09.01.2013 Views

gamma detection - FNDA 2011

gamma detection - FNDA 2011

gamma detection - FNDA 2011

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Fast neutron inelastic scattering<br />

at the nELBE facility<br />

Roland Beyer, Helmholtz-Zentrum Dresden-Rossendorf<br />

www.hzdr.de/trakula


Fast neutron inelastic scattering at the nELBE facility<br />

Outline<br />

Seite 2<br />

� Motivation: Nuclear transmutation<br />

� The neutron source nELBE<br />

� The double time of flight setup and data analysis<br />

� Summary/Outlook


Fast neutron inelastic scattering at the nELBE facility<br />

Outline<br />

Seite 3<br />

� Motivation: Nuclear transmutation<br />

� The neutron source nELBE<br />

� The double time of flight setup and data analysis<br />

� Summary/Outlook


Fast neutron inelastic scattering at the nELBE facility<br />

Data needs for transmutation facilities<br />

http://www.nea.fr/html/science/wpec/volume26/volume26.pdf<br />

Seite 4<br />

� for nuclei to be transmuted as well as<br />

for structural materials<br />

� fast neutron spectrum<br />

• neutron capture<br />

• neutron induced fission<br />

• neutron inelastic scattering<br />

� 56Fe (n,n'γ) 56Fe More details in the talk of<br />

Arnd Junghans!


Fast neutron inelastic scattering at the nELBE facility<br />

Outline<br />

Seite 5<br />

� Motivation: Nuclear transmutation<br />

� The neutron source nELBE<br />

� The double time of flight setup and data analysis<br />

� Summary/Outlook


Fast neutron inelastic scattering at the nELBE facility<br />

ELBE = Electron Linac for beams with high Billiance and low Emittance<br />

E e = 6 … 40 MeV<br />

f = 13 MHz / 2 n<br />

Q = 77 pC / bunch<br />

Seite 6<br />

I max = 1 mA<br />

pulse duration = 5 ps


Fast neutron inelastic scattering at the nELBE facility<br />

Seite 7<br />

An electron gets accelerated …


Fast neutron inelastic scattering at the nELBE facility<br />

Seite 8<br />

… and hits the neutron source.


Fast neutron inelastic scattering at the nELBE facility<br />

Inside … the and source hits the liquid neutron lead is source. circulating.<br />

Seite 9


Fast neutron inelastic scattering at the nELBE facility<br />

Seite 10<br />

which There knocks the electron out a neutron loses energy from a<br />

in form lead of nucleus.<br />

γ-radiation, …


Fast neutron inelastic scattering at the nELBE facility<br />

Seite 11<br />

The neutron leaves the source ...


Fast neutron inelastic scattering at the nELBE facility<br />

Seite 12<br />

The neutron leaves the source …


Fast neutron inelastic scattering at the nELBE facility<br />

… and flies into the experimental area.<br />

Seite 13


Fast neutron inelastic scattering at the nELBE facility<br />

Seite 14<br />

The neutron hits the sample ...


Fast neutron inelastic scattering at the nELBE facility<br />

Seite 15<br />

The … and remaining transfers energy part of is its released energy<br />

to an as atomic a photon. nucleus.


Fast neutron inelastic scattering at the nELBE facility<br />

Seite 16<br />

Neutron und photon leave<br />

the sample …


Fast neutron inelastic scattering at the nELBE facility<br />

Seite 17<br />

Neutron and are und registered photon leave by<br />

different the sample detectors.<br />


Fast neutron inelastic scattering at the nELBE facility<br />

nELBE – neutron production<br />

Seite 18<br />

nELBE nELBE<br />

neutron neutron beam<br />

ELBE<br />

electron beam


Fast neutron inelastic scattering at the nELBE facility<br />

nELBE – double ToF detector setup<br />

Seite 20<br />

BaF 2 array for <strong>gamma</strong> <strong>detection</strong><br />

(16 crystals, 40 cm, Ø 5.3 cm)<br />

neutron beam<br />

•BaF 2 scintillator made of two 20 cm long hexagonal crystals (inner Ø = 53 mm)<br />

