06.01.2013 Views

Location of objects in multiple-scattering media - COPS

Location of objects in multiple-scattering media - COPS

Location of objects in multiple-scattering media - COPS

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Den Outer et al.<br />

Vol. 10, No. 6/June 1993/J. Opt. Soc. Am. A 1209<br />

<strong>Location</strong> <strong>of</strong> <strong>objects</strong> <strong>in</strong> <strong>multiple</strong>-scatter<strong>in</strong>g <strong>media</strong><br />

P. N. den Outer and Th. M. Nieuwenhuizen<br />

Van der Waals-Zeeman Laboratorium der Universiteit van Amsterdam, Valckenierstraat 65,<br />

1018 XE Amsterdam, The Netherlands<br />

Ad Lagendijk<br />

Van der Waals-Zeeman laboratorium der Universiteit van Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam,<br />

The Netherlands, and Fundamenteel Onderzoek der Materie Instituut voor Atoom-en Molecuulfysica, Kruislaan 407,<br />

1098 SJ Amsterdam, The Netherlands<br />

Received March 26, 1992; revised manuscript received October 21, 1992; accepted November 25, 1992<br />

When a small object is placed <strong>in</strong> a <strong>multiple</strong>-scatter<strong>in</strong>g medium the stationary diffusion equation can be used to<br />

derive the disturbance <strong>in</strong> the transmitted and backscattered light <strong>in</strong>tensity. The diffusion equation will describe<br />

the <strong>in</strong>tensity outside and <strong>in</strong>side the object. The object is characterized by a size, a diffusion constant,<br />

and an absorption length. In this way absorb<strong>in</strong>g <strong>objects</strong> as well as nonabsorb<strong>in</strong>g <strong>objects</strong> can be treated. The<br />

results are derived for two and three dimensions. Experiments are performed on suspended titanium dioxide<br />

particles <strong>in</strong> glycer<strong>in</strong>e, where<strong>in</strong> <strong>objects</strong> could be placed. There is good agreement between theory and experiment.<br />

This work shows that with the use <strong>of</strong> cont<strong>in</strong>uous light sources, it may be possible to recover the location<br />

<strong>of</strong> <strong>objects</strong> accurately <strong>in</strong>side a diffusive scatter<strong>in</strong>g medium.<br />

1. INTRODUCTION<br />

When an object is placed <strong>in</strong> a highly scatter<strong>in</strong>g medium,<br />

ballistic light transport from the object to a detector is<br />

nearly absent. Direct imag<strong>in</strong>g <strong>of</strong> the object is impossible,<br />

and other methods should be used. Many researchers`<br />

have been attracted by this problem, for which there are<br />

important medical applications, such as the location <strong>of</strong><br />

those tumor cells <strong>in</strong> human tissue that cannot be seen<br />

with conventional techniques (cat scanner, x rays, etc.).<br />

As a first step to solv<strong>in</strong>g the problem <strong>of</strong> imag<strong>in</strong>g through<br />

scatter<strong>in</strong>g <strong>media</strong>, one could try to reduce the <strong>multiple</strong>scatter<strong>in</strong>g<br />

contribution to the image either by mak<strong>in</strong>g the<br />

<strong>media</strong> absorb, by filter<strong>in</strong>g out the lowest order <strong>of</strong> scatter<strong>in</strong>g<br />

with the help <strong>of</strong> femtosecond light pulses and ultrafast<br />

detection methods, 3 5 or by spatial <strong>in</strong>coherence techniques.<br />

6 By these methods only the low order <strong>of</strong> scattered<br />

light is detected; therefore high <strong>in</strong>tensities for the<br />

<strong>in</strong>com<strong>in</strong>g light are necessary, and an exponential decay <strong>of</strong><br />

the signal with <strong>in</strong>creas<strong>in</strong>g distance between the object and<br />

boundaries <strong>of</strong> the scatter<strong>in</strong>g medium is to be expected.<br />

This puts a severe limit on the prob<strong>in</strong>g depth. If one<br />

wants to enlarge the prob<strong>in</strong>g depth, one should measure<br />

the diffuse <strong>in</strong>tensity (i.e., the <strong>multiple</strong>-scattered light). A<br />

good description for light propagation through disordered<br />

<strong>media</strong> can be given by diffusion theory. ' Also, <strong>in</strong> human<br />

tissue light propagates diffusively, and the diffusion approximation<br />

can be used to determ<strong>in</strong>e, for <strong>in</strong>stance, parameters<br />

such as the oxygenation state <strong>of</strong> tissue."- 3<br />

Expressions for the Green's function for the diffusion<br />

equation with and without absorption are found,' 9 ' 4 and<br />

<strong>in</strong> a few simple geometries where absorption is negligible<br />

a closed expression can be given (for a spherical geometry<br />

see Ref. 15). A closed expression for a two-dimensional<br />

slab is derived <strong>in</strong> this paper.<br />

When the object is small compared with the system size,<br />

we show that it is possible to calculate the disturbance on<br />

the diffuse <strong>in</strong>tensity. We approach this problem by tak<strong>in</strong>g<br />

a diffusion constant <strong>in</strong>side the object that differs from the<br />

diffusion constant <strong>of</strong> the surround<strong>in</strong>g medium. Also, to<br />

characterize the object we <strong>in</strong>troduce a size a and an aborption<br />

length la or absorption parameter a, describ<strong>in</strong>g the<br />

situation <strong>in</strong> which absorption takes place only at the surface<br />

<strong>of</strong> the object. It turns out that one can dist<strong>in</strong>guish<br />

between absorb<strong>in</strong>g <strong>objects</strong> and scatter<strong>in</strong>g <strong>objects</strong>. Scatter<strong>in</strong>g<br />

<strong>objects</strong> do not absorb but have a diffusion constant<br />

that is different from the surround<strong>in</strong>g medium.<br />

The important parameter for the visibility <strong>of</strong> an object<br />

is the ratio a/L, a be<strong>in</strong>g the size <strong>of</strong> the object and L the<br />

thickness <strong>of</strong> the system where<strong>in</strong> the object has been<br />

placed. The local <strong>in</strong>tensity disturbance that is due to the<br />

object is diffusively broadened; therefore the visibility is<br />

<strong>in</strong>dependent <strong>of</strong> the scatter<strong>in</strong>g mean-free path.<br />

