06.01.2013 Views

Soil Classification (AASHTO and USCS)

Soil Classification (AASHTO and USCS)

Soil Classification (AASHTO and USCS)

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CE 240<br />

<strong>Soil</strong> Mechanics & Foundations<br />

Lecture 3.2<br />

Engineering <strong>Classification</strong> of <strong>Soil</strong><br />

(<strong>AASHTO</strong> <strong>and</strong> <strong>USCS</strong>)<br />

(Das, Ch. 4)


Outline of this Lecture<br />

1. Particle distribution <strong>and</strong> Atterberg Limits<br />

2. <strong>Soil</strong> classification systems based on<br />

particle distribution <strong>and</strong> Atterberg Limits<br />

3. American Association of State Highway <strong>and</strong><br />

Transportation Officials System (<strong>AASHTO</strong>)<br />

4. The Unified <strong>Soil</strong> <strong>Classification</strong> System<br />

(<strong>USCS</strong>)


Objective<br />

Classifying soils into groups with similar<br />

behavior, in terms of simple indices, can<br />

provide geotechnical engineers a general<br />

guidance about engineering properties of the<br />

soils through the accumulated experience.<br />

Simple indices<br />

GSD, LL, PI<br />

Communicate<br />

between<br />

engineers<br />

<strong>Classification</strong><br />

system<br />

(Language)<br />

Use the<br />

accumulated<br />

experience<br />

Estimate<br />

engineering<br />

properties<br />

Achieve<br />

engineering<br />

purposes


<strong>Classification</strong> Systems<br />

• Two commonly used systems for soil<br />

engineers based on particle distribution<br />

<strong>and</strong> Atterberg limits:<br />

• American Association of State Highway<br />

<strong>and</strong> Transportation Officials (<strong>AASHTO</strong>)<br />

System (for state/county highway dept.)<br />

• Unified <strong>Soil</strong> <strong>Classification</strong> System (<strong>USCS</strong>)<br />

(preferred by geotechnical engineers).


<strong>Soil</strong> particles<br />

The description of the grain size distribution of soil<br />

particles according to their texture (particle size,<br />

shape, <strong>and</strong> gradation).<br />

Major textural classes include, very roughly:<br />

gravel (>2 mm);<br />

s<strong>and</strong> (0.1 – 2 mm);<br />

silt (0.01 – 0.1 mm);<br />

clay (< 0.01 mm).<br />

Furthermore, gravel <strong>and</strong> s<strong>and</strong> can be roughly<br />

classified as coarse textured soils, wile silt <strong>and</strong> clay<br />

can be classified as fine textures soils.


Cobbles or Boulders<br />

Grain Size Distribution Curves<br />

GRAVEL SAND FINES


Atterberg limits<br />

Atterberg limits are the limits of water content used to<br />

define soil behavior. The consistency of soils according<br />

to Atterberg limits gives the following diagram.


American Association of State<br />

Highway <strong>and</strong> Transportation<br />

Officials system (<strong>AASHTO</strong>)<br />

Origin of <strong>AASHTO</strong>: (For road construction)<br />

This system was originally developed by<br />

Hogentogler <strong>and</strong> Terzaghi in 1929 as the Public<br />

Roads <strong>Classification</strong> System. Afterwards, there are<br />

several revisions. The present <strong>AASHTO</strong> (1978)<br />

system is primarily based on the version in 1945.<br />

(Holtz <strong>and</strong> Kovacs, 1981)


Definition of Grain Size<br />

No specific grain<br />

size-use<br />

Atterberg limits<br />

Boulders Silt-Clay<br />

Gravel S<strong>and</strong><br />

75 mm<br />

No.4<br />

4.75 mm<br />

Coarse Fine<br />

No.40<br />

0.425 mm<br />

No.200<br />

0.075<br />

mm


<strong>Classification</strong><br />

(Proceeding from left to right against the columns)<br />

Das, Table 4.1, 2006


Note:<br />

<strong>Classification</strong> (Cont.)<br />

The first group from the left to fit the test data is the<br />

correct <strong>AASHTO</strong> classification.<br />

Das, Table 4.1, 2006


Group Index GI<br />

200<br />

200<br />

[ ]<br />

GI = ( F − 35) 0.2 + 0.005( LL −40)<br />

+ 0.01( F −15)( PI −10)<br />

(4.1)<br />

For Group A-2-6 <strong>and</strong> A-2-7<br />

200<br />

The first term is determined by the LL<br />

The second term is determined by the PI<br />

GI = 0.01( F −15)( PI −10) (4.2) use the second term only<br />

F200: percentage passing through the No.200 sieve<br />

In general, the rating for a pavement subgrade is<br />

inversely proportional to the group index, GI.


Some Explanations of Group Index GI<br />

1, if Eq. 4.1 gives a negative value then GI=0;<br />

2, round up the value calculated by Eq. 4.1 to<br />

an integer;<br />

3, there is no upper limit for GI;<br />

4, the GIs for soil groups A-1-a, A-1-b, A-2-4,<br />

A-2-5, <strong>and</strong> A-3 are always zero (0).


