] <strong>and</strong> equilibrium <strong>of</strong> the open <strong>and</strong> closed form<br />

<strong>of</strong> 1 in solution (theoretical calculations)<br />

[1] Dominik Naglav, Briac Tobey, Sjoerd Harder <strong>and</strong> Andreas Schnepf, submitted to ZAAC.<br />

[2] Andreas Schnepf, New. J. Chem., 2079-2092, 34, 2010.<br />

[3] Hansgeorg Schnöckel, Andreas Schnepf, Angew. Chem., 3682-3703, 114, 2002.


Poster 68<br />

(Me3Si)2NPCl2 – A Molecule with a “Disguised” PN-Moiety<br />

157<br />

IRIS-13 <strong>Victoria</strong><br />

Christian Hering, a Axel Schulz a,b <strong>and</strong> Alex<strong>and</strong>er Villinger a<br />

(christian.hering@uni-rostock.de)<br />

a Universität Rostock, Institut für Chemie, Abteilung Anorganische Chemie, Albert-Einstein-Straße 3a,<br />

18059 Rostock, Germany; b Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-<br />

Str. 29a, 18059 Rostock, Germany<br />

Molecules such as R(Me3Si)N-PCl2 (R = Ter, Mes*, SiMe3) that can release in situ a highly reactive<br />

dipolarophile [R-NP] + by Me3SiCl elimination in the presence <strong>of</strong> a Lewis acid (GaCl3), are <strong>of</strong>ten referred<br />

to as “disguised” dipolarophiles. These silylated dichlorophosphanes are excellent starting materials for<br />

the formation <strong>of</strong> tetrazaphospholes <strong>of</strong> the type, RN4P·GaCl3. Just recently we reported on the synthesis <strong>of</strong><br />

an ionic liquid containing the [Me3Si-NP] + cation, which is formed, when (Me3Si)2NPCl2 (1) was reacted<br />

with GaCl3. [1] Following our interest in compounds with a binary N–Pn (Pn = P, As, Sb, Bi) moiety we<br />

have studied if elimination <strong>of</strong> a second equivalent Me3SiCl starting from 1 is possible. Therefore the<br />

application <strong>of</strong> 1 as a precursor for diatomic PN, the heavier homologue <strong>of</strong> N2, is envisioned. Analogous P2<br />

is well known <strong>and</strong> starting from a solution <strong>of</strong> P4 in hexane the transient species could be trapped with<br />

suitable organic acceptors. [2]<br />

In a first series <strong>of</strong> experiments the thermal release <strong>of</strong> Me3SiCl in 1 in the presence <strong>of</strong> the trapping reagent<br />

2,3-dimethyl-butadiene (dmb) was investigated resulting, according to 31 P NMR studies, in the clean<br />

conversion to a cyclotetraphosphazane [PN(dmb)]4 (2), [3] incorporating four PN-fragments. Substituting<br />

the chlorine atoms in 1 by triflate groups yields (Me3Si)2NP(OTf)2 which should also generate “PN” upon<br />

thermal elimination <strong>of</strong> TfOSiMe3. If this elimination is carried out in the presence <strong>of</strong> dmb, the formation<br />

<strong>of</strong> the spirocyclic compound [(Me3Si)NP(dmb)2][O3SCF3] (3) is observed. We present here first results on<br />

the application <strong>of</strong> 1 as a synthetic equivalent for PN in inorganic as well as in organic chemistry <strong>and</strong><br />

report on the synthesis <strong>of</strong> new cyclic phosphazenes <strong>and</strong> their application as lig<strong>and</strong> in transition metal<br />

chemistry (Figure 1).<br />

Figure 1. Cyclotetraphosphazene 2 (left) <strong>and</strong> 2·W2(CO)7 (right).<br />

[1] (a) A. Villinger, P. Mayer <strong>and</strong> A. Schulz, Chem. Commun., 2006, 1236; (b) C. Hering, A. Schulz, A.<br />

Villinger, Angew. Chem. Int. Ed. 2012, 51, 6241-6245.<br />

[2] (a) N. A.Piro, J. S. Figueroa, J. T.McKellar, C. C. Cummins, Science 2006, 313, 1276. (b) D. T<strong>of</strong>an,<br />

C. C. Cummins, Ang. Chem. Intl. Ed. 2010, 49, 7516.<br />

[3] K. D. Gallicano, N. L. Paddock, Can. J. Chem.1985, 63, 314.


Poster 69<br />

158<br />

IRIS-13 <strong>Victoria</strong><br />

Coordination Chemistry <strong>of</strong> the Pentacyanocyclopentadienide Anion<br />

Thomas C. Wilson, Robert J. Less <strong>and</strong> Dominic S. Wright<br />

(tcw35@cam.ac.uk)<br />

<strong>University</strong> <strong>of</strong> Cambridge, UK<br />

The pentacyanocyclopentadienide anion, 1 (Fig. 1), has been little studied <strong>and</strong> has been claimed to be<br />

‘almost totally non-coordinating’. [1] However, recent studies [2] have shown this not to be the case, <strong>and</strong><br />

altering the synthesis to give a thermodynamic driving force for the reaction has proved successful (Eqn.<br />

1).<br />

The readily accessible sodium salt Na[1] can then be reacted with metal halide salts (Eqn. 2) to yield<br />

novel complexes. Due to the presence <strong>of</strong> five electron-withdrawing groups, 1 acts as a σ-donor through<br />

the cyano groups, rather than as a π lig<strong>and</strong> via the C5 ring. Both CoCl2 <strong>and</strong> CuCl2 were reacted with<br />

Na[1], <strong>and</strong> the resulting complexes are reported here. In addition to this, a family <strong>of</strong> Group 11 phosphine<br />

complexes involving 1 are also reported. [3] The latter are the first complete series <strong>of</strong> cyclopentadienyl<br />

compounds to be structurally characterised for any group in the Periodic Table. The ion paired gold<br />

complex, Au(PPh3)2[1], is shown below (Fig. 2).<br />

Figure 1 (left): The pentacyanocyclopentadienide anion, 1 Figure 2 (right): Au(PPh3)2[1]<br />

[1] A. F. Williams etal., Chem. Eur. J., 2009, 15, 5012<br />

[2] D. S. Wright etal., Chem. Eur. J., 2010, 16, 13723<br />

[3] D. S. Wright et al., Chem. Commun., 2011, 47, 10007


Poster 70<br />

159<br />

IRIS-13 <strong>Victoria</strong><br />

Supramolecular Chemistry <strong>of</strong> N-Alkyl-Benzo-2,1,3-Selenadiazolium Cations<br />

Lucia Myongwon Lee, <strong>Victoria</strong> B. Corless, Michael Tran, Dora P. Hsieh, Faisal Adampani, Christine Li<br />