• active high voltage dividers � more stable due to reduced heat production<br />

• double sided readout � reduce trigger due to dark current<br />

sample: nat Fe (99.8%) � 91.754% 56 Fe<br />

mass: 19.82 g � 18.15 g 56 Fe


Fast neutron inelastic scattering at the nELBE facility<br />

nELBE – double ToF detector setup<br />

Seite 21<br />

BaF 2 array for <strong>gamma</strong> <strong>detection</strong><br />

(16 crystals, 40 cm, Ø 5.3 cm)<br />

neutron beam<br />

5 plastic scintillators<br />

for neutron <strong>detection</strong><br />

(1 m, 11 x 42 mm2 • EJ-200 plastic scintillator 1 m x 11 mm x 42 mm<br />

• double sided readout � reduce trigger due to dark current<br />

• active high voltage dividers � more stable due to reduced heat production<br />

• high gain photomultiplier + threshold just below single electron peak<br />

� neutron <strong>detection</strong> threshold approx. 20 keV<br />

• surrounded by 1 cm Pb shielding to reduce background<br />

)<br />

rate<br />

sample: nat Fe (99.8%) � 91.754% 56 Fe<br />

mass: 19.82 g � 18.15 g 56 Fe


Fast neutron inelastic scattering at the nELBE facility<br />

nELBE – double ToF detector setup<br />

PTB 235 U fission chamber (FC)<br />

for neutron flux determination<br />

Seite 22<br />

BaF2 array for <strong>gamma</strong> <strong>detection</strong><br />

flight paths:<br />

(16 crystals, 40 cm, Ø 5.3 cm)<br />

source - FC:<br />

400 cm<br />

source - sample:<br />

600 cm<br />

• U-235 fission chamber (borrowed from PTB Braunschweig)<br />

sample - BaF<br />

• deposit = ten layers, 5 μg/mm<br />

2:<br />

30 cm<br />

neutron beam<br />

sample - plastics:<br />

100 cm<br />

2 U-235 (99.92%), Ø 76mm<br />

� 201.5 mg U-235<br />

• P10 gas flow<br />

sample: nat Fe (99.8%) � 91.754% 56 Fe<br />

mass: 19.82 g � 18.15 g 56 Fe<br />

5 plastic scintillators<br />

for neutron <strong>detection</strong><br />

(1 m, 11 x 42 mm 2 )


Fast neutron inelastic scattering at the nELBE facility<br />

Outline<br />

Seite 23<br />

� Motivation: Nuclear transmutation<br />

� The neutron source nELBE<br />

� The double time of flight setup and data analysis<br />

� Summary/Outlook


Fast neutron inelastic scattering at the nELBE facility<br />

Beam profile<br />

� measured with moveable plastic scintillator<br />

Seite 24<br />

4.7 m from source 6.2 m from source (target pos.)


Fast neutron inelastic scattering at the nELBE facility<br />

Neutron flux measured by fission chamber<br />

Seite 26<br />

Integral at target: 2x10 4 n/s/cm 2


Fast neutron inelastic scattering at the nELBE facility<br />

Experimental method<br />

Seite 27<br />

56<br />

Fe(n, n'γ<br />

)<br />

56<br />

Fe<br />

{<br />

56<br />

Fe+<br />

n→<br />

56<br />

56<br />

*<br />

Fe + n'<br />

*<br />

Fe →<br />

56<br />

Fe+<br />

γ


Fast neutron inelastic scattering at the nELBE facility<br />

Experimental method<br />

Seite 28<br />

56<br />

Fe(n, n'γ<br />

)<br />

56<br />

Fe<br />

{<br />

56<br />

Fe+<br />

n→<br />

56<br />

56<br />

*<br />

Fe + n'<br />

*<br />

Fe →<br />

56<br />

Fe+<br />

γ<br />

without sample (82 h live time)