To illustrate our approach, we consider a few examples<br />

<strong>of</strong> scatter<strong>in</strong>g <strong>media</strong> conf<strong>in</strong>ed <strong>in</strong> a simple geometry. We<br />

calculate the transmitted and backscattered <strong>in</strong>tensity for<br />

three- and two-dimensional slabs <strong>in</strong> Subsections 2.A and<br />

2.B, respectively. In Subsection 2.C the disturbance on<br />

the diffuse <strong>in</strong>tensity when a po<strong>in</strong>t source is used <strong>in</strong>stead<br />

<strong>of</strong> a plane wave is calculated. A spherical geometry is<br />

considered <strong>in</strong> Subsection 2.D. Measurements were carried<br />

out for a two-dimensional slab to test the theory. In<br />

Section 3 we report our experimental results, which are <strong>in</strong><br />

good agreement with diffusion theory.<br />

2. CALCULATION OF DIFFUSE INTENSITY<br />

0740-3232/93/061209-10$06.00 © 1993 Optical Society <strong>of</strong> America<br />

For the transport <strong>of</strong> light through a scatter<strong>in</strong>g medium<br />

and through an object we use the diffusion approximation,<br />

and we take smooth boundaries for medium and object.<br />

We consider a spherical object with a radius a that is small<br />

compared with the system size L. Our goal is to solve the


1210 J. Opt. Soc. Am. A/Vol. 10, No. 6/June 1993<br />

stationary diffusion equation with boundary conditions<br />

given by the geometry <strong>of</strong> the scatter<strong>in</strong>g medium and extra<br />

boundary conditions from the embedded object. We consider<br />

a slab geometry and a spherically shaped geometry.<br />

The slab is situated between x = L and x = 0 and is <strong>in</strong>f<strong>in</strong>itely<br />

extended <strong>in</strong> the yz plane. A source S(y, z), plane<br />

wave or po<strong>in</strong>tlike, is placed at x = L. The sphere that<br />

conf<strong>in</strong>es the scatter<strong>in</strong>g medium is centered at the orig<strong>in</strong>.<br />

The stationary diffusion equation reads as<br />

AI(r) = 0. (1)<br />

The boundary conditions at the outer surfaces <strong>of</strong> the medium<br />

are for a slab<br />

and for a sphere<br />

I(L, y, z) = S(y, z), I(0, Y, z) = (2)<br />

I(R, 0, ) = S(O, ), (3)<br />

where I(r) is the diffuse <strong>in</strong>tensity, L is the thickness <strong>of</strong> the<br />

slab, and R is the radius <strong>of</strong> the sphere.<br />

One can dist<strong>in</strong>guish at least two means <strong>of</strong> absorption by<br />

the object: uniform absorption <strong>in</strong> its volume or absorption<br />

only at its surface. Absorption at the surface could<br />

be used, for <strong>in</strong>stance, as a model for dyed polystyrene<br />

spheres. For uniform absorption an absorption length<br />

la1 = /K can be <strong>in</strong>troduced, and for the <strong>in</strong>tensity <strong>in</strong>side the<br />

object the diffusion equation<br />

AI(r) = K 2 1(r) (4)<br />

should be considered. In this case the problem is to solve<br />

Eqs. (1) and (4), together with the boundary condition<br />

given by Eq. (2) or (3) and with extra boundary conditions<br />

on the surface <strong>of</strong> the object that are given by<br />

Iut(a+) = Ii(a-), (5)<br />

D a-|ut = D2 ~ -| (6)<br />

an a+<br />

The diffusion constants Di and D 2 are for the medium and<br />

for <strong>in</strong>side the object, respectively. The normal derivative<br />

a/an is taken on the surface <strong>of</strong> the object. Equation (5)<br />

provides cont<strong>in</strong>uity <strong>of</strong> <strong>in</strong>tensity, and Eq. (6) conserves the<br />

flux through the boundary <strong>of</strong> the object. These boundary<br />

conditions follow from the underly<strong>in</strong>g transport theory,<br />

which yields both the diffusion equation and its boundary<br />

conditions.<br />

To account for absorption only at the boundary <strong>of</strong> the<br />

object, one modifies Eq. (6) such that the flux is not conserved.<br />

In this way absorption takes place at the boundary<br />

<strong>of</strong> the object, and we can use Eq. (1) for the <strong>in</strong>tensity<br />

<strong>in</strong>side the object. The modified boundary conditions are<br />

D aI-<br />

An +<br />

= D2 al<strong>in</strong> +aIi(a).<br />

An a<br />

The absorption parameter a has the dimension <strong>of</strong> speed<br />

(7)<br />

We can dist<strong>in</strong>guish a number <strong>of</strong> relevant cases. For<br />

<strong>in</strong>stance,<br />

or = K = 0, D2 O D,:<br />

a = K = 0, D2 = :<br />

a 0, or K 0:<br />

pure scatterer, no absorption,<br />

glass object or air bubble,<br />

absorber, absorb<strong>in</strong>g behavior<br />

dom<strong>in</strong>ates scatter<strong>in</strong>g.<br />

S<strong>in</strong>ce Eq. (1) is a Laplace equation, we can use the<br />

formalism <strong>of</strong> electrostatics and <strong>in</strong>troduce the analog <strong>of</strong><br />

charges, dipoles, and their mirror images. Positive<br />

charges describe light sources and negative sources describe<br />

absorption <strong>of</strong> light. Dipoles describe scatter<strong>in</strong>g<br />

<strong>objects</strong>.<br />

A. Three-Dimensional Slab<br />

We consider a plane wave S(L, y, z) = Io <strong>in</strong>cident upon a<br />

slab. A schematic view is given <strong>in</strong> Fig. 1. A spherical<br />

object with radius a is located at ro = (x 0, 0,0). We must<br />

write the potential for a po<strong>in</strong>t charge and apply the boundary<br />

condition given by Eq. (2), with S(y, z) = 0. This results<br />

<strong>in</strong> a summation over mirror images, the outcome<br />

be<strong>in</strong>g the diffusion propagator for a slab. The potential<br />

for a dipole can easily be obta<strong>in</strong>ed from this result if one<br />

takes the derivative with respect to the position <strong>of</strong> the<br />

charge. The <strong>in</strong>tensity <strong>in</strong> the slab can be expressed as<br />