<strong>and</strong> Ignacio Vargas-Baca (leem35@univmail.cis.mcmaster.ca, vargas@chemistry.mcmaster.ca)<br />

Department <strong>of</strong> Chemistry <strong>and</strong> Chemical Biology, McMaster <strong>University</strong>, 1280 Main Street West,<br />

Hamilton, Ontario, L8S4M1, Canada<br />

In supramolecular chemistry, there is increasing interest in the use <strong>of</strong> main-group secondary bonding<br />

interactions (SBIs) as a tool to control the structures <strong>and</strong> properties <strong>of</strong> materials. The efficient application<br />

<strong>of</strong> SBIs would require the use <strong>of</strong> the best supramolecular synthons, the structural motifs created by<br />

operations <strong>of</strong> supramolecular synthesis. The ideal supramolecular synthon would be strong <strong>and</strong><br />

directional such features are characteristic <strong>of</strong> systems assembled by more than one contact point, for<br />

example, the [E-N]2 supramolecular synthon which is frequently formed by molecules containing the<br />

1,2,5-chalcogenadiazole ring in their structure. [1] Derivatives <strong>of</strong> 1,2,5-telluradiazole were shown to exhibit<br />

functional properties such as chromotropism <strong>and</strong> second-order non-linear optical activity. However, they<br />

are easily degraded by hydrolysis, which limits their application. [2] The selenium analogues behave in a<br />

similar fashion but with weaker intermolecular forces. The N-alkylated heterocycles display shorter SBI<br />

distances than their neutral analogues. [3,4,5] This observation suggests that the positive charge <strong>of</strong> the<br />

molecule enhances the electron acceptor ability <strong>of</strong> the chalcogen, strengthening the supramolecular<br />

interaction. Direct alkylation <strong>of</strong> benzo-2,1,3-selenadiazole had been regarded as difficult, being successful<br />

only with vigorous alkylating agents. [3,4,5,6] It was shown recently that in some cases the reaction with<br />

alkyl iodides does proceed in mild conditions, as long as it is carried out under an inert atmosphere. A<br />

more convenient method <strong>of</strong> preparation <strong>of</strong> the N-alkylated cations starts with the N-alkyl-ophenylenediamine<br />

<strong>and</strong> selenium dioxide in acidic medium. [7,8] This method enables the preparation <strong>of</strong> a<br />

wide range <strong>of</strong> derivatives that can be used as supramolecular building blocks, most notable are novel<br />

bridged dicationic species, capable <strong>of</strong> assembling extended structures.<br />

[1] (a) Cozzolino, A. F.; Vargas Baca, I.; Mansour, S.; Mahmoudkhani, A. H. J. Am. Chem. Soc. 2005,<br />

127, 3184; (b) Cozzolino, A. F.; Elder, P. J. W.; Vargas Baca, I. Coord. Chem. Rev. 2011, 255,<br />

1426.<br />

[2] (a) Cozzolino, A.F.; Whitfield, P. S.; Vargas-Baca, I. J. Am. Chem. Soc. 2010, 10, 4459; (b)<br />

Cozzolino, A. F.; Yang, Q.; Vargas-Baca, I. Cryst. Growth Des. 2010, 10, 4459.<br />

[3] Risto, M.; Reed, R. W.; Robertson, C. M.; Oilunkaniemi, R.; Laitinen, R. S.; Oakley, R. T. Chem.<br />

Commun. 2008, 3278.<br />

[4] Dutton, J. L.; Tindale, J. J.; Jenings, M. C.; Ragogna, P. J. Chem. Commun. 2006, 2474.<br />

[5] Berionni, G.; Pégot, B.; Marrot, J. CrystEngComm. 2009, 11, 986.<br />

[6] (a) Nunn, A. J.; Ralph, J. T. J. Chem. Soc. 1965, 6769; (b) Nunn, A. J.; Ralph, J. T. ibid. C 1966,<br />

1568.<br />

[7] (a) Eremeeva, G. I.; Strelets, B. K.; Efros, L. S. Khim. Geterotsikl. Soedin. 1975, 276; (b) Eremeeva,<br />

G. I.; Strelets, B. K.; Efros, L. S. Ibid. 1976, 340; (c) Eremeeva, G. I.; Akulin, Y. I.; Tim<strong>of</strong>eeva, T.<br />

N.; Strelets, B. K.; Efros, L. S. ibid. 1982, 1129; (d) V.B. Corless, Senior Undergraduate Thesis,<br />

McMaster <strong>University</strong> 2012.<br />

[8] Neve, J.; Hanocq, M. Talanta 1979, 26, 15.


Poster 71<br />

Small Molecule Activation by Anti-Aromatic Boroles<br />

160<br />

IRIS-13 <strong>Victoria</strong><br />

Adrian Y. Houghton a , Cheng Fan a , Heikki M. Tuononen b <strong>and</strong> Warren E. Piers a<br />

(ayhought@ucalgary.ca)<br />

a Department <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> Calgary, 2500 <strong>University</strong> Drive NW, Calgary, Alberta, T2N<br />

1N4, Canada<br />

b Department <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finl<strong>and</strong><br />

The past few years have witnessed an increasing interest in the five-membered unsaturated boracycles<br />

known as boroles. [1] These compounds are anti-aromatic, have high Lewis acidity, <strong>and</strong> possess interesting<br />

electronic properties. Recently, the Piers group has demonstrated the unexpected activation <strong>of</strong><br />

dihydrogen by pentaarylboroles (figure 1). [2,3] This unique reactivity has prompted the investigation <strong>of</strong> the<br />

its mechanism, as well as the extension <strong>of</strong> the known borole library to include 1-boraindenes (figure 2).<br />

This presentation focuses on the kinetics <strong>of</strong> dihydrogen activation <strong>and</strong> the synthesis 1-boraindenes<br />

starting from diarylzirconocenes <strong>and</strong> diarylacetylenes.<br />

[1] Braunschweig, H.; Kupfer, T., Chem. Commun. 2011, 47, 10903–10914<br />

[2] A. Fan, C.; Mercier, L. G.; Piers, W. E.; Tuononen, H. M.; Parvez, M., J. Am. Chem. Soc, 2010, 132<br />

(28), 9604-9606.<br />

[3] Fan, C.; Piers, W. E.; Parvez, M., Angew. Chem. Int. Ed, 2009, 48 (16), 2955-2958.


