05.01.2013 Views

The role of soil-forming processes in the - Department of Soil Science

The role of soil-forming processes in the - Department of Soil Science

The role of soil-forming processes in the - Department of Soil Science

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Ž .<br />

Geoderma 95 2000 53–72<br />

<strong>The</strong> <strong>role</strong> <strong>of</strong> <strong>soil</strong>-<strong>form<strong>in</strong>g</strong> <strong>processes</strong> <strong>in</strong> <strong>the</strong> def<strong>in</strong>ition<br />

<strong>of</strong> taxa <strong>in</strong> <strong>Soil</strong> Taxonomy and <strong>the</strong> World <strong>Soil</strong><br />

Reference Base<br />

J.G. Bockheim a,) , A.N. Gennadiyev b<br />

a <strong>Department</strong> <strong>of</strong> <strong>Soil</strong> <strong>Science</strong>, UniÕersity <strong>of</strong> Wiscons<strong>in</strong>, 1525 ObserÕatory DriÕe, Madison, WI<br />

53706-1299, USA<br />

b Faculty <strong>of</strong> Geography, M.V. LomonosoÕ Moscow State UniÕersity, Moscow 119899, Russia<br />

Abstract<br />

Received 10 March 1999; accepted 21 September 1999<br />

Modern <strong>soil</strong> taxonomic systems, <strong>in</strong>clud<strong>in</strong>g <strong>Soil</strong> Taxonomy Ž ST. and <strong>the</strong> World Reference Base<br />

Ž WRB. for <strong>Soil</strong> Resources, classify <strong>soil</strong>s us<strong>in</strong>g diagnostic horizons, properties, and materials.<br />

Although <strong>the</strong>se systems are based on genetic pr<strong>in</strong>ciples, <strong>the</strong> approaches used have de-emphasized<br />

<strong>the</strong> <strong>role</strong> <strong>of</strong> <strong>soil</strong> <strong>processes</strong> <strong>in</strong> <strong>soil</strong> taxonomic systems. Meanwhile, a consideration <strong>of</strong> <strong>soil</strong> <strong>processes</strong><br />

is important for understand<strong>in</strong>g <strong>the</strong> genetic underp<strong>in</strong>n<strong>in</strong>gs <strong>of</strong> modern <strong>soil</strong> taxonomic systems and<br />

develop<strong>in</strong>g quantitative models <strong>of</strong> pedogenic systems. Seventeen generalized <strong>soil</strong>-<strong>form<strong>in</strong>g</strong> <strong>processes</strong><br />

are identified, briefly discussed, and l<strong>in</strong>ked to <strong>soil</strong> taxa and diagnostic horizons, properties,<br />

and materials <strong>in</strong> ST and <strong>the</strong> WRB. <strong>The</strong> <strong>processes</strong> are illustrated <strong>in</strong> simple diagrams and <strong>in</strong>clude:<br />

Ž. 1 argilluviation, Ž. 2 biological enrichment <strong>of</strong> base cations, Ž. 3 andisolization, Ž. 4 paludization,<br />

Ž. 5 gleization, Ž. 6 melanization, Ž. 7 ferrallitization, Ž. 8 podzolization, Ž. 9 base cation leach<strong>in</strong>g,<br />

Ž 10. vertization, Ž 11. cryoturbation, Ž 12. sal<strong>in</strong>ization, Ž 13. calcification, Ž 14 . , solonization, Ž 15.<br />

solodization, Ž 16. silicification, and Ž 17. anthrosolization. <strong>The</strong> implications <strong>of</strong> <strong>soil</strong>-<strong>form<strong>in</strong>g</strong><br />

<strong>processes</strong> on present and future <strong>soil</strong> classification systems and pedogenic models are discussed.<br />

q 2000 Elsevier <strong>Science</strong> B.V. All rights reserved.<br />

Keywords: pedology; <strong>soil</strong> genesis; <strong>soil</strong> classification; <strong>soil</strong> <strong>processes</strong>; <strong>soil</strong> taxonomy; <strong>soil</strong> taxonomy;<br />

World <strong>Soil</strong> Reference Base<br />

) Correspond<strong>in</strong>g author. Fax: q1-608-265-2595.<br />

Ž .<br />

E-mail address: bockheim@facstaff.wise.edu J.G. Bockheim .<br />

0016-7061r00r$ - see front matter q 2000 Elsevier <strong>Science</strong> B.V. All rights reserved.<br />

Ž .<br />

PII: S0016-7061 99 00083-X


54<br />

1. Introduction<br />

( )<br />

J.G. Bockheim, A.N. GennadiyeÕrGeoderma 95 2000 53–72<br />

Dur<strong>in</strong>g <strong>the</strong> first half <strong>of</strong> <strong>the</strong> twentieth century, <strong>soil</strong> classification systems paid<br />

considerable attention to <strong>soil</strong>-<strong>form<strong>in</strong>g</strong> <strong>processes</strong>, beg<strong>in</strong>n<strong>in</strong>g with <strong>the</strong> pioneer<strong>in</strong>g<br />

efforts <strong>in</strong> 1903 <strong>of</strong> Dokuchaev Ž 1948. and <strong>in</strong>clud<strong>in</strong>g <strong>soil</strong> classification systems<br />

used <strong>in</strong> <strong>the</strong> USA from 1927 until <strong>the</strong> late 1950s ŽMarbut,<br />

1927; Baldw<strong>in</strong> et al.,<br />

1938. Ž Fig. 1 . . However, start<strong>in</strong>g with <strong>the</strong> ‘‘Seventh Approximation’’ Ž<strong>Soil</strong><br />

Survey Staff, 1960. and culm<strong>in</strong>at<strong>in</strong>g with <strong>Soil</strong> Taxonomy Ž ST. Ž<strong>Soil</strong><br />

Survey<br />

Staff, 1975 . , <strong>soil</strong>s <strong>in</strong> <strong>the</strong> USA and <strong>in</strong> countries adopt<strong>in</strong>g ST were classified with<br />

quantitative properties, particularly morphological properties, del<strong>in</strong>eated as diagnostic<br />

epipedons and horizons. <strong>Soil</strong>-<strong>form<strong>in</strong>g</strong> <strong>processes</strong> were de-emphasized and<br />

kept <strong>in</strong> <strong>the</strong> background.<br />

A similar approach was used by <strong>the</strong> FAO-UNESCO Ž 1974. and more recently<br />

<strong>in</strong> <strong>the</strong> World Reference Base Ž WRB. for <strong>Soil</strong> Resources Ž FAO, 1998 . . In Russia,<br />

<strong>soil</strong> taxonomic systems are converg<strong>in</strong>g with ST and <strong>the</strong> WRB as reflected <strong>in</strong><br />

schemes by Fridland Ž 1982 . , Shishov and Sokolov Ž 1990. and Shishov et al.<br />

Ž 1997. that emphasize <strong>soil</strong> properties Ž see Gennadiyev et al., 1995, 1996 . .<br />

However, some Russian, European Ž e.g., Aubert, 1968; Avery, 1973. and<br />

Australian Ž Isbell, 1996. <strong>soil</strong> classifications cont<strong>in</strong>ue to emphasize <strong>the</strong> <strong>soil</strong>-process<br />

approach.<br />

<strong>The</strong> movement away from an emphasis on <strong>soil</strong> <strong>processes</strong> was predicated on<br />

<strong>the</strong> assumption that <strong>soil</strong> properties result from <strong>soil</strong> <strong>processes</strong> and are more<br />

readily quantifiable than <strong>soil</strong> <strong>processes</strong> Ž Arnold, 1983 . . Moreover, <strong>soil</strong> <strong>processes</strong><br />

were considered to be poorly understood, and specific pedogenic <strong>processes</strong><br />

Fig. 1. Historical development <strong>of</strong> global <strong>soil</strong> taxonomic systems. Note: <strong>soil</strong> classification <strong>in</strong> <strong>the</strong><br />

USA proceeded from a property approach to a <strong>soil</strong>-process approach and <strong>the</strong>n back to a property<br />

approach with <strong>the</strong> advent <strong>of</strong> <strong>the</strong> Seventh Approximation. Traditionally from a process approach,<br />

<strong>soil</strong> classification <strong>in</strong> Russia has moved to a comb<strong>in</strong>ed processrproperties approach ŽSibertsev,<br />

1901; Whitney, 1909; C<strong>of</strong>fey, 1912; Gerasimov et al., 1939; Ivanova, 1956; Rozov and Ivanova,<br />

1967; Glazovskaya, 1972 . .


( )<br />

J.G. Bockheim, A.N. GennadiyeÕrGeoderma 95 2000 53–72 55<br />

occur simultaneously <strong>in</strong> a given <strong>soil</strong>, re<strong>in</strong>forc<strong>in</strong>g or contradict<strong>in</strong>g one ano<strong>the</strong>r<br />

Ž Simonson, 1959 . . It was also assumed that polygenesis likely has occurred <strong>in</strong><br />

most, if not all <strong>soil</strong>s, mak<strong>in</strong>g genetic <strong>in</strong>terpretations difficult. As <strong>soil</strong>-<strong>form<strong>in</strong>g</strong><br />

factors change, <strong>soil</strong>-<strong>form<strong>in</strong>g</strong> <strong>processes</strong> change, result<strong>in</strong>g <strong>in</strong> a change <strong>in</strong> <strong>soil</strong> taxa.<br />

An additional criticism <strong>of</strong> <strong>soil</strong> classification systems based on <strong>soil</strong> <strong>processes</strong> is<br />

that <strong>the</strong>y <strong>of</strong>ten conta<strong>in</strong> <strong>in</strong>sufficient taxa to satisfactorily del<strong>in</strong>eate global <strong>soil</strong>s.<br />

One <strong>of</strong> <strong>the</strong> creators <strong>of</strong> ST, Smith Ž 1983, p. 43 . , emphasized: ‘‘<strong>The</strong> genesis per<br />

se, cannot be used to def<strong>in</strong>e <strong>soil</strong> taxa and meet this objective. <strong>The</strong> <strong>processes</strong> that<br />

go on can rarely be observed or measured. Never<strong>the</strong>less, <strong>the</strong> genesis <strong>of</strong> <strong>soil</strong>s is<br />

extremely important both to <strong>the</strong> taxonomy <strong>of</strong> <strong>soil</strong>s and to <strong>the</strong> mapp<strong>in</strong>g <strong>in</strong> <strong>the</strong><br />

field. Genesis is important to <strong>the</strong> classification partly because it produces <strong>the</strong><br />

observable or measureable differences that can be used as differentiae. Genesis<br />

does not appear <strong>in</strong> <strong>the</strong> def<strong>in</strong>itions <strong>of</strong> <strong>the</strong> taxa but lies beh<strong>in</strong>d <strong>the</strong>m.’’<br />

Arnold Ž 1983. viewed <strong>the</strong> terms podzolization, calcification, solodization,<br />

laterization, and so forth, as ‘‘simplifications’’ <strong>of</strong> <strong>processes</strong> lead<strong>in</strong>g to horizon<br />

differentiation. Simonson Ž 1959. proposed that <strong>the</strong>se terms be replaced with <strong>the</strong><br />

terms additions, removals, translocations, and transformations. He postulated<br />

that <strong>the</strong>se generalized <strong>processes</strong> cause horizon differentiation <strong>in</strong> most if not all<br />

<strong>soil</strong>s. He suggested that it is <strong>the</strong> relative importance <strong>of</strong> <strong>the</strong> <strong>processes</strong> that<br />

governs horizonation <strong>in</strong> <strong>soil</strong> pr<strong>of</strong>iles. In our op<strong>in</strong>ion, <strong>the</strong>se terms are too general<br />

and are even more vague than <strong>the</strong> <strong>soil</strong>-<strong>form<strong>in</strong>g</strong> <strong>processes</strong> and give little<br />

<strong>soil</strong>-specific <strong>in</strong>formation on pedogenesis.<br />

