10.01.2013 Views

Sylvia atricapilla - Přírodovědecká fakulta - Univerzita Palackého v ...

Sylvia atricapilla - Přírodovědecká fakulta - Univerzita Palackého v ...

Sylvia atricapilla - Přírodovědecká fakulta - Univerzita Palackého v ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Reprodukční strategie ptáků<br />

Habilitační práce<br />

Vladimír Remeš<br />

Katedra zoologie a ornitologická laboratoř<br />

<strong>Univerzita</strong> <strong>Palackého</strong> v Olomouci<br />

<strong>Přírodovědecká</strong> <strong>fakulta</strong>


2<br />

© Vladimír Remeš, 2011


Poděkování<br />

Jsem velmi rád, že se mohu naplno zabývat tím, co mne baví nejvíc – poznáváním přírody.<br />

Všem kdo mně v tom jakkoliv pomohli jsem velmi vděčný.<br />

Nejvýraznější finanční podpora mé práce pocházela od Ministerstva školství ČR, Grantové<br />

agentury ČR, Fulbrightovy komise a australského Ministerstva školství.<br />

3


OBSAH<br />

1. Úvod ...........................................................................................................5<br />

2. Výběr hnízdního prostředí a hnízdní predace ..............................................6<br />

3. Evoluce a diverzita životních znaků .............................................................9<br />

4. Mateřské efekty a nutriční ekologie ..........................................................13<br />

5. Ornamenty a rodičovské investice.............................................................16<br />

6. Celkový závěr ............................................................................................19<br />

7. Literatura ..................................................................................................23<br />

8. Seznam zařazených prací...........................................................................30<br />

4


1. Úvod<br />

Reprodukčními strategiemi rozumíme behaviorální, fyziologické a morfologické<br />

charakteristiky jedinců daného druhu, které jim umožňují úspěšně se rozmnožit a předat<br />

geny do další generace. Jsou to právě soubory těchto znaků, které svým perfektním<br />

"zapadnutím" do životního prostředí druhu vytvářejí dokonalou iluzi designu a designéra<br />

(Dawkins 2008). Sem, na místo předpokládaného designéra, přírodní teologové jako William<br />

Paley nebo John Ray (souhrn v Birkhead 2008) postulovali boha. Od vydání přelomového díla<br />

On the Origin of Species (Darwin 1859) však při studiu vzhledu a funkce živých bytostí<br />

převážil přístup evoluční biologie. Cesta evoluční biologie od stadia pouhé hypotézy k<br />

současnému statutu standardní vědecké teorie schopné vysvětlit celou řadu jevů v přírodě<br />

nebyla přímočará (Bowler 1989, Farber 2000). Dnes je však její postavení stejně pevné jako<br />

postavení jakékoliv jiné velké přírodovědné teorie (Dawkins 2009).<br />

Aplikace kritického evolučního myšlení v ekologii a etologii na sebe nechala čekat déle<br />

než v genetice, systematice a paleontologii, které se staly součástí takzvané moderní syntézy<br />

(Mayr 1982). Ekologie si prošla stádii ovlivněnými různými sociologickými teoriemi<br />

souvisejícími zejména se skupinovým výběrem (např. Mitman 1992) a vlastně až Williams<br />

(1966) etabloval důsledné evoluční myšlení zaostřené na jedince ve výzkumu reprodukčních<br />

a životních strategií živočichů a rostlin. Dawkins (1976) potom tento přístup zpřesnil a<br />

popularizoval, ač se jeho plné prosazení neobešlo bez dosti napjatých "vědeckých válek"<br />

(Segerstråle 2000). Etologie byla založena z velké části na revoltě proti neevolučnímu myšlení<br />

ve výzkumu chování živočichů zaměřenému hlavně na mechanismy a procesy učení<br />

(Burkhardt 2005). Klasičtí etologové jako Oskar Heinroth a Konrad Lorenz otočili pozornost k<br />

evolučně fixovaným vzorcům chování, instinktům. Tento přístup byl však z velké části<br />

fylogenetický, tzn. zaměřený na popis a fungování druhově specifických vzorců chování.<br />

Teprve další ze zakladatelů klasické etologie Niko Tinbergen zavedl naplno do výzkumu<br />

chování živočichů tzv. ultimativní přístup tázající se na adaptivní význam určitého chování v<br />

přirozených životních podmínkách daného druhu (Kruuk 2003).<br />

Tato větev ekologicko‐etologického výzkumu se ukázala nesmírně životaschopnou,<br />

zajímavou a plodnou, zejména poté, co ji N. Tinbergen implantoval v anglosaském světě<br />

svým profesorským angažmá na univerzitě v anglickém Oxfordu. Zde se adaptacionistický<br />

výzkum reprodukčních strategií živočichů, zejména ptáků, dále rozvinul pod vedením Davida<br />

Lacka. Jeho hluboce evoluční přístup v etologii a ekologii ptáků je patrný už od jeho prvních<br />

prací (Lack 1943, 1947), ač svého vrcholu dosahuje zejména v pracích pozdějších (např. Lack<br />

1968). Tato tradice pak byla rozvinuta v novém oboru behaviorální ekologie, která se<br />

etabluje od 70. a 80. let 20. století hlavně ve Velké Británii a USA.<br />

Je to právě tato tradice výzkumu adaptivní hodnoty behaviorálních, fyziologických a<br />

morfologických charakteristik živočichů v jejich přirozeném životním prostředí z níž vycházejí<br />

5


studie zařazené do této habilitační práce. V těchto studiích se zaměřuji na analýzu adaptace<br />

v období rozmnožování u ptáků, ať již metodami srovnávacími, experimentálními nebo<br />

observačními. V následujícím textu bych chtěl stručně popsat výsledky svého výzkumu<br />

prováděného společně s celou řadou studentů a kolegů a vyzvednout originální aspekty<br />

jednotlivých prací a jejich přínos oboru. Na závěr bych se zamyslel nad některými<br />

obecnějšími metodologickými aspekty výzkumu adaptivní hodnoty chování v přírodních<br />

populacích živočichů.<br />

2. Výběr hnízdního prostředí a hnízdní predace<br />

Kontext a úvod<br />

Výběr hnízdního prostředí je jedním z nejdůležitějších rozhodnutí, která musí živočich udělat<br />

proto, aby se rozmnožil a úspěšnost rozmnožení na něm často kriticky závisí (Newton 1998).<br />

Obecný typ prostředí, ve kterém daný druh hnízdí, je daný evolucí habitatových preferencí<br />

(Jaenike & Holt 1991), ale každému rozmnožovacímu pokusu předchází většinou vždy znovu<br />

hierarchický rozhodovací proces: ve které oblasti, ve kterém lese, u které paseky, ve kterém<br />

keři (Cody 1985). Z evolučního hlediska je velmi zajímavé, nakolik je tento proces adaptivní.<br />

Rozhodují se ptáci při volbě hnízdního prostředí vždy optimálně a vede tedy jejich volba k<br />

nejvyšší možné produkci potomstva za daných podmínek (Martin 1998)?<br />

Nejdetailnější prostorovou úrovní, na níž proces výběru hnízdního prostředí probíhá, je<br />

volba samotného hnízdního místa (Martin 1993). Kvalitní hnízdní místo by mělo vykazovat<br />

nejen vhodné mikroklima pro inkubaci vajec (D'Alba et al. 2009) a vývin mláďat (Lloyd and<br />

Martin 2004), ale mělo by být také bezpečné proti hnízdním predátorům (Fontaine et al.<br />

2007); tyto charakteristiky spolu samozřejmě mohou souviset (Robertson 2009). Výběr<br />

hnízdního místa tedy můžeme považovat z velké části za antipredační strategii (Caro 2005,<br />

Lima 2009), alespoň u druhů, u nichž je predace hlavním zdrojem mortality hnízd. Sem<br />

ovšem patří velká většina ptačích druhů (Ricklefs 1969a). Vedle charakteristik hnízdního<br />

místa (Weidinger 2004) má na pravděpodobnost nalezení a zničení hnízda predátorem vliv<br />

také chování rodičů. Na to ukazuje fakt, že pravděpodobnost predace hnízd bývá vyšší<br />

během péče o mláďata než během inkubace (negativní vliv rodičovského chování na<br />

pravděpodobnost přežití hnízda; Martin et al. 2000, Muchai & du Plessis 2005), a dále<br />

víceméně univerzální existence agresivního chování rodičů vůči hnízdním predátorům<br />