(PI)<br />

(LL)<br />

Das, Figure 4.1


General Guidance<br />

– 8 major groups: A1~ A7 (with several subgroups) <strong>and</strong><br />

organic soils A8<br />

– The required tests are sieve analysis <strong>and</strong> Atterberg<br />

limits.<br />

– The group index, an empirical formula, is used to<br />

further evaluate soils within a group (subgroups).<br />

A1 ~ A3<br />

Granular Materials<br />

≤ 35% pass No. 200 sieve<br />

Using LL <strong>and</strong> PI separates silty<br />

materials from clayey materials (only<br />

for A2 group)<br />

A4 ~ A7<br />

Silt-clay Materials<br />

≥ 36% pass No. 200 sieve<br />

Using LL <strong>and</strong> PI separates silty<br />

materials from clayey materials<br />

– The original purpose of this classification system is<br />

used for road construction (subgrade rating).


Example 4.1, <strong>Soil</strong> B<br />

Passing No.200 86%<br />

LL=70, PI=32<br />

LL-30=40 > PI=32<br />

GI<br />

= ( F<br />

200<br />

+ 0.<br />

01(<br />

F<br />

=<br />

33.<br />

47<br />

− 35)<br />

200<br />

≅<br />

33<br />

[ 0.<br />

2 + 0.<br />

005(<br />

LL − 40)<br />

]<br />

−15)(<br />

PI −10)<br />

Round off<br />

A-7-5(33)


This is the example<br />

of Das, Example 4.1<br />

for the <strong>AASHTO</strong><br />

system classification


<strong>USCS</strong> <strong>Classification</strong> System<br />

• Originally developed for the United<br />

States Army Corps of Engineers<br />

(USACE)<br />

• The method is st<strong>and</strong>ardized in ASTM D<br />

2487 as “Unified <strong>Soil</strong> <strong>Classification</strong><br />

System (<strong>USCS</strong>)”<br />

• <strong>USCS</strong> is the most common soil<br />

classification system among<br />

geotechnical engineers


Unified <strong>Soil</strong> <strong>Classification</strong> System<br />

Origin of <strong>USCS</strong>:<br />

(<strong>USCS</strong>)<br />

This system was first developed by Professor A.<br />

Casagr<strong>and</strong>e (1948) for the purpose of airfield<br />

construction during World War II. Afterwards, it was<br />

modified by Professor Casagr<strong>and</strong>e, the U.S. Bureau of<br />

Reclamation, <strong>and</strong> the U.S. Army Corps of Engineers to<br />

enable the system to be applicable to dams,<br />

foundations, <strong>and</strong> other construction.<br />

Four major divisions:<br />

(1) Coarse-grained<br />

(2) Fine-grained<br />

(3) Organic soils<br />

(4) Peat


Boulders<br />

Definition of Grain Size<br />

Cobbles<br />

300 mm<br />

75 mm<br />

Gravel S<strong>and</strong><br />

Coarse Fine Coarse Medium Fine<br />

No.4<br />

4.75 mm<br />

19 mm No.10 No.40<br />

2.0 mm<br />

No specific grain sizeuse<br />

Atterberg limits<br />

0.425 mm<br />

No.200<br />

0.075<br />

mm<br />

Silt <strong>and</strong><br />

Clay


(Das, Table 4.2)


• <strong>Soil</strong> symbols:<br />

• G: Gravel<br />

• S: S<strong>and</strong><br />

• M: Silt<br />

• C: Clay<br />

• O: Organic<br />

• Pt: Peat<br />

Example: SW, Well-graded s<strong>and</strong><br />

SC, Clayey s<strong>and</strong><br />

SM, Silty s<strong>and</strong>,<br />

MH, Elastic silt<br />

The Symbols<br />

• Liquid limit<br />

symbols:<br />

• H: High LL (LL>50)<br />

• L: Low LL (LL


<strong>USCS</strong> System (cont.)<br />

• A typical <strong>USCS</strong> classification would be:<br />

Group<br />

Symbol<br />

-<br />

SM Silty s<strong>and</strong> with gravel<br />

Group<br />

Name


<strong>Classification</strong> of <strong>Soil</strong>s<br />

• From sieve analysis <strong>and</strong> the grain-size<br />

distribution curve determine the percent<br />

passing as the following:<br />

– > 3 inch – Cobble or Boulders<br />

– 3 inch - # 4 (76.2 – 4.75 mm) : Gravel<br />

– # 4 - # 200 (4.75 - 0.075 mm) : S<strong>and</strong><br />

– < # 200: Fines<br />

• First, Find % passing # 200<br />

• If 5% or more of the soil passes the # 200<br />

sieve, then conduct Atterberg Limits (LL &<br />

PL)


