05.01.2013 Views

Depletion of eosinophils in mice through the use - Journal of ...

Depletion of eosinophils in mice through the use - Journal of ...

Depletion of eosinophils in mice through the use - Journal of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

phils. However, <strong>the</strong> surface expression <strong>of</strong> CCR3 on mo<strong>use</strong> Th2<br />

cells, if present, was too low for detection by flow cytometry. In<br />

addition, our study shows that mo<strong>use</strong> Th2 cells are not<br />

responsive to eotax<strong>in</strong> ei<strong>the</strong>r by calcium mobilization assay or<br />

chemotaxis. This contrasts with a recent report <strong>of</strong> preferential<br />

sta<strong>in</strong><strong>in</strong>g with an anti-huCCR3 mAb as well as <strong>the</strong> eotax<strong>in</strong>mediated<br />

chemotaxis and calcium flux <strong>of</strong> human Th2 cells [8].<br />

Our observation <strong>of</strong> low levels <strong>of</strong> mCCR3 mRNA <strong>in</strong> activated<br />

Th2 cells, however, is consistent with a more recent report on<br />

CCR3 mRNA expression observed <strong>in</strong> human Th1 and Th2 cells<br />

[27]. It is quite possible that CCR3 expression on Th2<br />

population is tightly l<strong>in</strong>ked to an as yet unknown activation<br />

state and this could expla<strong>in</strong> <strong>the</strong> differences observed between<br />

different reports. We have also demonstrated that anti-mCCR3<br />

mAbs <strong>of</strong> <strong>the</strong> rat IgG2b isotype can also be <strong>use</strong>d to achieve<br />

partial to complete depletion <strong>of</strong> <strong>eos<strong>in</strong>ophils</strong> <strong>in</strong> vivo. Treated<br />

animals were <strong>use</strong>d <strong>in</strong> restimulation assays <strong>of</strong> lung cells, which<br />

showed no <strong>in</strong>crease <strong>in</strong> Th2-<strong>in</strong>duced cytok<strong>in</strong>e levels. In short,<br />

<strong>the</strong>se assays taken toge<strong>the</strong>r show that CCR3 is not a significant<br />

chemok<strong>in</strong>e receptor for mo<strong>use</strong> Th2 cells. Recent studies have<br />

shown that o<strong>the</strong>r chemok<strong>in</strong>e receptors such as CCR8 may have<br />

a far more significant role on Th2-specific cellular migration<br />

[28]. These antibodies should be <strong>use</strong>ful <strong>in</strong> future studies aimed<br />

at determ<strong>in</strong><strong>in</strong>g <strong>the</strong> roles <strong>of</strong> <strong>eos<strong>in</strong>ophils</strong> <strong>in</strong> <strong>in</strong>fectious and<br />

<strong>in</strong>flammatory diseases.<br />

ACKNOWLEDGMENTS<br />

DNAX Research Institute is supported by Scher<strong>in</strong>g-Plough<br />

Corporation. The authors would like to thank Debra Liggett for<br />

syn<strong>the</strong>sis <strong>of</strong> DNA, Dan Gorman, Allison Helms, and Connie<br />

Huff<strong>in</strong>e for DNA sequenc<strong>in</strong>g analysis, Dr. Terri McClanahan<br />

and Kar<strong>in</strong> Bacon for provid<strong>in</strong>g cDNA libraries, Dr. Donna<br />

Rennick for histology consultation, Dr. Joe Hedrick for chemotaxis<br />

analysis, Dr. Kenneth Soo for his helpful suggestions, and<br />

Gary Burget and Dr. Maribel Andonian for graphics work.<br />

REFERENCES<br />

1. Hedrick, J., Zlotnik, A. (1996) Chemok<strong>in</strong>es and lymphocytes. Curr. Op<strong>in</strong>.<br />

Immunol. 8, 343–347.<br />

2. Roll<strong>in</strong>s, B. (1997) Chemok<strong>in</strong>es. Blood 90, 909–928.<br />

3. Kelner, G. S., Kennedy, J., Bacon, K. B., Kleyensteuber, S., Largaespada,<br />

D. A., Jenk<strong>in</strong>s, N. A., Copeland, N. G., Bazan, J. F., Moore, K. W., Schall,<br />

T. J., Zlotnik, A. (1994) Lymphotact<strong>in</strong>: a cytok<strong>in</strong>e that represents a new<br />

class <strong>of</strong> chemok<strong>in</strong>e. Science 266, 1395–1399.<br />

4. Bazan, J. F., Bacon, K. B., Hardiman, G., Wang, W., Soo, K., Rossi, D.,<br />

Greaves, D. R., Zlotnik, A., Schall, T. J. (1997) A new class <strong>of</strong><br />

membrane-bound chemok<strong>in</strong>e with a CX3C motif. Nature 385, 640–644.<br />

5. Pan, Y., Lloyd, C., Zhou, H., Dolich, S., Deeds, J., Gonzalo, J. A., Vath, J.,<br />

Gossel<strong>in</strong>, M., Ma, J., Dussault, B., Woolf, E., Alper<strong>in</strong>, G., Culpepper, J.,<br />

