04.01.2013 Views

Simulation of Criticality Accident Transients in Uranyl Nitrate ...

Simulation of Criticality Accident Transients in Uranyl Nitrate ...

Simulation of Criticality Accident Transients in Uranyl Nitrate ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Simulation</strong> <strong>of</strong><br />

<strong>Criticality</strong> <strong>Accident</strong><br />

<strong>Transients</strong> <strong>in</strong> <strong>Uranyl</strong><br />

<strong>Nitrate</strong> Solution with<br />

COMSOL Multiphysics<br />

Christopher J. Hurt<br />

University <strong>of</strong> Tennessee<br />

Nuclear Eng<strong>in</strong>eer<strong>in</strong>g<br />

(contact: churt2@utk.edu )<br />

Peter L. Angelo<br />

Y-12, Safety Analysis Eng<strong>in</strong>eer<strong>in</strong>g<br />

Ronald E. Pevey<br />

U. Tennessee, Nuclear Eng<strong>in</strong>eer<strong>in</strong>g Department<br />

Research funded by NNSA Y-12 and supported by<br />

a scholarship from the ANS Nuclear <strong>Criticality</strong><br />

Safety Division.<br />

Presented<br />

at the


Nuclear Eng<strong>in</strong>eer<strong>in</strong>g<br />

Presentation Outl<strong>in</strong>e<br />

• Brief background<br />

• Model Introduction<br />

• Govern<strong>in</strong>g Equations<br />

– Po<strong>in</strong>t K<strong>in</strong>etics<br />

– Conjugate Heat Transfer<br />

– Radiolytic Gas Transport<br />

• Results<br />

– SILENE benchmark<br />

– “Methodological” Exercise<br />

• Conclusions<br />

ANS W<strong>in</strong>ter Conference 2012 San Diego<br />

University <strong>of</strong> Tennessee (2)


Nuclear Eng<strong>in</strong>eer<strong>in</strong>g<br />

<strong>Criticality</strong> <strong>Transients</strong> <strong>in</strong> Solution<br />

• Typical Multiphysics Reactivity Feedbacks:<br />

– Included <strong>in</strong> Model: Radiolytic Gas, Thermal Expansion, Temperature<br />

(Cross Sections)<br />

– Not <strong>in</strong>cluded: Solution Ejection, Slosh<strong>in</strong>g, Boil<strong>in</strong>g, etc.<br />

ANS W<strong>in</strong>ter Conference 2012 San Diego<br />

University <strong>of</strong> Tennessee (3)


• Importance:<br />

Nuclear Eng<strong>in</strong>eer<strong>in</strong>g<br />

Model Introduction<br />

• Fissile solution transients <strong>of</strong>ten <strong>in</strong>troduce a strongly time-dependent<br />

radiation source term for emergency plann<strong>in</strong>g, characterization <strong>of</strong> which is<br />

motivated by ANSI/ANS-8.23-2007, Nuclear <strong>Criticality</strong> <strong>Accident</strong> Emergency<br />

Plann<strong>in</strong>g and Response.<br />

• LA-13638 R2000, A Review <strong>of</strong> <strong>Criticality</strong> <strong>Accident</strong>s documents the nature<br />

and high frequency <strong>of</strong> process accidents <strong>in</strong> fissile solution or slurry.<br />

• Purpose: Develop a “Level 1.5” model <strong>of</strong> criticality transients <strong>in</strong><br />

solution<br />

– Serve as flexible & powerful <strong>in</strong>termediary between “Level 2” models with<br />

full radiation transport & CFD (FETCH) and less exhaustive “Level 1”<br />

models (AGNES, CRITEX, TRACE)<br />

ANS W<strong>in</strong>ter Conference 2012 San Diego<br />

University <strong>of</strong> Tennessee (4)


Nuclear Eng<strong>in</strong>eer<strong>in</strong>g<br />

Multiphysics Model Structure<br />

ANS W<strong>in</strong>ter Conference 2012 San Diego<br />

University <strong>of</strong> Tennessee (5)