(pozitivní vliv; přehled v Montgomerie & Weatherhead 1988). Pak ovšem vyvstává důležitá<br />

otázka, jaká je relativní důležitost charakteristik hnízdního místa (např. výška, ukrytí) a<br />

rodičovského chování.<br />

Výsledky a poznatky<br />

6


Výběr hnízdního prostředí a hnízdní úspěch v různých typech lesa jsem studoval u pěnice<br />

černohlavé (<strong>Sylvia</strong> <strong>atricapilla</strong>) v lesích kolem rybníků u Hodonína. Predaci hnízd a identitu<br />

hnízdních predátorů jsem studoval u pěnice černohlavé v lese Království u obce Grygov.<br />

Pěnici černohlavou jsem studoval ve dvou typech lesa: v lužním lese a v monokultuře<br />

akátu (Robinia pseudoacacia) s uniformním podrostem černého bezu (Sambucus nigra;<br />

příspěvek A‐2). Zjistil jsem, že reprodukční charakteristiky těchto dvou populací se neliší ve<br />

velikosti vajec ani snůšek nebo v počtu mláďat vyváděných z úspěšného hnízda – zdá se tedy,<br />

že ani jedna populace netrpěla nedostatkem potravy pro výchovu mláďat. Populace v<br />

akátině však vykazovala vyšší denzitu hnízdících párů (20 párů na 10 ha) než populace v<br />

lužním lese (12 párů), ovšem při stejné velikosti zpěvného teritoria, a zároveň vykazovala<br />

mnohem vyšší míru predace hnízd. Z toho by se zdálo, že pěnice preferují k hnízdění horší<br />

prostředí. To bylo potvrzeno zjištěním, že samci přilétající na jaře ze zimoviště se usídlují<br />

dříve v akátině než v lužním lese, což je vzhledem k vyšší predaci v tomto typu lesa zřejmě<br />

neadaptivní chování (příspěvek A‐2). Takovýto neadaptivní výběr horšího prostředí k<br />

hnízdění však nemusí být v přírodě ojedinělý a jeho výskyt může souviset s vytvářením<br />

neobvyklých prostředí lidskou činností. Ptáci nemají s takovým prostředím evoluční<br />

zkušenost a mohou v krajině narušené lidskou činností volit podprůměrné prostředí k<br />

hnízdění, což může mít negativní důsledky pro jejich populační dynamiku (příspěvek A‐1).<br />

Tato studie však byla provedena jen na dvou plochách na geograficky velmi omezeném<br />

území a pokud chceme hodnotit přežívání hnízd a hnízdní produktivitu nějakého druhu a<br />

jejich potenciální význam pro přetrvání druhu v krajině, musíme vycházet z dat pocházejících<br />

z velkých území (příspěvek A‐3).<br />

V další studii jsem se zaměřil na detailní experimentální analýzu vztahu mezi<br />

pravděpodobností predace hnízda a jednou z charakteristik hnízdního místa, jeho ukrytí ve<br />

vegetaci. Po nalezení hnízda jsem u zhruba poloviny hnízd (experimentální) odstranil část<br />

vegetace v jejich bezprostředním okolí, takže došlo k poklesu ukrytí z 87 % na 34 %; u<br />

kontrolních hnízd jsem ponechal vegetaci nedotčenu (příspěvek A‐5). Když bylo hnízdo<br />

prázdné (mláďata vylétla nebo byl obsah predován), vložil jsem do něj umělá vejce vyrobená<br />

z plastelíny. Ta jsem ponechal v hnízdě po dobu 14 dnů a sledoval jsem jejich osud. V případě<br />

poškození potenciálním predátorem jsem byl schopen na základě vtisků do plastelíny<br />

identifikovat, zda se jednalo o ptáka nebo drobného savce (v tomto případě hlodavce). Zjistil<br />

jsem, že u přirozených hnízd jsou experimentální a kontrolní hnízda ničena predátory se<br />

stejnou pravděpodobností. Naopak u umělých snůšek byla pravděpodobnost predace vyšší u<br />

experimentálních hnízd než u hnízd kontrolních. Tato zjištění byla konzistentní s vysvětlením,<br />

že u přirozených hnízd rodiče špatné ukrytí hnízda kompenzují jeho obranou (příspěvek A‐5).<br />

Když jsem analyzoval zvlášť jen umělé snůšky zjistil jsem, že dobré ukrytí snižovalo<br />

pravděpodobnost predace v případě ptačích predátorů, kteří se řídí při vyhledávání kořisti<br />

7


zrakem. Naopak u savčích predátorů ukrytí hnízda vliv nemělo. Zároveň se ukázalo, že ptáci<br />

ničí hlavně vysoko postavená hnízda, zatímco savci hnízda nízko postavená (příspěvek A‐4).<br />

Závěr<br />

Pěnice černohlavé si po příletu ze zimoviště k hnízdění na jižní Moravě vybíraly přednostně<br />

akátovou monokulturu, ve které dosahovaly vyšších populačních hustot, ale trpěly vysokou<br />

hnízdní predací ve srovnání se sousedním, méně preferovaným lužním lesem. Je otázkou<br />

proč. Jednou z možných odpovědí je dřívější olisťování keřového patra v akátině, které tak<br />

může být v časném jaře pro pěnice atraktivnější než dosud holý podrost v lužním lese. Toto<br />

chování odpovídá definici takzvané ekologické pasti: živočichové si aktivně vybírají prostředí,<br />

ve kterém dosahují nižšího hnízdního úspěchu, případně dokonce fitness (tj. biologické<br />

zdatnosti, Schaepfer et al. 2002). Z hlediska evoluční teorie je vznik a přetrvávání takového<br />

neadaptivního chování záhadou, bylo však nalezeno u více druhů ptáků (Battin 2004,<br />

Robertson & Hutto 2006).<br />

Vysvětlením může být zpoždění v adaptaci živočichů na krajinu pozměněnou člověkem.<br />

Podněty, které dříve signalizovaly kvalitní prostředí (např. husté listí) tento svůj informační<br />

obsah mohly ztratit. Jedinci, kteří se těmito podněty stále řídí, pak dělají chybná rozhodnutí s<br />

negativními dopady na jejich reprodukční úspěch (Gilroy & Sutherland 2007). Tomu by<br />

napovídal fakt, že chybná volba hnízdního prostředí nebo místa byla často identifikována v<br />

prostředích charakterizovaných narušením původních ekologických vztahů člověkem<br />

(Misenhelter & Rotenberry 2002, Rodewald et al. 2010). Přestože mikroevoluce může v<br />

současných populacích živočichů pracovat překvapivě rychle (Stockwell et al. 2003), některé<br />

změny prostředí jsou zřejmě příliš rychlé na to, aby na ně už vznikly adaptivní behaviorální<br />

reakce (např. vyhýbat se špatnému prostředí). Mechanismus ekologické pasti má<br />

samozřejmě mnohem širší použití a implikace, zejména v ochraně přírody.<br />

Výhled<br />

Výběr hnízdního místa u ptáků byl a je atraktivním problémem v behaviorální ekologii.<br />

Většina studií je však observačních, což s sebou nese velké riziko nalezení falešných vztahů.<br />

Experimentálních studií je málo (např. Peak 2003, Chalfoun & Martin 2009), ale přinášejí<br />

zásadní vhled do fungování vztahu mezi predátorem a kořistí. Mnoho studií například<br />

nenalezlo vztah mezi ukrytím hnízda a pravděpodobností jeho zničení predátory (přehled v<br />

Martin 1992). Bez experimentu však nevíme, zda tento vztah skutečně neexistuje, nebo zda<br />

existuje vztah mezi ukrytím a pravděpodobností nalezení hnízda predátorem ale rodiče toto<br />

vyšší riziko u málo ukrytých hnízd kompenzují nenápadným chováním nebo obranou hnízda<br />

(Eggers et al. 2008). Navíc pokud observační studie nenalezne vztah mezi ukrytím a<br />

pravděpodobností predace, je chybou vyvodit z toho závěr, že v té konkrétní populaci není<br />

selekce na vyšší ukrytí hnízda. Naopak, pokud rodiče musí špatné ukrytí hnízda kompenzovat<br />

8


a tato kompenzace je nákladná (např. riziko zranění nebo smrti při obraně hnízda), pak jistě<br />

existuje selekce na vyšší ukrytí hnízda. Právě tyto skryté vztahy odhalí jen experimentální<br />

přístup. Ten navíc generuje další zajímavé otázky: pokud je nevýhodné mít odkryté hnízdo,<br />

proč některé páry volí takto nevýhodné hnízdní místo? Je to dáno nějakým omezením<br />