1 1<br />

L I~r = IoL + Jr |ro + 2Lnx|' Jr + r + 2Ln52|<br />

P nE -[(X -<br />

x - x + 2nL<br />

xo + 2nL) 2 + p2 ] 3 / 2<br />

x + x + 2nL<br />

[(x + x + 2nL) 2 + 2]312'<br />

with x be<strong>in</strong>g a unit vector along the x axis and p 2 =<br />

y 2 + z 2 .<br />

The first term <strong>in</strong> Eq. (9) describes the undisturbed <strong>in</strong>tensity,<br />

the second term represents the effect <strong>of</strong> absorption<br />

analogous to a charge <strong>in</strong> electrodynamics, and the<br />

I<br />

0.' .<br />

L<br />

.<br />

Den Outer et al.<br />

Fig. 1. Schematic view <strong>of</strong> a <strong>multiple</strong>-scatter<strong>in</strong>g system with an<br />

embedded spherical object. The scatter<strong>in</strong>g system is characterized<br />

by a diffusion constant DI and the object by radius a, diffusion<br />

constant D 2, and absorb<strong>in</strong>g parameter a. A plane wave is<br />

<strong>in</strong>cident at x = L. The <strong>in</strong>tensity is derived at x = 0 and x = L.<br />

(9)


Den Outer et al.<br />

third is the dipole term from scatter<strong>in</strong>g. Further details<br />

<strong>of</strong> the object will be found <strong>in</strong> higher multipoles for the<br />

<strong>in</strong>tensity outside the object, but their contribution to the<br />

disturbance far from the object will be small. When a


1212 J. Opt. Soc. Am. A/Vol. 10, No. 6/June 1993<br />

Moreover, a careful re<strong>in</strong>vestigation <strong>of</strong> the diagrammatic<br />

analysis employed <strong>in</strong> Ref. 7 reveals that the result <strong>in</strong>deed<br />

has the behavior <strong>of</strong> a dipole rather than <strong>of</strong> a charge.<br />

B. Two-Dimensional Slab<br />

The disturbance on the <strong>in</strong>tensity for a two-dimensional<br />

slab is derived completely analogously to the previous approach.<br />

To obta<strong>in</strong> the <strong>in</strong>tensity distribution from a po<strong>in</strong>t<br />

source <strong>in</strong> a two-dimensional system, one has to write<br />

down the potential for a l<strong>in</strong>e charge and apply the first<br />

boundary condition <strong>of</strong> Eqs. (2) with S(L, y, z) = 0. Experimentally<br />

a two-dimensional system can be realized if<br />

one makes the system translationally <strong>in</strong>variant along one<br />

coord<strong>in</strong>ate; i.e., if one uses rods and glass fibers as <strong>objects</strong>.<br />

The application <strong>of</strong> the boundary condition <strong>of</strong> Eqs. (2) on<br />

the potential for a l<strong>in</strong>e charge results <strong>in</strong> a summation over<br />

mirror images, which can be performed exactly. Here it<br />

is convenient to <strong>in</strong>troduce the complex variable ; = x +<br />

iy. The potential for a l<strong>in</strong>e dipole can aga<strong>in</strong> be found if<br />

one takes the derivative <strong>of</strong> this result with respect to the<br />

position. The ansatz for the solution <strong>of</strong> the diffusion<br />

equation [Eq. (1)] with a l<strong>in</strong>e charge and a l<strong>in</strong>e dipole outside<br />

the object reads as<br />

I = I x + q~e~n s<strong>in</strong>[(r/2L)( - x)]<br />

q ~ ns<strong>in</strong>[(ir/2L)( + x)]J<br />

+ pRe{cot[2(; - xo)] + cot[( + ]1<br />

(18)<br />

where x 0 is the position <strong>of</strong> the scatterer (yo = 0). For absorption<br />

only at the boundary the ansatz is<br />

I<strong>in</strong>(0 = A + B(x - xo). (19)<br />

For uniform absorption the ansatz for the <strong>in</strong>tensity <strong>in</strong>side<br />

the object is<br />

I<strong>in</strong>(;) = AIo(Kp) + 2BI(KP)COS .<br />

K<br />

(20)<br />

Here I(r) and I(r) are the modified Bessel functions <strong>of</strong><br />

order 0 and 1, p = IPI = (X 2 + y 2 )1" 2 , and is the angle<br />

between p and the x axis.<br />

To obta<strong>in</strong> the constants q, p, A, and B we approximate<br />

Eq. (18) for ; close to x0 and for a/L small:<br />

Iout( = Io XO + (x - xo)<br />

{ | 7r [(X-XO)2 + y2]1/2 + a2 2L s<strong>in</strong>(7r/L)xo VL2<br />

2L(x - x) + a<br />

+ PL 2(x - XO) 2<br />

2]1/2 + cot -x0 + O()<br />

Y LL<br />

(21)<br />

We <strong>in</strong>sert Eqs. (19) and (21) <strong>in</strong>to Eqs. (7) and (8), which<br />

accounts for uniform absorption and absorption on the<br />

surface <strong>of</strong> the object, to obta<strong>in</strong><br />

q = io[L + p cot(irxo/L)]<br />

aa + D 2KaI,(Ka)/Io(Ka)<br />

D1 + [aa + D2KaI(Ka)/IO(Ka)]ln(L/a*)<br />

ira 2 Di - D 2[KaIo(Ka) - Il(Ka)]/I1(Ka) - aa<br />

O2L2 D + D 2[KaIo(Ka) - Il(Ka)]/II(Ka)<br />

+ aa<br />

A IO(Ka) D<br />

KaIi(Ka)D 2+ I(aa<br />

B = 21(a) (I1 + P 2L)<br />

with the rescaled radius<br />

sra<br />

a 2 s<strong>in</strong>(7rfxolL)<br />

(22)<br />

(23)<br />

Although the dipole term depends on a and K separately,<br />

we take K = 0 from now on. This simplification is justified<br />

because the dipole contribution to the <strong>in</strong>tensity disturbance<br />

can be neglected whenever absorption is present.<br />

One may conclude that the <strong>in</strong>tensity disturbance far outside<br />

the object does not depend dramatically on specific<br />

mechanism <strong>of</strong> absorption. For K = 0, the coefficients reduce<br />