While <strong>the</strong> current approach <strong>in</strong> ST has some merit with regards to <strong>the</strong> applied<br />

aspects <strong>of</strong> a classification system Ž i.e., <strong>soil</strong> survey, <strong>soil</strong> <strong>in</strong>terpretations, etc. . , <strong>in</strong><br />

our op<strong>in</strong>ion it has de-emphasized research and teach<strong>in</strong>g <strong>of</strong> <strong>soil</strong>-<strong>form<strong>in</strong>g</strong> <strong>processes</strong>.<br />

Cl<strong>in</strong>e and Johnson Ž 1963. described <strong>the</strong> ‘‘genetic threads’’ <strong>in</strong> ST,<br />

suggest<strong>in</strong>g that <strong>the</strong> choice <strong>of</strong> morphological characteristics for a category was<br />

based on an understand<strong>in</strong>g <strong>of</strong> how <strong>the</strong>se characteristics represented specific<br />

k<strong>in</strong>ds or degrees <strong>of</strong> pedogenic <strong>processes</strong>. Despite <strong>the</strong>se apparent ‘‘threads’’, few<br />

efforts have been made to l<strong>in</strong>k <strong>soil</strong>-<strong>form<strong>in</strong>g</strong> <strong>processes</strong> with <strong>soil</strong> taxa. Perhaps <strong>the</strong><br />

greatest criticism <strong>of</strong> <strong>the</strong> approach used <strong>in</strong> ST and <strong>the</strong> WRB is that diagnostic<br />

epipedons and horizons with<strong>in</strong> a pr<strong>of</strong>ile are not l<strong>in</strong>ked, i.e., <strong>the</strong> <strong>soil</strong> taxonomic<br />

systems are based on separate diagnostic horizons ra<strong>the</strong>r than <strong>the</strong> l<strong>in</strong>kage <strong>of</strong><br />

horizons <strong>in</strong> a <strong>soil</strong> pr<strong>of</strong>ile Ž Duchaufour, 1998 . . For example, <strong>the</strong> ‘‘genetic signal’’<br />

or driv<strong>in</strong>g variables enabl<strong>in</strong>g accumulation <strong>of</strong> organic matter or wea<strong>the</strong>r<strong>in</strong>g<br />

products <strong>in</strong> <strong>the</strong> diagnostic horizons are not identified.<br />

<strong>The</strong> quantitative pedological approach, <strong>in</strong> which ga<strong>in</strong>s, losses, transfers, and<br />

transformations <strong>of</strong> <strong>soil</strong> constitutents and <strong>the</strong> <strong>soil</strong> <strong>processes</strong> <strong>in</strong>volved are eluciated<br />

via chemical mass-balances ŽChadwick<br />

et al., 1990; Brimhall et al., 1991; Jersak<br />

et al., 1995. and <strong>the</strong> <strong>in</strong> situ solution chemistry approach ŽUgol<strong>in</strong>i<br />

and Dahlgren,<br />

1987. have enhanced our understand<strong>in</strong>g <strong>of</strong> <strong>soil</strong>-<strong>form<strong>in</strong>g</strong> <strong>processes</strong>.<br />

Specific <strong>soil</strong> <strong>processes</strong> are determ<strong>in</strong>ed by <strong>the</strong> <strong>soil</strong>-<strong>form<strong>in</strong>g</strong> factors and are<br />

expressed <strong>in</strong> diagnostic horizons, properties, and materials, which are <strong>the</strong>n used


56<br />

( )<br />

J.G. Bockheim, A.N. GennadiyeÕrGeoderma 95 2000 53–72<br />

to classify <strong>soil</strong>s: <strong>soil</strong>-<strong>form<strong>in</strong>g</strong> factors<strong>soil</strong>-<strong>form<strong>in</strong>g</strong> <strong>processes</strong>diagnostic<br />

horizons, properties, materials<strong>soil</strong> taxonomic system.<br />

<strong>The</strong>re are several advantages to a process-related emphasis <strong>in</strong> <strong>soil</strong> classification.<br />

A process emphasis is useful as a framework for expla<strong>in</strong><strong>in</strong>g <strong>the</strong> concepts <strong>of</strong><br />

<strong>soil</strong> classification, i.e., to show <strong>the</strong> genetic ‘‘threads’’ <strong>of</strong> diagnostic horizons and<br />

taxa. Secondly, a process emphasis is consistent with modern quantitative<br />

techniques <strong>in</strong> pedology, e.g., chemical mass balance and <strong>in</strong> situ solution<br />

chemistry. Thirdly, a process emphasis enables forecast<strong>in</strong>g <strong>of</strong> long-term biospheric<br />

changes. For example, much <strong>of</strong> <strong>the</strong> current research <strong>in</strong> global earth<br />

systems <strong>in</strong> which <strong>the</strong> pedosphere is recognized as a key part is process-oriented<br />

Ž Lev<strong>in</strong>e et al., 1993; Lovelock, 1993; Kutzbach et al., 1996 . . In addition,<br />

mechanistic models <strong>of</strong> pedogenesis ŽLev<strong>in</strong>e<br />

and Ciolkosz, 1986; Hoosbeek and<br />

Bryant, 1992; Phillips, 1993. require an understand<strong>in</strong>g <strong>of</strong> <strong>soil</strong> <strong>processes</strong>. F<strong>in</strong>ally,<br />

a process emphasis <strong>in</strong> <strong>soil</strong> classification is consistent with susta<strong>in</strong>able management<br />

<strong>of</strong> <strong>soil</strong> resources. Accord<strong>in</strong>gly, <strong>the</strong> objective <strong>of</strong> this paper is to identify <strong>the</strong><br />

key <strong>soil</strong>-<strong>form<strong>in</strong>g</strong> <strong>processes</strong> and <strong>the</strong>ir relationship to <strong>soil</strong> taxa and diagnostic<br />

horizons, properties, and materials and to illustrate <strong>the</strong>se <strong>processes</strong> <strong>in</strong> simple<br />

diagrams.<br />

2. Approach<br />

We reviewed <strong>the</strong> published literature on <strong>soil</strong>-<strong>form<strong>in</strong>g</strong> <strong>processes</strong> and exam<strong>in</strong>ed<br />

models <strong>of</strong> Rode Ž 1947 . , Simonson Ž 1959, 1975 . , Gerasimov and Glazovskaya<br />

Ž 1960 . , Yaalon Ž 1960, 1975 . , Arnold Ž 1965 . , Dijkerman Ž 1974 . , Huggett Ž1975,<br />

1998 . , Pedro Ž 1983 . , Rozanov Ž 1983 . , Smeck et al. Ž 1983 . , Beckmann Ž 1984 . ,<br />

and Johnson and Watson-Stegner Ž 1987 . . In general, <strong>the</strong>se models recognize<br />

<strong>soil</strong>-<strong>form<strong>in</strong>g</strong> <strong>processes</strong> at three levels. <strong>The</strong> highest level considers generalized<br />

<strong>processes</strong> that del<strong>in</strong>eate <strong>soil</strong>s from o<strong>the</strong>r sub-systems <strong>of</strong> <strong>the</strong> biosphere ŽRode,<br />

1947; Furley and Newey, 1983 . . <strong>The</strong> second level is dependent on <strong>in</strong>puts,<br />

outputs, transfers Ž or translocations . , and transformations <strong>of</strong> energy and matter<br />

Ž Simonson, 1959 . , refers to specific <strong>soil</strong>-<strong>form<strong>in</strong>g</strong> <strong>processes</strong> Ž macro<strong>processes</strong> . ,<br />

and is <strong>the</strong> focus <strong>of</strong> this paper. <strong>The</strong> third level emphasizes <strong>soil</strong> ‘‘micro-<strong>processes</strong>’’<br />

or specific <strong>processes</strong> such as N fixation, oxidation and reduction <strong>of</strong> Fe and Mn,<br />

ionic substitutions, and o<strong>the</strong>r chemical, physical and biological <strong>processes</strong> and<br />

reactions that are not considered <strong>in</strong> this paper.<br />

We listed <strong>the</strong> 12 orders <strong>in</strong> ST and <strong>the</strong> 30 <strong>soil</strong> groups <strong>in</strong> <strong>the</strong> WRB, identified<br />

<strong>the</strong> diagnostic horizonrmaterials used to del<strong>in</strong>eate <strong>the</strong> orders or <strong>soil</strong> groups, and<br />

listed specific <strong>soil</strong>-<strong>form<strong>in</strong>g</strong> <strong>processes</strong> important to <strong>the</strong> formation <strong>of</strong> <strong>the</strong>se horizonsrmaterials<br />

us<strong>in</strong>g term<strong>in</strong>ology <strong>of</strong> Byers et al. Ž 1938 . , Gerasimov Ž 1975 . ,<br />

Duchaufour Ž 1982 . , Zonn Ž 1995 . , and Buol et al. Ž 1997 . . F<strong>in</strong>ally, we prepared<br />

simplified diagrams to depict <strong>the</strong>se <strong>processes</strong> us<strong>in</strong>g specific symbols for accumulation,<br />

removal, and o<strong>the</strong>r special conditions.


3. Results<br />

( )<br />

J.G. Bockheim, A.N. GennadiyeÕrGeoderma 95 2000 53–72 57<br />

Of <strong>the</strong> 12 <strong>soil</strong> orders <strong>in</strong> ST, one Ž Mollisols. is identified on <strong>the</strong> basis <strong>of</strong> an<br />

epipedon and five are recognized by special materials or properties: Andisols<br />

Ž andic properties . , Histosols Ž histic materials . , Spodosols Ž spodic materials . ,<br />

Vertisols Ž slickensides, wedge-shaped aggregates, cracks . , and Gelisols Žgelic<br />

materials.Ž Tables 1 and 2 . . Four orders are identified on <strong>the</strong> basis <strong>of</strong> diagnostic<br />

horizons: Oxisols Ž oxic horizon. and Aridisols Žnatric,<br />

calcic or petrocalcic,<br />

gypsic or petrogypsic, salic, argillic, or duripan . ; Alfisols and Ultisols both have<br />

argillic horizons, but <strong>the</strong> former is base-rich and <strong>the</strong> latter is base-depleted. Of<br />

<strong>the</strong> rema<strong>in</strong><strong>in</strong>g two orders <strong>in</strong> ST, Inceptisols may have a cambic horizon or a<br />

histic, mollic, plaggen or umbric epipedon; Entisols have m<strong>in</strong>imal <strong>soil</strong> development<br />

but may have a diagnostic epipedon.<br />

With <strong>the</strong> exception <strong>of</strong> <strong>the</strong> weakly developed Leptosols, Arenosols and<br />

Regosols, <strong>soil</strong> groups <strong>in</strong> <strong>the</strong> WRB Ž FAO, 1998. also are def<strong>in</strong>ed by diagnostic<br />

horizons, properties, or materials Ž Table 3 . .<br />

Each <strong>of</strong> <strong>the</strong> <strong>soil</strong> taxonrdiagnostic horizonrpropertiesrmaterials <strong>in</strong> ST or <strong>the</strong><br />

WRB may be described by a dom<strong>in</strong>ant and specific <strong>soil</strong>-<strong>form<strong>in</strong>g</strong> process that<br />

can be def<strong>in</strong>ed so as to be reasonably well understood by users <strong>of</strong> <strong>the</strong>se <strong>soil</strong><br />

taxonomic systems. For example, Spodosols must conta<strong>in</strong> spodic materials that<br />

are a manifestation <strong>of</strong> <strong>the</strong> podzolization process. This process <strong>in</strong>volves ‘‘evidence<br />

that organic materials and alum<strong>in</strong>um, with or without iron, have been<br />

moved from an eluvial to an illuvial horizon’’ Ž <strong>Soil</strong> Survey Staff, 1998, p. 26 . .<br />

Although <strong>the</strong> podzolization process is not completely understood, most pedologists<br />

agree on <strong>the</strong> key aspects <strong>of</strong> <strong>the</strong> process.<br />

This approach is no different than that <strong>of</strong> establish<strong>in</strong>g limits for diagnostic<br />

horizons, materials, or properties. For example, a Spodosol may have andic-like<br />

properties and Andisols may have spodic-like characteristics. However, <strong>the</strong><br />

criteria for spodic properties and andic properties and <strong>the</strong> sequence <strong>in</strong> which<br />