Fast neutron inelastic scattering at the nELBE facility<br />

Experimental method<br />

Seite 29<br />

56<br />

Fe(n, n'γ<br />

)<br />

56<br />

Fe<br />

{<br />

56<br />

Fe+<br />

n→<br />

56<br />

56<br />

*<br />

Fe + n'<br />

*<br />

Fe →<br />

56<br />

Fe+<br />

γ<br />

with sample (78 h live time)


Fast neutron inelastic scattering at the nELBE facility<br />

Kinematic calculations<br />

Seite 30<br />

-Fe-56 (1.,2.,3. Level)<br />

(847, 2085, 2658 keV)<br />

-Fe-54 (1. Level)<br />

(1408 keV)<br />

-Fe-56 (2 x 1. Level)<br />

(1694 keV)


Fast neutron inelastic scattering at the nELBE facility<br />

Plastics efficiency<br />

Seite 34<br />

Measurement at PTB:<br />

- Mono-energetic neutrons<br />

- Beyer et al., NIMA 575 (2007) 449<br />

Measurement at HZDR:<br />

- nELBE spectrum<br />

- Relative to 235U fission chamber<br />

NEFF7:<br />

- well established code for neutron<br />

<strong>detection</strong> efficiency simulation<br />

- developed at PTB<br />

Modified NEFF7:<br />

- Cuboid detector geometry<br />

- Double sided readout<br />

- Scintillation light propagation and<br />

attenuation<br />

- PMT Quantum efficiency<br />

- Threshold = one photo electron per<br />

PMT<br />

Problems:<br />

In simulation:<br />

- Unknown light output function at low energy transfer<br />

In measurement:<br />

- Collimated beam at nELBE<br />

- Influence of lead shielding


Fast neutron inelastic scattering at the nELBE facility<br />

Plastics efficiency<br />

Seite 35<br />

Measurement at PTB:<br />

- Mono-energetic neutrons<br />

- Beyer et al., NIMA 575 (2007) 449<br />

Measurement at HZDR:<br />

- nELBE spectrum<br />

- Relative to 235U fission chamber<br />

NEFF7:<br />

- well established code for neutron<br />

<strong>detection</strong> efficiency simulation<br />

- developed at PTB<br />

Modified NEFF7:<br />

- Cuboid detector geometry<br />

- Double sided readout<br />

- Scintillation light propagation and<br />

attenuation<br />

- PMT Quantum efficiency<br />

- Threshold = one photo electron per<br />

PMT<br />

Problems:<br />

In simulation:<br />

- Unknown light output function at low energy transfer<br />

In measurement:<br />

- Collimated beam at nELBE<br />

- Influence of lead shielding


Fast neutron inelastic scattering at the nELBE facility<br />

The 56 Fe(n,n’γ) cross section for the 1 st excited state<br />

Seite 36<br />

� absolute normalization still missing


Fast neutron inelastic scattering at the nELBE facility<br />

Measurements of photon production cross section<br />

Seite 37


Fast neutron inelastic scattering at the nELBE facility<br />

Measurements of photon production cross section<br />

Seite 38<br />

with target without target


Fast neutron inelastic scattering at the nELBE facility<br />

Summary and outlook<br />

• nELBE is intended to deliver data on fast neutron induced reactions<br />

• the ELBE electron beam delivers a high neutron flux with very good time structure<br />

• different kinds of experiments can be done:<br />

• inelastic scattering using a double time of flight setup: Fe-56 and Na-23<br />

• neutron transmission: Al, Ta, Pb<br />

• elastic scattering: D(n,n)D<br />

• fission: U, Am, Np, Pu � Future<br />

• planned improvements:<br />

• LaBr 2 detectors instead of BaF 2 � better photon energy resolution<br />

• new bigger experimental area within extension of ELBE facility<br />

Seite 40


Fast neutron inelastic scattering at the nELBE facility<br />

National Center for High-Power Radiation sources<br />

• New Neutron Time-of-Flight Facility<br />

• X-ray source using Laser-Compton-Backscattering<br />

• High-Power Laser (PW) for Ion Acceleration<br />

Seite 41


Fast neutron inelastic scattering at the nELBE facility<br />

Thanks to all collaborators<br />

HZDR, Institute of Radiation Physics:<br />

A.R. Junghans, D. Bemmerer, E. Grosse, R. Hannaske, A. Hartmann, K. Heidel, M. Kempe, T. Kögler,<br />