Neutron K<strong>in</strong>etics Balance<br />

dP<br />

dt<br />

�t� ��t<br />

�<br />

�<br />

Delayed Neutron Precursor Concentration<br />

�t� Nuclear Eng<strong>in</strong>eer<strong>in</strong>g<br />

� �<br />

�<br />

eff<br />

P<br />

dCi<br />

�i<br />

� n �i<br />

dt �<br />

Reactivity<br />

Po<strong>in</strong>t K<strong>in</strong>etics<br />

6<br />

�t� � � C �t� �<br />

i�1<br />

�t� � C �t� i<br />

i<br />

i<br />

�1:<br />

�t� � � � �t� ��<br />

�T<br />

��<br />

�V<br />

� 0<br />

T<br />

V<br />

�<br />

k<br />

temperature<br />

void volume<br />

�<br />

�<br />

�k<br />

�<br />

ramp T V<br />

i<br />

6<br />

P<br />

�<br />

�<br />

Ci<br />

�<br />

ANS W<strong>in</strong>ter Conference 2012 San Diego<br />

i<br />

�<br />

�<br />

i<br />

eff<br />

fission rate (fission/s)<br />

reactivity<br />

mean neutron generation time (s)<br />

DNP concentration (neutrons/m 3 )<br />

decay constant (1/s)<br />

delayed neutron fraction<br />

�<br />

6<br />

�<br />

i�1<br />

�<br />

i<br />

University <strong>of</strong> Tennessee (6)


• Po<strong>in</strong>t K<strong>in</strong>etics Parameters<br />

Nuclear Eng<strong>in</strong>eer<strong>in</strong>g<br />

Use <strong>of</strong> MCNP5<br />

– Us<strong>in</strong>g MCNP5-1.6’s KOPTS card<br />

precursor decay rates and delayed<br />

neutron fractions (λ i’s & β i’s) along with<br />

mean neutron generation time (Λ) can be<br />

calculated us<strong>in</strong>g<br />

• Reactivity Feedback<br />

– Step changes <strong>in</strong> reactivity vs. feedback<br />

parameters (void, temperature) are used<br />

to <strong>in</strong>form reactivity feedback coefficients<br />

(α k’s)<br />

ANS W<strong>in</strong>ter Conference 2012 San Diego<br />

University <strong>of</strong> Tennessee (7)


Neutron K<strong>in</strong>etics Balance<br />

dP<br />

dt<br />

�t� ��t<br />

�<br />

�<br />

Delayed Neutron Precursor Concentration<br />

�t� Nuclear Eng<strong>in</strong>eer<strong>in</strong>g<br />

� �<br />

�<br />

eff<br />

P<br />

dCi<br />

�i<br />

� n �i<br />

dt �<br />

Reactivity<br />

Po<strong>in</strong>t K<strong>in</strong>etics<br />

6<br />

�t� � � C �t� �<br />

i�1<br />

�t� � C �t� i<br />

i<br />

i<br />

�1:<br />

�t� � � � �t� ��<br />

�T<br />

��<br />

�V<br />

� 0<br />

T<br />

V<br />

�<br />

k<br />

temperature<br />

void volume<br />

�<br />

�<br />

�k<br />

�<br />

ramp T V<br />

i<br />

6<br />

P<br />

�<br />

�<br />

Ci<br />

�<br />

ANS W<strong>in</strong>ter Conference 2012 San Diego<br />

i<br />

�<br />

�<br />

i<br />

eff<br />

fission rate (fission/s)<br />

reactivity<br />

mean neutron generation time (s)<br />

DNP concentration (neutrons/m 3 )<br />

decay constant (1/s)<br />

delayed neutron fraction<br />

�<br />

MCNP5<br />

6<br />

�<br />

i�1<br />

�<br />

KOPTS card<br />

i<br />

University <strong>of</strong> Tennessee (8)