<strong>the</strong>y are keyed out place dist<strong>in</strong>ct limits on <strong>the</strong> boundaries <strong>of</strong> Spodosols and<br />

Andisols. <strong>The</strong> same is true <strong>of</strong> <strong>soil</strong> <strong>processes</strong> Ž Table 2 . . Andisolization is <strong>the</strong><br />

dom<strong>in</strong>ant process <strong>in</strong> Andisols, but it is a subsidiary process to podzolization <strong>in</strong><br />

<strong>the</strong> andic subgroup <strong>of</strong> Spodosols.<br />

We identified 17 specific <strong>soil</strong> <strong>processes</strong> as related to <strong>the</strong>diagnostic<br />

horizonrpropertyrmaterial used to del<strong>in</strong>eate <strong>the</strong> 12 orders <strong>in</strong> ST and <strong>the</strong> 30 <strong>soil</strong><br />

groups <strong>in</strong> <strong>the</strong> WRB Ž Tables 1–3 . . <strong>The</strong>se <strong>processes</strong> are briefly described below<br />

and are illustrated <strong>in</strong> Fig. 2.<br />

3.1. ArgilluÕiation<br />

Ž .<br />

Argilluviation, also known as lessivage Duchaufour, 1998 , refers to <strong>the</strong><br />

movement <strong>of</strong> clay <strong>in</strong> <strong>the</strong> solum. <strong>The</strong> argillic horizon must conta<strong>in</strong> a m<strong>in</strong>imum<br />

clay <strong>in</strong>crease relative to <strong>the</strong> eluvial horizon or an underly<strong>in</strong>g horizon and show


Table 1<br />

<strong>Soil</strong>-<strong>form<strong>in</strong>g</strong> <strong>processes</strong> <strong>in</strong> relation to diagnostic horizons, properties, and materials by order <strong>in</strong> <strong>Soil</strong> Taxonomy<br />

<strong>Soil</strong> order Diagnostic horizon, <strong>Soil</strong>-<strong>form<strong>in</strong>g</strong> <strong>processes</strong> Representative<br />

properties, material horizon sequence<br />

Alfisol argillic horizon argilluviation ArErBtrC<br />

Ž high base status. biological enrichment <strong>of</strong> base cations<br />

Andisol melanic epipedon<br />

andic properties<br />

andisolization ArBwrC<br />

Aridisol natric horizon solonization, solodization ArEgrBtnrBkrByrC<br />

calcic, petrocalcic horizon calcification ArBkmrCk<br />

gypsic, petrogypsic horizon calcification ArCymrCy<br />

argillic horizon argilluviation ArErBtrCk<br />

duripan silicification ArBrCqm<br />

salic horizon waridic <strong>soil</strong> moisture regimex sal<strong>in</strong>ization AzrCz<br />

Histosol histic materials paludization OirOarOe<br />

Mollisol mollic epipedon melanization ArBtrC<br />

Ž high base status. biological enrichment <strong>of</strong> base cations<br />

Oxisol oxic horizon ferrallitization ArBorCr<br />

Spodosol spodic materials placic horizon podzolization OarErBhrBsrC<br />

albic horizon base cation leach<strong>in</strong>g<br />

Ultisol argillic Ž low base status. argilluviation base cation leach<strong>in</strong>g ErBtrC<br />

Vertisol Ž slickensides, cracks. vertization ArCss<br />

Gelisol gelic materials cryoturbation OrBgjjrCf<br />

Inceptisol cambic Ž plus o<strong>the</strong>rs. weak <strong>soil</strong> formation ArBwrC<br />

Entisol Ž none. very weak <strong>soil</strong> formation ArC<br />

All orders Žexcept<br />

reductimorphic features gleization ArBgrCg<br />

Aridisols. waquic <strong>soil</strong> moisture regimex<br />

Ž None. anthropic, plaggen horizons anthrosolization AprBwrC<br />

58<br />

J.G. Bockheim, A.N. GennadiyeÕrGeoderma 95 ( 2000) 53–72


Table 2<br />

Occurrence <strong>of</strong> 16 secondary <strong>soil</strong> macro-<strong>processes</strong> <strong>in</strong> taxa <strong>of</strong> <strong>Soil</strong> Taxonomy a<br />

Process Generalized <strong>soil</strong>- <strong>Soil</strong> taxa<br />

b<br />

<strong>form<strong>in</strong>g</strong> process<br />

Argilluviation 3 Alfisols; Ultisols; Aridisols Ž Argids . ; argi- great groups <strong>of</strong> Aridisols,<br />

Mollisols; kandi- great groups <strong>of</strong> Oxisols, alfic subgroups <strong>of</strong> Spodosols<br />

Biological enrichment <strong>of</strong> bases 3 Alfisols; Mollisols; eutric great groups <strong>of</strong> Inceptisols<br />

Andisolization 4 Andisols; andic subgroups <strong>of</strong> Spodosols<br />

Paludization 1, 4 Histisols; histic great groups <strong>of</strong> Gelisols<br />

Gleization 4 Aqul-suborders <strong>of</strong> all orders except Aridisols and Gelisols;<br />

Aqu- great groups <strong>of</strong> Aridisols and Gelisols<br />

Melanization 3 Mollisols; Inceptisols Ž Umbrepts . ; umbr- great groups <strong>of</strong> Alfisols and<br />

Ultisols; hum- great groups <strong>of</strong> Inceptisols<br />

Ferrallitization 4 Oxisols<br />

Podzolization 3, 4 Spodosols; spodic subgroups <strong>of</strong> Entisols and Andisols<br />

Base cation leach<strong>in</strong>g 2 Spodosols; Ultisols; dystr- great groups <strong>of</strong> Inceptisols and Vertisols<br />

Vertization 3 Vertisols; vertic subgroups <strong>of</strong> Alfisols, Aridisols, Entisols, Mollisols and Ultisols<br />

Cryoturbation 3 Gelisols<br />

Sal<strong>in</strong>ization 3 Aridisols Ž Salids . ; hal- great groups <strong>of</strong> Inceptisols; sal- great groups <strong>of</strong><br />

Aridisols and Vertisols<br />

Calcification 3 Aridisols Ž Calcids, Gypsids . ; calcic great groups <strong>of</strong> Aridisols, Mollisols, and<br />

Vertisols; gypsic great groups <strong>of</strong> Aridisols and Vertisols<br />

Solonization 3 natric great groups <strong>of</strong> Alfisols, Aridisols, Mollisols, and Vertisols<br />

Solodization 3 natric great groups <strong>of</strong> Alfisols and Mollisols<br />

Silicification 3, 4 Aridisols Ž Durids . ; dur- great groups <strong>of</strong> Alfisols, Andisols, Inceptisols,<br />

Mollisols, Spodosols, and Vertisols<br />

Anthrosolization 1 Entisols Ž Arents . ; Inceptisols Ž Anthrepts . ; anthropic subgroups <strong>of</strong> Aridisols,<br />

Inceptisols<br />

a<br />

Bold face denotes primary occurrence <strong>of</strong> a <strong>soil</strong>-<strong>form<strong>in</strong>g</strong> process.<br />

b<br />

1sAddition to <strong>soil</strong>; 2sloss from <strong>soil</strong>; 3stranslocation with<strong>in</strong> <strong>soil</strong>; 4stransformation <strong>of</strong> material with<strong>in</strong> <strong>soil</strong> Žafter<br />

Simonson, 1959; Buol et al.,<br />

1997 . .<br />

J.G. Bockheim, A.N. GennadiyeÕrGeoderma 95 ( 2000) 53–72 59


Table 3<br />

<strong>Soil</strong>-<strong>form<strong>in</strong>g</strong> <strong>processes</strong> <strong>in</strong> relation to diagnostic horizons, properties, and materials by <strong>soil</strong> group <strong>in</strong> WRB Ž FAO, 1998.<br />

Number <strong>Soil</strong> group Diagnostic horizon, <strong>Soil</strong>-<strong>form<strong>in</strong>g</strong> <strong>processes</strong> Representative<br />

properties, material horizon sequence<br />

1 Histosols histic or folic horizon paludization H1–H2–H3<br />

2 Cryosols cryic horizon cryoturbation O–Bg–Ci<br />

3 Anthrosols hortic, irragric, plaggic, terric, or<br />

anthraquic horizon, or anthropedogenic<br />

horizons, or anthropogeomorphic<br />

<strong>soil</strong> materials<br />

anthrosolization Ap–Bw–Ahb–Bwb<br />

4 Leptosols mollic, ochric, yermic, or<br />

vertic horizon<br />

Ž very weak <strong>soil</strong> formation. O–Cck<br />

5 Ventisols vertic horizon vertization Ah–Bwck–Ck<br />

6 Fluvisols fluvic <strong>soil</strong> materials Žfresh<br />

fluviatile, mar<strong>in</strong>e, or<br />

lacustr<strong>in</strong>e sediments.<br />

Ah–Bg–Cg–2Ahb<br />

7 Solonchaks salic horizon sal<strong>in</strong>ization Ahz–Bzy–Czy<br />

8 Gleysols gleyic properties gleization Ah–Bg–Cg<br />

9 Andosols vitrandic or andic horizon andisolization Ah–Bw–C<br />

10 Podzols spodic horizon podzolization Eh–Bs–BC–C<br />

11 Pl<strong>in</strong>thosols petropl<strong>in</strong>thic or pl<strong>in</strong>thic horizon podzolization, gleization Ah–Bsg–BCg<br />

12 Ferralsols ferralic horizon ferrallitization Ah–Bw–BC–C<br />

13 Solonetz natric horizon solonization, solodization Ah–Btn–C<br />

14 Planosols an eluvial horizon argilluviation, gleization Ah–Eg–2Btg<br />

15 Chernozems mollic horizon melanization Ah–Bk–Ck<br />

16 Kastanozems mollic horizon, calcic horizon melanization, calcification Ah–Bw–Ck<br />

17 Phaeozems mollic horizon melanization Ah–Bw–C<br />

18 Gypsisols gypsic or petrogypsic horizon,<br />

gypsic materials<br />

calcification Ah–Byk–Cyk<br />

19 Durisols duric or petroduric horizon silification A–Bw–Cqm<br />

20 Calcisols calcic or hypercalcic horizon calcification Ah–Bwk–Ck<br />

60<br />

J.G. Bockheim, A.N. GennadiyeÕrGeoderma 95 ( 2000) 53–72


( )<br />

J.G. Bockheim, A.N. GennadiyeÕrGeoderma 95 2000 53–72 61<br />

Fig. 2. Diagrams illustrat<strong>in</strong>g 17 key <strong>soil</strong> <strong>processes</strong> as related to <strong>the</strong> 12 orders <strong>in</strong> <strong>Soil</strong> Taxonomy<br />

Ž . Ž .<br />

1998 and <strong>the</strong> 30 <strong>soil</strong> groups <strong>in</strong> <strong>the</strong> WRB 1998 .<br />

evidence <strong>of</strong> clay movement Ž Buol and Hole, 1961 . . Argilluviation is a major<br />

process <strong>in</strong> Alfisols Ž )35% base saturation. and Ultisols Ž-35%<br />

base saturation.<br />

but also may occur <strong>in</strong> Mollisols, Aridisols Ž Argids . , kandic great groups <strong>of</strong><br />

Oxisols, and alfic subgroups <strong>of</strong> Spodosols Ž Table 2 . . Lesser degrees <strong>of</strong> this<br />

process may occur <strong>in</strong> Gelisols, Inceptisols and o<strong>the</strong>r <strong>soil</strong> orders. Def<strong>in</strong>ed<br />

similarly as <strong>the</strong> argillic horizon, argic horizons occur <strong>in</strong> several <strong>soil</strong> groups <strong>of</strong><br />

<strong>the</strong> WRB, <strong>in</strong>clud<strong>in</strong>g Albeluvisols, Nitisols, Luvisols, and Lixisols Ž Table 3 . .