Poster 72<br />

161<br />

IRIS-13 <strong>Victoria</strong><br />

Probing the Group Tolerance <strong>of</strong> a Li/Cl Phosphinidenoid Complex Using α-,<br />

β- <strong>and</strong> ω-Substituted Aldehydes<br />

Melina Klein <strong>and</strong> Rainer Streubel<br />

( melinaklein@uni-bonn.de)<br />

Institut für Anorganische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Gerhard-Domagk-<br />

Str.1, 53121 Bonn, Germany<br />

First synthesis <strong>of</strong> a σ 4 λ 5 -oxaphosphirane [1] was reported by Röschenthaler (1978) <strong>and</strong> the first<br />

oxaphosphirane complexes were described by Mathey (1990) [2] but no further studies appeared. Although<br />

a new synthetic method was reported in the following years (1994-1997), namely the phosphinidene<br />

complex transfer reaction, [3] the breakthrough was achieved recently when Li/Cl phosphinidenoid<br />

complexes were reacted with aldehydes (2007). [4] Here, reactions <strong>of</strong> Li/Cl phosphinidenoid complex 2a,<br />

generated at low temperature, [4] with various aldehydes bearing a functional group in α-, β- or ω-position<br />

<strong>and</strong>/or ketones [5] to give oxa-phosphirane complexes 3-9 or an isomeric product (10) will be presented. In<br />

addition, first studies on reactions <strong>of</strong> complexes 2a,b with DMF will be reported.<br />

Interestingly, exclusively 1,2-cycloaddition [6] occurred thus showing clear preference <strong>of</strong> the nucleophilic<br />

intermediate 2. NMR data, structures as well as the case <strong>of</strong> atropisomerism at the exo P-C bond in<br />

complexes 5-9 will be discussed. [6] Furthermore, preliminary results on reductive SET ring-opening<br />

reactions <strong>of</strong> some oxaphosphirane complexes using the systems Ti(Cp)2Cl2/Zn, TiCpCl3/Zn <strong>and</strong><br />

TiCl3(thf)3 will be presented.<br />

[1] Röschenthaler, G.V.; Sauerbrey, K.; Schmutzler, R. Chem. Ber. 1978, 111, 3105.<br />

[2] Bauer S.; Marinetti, A.; Ricard, L.; Mathey, F. Angew. Chem. 1990, 102, 1188.<br />

[3] Streubel, R.; Kusenberg, A.; Jeske, J.; Jones, P. G. Angew. Chem. 1994, 106, 2564.<br />

[4] Özbolat, A.; von Frantzius, G.; Nieger, M.; Streubel, R. Angew. Chem. 2007, 119, 9488.<br />

[5] Pérez, J.M.; Klein, M.; Kyri, A.; Schnakenburg, G.; Streubel, R. Organometallics 2011, 30, 5636.<br />

[6] Streubel, R., Klein, M.; Schnakenburg, G. Organometallics 2012, DOI: 10.1021/om300177c.


Poster 73<br />

162<br />

IRIS-13 <strong>Victoria</strong><br />

Structural Diversity <strong>and</strong> Reactivity <strong>of</strong> New Phosphine-Stabilized Antimony<br />

Centers<br />

Saurabh S. Chitnis <strong>and</strong> Neil Burford<br />

(sschitnis@gmail.com)<br />

Department <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> <strong>Victoria</strong>, <strong>Victoria</strong>, British Columbia, Canada<br />

Coordination chemistry has been applied successfully to achieve a variety <strong>of</strong> rare <strong>and</strong> reactive bonds<br />

between the heavy pnictogen elements (P, As, Sb, <strong>and</strong> Bi). [1-3] We have reported on the structural diversity<br />

observed in bidentate phosphine complexes <strong>of</strong> antimony-centered cations, [4] <strong>and</strong> have since discovered<br />

additional P-Sb bonding frameworks, highlighting a rich structural chemistry <strong>of</strong> lig<strong>and</strong>-stabilized<br />

antimony centers. Considering the metallic nature <strong>of</strong> antimony <strong>and</strong> its ability to achieve high coordination<br />

numbers, we propose re-envisioning these complexes as main-group analogues <strong>of</strong> the organo-transition<br />

metal complexes used in modern homogeneous catalysis. The prospect <strong>of</strong> replacing expensive transition<br />

metals with cheaper <strong>and</strong> more abundant main-group metals in catalysis is an attractive one. Most catalysts<br />

operate via a lig<strong>and</strong> association-modification-dissociation cycle. To assess the potential catalytic activity,<br />

we have studied the interaction <strong>of</strong> unsaturated organic fragments such as alkenes, dienes, ketones <strong>and</strong><br />

nitriles with organo-antimony complexes described earlier. The structure <strong>of</strong> new P-Sb complexes <strong>and</strong><br />

their reactivity towards organic molecules will be presented.<br />

[dppm(SbCl3)2] [dppmSbCl2] + [dppmSbCl] 2+ [dppmSb] 3+<br />

[1] C. A. Dyker, N. Burford, Chem. Asian. J., 2008, 3, 28.<br />

[2] E. Conrad, N. Burford, et. al., J. Am. Chem. Soc., 2009, 131, 5066.<br />

[3] E. Conrad, N. Burford, et. al., Chem. Commun., 2010, 46, 2465.<br />

[4] S. S. Chitnis, N. Burford, et. al., Chem. Commun., 2011, 47, 12331.


Poster 74<br />

163<br />

IRIS-13 <strong>Victoria</strong><br />

Synthesis <strong>and</strong> Structural Characterization <strong>of</strong> Indium-Oxygen-Organic<br />

Network Solids<br />

Glen G. Bri<strong>and</strong> a , Marshall R. Hoey a , <strong>and</strong> Andreas Decken b<br />

(gbri<strong>and</strong>@mta.ca)<br />

a Department <strong>of</strong> Chemistry <strong>and</strong> Biochemistry, Mount Allison <strong>University</strong>, Sackville NB, Canada<br />

b Department <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> New Brunswick, Fredericton, NB, Canada<br />

Indium oxide (In2O3) is a transparent conducting oxide with a number <strong>of</strong> applications in thin film form,<br />

such as liquid crystal displays, gas sensors, solar cells, light emitting diodes <strong>and</strong> other optoelectronic<br />

devices. It has been shown that molecule-based extended solids containing both inorganic <strong>and</strong> organic<br />

components represent materials with “tunable” physical properties, such as conductivity (Vaid et al. J.<br />

Am. Chem. Soc. 2008, 130, 14). Covalent bonding in these materials results in the high electron-hole<br />

mobilities <strong>of</strong> inorganic materials, while the molecular components allow for the fine-tuning <strong>of</strong> physical<br />

properties that is possible with organic materials. As an extension <strong>of</strong> or previous work with<br />

dimethylindium <strong>and</strong> -thallium chalcogenolates (Dalton Trans., 2010, 39, 3833; Eur. J Inorg Chem., 2011,<br />

2298; Eur. J. Inorg. Chem., 2011, 5430), we have studied the reaction <strong>of</strong> trimethylindium with various<br />

benezendiols <strong>and</strong>-triols to yield extended –(Me2IIn(OR)2InMe2)- networks. The syntheses <strong>and</strong> structural<br />

characterization <strong>of</strong> isolated materials will be discussed, as well as their potential as tunable conducting<br />

materials.