Gutierrez-Ramos, J. C., Gear<strong>in</strong>g, D. (1997) Neurotact<strong>in</strong>, a membraneanchored<br />

chemok<strong>in</strong>e upregulated <strong>in</strong> bra<strong>in</strong> <strong>in</strong>flammation. Nature 387,<br />

611–617.<br />

6. Ponath, P. D., Q<strong>in</strong>, S., Post, T. W., Wang, J., Wu, L., Gerard, N. P., Newman,<br />

W., Gerard, C., Mackay, C. R. (1996) Molecular clon<strong>in</strong>g and characterization<br />

<strong>of</strong> a human eotax<strong>in</strong> receptor expressed selectively on <strong>eos<strong>in</strong>ophils</strong>. J.<br />

Exp. Med. 183, 2437–2448.<br />

7. Jose, P. J., Adcock, I. M., Griffiths-Johnson, D. A., Berkman, N., Wells,<br />

T. N., Williams, T. J., Power, C. A. (1994) Eotax<strong>in</strong>: clon<strong>in</strong>g <strong>of</strong> an eos<strong>in</strong>ophil<br />

chemoattractant cytok<strong>in</strong>e and <strong>in</strong>creased mRNA expression <strong>in</strong> allergenchallenged<br />

gu<strong>in</strong>ea-pig lungs. Biochem. Biophys. Res. Commun. 205,<br />

788–794.<br />

8. Sallusto, F., Mackay, C., Lanzavecchia, A. (1997) Selective expression <strong>of</strong><br />

<strong>the</strong> eotax<strong>in</strong> receptor CCR3 by human T helper 2 cells. Science 277,<br />

5005–5007.<br />

9. Lukacs, N. W., Strieter, R. M., Kunkel, S. L. (1995) Leukocyte <strong>in</strong>filtration<br />

<strong>in</strong> allergic airway <strong>in</strong>flammation. Am. J. Respir. Cell. Mol. Biol. 13, 1–6.<br />

10. Kay, A. B., Corrigan, C. J. (1992) Asthma. Eos<strong>in</strong>ophils and neutrophils. Br.<br />

Med. Bull. 48, 51–64.<br />

11. Ro<strong>the</strong>nberg, M. E., MacLean, J. A., Pearlman, E., Luster, A. D., Leder, P.<br />

(1997) Targeted disruption <strong>of</strong> <strong>the</strong> chemok<strong>in</strong>e eotax<strong>in</strong> partially reduces<br />

antigen-<strong>in</strong>duced tissue eos<strong>in</strong>ophilia. J. Exp. Med. 185, 785–790.<br />

12. Ganzalo, J. A., Jia, G. Q., Aguirre, V., Friend, D., Coyle, A. J., Jenk<strong>in</strong>s,<br />

N. A., L<strong>in</strong>, G. S., Katz, H., Lichtman, A., Copeland, N., Kopf, M.,<br />

Gutierrez-Ramos, J. C. (1996) Mo<strong>use</strong> eotax<strong>in</strong> expression parallels eos<strong>in</strong>ophil<br />

accumulation dur<strong>in</strong>g lung allergic <strong>in</strong>flammation but it is not restricted<br />

to a Th2-type response. Immunity 4, 1–14.<br />

13. Daugherty, B. L., Siciliano, S. J., DeMart<strong>in</strong>o, J. A., Malkowitz, L., Sirot<strong>in</strong>a,<br />

A., Spr<strong>in</strong>ger, M. S. (1996) Clon<strong>in</strong>g, expression, and characterization <strong>of</strong> <strong>the</strong><br />

human eos<strong>in</strong>ophil eotax<strong>in</strong> receptor. J. Exp. Med. 183, 2349–2354.<br />

14. Forssmann, U., Uguccioni, M., Loetscher, P., Dah<strong>in</strong>den, C. A., Langen, H.,<br />

Thelen, M., Baggiol<strong>in</strong>i, M. (1997) Eotax<strong>in</strong>-2, a novel CC chemok<strong>in</strong>e that is<br />

selective for <strong>the</strong> chemok<strong>in</strong>e receptor CCR3, and acts like eotax<strong>in</strong> on human<br />

eos<strong>in</strong>ophil and basophil leukocytes. J. Exp. Med. 185, 2171–2176.<br />

15. Post, T. W., Bozic, C. R., Ro<strong>the</strong>nberg, M. E., Luster, A. D., Gerard, N.,<br />

Gerard, C. (1995) Molecular characterization <strong>of</strong> two mur<strong>in</strong>e eos<strong>in</strong>ophil beta<br />

chemok<strong>in</strong>e receptors. J. Immunol. 155, 5299–5305.<br />

16. Hedrick, J. A., Saylor, V., Figueroa, D., Mizoue, L., Xu, Y., Menon, S.,<br />

Abrams, J., Handel, T., Zlotnik, A. (1997) Lymphotact<strong>in</strong> is produced by NK<br />

cells and attracts both NK cells and T cells <strong>in</strong> vivo. J. Immunol. 158,<br />