62<br />

( )<br />

J.G. Bockheim, A.N. GennadiyeÕrGeoderma 95 2000 53–72<br />

3.2. Biological enrichment <strong>of</strong> base cations<br />

Vegetation plays an important <strong>role</strong> <strong>in</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g <strong>the</strong> base-cation ŽCa,<br />

Mg, K,<br />

and Na. content <strong>of</strong> Alfisols and Mollisols ŽLaudelot<br />

and Robert, 1994; Quideau<br />

et al., 1996 . . Grasses and temperate deciduous forest types are especially<br />

effective <strong>in</strong> tak<strong>in</strong>g up and return<strong>in</strong>g large amounts <strong>of</strong> base cations <strong>in</strong> litterfall,<br />

throughfall, stemflow, and belowground <strong>processes</strong> such as root exudation and<br />

f<strong>in</strong>e-root turnover Ž Duvigneaud and Denaeyer-DeSmet, 1970 . . Alfisols and<br />

Mollisols require that <strong>the</strong> base-cation content be G35% and G50%, respectively,<br />

<strong>in</strong> a def<strong>in</strong>ed portion <strong>of</strong> <strong>the</strong> solum. A weak version <strong>of</strong> biological<br />

enrichment <strong>of</strong> base cations is evident <strong>in</strong> eutric great groups <strong>of</strong> Inceptisols ŽTable<br />

3 . . In <strong>the</strong> WRB, Luvisols and Lixisols are enriched <strong>in</strong> bases Ž Table 3 . .<br />

3.3. Andisolization<br />

Andisolization results <strong>in</strong> <strong>soil</strong>s whose f<strong>in</strong>e-earth fraction is dom<strong>in</strong>ated by<br />

amorphous compounds. Andisols must have andic properties, which <strong>in</strong>clude<br />

high amounts <strong>of</strong> acid-oxalate-extractable Al and Fe, a low bulk density, a high<br />

phosphate retention, and <strong>in</strong> allophanic <strong>soil</strong>s an abundance <strong>of</strong> volcanic glass.<br />

<strong>The</strong>se <strong>soil</strong>s are referred to as Andisols <strong>in</strong> ST and Andosols <strong>in</strong> <strong>the</strong> WRB ŽTables<br />

2 and 3 . . <strong>The</strong> <strong>in</strong> situ solution chemistry approach has been especially effective<br />

<strong>in</strong> dist<strong>in</strong>guish<strong>in</strong>g between andisolization and podzolization ŽUgol<strong>in</strong>i<br />

et al., 1988;<br />

Dahlgren et al., 1991 . . As mentioned previously, andisolization is a subsidiary<br />

process <strong>in</strong> andic subgroups <strong>of</strong> Spodosols.<br />

3.4. Paludization<br />

This term perta<strong>in</strong>s primarily to <strong>the</strong> deep Ž )40 cm. accumulation <strong>of</strong> organic<br />

matter Ž histic materials. on <strong>the</strong> landscape usually <strong>in</strong> marshy areas. Most <strong>soil</strong>s<br />

featur<strong>in</strong>g paludization are <strong>in</strong> <strong>the</strong> Histosol order Ž ST. or <strong>soil</strong> group Ž WRB . , but<br />

<strong>soil</strong>s conta<strong>in</strong><strong>in</strong>g histic materials -40 cm occur <strong>in</strong> <strong>the</strong> Gelisol and Inceptisol<br />

orders <strong>of</strong> ST Ž Tables 2 and 3 . . Ripen<strong>in</strong>g is a sub-process <strong>of</strong> paludization and<br />

refers to chemical, physical and biological changes follow<strong>in</strong>g dra<strong>in</strong>age and<br />

aeration <strong>of</strong> organic materials Ž Pons and Van Der Molen, 1973 . .<br />

3.5. Gleization<br />

Gleization Ž hydromorphism. refers to <strong>the</strong> presence <strong>of</strong> aquic conditions <strong>of</strong>ten<br />

evidenced by reductimorphic or redoximorphic features such as mottles, gley<strong>in</strong>g,<br />

etc. Ž Bouma, 1983; Blume and Schlicht<strong>in</strong>g, 1985 . . <strong>The</strong> effect <strong>of</strong> reduction and<br />

oxidation <strong>processes</strong> has focused on iron and mangenese compounds s<strong>in</strong>ce <strong>the</strong>se<br />

result <strong>in</strong> visible morphological features that have been used for predict<strong>in</strong>g<br />

<strong>soil</strong>-moisture regimes. Gleization is recognized <strong>in</strong> aquic suborders <strong>of</strong> 10 <strong>of</strong> <strong>the</strong>


( )<br />

J.G. Bockheim, A.N. GennadiyeÕrGeoderma 95 2000 53–72 63<br />

12 <strong>soil</strong> orders <strong>in</strong> ST and at <strong>the</strong> great group level <strong>in</strong> Aridisols and Gelisols ŽTable<br />

2 . . In <strong>the</strong> WRB, gleization occurs <strong>in</strong> Gleysols and <strong>in</strong> some Pl<strong>in</strong>thosols and<br />

Planosols Ž Table 3 . .<br />

3.6. Melanization<br />

Some <strong>soil</strong>s are characterized by <strong>the</strong> accumulation <strong>of</strong> well-humified organic<br />

matter with<strong>in</strong> <strong>the</strong> upper m<strong>in</strong>eral <strong>soil</strong>. In ST and <strong>the</strong> WRB, <strong>the</strong>se <strong>soil</strong>s <strong>of</strong>ten have<br />

ei<strong>the</strong>r a mollic or a umbric epipedon. In ST, <strong>the</strong>se horizons have at least 0.6%<br />

organic C and be G18 cm <strong>in</strong> thickness Ž <strong>Soil</strong> Survey Staff, 1998 . . Where <strong>soil</strong>s<br />

subject to melanization are base-enriched, <strong>the</strong> humus accumulation is reflective<br />

<strong>of</strong> a mollic epipedon Ž Mollisols . ; where bases are depleted, <strong>the</strong> <strong>soil</strong>s have an<br />

umbric epipedon Ž Table 2 . . Additional <strong>soil</strong>s show<strong>in</strong>g melanization <strong>in</strong>clude<br />

umbric great groups <strong>of</strong> Alfisols and Ultisols and humic great groups <strong>of</strong><br />

Inceptisols. In <strong>the</strong> WRB, mollic horizons occur <strong>in</strong> Chernozems, Kastanozems,<br />

Ž .<br />

and Phaeozems; and umbric horizons exist <strong>in</strong> Umbrisols Table 3 .<br />

3.7. Ferrallitization<br />

<strong>Soil</strong>s <strong>of</strong> <strong>the</strong> <strong>in</strong>ter-tropical regions undergo a series <strong>of</strong> <strong>processes</strong> <strong>in</strong> which <strong>in</strong> Al<br />

and Fe are concentrated and Si is lost <strong>in</strong> <strong>the</strong> pr<strong>of</strong>ile as a result primary and<br />

secondary m<strong>in</strong>eral wea<strong>the</strong>r<strong>in</strong>g Ž Righi et al., 1990 . . Duchaufour Ž 1982. envisioned<br />

this process as conta<strong>in</strong><strong>in</strong>g three phases, <strong>in</strong>clud<strong>in</strong>g fersiallitization, ferrallitizatiion,<br />

and ferrug<strong>in</strong>ation. <strong>The</strong>se three phases are characterized by an <strong>in</strong>creas<strong>in</strong>g<br />

degree <strong>of</strong> wea<strong>the</strong>r<strong>in</strong>g <strong>of</strong> primary m<strong>in</strong>erals, an <strong>in</strong>creas<strong>in</strong>g loss <strong>of</strong> Si, and an<br />

<strong>in</strong>creased dom<strong>in</strong>ance <strong>of</strong> secondary clays from <strong>in</strong>congruent dissolution. Ferrallitization<br />

is preem<strong>in</strong>ent <strong>in</strong> Oxisols but also occurs <strong>in</strong> Ultisols ŽFerralsols<br />

and<br />

Acrisols <strong>in</strong> <strong>the</strong> WRB.Ž Tables 2 and 3 . .<br />

3.8. Podzolization<br />

Podzolization is a complex collection <strong>of</strong> <strong>processes</strong> that <strong>in</strong>cludes eluviation <strong>of</strong><br />

base cations, wea<strong>the</strong>r<strong>in</strong>g transformation <strong>of</strong> Fe and Al compounds, mobilization<br />

<strong>of</strong> Fe and Al <strong>in</strong> surface horizons, and transport <strong>of</strong> <strong>the</strong>se compounds to <strong>the</strong> spodic<br />

Ž Bs. horizon as Fe and Al complexes with fulvic acids and o<strong>the</strong>r complex<br />

polyaromatic compounds ŽUgol<strong>in</strong>i<br />

and Dahlgren, 1987; Ugol<strong>in</strong>i et al., 1988;<br />

Gustafsson et al., 1995 . . Weaker degrees <strong>of</strong> podzolization occur <strong>in</strong> spodic<br />

subgroups <strong>of</strong> Entisols and Andisols Ž Table 2 . . In <strong>the</strong> WRB, podzolization occurs<br />

<strong>in</strong> Podzols and <strong>in</strong> Pl<strong>in</strong>thosols Ž Table 3 . . Podzolization is dist<strong>in</strong>guished from<br />

ferrallitization <strong>in</strong> that <strong>the</strong> Fe and Al complexed with organic acids is transported<br />

<strong>in</strong> <strong>the</strong> solum, whereas with ferrallitization, <strong>the</strong> Fe and Al are residual and are<br />

accompanied by strong desilication.


64<br />

3.9. Base-cation leach<strong>in</strong>g<br />

( )<br />

J.G. Bockheim, A.N. GennadiyeÕrGeoderma 95 2000 53–72<br />

<strong>The</strong> process is <strong>the</strong> opposite <strong>of</strong> biological enrichment <strong>of</strong> base cations and<br />

<strong>in</strong>volves eluviation <strong>of</strong> Ca, Mg, K, and Na from <strong>the</strong> solum under extreme<br />

leach<strong>in</strong>g conditions Ž e.g., Homann et al., 1992 . , primarily <strong>in</strong> Ultisols and<br />

Spodosols and <strong>in</strong> dystric great groups <strong>of</strong> Inceptisols and Vertisols Ž Table 2. and<br />

<strong>in</strong> Alisol and Lixisol <strong>soil</strong> groups <strong>in</strong> <strong>the</strong> WRB Ž Table 3 . .<br />

3.10. Vertization<br />

Vertization, or vertisolization Ž Duchaufour, 1998 . , represents a collection <strong>of</strong><br />

sub-<strong>processes</strong> occurr<strong>in</strong>g <strong>in</strong> Vertisols <strong>in</strong> which <strong>the</strong> <strong>soil</strong>, comprised <strong>of</strong> at least 60%<br />

smectitic clay, undergoes shr<strong>in</strong>k<strong>in</strong>g and swell<strong>in</strong>g that is evident at <strong>the</strong> landscape,<br />

pedon, and microscopic levels Ž Wild<strong>in</strong>g and Tessier, 1988 . . <strong>The</strong> shr<strong>in</strong>k<strong>in</strong>g and<br />

swell<strong>in</strong>g leads to crack<strong>in</strong>g, wedge-shaped aggregates tilted 108 to 608 from <strong>the</strong><br />

horizontal, and slickensides that are reflective <strong>of</strong> <strong>the</strong> vertization process. Vertic<br />

subgroups <strong>of</strong> Alfisols, Aridisols, Entisols, Mollisols, and Ultisols feature vertiza-<br />

Ž . Ž .<br />

tion Table 2 . In <strong>the</strong> WRB Vertisols conta<strong>in</strong> a vertic horizon Table 3 .<br />