Exploring the Coordination Chemistry <strong>of</strong> Lead(II) Thiolates<br />

164<br />

IRIS-13 <strong>Victoria</strong><br />

Glen.G. Bri<strong>and</strong> a , Teri J. Gullon a , Andrew D. Smith a , Anita S. Smith a <strong>and</strong> Gabriele Schatte b<br />

(gbri<strong>and</strong>@mta.ca)<br />

a Department <strong>of</strong> Chemistry <strong>and</strong> Biochemistry, Mount Allison <strong>University</strong>, Sackville NB, Canada<br />

b Saskatchewan Structural Sciences Centre, <strong>University</strong> <strong>of</strong> Saskatchewan, Saskatoon SK, Canada<br />

Despite the potential <strong>of</strong> heavy p-block metal (i.e. Tl, Pb, Bi) thiolates as interesting Lewis acids, little<br />

structural data for their coordination complexes have been reported. Previously, we have synthesized <strong>and</strong><br />

structurally characterized a number <strong>of</strong> adducts <strong>of</strong> (2,6-Me2C6H3S)2Pb with monodentate, bridging, <strong>and</strong><br />

chelating amine <strong>and</strong> phosphine lig<strong>and</strong>s (Inorg. Chem., 2007, 46, 8625; Dalton Trans. 2004, 3515). This<br />

has resulted in the isolation <strong>of</strong> a variety <strong>of</strong> interesting bonding environments for lead(II). In an effort to<br />

increase the Lewis acidity at the lead(II) center, we have also prepared the cationic lead(II) thiolate {[4-<br />

(Me3N)C6H4S)6Pb3] 6+ using a zwitterionic ammonium thiolate lig<strong>and</strong>. This trinuclear species reacts with<br />

amine lig<strong>and</strong>s to give mononuclear {[4-(Me3N)C6H4S]2Pb} 2+ ⋅Ln complexes (Polyhedron., 2012, 33, 171).<br />

To further explore this system, we have prepared (2-MeC6H4S)2Pb which incorporates less bulk at the<br />

lead(II) centre versus (2,6-Me2C6H3S)2Pb. We will discuss the preparation <strong>and</strong> solid-state structure <strong>of</strong><br />

this complex, as well the coordination complexes resulting from its reaction with mono- <strong>and</strong> diamine<br />

lig<strong>and</strong>s.<br />

RS<br />

RS<br />

L<br />

Pb:<br />

L<br />

RS<br />

RS<br />

L<br />

Pb:<br />

S'<br />

L<br />

RS<br />

SR<br />

Pb:<br />

S'<br />

Poster 75<br />

RS<br />

RS<br />

L<br />

Pb:<br />

N<br />

RS<br />

N<br />

Pb:<br />

SR<br />

P<br />

P<br />

SR<br />

Pb:<br />

SR<br />

RS<br />

RS<br />

P<br />

Pb:


Poster 76<br />

165<br />

IRIS-13 <strong>Victoria</strong><br />

Poly(methylenephosphine)s Containing Fluorescent Substituents as<br />

Chemosensors<br />

Benjamin W. Rawe, Cindy P. Chun, Derek P. Gates<br />

(brawe@chem.ubc.ca, dgates@chem.ubc.ca)<br />

Department <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1,<br />

Canada<br />

Polymeric chemosensors are practical materials used to detect potentially dangerous spieces pat very low<br />

concentration levels. [1] This presentation will illustrate how poly(methylenephosphine)s (PMPs), [2,3]<br />

bearing conjugated substituents can be used as "turn on" chemosensors (scheme 1). The polymers are<br />

prepared by anionic initiation <strong>of</strong> the phosphaalkene monomers (PA) featuring conjugated polyaromatic<br />

substituents. The unfunctionalized polymers (PMP-U) display low luminescence as the emission is<br />

quenched by the phosphorus lone pairs in the main chain <strong>of</strong> the polymer. Upon coordinating the<br />

phosphorus centres to a Lewis acid analyte (A) the emission from the polymers (PMP-A) substantially<br />

increase. The potential sensor applications for PMP's as well as the range <strong>of</strong> analytes that can be detected<br />

using florescence techniques will be outlined.<br />

Scheme 1: The polymerisation <strong>of</strong> phosphaalkenes <strong>and</strong> functionalization <strong>of</strong><br />

poly(methylenephosphine)s to yield novel chemosensor materials.<br />

[1] Kim, H. N.; Guo, Z.; Zhu, W.; Yoon, J.; Tian, H. Chem Soc Rev.,2011, 40, 79-93<br />

[2] Tsang, C. W.; Yam, M.; Gates, D. P. J. Am. Chem. Soc., 2003, 125, 1480-1481<br />

[3] Bates, J. I.; Dugal-Tessier, J.; Gates, D. P. Dalton Trans., 2010, 39, 3151-3159


Poster 77<br />

Thermal Ring Closure <strong>of</strong> Aminopropylstannanes<br />

J. Pichler <strong>and</strong> F. Uhlig<br />

(johann.pichler@tugraz.at)<br />

Institute <strong>of</strong> Inorganic Chemistry, Graz <strong>University</strong> <strong>of</strong> Technology<br />

Stremayrgasse 9/V, A-8010 Graz, Austria<br />

166<br />

IRIS-13 <strong>Victoria</strong><br />

One <strong>of</strong> the main research interests <strong>of</strong> our group is focused on the development <strong>of</strong> novel, functionalized<br />

ring systems containing heavy group 14 elements. Such derivatives provide new synthetic applications in<br />

polymer chemistry, in catalysis as well as concerning biological activity. Investigations on the properties<br />

<strong>of</strong> currently synthesized organtin compounds containing amino propyl substituted side chains 1 lead to<br />

cyclostannazanes. They tend to be easily accessible via mild thermal ring closure reactions under reduced<br />

pressure (Figure 1).<br />

Figure 1<br />

The occurring protodearylation enables us to synthesize the target compounds in high yield <strong>and</strong> purity.<br />

All <strong>of</strong> these cyclostannazanes are characterized by state-<strong>of</strong>-the-art techniques.