R. Massarczyk, R. Schwengner, M. Sobiella, A. Wagner, The ELBE Crew<br />

HZDR, Institute of Safety Research:<br />

E. Altstadt, C. Beckert, A. Ferrari, V. Galindo, K. Noack, F.-P. Weiss<br />

HZDR, Department Radiation Protection and Safety:<br />

B. Naumann<br />

HZDR, Department Research Technology:<br />

R. Schlenk, S. Schneider<br />

TU Dresden:<br />

H. Freiesleben, D. Gehre, M. Greschner, A. Klix, K. Seidel<br />

Physikalisch Technische Bundesanstalt Braunschweig:<br />

M. Mosconi, S. Löb, M. Erhard, R. Nolte, S. Röttger<br />

Others:<br />

Th. Beyer, E. Birgersson, J. Klug, K. Kossev, M. Marta, A. Matic,<br />

C. Nair, C. Rouki, G. Rusev, K.-D. Schilling, G. Schramm,<br />

Seite 43<br />

www.erinda.org<br />

www.hzdr.de/trakula


Fast neutron inelastic scattering at the nELBE facility<br />

The End<br />

� Was one slide before!<br />

Seite 44


Fast neutron inelastic scattering at the nELBE facility<br />

235 U Fission chamber efficiency<br />

� calculation from ENDF (n,fis) cross section<br />

� simulation with MCNP<br />

(includes multiple processes and beam attenuation)<br />

� incredients<br />

• number of fissionable nuclei<br />

• fission <strong>detection</strong> efficiency<br />

• homogeneity<br />

Seite 45<br />

Nolte, Nucl.Sci.Eng.156(2007)197<br />

Gayther, Metrologia 27 (1990) 221


Fast neutron inelastic scattering at the nELBE facility<br />

The 56 Fe(n,n’γ) cross section for the 1 st excited state<br />

Seite 46<br />

� absolute normalization still missing<br />

Uncertainties: @ 2 MeV<br />

Fission chamber efficiency 2.1 %<br />

Fission chamber counts 1.5 %<br />

Fission chamber background 1.8 %<br />

Loss due to ADC range 0.1 %<br />

Scaling factor FCTarget 0.3 %<br />

Attenuation factor 1.1 %<br />

� Neutron flux 2.9 %<br />

Sample in counts 2.3 %<br />

Sample out counts 15.9 %<br />

Normalization factor 1.5 %<br />

BaF 2 efficiency 1.3 %<br />

Plastic efficiency 2.2 %<br />

� Reaction rate 3.8 %<br />

� Cross section 4.8 %


Fast neutron inelastic scattering at the nELBE facility<br />

Detector geometry - details<br />

� borated polyethylene block between BaF 2 and plastics<br />

� number of random coincidences reduced by one order of<br />

magnitude<br />

Seite 47<br />

Plastics BaF 2-Setup<br />

angular coverage:<br />

- θ n = 60°…120°<br />

- ϕ n = - 12°…+12°<br />

- θ γ = 50°…130°<br />

- ϕ γ = +/- (30°…130°)