3.11. Cryoturbation<br />

In permafrost-affected <strong>soil</strong>s Ž Gelisols . , cryoturbation or frost stirr<strong>in</strong>g is manifested<br />

by irregular and broken horizons and textural bands, <strong>in</strong>volutions, organic<br />

matter accumulation on <strong>the</strong> permafrost table, oriented stones, silt caps and<br />

accumulations, and deformed <strong>soil</strong> material associated with movements due to<br />

ice- and sand-wedge growth Ž Bockheim and Tarnocai, 1997 . . <strong>The</strong>se features are<br />

an <strong>in</strong>tegral component <strong>of</strong> gelic materials or a cryic horizon which must occur <strong>in</strong><br />

Gelisols Ž Bockheim et al., 1997; <strong>Soil</strong> Survey Staff, 1998. and Cryosols ŽFAO,<br />

1998 . , respectively Ž Tables 2 and 3 . .<br />

3.12. Sal<strong>in</strong>ization<br />

Nowadays, sal<strong>in</strong>ization is <strong>of</strong>ten used to describe human-caused <strong>in</strong>creases <strong>in</strong><br />

soluble salts <strong>in</strong> <strong>soil</strong>s and surface waters as a result <strong>of</strong> ‘‘desertification.’’ From a<br />

<strong>soil</strong> genesis standpo<strong>in</strong>t, sal<strong>in</strong>ization refers to <strong>the</strong> collection <strong>of</strong> sub-<strong>processes</strong> that<br />

enable <strong>the</strong> accumulation <strong>of</strong> soluble salts <strong>of</strong> Na, Ca, Mg, and K as chlorides,<br />

sulfates, carbonates, and bicarbonates. In general, <strong>the</strong>se salts are more soluble<br />

than gypsum <strong>in</strong> cold water, which may be concentrated <strong>in</strong> a salic horizon.<br />

Sal<strong>in</strong>ization is a dom<strong>in</strong>ant process <strong>in</strong> Aridisols Ž Salids . , halic great groups <strong>of</strong><br />

Inceptisols, and salic great groups <strong>of</strong> Aridisols, and Vertisols Ž Table 2 . . Sal<strong>in</strong>ization<br />

is a predom<strong>in</strong>ant process <strong>in</strong> Solonchaks <strong>in</strong> <strong>the</strong> WRB Ž Table 3 . .


3.13. Calcification<br />

( )<br />

J.G. Bockheim, A.N. GennadiyeÕrGeoderma 95 2000 53–72 65<br />

Calcification refers to <strong>the</strong> accumulation <strong>of</strong> secondary carbonates and gypsum<br />

<strong>in</strong> semi-arid and arid <strong>soil</strong>s ŽHarper,<br />

1957; Buol, 1964; Rabenhorst and Wild<strong>in</strong>g,<br />

1986. or <strong>the</strong> redistribution <strong>of</strong> carbonates <strong>in</strong> <strong>soil</strong>s <strong>of</strong> more humid regions<br />

Ž Schaetzl et al., 1996 . . <strong>The</strong> CaCO3 or CaSO4P2H 2O<strong>in</strong>itially<br />

fills micropores<br />

but over millennia may result <strong>in</strong> a strongly cemented petrocalcic or petrogypsic<br />

horizon Ž Gile et al., 1965 . . Calcification occurs <strong>in</strong> Calcids, calcic great groups <strong>of</strong><br />

Aridisols, Mollisols, and Vertisols, Gypsids, and gypsic great groups <strong>of</strong> Aridisols<br />

and Vertisols Ž Table 2 . . In <strong>the</strong> WRB, calcification occurs <strong>in</strong> Gypsisols,<br />

Calcisols, and <strong>in</strong> some Kastanozems Ž Table 3 . .<br />

3.14. Solonization<br />

Also referred to as alkalization, this process occurs when <strong>soil</strong>s subject to<br />

sal<strong>in</strong>ization are dra<strong>in</strong>ed Ž Kovda et al. 1979; Munn and Boehm, 1984 . . <strong>The</strong><br />

excess soluble salts are leached out, <strong>the</strong> colloids under <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> Na<br />

become dispersed, and a strongly alkal<strong>in</strong>e reaction develops. Solonization is<br />

dom<strong>in</strong>ant <strong>in</strong> natric great groups <strong>of</strong> Alfisols, Aridisols, Mollisols, and Vertisols <strong>of</strong><br />

ST Ž Table 2. and <strong>in</strong> Solonetzes <strong>of</strong> <strong>the</strong> WRB Ž Table 3 . .<br />

3.15. Solodization<br />

This process <strong>in</strong>volves argilluviation <strong>of</strong> <strong>the</strong> dispersed colloids as manifested by<br />

<strong>the</strong> development <strong>of</strong> an acid A horizon with very little colloidal material over a<br />

clay-enriched Btn horizon. Solodization is evident <strong>in</strong> natric great groups <strong>of</strong><br />

Alfisols and Mollisols Ž Table 2. and <strong>in</strong> Solonetzes <strong>of</strong> <strong>the</strong> WRB Ž Table 3 . .<br />

3.16. Silicification<br />

Silicification refers to <strong>the</strong> secondary accumulation <strong>of</strong> Si, <strong>of</strong>ten from a<br />

seasonal high water table <strong>in</strong> arid to humid regions. <strong>The</strong> Si may be cemented <strong>in</strong>to<br />

a material called a duripan Ž Chadwick et al., 1987; Blank and Fosberg, 1991 . ,<br />

which is common <strong>in</strong> Durids, a suborder <strong>of</strong> Aridisols, and <strong>in</strong> duri-great groups <strong>of</strong><br />

Alfisols, Andisols, Inceptisols, Mollisols, Spodosols, and Vertisols Ž Table 2 . .<br />

Silification is recognized <strong>in</strong> Durisol <strong>soil</strong> group <strong>in</strong> <strong>the</strong> WRB Ž FAO, 1998 . .<br />

3.17. Anthrosolization<br />

This process is a collection <strong>of</strong> geomorphic and pedologic <strong>processes</strong> result<strong>in</strong>g<br />

from human activities that <strong>in</strong>cludes deep work<strong>in</strong>g, <strong>in</strong>tensive fertilization, additions<br />

<strong>of</strong> extraneous materials, irrigation with sediment-rich waters, and wet<br />

cultivation Ž Kosse, 1990 . . In ST, anthrosolization is recognized <strong>in</strong> Entisols<br />

Ž Arent suborder . , Inceptisols Ž Anthrept suborder . , and <strong>in</strong> anthropic subgroups <strong>of</strong>


66<br />

( )<br />

J.G. Bockheim, A.N. GennadiyeÕrGeoderma 95 2000 53–72<br />

Aridisols and Inceptisols Ž Table 2 . . A separate <strong>soil</strong> group, <strong>the</strong> Anthrosols, is<br />

recognized <strong>in</strong> <strong>the</strong> WRB Ž Table 3 . ; Anthrosols are recognized as a <strong>soil</strong> order <strong>in</strong><br />

<strong>the</strong> Australian system Ž Isbell, 1996 . . In <strong>the</strong> WRB, Anthrosols must conta<strong>in</strong> a<br />

hortic, irragric, plaggic, terric, or anthraquic horizon, or anthrogeomorphic <strong>soil</strong><br />

materials.<br />

4. Discussion<br />

4.1. <strong>Soil</strong> <strong>processes</strong> <strong>in</strong> relation to <strong>soil</strong> classification<br />

All <strong>of</strong> <strong>the</strong> major <strong>processes</strong> identified by Gerasimov Ž 1975 . , Duchaufour<br />

Ž 1982 . , Zonn Ž 1995 . , and here<strong>in</strong> can be l<strong>in</strong>ked with taxa at <strong>the</strong> highest categories<br />

<strong>in</strong> ST Ž order, suborder. and WRB Ž <strong>soil</strong> group. Ž Tables 1 and 3 . . Although five<br />

<strong>processes</strong>, argilluviation, biological enrichment <strong>of</strong> bases, gleization, silicification,<br />

and anthrosolization, are dom<strong>in</strong>ant <strong>in</strong> two or more ordersr<strong>soil</strong> groups, <strong>the</strong><br />

o<strong>the</strong>r 12 <strong>processes</strong> are specific to a s<strong>in</strong>gle high-level <strong>soil</strong> taxon.<br />

In our analysis, we did not identify a process depict<strong>in</strong>g primary m<strong>in</strong>eral<br />

wea<strong>the</strong>r<strong>in</strong>g. In our view, primary m<strong>in</strong>eral wea<strong>the</strong>r<strong>in</strong>g occurs <strong>in</strong> most if not all<br />

<strong>soil</strong>s and is a byproduct <strong>of</strong> <strong>the</strong> 17 key <strong>soil</strong>-<strong>form<strong>in</strong>g</strong> <strong>processes</strong>. Primary m<strong>in</strong>eral<br />

wea<strong>the</strong>r<strong>in</strong>g is strongly associated with <strong>the</strong> <strong>processes</strong> <strong>of</strong> andisolization Žwea<strong>the</strong>r-<br />

<strong>in</strong>g <strong>of</strong> allophanic materials or production <strong>of</strong> nonallophanic secondary materials . ,<br />

gleization Žproduction<br />

<strong>of</strong> reduced forms <strong>of</strong> Fe- and Mn-bear<strong>in</strong>g m<strong>in</strong>erals, e.g.,<br />

lepidocrocite, maghemite, and goethite . , ferrallitization Ž<strong>in</strong>tense<br />

wea<strong>the</strong>r<strong>in</strong>g<br />

characterized by production <strong>of</strong> gibbsite and kaol<strong>in</strong>itic m<strong>in</strong>erals . , podzolization<br />

Ž release <strong>of</strong> Fe and Al from breakdown <strong>of</strong> Fe-bear<strong>in</strong>g m<strong>in</strong>erals . , and silicification<br />

Ž release and reorder<strong>in</strong>g <strong>of</strong> Si dur<strong>in</strong>g wea<strong>the</strong>r<strong>in</strong>g <strong>of</strong> silicate m<strong>in</strong>erals . .<br />

We exam<strong>in</strong>ed <strong>the</strong> 17 key <strong>soil</strong>-<strong>form<strong>in</strong>g</strong> <strong>processes</strong> <strong>in</strong> relation to Simonson’s<br />

Ž 1959. fourfold categorization <strong>of</strong> generalized <strong>soil</strong>-<strong>form<strong>in</strong>g</strong> <strong>processes</strong>: additions,<br />

losses, translocations, and transformations Ž Table 2 . . Only two <strong>of</strong> <strong>the</strong> <strong>processes</strong>,<br />

paludization and anthrosolization, are described partially on <strong>the</strong> basis <strong>of</strong> additions<br />

<strong>of</strong> material. With paludization <strong>the</strong> additions are <strong>in</strong> <strong>the</strong> form <strong>of</strong> organic<br />

matter, but <strong>the</strong> process also <strong>in</strong>cludes <strong>the</strong> subprocess ‘‘ripen<strong>in</strong>g’’ ŽPons<br />

and Van<br />

Der Molen, 1973 . , which <strong>in</strong>volves a chemical transformation or breakdown <strong>in</strong><br />

organic materials. Anthrosolization <strong>in</strong>volves additions by humans <strong>of</strong> fertilizers,<br />

sediment- and salt-rich irrigation water, as well as deep work<strong>in</strong>g or physical<br />

transformation <strong>of</strong> materials.<br />

Only one <strong>of</strong> <strong>the</strong> <strong>processes</strong> is strongly expressed by a loss from <strong>the</strong> <strong>soil</strong>,<br />

base-cation leach<strong>in</strong>g, which is pronounced <strong>in</strong> Spodosols, Ultisols, and dystric<br />

great groups <strong>of</strong> Inceptisols and Vertisols Ž Table 2 . . Ten <strong>of</strong> <strong>the</strong> <strong>processes</strong> <strong>in</strong>volve<br />

a translocation or transfer <strong>of</strong> <strong>soil</strong> materials such as clay Ž argilluviation . , base<br />

cations Ž biological enrichment <strong>of</strong> bases . , Fe and Al oxides and hydroxides


( )<br />

J.G. Bockheim, A.N. GennadiyeÕrGeoderma 95 2000 53–72 67<br />

Ž podzolization . , and salts Žsal<strong>in</strong>ization,<br />

calcification, solonization, and solodization<br />

. , or <strong>the</strong> formation <strong>of</strong> wedge-shaped aggregates dur<strong>in</strong>g vertization.<br />

