08.01.2013 Views

Organic scintillator

Organic scintillator

Organic scintillator

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Scintillator Detectors


Electrons formed in ionization process<br />

are NOT the same giving the electronic signals !!!


= phosphorescence<br />

Light is produced by<br />

deexcitations of<br />

molecules<br />

Phosphorescence is a property of<br />

many crystals and organic materials


ZnS: the precursor of modern <strong>scintillator</strong> counters<br />

In 1903 W. Crookes demonstrated in England his<br />

“spinthariscope” for the visual observation of individual<br />

scintillations caused by alpha particles impinging upon a ZnS<br />

screen. In contrast to the analogue methods of radiation<br />

measurements in that time the spinthariscope was a singleparticle<br />

counter, being the precursor of scintillation counters<br />

since. In the same period F. Giesel, J. Elster and H. Geitel in<br />

Germany also found that scintillations from ZnS represent single<br />

particle events. This paper summarises the historical events<br />

relevant to the advent of scintillation counting.<br />

“2003: a centennial of spinthariscope and scintillation counting”<br />

Z. Kolar et al., App. Rad. And Isot. 61 (2004)261


<strong>Organic</strong> <strong>scintillator</strong><br />

[Solid or liquid: haromatic hydrocarbons (benzene, …) ]<br />

Excited electrons are the ones NOT strongly<br />

involved in the bonding of the material (π electrons)<br />

Low Z<br />

Low efficiency<br />

# γ/keV ∼ 8-10<br />

0.1 eV<br />

1 ps<br />

1 eV<br />

τ ∼ 10 ns<br />

Rise time<br />

Δτ ∼ 0.1 nsec<br />

Fluorecence: 10 -8 s<br />

(FAST)<br />

π electrons energy levels<br />

Singlet<br />

Spin=0<br />

absorption<br />

GS = S 00<br />

Phosphorescence: 10 -6 s<br />

Emission after intra-band transition (SLOW)<br />

fluorescence<br />

Triplet<br />

Spin=1<br />

phosphorescence


⇒ in <strong>Organic</strong> <strong>scintillator</strong>s<br />

Absorption and Emission<br />

occur at different wave-length<br />

at room temperature<br />

all electrons are in S 00


Inorganic <strong>scintillator</strong><br />

[Solid crystals: NaI, CsI, BGO, BaF 2 , LaBr 3, … ]<br />

Excited electrons beween atomic states<br />

(from valence band to conducting band)<br />

NaI<br />

4 eV<br />

τ ∼ 230 ns<br />

Rise time<br />

Δτ ∼ 10 nsec<br />

High Z<br />

High efficiency<br />

# γ/keV ∼ 40<br />

[⇒ 4 times better than plastic]<br />

1 part/10 3<br />

NaI(Tl), CsI(Na), …<br />

Doping material is used to minimize<br />

re-absorbtion from the crystal,<br />

since emitted light has lower<br />

energy than energy-gap.


Similar effec in <strong>Organic</strong> Sintillator


Charged Particles identifications<br />

<strong>Organic</strong> <strong>scintillator</strong>s<br />

energy levels<br />

singlet triplet<br />

absorption<br />

fluorescence<br />

phosphorescence<br />

prompt fluorescence<br />

(from singlet state):<br />

~ few ns<br />

stilbene<br />

C 14 H 12<br />

the slow component (τ ~ ms)<br />

due to delayed phosporescence<br />

(from triplet state)<br />

is larger for particles with large dE/dx<br />

light yield<br />

S = <strong>scintillator</strong> efficiency<br />

kB = fitting constant


Inorganic Scintillators: CsI(Tl), BaF 2 , …<br />

Light output:<br />

L(<br />

t)<br />

=<br />

h<br />

τ<br />

f<br />

f<br />

⎛⎛<br />

⎜⎜<br />

t<br />

exp −<br />

⎜⎜<br />

⎝⎝ τ f<br />

⎞⎞ ⎛⎛ ⎞⎞<br />

⎟⎟<br />

hs<br />

t<br />

+ exp⎜⎜<br />

⎜⎜−<br />

⎟⎟<br />

⎟⎟<br />

⎟⎟<br />

⎠⎠ τ s ⎝⎝ τ s ⎠⎠<br />

Sum of two exponential functions:<br />

fast & slow components<br />

1. τ s independent of particle nature<br />

2. R = h s /(h f +h s ) increases with decreasing<br />

ionisation density<br />

3. τ f increases with decreasing ionisation density<br />

è� it is possible to identify different particles<br />

N.B. CsI have been used at first for particle studies:<br />

- less fragile than NaI<br />

- good particle discrimination<br />

L slow<br />

CsI(Tl)<br />

α particle<br />

E α =95 MeV<br />

τ f = 800 ns<br />

τ s = 4000 ns<br />

L fast


<strong>Organic</strong> vs. Inorganic


Big Disadvantage: Hygroscopic


Relative<br />

Light output<br />

Temperature effect<br />

<strong>Organic</strong> <strong>scintillator</strong>s:<br />

independent of temperature between -60° and 20°<br />

Inorganic <strong>scintillator</strong>s:<br />

Strong dependence on temperature<br />

Temperature


Use of light Pipe:<br />

- coupling with photodetector<br />

- need to locate photodetector<br />

away from <strong>scintillator</strong> (magnetic field ..)


(ε ∼ 30%)


From Dynodes<br />

From Anode<br />

Output Signals


ε =<br />

# photoelectrons generated<br />

# incident photons on cathode<br />

Photocathod<br />

(ε ∼ 30%)


Different types of PMT<br />

G ∼ δ n<br />

δ ∼ 3-5<br />

emission probability<br />

of secondary electrons<br />

n ∼ 10


Another Dynode configuration: Micro Channel Plate<br />

Advantages: 1. fast timing 20ps (short distance, high field)<br />

2. tollerate high magnetic fields<br />

3. position sensitive


Secondary<br />

Emission coefficient<br />

[if electrons are released in random directions<br />

Only few will reach the surface ⇒ reduced gain]<br />

Material: semiconductors<br />

2-3 eV needed to release an electron<br />

Linearity and Stability is required


# γ/keV ∼ 40 �


Energy resolution<br />

Never achieved in practice, due to various sources of electronic noise

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!