(nedostatek dostatečně krytých míst) nebo je to výsledek kompromisu (vyšší ukrytí může<br />

vést k vyššímu riziku predace dospělce na hnízdě; Wiebe & Martin 1998)?<br />

Zřejmým nedostatkem dosavadních studií výběru hnízdního místa a jeho adaptivní<br />

hodnoty je neznalost identity hnízdních predátorů. Ač s aplikací moderní a levnější<br />

monitorovací techniky data o identitě hnízdních predátorů narůstají, jedná se dosud pouze o<br />

observační studie (přehled v Weidinger 2008). V nejbližší době bude možné spojit sílu<br />

moderních monitorovacích studií se sílou experimentálního přístupu. Bylo například<br />

ukázáno, že pravděpodobnost hnízdní predace se u různých druhů predátorů (hadi, dravci a<br />

vlhovci hnědohlaví) liší ve vztahu k průběhu sezony a vzdálenosti k ekotonu (Benson et al.<br />

2010). Spojení takového přístupu kde známe jménem všechny účastníky ekologické hry a<br />

experimentálního přístupu umožní zodpovědět fascinující otázky: liší se hnízdní místa ve své<br />

zranitelnost vůči různým druhům predátorů? Existují při výběru hnízdního místa nějaké<br />

kompromisy – jsou například dobře ukrytá hnízdní místa dobrou obranou proti ptačím<br />

predátorům, ale ne proti savčím? Jsou rodiče schopni kompenzovat špatné ukrytí hnízda ve<br />

vztahu k predátorům hledajícím potravu ve dne, ale ne ve vztahu k nočním druhům?<br />

Podobných otázek existuje celá řada, ale zásadním bude právě bezprecedentně detailní<br />

vhled do behaviorálních mechanismů vztahu mezi predátory a jejich kořistí.<br />

3. Evoluce a diverzita životních znaků<br />

Kontext a úvod<br />

Mezi tzv. životní znaky počítáme charakteristiky s těsným vztahem k fitness, jako jsou<br />

plodnost, přežívání nebo růst (Roff 2002). Tyto znaky se výrazně liší mezi jednotlivými druhy<br />

živočichů, a často jsou charakteristické pro dané čeledi a řády (Bennett & Owens 2002).<br />

Například pro trubkonosé (Procellariiformes) je typická snůška o jednom vejci snášená<br />

jednou za rok nebo více let, zatímco zástupci řádu hrabavých (Galliformes) typicky snášejí 5‐<br />

10 vajec i několikrát do roka (Lack 1968, Jetz et al. 2008, Perrins 2009). Jedním z hlavních cílů<br />

evoluční biologie je tuto velkou mezidruhovou rozmanitost v životních znacích vysvětlit a<br />

nalézt faktory prostředí, které jsou za ni zodpovědné (Harvey & Pagel 1991).<br />

Jedním ze zásadních životních znaků je ontogenetický vývin jednotlivce: jeho<br />

načasování, tvar a rychlost jak v embryonální, tak v postnatální fázi (O'Connor 1984, Starck &<br />

Ricklefs 1998). Variabilita v rychlosti ontogeneze existuje na dvou základních úrovních:<br />

vnitrodruhová plasticita a mezidruhové rozdíly. Vnitrodruhová plasticita může být dána<br />

9


například intenzitou zahřívání vajec během inkubace (Deeming 2002) nebo množstvím<br />

potravy dodávané mláďatům rodiči (Schew & Ricklefs 1998). Mezidruhové rozdíly v rychlosti<br />

růstu jsou samozřejmě z hlavní části geneticky fixované, ale mohou k nim přispívat i<br />

negenetické mechanismy. Druhově specifická délka inkubační periody je například částečně<br />

závislá na množství steroidních hormonů ve žloutku (Schwabl et al. 2007) nebo na intenzitě<br />

zahřívání vajec samicí nebo oběma rodiči (Martin et al. 2007, Martin & Schwabl 2008). Z<br />

hlediska evolučního výzkumu je však nejzajímavější otázka, nakolik jsou mezidruhové rozdíly<br />

v rychlosti růstu evolučně určovány faktory vnějšího prostředí (např. potrava, predátoři,<br />

paraziti), tedy do jaké míry jsou tyto selekční faktory prostředí určující pro evoluci růstových<br />

strategií na mezidruhové úrovni.<br />

Výsledky a poznatky<br />

Evoluci rychlosti růstu jsme studovali u pěvců severní Ameriky, řádu s typicky krmivými<br />

mláďaty závislými během pobytu v hnízdě plně na rodičovské péči (zahřívání, krmení, obrana<br />

atd.). Rychlost růstu jsme kvantifikovali pomocí růstové křivky sigmoidního tvaru, kterou<br />

jsme proložili růstovými daty pomocí nelineárního modelu. Parametr K této křivky vyjadřuje<br />

rychlost nárůstu tělesné hmotnosti mláděte v hnízdě a je nezávislý na absolutní hmotnosti.<br />

Proto je parametr K vhodný pro mezidruhová srovnání, což je přístup, který jsme v naší práci<br />

použili. Na základě rozsáhlé literární rešerše jsme shromáždili údaje o rychlosti růstu mláďat<br />

u více než 100 druhů severoamerických pěvců. Pro každý druh jsme zároveň shromáždili<br />

informace o jeho velikosti těla, dalších životních znacích (velikost snůšky, přežívání dospělců,<br />

atd.) a ekologických charakteristikách jeho životního prostředí (míra predace hnízd,<br />

parazitace vlhovcem hnědohlavým Molothrus ater, atd.). Lineárními statistickými modely<br />

jsme pak studovali vztahy mezi jednotlivými proměnnými na mezidruhové úrovni, což<br />

znamená že ve všech analýzách vystupoval vždy druh jako jednotka analýzy. Protože<br />

fylogenetické vztahy mezi druhy mohou narušit statistický předpoklad nezávislosti datových<br />

bodů mezi sebou, ve všech analýzách jsme provedli korekci pro fylogenetické vztahy.<br />

Rychlost růstu (vyjádřená parametrem K) u mláďat severoamerických pěvců klesala s<br />

rostoucí hmotností těla dospělců, rostla se zeměpisnou šířkou a intenzitou ničení hnízd<br />

predátory a byla nižší u druhů živících se létajícím hmyzem. Délka pobytu mláďat v hnízdě<br />

rostla s hmotností těla dospělců, klesala s intenzitou predace hnízd a byla delší u druhů<br />

živících se létajícím hmyzem. Relativní hmotnost při opuštění hnízda (hmotnost mláďat při<br />

opuštění hnízda / hmotnost dospělců) klesala s rostoucí hmotností dospělců a intenzitou<br />

predace hnízd a byla vyšší u druhů živících se létajícím hmyzem (příspěvek B‐1). Rychlost<br />

ontogenetického vývinu se zvyšovala také s mortalitou dospělců. Se zvyšující se mortalitou<br />

dospělců se zkracovala délka inkubační periody a zvyšovala se rychlost růstu mláďat<br />

(příspěvek B‐4). Na základě těchto srovnávacích studií jsme sestrojili kvantitativní model pro<br />

předpověď načasování opouštění hnízda u pěvců vzhledem k mortalitě hnízd a poté mláďat<br />

10


po opuštění hnízda. Tento model předpovídal růstové strategie severoamerických pěvců<br />

poměrně přesně za předpokladu, že mortalita mláďat po opuštění hnízda poměrně rychle<br />

klesá na hodnotu kolem 30–40 % hodnoty dosahované v hnízdě (příspěvek B‐2).<br />

Evoluci růstových strategií severoamerických pěvců zřejmě také ovlivnilo soužití s<br />

obligátním hnízdním parazitem vlhovcem hnědohlavým (příspěvek B‐3). Mláďata tohoto<br />

parazita nevytlačují hostitelova vejce nebo mláďata z hnízda, jak je známo u evropské<br />

kukačky obecné (Cuculus canorus), ale vyrůstají s nimi společně. Přítomnost parazitického<br />

mláděte jiného druhu v hnízdě však snižuje průměrnou genetickou příbuznost hostitelových<br />

mláďat, což by mělo vést k zintenzivnění konkurence mezi sourozenci o zdroje. Protože<br />