F<strong>in</strong>ally, six <strong>of</strong> <strong>the</strong> <strong>processes</strong> <strong>in</strong>volve transformations, i.e., a change <strong>in</strong><br />

chemical form. <strong>The</strong> transformations <strong>in</strong>clude <strong>the</strong> formation <strong>of</strong> type A humic acids<br />

Ž andisolization . , ripen<strong>in</strong>g <strong>of</strong> organic materials Ž paludization . , transformations <strong>of</strong><br />

Fe and Mn under reduc<strong>in</strong>g conditions Ž gleization . , formation <strong>of</strong> an oxic horizon<br />

by breakdown <strong>of</strong> primary m<strong>in</strong>erals <strong>in</strong>to gibbsite and kaol<strong>in</strong>ite Ž ferrallitization . ,<br />

formation <strong>of</strong> spodic materials Ž podzolization . , and release <strong>of</strong> silica from silicate<br />

wea<strong>the</strong>r<strong>in</strong>g result<strong>in</strong>g <strong>in</strong> <strong>the</strong> formation <strong>of</strong> a duripan Ž silicification . .<br />

4.2. <strong>Soil</strong> <strong>processes</strong> and <strong>soil</strong> eÕolution<br />

Changes <strong>in</strong> <strong>soil</strong>-<strong>form<strong>in</strong>g</strong> factors dur<strong>in</strong>g <strong>soil</strong> evolution result <strong>in</strong> changes <strong>in</strong><br />

<strong>soil</strong>-<strong>form<strong>in</strong>g</strong> <strong>processes</strong> that lead to new <strong>soil</strong> taxa. For example, Bockheim et al.<br />

Ž 1996. reported <strong>the</strong> follow<strong>in</strong>g changes <strong>in</strong> <strong>soil</strong>-<strong>form<strong>in</strong>g</strong> <strong>processes</strong> dur<strong>in</strong>g <strong>soil</strong><br />

succession on tectonically uplifted mar<strong>in</strong>e terraces <strong>in</strong> coastal Oregon, USA.<br />

Andisols formed under coastal grasslands were converted to Spodosols as <strong>the</strong><br />

terraces were uplifted, positioned fur<strong>the</strong>r from <strong>the</strong> coast, and underwent succession<br />

to Picea sitchensis forest. <strong>The</strong> development <strong>of</strong> ortste<strong>in</strong> layers and placic<br />

horizons dur<strong>in</strong>g Spodosol formation resulted <strong>in</strong> restricted water movement<br />

which led to ferrolysis Ž ferrallitization . . F<strong>in</strong>ally, <strong>the</strong> ortste<strong>in</strong> layer was broken up<br />

by w<strong>in</strong>dthrow <strong>of</strong> trees and o<strong>the</strong>r physicochemical <strong>processes</strong>, and <strong>the</strong> <strong>soil</strong><br />

materials underwent fur<strong>the</strong>r transformations until Ultisols conta<strong>in</strong><strong>in</strong>g up to 50%<br />

clay <strong>in</strong> <strong>the</strong> Bt horizon were formed. <strong>The</strong>se f<strong>in</strong>d<strong>in</strong>gs confirm that <strong>soil</strong> <strong>processes</strong><br />

are dynamic and change <strong>in</strong> response to changes <strong>in</strong> environmental factors.<br />

However, changes <strong>in</strong> <strong>soil</strong>-<strong>form<strong>in</strong>g</strong> <strong>processes</strong> and <strong>soil</strong> taxa can occur dur<strong>in</strong>g<br />

<strong>soil</strong> development under conditions <strong>of</strong> environmental stability. For example,<br />

dom<strong>in</strong>ant <strong>processes</strong> <strong>in</strong> mounta<strong>in</strong> meadow and forest <strong>soil</strong>s <strong>of</strong> <strong>the</strong> central Caucasus<br />

Mounta<strong>in</strong>s <strong>in</strong> Russia dur<strong>in</strong>g <strong>the</strong> first 1000 to 1500 years were successively<br />

argilluviation, melanization, and podzolization Ž Gennadiyev, 1990 . . <strong>The</strong>se different<br />

<strong>soil</strong>-<strong>form<strong>in</strong>g</strong> regimes caused <strong>soil</strong> taxonomic differences.<br />

In contrast to <strong>soil</strong> classification systems based on <strong>soil</strong> <strong>processes</strong>, those<br />

systems based on <strong>soil</strong> properties are static and unable to accomodate changes<br />

from environmental or human causes.<br />

4.3. <strong>Soil</strong> <strong>processes</strong> and future <strong>soil</strong> classification systems<br />

Global <strong>soil</strong> classifications systems such as ST and <strong>the</strong> WRB are becom<strong>in</strong>g<br />

<strong>in</strong>creas<strong>in</strong>gly complex and difficult for persons o<strong>the</strong>r than experts to use.<br />

<strong>Soil</strong>-<strong>form<strong>in</strong>g</strong> <strong>processes</strong> not only provide <strong>the</strong> ‘‘genetic signal’’ for <strong>the</strong>se systems,<br />

but also <strong>the</strong>y are a simplification <strong>of</strong> <strong>the</strong>se complex systems. A general knowledge<br />

<strong>of</strong> <strong>the</strong> major <strong>soil</strong>s and an appreciation for <strong>the</strong>ir diversity and relation to <strong>the</strong><br />

<strong>soil</strong>-<strong>form<strong>in</strong>g</strong> factors can be ga<strong>in</strong>ed through an understand<strong>in</strong>g <strong>of</strong> <strong>the</strong> 17 key<br />

<strong>soil</strong>-<strong>form<strong>in</strong>g</strong> <strong>processes</strong>.


68<br />

( )<br />

J.G. Bockheim, A.N. GennadiyeÕrGeoderma 95 2000 53–72<br />

As with any taxonomic system, it is important to classify <strong>the</strong> units accord<strong>in</strong>g<br />

to <strong>the</strong>ir properties. However, <strong>the</strong> l<strong>in</strong>kages Ž‘‘pedogenic<br />

organisation’’, Isbell,<br />

1996. among diagnostic horizons, properties and materials with<strong>in</strong> a <strong>soil</strong> pr<strong>of</strong>ile<br />

can only be understood <strong>in</strong> terms <strong>of</strong> <strong>soil</strong>-<strong>form<strong>in</strong>g</strong> <strong>processes</strong> Ž Duchaufour, 1998 . .<br />

Perhaps <strong>the</strong> approaches used <strong>in</strong> develop<strong>in</strong>g ST and <strong>the</strong> WRB have moved too far<br />

to <strong>the</strong> right Ž Fig. 1. so that <strong>the</strong> genetic underp<strong>in</strong>n<strong>in</strong>gs <strong>of</strong> <strong>the</strong>se systems are no<br />

longer apparent. Future global <strong>soil</strong> classification systems could emulate <strong>the</strong><br />

French Ž Aubert, 1968; Duchaufour, 1998. and Australian Ž Isbell, 1996. systems<br />

that achieve more <strong>of</strong> a balance between <strong>the</strong> process and properties approaches.<br />

For example, <strong>the</strong> French <strong>soil</strong> classification scheme recognizes 12 <strong>soil</strong> classes<br />

each <strong>of</strong> which is characterized by a dom<strong>in</strong>ant process Ž Duchaufour, 1998 . .<br />

4.4. <strong>Soil</strong> <strong>processes</strong> and models<br />

Early pedogenic models were basically ei<strong>the</strong>r based on <strong>soil</strong>-<strong>form<strong>in</strong>g</strong> factors<br />

Ž Huggett, 1975; Yaalon, 1975. or generalized <strong>soil</strong>-process, i.e., additions, removals,<br />

transfers, and transformations Ž Simonson, 1959; Runge, 1973 . . Computer<br />

simulation models <strong>of</strong> pedogenic systems treat <strong>the</strong> <strong>soil</strong> as a s<strong>in</strong>gle compartment<br />

and use equations to describe micro-<strong>processes</strong> <strong>in</strong>fluenc<strong>in</strong>g <strong>the</strong> <strong>soil</strong> ŽKl<strong>in</strong>e,<br />

1973 . . For example, Lev<strong>in</strong>e and Ciolkosz Ž 1986. developed a two-horizon<br />

computer model to simulate leach<strong>in</strong>g and acidification <strong>processes</strong> occurr<strong>in</strong>g <strong>in</strong> <strong>the</strong><br />

solid phase <strong>of</strong> <strong>soil</strong>s <strong>of</strong> humid, temperate climates. Gennadiyev and Svetlosanov<br />

Ž 1994. proposed a logistic equation for describ<strong>in</strong>g changes <strong>in</strong> <strong>soil</strong><strong>form<strong>in</strong>g</strong><br />

<strong>processes</strong> dur<strong>in</strong>g <strong>soil</strong> evolution.<br />

5. Summary<br />

We identified 17 <strong>soil</strong>-<strong>form<strong>in</strong>g</strong> <strong>processes</strong> and l<strong>in</strong>ked <strong>the</strong>m with diagnostic<br />

horizons, properties, and materials at <strong>the</strong> highest categories <strong>in</strong> ST Ž<strong>soil</strong><br />

order,<br />

suborder. and <strong>the</strong> WRB Ž <strong>soil</strong> group . . <strong>The</strong> <strong>processes</strong> are depicted <strong>in</strong> simple<br />

diagrams that not only illustrate <strong>the</strong> diversity <strong>of</strong> global <strong>soil</strong>s but also show <strong>the</strong><br />

‘‘genetic underp<strong>in</strong>n<strong>in</strong>gs’’ and enhance <strong>the</strong> understand<strong>in</strong>g <strong>of</strong> complex <strong>soil</strong> taxonomic<br />

systems.<br />

Acknowledgements<br />

This manuscript benefitted from discussions with R.D. Hammer, K. Mc-<br />

Sweeney, and R.W. Arnold and <strong>in</strong>sightful reviews by R.J. Huggett and A.E.<br />

Hartem<strong>in</strong>k.


References<br />

( )<br />

J.G. Bockheim, A.N. GennadiyeÕrGeoderma 95 2000 53–72 69<br />

Arnold, R.W., 1965. Multiple work<strong>in</strong>g hypo<strong>the</strong>sis <strong>in</strong> <strong>soil</strong> genesis. <strong>Soil</strong> Sci. Soc. Am. Proc. 29,<br />

717–724.<br />

Arnold, R.W., 1983. Concepts <strong>of</strong> <strong>soil</strong>s and pedology. In: Wild<strong>in</strong>g, L.P., Smeck, N.E., Hall, G.F.<br />

Ž Eds. . , Pedogenesis and <strong>Soil</strong> Taxonomy: I. Concepts and Interactions. Elsevier, Amsterdam,<br />

pp. 1–21.<br />

Aubert, G., 1968. Classification des <strong>soil</strong>s utilisee ´ par Les Pedologues ´ Francais. In: World <strong>Soil</strong><br />

Resource Rep. 32 FAO, Rome, Italy, pp. 78–94.<br />

Avery, B.W., 1973. <strong>Soil</strong> classification <strong>in</strong> <strong>the</strong> <strong>soil</strong> survey <strong>of</strong> England and Wales. J. <strong>Soil</strong> Sci. 24,<br />

324–338.<br />

Baldw<strong>in</strong>, M., Kellogg, C.E., Thorp, J., 1938. <strong>Soil</strong> classification. <strong>Soil</strong>s and Men. U.S. Dep. Agric.<br />

Yearbook, U.S. Govt. Pr<strong>in</strong>t. Office, Wash<strong>in</strong>gton, DC, pp. 979–1001.<br />

Beckmann, G.G., 1984. <strong>The</strong> place <strong>of</strong> ‘genesis’ <strong>in</strong> <strong>the</strong> classification <strong>of</strong> <strong>soil</strong>s. Aust. J. <strong>Soil</strong>. Res. 22,<br />