1533–1540.<br />

17. Tony, H. P., Parker, D. C. (1985) Major histocompatibility complexrestricted,<br />

polyclonal B cell responses result<strong>in</strong>g from helper T cell<br />

recognition <strong>of</strong> antiimmunoglobul<strong>in</strong> presented by small B lymphocytes. J.<br />

Exp. Med. 161, 223–241.<br />

18. Kurt-Jones, E. A., Hamberg, S., Ohara, J., Paul, W. E., Abbas, A. K. (1987)<br />

Heterogeneity <strong>of</strong> helper/<strong>in</strong>ducer T lymphocytes. I. Lymphok<strong>in</strong>e production<br />

and lymphok<strong>in</strong>e responsiveness. J. Exp. Med. 166, 1174–1187.<br />

19. Murphy, E., Shibuya, K., Hosken, N., Openshaw, P., Ma<strong>in</strong>o, V., Davis, K.,<br />

Murphy, K., O’Garra, A. (1996) Reversibility <strong>of</strong> T helper 1 and 2<br />

populations is lost after long-term stimulation. J. Exp. Med. 183, 901–913.<br />

20. Macatonia, S. E., Hosken, N. A., Litton, M., Vieira, P., Hsieh, C. S.,<br />

Culpepper, J. A., Wysocka, M., Tr<strong>in</strong>chieri, G., Murphy, K. M., O’Garra, A.<br />

(1995) Dendritic cells produce IL-12 and direct <strong>the</strong> development <strong>of</strong> Th1<br />

cells from naive CD4 � T cells. J. Immunol. 154, 5071–5079.<br />

21. Sambrook, J., Fritsch, E. F., Maniatis, T. (1989) Molecular Clon<strong>in</strong>g: a<br />

Laboratory Manual, Cold Spr<strong>in</strong>g Harbor, NY: Cold Spr<strong>in</strong>g Harbor Laboratory<br />

Press, 202–203.<br />

22. Discombe, G. (1946) Criteria <strong>of</strong> eos<strong>in</strong>ophilia. Lancet 1, 195.<br />

23. Seymour, B. W. P., P<strong>in</strong>kerton, K. E., Friebertsha<strong>use</strong>r, K. E., C<strong>of</strong>fman, R. L.,<br />

Gershw<strong>in</strong>, L. J. (1997) Second-hand smoke is an adjuvant for T helper-2<br />

responses <strong>in</strong> a mur<strong>in</strong>e model <strong>of</strong> allergy. J. Immunol. 159, 6169–6175.<br />

24. Murphy, K. M., Heimberger, A. B., Loh, D. Y. (1990) Induction by antigen<br />

<strong>of</strong> <strong>in</strong>trathymic apoptosis <strong>of</strong> CD4 � CD8 � TCRlo thymocytes <strong>in</strong> vivo. Science<br />

250, 1720–1723.<br />

25. Tepper, R. I., C<strong>of</strong>fman, R. L., Leder, P. (1992) An eos<strong>in</strong>ophil-dependent<br />

mechanism for <strong>the</strong> antitumor effect <strong>of</strong> <strong>in</strong>terleuk<strong>in</strong>-4. Science 257, 548–<br />

551.<br />

26. Heath, H., Q<strong>in</strong>, S., Rao, P., Wu, L., LaRosa, G., Kassam, N., Ponath, P. D.,<br />

Mackay, C. R. (1997) Chemok<strong>in</strong>e receptor usage by human <strong>eos<strong>in</strong>ophils</strong>.<br />

The importance <strong>of</strong> CCR3 demonstrated us<strong>in</strong>g an antagonistic monoclonal<br />

antibody. J. Cl<strong>in</strong>. Invest. 99, 178–184.<br />

27. Bonnechi, R., Bianchi, G., Bord<strong>in</strong>gnon, P., D’Ambrosio, D., Lang, R.,<br />

Borsatti, A., Sozzani, S., Allavena, P., Gray, P., Mantovani, A., S<strong>in</strong>igaglia, F.<br />

(1998) Differential expression <strong>of</strong> chemok<strong>in</strong>e receptors and chemotactic<br />

responsiveness <strong>of</strong> Type 1 T helper cells (Th1s) and Th2s. J. Exp. Med. 187,<br />

129–134.<br />

28. Z<strong>in</strong>goni, A., Soto, H., Hedrick, J. A., Stoppacciaro, A., Storlazzi, C. T.,<br />

S<strong>in</strong>igaglia, F., D’Ambrosio, D., O’Garra, A., Rob<strong>in</strong>son, D., Rocchi, M.,<br />

Santoni, A., Zlotnik, A., Napolitano, M. (1998) The chemok<strong>in</strong>e receptor<br />

CCR8 is preferentially expressed <strong>in</strong> Th2 but not Th1 cells. J. Immunol.<br />

161, 547–551.<br />

Grimaldi et al. <strong>Depletion</strong> <strong>of</strong> mo<strong>use</strong> <strong>eos<strong>in</strong>ophils</strong> <strong>through</strong> <strong>the</strong> <strong>use</strong> <strong>of</strong> antibodies 853

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!