to<br />

rxo D 1 - D 2 - aa ra 2<br />

q IOLL uIDI + D 2 + aa 2L2J<br />

aa<br />

x D1 + aa ln(L/a*)<br />

A Dlq<br />

aa<br />

D - D2 - aa 7ra 2<br />

DI + D 2 + aa 2L 2<br />

B = Io± + Pai-<br />

L<br />

(24)<br />

When aa > Da 2 /L 2 , the charge term dom<strong>in</strong>ates and has<br />

strength [ln(L/a*) + D/aa] . We obta<strong>in</strong> for the transmitted<br />

light<br />

_1 aIr)<br />

T(y) = -- a<br />

Io x _o<br />

I r ir s<strong>in</strong>(.7rxo/L)<br />

L cosh(,7ry/L) - cos(,7rxo/L)<br />

and for the backscattered light<br />

B (y) -1 - - |<br />

Io ax x-L<br />

2Xp 1 - cosh(7ry/L)cos(7rxo/L)<br />

[cosh(7ry/L) - cos(,7rxo/L)]2J<br />

1 + 7r s<strong>in</strong>(7rxo/L)<br />

L cosh(ry/L) + cos(irxo/L)<br />

- 1 + cosh(iry/L)cos(irxo/L) 1<br />

[cosh(ry/L) + cos(lrxo/L)]2J<br />

Den Outer et al.<br />

(25)<br />

(26)


Den Outer et al.-<br />

1 .00<br />

0.95<br />

0.90<br />

'E 0.85<br />

C<br />

4 0.80<br />

S<br />

0.75<br />

t 0.70<br />

'0.65<br />

0.60<br />

0.55 -20<br />

1.005<br />

1.004 -<br />

a 1 .003<br />

C al<br />

. 1.002<br />

Z 1.001<br />

'E<br />

1.000<br />

-16 -12 -8 -4 0 4 8 1 2 1 6 20<br />

transversal position (mm)<br />

(a)<br />

0.999<br />

-20 -16 -12 -8 -4 0 4 8 12 1 6 20<br />

transversal position (mm)<br />

(b)<br />

Fig. 2. Calculated diffuse <strong>in</strong>tensities are shown for an object<br />

embedded <strong>in</strong> a two-dimensional <strong>multiple</strong> scatter<strong>in</strong>g system, as a<br />

function <strong>of</strong> the transversal distance to the object. The <strong>in</strong>tensity<br />

is plotted relative to the undisturbed <strong>in</strong>tensity (no object present),<br />

accord<strong>in</strong>g to Eq. (26). (a) Transmission for absorb<strong>in</strong>g rod,<br />

a = 1, a = a, K = 0. Solid curve, xo = 20 1; dotted curve, x0 =<br />

80 1. (b) Transmission for scatter<strong>in</strong>g rod, a = ,a = K = 0,<br />

D2 = m. Solid curve, x0 = 20 1; dotted curve, xo = 30 1; dashed<br />

curve, xo = 40 1. In all cases L = 100 1. L is the thickness <strong>of</strong> the<br />

slab, and 1 is the mean free path.<br />

A few examples are plotted <strong>in</strong> Fig. 2 for different<br />

tions and absorption coefficients.<br />

C. Po<strong>in</strong>t Source<br />

It is <strong>of</strong>ten more convenient to use a po<strong>in</strong>t source <strong>in</strong>stei<br />

a plane wave, and also the quality <strong>of</strong> the image can be<br />

proved when the response <strong>of</strong> the system on a po<strong>in</strong>t so<br />

is known. 7 To calculate this response, first one sh<br />

know the <strong>in</strong>tensity distribution <strong>in</strong> the slab that is dt<br />

the po<strong>in</strong>t-source <strong>in</strong>cidence <strong>in</strong> the absence <strong>of</strong> an oh<br />

Accord<strong>in</strong>g to Akkermans et al.,1 6 one can make thE<br />

sumption that all the <strong>in</strong>com<strong>in</strong>g light starts to propa<br />

diffusely at one transport mean free path <strong>in</strong>side the<br />

Without an object, the <strong>in</strong>tensity distribution <strong>in</strong>side<br />

slab is given by<br />

G~l, Ren s<strong>in</strong>[(r/2L)- 1)]<br />

G'lI) - ~n s<strong>in</strong>[(,r/2L)(; + 1)]J<br />

for a two-dimensional system and by<br />

G(l,<br />

r) =2 1 zi /<br />

[(1 l - x + 2Ln) 2 + y2 + z2 ]" 2<br />

[(I + x + 2Ln) 2 + y 2 + z 2 ]1/2<br />

Vol. 10, No. 6/June 1993/J. Opt. Soc. Am. A 1213<br />

for a three-dimensional system. S<strong>in</strong>ce a po<strong>in</strong>t source is<br />

used, the ansatz for the solution <strong>of</strong> the total problem, medium<br />

plus object, will change. One should realize that the<br />

direction <strong>of</strong> the dipole depends on the local light flux.<br />

The direction <strong>of</strong> the flux at a particular po<strong>in</strong>t is now a<br />

function <strong>of</strong> position. The new ansatz <strong>in</strong> two dimensions<br />

reads as<br />

with<br />

R s<strong>in</strong>[(ir/2L)(; - x0 - iyo)]<br />

= I0 G(l;) + q Reln s<strong>in</strong>[(ir/2L)(; + x0 + iyo)]J<br />

+ Re cot[ x 0 + iyo)]<br />

+ p*cot[jj§(; + X0 - iyO) (29)<br />

p _js,(xo,yo) + iS 2(Xo,Yo)- (30)<br />

The coefficients s, (x 0, yo) and s 2(xO, yO) follow from a firstorder<br />

Taylor expansion,<br />

s<strong>in</strong>[(Qn/L)(xo - 1)]<br />

= cosh[(7r/L)yo] - cos[(r/L)(xo - 1)]<br />

s<strong>in</strong>[(7r/L)(xo + 1)]<br />

cosh[(ir/L)yo] - cos[(ir/L)(xo + 1)]<br />

s<strong>in</strong>h[( 7/L)yo]<br />

= cosh[(ir/L)yo] - cos[(/L)(xo - 1)]<br />

s<strong>in</strong>h[(1r/L)xo]<br />

cosh[(r/L)yo] - cos[(rr/L)(xo - 1)] (31)<br />

Also, the <strong>in</strong>tensity <strong>in</strong>side the object should be adjusted to<br />