1–14.<br />

Blank, R.R., Fosberg, M.A., 1991. Duripans <strong>of</strong> <strong>the</strong> Owyhee Plateau region <strong>of</strong> Idaho: genesis <strong>of</strong><br />

opal and sepiolite. <strong>Soil</strong> Sci. 152, 116–133.<br />

Blume, H.P., Schlicht<strong>in</strong>g, E., 1985. Morphology <strong>of</strong> wetland <strong>soil</strong>s. In: Wetland <strong>Soil</strong>s: Characteriza-<br />

tion, Classification and Utilization. International Rice Research Institute, Los Banos, ˜Philip- p<strong>in</strong>es, pp. 161–176.<br />

Bockheim, J.G., Tarnocai, C., 1997. Recognition <strong>of</strong> cryoturbation for classify<strong>in</strong>g permafrost-affected<br />

<strong>soil</strong>s. Geoderma 81, 281–293.<br />

Bockheim, J.G., Marshall III, J.G., Kelsey, H.M., 1996. <strong>Soil</strong>-<strong>form<strong>in</strong>g</strong> <strong>processes</strong> and rates on<br />

uplifted mar<strong>in</strong>e terraces <strong>in</strong> southwestern Oregon, U.S.A. Geoderma 73, 39–62.<br />

Bockheim, J.G., Tarnocai, C., Kimble, J.M., Smith, S., 1997. <strong>The</strong> concept <strong>of</strong> gelic materials <strong>in</strong> <strong>the</strong><br />

new Gelisol order for permafrost-affected <strong>soil</strong>s. <strong>Soil</strong> Sci. 162, 927–939.<br />

Bouma, J., 1983. Hydrology and <strong>soil</strong> genesis <strong>of</strong> <strong>soil</strong>s with aquic moisture regimes. In: Wild<strong>in</strong>g,<br />

L.P., Smeck, N.E., Halls, G.F. Ž Eds. . , Pedogenesis and <strong>Soil</strong> Taxonomy: I. Concepts and<br />

Interactions. Elsevier, Amsterdam, pp. 253–281.<br />

Brimhall, G.H., Lewis, C.J., Ford, C., Bratt, J., Taylor, G., War<strong>in</strong>, O., 1991. Quantitative<br />

geochemical approach to pedogenesis — importance <strong>of</strong> parent material reduction, volumetric<br />

expansion and eolian <strong>in</strong>flux <strong>in</strong> laterization. Geoderma 51, 51–91.<br />

Buol, S.W., 1964. Present <strong>soil</strong> <strong>form<strong>in</strong>g</strong> factors and <strong>processes</strong> <strong>in</strong> arid and semi-arid regions. <strong>Soil</strong><br />

Sci. 99, 45–49.<br />

Buol, S.W., Hole, F.D., 1961. Clay sk<strong>in</strong> genesis <strong>in</strong> Wiscons<strong>in</strong> <strong>soil</strong>s. <strong>Soil</strong> Sci. Soc. Am. Proc. 25,<br />

377–379.<br />

Buol, S.W., Hole, F.D., McCracken, R.J., Southard, R.J., 1997. <strong>Soil</strong> Genesis and Classification.<br />

4th edn. Iowa State Univ. Press, Ames.<br />

Byers, H.G., Kellogg, C.E., Anderson, M.S., Thorp, J., 1938. Formation <strong>of</strong> <strong>soil</strong>. <strong>Soil</strong>s and Men.<br />

U.S. Dep. Agric. Yearbook, U.S. Govt. Pr<strong>in</strong>t. Office, Wash<strong>in</strong>gton, DC, pp. 948–978.<br />

Chadwick, O.A., Hendricks, D.M., Nettleton, W.D., 1987. Silica <strong>in</strong> duric <strong>soil</strong>s: I. A depositional<br />

model. <strong>Soil</strong> Sci. Soc. Am. J. 51, 975–982.<br />

Chadwick, O.A., Brimhall, G.H., Hendricks, D.M., 1990. From a black box to a gray box — a<br />

mass balance <strong>in</strong>terpretation <strong>of</strong> pedogenesis. Geomorphology 3, 369–390.<br />

Cl<strong>in</strong>e, A.J., Johnson, D., 1963. Threads <strong>of</strong> genesis <strong>in</strong> <strong>the</strong> Seventh Approximation. <strong>Soil</strong> Sci. Soc.<br />

Am. Proc. 27, 220–222.<br />

C<strong>of</strong>fey, G.N., 1912. A study <strong>of</strong> <strong>soil</strong>s <strong>in</strong> <strong>the</strong> United States, USDA Bur. <strong>of</strong> <strong>Soil</strong>s. Bull. 85 U.S. Gov.<br />

Pr<strong>in</strong>t. Office, Wash<strong>in</strong>gton, DC.<br />

Dahlgren, R.A., Ugol<strong>in</strong>i, F.C., Shoji, S., Ito, T., Sletten, R.S., 1991. <strong>Soil</strong>-<strong>form<strong>in</strong>g</strong> <strong>processes</strong> <strong>in</strong><br />

Alic Melanudands under Japanese pampas grass and oak. <strong>Soil</strong> Sci. Soc. Am. J. 55, 1049–1056.


70<br />

( )<br />

J.G. Bockheim, A.N. GennadiyeÕrGeoderma 95 2000 53–72<br />

Dijkerman, J.C., 1974. Pedology as a science: <strong>the</strong> <strong>role</strong> <strong>of</strong> data, models and <strong>the</strong>ories <strong>in</strong> <strong>the</strong> study <strong>of</strong><br />

natural <strong>soil</strong> systems. Geoderma 11, 73–93.<br />

Dokuchaev, V.V., 1948. Select<strong>in</strong>g Writ<strong>in</strong>gs. Akad. Nauk <strong>of</strong> USSR Press, Moscow.<br />

Duchaufour, P., 1982. Pedology: Pedogenesis and Classification. Allen and Unw<strong>in</strong>, Boston, MA,<br />

Ž Transl. By T.R. Paton . .<br />

Duchaufour, P., 1998. Handbook <strong>of</strong> Pedology. A.A. Balkema, <strong>The</strong> Ne<strong>the</strong>rlands, 274 pp.<br />

Duvigneaud, P., Denaeyer-DeSmet, S., 1970. Biological cycl<strong>in</strong>g <strong>of</strong> m<strong>in</strong>erals <strong>in</strong> temperate deciduous<br />

forests. In: Reichle, D.E. Ž Ed. . , Analysis <strong>of</strong> Temperate Forest Ecosystems. Spr<strong>in</strong>ger-Verlag,<br />

New York, pp. 199–225.<br />

FAO, 1998. World reference base for <strong>soil</strong> resources. World <strong>Soil</strong> Resources Rep. 84, Rome.<br />

FAO-UNESCO, 1974. Key to <strong>soil</strong> units for <strong>the</strong> new <strong>soil</strong> map <strong>of</strong> <strong>the</strong> world, Legend 1 FAO, Rome.<br />

Fridland, V.M., 1982. Major Problems <strong>of</strong> Basic <strong>Soil</strong> Classification and Programme for its<br />

Development. Nauka Publ., Moscow.<br />

Furley, P.A., Newey, W.W., 1983. Geography <strong>of</strong> <strong>the</strong> Biosphere. Butterworth, Boston, 413 pp.<br />

Gennadiyev, A.N., 1990. <strong>Soil</strong>s and Time: Models <strong>of</strong> Development. Moscow Univ. Press.<br />

Gennadiyev, A.N., Svetlosanov, V.A., 1994. Fundamental ma<strong>the</strong>matical equation <strong>of</strong> <strong>soil</strong> development.<br />

Sci. Terre Ž Ser. Inf., Nancy, France. 32, 527–535.<br />

Gennadiyev, A., Gerasimova, M., Arnold, R., 1995. Evolv<strong>in</strong>g approaches to <strong>soil</strong> classification <strong>in</strong><br />

Russia and <strong>the</strong> United States <strong>of</strong> America: <strong>the</strong>ir divergence and convergence. <strong>Soil</strong> Surv. Horiz.<br />

36 Ž. 3 , 104–111.<br />

Gennadiyev, A.N., Olson, K.R., Chernyanskii, S.S., 1996. <strong>Soil</strong> science <strong>in</strong> <strong>the</strong> United States and<br />

<strong>the</strong> doctr<strong>in</strong>e <strong>of</strong> V.V. Dokuchaev. Eurasian <strong>Soil</strong> Sci. 29, 133–138.<br />

Gerasimov, I.P., 1975. Experience <strong>of</strong> genetic diagnostics <strong>of</strong> <strong>the</strong> USSR <strong>soil</strong>s based on <strong>the</strong> concept<br />

<strong>of</strong> elementary <strong>soil</strong> <strong>form<strong>in</strong>g</strong> <strong>processes</strong>. Pochvovedeniye 5, 3–9.<br />

Gerasimov, I.P., Glazovskaya, M.A., 1960. Fundamentals <strong>of</strong> <strong>Soil</strong> <strong>Science</strong> and <strong>Soil</strong> Geography,<br />

Moscow. 490 pp. Ž In Russian . .<br />

Gerasimov, I.P., Zavalish<strong>in</strong>, A.A., Ivanova, Y.N., 1939. A new scheme for <strong>the</strong> general classification<br />

<strong>of</strong> <strong>soil</strong>s <strong>in</strong> <strong>the</strong> USSR. Pochvovedenie No. 7.<br />

Gile, L.H., Peterson, F.F., Grossman, R.B., 1965. <strong>The</strong> K horizon: a master <strong>soil</strong> horizon <strong>of</strong><br />

carbonate accumulation. <strong>Soil</strong> Sci. 99, 74–82.<br />

Glazovskaya, M.A., 1972. In: <strong>Soil</strong>s <strong>of</strong> <strong>the</strong> World 1 Moscow Univ. Press.<br />

Gustafsson, J.P., Bhattacharya, P., Ba<strong>in</strong>, D.C., Fraser, A.R., McHardy, W.J., 1995. Podzolisation<br />

mechanisms and <strong>the</strong> sy<strong>the</strong>sis <strong>of</strong> imogolite <strong>in</strong> nor<strong>the</strong>rn Scand<strong>in</strong>avia. Geoderma 66, 167–184.<br />

Harper, W.G., 1957. Morphology and genesis <strong>of</strong> Calcisols. <strong>Soil</strong> Sci. Soc. Am. Proc. 21, 420–424.<br />

Homann, P.S., Van Miegroet, H., Cole, D.W., Wolfe, G.V., 1992. Cation distribution, cycl<strong>in</strong>g,<br />

and removal from m<strong>in</strong>eral <strong>soil</strong> <strong>in</strong> Douglas-fir and red alder forests. Biogeochemistry 16,<br />

121–150.<br />

Hoosbeek, M.R., Bryant, R.B., 1992. Towards <strong>the</strong> quantitative model<strong>in</strong>g <strong>of</strong> pedogenesis — a<br />

review. Geoderma 55, 183–210.<br />

Huggett, R.J., 1975. <strong>Soil</strong> landscape systems: a model <strong>of</strong> <strong>soil</strong> genesis. Geoderma 13, 1–22.<br />

Huggett, R.J., 1998. <strong>Soil</strong> chronosequences, <strong>soil</strong> development, and <strong>soil</strong> evolution: a critical review.<br />

Catena 32, 155–172.<br />

Isbell, R.F., 1996. <strong>The</strong> Australian <strong>soil</strong> classification. CSIRO, Coll<strong>in</strong>gwood, Victoria.<br />

Ivanova, Y.N., 1956. An attempt at a general classification <strong>of</strong> <strong>soil</strong>s. Pochvovedenie 6, 82–103.<br />

Jersak, J., Amundson, R., Brimhall, G., 1995. A mass balance analysis <strong>of</strong> podzolization: examples<br />

from <strong>the</strong> nor<strong>the</strong>astern United States. Geoderma 66, 15–42.<br />

Johnson, D.L., Watson-Stegner, D., 1987. Evolution model <strong>of</strong> pedogenesis. <strong>Soil</strong> Sci. 143,<br />