Poster 78<br />

167<br />

IRIS-13 <strong>Victoria</strong><br />

Synthesis <strong>of</strong> Low Coordinate Group 13 <strong>and</strong> 14 Complexes Stabilized by<br />

Chelating Anionic Phosphine Lig<strong>and</strong>s<br />

Jonathan W. Dube, Brian Malbrecht, Sarah Weicker <strong>and</strong> Paul J. Ragogna<br />

(jdube7@uwo.ca, pragogna@uwo.ca)<br />

Department <strong>of</strong> Chemistry <strong>and</strong> the Center for Materials <strong>and</strong> Biomaterials Research, Western <strong>University</strong>,<br />

1151 Richmond St, London, Ontario, N6A 5B7, Canada<br />

A majority <strong>of</strong> the isolated low valent group 13 <strong>and</strong> 14 compounds are prepared from hard anionic<br />

nitrogen based lig<strong>and</strong>s, [1,2] while much less explored is the chemistry <strong>of</strong> the main group elements with the<br />

anionic phosphinoborate lig<strong>and</strong> class developed by Peters et al. [3-5] In this context, unique gallium,<br />

germanium, <strong>and</strong> tin complexes have been isolated from the reaction <strong>of</strong> 1 with the corresponding lower<br />

oxidation state main group halide. For Ge <strong>and</strong> Sn, 2 is formed in quantitative yields <strong>and</strong> the onwards<br />

reactivity was pursued. In the case <strong>of</strong> gallium, a novel base stabilized Ga2I2 2+ dimer (3) is prepared in<br />

yields that vary depending on the “GaI” preparation time. This finding prompted a study on the nature <strong>of</strong><br />

“GaI” as a function <strong>of</strong> reaction time with solid-state characterization methods <strong>and</strong> model reaction<br />

outcomes being presented.<br />

[1] M. Assay, C. Jones, M. Driess, Chem. Rev. 2010, 111, 354.<br />

[2] R.J. Baker, C. Jones, Dalton Trans. 2005, 1341.<br />

[3] J.C. Thomas, J.C. Peters, J. Am. Chem. Soc. 2001, 123, 5100.<br />

[4] J.C. Thomas, J.C. Peters, Inorg. Chem. 2003, 42, 5055.<br />

[5] A.A. Barney, A.F. Heyduk, D.G. Nocera, Chem. Commun. 1999, 2379.


P-substituent Effects on the Insertion <strong>of</strong> Group 14 Carbenoids into<br />

Phosphorus–Halogen Bonds<br />

168<br />

IRIS-13 <strong>Victoria</strong><br />

Joseph K. West <strong>and</strong> Lothar Stahl<br />

(westjoek@gmail.com, lstahl@chem.und.edu)<br />

Department <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> North Dakota, Gr<strong>and</strong> Forks, North Dakota 58202-9024 USA<br />

The cyclic heterocarbenoids Me2Si(µ-N t Bu)2M (M = Ge <strong>and</strong> Sn) insert with varying rates into the<br />

phosphorus-chlorine bonds <strong>of</strong> aminochlorophosphines, arylchlorophosphines, <strong>and</strong> the thiophosphine<br />

PhP(S)Cl2. The reaction rates depend on both the steric bulk <strong>of</strong> the phosphines <strong>and</strong> the nature <strong>of</strong> the<br />

heterocarbenoid, the stannylene usually being significantly more reactive. The tin(IV) insertion products<br />

so created, however, also decompose much more rapidly than their germanium(IV) analogs. As is shown<br />

in the Scheme below, the decomposition <strong>of</strong> the insertion product can be significantly reduced, or even<br />

prevented, if the organic substituents on phosphorus bear greater steric bulk. Based on such qualitative<br />

observations, accompanied by detailed structural <strong>and</strong> kinetic data, plausible pathways for the insertion<br />

<strong>and</strong> decomposition mechanisms will be proposed.<br />

tBu N<br />

Si SnCl2 N<br />

tBu +<br />

(PhP) n<br />

n = 3Š5<br />

tBu N<br />

Si Sn<br />

N<br />

tBu PPh 2<br />

Cl<br />

Poster 79<br />

P<br />

Cl<br />

tBu N<br />

Si Sn<br />

N<br />

tBu P<br />

Cl<br />

tBu N<br />

Si Sn<br />

N<br />

tBu P<br />

Cl<br />

STABLE<br />

[1] Veith, M.; Grosser, M.; Huch, V. Z. Anorg. Allg. Chem. 1984, 513, 89–102.<br />

[2] Veith, M.; Gouygou, M.; Detemple, A. Phosphorus, Sulfur Silicon Relat Elem. 1993, 75, 183–186.<br />

[3] West, J. K.; Stahl, L. Organometallics 2012, 31, 2042–2052.


Poster 80<br />

169<br />

IRIS-13 <strong>Victoria</strong><br />

Metalloxanes Supported by Nitrogen Rich Heterocycles Comprising<br />

Chalcogen Donor Atoms<br />

Raymundo Cea-Olivares 1 , Christian Gil 2 , Mónica Moya-Cabrera 2, § 2, §<br />

, Vojtech Jancik<br />

(cea@unam.mx, monica.moya@unam.mx)<br />

1<br />

Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad<br />

Universitaria, C.P. 04510, México<br />

2<br />

Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carr. Toluca-Atlacomulco<br />

Km 14.5, C.P. 50200, Toluca, Estado de México, México. § Academic staff from the Universidad Nacional<br />

Autónoma de México<br />

Recently, we reported on the preparation <strong>of</strong> metal chalcogenide compounds bearing 4,5bis(diphenylphosphoranyl)-1,2,3-triazole<br />

lig<strong>and</strong>s [H{4,5-(P(E)Ph2)2tz} (E = S(1), Se(2); tz =1,2,3triazole].<br />

[1–3] The use <strong>of</strong> these types <strong>of</strong> lig<strong>and</strong>s can lead to discrete structural arrangements for metals with<br />

a high tendency for oligomerization.<br />

Herein, we report on the preparation <strong>of</strong> lanthanide, aluminium <strong>and</strong> magnesium metalloxanes [(LnCp{4,5-<br />

(P(Se)Ph2)2tz})2(LnCp)(µ-O)] (Ln = Y (3), Sm(4)), [(Al(OH){4,5-(P(E)Ph2)2tz})3(µ-O)] (E = S (5), Se<br />

(6)) <strong>and</strong> [Mg{4,5-(P(S)Ph2)2tz}]2(µ-OH) (7) obtained from controlled hydrolysis <strong>of</strong> their corresponding<br />

chalcogenide derivatives. The structural analyses in solid state for 3 – 7 reveal that in all cases, the<br />

presence <strong>of</strong> a metalloxane moiety (M-O-M), as well as metal-chalcogen bonding (Figure 1). The degree<br />

<strong>of</strong> the aggregation observed for these compounds depends significantly on the size <strong>of</strong> the metal center as<br />

well as on the metal:lig<strong>and</strong> ratio employed for each reaction.<br />

Figure 1. Molecular structure <strong>of</strong> a metalloxane containing a Sm3O core.<br />

[1] Balanta-Diaz, J. A.; Moya-Cabrera, M.; Jancik, V.; Pineda-Cedeno, L. W.; Toscano, R. A.; Cea-<br />

Olivares, R., Inorg. Chem. 2009, 48, 2518–2525.<br />

[2] Alcantara-Garcia, J. Jancik, V.; Barroso, J.; Hidalgo-Bonilla, S.; Cea-Olivares, R.; Toscano, R. A.;<br />

Moya-Cabrera, M., Inorg. Chem. 2009, 48, 5874–5883.<br />

[3] Balanta-Diaz, J. A.; Moya-Cabrera, M.; Jancik, V.; Toscano, R. A.; Morales-Juarez, T. J.; Cea-<br />

Olivares, R., Z. Anorg. Allg. Chem. 2011, 637, 1346–1354.