the local flux direction:<br />

'<strong>in</strong> = A + B[s,(xoyo)(x - xo) + s2(xOyo)(y - yo)]-<br />

(32)<br />

Now one can perform a straightforward calculation to<br />

obta<strong>in</strong> the coefficients q, p, A, and B. They are<br />

q = [IoG(l, o) + fis,(xo,yo)cot(lrxo/L)]D + aaln(L/a*)<br />

A = Diq/aa,<br />

i7a 2 D -D2 - aa<br />

2L! DI + D2 + aa<br />

B I 2D, (33)<br />

2L D, + D 2 + aa<br />

(27) In three dimensions the new ansatz reads as<br />

Iout(r) = IoG(1,r) + qIq(r) + p-| G(1,r)<br />

ar ro<br />

(28) I<strong>in</strong>(r) = A + B(r - ro) . - G(l, r),<br />

ar r<br />

d Iq(r),<br />

ar ( (34)<br />

(35)


1214 J. Opt. Soc. Am. A/Vol. 10, No. 6/June 1993<br />

0.35<br />

0.30<br />

0.25<br />

,0.20 /<br />

.10.10/ Z005 . /X ll<br />

0.05<br />

0.00 -<br />

-1 6.0 -12.0 -8.0 -4.0 0.0 4.0 8.0 12.0 1 6.0 20.0<br />

transversal position (mm)<br />

Fig. 3. Calculated transmitted diffuse <strong>in</strong>tensities as a function<br />

<strong>of</strong> the transversal distance y for a slab conta<strong>in</strong><strong>in</strong>g an absorb<strong>in</strong>g<br />

spherical object at various positions, follow<strong>in</strong>g Eq. (16). The light<br />

source is po<strong>in</strong>tlike and placed at r= (1,0,0). Slab thickness<br />

L = 50 1, absorb<strong>in</strong>g object radius a = , = , scatter<strong>in</strong>g term<br />

neglected. Solid curve, no object; long-dashed curve, x =<br />

45 ,yo = 0; dashed-dotted curve, x = 45 ,yo = 10 1; shortdashed<br />

curve, xo = 5 1, yo = 0; dotted curve x 0 = 5 1, yo = 10 1.<br />

where<br />

nIr [(x - xo + 2Ln) 2 + (y - yo) 2 + (z - Z2]12<br />

1<br />

[(x + x 0 + 2Ln) 2 + (y - yo) 2 + (Z - ZO)2]112<br />

(36)<br />

The coefficients q, p, A, and B follow aga<strong>in</strong> from boundary<br />

conditions (7) and (8). This results <strong>in</strong><br />

q = -aIOG(, rO) aa'<br />

D + aa<br />

= D - D2- a<br />

a 3 IO 2 D + D 2 + a<br />

A =Dq<br />

aa2<br />

B = + 3D+ D1<br />

2,+ D2 + aa~<br />

q = -a[IoGR(rsrO) - p ro<br />

p = a 3 I 0a- GR(r, r)2<br />

A = _ Dlq<br />

aa2<br />

The disturbance on the <strong>in</strong>tensity depends strongly on<br />

the position <strong>of</strong> the light source. The disturbance can be<br />

more pronounced than for plane-wave <strong>in</strong>cidence, depend<strong>in</strong>g<br />

on the relative distance between the object and the<br />

light source. This is a more convenient situation because<br />

now a displacement <strong>of</strong> the source can give either a background<br />

measurement (without an object) or a measurement<br />

with an object. A few examples are plotted <strong>in</strong> Fig. 3.<br />

The transmitted <strong>in</strong>tensity is plotted for various positions<br />

<strong>of</strong> the object with respect to the po<strong>in</strong>t source and the<br />

boundaries <strong>of</strong> the slab. The strong dependence <strong>of</strong> the<br />

transmitted <strong>in</strong>tensity on the position <strong>of</strong> the object is readily<br />

seen from the figure.<br />

D. Spherical Geometry<br />

An expression for the light <strong>in</strong>tensity is derived for a<br />

spherical medium <strong>in</strong> which an object has been placed.<br />

First we must know the diffusion propagator, or the<br />

Green's function, for a sphere. When absorption is absent<br />

or negligible, a closed expression can easily be obta<strong>in</strong>ed<br />

with the help <strong>of</strong> only one mirror image. 5 We will use this<br />

Green's function to calculate the disturbance. A po<strong>in</strong>t<br />

source is used and placed at the positive z axis at one<br />

transport mean-free path underneath the surface <strong>of</strong> the<br />

sphere' 6 : r, = (O,O,R - ). So the <strong>in</strong>tensity <strong>in</strong>side the<br />

sphere <strong>of</strong> radius R, <strong>in</strong> the absence <strong>of</strong> an object, is given by<br />

I(r) = IGR(r,r). (38)<br />

The Green's function for a sphere is given by<br />

1<br />

GR (rl,r 2) = I 2<br />

R 1<br />

r2 R2<br />

ri - _X`2<br />

r22<br />

(39)<br />

When an object is placed at r <strong>in</strong>side the sphere, we can<br />

express the <strong>in</strong>tensity as<br />

Iout(r) = I(r) + qGR(r,ro) - P a GR(rro).<br />

aro<br />

Inside the sphere we use the ansatz<br />

(40)<br />

I<strong>in</strong> = A + IoB (r - r). (41)<br />

We use boundary conditions (7) and (8) to derive the<br />

coefficients<br />

R 1 cia<br />

2 (r0 - R2)2J Di + aa[l 2 - 2 aR/(rb - R )]<br />

D- -D2-aa<br />

al. ro 2D,[1 - /2 a3R3 2 /(r0 -<br />

2 3 R ) ] + (D2 + aa)[1 + a 3 R3/(r 2 R<br />

-R2)3]<br />

+qor2- R 22DJ[1 - /2 a R 3 /(ro 2<br />

a R [I R 3<br />

ar ro (ro2 i) 3+(<br />

0 2 -R23<br />

D, + D 2 + aa<br />

- R 2 ) 3 ] + (D 2 + aa)[1 + a3R 3 /(ro 2 - R2)3]<br />

Den Outer et al.<br />

(42)<br />

(43)<br />

(44)<br />

(45)<br />

The coefficients q and p are still to be obta<strong>in</strong>ed from<br />

Eqs. (42) and (43). But the above form permits an easy<br />

comparison with the former obta<strong>in</strong>ed coefficients. The<br />

transmission through the surface <strong>of</strong> the sphere can be<br />

found if one takes the normal derivative.