úspěch v konkurenci o potravu přinášenou rodiči na hnízdo je dán z velké části tělesnou<br />

velikostí, měla by přítomnost mláděte parazita vést k evoluci rychlého růstu. Z toho pak<br />

plyne, že u silně parazitovaných hostitelů by mělo dojít k evoluci rychlejšího růstu mláďat než<br />

u hostitelů málo parazitovaných nebo druhů neparazitovaných vůbec. V naší studii jsme<br />

skutečně pozorovali kladný vztah mezi rychlostí růstu hostitelových mláďat a intenzitou<br />

parazitace vlhovcem. S intenzitou parazitace se dále zkracovala doba pobytu v hnízdě a<br />

mláďata opouštěla hnízdo v relativně nižší tělesné hmotnosti. U druhů, které neslouží jako<br />

hostitelé vlhovce, byl růst mláďat nejpomalejší, doba pobytu v hnízdě nejdelší a relativní<br />

hmotnost při opouštění hnízda nejvyšší (příspěvek B‐3). Všechny tyto vztahy navíc platily<br />

pouze u středně velkých a velkých druhů pěvců (asi nad 30 g hmotnosti v dospělosti)―zdá<br />

se, že u menších druhů je mortalita hostitelových mláďat způsobená přítomností<br />

parazitického mláděte tak vysoká, že prakticky žádné takové mládě se nedožije reprodukce a<br />

tak nemohlo u těchto malých druhů dojít k evoluční úpravě růstových strategií vzhledem k<br />

intenzitě parazitace.<br />

Je zajímavé, že rychlost růstu hostitele naopak ovlivňuje růst mláděte parazitického<br />

vlhovce. V tomto případě se ovšem jedná o plasticitu růstu v rámci jednoho druhu. Rychlost<br />

růstu a hmotnost při opouštění hnízda vlhovcem korelovaly kladně s rychlostí růstu<br />

hostitelových mláďat; parazitická mláďata zároveň lépe rostla u hostitelů o velké tělesné<br />

hmotnosti (příspěvek B‐5).<br />

Závěr<br />

Naše srovnávací analýzy růstových strategií severoamerických pěvců ukázaly, že rychlost<br />

růstu a načasování událostí v ontogenezi (např. opouštění hnízda mláďaty) jsou poměrně<br />

úzce vázány k specifickým faktorům životního prostředí druhu, kam patří intenzita ničení<br />

hnízd predátory, intenzita napadání hnízdním parazitem, nebo potrava. Náš kvantitativní<br />

model dále ukázal, že růstové strategie mohou být poměrně přesně modelovány pomocí<br />

jednoduchých environmentálních faktorů (mortalita hnízd, mortalita mláďat po opuštění<br />

hnízda), což opět ukazuje na jejich adaptivní vyladění vzhledem k druhově specifickým<br />

selekčním faktorům prostředí.<br />

11


Tradiční pohled na růst u obratlovců byl však jiný. Uvažovalo se, že rychlý růst je<br />

výhodný za všech podmínek, protože má jen pozitivní stránky, a proto je pro každý druh<br />

výhodné růst tak rychle jak to dovolí fyziologická a funkční omezení organismu (Ricklefs<br />

1969b, 1984). Přestože existovaly i názory jiné, které vnímaly růst jako více adaptovaný<br />

typickým životním podmínkám daného druhu (Lack 1968, Case 1978), pohled "maximálního<br />

růstu v rámci omezení" převažoval (Ricklefs et al. 1998). Později se však ukázalo, že rychlý<br />

růst s sebou může přinášet značné negativní efekty pro jedince jak hned, tak v pozdějším<br />

životě po mnoha měsících či letech (přehled v Metcalfe & Monaghan 2001). To samozřejmě<br />

mění rovnováhu v neprospěch rychlého růstu za všech okolností a ukazuje to, že rychlý růst<br />

může být preferován přírodním výběrem jen za podmínek, kdy jej faktory prostředí opravdu<br />

zvýhodňují (např. při intenzivní predaci hnízd). Naše srovnávací studie takové jemné vyladění<br />

růstových strategií vzhledem k faktorům prostředí potvrdily na rozsáhlém datovém souboru<br />

a přispěly tak ke změně pohledu na evoluci růstu a vývinu u obratlovců.<br />

Výhled<br />

Zatím se nám podařilo poměrně přesvědčivě dokumentovat evoluci růstových strategií<br />

vzhledem k selekčním faktorům prostředí daných druhů u severoamerických pěvců. V<br />

budoucnu bude zajímavé sledovat dvě linie výzkumu. Zaprvé bude důležité zjistit, které<br />

proximativní mechanismy mohou být zodpovědné za diverzifikaci růstových strategií. To<br />

bude vyžadovat analýzy např. steroidních hormonů ve žloutku (Gil et al. 2007), inkubačního<br />

chování rodičů (Conway & Martin 2000, Martin 2002) nebo intenzity krmení rodiči<br />

(příspěvek B‐4) na rozsáhlých mezidruhových souborech. Zadruhé bude zajímavé zjistit,<br />

nakolik platí závislosti zjištěné u severoamerických pěvců na jiných kontinentech a u jiných<br />

řádů ptáků. My jsme shromáždili data o růstu evropských, australských a novozélandských<br />

pěvců a jejich předběžná analýza ukazuje, že mezidruhové závislosti jsou zde stejné jako u<br />

pěvců severoamerických (Remeš, V. et al., 25th International Ornithological Congress,<br />

Campos do Jordão, Brazílie; 22.‐28.8.2010). To by potvrzovalo univerzálnost našich zjištění a<br />

zvyšovalo jejich význam pro poznání obecných zákonitostí evoluce růstových strategií u<br />

obratlovců.<br />

Zajímavým problémem je také podíl geneticky fixovaných rozdílů a vnitrodruhové<br />

plasticity na evoluci růstu a výsledné velikosti těla. Oba tyto zdroje variability se mohou<br />

uplatňovat v rozdílech v růstu a velikosti mezi plemeny domácích zvířat, protože tady se<br />

pohybujeme na vnitrodruhové úrovni, ale mezi v podstatě reprodukčně izolovanými liniemi,<br />

plemeny. My jsme na takovéto úrovni variability analyzovali pohlavní dimorfismus ve<br />

velikosti těla u plemen kura domácího (příspěvek B‐6); dále existují analýzy pohlavního<br />

dimorfismu u koz, ovcí (Polák & Frynta 2009) a skotu (Polák & Frynta 2010). Zvláště plodným<br />

přístupem do budoucna se zdá kontrastování výsledků získaných analýzou domestikovaných<br />

skupin a jejich divoce žijících příbuzných.<br />

12


4. Mateřské efekty a nutriční ekologie<br />

Kontext a úvod<br />

Mateřskými efekty rozumíme negenetické mechanismy, jimiž samice ovlivňují fenotyp svých<br />

potomků (Mousseau & Fox 1998). U ptáků s jejich vysoce rozvinutou rodičovskou péčí (viz<br />

kap. č. 5) mohou hrát mateřské efekty při určování kvality potomstva samozřejmě velkou roli<br />

(Price 1998). Důležité je ovšem odlišit neadaptivní modifikaci fenotypu mláďat (je málo<br />

potravy a tak jsou podvyživené matky nuceny krmit mláďata málo) od adaptivních<br />

mateřských efektů (je málo potravy a tak matky krmí mláďata málo proto, aby došlo k<br />

vytvoření fenotypů odolných proti nedostatku potravy v dospělosti). Mateřské efekty jsou<br />

adaptivní jen tehdy, pokud zvyšují fitness matky nebo potomků (Marshall & Uller 2007) a lze<br />

je potom také chápat jako adaptivní transgenerační fenotypovou plasticitu. V kontextu<br />

našich studií lze mezi mateřské efekty zařadit např. velikost a složení vajec, kvalitu hnízdního<br />

místa nebo hnízda samotného.<br />

Vedle vlastní velikosti vajec jsou jedním z důležitých zdrojů mateřských efektů u ptáků<br />

biologicky účinné látky ukládané matkami do vejce, případně poskytované mláďatům v<br />

potravě. Mezi biologicky aktivní látky ukládané do vejce patří steroidní hormony (Groothuis<br />

et al. 2005), protilátky (Hasselquist & Nilsson 2009) nebo antioxidanty (Surai 2002) ve<br />