170<br />

IRIS-13 <strong>Victoria</strong><br />

Definitive Structural Evidence for Phosphaamidines in Tautomeric C=P <strong>and</strong><br />

C=N forms <strong>and</strong> Further Elaboration to Phosphaguanidines,<br />

Phosphinodiimines <strong>and</strong> Amidinophosphaalkenes<br />

L. Mokhtabad Amrei, a R. T. Boeré a <strong>and</strong> J.D. Masuda b<br />

(boere@uleth.ca)<br />

a Department <strong>of</strong> Chemistry & Biochemistry, <strong>University</strong> <strong>of</strong> Lethbridge, Lethbridge, AB T1T3M4 , Canada<br />

b The Maritime Centre for Green Chemistry <strong>and</strong> Department <strong>of</strong> Chemistry, St. Mary’s <strong>University</strong>, Halifax,<br />

NS B3H3C3, Canada<br />

P(III)-phosphaamidines replace one <strong>of</strong> the nitrogen atoms in an amidine by phosphorus. [1-3] Such<br />

phosphaamidines have been reported to exist in two tautomeric forms 1 <strong>and</strong> 2, but previously only the<br />

aminophosphaalkene form 1 has been structurally confirmed. [1] Here we report crystallographic evidence<br />

for two examples with the other tautomeric form 2. In addition, there is convincing spectroscopic<br />

evidence that 1,2(R=aryl;R 1 =R 2 =2,6-diisopropylphenyl) exist in solution as equilibrium mixtures. We<br />

also report on the chemical elaboration <strong>of</strong> the phosphaamidine functional group in related forms including<br />

the phosphaguanidine 3, P(III)-phosphinodiimines 4 <strong>and</strong> P(III)-amidinophosphaalkenes 5.<br />

R<br />

R 2<br />

P R 1<br />

NH<br />

R<br />

R 2<br />

N R 1<br />

PH<br />

R 3<br />

NH<br />

R 2<br />

N R 1<br />

PH<br />

Poster 81<br />

R P R<br />

R 1<br />

N<br />

R 2<br />

N<br />

R 3<br />

R N R<br />

1 2 3 4 5<br />

[1] R. T. Boere, M. L. Cole, P. C. Junk, J. D. Masuda, G. Wolmershauser, Chem. Comm. 2004, 2564-<br />

2565.<br />

[2] X. F. Li, H. B. Song, C. M. Cui, Dalton Trans. 2009, 9728-9730.<br />

[3] M. Y. Song, B. Donnadieu, M. Soleilhavoup, G. Bertr<strong>and</strong>, Chem.-Asian J. 2007, 2, 904-908.<br />

[4] J. D. Masuda, D. W. Stephan, Dalton Trans. 2006, 2089-2097.<br />

[5] J. D. Masuda, D. W. Stephan, Can. J. Chem. 2005, 83, 477-484.<br />

R 1<br />

P<br />

R 2<br />

N<br />

R 3


Poster 82<br />

Scorpionate Lig<strong>and</strong>s Based on Nickel or Cobalt<br />

Chalcogenophosphoranyltiazolates<br />

171<br />

IRIS-13 <strong>Victoria</strong><br />

Jesús Pastor-Medrano, a Er<strong>and</strong>i Bernabé-Pablo, b Marisol Reyes-Lezama, b T. Jesús Morales-Juarez, a<br />

Vojtech Jancik, b,§<br />

(jmoralesj@uaemex.mx, vjancik@unam.mx)<br />

a) Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Esq. Paseo<br />

Tollocan, C.P. 50120, Toluca, Estado de México, México. b) Centro Conjunto de Investigación en<br />

Química Sustentable UAEM-UNAM, Carr. Toluca Atlacomulco km. 14.5, C.P. 50200, Toluca, Estado de<br />

México, México. § Academic staff from the Universidad Nacional Autónoma de México<br />

The term scorpionate lig<strong>and</strong> was used for the first time for tris(pyrazolyl)borates, where the pyrazol units<br />

are usually substituted in the 4- or 3,5-positions to increase their solubility <strong>and</strong> steric bulk. [1] Many<br />

metallic complexes with these lig<strong>and</strong>s have been prepared as models for enzyme active sites. Herein, we<br />

report on a scorpionate lig<strong>and</strong>s formed in the reaction between Ni 2+ or Co 2+ <strong>and</strong> three equivalents <strong>of</strong> 4,5-<br />

(Ph2PE)2Tz (E = S, Se, Tz = 1,2,3-triazol). [2] The lig<strong>and</strong>s are readily prepared in the form <strong>of</strong> a potassium<br />

salt <strong>and</strong> are air stable. The obtained compounds have been characterized by common analytical methods.<br />

Figure 1. Molecular structure <strong>of</strong> a potassium salt <strong>of</strong> the scorpionate lig<strong>and</strong> based on nickel <strong>and</strong><br />

selenaphosphoranyltriazolate with thermal ellipsoids at 50 % probability only for noncarbon atoms.<br />

Hydrogen atoms have been omitted for clarity.<br />

[1] S. Tr<strong>of</strong>imenko, Scorpionates: Polypyrazolylborate Lig<strong>and</strong>s <strong>and</strong> Their Coordination Chemistry. World<br />

Scientific Publishing Company, 1999.<br />

[2] Jesús Pastor-Medrano, Er<strong>and</strong>i Bernabé-Pablo, Marisol Reyes-Lezama, T. Jesús Morales-Juarez,<br />

Vojtech Jancik, manuscript in preparation.