Fast neutron inelastic scattering at the nELBE facility<br />

Outline<br />

Seite 48<br />

� Motivation: Nuclear transmutation<br />

� Basics: Neutron production and inelastic scattering<br />

� nELBE – The source and the double time of flight setup<br />

� Experiment analysis and results<br />

� Summary/Outlook


Fast neutron inelastic scattering at the nELBE facility<br />

How to produce neutrons<br />

� Sources using radioactive isotopes:<br />

Seite 49<br />

• mixed sources, e.g. 244 Cm � alpha decay � 13 C(α,n)<br />

• spontaneous fission, e.g. 252 Cf<br />

� Reactor Neutrons<br />

� Sources using accelerators:<br />

• quasi mono-energetic sources:<br />

- 7 Li(p,n) 7 Be � e.g. PTB Braunschweig<br />

- 3 H(d,n) 4 He � e.g. D-T-Generator of TU Dresden at HZDR<br />

• continuous sources:<br />

- bremsstrahlung: 238 U(γ,n) � e.g. GELINA at IRMM Geel, Belgium<br />

- spallation: Pb(p,xn) � e.g. CERN nTOF


Fast neutron inelastic scattering at the nELBE facility<br />

How to measure inelastic neutron scattering<br />

56<br />

� mono-energetic neutron-source and <strong>detection</strong> of the<br />

scattered neutron<br />

• e.g. Van-de-Graaff in Studsvik, Nyköping, Sweden<br />

• T(p,n) 3He + each excited state can be identified<br />

- new setting for each point<br />

Seite 51<br />

Fe(n, n'γ<br />

)<br />

56<br />

Fe<br />

{<br />

56<br />

Fe+<br />

n→<br />

56<br />

56<br />

*<br />

Fe + n'<br />

*<br />

Fe →<br />

56<br />

Fe+<br />

γ<br />

56 Fe


Fast neutron inelastic scattering at the nELBE facility<br />

How to measure inelastic neutron scattering<br />

56<br />

� mono-energetic neutron-source and <strong>detection</strong> of the<br />

scattered neutron<br />

• e.g. Van-de-Graaff in Studsvik, Nyköping, Sweden<br />

• T(p,n) 3He + each excited state can be identified<br />

- new setting for each point<br />

� continuous spectrum and <strong>detection</strong> de-excitation<br />

<strong>gamma</strong><br />

• e.g. Gelina in Geel, Belgium<br />

• electron Linac + Uranium target<br />

+ all energies in one experiment<br />

- knowledge on decay scheme necessary<br />

Seite 53<br />

Fe(n, n'γ<br />

)<br />

56<br />

Fe<br />

{<br />

56<br />

Fe+<br />

n→<br />

56<br />

56<br />

*<br />

Fe + n'<br />

*<br />

Fe →<br />

56<br />

Fe+<br />

γ<br />

56 Fe


Fast neutron inelastic scattering at the nELBE facility<br />

How to measure inelastic neutron scattering<br />

56<br />

� mono-energetic neutron-source and <strong>detection</strong> of the<br />

scattered neutron<br />

• e.g. Van-de-Graaff in Studsvik, Nyköping, Sweden<br />

• T(p,n) 3 He<br />

+ each excited state can be identified<br />

- new setting for each point<br />

� continuous spectrum and <strong>detection</strong> de-excitation<br />

<strong>gamma</strong><br />

• e.g. Gelina in Geel, Belgium<br />

+ all energies in one experiment<br />

- knowledge on decay scheme necessary<br />

� continuous spectrum and <strong>detection</strong> of both emitted<br />

particles<br />

• e.g. FIGARO in Los Alamos, USA<br />

• spallation source<br />

+ all energies, level identification<br />

- low count rate<br />

Seite 54<br />

Fe(n, n'γ<br />

)<br />

56<br />

Fe<br />

{<br />

56<br />

Fe+<br />

n→<br />

56<br />

56<br />

*<br />

Fe + n'<br />

*<br />

Fe →<br />

56<br />

Fe+<br />

γ<br />

56 Fe


Fast neutron inelastic scattering at the nELBE facility<br />

Neutron facility comparison<br />

n-ToF-device<br />

Seite 55<br />

CERN<br />

n-ToF<br />

LANL<br />

NSC<br />

ORNL<br />

SNS<br />

FZK<br />

VdG<br />

ORNL<br />

ORELA<br />

IRMM<br />

GELINA<br />

ELBE ELBE with<br />