<strong>Classification</strong> of <strong>Soil</strong>s<br />

• If the soil is fine-grained (≥ 50% passes<br />

#200) follow the guidelines for fine-grained<br />

soils<br />

• If the soil is coarse-grained (


50%<br />

General Guidance<br />

Coarse-grained soils:<br />

Gravel S<strong>and</strong><br />

•Grain size distribution<br />

•C u<br />

•C c<br />

NO. 4<br />

4.75 mm<br />

50 %<br />

NO.200<br />

0.075 mm<br />

Required tests: Sieve analysis<br />

Fine-grained soils:<br />

Silt Clay<br />

Atterberg limit<br />

•PL, LL<br />

•Plasticity chart<br />

LL>50<br />

LL


Coarse-grained <strong>Soil</strong>s


Fine-grained <strong>Soil</strong>s


Gravel<br />

98-62 = 36%<br />

S<strong>and</strong><br />

62-8 = 54%<br />

Fines = 8%<br />

Example – <strong>Soil</strong> A<br />

gravel s<strong>and</strong> fines<br />

<strong>Soil</strong> A: D 60 = 4.2 mm , D 30 = 0.6 mm, D 10 = 0.09 mm<br />

Cu = 46.67<br />

Cc = 0.95


Grave = 36%<br />

S<strong>and</strong> = 54%<br />

Fines = 8%<br />

Cu = 46.7<br />

Cc = 0.95<br />

LL = 42<br />

PL = 31<br />

PI = 42-31 = 11<br />

GO TO Plasticity<br />

Chart<br />

Example – <strong>Soil</strong> A (Cont.)


Example – <strong>Soil</strong> A (Cont.)<br />

• <strong>Soil</strong> A is then classified as<br />

SP-SM – Poorly-grades s<strong>and</strong> with silt <strong>and</strong><br />

gravel


LL = 42<br />

PL = 31<br />

PI = 42-31 = 11<br />

Example – <strong>Soil</strong> A (Cont.)<br />

ML


PI<br />

The Plasticity Chart<br />

L<br />

H<br />

LL<br />

(Holtz <strong>and</strong> Kovacs, 1981)<br />

• The A-line generally<br />

separates the more<br />

claylike materials<br />

from silty materials,<br />

<strong>and</strong> the organics<br />

from the inorganics.<br />

• The U-line indicates<br />

the upper bound for<br />

general soils.<br />

Note: If the measured<br />

limits of soils are on<br />

the left of U-line,<br />

they should be<br />

rechecked.


Procedures for <strong>Classification</strong><br />

Coarse-grained<br />

material<br />

Grain size<br />

distribution<br />

Fine-grained<br />

material<br />

LL, PI<br />

Highly<br />

(Santamarina et al., 2001)


Example<br />

Passing No.200 sieve 30 %<br />

Passing No.4 sieve 70 %<br />

LL= 33<br />

PI= 12<br />

PI= 0.73(LL-20), A-line<br />

PI=0.73(33-20)=9.49<br />

SC<br />

(≥15% gravel)<br />

Clayey s<strong>and</strong> with<br />

gravel<br />

Passing No.200 sieve 30 %<br />

Passing No.4 sieve 70 %<br />

Highly<br />

LL= 33<br />

PI= 12<br />

(Santamarina et al., 2001)


Organic <strong>Soil</strong>s<br />

Highly organic soils- Peat (Group symbol PT)<br />

− A sample composed primarily of vegetable tissue in<br />

various stages of decomposition <strong>and</strong> has a fibrous to<br />

amorphous texture, a dark-brown to black color, <strong>and</strong> an<br />

organic odor should be designated as a highly organic<br />

soil <strong>and</strong> shall be classified as peat, PT.<br />

Organic clay or silt( group symbol OL or OH):<br />

− “The soil’s liquid limit (LL) after oven drying is less than<br />

75 % of its liquid limit before oven drying.” If the above<br />

statement is true, then the first symbol is O.<br />

− The second symbol is obtained by locating the values<br />

of PI <strong>and</strong> LL (not oven dried) in the plasticity chart.


This is the Figure 4.7 of Das’ textbook, the scanning<br />

electron micrographs (SEM) for 4 peat samples.


Borderline Cases (Dual Symbols)<br />

For the following three conditions, a dual<br />

symbol should be used.<br />

–Coarse-grained soils with 5% - 12% fines.<br />

−About 7 % fines can change the hydraulic<br />

conductivity of the coarse-grained media by<br />

orders of magnitude.<br />

−The first symbol indicates whether the coarse<br />

fraction is well or poorly graded. The second<br />

symbol describe the contained fines. For example:<br />

SP-SM, poorly graded s<strong>and</strong> with silt.


Borderline Cases (Dual Symbols, cont.)<br />

–Fine-grained soils with limits within the<br />

shaded zone. (PI between 4 <strong>and</strong> 7 <strong>and</strong> LL<br />

between about 12 <strong>and</strong> 25).<br />

−It is hard to distinguish between the silty <strong>and</strong> more<br />

claylike materials.<br />

−CL-ML: Silty clay, SC-SM: Silty, clayed s<strong>and</strong>.<br />

–<strong>Soil</strong> contain similar fines <strong>and</strong> coarse-grained<br />

fractions.<br />

− possible dual symbols GM-ML


Borderline Cases (Summary)<br />

(Holtz <strong>and</strong> Kovacs, 1981)


Reading Assignment:<br />

Das, Ch. 4<br />

Homework:<br />

Problem 4.3

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!