žloutku a antibakteriální enzymy, hlavně lysozym (Shawkey et al. 2008), v bílku. Z látek<br />

poskytovaných mláďatům v potravě byly studovány opět antioxidanty (např. O’Brien &<br />

Dawson 2008, DeAyala et al. 2006, Hall et al. 2010) nebo aminokyselina taurin, která se<br />

vyskytuje ve velkém množství v pavoucích a má zřejmě zásadní význam pro rozvoj<br />

kognitivních schopností mláďat (Arnold et al. 2007). Právě ekologie těchto nutrientů je v<br />

současnosti ve středu pozornosti mnoha ekologů a etologů a my jsme se jí v naších studiích<br />

také věnovali.<br />

Výsledky a poznatky<br />

Problematiku mateřských efektů u ptáků jsme studovali u volně žijících populací lejska<br />

bělokrkého (Ficedula albicollis) a sýkory koňadry (Parus major) na svazích Velkého Kosíře u<br />

obce Služín. Zabývali jsme se také metodickými aspekty výzkumu mateřských efektů a<br />

možnými artefakty, které vznikají využíváním budkových populací ptáků (což byl i případ<br />

našich studií). Konkrétně jsme se zabývali vlivem velikosti vejce na přežívání a růst mláďat u<br />

lejska bělokrkého, vlivem složení hnízda na množství ektoparazitů a vlivem složení vejce<br />

(obsah antioxidantů) na přežívání a kvalitu mláďat u sýkory koňadry. V současné době se<br />

zabýváme vlivem obsahu vitamínu E v potravě mláďat u sýkory koňadry na jejich přežívání a<br />

růst, ale výsledky této studie ještě nebyly publikovány.<br />

13


Při studiu vlivu velikosti vejce na přežívání a růst mláďat u lejska bělokrkého jsme<br />

použili tzv. vnitrosnůškový design studie (příspěvek C‐1). Ten spočívá ve zvážení vajec těsně<br />

po jejich nakladení a zjištění, ze kterého vejce se to které mládě vylíhlo (v našem případě<br />

pomocí líhnutí mláďat v inkubátoru). Poté je sledován růst a přežívání mláďat a tyto dva<br />

parametry jsou následně vztaženy k velikost vejce, ze kterého se konkrétní mládě vylíhlo.<br />

Tato velikost je navíc takzvaně vycentrována, tzn. je vypočítána odchylka v hmotnosti<br />

konkrétního vejce od průměrné hmotnosti vajec ve snůšce a růst a přežívání mláděte je<br />

vztažen právě k této odchylce. Tato metoda má jednu zásadní výhodu ve srovnání s více<br />

používanou metodou výměny mláďat mezi hnízdy (tzv. cross‐fostering; příspěvek C‐2).<br />

Kontroluje totiž pro potenciální korelaci mezi aditivními geny matky pro velikost a velikostí<br />

vejce, a to díky tomu, že všechna porovnávaná vejce mají stejnou matku a chromozomy při<br />

meióze segregují náhodně vzhledem k velikost vejce. Tato vnitrosnůšková metoda také z<br />

velké části kontroluje pro případnou korelaci mezi kvalitou prostředí a velikostí vejce<br />

(příspěvek C‐2).<br />

Růst mláďat lejska bělokrkého koreloval pozitivně s velikostí vejce, z něhož se mládě<br />

vylíhlo, ale jen asi v prvním týdnu života (příspěvek C‐1). Potom mláďata, která se vylíhla z<br />

relativně malých vajec náskok sourozenců dohnala a hmotnost a velikost mláďat při<br />

opouštění hnízda na velikost vejce nezávisely. Pravděpodobnost přežití i růst mláďat nejvíce<br />

závisely na pořadí vylíhnutí mláděte. Mláďata, která se vylíhla nejpozději na tom byla nejhůř.<br />

Na stejné lokalitě jsme experimentálně studovali vliv koncentrace karotenoidů,<br />

konkrétně luteinu, na přežívání a růst mláďat v hnízdě a na rodičovskou péči, tentokrát však<br />

u sýkory koňadry. Lutein je hlavním karotenoidem, který samice sýkory koňadry ukládají do<br />

žloutku (dále ukládají zeaxanthin, α‐karoten a β‐karoten; příspěvek C‐4). Těsně před<br />

kladením vajec a během něho jsme dokrmovali samice sýkor potravním doplňkem, který<br />

obsahoval lutein. Samice tento doplněk ochotně přijímaly a lutein, který takto dostaly,<br />

ukládaly do žloutku; experimentální samice měly asi 1,6× vyšší koncentraci luteinu ve žloutku<br />

ve srovnání s kontrolními samicemi (určeno přesnou HPLC metodou). Tento vyšší obsah<br />

luteinu však nevedl k lepšímu prospívání mláďat, která se z těchto vajec vylíhla. Ani jeden ze<br />

sledovaných parametrů (přežívání, hmotnost, velikost a imunokompetence mláďat)<br />

nevykazoval lepší hodnotu u experimentálních hnízd. Stejně tak nemělo toto dokrmování<br />

pozitivní vliv na parametry rodičovské péče, kromě zvýšené frekvence krmení samcem na<br />

dokrmovaných hnízdech (příspěvek C‐4).<br />

Další z důležitých charakteristik, kterými může samice ovlivnit kvalitu vyváděných<br />

mláďat je složení a velikost hnízda. Hnízdo u lejska bělokrkého i sýkory koňadry staví pouze<br />

samice a hnízda těchto dvou druhů se liší ve složení. Lejsek používá ke konstrukci hnízda<br />

hlavně suchou trávu a lýko, zatímco sýkora hlavně větvičky, mech a srst. Mimo jiných<br />

charakteristik může mít složení hnízda vliv na množství ektoparazitů v hnízdě, kteří sají krev<br />

na rostoucích mláďatech a tak negativně ovlivňují jejich růst a kondici. Složení hnízda může<br />

14


ovlivňovat množství ektoparazitů díky mikroklimatu, které vytváří. V hnízdech obou druhů<br />

jsme studovali larvy much rodu Protocalliphora (příspěvek C‐3). Během kladení (u lejska)<br />

nebo časné inkubace (u koňadry) jsme vyměnili hnízda buď mezi lejskem a koňadrou (hnízda<br />

experimentální) nebo mezi páry lejsků a koňader (hnízda kontrolní). Takto jsme dostali<br />

všechny čtyři možné kombinace druhu a hnízda a mohli jsme izolovat nezávislé efekty druhu<br />

mláďat a typu hnízda na množství larev parazitických much v hnízdě po vylétnutí mláďat.<br />

Zjistili jsme, že na množství parazitických much má vliv druh mláďat (je jich více u mláďat<br />

koňader, ať jsou v jakémkoliv hnízdě), zatímco typ hnízda ne (příspěvek C‐3). Je zřejmé, že<br />

výsledek tohoto experimentu, stejně jako dalších podobných studií, mohl být ovlivněn tím,<br />

že byl proveden v populacích hnízdících v budkách. Přirozené dutiny jsou většinou pod<br />

větším tlakem ektoparazitů než hnízdní budky, a proto by se u nich mohl repelentní vliv<br />

určitého složení hnízda projevit více než u hnízdních budek (příspěvek C‐5). V přirozených<br />

dutinách se však bohužel tento typ experimentů provádět nedá.<br />

Závěr<br />

Vnitrosnůšková variabilita ve velikost vajec neměla vliv na růst a přežívání mláďat lejska<br />

bělokrkého. Tento závěr byl pro nás překvapivý, protože výroba vajec je pro samice ptáků<br />

obecně nákladná (Nager 2006), i když přesný fyziologický mechanismus této nákladnosti<br />

neznáme (Williams 2005). Pokud by tedy samice kladly všechna vejce ve velikosti rovné<br />

nejmenšímu vejci ve snůšce, ušetřily by zdroje bez negativního vlivu na jejich mláďata. Tento<br />

závěr byl poopraven důkladnější studií na téže populaci, která zjistila, že velikost mláďat<br />

pozitivně koreluje s velikostí vejce, ovšem na mezisnůškové úrovni (Krist 2009). Stejně tak<br />

nová metaanalýza korelací mezi kvalitou mláďat a velikostí vajec u ptáků potvrdila, že<br />

velikost, přežívání a kondice mláďat obecně s velikostí vejce stoupá (Krist 2011). Tyto studie<br />

ukazují, že závěr vyvozený z naší starší studie by mohl být mylný a ukazují na důležitost<br />

replikace studií a jejich sumarizace pomocí kvantitativních metod literárních rešerší (viz kap.<br />