Den Outer et al.<br />

OBJECT<br />

S Le D<br />

Fig. 4. Experimental setup: L, laser, Sp, spatial filter; S,<br />

screen; C, cell with the scatter<strong>in</strong>g medium and the object; Le,<br />

lens for imag<strong>in</strong>g the diffuse <strong>in</strong>tensity on D, the one-dimensional<br />

diode array.<br />

1.050<br />

1 .000<br />

0.950<br />

0.900 M<br />

O0.850 -<br />

0.800 c<br />

C<br />

S0.750 .<br />

transversal position (mm)<br />

Fig. 5. Transmitted <strong>in</strong>tensity pr<strong>of</strong>iles from a cell conta<strong>in</strong><strong>in</strong>g a<br />

diffusive scatter<strong>in</strong>g suspension, for various positions <strong>of</strong> the embedded<br />

absorb<strong>in</strong>g wire 4 = 350 ,m: a, x0 = 1.00 mm; b,<br />

xO= 2.60 mm, and c, x0 = 4.10 mm. The experimental data are<br />

shown together with the best numerical fits for Eq. (25): a, x0 =<br />

1.41 ± 0.05 mm, D,/oaa = 0.95 ± 0.03; b, x0 = 2.86 + 0.05 mm,<br />

Di/ara = 1.04 + 0.03; c, xo = 4.33 + 0.05 mm, D,/aa = 1.11 ±<br />

0.03. In all cases a = 0.175, bm, p = 0, 1 = 20 ± 3 and cell<br />

thickness L = 10.0 mm.<br />

3. MEASUREMENTS<br />

The experimental setup for a plane-wave transmission<br />

measurement is shown <strong>in</strong> Fig. 4. A 7-mW cont<strong>in</strong>uouswave<br />

He-Ne laser beam (A = 633 nm) is spatially filtered<br />

and expanded to a radius <strong>of</strong> approximately 20 cm to produce<br />

a flat beam pr<strong>of</strong>ile. Part <strong>of</strong> this beam imp<strong>in</strong>ges upon<br />

the cell with the object <strong>in</strong> the highly scatter<strong>in</strong>g medium.<br />

The transmitted light, imaged on a one-dimensional diode<br />

array, is read out by a computer. The spatial resolution is<br />

approximately 60 jum. When backscatter<strong>in</strong>g experiments<br />

Vol. 10, No. 6/June 1993/J. Opt. Soc. Am. A 1215<br />

are done, the illum<strong>in</strong>ated side <strong>of</strong> the cell is imaged on the<br />

diode array. Care should be taken for the w<strong>in</strong>dow ref lection<br />

<strong>of</strong> the cell. We have used two different cells. The<br />

first has a thickness <strong>of</strong> 4 mm and 4 mm X 40 mm X<br />

40 mm sized w<strong>in</strong>dows, the second has a variable thickness<br />

<strong>of</strong> 5 or 10 mm and w<strong>in</strong>dows with size 20 mm X 60 mm X<br />

60 mm. Complications are <strong>in</strong>troduced by the glass w<strong>in</strong>dows,<br />

s<strong>in</strong>ce light is totally reflected by the w<strong>in</strong>dow-air<br />

<strong>in</strong>terface when the angle between the surface normal and<br />

the light ray is beyond the critical angle. This reflected<br />

light either enters the sample aga<strong>in</strong> or is reflected by it.<br />

As a consequence, every po<strong>in</strong>t source at the boundary <strong>of</strong><br />

the scatter<strong>in</strong>g medium is spread out <strong>in</strong> a triangular <strong>in</strong>tensity<br />

pr<strong>of</strong>ile, and a nonnegligible deformation <strong>of</strong> the <strong>in</strong>tensity<br />

occurs. Transmission experiments on absorb<strong>in</strong>g<br />

<strong>objects</strong> suffer most from this effect, because the <strong>in</strong>tensity<br />

pr<strong>of</strong>ile relative to the background is the largest.<br />

This deformation can be reproduced if one convolutes<br />

the calculated pr<strong>of</strong>iles with the triangular <strong>in</strong>tensity pr<strong>of</strong>ile.<br />

The latter should be calculated on the basis <strong>of</strong> <strong>multiple</strong><br />

reflections <strong>in</strong>side the w<strong>in</strong>dow. However, this will<br />

extend the fitt<strong>in</strong>g procedure by the <strong>in</strong>troduction <strong>of</strong> more<br />

fit parameters, and therefore the procedure is not<br />

favorable.<br />

We have chosen to reduce the effect <strong>of</strong> these reflections<br />

on the <strong>in</strong>tensity pr<strong>of</strong>ile by us<strong>in</strong>g a cell with thick w<strong>in</strong>dows.<br />

The total <strong>in</strong>ternal reflected light is well separated from its<br />

source, and <strong>in</strong> most cases the light is reflected beside the<br />

sample. (An antireflection coat<strong>in</strong>g on the w<strong>in</strong>dows would<br />

not have solved this problem because the coat<strong>in</strong>g cannot<br />

reduce total <strong>in</strong>ternal reflections.)<br />

For plane-wave <strong>in</strong>cident experiments we perform ratio<br />

measurements to correct for the sensitivity <strong>of</strong> the <strong>in</strong>dividual<br />

diodes and to correct for the rema<strong>in</strong><strong>in</strong>g beam pr<strong>of</strong>ile.<br />

Depend<strong>in</strong>g on the strength <strong>of</strong> the signal, <strong>in</strong>tegration times<br />

vary from 10 s to 3 m<strong>in</strong>. The scatter<strong>in</strong>g medium consists<br />

<strong>of</strong> suspended TiO 2 rutile particles, hav<strong>in</strong>g an average size<br />