172<br />

IRIS-13 <strong>Victoria</strong><br />

On the Structural Diversity <strong>of</strong> Aminotrialkoxides <strong>of</strong> Tin <strong>and</strong> Related Tin-Oxo<br />

Clusters<br />

T. Zöller, Ljuba Iovkova-Berends, Christina Dietz <strong>and</strong> K. Jurkschat<br />

(thomas.zoeller@tu-dortmund.de)<br />

Lehrstuhl für Anorganische Chemie II der Technischen Universität Dortmund,<br />

Otto-Hahn-Str. 6, 44227 Dortmund, Germany<br />

Metal(IV)-derivatives <strong>of</strong> triethanolamines are called Metallatranes [1] <strong>and</strong> hold great potential as Lewisacid<br />

catalysts. [1,2] Organostannatranes N(CH2CH2O)3SnR are known for a long time [1a] but purely<br />

inorganic representatives that lack any tin-carbon bond are scarce. [3] Our motivation for the synthesis <strong>of</strong><br />

such compounds results from their non-toxicity <strong>and</strong> their potential as delayed action catalysts in the<br />

polyurethane formation. [2c] Here we report the syntheses <strong>and</strong> structures <strong>of</strong> tin aminotrialkoxides <strong>of</strong> the<br />

types A, B <strong>and</strong> C. [3] A systematic variation <strong>of</strong> the substituents X <strong>and</strong> R allows controlling the switchtemperature<br />

<strong>of</strong> the catalysts but gives also access to great structural diversity. These compounds hold, by<br />

partial hydrolysis, potential as precursors for unusual tin-oxo clusters <strong>of</strong> high nuclearity, such as D <strong>and</strong> E.<br />

O<br />

N<br />

Sn1 Sn2<br />

Sn3 Sn4<br />

D<br />

methyl groups are omitted<br />

Poster 83<br />

[1] a) J. G. Verkade, Coord. Chem. Rev., 1994, 137, 233. b) A. Singh, R. C. Mehrotra, Coord. Chem.<br />

Rev., 2004, 248, 101.<br />

[2] a) W. A. Nugent, J. Am. Chem. Soc., 1992, 114, 2768. b) F. Di Furia, G. Licini, G. Modena, R.<br />

Motterle, W. A. Nugent, J. Org. Chem., 1996, 61, 5175. c) J. Krause, S. Reiter, S. Lindner, A.<br />

Schmidt, K. Jurkschat, M. Schürmann, G. Bradtmöller, DE 102008021980, 2008. d) P. M.<br />

Gurubasavaraj, K. Nomura, Inorg. Chem. 2009, 48, 9491. e) S.-d. Mun et al., J. Organomet. Chem.<br />

2007, 692, 3519.<br />

[3] T. Zöller, C. Dietz, L. Iovkova-Berends, O. Karsten, G. Bradtmöller, A.-K. Wieg<strong>and</strong>, Y. Wang, V.<br />

Jouikov, K. Jurkschat, Inorg. Chem. 2012, 51, 1041.<br />

Sn3<br />

O<br />

Sn2<br />

N<br />

Sn1<br />

E


Poster 84<br />

Carbanionic Phosphoylide Dianion<br />

Sarah B. J. Dane, Vesal Naseri <strong>and</strong> Dominic S. Wright<br />

(sbjd2@cam.ac.uk)<br />

<strong>University</strong> <strong>of</strong> Cambridge, UK<br />

173<br />

IRIS-13 <strong>Victoria</strong><br />

Phosphorus ylides (Fig 1A) have become a classical tool for organic synthesis ever since the discovery<br />

that they could be used for olefination reactions by Wittig. Schildbauer [1] has extensively studies these as<br />

lig<strong>and</strong>s but one elusive member <strong>of</strong> this family are dianions <strong>of</strong> the type [RP(CH2)3] 2- (Fig 1A), recently it<br />

has become possible to prepare <strong>and</strong> characterise them.<br />

Figure 1: (A) the structure <strong>of</strong> a classical phosohprus ylide. (B) the stutrure <strong>of</strong> [RP(CH2)3] 2- type dianions,<br />

(C) Isoelectronic p-block element imido <strong>and</strong> oxo-anions, isoelectronic with [RP(CHR')3] 2- dianions.<br />

Our interest in the phosphoylide dianions [RP(CHR')3] 2- , arises from their being valence-isoelectronic<br />

with a broad family <strong>of</strong> tripodal p-block element imido lig<strong>and</strong>s <strong>of</strong> the type [RmE(NR)3] n- (Figure 1C),<br />

whose coordination chemistry has been investigated extensively in the past few decades. They are<br />

also isoelectronic with important classes <strong>of</strong> phosphorus oxo-anions, such as phosphonate anions [RPO3] 2- ,<br />

which have broad applications in the synthesis <strong>of</strong> framework materials. DFT calculations show that<br />

[RP(CHR`)3] 2- are both σ-donors <strong>and</strong> π-acceptors: the σ-donor character is via the lone pairs on the CH2<br />

groups <strong>and</strong> the π-acceptor character is via the vacant σ* orbital <strong>of</strong> the P-C(R) bond. Reacting the<br />

phosphonium salt [PhP(CH3)3][I] with 3 eqv <strong>of</strong> t BuLi in thf gives [Li2{PhP(CH2)3}.2THF]2 (1) (Fig 2A).<br />

Transmetallations with Fe2I produced the hydride complex [{PhP(CH2)3Fe}4(µ4-H)] -. Li(thf)4 + (2) (Fig<br />

2B), a rare example <strong>of</strong> a [metal]4[µ4-H] compound. [2]<br />

A B<br />

Figure 2: (a) Structure <strong>of</strong> (1) [Li2{PhP(CH2)3}.2THF]2, (b) The tetranuclear hydride comples<br />

[{PhP(CH2)3Fe}4(µ4-H)] -. Li(thf)4 + (2)<br />

[1] W.C. Kaska, Coordination Chemistry Reviews, 1983, 48, 1-58<br />

[2] Robert J. Less, Vesal Naseri, Dominic S. Wright, Organometallics, 2009, 13, 3594-3596


Poster 85<br />

Diazastanna Four-Membered Rings<br />

174<br />

IRIS-13 <strong>Victoria</strong><br />

Tomas Chlupaty,<br />

Ales Ruzicka, Zdenka Padelkova <strong>and</strong> Hana Vankatova<br />

(tom-mail@seznam.cz)<br />

Department <strong>of</strong> General <strong>and</strong> Inorganic Chemistry, Faculty <strong>of</strong> Chemical Technology, <strong>University</strong> <strong>of</strong><br />

Pardubice, Studentska 573, CZ-532 10, Pardubice, Czech Republic<br />

Two possible pathways <strong>of</strong> forming <strong>of</strong> diazastanna four-membered rings via delocalization <strong>of</strong> π-electrons<br />

over the whole fundamental NCN skeleton <strong>of</strong> formamidinato/amidinato/guanidinato unit are known. [1]<br />