Nuclear Eng<strong>in</strong>eer<strong>in</strong>g<br />

Conjugate Heat Transfer<br />

Heat Conduction & Convection Volumetric Heat Source<br />

n<br />

� �T<br />

�<br />

Pwe<br />

�� Cp � � u ��T<br />

� � ��<br />

( k�T<br />

) � Q Q � �<br />

� �t<br />

�<br />

V i�<br />

T<br />

u<br />

t<br />

Q<br />

��<br />

k<br />

C<br />

p<br />

temperature (K)<br />

fluid velocity (m/s)<br />

time (s)<br />

volumetric heat source (W/m 3 )<br />

material density(kg/m 3 )<br />

material thermal conductivity (W/m-K)<br />

material specific heat capacity (W/kg-K)<br />

P<br />

w<br />

V<br />

ANS W<strong>in</strong>ter Conference 2012 San Diego<br />

i<br />

e<br />

x , L , �<br />

i<br />

i<br />

B.C.’s<br />

1<br />

� �x<br />

� i cos<br />

�<br />

� ��<br />

�<br />

� i<br />

� Li<br />

�<br />

power (fission/s)<br />

fission energy release(J/fission)<br />

fissile solution volume (m 3 )<br />

i th dimensional position (m),<br />

length (m) and phase shift<br />

• Heat cont<strong>in</strong>uity at <strong>in</strong>ternal<br />

boundaries<br />

• Natural Convection to air<br />

at external boundaries<br />

• Insulation/Symmetry at<br />

center boundaries<br />

University <strong>of</strong> Tennessee (9)


Nuclear Eng<strong>in</strong>eer<strong>in</strong>g<br />

Conjugate Heat Transfer (cont’d)<br />

Incompressible Navier-Stokes momentum<br />

�u<br />

T<br />

�<br />

�<br />

��<br />

�<br />

p<br />

�<br />

F<br />

�t<br />

B.C.’s<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�u ���u<br />

� ��p<br />

� � ���u<br />

� ��u� �� ���<br />

�u�I<br />

� F<br />

pressure (Pa)<br />

material dynamic viscosity (Pa-s)<br />

external body force (N/m 3 )<br />

• No slip at<br />

solution/co<strong>in</strong>ta<strong>in</strong>er walls<br />

• Outlet at external surface<br />

ANS W<strong>in</strong>ter Conference 2012 San Diego<br />

2<br />

3<br />

Mass Cont<strong>in</strong>uity<br />

� � �<br />

� ��<br />

�t<br />

� � �u�<br />

� 0<br />

�<br />

�<br />

�<br />

University <strong>of</strong> Tennessee (10)


Radiolytic Gas Bubble Volume<br />

�V<br />

�t<br />

V<br />

v<br />

v<br />

e<br />

P<br />

w<br />

e<br />

� (x)<br />

�<br />

B.C.’s<br />

Nuclear Eng<strong>in</strong>eer<strong>in</strong>g<br />

bubble gas volume (m 3 )<br />

bubble velocity (m/s)<br />

Radiolytic Gas Transport<br />

�v ���V<br />

� v P�t�w<br />

( C �C<br />

��C<br />

�C<br />

�<br />

energy-void transfer coefficient (m 6 /mol-J)<br />

power(fission/s)<br />

energy released per fission=> (J/fission)<br />

heavyside function (x>0 → 1)<br />

• Insulation/”Reflection” at conta<strong>in</strong>er<br />

walls<br />

• Outlet at solution surface<br />

e<br />

e<br />

0)<br />

ANS W<strong>in</strong>ter Conference 2012 San Diego<br />

Radiolytic Gas Concentration<br />

�C<br />

�t<br />

C<br />

C<br />

G<br />

Q<br />

�<br />

0<br />

H<br />

�<br />

�<br />

P<br />

0<br />

�v ���<br />

C<br />

�<br />

G<br />

radiolytic gas concentration (mol/m 3 )<br />

saturation concentration (mol/m 3 )<br />

gas molecular energy yield (mol/J)<br />

heat source (W/m 3 )<br />

dissolution rate (s)<br />

H<br />

Q<br />

�<br />

C<br />

�<br />

University <strong>of</strong> Tennessee (11)


COMSOL’s built-<strong>in</strong> mesh generator used to discretize<br />

the geometry and Direct solvers are utilized<br />

• Boundary layers <strong>in</strong> narrow doma<strong>in</strong>s located near steep flux<br />

gradients and/or fissile solution boundaries<br />

• Free triangular mesh elsewhere<br />

– “f<strong>in</strong>e”-”extra f<strong>in</strong>e” <strong>in</strong> core region (+ref<strong>in</strong>ements)<br />