349–366.<br />

Kl<strong>in</strong>e, J.R., 1973. Ma<strong>the</strong>matical simulation <strong>of</strong> <strong>soil</strong>–plant relationships and <strong>soil</strong> genesis. <strong>Soil</strong> Sci.<br />

115, 240–249.<br />

Kosse, A.D., 1990. Diagnostic horizons <strong>in</strong> Anthrosols. In: Rozanov, B.G. Ž Ed. . , <strong>Soil</strong> Classifica-


( )<br />

J.G. Bockheim, A.N. GennadiyeÕrGeoderma 95 2000 53–72 71<br />

tion, Reports on <strong>the</strong> International Conference on <strong>Soil</strong> Classification, Centre for International<br />

Projects. USSR State Committee for Environmental Protection, Moscow, pp. 264–273.<br />

Kovda, V.A., Samoilova, E.M., Charley, J.L., Skuj<strong>in</strong>s, J.J., 1979. <strong>Soil</strong> <strong>processes</strong> <strong>in</strong> arid lands. In:<br />

Goodall, D.W., Perry, R.A. Ž Eds. . , Arid-Land Ecosystems: Structure, Function<strong>in</strong>g, and Management.<br />

Cambridge Univ. Press, New York, pp. 439–470.<br />

Kutzbach, J., Bonan, G., Foley, J., Harrison, S.P., 1996. Vegetation and <strong>soil</strong> feedbacks on <strong>the</strong><br />

response <strong>of</strong> African monsoon to orbital forc<strong>in</strong>g <strong>in</strong> <strong>the</strong> early to middle Holocene. Nature 384,<br />

623–626.<br />

Laudelot, H., Robert, M., 1994. Biogeochemistry <strong>of</strong> calcium <strong>in</strong> a broad-leaved forest ecosystem.<br />

Biogeochemistry 27, 1–21.<br />

Lev<strong>in</strong>e, E.R., Ciolkosz, E.J., 1986. A computer simulation model for <strong>soil</strong> genesis applications.<br />

<strong>Soil</strong> Sci. Soc. Am. J. 50, 661–667.<br />

Lev<strong>in</strong>e, E.R., Ranson, K.J., Smith, J.A., Williams, D.L., Knox, R.G., Shugart, H.H., Urban, D.L.,<br />

Lawrence, W.T., 1993. Forest ecosystem dynamics — l<strong>in</strong>k<strong>in</strong>g forest succession, <strong>soil</strong> process<br />

and radiation models. Ecol. Modell. 65, 199–219.<br />

Lovelock, J.E., 1993. <strong>The</strong> <strong>soil</strong> as a model for <strong>the</strong> earth. Geoderma 57, 213–215.<br />

Marbut, C.F., 1927. A scheme for <strong>soil</strong> classification. Proc. 1st Int. Cong. <strong>Soil</strong> Sci. Comm. 5,<br />

1–31.<br />

Munn, L.C., Boehm, M.M., 1984. <strong>Soil</strong> genesis <strong>in</strong> a Natrargid–Haplargid complex <strong>in</strong> nor<strong>the</strong>rn<br />

Montana. <strong>Soil</strong> Sci. Soc. Am. J. 47, 186–192.<br />

Pedro, G., 1983. Structur<strong>in</strong>g <strong>of</strong> some basic pedologic <strong>processes</strong>. Geoderma 31, 289–299.<br />

Phillips, J.D., 1993. Stability implications <strong>of</strong> <strong>the</strong> state factor model <strong>of</strong> <strong>soil</strong>s as a nonl<strong>in</strong>ear<br />

dynamical system. Geoderma 58, 1–15.<br />

Pons, L.J., Van Der Molen, W.H., 1973. <strong>Soil</strong> genesis under dewater<strong>in</strong>g regimes dur<strong>in</strong>g 1000 years<br />

<strong>of</strong> polder development. <strong>Soil</strong> Sci. 116, 228–235.<br />

Quideau, S.A., Chadwick, O.A., Graham, R.C., Wood, H.B., 1996. Base cation biogeochemistry<br />

and wea<strong>the</strong>r<strong>in</strong>g under oak and p<strong>in</strong>e: a controlled long-term experiment. Biogeochemistry 35,<br />

377–398.<br />

Rabenhorst, M.C., Wild<strong>in</strong>g, L.P., 1986. Pedogenesis on <strong>the</strong> Edwards Plateau, Texas: III. New<br />

model for <strong>the</strong> formation <strong>of</strong> petrocalcic horizons. <strong>Soil</strong> Sci. Soc. Am. J. 50, 693–699.<br />

Righi, D., Bravard, S., Chauvel, A., Ranger, J., Robert, M., 1990. In situ study <strong>of</strong> <strong>soil</strong> <strong>processes</strong> <strong>in</strong><br />

an Oxisol–Spodosol sequence <strong>of</strong> Amazonia Ž Brazil . . <strong>Soil</strong> Sci. 150, 438–445.<br />

Rode, A.A., 1947. <strong>Soil</strong>-<strong>form<strong>in</strong>g</strong> Process and Evolution <strong>of</strong> <strong>Soil</strong>s, Moscow. 242 pp. Ž <strong>in</strong> Russian . .<br />

Rozanov, B.G., 1983. <strong>Soil</strong> Morphology. Moscow Univ. Press, 320 pp. Ž <strong>in</strong> Russian . .<br />

Rozov, N.N., Ivanova, Y.N., 1967. Classification <strong>of</strong> <strong>soil</strong>s <strong>of</strong> <strong>the</strong> USSR Žpr<strong>in</strong>ciples<br />

and a<br />

systematic list <strong>of</strong> <strong>soil</strong> types . . Pochvovedenie 2, 3–11.<br />

Runge, E.C.A., 1973. <strong>Soil</strong> development sequences and energy models. <strong>Soil</strong> Sci. 115, 183–193.<br />

Schaetzl, R.J., Frederick, W.E., Tornes, L., 1996. Secondary carbonates <strong>in</strong> three f<strong>in</strong>e and<br />

f<strong>in</strong>e-loamy Alfisols <strong>in</strong> Michigan. <strong>Soil</strong> Sci. Soc. Am. J. 60, 1862–1870.<br />

Shishov, L.L., Sokolov, I.A., 1990. In: Genetic classification <strong>of</strong> <strong>soil</strong>s <strong>in</strong> <strong>the</strong> USSR. <strong>Soil</strong><br />

classification. USSR State Comm. For Environ. Protection, Moscow, pp. 77–93.<br />

Shishov, L.L., Tonkonogov, V.D., Lebedeva, I.I., 1997. Russian <strong>soil</strong> classification. V.V.<br />

Dokuchaev <strong>Soil</strong> <strong>Science</strong> Institute, Russian Acad. Agric. Sci., Moscow, 236 pp.<br />

Sibertsev, N.M., 1901. <strong>Soil</strong> <strong>Science</strong> Ž Pochvovedenie . . In selected works Ž Izbrannye Soch<strong>in</strong>eniya . .<br />

Isr. Prog. Sci. 1 U.S. Dept. Commerce, Spr<strong>in</strong>gfield, VA, Transl. Jerusalem. 1966. Transl. from<br />

Russian by N. Kaner.<br />

Simonson, R.W., 1959. Outl<strong>in</strong>e <strong>of</strong> a generalized <strong>the</strong>ory <strong>of</strong> <strong>soil</strong> genesis. <strong>Soil</strong> Sci. Soc. Am. Proc.<br />

23, 152–156.<br />

Simonson, R.W., 1975. A multiple-process model <strong>in</strong> <strong>soil</strong> genesis. In: Mahaney, W.C. Ž Ed. . ,<br />

Quaternary <strong>Soil</strong>s. GeoAbstracts, Norwich, England, pp. 1–25.


72<br />

( )<br />

J.G. Bockheim, A.N. GennadiyeÕrGeoderma 95 2000 53–72<br />

Smeck, N.E., Runge, E.C.A., Mack<strong>in</strong>tosh, E.E., 1983. Dynamics and genetic model<strong>in</strong>g <strong>of</strong> <strong>soil</strong><br />

systems. In: Wild<strong>in</strong>g, L.P., Smeck, N.E., Hall, G.F. Ž Eds. . , Pedogenesis and <strong>Soil</strong> Taxonomy: 1.<br />

Concepts and <strong>in</strong>teractions. Elsevier, Amsterdam, pp. 23–49.<br />

Smith, G.D., 1983. Historical development <strong>of</strong> <strong>soil</strong> taxonomy-background. In: Wild<strong>in</strong>g, L.P. Ž Ed. . ,<br />

Pedogenesis and <strong>soil</strong> taxonomy: 1. Concepts and <strong>in</strong>teractions. Elsevier, Amsterdam, pp. 23–49.<br />

<strong>Soil</strong> Survey Staff, et al.1960. <strong>Soil</strong> classification, a comprehensive system, 7th approximation. U.S.<br />

Govt. Pr<strong>in</strong>t. Office, Wash<strong>in</strong>gton, DC.<br />

<strong>Soil</strong> Survey Staff, 1975. <strong>Soil</strong> Taxonomy: a Basic System <strong>of</strong> <strong>Soil</strong> Classification for Mak<strong>in</strong>g and<br />

Interpret<strong>in</strong>g <strong>Soil</strong> Surveys. Agric. Handbook No. 436. U.S. Govt. Pr<strong>in</strong>t. Office, Wash<strong>in</strong>gton,<br />

DC.<br />

<strong>Soil</strong> Survey Staff, 1998. Keys to <strong>Soil</strong> Taxonomy. 8th edn. USDA, Natural Res. Conserv. Serv.,<br />

U.S. Govt. Pr<strong>in</strong>t. Office, Wash<strong>in</strong>gton, DC.<br />

Ugol<strong>in</strong>i, F.C., Dahlgren, R., 1987. <strong>The</strong> mechanism <strong>of</strong> podzolization as revealed by <strong>soil</strong> solution<br />

studies. In: Righi, D., Chauvel, A. Ž Eds. . , Podzols et Podsolization. AFES et INRA, Paris, pp.<br />

195–207.<br />

Ugol<strong>in</strong>i, F.C., Dahlgren, R., Shoji, S., Ito, T., 1988. An example <strong>of</strong> andosolization and podzolization<br />

as revealed by <strong>soil</strong> solution studies, Hakkoda, nor<strong>the</strong>astern Japan. <strong>Soil</strong> Sci. 145, 111–125.<br />

Whitney, M., 1909. <strong>Soil</strong>s <strong>of</strong> <strong>the</strong> United States, USDA Bur. <strong>of</strong> <strong>Soil</strong>s Bull. 55 U.S. Gov. Pr<strong>in</strong>t.<br />

Office, Wash<strong>in</strong>gton, DC.<br />

Wild<strong>in</strong>g, L.P., Tessier, D., 1988. Genesis <strong>of</strong> Vertisols: shr<strong>in</strong>k–swell phenomena. In: Wild<strong>in</strong>g,<br />

L.P., Puentes, R. Ž Eds. . , Vertisols: <strong>The</strong>ir Distribution, Properties, Classification, and Management.<br />

Texas A&M Univ. Pr<strong>in</strong>t<strong>in</strong>g Center, College Station, TX, pp. 55–81.<br />

Yaalon, D.H., 1960. Some implications <strong>of</strong> fundamental concepts <strong>of</strong> pedology <strong>in</strong> <strong>soil</strong> classification.<br />

Trans. 7th Intern. Congress <strong>Soil</strong> Sci., Madison, WI 16, 119–123.<br />

Yaalon, D.H., 1975. Conceptual models <strong>in</strong> pedogenesis. Can <strong>soil</strong>-<strong>form<strong>in</strong>g</strong> functions be solved?<br />

Geoderma 14, 189–205.<br />

Zonn, S.V., 1995. Use <strong>of</strong> elementary <strong>soil</strong> <strong>processes</strong> <strong>in</strong> genetic <strong>soil</strong> identification. Eurasian <strong>Soil</strong><br />

Sci. 27 Ž. 5 , 72–80.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!