The first direct route is based on the nucleophilic addition <strong>of</strong> stannylenes (especially Lappert´s type) to<br />

starting N,N´-disubstituted carbodiimides. The second one is the substitution reaction <strong>of</strong> lithium (or other<br />

group 1 or 2 elements) precursor [2] with tin halide (in molar ratio 1:1/2:1) via salt elimination <strong>of</strong> lithium<br />

halide (or group 1 or 2 halide). These tin containing compounds can be used in further reactivity, for<br />

example oxidative addition on the metal center, [3] substitution <strong>of</strong> lig<strong>and</strong>s <strong>and</strong> many many others. To the<br />

best <strong>of</strong> our knowledge the modern <strong>and</strong> sophisticated application is an activation <strong>of</strong> small (or larger)<br />

molecules by the help <strong>of</strong> formamidinato-/amidinato-/guanidinatotin cycles as a substrate. [4] The<br />

characterization <strong>of</strong> synthesized compounds was realized by XRD techniques <strong>and</strong> multinuclear NMR<br />

spectroscopy.<br />

Figure 1. The molecular structure <strong>of</strong> one <strong>of</strong> the compounds studied<br />

The authors would like to thank the Czech Science Foundation (grant nr. P207/12/0223) for financial<br />

support.<br />

[1] Nimitsiriwat, N.; Gibson, V. C.; Marshall, E. L.; White, J. P.; Daleb, S. H.; Elsegood, M. R. J. Dalton<br />

Trans. 2007, 4464; Sen, S. S.; Kritzler-Kosch, M. P.; Nagendran, S.; Roesky, H. W.; Beck, T.; Pal,<br />

A.; Herbst-Irmer, R. Eur. J. Inorg. Chem. 2010, 5304.<br />

[2] Chivers, T.; Fedorchuk, C.; Parvez, M. Inorg. Chem. 2004, 43, 2643.<br />

[3] Foley, S. F.; Yap, G. P. A.; Richeson, D. S. J. Chem. Soc., Dalton Trans. 2000, 1663.<br />

[4] Chlupaty, T.; Padelkova, Z.; DePr<strong>of</strong>t, F.; Willem, R.; Ruzicka, A. Organometallics 2012, 2203.


Aldridge, K9<br />

Allan, Po63<br />

Baines, K5<br />

Baker, O47<br />

Barth, Po44<br />

Baumgartner, O18<br />

Beckmann, O1<br />

Bertr<strong>and</strong>, P1<br />

Bimbös, Po12<br />

Binder, Po59<br />

Boeré, O50<br />

Boeré, Po81<br />

Bolli, Po45<br />

Bourissou, K1<br />

Br<strong>and</strong>, Po5<br />

Braunschweig, P3<br />

Bri<strong>and</strong>, Po41<br />

Bri<strong>and</strong>, Po74<br />

Bri<strong>and</strong>, Po75<br />

Chakrahari, O15<br />

Chitnis, Po73<br />

Chivers, O10<br />

Chlupaty, Po85<br />

Clyburne, Po1<br />

Cowley, Po61<br />

Cummins, K4<br />

Dane, Po84<br />

Dehnen, K3<br />

Diamond, Po22<br />

Dielmann, O36<br />

Dostál, Po19<br />

Driess, P8<br />

Dube, P33<br />

Dube, P78<br />

Dück, Po2<br />

Eironen, Po52<br />

Elder, Po32<br />

Espinosa, Po58<br />

Eußner, Po35<br />

Feierabend, Po11<br />

Ferkingh<strong>of</strong>f, Po4<br />

Fischer, O40<br />

Flock, Po25<br />

Forfar, Po23<br />

Frenking, K10<br />

Gabbaï, K12<br />

Gross, O4<br />

Presenting Author Index<br />

Gudat, O8<br />

Hasken, O55<br />

Hayward, O48<br />

Hazin, Po48<br />

Hering, Po68<br />

Hey-Hawkins, P6<br />

Horáček, Po9<br />

Hörl, Po7<br />

Houghton, Po71<br />

Hsieh, O19/Po65<br />

Hua, Po20<br />

Jäkle, O20<br />

Jambor, Po18<br />

Jancik, O51<br />

Jancik, Po29<br />

Jancik, Po82<br />

Jones, P7<br />

Jurschat, O53<br />

Karjalainen, Po54<br />

Keßler, O46<br />

King, Po55<br />

Klein, Po72<br />

Knapp, O28<br />

Knight, O22<br />

Kramer, Po3<br />

Kushida, Po56<br />

Kuwabara, Po39<br />

Laitinen, K2<br />

Lee, Po43<br />

Leitao, O14<br />

Less, O45<br />

Liu, C-W., O31<br />

Liu, S-Y., O38<br />

Lucas, Po37<br />

Lyčka, Po17<br />

Macdonald, C. O42<br />

MacDonald, E. Po34<br />

Mailman, withdrawn<br />

Majhi, Po57<br />

Masuda, O52<br />

Miyamoto, Po16<br />

Mori, O33<br />

Morrow, Po14<br />

Moya-Cabrera, O49<br />

Moya-Cabrera, Po80<br />

Myongwon Lee, Po70<br />

Naglav, Po67<br />

175<br />

Nagura, Po53<br />

Neilson, O46<br />

Nicholls-Allison, Po15<br />

Nordheider, Po31<br />

Olejnik, Po51<br />

Omae, O2<br />

Padelkova, Po66<br />

Passmore, O34<br />

Percival, O27<br />

Pichler, Po77<br />

Piers, P5<br />

Power, P4<br />

Preuss, O7<br />

Price, O32<br />

Priegert, Po60<br />

Radacki, Po64<br />

Ragogna, K11<br />

Rautiainen, O5<br />

Rawe, Po76<br />

Reed, K7<br />

Ritch, Po42<br />

Rivard, O30<br />

Roesler, O54<br />

Rosenberg, O24<br />

Ruzicka, O44<br />

Saito, M., O23<br />

Saito, M., Po21<br />

Saito, S., O29<br />

Sasamori, O21<br />

Scheer, O3<br />

Scheschkewitz, K6<br />

Schnepf, O37<br />

Schulz, O6<br />

Sekiguchi, P2<br />

Shang, Po6<br />

Slawin, Po36<br />

Streubel, O13<br />

Sugamata, Po13<br />

Swidan, Po8<br />

Tacke, O35<br />

Takaluoma, Po50<br />

ter Jung, Po27<br />

Tokitoh, O26<br />

Townsend, O12<br />

Tran, Po47<br />

Tsai, Po38<br />

Turek, Po49<br />

IRIS-13 <strong>Victoria</strong><br />

Uhlig, O43<br />

Vargas-Baca, O41<br />

Villalba Franco, Po24<br />

Villinger, Po10<br />

von Hänisch, O11<br />

Wahler, O9<br />

Wazir, O17<br />

Weig<strong>and</strong>, K8<br />

Weinert, Po28<br />

West, R., O25<br />

West, J., Po79<br />

Wilfling, Po26<br />

Wilson, Po69<br />

Wisian-Neilson, O39<br />

Wolf, O16<br />

Woollins, Po40<br />

Wright, K13<br />

Wrixon, Po62<br />

Zöller, Po30<br />

Zöller, Po83<br />

K = Keynote<br />

O = Oral<br />

P = Plenary<br />

Po = Poster

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!