– “coarse”-”normal” elsewhere<br />

• Each model set up with ~10-30k elements<br />

– ~20 thousand DOF →


Transient: SILENE LE1-641<br />

• Background<br />

– Part <strong>of</strong> a series <strong>of</strong> criticality<br />

benchmarks performed at the Valduc<br />

facility <strong>in</strong> France<br />

– Annular, cyl<strong>in</strong>drical sta<strong>in</strong>less steel<br />

reactor with control rod chamber<br />

– 93% Enriched <strong>Uranyl</strong> <strong>Nitrate</strong> (~71 g<br />

U/l) Solution<br />

– 2 $ reactivity ramp over t=0:20<br />

seconds<br />

• Model<br />

– 2-D Axisymmetric<br />

– Variable time-stepp<strong>in</strong>g, error < 1e-2<br />

Nuclear Eng<strong>in</strong>eer<strong>in</strong>g<br />

ANS W<strong>in</strong>ter Conference 2012 San Diego<br />

University <strong>of</strong> Tennessee (13)


1036 mm<br />

Transient: SILENE LE1-641 (cont’d)<br />

Nuclear Eng<strong>in</strong>eer<strong>in</strong>g<br />

368 mm<br />

AIR AIR<br />

142 mm 70 mm<br />

142 mm<br />

SOLUTION AIR<br />

SOLUTION<br />

REACTIVITY ROD CHANEL AXIS<br />

3 mm<br />

50.00 mm<br />

50.00 mm<br />

Am-Be SOURCE CENTER<br />

30 mm<br />

4 mm<br />

36 mm<br />

SOLUTION<br />

HEIGHT<br />

ANS W<strong>in</strong>ter Conference 2012 San Diego<br />

625 cm<br />

771 cm 1139 cm<br />

585 cm<br />

University <strong>of</strong> Tennessee (14)<br />

1


Nuclear Eng<strong>in</strong>eer<strong>in</strong>g<br />

Power (Fissions/sec)<br />

1.00E+17<br />

1.00E+16<br />

1.00E+15<br />

1.00E+14<br />

1.00E+13<br />

1.00E+12<br />

Comparison to Benchmark<br />

0 50 100 150 200 250 300<br />

Time (sec)<br />

ANS W<strong>in</strong>ter Conference 2012 San Diego<br />

SILENE LE1-641<br />

COMSOL<br />

University <strong>of</strong> Tennessee (15)


SILENE LE1-641: Reactivity Contributions<br />

Nuclear Eng<strong>in</strong>eer<strong>in</strong>g<br />

ANS W<strong>in</strong>ter Conference 2012 San Diego<br />

University <strong>of</strong> Tennessee (16)


Nuclear Eng<strong>in</strong>eer<strong>in</strong>g<br />

SILENE LE1-641: Temperature<br />

ANS W<strong>in</strong>ter Conference 2012 San Diego<br />

University <strong>of</strong> Tennessee (17)


Distribution <strong>of</strong> radiolytic gas around the first excursion<br />

peak<br />

Nuclear Eng<strong>in</strong>eer<strong>in</strong>g<br />

ANS W<strong>in</strong>ter Conference 2012 San Diego<br />

University <strong>of</strong> Tennessee (18)


Transient: “Methodological” Exercise<br />

– Theoretical situation postulated by<br />

the OECD/NEA <strong>Criticality</strong> Excursion<br />

Analyses Experts Group at the 2011<br />

International Conference on Nuclear<br />

<strong>Criticality</strong><br />

Nuclear Eng<strong>in</strong>eer<strong>in</strong>g<br />

• 93% Enriched <strong>Uranyl</strong> <strong>Nitrate</strong> (~71 g U/l)<br />

Solution<br />

• Rectangular sta<strong>in</strong>less steel tank with no<br />

lid, surrounded by air<br />

– COMSOL: 3-D quarter-slice, Error <<br />

1e-2<br />

50 cm<br />

60 cm<br />

30 cm<br />

ANS W<strong>in</strong>ter Conference 2012 San Diego<br />

University <strong>of</strong> Tennessee (19)


50¢ Reactivity Step: Excursion History<br />

Nuclear Eng<strong>in</strong>eer<strong>in</strong>g<br />

ANS W<strong>in</strong>ter Conference 2012 San Diego<br />

University <strong>of</strong> Tennessee (20)