SRF-gun<br />

beam power / kW 10 60 1000 0.4 8 7 5 40<br />

rep. rate / s -1 0.4 20 60<br />

2.5⋅10<br />

5 500 800<br />

1.6⋅10<br />

6<br />

pulse charge / nC ≈ 10 3 4⋅10 3 3⋅10 4 0.01 ≈ 100 ≈ 100 0.08 1.8<br />

flight path / m 183 ≈ 20 60 84 0.8 40 20 6 6<br />

n-pulse length / ns > 7 125 100-700 ≈ 1 > 4 > 1 < 0.4 < 0.4<br />

E min / eV 0.1 0.1 1 0.1 10 3 10 10 2⋅10 5 2⋅10 4<br />

E max /eV 3⋅10 8 ≈10 8 ≈10 8 2⋅10 5 5⋅10 6 4⋅10 6 7⋅10 6 7⋅10 6<br />

∆E/E @ 1MeV<br />

n-flux<br />

(s⋅cm 2 ⋅E-decade) -<br />

1<br />

0.5<br />

%<br />

5⋅10 5<br />

5% ≈ 10 % >10 % ≈ 10 % < 1 % < 2 % ≈ 1 % ≈ 1 %<br />

10 5 ≈ 10 7 ≈ 10 6 10 6 -10 7 ≈ 10 4 10 4 4⋅10 4 10 5 10 6


Fast neutron inelastic scattering at the nELBE facility<br />

nELBE – neutron facility at ELBE<br />

e -<br />

Seite 57<br />

γ<br />

A Pb<br />

n<br />

A-1 Pb


Fast neutron inelastic scattering at the nELBE facility<br />

Determination of the inelastic scattering cross section<br />

� Incoming Neutron Flux<br />

Seite 62<br />

• 235 U fission chamber neutron <strong>detection</strong> efficiency � calculation/simulation<br />

- number of fissionable nuclei<br />

- fission <strong>detection</strong> efficiency<br />

- homogeneity<br />

• count rate in time of flight spectrum � statistics + background subtraction<br />

• corrections for loss due to ADC gate<br />

• scaling factor for ratio of beam area at fission chamber and sample size<br />

• corrections for flux attenuation inside fission chamber, air and sample<br />

fission chamber neutron beam sample


Fast neutron inelastic scattering at the nELBE facility<br />

Determination of the inelastic scattering cross section<br />

� Number of detected reactions<br />

Seite 63<br />

• measurements with and without sample in beam<br />

- background normalization


Fast neutron inelastic scattering at the nELBE facility<br />

Background subtraction<br />

Seite 64<br />

sample in beam<br />

sample off beam<br />

kinematic window<br />

for event counting<br />

“Banana” for<br />

background<br />

determination


Fast neutron inelastic scattering at the nELBE facility<br />

Determination of the inelastic scattering cross section<br />

� Number of detected reactions<br />

Seite 65<br />

• measurements with and without sample in beam<br />

- background normalization<br />

• efficiency of neutron detectors


Fast neutron inelastic scattering at the nELBE facility<br />

Determination of the inelastic scattering cross section<br />

� Number of detected reactions<br />

Seite 66<br />

• measurements with and without sample in beam<br />

- background normalization<br />

• efficiency of neutron detectors<br />

• solid angle of neutron detectors � calculation<br />

• efficiency of photon detectors<br />

- measured with mono energetic radioactive sources<br />

- 54 Mn: 835 keV is similar to 56 Fe 1 st excited level at 847 keV<br />

- solid angle included in source measurement<br />

� Number of target nuclei<br />

• target mass<br />

• purity<br />

• isotopic enrichment


Fast neutron inelastic scattering at the nELBE facility<br />

The 56 Fe(n,n’γ) cross section for the 1 st excited state<br />

Seite 67


Fast neutron inelastic scattering at the nELBE facility<br />

Inelastic neutron scattering on 23 Na<br />

Seite 68<br />

without target Na-23<br />

E thr = 2391 keV<br />

E thr = 2076 keV<br />

E thr = 440 keV


Fast neutron inelastic scattering at the nELBE facility<br />

Inelastic neutron scattering on 23 Na<br />

Seite 69


Fast neutron inelastic scattering at the nELBE facility<br />

Inelastic neutron scattering on 23 Na<br />

Seite 70

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!