6).<br />

Absence pozitivního efektu vyšší koncentrace luteinu ve žloutku na růst a přežívání<br />

mláďat u sýkory koňadry byla také překvapivá proto, že karotenoidy mají obecně pozitivní<br />

fyziologické efekty, jako například stimulaci imunitního systému (Chew & Park 2004) nebo<br />

tlumení škodlivého působení volných radikálů (Krinsky 2001, ale viz Pérez‐Rodríguez 2009).<br />

Navíc tyto pozitivní fyziologické efekty byly demonstrovány u celé řady ptačích druhů<br />

(přehled v Surai 2002) a také novější experimenty potvrdily pozitivní efekt koncentrace<br />

karotenoidů ve žloutku na kvalitu, přežívání a růst mláďat u několika druhů pěvců (např.<br />

McGraw et al. 2005, Ewen et al. 2009, Tanvez et al. 2009), dokonce i u švýcarské populace<br />

našeho studijního druhu, sýkory koňadry (Berthouly et al. 2008).<br />

Výhled<br />

15


Tyto konfliktní výsledky ukazují, že kritickým parametrem, který musí studie mateřských<br />

efektů a nutriční ekologie kontrolovat, je dostupnost zdrojů a nutrientů v prostředí. Několik<br />

recentních studií demonstrovalo, že jednotlivé druhy hmyzu sloužící za potravu ptákům se<br />

liší v obsahu karotenoidů a jiných antioxidantů (Isaksson & Andersson 2007, Sillanpää et al.<br />

2008, Arnold et al. 2010). V prostředí, kde je dostatek kvalitní potravy s vysokým obsahem<br />

antioxidantů pak dokrmování antioxidanty nebude mít na kvalitu mláďat žádný vliv, protože<br />

antioxidanty nejsou v tomto prostředí limitujícím zdrojem (Eeva et al. 2009). Jinými slovy,<br />

všechny samice jich mají k dispozici dostatek a ukládají jich do žloutku takové množství, které<br />

zajistí optimální kondici a přežívání mláďat. Stejná situace se může týkat i obsahu<br />

antioxidantů v potravě mláďat. V naší další studii jsme dokrmovali rostoucí mláďata sýkory<br />

koňadry vitamínem E, ale tato suplementace měla na růst a přežívání mláďat malý vliv (J.<br />

Matrková a V. Remeš, nepubl. data). Důvodem může být opět poměrně vysoký obsah<br />

vitamínu E v housenkách, kterými sýkory svá mláďata krmí (Arnold et al. 2010) a vitamín E<br />

tedy u sýkor asi není limitujícím mikronutrientem. Budoucí studie nutriční ekologie by tedy<br />

jistě výrazně profitovaly z komplexního přístupu, kdy by kvantifikovaly cestu mikronutrientů<br />

z rostlin přes herbivory až k insektivorním ptákům, jak bylo provedeno už v klasické práci<br />

Partaliho et al. (1987). Adaptivnost mateřských efektů musí být tedy studována v<br />

realistickém ekologickém kontextu.<br />

5. Ornamenty a rodičovské investice<br />

Kontext a úvod<br />

Péče o potomstvo je široce rozšířená u nejrůznějších skupin živočichů, od hmyzu po<br />

obratlovce (Clutton‐Brock 1991). U ptáků dosahuje intenzita rodičovské péče a její důležitost<br />

pro potomstvo jednoho ze svých vrcholů mezi živočichy (Burley & Johnson 2002). Mláďata<br />

žádného ptačího druhu by nebyla schopna bez péče ať již vlastních nebo cizích (u hnízdních<br />

parazitů) rodičů přežít a dosáhnout dospělosti. Ač se v detailech evoluční záměry rodičů a<br />

potomků liší (Trivers 1974, Parker et al. 2002), jejich cílem je v podstatě totéž: aby mláďata<br />

vyrostla, dospěla a rozmnožila se. Všichni rodiče se však o mláďata nestarají se stejnou<br />

intenzitou. V intenzitě péče se liší jak jednotlivé druhy, tak páry v rámci druhu (Conway &<br />

Martin 2000, Webb et al. 2010). Protože víme, že intenzita rodičovské péče se pozitivně<br />

odráží na kvalitě a pravděpodobnosti přežití mláďat (např. Schwagmeyer & Mock 2008,<br />

Harrison et al. 2009), je jednou z klíčových otázek evolučního výzkumu to, které faktory<br />

předpovídají a ovlivňují míru péče u jednotlivých párů v rámci druhu, tedy tzv. rodičovské<br />

investice.<br />

Z obecného pohledu existují dva základní faktory, které mohou určovat míru investic do<br />

potomstva, a to kvalita jedince a kvalita hnízdního prostředí, teritoria. Kvalitní jedinci mohou<br />

16


investovat do potomstva více než jedinci nekvalitní, aniž by to snížilo jejich pravděpodobnost<br />

přežití nebo schopnost dalšího rozmnožení (Wilson & Nussey 2010). Jejich individuální<br />

kvalita může být signalizována tzv. ornamenty, které můžeme pro naše potřeby definovat<br />

jako vizuální struktury (výrazně zbarvené peří a pod.), které je náročné vyrobit a/nebo<br />

udržovat, a proto jsou jejich plné exprese schopni jen jedinci kvalitní. Náročnost výroby<br />

případně držení výrazného ornamentu může být dána celou řadou fyziologických a<br />

behaviorálních mechanismů (přehledy v Griffith et al. 2006, Hill & McGraw 2006a,b, Ducrest<br />

et al. 2008, McGraw 2008). Výrazné ornamenty pak mohou signalizovat jedince, který se<br />

bude dobře starat o potomstvo a kterého je tedy výhodné si vybrat za partnera (Andersson<br />

1994, Maynard‐Smith & Harper 2003). Investice do potomstva může být usnadněna dobrým<br />

hnízdním teritoriem, a proto je třeba při studiu faktorů majících vztah k rodičovské investici<br />

pro kvalitu prostředí kontrolovat, případně použít experimenty.<br />

Výsledky a poznatky<br />

Vztah mezi intenzitou rodičovské péče, ornamenty a kvalitou hnízdního teritoria jsme<br />

studovali u volně žijící populace sýkory koňadry v lužním lese Království u obce Grygov. Naše<br />

práce měly výhody simultánního studia ornamentů založených na karotenoidech (intenzita<br />

žluté náprsenky) i melaninech (plocha černého hrudního pruhu, pravidelnost bíle lícní<br />

skvrny), a to jak u samců tak u samic, kombinace observačního a experimentálního přístupu<br />

a velkého datového souboru nashromážděného během čtyř let terénního výzkumu. Naše<br />

studie jsou zároveň zaměřeny na méně probádané období kladení (sledování velikosti a<br />

složení vajec) a inkubace (zahřívání vajec samicí, krmení zahřívající samice samcem).<br />

Zjistili jsme, že intenzita exprese ornamentů u samice, ať se jedná o karotenoidové<br />

nebo melaninové ornamenty, nepředpovídá ani investici do vajec během kladení (velikost<br />

vejce, žloutku, množství steroidních hormonů; příspěvek D‐4), ani investici do zahřívání vajec<br />

(příspěvek D‐2), a ani úspěšnost jejich líhnutí (příspěvek D‐2). Tyto poznatky odpovídají<br />

našemu dalšímu zjištění, že intenzita karotenoidových ani melaninových ornamentů<br />

nekoreluje s rychlostí růstu ocasních per při pelichání, která je často považována za ukazatel<br />

kvality jedince (příspěvek D‐1). Zdá se tedy, že samičí ornamenty v naší populaci sýkory<br />

koňadry nejsou dobrým ukazatelem investice do potomstva ani v období kladení ani během<br />

inkubace. Protože výsledky observačních studií mohou být zkresleny nekontrolovanými<br />

proměnnými, zaměřili jsme se dále na experimentální studium žluté náprsenky založené na<br />

karotenoidech v blízké populaci sýkory koňadry na Velkém Kosíři u obce Služín. Samicím jsme<br />

během inkubace zvýšili energetickou náročnost letu tím, že jsme jim odstranili několik per z<br />

křídel a ocasu. Takto hendikepované samice nesnížily intenzitu zahřívání vajec, ale jejich<br />

tělesná hmotnost poklesla během inkubace (asi 12 dnů) více než u samic kontrolních. Z<br />

našeho pohledu zajímavější výsledek byl, že ani změna intenzity inkubace ani pokles tělesné<br />

hmotnosti nekorelovaly s intenzitou žluté náprsenky. Samice s výraznějším karotenoidovým<br />