50¢ Reactivity Step: Reactivity Feedback<br />

Nuclear Eng<strong>in</strong>eer<strong>in</strong>g<br />

ANS W<strong>in</strong>ter Conference 2012 San Diego<br />

University <strong>of</strong> Tennessee (21)


Nuclear Eng<strong>in</strong>eer<strong>in</strong>g<br />

50¢ Reactivity Step: Temperature<br />

ANS W<strong>in</strong>ter Conference 2012 San Diego<br />

University <strong>of</strong> Tennessee (22)


Summary and Conclusions<br />

• COMSOL-based models <strong>of</strong> UN solution transients were created<br />

via built-<strong>in</strong> & equation-based model<strong>in</strong>g<br />

– 3 coupled physics phenomena: neutronics, conjugate heat transfer & radiolytic<br />

gas transport<br />

– 3-D & 2-D axisymmetric geometries<br />

– Nuclear data derived from MCNP5-1.60 & KOPTS card<br />

• Results are encourag<strong>in</strong>g<br />

– Expected power excursion behavior observed for all cases<br />

– Good agreement between referenced benchmark SILENE LE1-641<br />

• Plenty <strong>of</strong> room for improvement<br />

– Solution Slosh<strong>in</strong>g (surface distortion, mov<strong>in</strong>g mesh)<br />

– Space-time neutron k<strong>in</strong>etics methodology (few-group diffusion)<br />

– Extension to other benchmarks (different geometries & solutions)<br />

– Solution boil<strong>in</strong>g<br />

Nuclear Eng<strong>in</strong>eer<strong>in</strong>g<br />

ANS W<strong>in</strong>ter Conference 2012 San Diego<br />

University <strong>of</strong> Tennessee (23)


Questions??<br />

• COMSOL, Inc., “COMSOL Multiphysics User’s Guide,” Version 4.3, Burl<strong>in</strong>gton, MA (2012)<br />

• MCLAUGHLIN, T., MONAHAN, S., PRUVOST, N., FROLOV, V., RYAZANOV, B., SVIRIDOV. I., "A<br />

Review <strong>of</strong> <strong>Criticality</strong> <strong>Accident</strong>s: 2000 revision” Report LA-13638, Los Alamos National<br />

Laboratory (2000)<br />

• MIYOSHI, Y., et. al., “Inter-code Comparison Exercise for <strong>Criticality</strong> Excursion Analysis,” NEA<br />

No. 6285, Nuclear Energy Agency, Organisation <strong>of</strong> Economic Co-operation and Development<br />

(2009)<br />

• BASOGLU, B., YAMAMOTO, T., OKUNO, H., NOMURA, Y.,“Development <strong>of</strong> a New <strong>Simulation</strong><br />

Code for Evaluation <strong>of</strong> <strong>Criticality</strong> <strong>Transients</strong> Involv<strong>in</strong>g Fissile Solution Boil<strong>in</strong>g,” JAERI-<br />

Data/Code-98-011, Japan Atomic Energy Institute (1998)<br />

• X-5 Monte Carlo Team, MCNP—A General Monte Carlo N-Particle Transport Code, Version 5,<br />

LA-CP-03-0245, Los Alamos National Laboratory (2003)<br />

• CHANDLER, D., Spatially-Dependent Reactor K<strong>in</strong>etics and Support<strong>in</strong>g Physics Validation<br />

Studies at the High Flux Isotope Reactor, PhD Diss., University <strong>of</strong> Tennessee (2011)<br />

• KIEDROWSKI, B., et. al., MCNP5-1.6, Feature Enhancements and Manual Clarifications, LA-UR-<br />

10-06217, Los Alamos National Laboratory, Los Alamos, N.M (2010)<br />

• STACEY, W., Nuclear Reactor Physics, p. 147, WILEY-VCH, Berl<strong>in</strong>, Germany (2007)<br />

Nuclear Eng<strong>in</strong>eer<strong>in</strong>g<br />

ANS W<strong>in</strong>ter Conference 2012 San Diego<br />

University <strong>of</strong> Tennessee (24)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!