<strong>of</strong> 220 nm, <strong>in</strong> glycer<strong>in</strong>e. We calculate the transport meanfree<br />

path from the measured scatter<strong>in</strong>g mean-free path by<br />

means <strong>of</strong> Mie theory.' 0<br />

In Fig. 5 we present transmission measurements for absorb<strong>in</strong>g<br />

rods. We use a 0.35-mm pencil embedded <strong>in</strong> a<br />

scatter<strong>in</strong>g medium with a transport mean-free path <strong>of</strong><br />

20 tum. The thickness <strong>of</strong> the cell is 10.0 mm. The solid<br />

curves are the best numerical fits <strong>of</strong> Eq. (25) to the measured<br />

pr<strong>of</strong>iles. Here the position and the absorb<strong>in</strong>g<br />

Table 1. Fits <strong>of</strong> the Calculated L<strong>in</strong>e Shape to Experimental Data Obta<strong>in</strong>ed from a Transmission<br />

Experiment with an Absorb<strong>in</strong>g Roda<br />

Experimental Fitted Absorption Experimental Fitted Position<br />

Normal Normal Strength Position Relative to Relative to<br />

Position (mm) Position (mm) D/aa First Position (mm) First Position (mm)<br />

0.75 ± 0.05 1.23 ± 0.02 0.95 ± 0.03 0 0<br />

1.40 ± 0.05 1.91 ± 0.02 0.99 ± 0.03 0.65 ± 0.07 0.68 ± 0.03<br />

2.30 ± 0.05 2.78 ± 0.02 1.04 ± 0.03 1.55 ± 0.07 1.55 ± 0.03<br />

3.50 ± 0.05 3.91 ± 0.02 1.10 ± 0.03 2.75 ± 0.07 2.68 ± 0.03<br />

4.95 ± 0.05 5.28 ± 0.02 1.11 ± 0.03 4.20 ± 0.07 4.05 ± 0.03<br />

6.30 ± 0.05 6.67 ± 0.02 0.96 ± 0.03 5.55 ± 0.07 5.44 ± 0.03<br />

7.80 ± 0.05 8.2 ± 0.1 0.8 ± 0.1 7.05 ± 0.07 7.0 ± 0.1<br />

9.30 ± 0.05 9.8 ± 0.1 0.6 ± 0.1 8.55 ± 0.07 8.6 ± 0.1<br />

aIn all cases the scatter<strong>in</strong>g contribution is neglected, p = 0; the size <strong>of</strong> the rod 0 = 350 Am, and the diffusion constant <strong>in</strong>side the rod D 2


1216 J. Opt. Soc. Am. A/Vol. 10, No. 6/June 1993<br />

.>1 .0<br />

C'<br />

.<br />

X 0.8<br />

C<br />

ffi0.7<br />

2<br />

g 0.6<br />

E 0.5<br />

C<br />

r<br />

u. t 0 1 2 3 4 5 6 7 8<br />

fitted normal position (mm)<br />

9 10<br />

Fig. 6. M<strong>in</strong>ima <strong>of</strong> the <strong>in</strong>tensity pr<strong>of</strong>iles for different positions <strong>of</strong><br />

the absorb<strong>in</strong>g wire. The experimental po<strong>in</strong>ts <strong>of</strong> Table 1 are plotted.<br />

The solid curve is obta<strong>in</strong>ed from Eq. (25) with L = 10.0 mm,<br />

a = 0.175 mm, D,/aa = 1.00, p = 0, and D 2 = 0.<br />

Table 2. Fits <strong>of</strong> the Calculated L<strong>in</strong>e Shape to<br />

Transmission Experiment Data'<br />

Experimental Transversal Fitted Transversal<br />

Displacement (mm) Displacement (mm)<br />

2.00 ± 0.02 2.05 ± 0.03<br />

4.00 ± 0.02 4.04 ± 0.06<br />

5.00 ± 0.02 5.02 ± 0.07<br />

7.00 ± 0.02 7.03 ± 0.09<br />

9.00 ± 0.02 9.1 0.1<br />

11.00 ± 0.02 11.1 ± 0.2<br />

aExperimental displacements <strong>of</strong> an absorb<strong>in</strong>g rod parallel to the slab are<br />

compared with those obta<strong>in</strong>ed from the correspond<strong>in</strong>g fits. The distance<br />

between the rod and the boundary (x position) is 4.30 ± 0.02 mm, and the<br />

thickness <strong>of</strong> the cell is 10.0 mm. The scatter<strong>in</strong>g contribution is neglected<br />

(p = 0), and the diffusion constant <strong>in</strong>side the rod is small (D 2


Den Outer et al.<br />

Table 3. Fits <strong>of</strong> the Calculated L<strong>in</strong>e Shape to Experimental Data Obta<strong>in</strong>ed from a Backscatter<br />

Experiment with an Absorb<strong>in</strong>g Roda<br />

Experimental Fitted Absorption Strength<br />

Normal Position (mm) Normal Position (mm) D/iaa<br />

0.28 ± 0.05 0.34 ± 0.02 0.5 ± 0.1<br />

0.78 ± 0.05 0.82 ± 0.02 0.6 ± 0.1<br />

1.38 ± 0.05 1.32 ± 0.02 2.0 ± 0.1<br />

1.68 ± 0.05 1.7 ± 0.1 1.7 ± 0.1<br />

Ax = 50 + 5 Am<br />

Ax = 48 3 Amb<br />

aThe size <strong>of</strong> the rod 0 = 350 tim, and the thickness <strong>of</strong> the cell is 4 mm. The scatter<strong>in</strong>g contribution is neglected (p = 0). The diffusion constant <strong>in</strong>side<br />

the rod D2


1218 J. Opt. Soc. Am. A/Vol. 10, No. 6/June 1993<br />

formation on the size and on the absorption strength can<br />

be obta<strong>in</strong>ed when the transmitted <strong>in</strong>tensity can be<br />

recorded for various normal positions <strong>of</strong> the object.<br />

The visibility <strong>of</strong> an object scales with the ratio aL, a<br />

be<strong>in</strong>g the object and L the sample size, because diffuse<br />

<strong>in</strong>tensity is measured.<br />

ACKNOWLEDGMENTS<br />

The authors thank Shechao Feng for <strong>in</strong>itiat<strong>in</strong>g the experiment,<br />

Jean-Marc Luck for draw<strong>in</strong>g attention to the application<br />

<strong>of</strong> diffusion theory, and Me<strong>in</strong>t van Albada and<br />