17


ornamentem tedy nebyly schopny se s letovým hendikepem vyrovnat lépe (příspěvek D‐3).<br />

Tato experimentální studie tedy nezávisle (tj. na jiné populaci koňadry) potvrdila, že samičí<br />

ornamenty nejsou u tohoto druhu ukazatelem investice do potomstva ani kvality jedince.<br />

Co se týká samčích ornamentů, tak ani žlutost náprsenky ani plocha černého hrudního<br />

pruhu samce nekorelovaly s intenzitou samčího inkubačního krmení (příspěvek D‐2). Stejně<br />

tak intenzita zahřívání vajec samicí nekorelovala ani s jedním z ornamentů samce (V. Remeš,<br />

nepubl. data). Naopak hmotnost žloutku korelovala pozitivně s plochou černého hrudního<br />

pruhu samce a koncentrace steroidních hormonů ve žloutku (testosteron a androstenedion)<br />

korelovala pozitivně s intenzitou žluté náprsenky samce (příspěvek D‐4). Tyto výsledky<br />

ukazují, že zatímco u intenzity zahřívání vajec zbarvení samce roli nemá, během kladení ji má<br />

a samice spárovaná se samcem s výraznějšími ornamenty klade vejce s více nutrienty a<br />

steroidními hormony. Interpretace těchto výsledků by mohla být komplikována nejistotou<br />

genetického otcovství, ale z důvodů uváděných v příspěvku D‐4 se zdá, že tomu tak není.<br />

Kvalita hnízdního teritoria korelovala s rodičovskými investicemi jak ve fázi kladení<br />

vajec, tak ve fázi inkubace. Koncentrace steroidních hormonů ve žloutku se zvyšovala s<br />

kvalitou teritoria, definovanou jako frekvence obsazenosti daného teritoria během<br />

posledních pěti let (příspěvek D‐4). Tato metoda předpokládá, že ptáci sami poznají nejlepší<br />

teritoria a proto je obsazují častěji než jiná (nehledě na identitu jednotlivců z roku na rok).<br />

Tato metoda však nedokáže identifikovat vlastní klíč ke kvalitě teritoria. Ve studii zaměřené<br />

na inkubační chování jsme proto jako kvalitu teritoria zvolili skutečnou nabídku potravy v<br />

konkrétním teritoriu. Ukázalo se, že množství potravy v teritoriu sice nepředpovídá investici<br />

samice do zahřívání vajec, ale předpovídá intenzitu krmení inkubující samice samcem<br />

(příspěvek D‐2). Pozitivní korelace mezi samčím inkubačním krmením a potravní nabídkou<br />

však byla patrná jen v letech s celkové nízkým množstvím potravy, což naznačuje, že kvalita<br />

teritoria se může projevit hlavně ve špatných letech kdy je rodičovská péče obecně<br />

náročnější.<br />

Závěr<br />

Samičí ornamenty nepředpovídaly v našich dvou populacích sýkory koňadry intenzitu<br />

rodičovské péče. Tento závěr je podporován našimi dalšími, dosud nepublikovanými,<br />

výsledky které ukazují, že ani koncentrace ani množství antioxidantů ve žloutku (vitamíny E a<br />

A, lutein, zeaxanthin, β‐karoten) nekorelují s ornamenty samice. Naopak, stejně jako v<br />

případě steroidních hormonů, korelují s ornamenty samce a s podmínkami prostředí (datum<br />

kladení a teplota při kladení; V. Remeš et al., nepubl. rukopis).<br />

Tyto závěry jsou ve zdánlivém rozporu s následujícími dvěmi skutečnostmi. a) Pomocí<br />

experimentu s výměnou mláďat mezi hnízdy jsme v populaci sýkory koňadry u Grygova<br />

zjistili, že plocha černého hrudního pruhu jak genetických tak pěstounských matek<br />

předpovídá kvalitu mláďat před vyvedením z budky. Jak je tedy možné, že samičí ornamenty<br />

18


nic nevypovídají o intenzitě rodičovské péče ale korelují s kvalitou mláďat? b) Jiné studie<br />

prováděné u sýkor (koňadra a příbuzná sýkora modřinka, Cyanistes caeruleus) v období péče<br />

o mláďata několikrát zjistily, že intenzita exprese samičích ornamentů založených na<br />

karotenoidech indikuje individuální kvalitu a předpovídá rodičovské schopnosti (Ferns &<br />

Hinsley 2008, Doutrelant et al. 2008). Jak tedy vysvětlit rozpor mezi těmito studiemi a našimi<br />

výsledky (viz výše)?<br />

Výhled<br />

Nabízejí se tři základní vysvětlení, která zároveň ukazují kam by se mohl výzkum samičích<br />

ornamentů v nejbližší budoucnosti ubírat. 1) Funkce ornamentů může být geograficky<br />

variabilní. Práce provedené na hýlovi mexickém, Carpodacus mexicanus (Hill 2002),<br />

lesňáčkovi žlutohrdlém, Geothlypis trichas (Dunn et al. 2010), lejskovi bělokrkém (Pärt &<br />

Qvarnström 1997, Török et al. 2003) nebo lejskovi černohlavém, Ficedula hypoleuca (Dale et<br />

al. 1999, Galván & Moreno 2009) ukazují, že mechanismy exprese a signalizační funkce<br />

ornamentů u samců se mohou mezi populacemi v rámci druhu výrazně lišit. Zatím neexistují<br />

studie geografické proměnlivosti ve funkci u jednotlivých nebo mnohočetných ornamentů u<br />

samic. 2) Signalizační funkce ornamentů se může lišit během hnízdního cyklu. Jiná může být<br />

během snášení, inkubace, péče o mláďata v hnízdě či po jeho opuštění. Žádná studie<br />

signalizační funkce ornamentů nebyla na jedné populaci během více fází hnízdního cyklu<br />

zatím provedena. 3) Zjistili jsme, že plocha černého hrudního pruhu samic předpovídá kvalitu<br />

mláďat, ale ne samičí investici do potomstva. Studovali jsme však pouze malou část všech<br />

komponent samičí rodičovské péče. Existuje mnoho dalších látek (např. protilátky,<br />

Hasselquist & Nilsson 2009, antibakteriální enzymy, Shawkey et al. 2008) a chování (např.<br />

zahřívání mláďat), kterými samice do potomstva investují. V budoucnu by se měly studie<br />

zaměřit buď na kvantifikaci co největší části repertoáru rodičovské péče, nebo na<br />

experimentální manipulaci konkrétních mechanismů.<br />

6. Celkový závěr<br />

Každý obor vědy by měl směřovat k co nejlépe designovaným a provedeným studiím, které<br />

by měly poskytovat co největší množství robustních poznatků. V sekcích "Závěr" a "Výhled"<br />

pod jednotlivými kapitolami mé habilitační práce jsem se pokusil identifikovat témata, na<br />

která by bylo vhodné zaměřit pozornost v dalším bádání. Zde bych chtěl nabídnout<br />

komplementární pohled a zamyslet se nad problémy, které je třeba v oblasti analýzy<br />

reprodukčních strategií v blízké budoucnosti překonat, a to jak na vnitrodruhové tak na<br />

mezidruhové úrovni.<br />

19


Problém 1: Místo fitness jsou používány neověřené zástupné znaky. Používání<br />

netestovaných zástupných znaků místo fitness (tj. vlastností, o kterých se pouze<br />

předpokládá, že pozitivně korelují s fitness, aniž by to bylo testováno) považuji osobně za<br />

jednu z největších překážek v rozvoji evoluční ekologie. Nejde jen o to, že korelace s fitness<br />

je pouze předpokládána, ale také o to, že jednotlivé komponenty fitness (plodnost, přežívání,<br />

stárnutí) mohou spolu navzájem korelovat negativně. Potom zvýšená výkonnost v jedné<br />

komponentě (např. plodnosti) může být vyvážena sníženou výkonností v jiné komponentě<br />

(např. přežívání), což při používání pouze jedné komponenty jako zástupu za fitness<br />

nezjistíme (viz např. Hunt et al. 2004a, Lailvaux et al. 2010) a jsme vedeni k mylným závěrům.<br />