Johannes de Boer for helpful discussions. This work<br />

is part <strong>of</strong> the research program <strong>of</strong> the Sticht<strong>in</strong>g voor<br />

Fundamenteel Onderzoek der Materie, which is f<strong>in</strong>ancially<br />

supported by Nederlandse Organisatie voor Wetenschappelijk<br />

Onderzoek. The work <strong>of</strong> Nieuwenhuizen has been<br />

made possible by a fellowship <strong>of</strong> the Royal Netherlands<br />

Academy <strong>of</strong> Arts and Sciences.<br />

REFERENCES AND NOTES<br />

1. S. R. Arridge, P. van der Zee, M. Cope, and D. T. Delpy,<br />

"Reconstruction methods for <strong>in</strong>fra-red absorption imag<strong>in</strong>g,"<br />

<strong>in</strong> Time-Resolved Spectroscopy and Imag<strong>in</strong>g <strong>of</strong> Tissues,<br />

B. Chance and A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum.<br />

Eng. 1431, 204-351 (1991).<br />

2. D. T. Delpy, M. Cope, P. van der Zee, S. Wray, and J. Wyatt,<br />

"Estimation <strong>of</strong> optical pathlength through tissue from direct<br />

time <strong>of</strong> flight measurement," Phys. Med. Biol. 33, 1433-1442<br />

(1988).<br />

3. H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, and<br />

J. Valdmanis, "Two-dimensional imag<strong>in</strong>g through diffus<strong>in</strong>g<br />

<strong>media</strong> us<strong>in</strong>g 150-fs gated electronic holography techniques,"<br />

Opt. Lett. 16, 487-489 (1991).<br />

4. K. M. Yoo, Q. X<strong>in</strong>g, and R. R. Alfano, "Imag<strong>in</strong>g <strong>objects</strong> hidden<br />

<strong>in</strong> highly scatter<strong>in</strong>g <strong>media</strong> us<strong>in</strong>g femtosecond second-<br />

Den Outer et al.<br />

harmonic-generation cross-correlation time gat<strong>in</strong>g," Opt.<br />

Lett. 16, 1019-1021 (1991).<br />

5. R. W Waynant, presider, session on biomedical imag<strong>in</strong>g, <strong>in</strong><br />

Conference on Lasers and Electro-Optics, Vol. 10 <strong>of</strong> 1991<br />

OSA Technical Digest Series (Optical Society <strong>of</strong> America,<br />

Wash<strong>in</strong>gton, D.C., 1991), pp. 101-104.<br />

6. E. N. Leith, C. Chen, H. Chen, Y Chen, J. Lopez, and P. C.<br />

Sun, "Imag<strong>in</strong>g through scatter<strong>in</strong>g <strong>media</strong> us<strong>in</strong>g spatial <strong>in</strong>coherence<br />

techniques," Opt. Lett. 16, 1820-1822 (1991).<br />

7. R. Berkovits and S. Feng, "Theory <strong>of</strong> speckle-pattern tomography<br />

<strong>in</strong> <strong>multiple</strong>-scatter<strong>in</strong>g <strong>media</strong>," Phys. Rev. Lett. 65,<br />

3120-3123 (1990).<br />

8. I. Freund, "Image reconstruction through <strong>multiple</strong> scatter<strong>in</strong>g<br />

<strong>media</strong>," Opt. Commun. 86, 216-227 (1991).<br />

9. A. Ishimaru, Wave Propagation and Scatter<strong>in</strong>g <strong>in</strong> Random<br />

Media (Academic, New York, 1978), Vols. I and II.<br />

10. H. C. van de Hulst, Multiple Light Scatter<strong>in</strong>g (Academic,<br />

New York, 1980), Vols. I and II.<br />

11. J. Fishk<strong>in</strong>, E. Gratton, M. J. van de Ven, and W W Mantul<strong>in</strong>,<br />

"Diffusion <strong>of</strong> <strong>in</strong>tensity modulated near-<strong>in</strong>frared light <strong>in</strong> turbid<br />

<strong>media</strong>," <strong>in</strong> Time-Resolved Spectroscopy and Imag<strong>in</strong>g <strong>of</strong><br />

Tissues, B. Chance and A. Katzir, eds., Proc. Soc. Photo-Opt.<br />

Instrum. Eng. 1431, 122-135 (1991).<br />

12. S. R. Arridge, M. Cope, P. van der Zee, P. J. Hilson, and D. T.<br />

Delpy, "Visualization <strong>of</strong> the oxygenation state <strong>of</strong> bra<strong>in</strong> and<br />

muscle <strong>in</strong> newborn <strong>in</strong>fants by near <strong>in</strong>fra-red transillum<strong>in</strong>ation,"<br />

<strong>in</strong> Information Process<strong>in</strong>g <strong>in</strong> Medical Imag<strong>in</strong>g, S. L.<br />

Bacharach, ed. (Nijh<strong>of</strong>f, Dordrecht, 1985), pp. 155-177.<br />

13. E. M. Sevick, B. Chance, J. Leigh, S. Nioka, and M. Maris<br />

"Quantitation <strong>of</strong> time- and frequency-resolved optical spectra<br />

for the determ<strong>in</strong>ation <strong>of</strong> tissue oxygenation," Ann. Biochem.<br />

Exp. Med. 195, 330-351 (1991).<br />

14. M. B. van der Mark, M. P. van Albada, and A. Lagendijk,<br />

"Light scatter<strong>in</strong>g <strong>in</strong> strongly <strong>media</strong>: <strong>multiple</strong> scatter<strong>in</strong>g and<br />

weak localization," Phys. Rev. B 37, 3575-3592 (1988).<br />

15. See, for <strong>in</strong>stance, J. D. Jackson, Classical Electrodynamics<br />

(Wiley, New York, 1975).<br />

16. E. Akkermans, P. E. Wolf, and R. Maynard, "Coherent backscatter<strong>in</strong>g<br />

<strong>of</strong> light by disordered <strong>media</strong>: analysis <strong>of</strong> the peak<br />

l<strong>in</strong>e shape," Phys. Rev. Lett. 56, 1471-1474 (1986).<br />

17. See, for <strong>in</strong>stance, J. W Goodman, Statistical Optics (Wiley,<br />

New York, 1985).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!