Za současného stavu metodických přístupů je jednou z dosažitelných podob fitness<br />

celoživotní produkce potomstva. Díky pokroku molekulárních metod v určování paternity je<br />

dnes možno kvantifikovat produkci potomstva i u samců, kde byla dříve paternita nejistá<br />

(Griffith et al. 2002). Relativně nízké ceny molekulárních analýz už dnes umožňují nasazení<br />

této technologie velkoplošně na celou studijní populaci. Rutinní kvantifikace celoživotní<br />

produkce potomstva by vedla doslova k revoluci v behaviorální a evoluční ekologii. Umožnila<br />

by relativně přesně kvantifikovat náklady a zisky nejrůznějších chování a strategií. Kdybych<br />

měl tento obecný princip ilustrovat na tématech z této habilitační práce, umožnila by<br />

kvantifikovat náklady a zisky výrazné versus matné náprsenky u samců, intenzivního versus<br />

slabého zahřívání vajec samicí nebo potravy mláďat bohaté versus chudé na antioxidanty.<br />

Takové detailní analýzy by umožnily přesnou analýzu adaptivnosti současných charakteristik<br />

druhů.<br />

Velkým problémem je však skutečnost, že zavedení takového přístupu by vyžadovalo<br />

mnohem delší období studia populací (v řádech mnoha let). Paradoxně je tak pokrok<br />

evoluční ekologie v této oblasti brzděn tříletým až čtyřletým cyklem doktorských studií a<br />

grantů, tj. sociálními aspekty organizace vědy, a ne technickými či metodickými omezeními,<br />

jak tomu bylo v minulosti. Možná ale právě proto bude o to těžší tento limit překonat.<br />

Problém 2: U srovnávacích studií jsou často používány nerealistické modely evoluce a<br />

sporné fylogeneze. Publikace zásadní metodické práce (Felsenstein 1985) odstartovala v<br />

evoluční ekologii výrazné nasazení srovnávacích metod založených na fylogenezích. Ač už<br />

dříve existovalo povědomí o problému, jaký způsobuje fylogenetická příbuznost druhů pro<br />

správnou analýzu mezidruhových dat (přehled v Harvey & Pagel 1991), neexistovala jasná<br />

metodika, jak se s tímto problémem vypořádat. Felsenstein takovou metodiku navrhl a<br />

Purvis a Rambaut (1995) ji implementovali v programu CAIC. Tato metoda se stala na<br />

dobrých deset let standardním přístupem, aniž by značná část badatelů byť jen tušila, že<br />

může být někde chyba.<br />

Problémem je, že tato metoda předpokládá, že dochází k evoluci znaků podle<br />

náhodného modelu tzv. Brownova pohybu a dále předpokládá vysokou korelaci znaků s<br />

20


fylogenetickou strukturou. Přitom nikdo neví, jak často tyto dva zásadní předpoklady platí.<br />

Pagel (1997, 1999) vyvinul metodu, která umožňuje kvantifikovat míru korelace reziduí v<br />

modelu a flexibilně pro ni kontrolovat (Freckleton et al. 2002, Revell 2010). Mimo široké<br />

aplikace této metody by dalším pokrokem měla být rutinnější aplikace a testování<br />

alternativních modelů evoluce znaků, kam patří zejména model omezené evoluce znaků (tzv.<br />

Orstein‐Uhlenbeckův proces, Butler & King 2004, Freckleton & Pagel 2010). Důležité bude<br />

také současné modelování mezidruhové variability, vnitrodruhové variability (Ives et al.<br />

2007, Felsenstein 2008) a prostorové autokorelace znaků (Freckleton & Jetz 2009).<br />

Dalším problémem srovnávacích analýz, kterého si je málokdo mimo komunitu<br />

teoretiků a autorů analytických metod vědom, je obrovská nejistota v používaných<br />

fylogenetických hypotézách. Nejistoty jsou hned dvě, a sice výběr znaků, na jejichž základě<br />

jsou fylogeneze konstruovány a výběr finálního fylogenetického stromu. V současné době se<br />

prakticky veškerá fylogenetická aktivita přesunula do oblasti sekvencí DNA. Zatímco ještě<br />

před několika málo lety byla většina fylogenetických prací založena na jediném genu, dnes<br />

jsou práce s více geny běžné a výjimkou nejsou ani fylogenomické práce založené na analýze<br />

desítek až stovek genů (např. Meusemann et al. 2010, Timmermans et al. 2010). Pokud je<br />

fylogenetický signál shodný ve většině znaků, můžeme výsledné fylogenezi věřit. Problém je,<br />

že tento pokrok se týká pouze specializovaných fylogenetických prací. V oblasti srovnávacích<br />

analýz, kde fylogeneze není cílem studie ale jejím vstupním údajem, je kvalita fylogenezí<br />

řádově horší. Odhadem v 90 % případů se jedná o fylogenetickou informaci shromážděnou z<br />

více primárních fylogenetických prací založených na jednom nebo několika genech. Takových<br />

fylogenezí lze zpravidla vytvořit celou řadu, což však málokdo bere v potaz a svoji analýzu<br />

pro to koriguje.<br />

Druhým zdrojem nejistoty stran fylogenetické hypotézy je astronomický počet<br />

potenciálních fylogenetických stromů. Například pro 20 druhů, což je počet pro srovnávací<br />

analýzu málo dostačující, činí počet potenciálních stromů 8,2 × 10 21 , pro 50 druhů je to 2,7 ×<br />

10 76 , tedy více než je počet elektronů ve viditelném vesmíru! Z toho plyne, že i při plném<br />

využití dnešních výkonných počítačů a software lze prohledat jen malou část parametrického<br />

prostoru fylogenezí. Větším problémem je však skutečnost, že v závěru se většinou vybere<br />

jen jeden "nejlepší" fylogenetický strom, který je jakýmsi kompromisem mnoha stejně<br />

"dobrých" stromů (pro příslušné metodiky viz např. Hillis et al. 1996). Zanedbání celého pole<br />

fylogenetických stromů, které jsou jen o "krok" horší (v případě analýzy kritériem úspornosti)<br />

nebo o něco málo "méně věrohodné" (v případě analýzy kritériem maximální věrohodnosti),<br />

zásadně snižuje důvěryhodnost dosažených výsledků. Naštěstí existuje metoda, která<br />

umožňuje tento problém překonat. Jedná se o Bayesovu metodu konstrukce fylogenetických<br />

stromů, kdy všechny stromy obdrží vlastní pravděpodobnost. Potom lze provést srovnávací<br />

analýzu na náhodně vybrané podmnožině těchto stromů a výsledky vážit pravděpodobností<br />

konkrétního fylogenetického stromu (Huelsenbeck et al. 2000). Tuto metodu považuji za<br />

21


velmi slibnou. Jejímu většímu využití však zatím brání to, že nebyla programově<br />

implementována v dostupné podobě pro běžného uživatele.<br />

Velkým problémem je také značná náročnost výše uvedených technik a jejich rychlý<br />

rozvoj, který je pro běžného uživatele dosti obtížné sledovat. Pokrok ve výzkumné praxi ve<br />

většině těchto oblastí snad přinese implementace moderních přístupů k analýze<br />

mezidruhových a mezipopulačních dat v univerzálních a flexibilních programovacích jazycích<br />

jako je jazyk R (Paradis 2006).<br />

Problém 3: Výsledky studií jsou prezentovány neúplně a chybí přístup k primárním<br />

datovým souborům. Tento problém se netýká designu konkrétních studií, ale celkové<br />

strategie oboru. Pro empirický pokrok v evoluční a behaviorální ekologii jsou nezbytné<br />

kvantitativní sumarizace dosavadního výzkumu pomocí tzv. metaanalýz (např. Arnqvist &<br />

Wooster 1995, Gates 2002). Jen ty umožní zjistit, co opravdu víme a poměřit toto poznání s<br />

teorií tak, aby obor postoupil dopředu. Tato metodika je založena na kvantitativním<br />

zpracování výsledků určitého souboru studií týkajících se daného problému (Pullin & Stewart<br />

2006). Metaanalýzy jsou velmi důležité proto, že na rozdíl od lékařského výzkumu nejsou<br />

studie v evoluční a behaviorální ekologii skoro nikdy skutečně replikovány (Palmer 2000,<br />

Kelly 2006). Jistě k tomu přispívá mnoho různých faktorů, mezi jinými tlak na originalitu,<br />

který znemožňuje financování replikací dřívějších, byť zásadních, studií. Dalším problémem je<br />

často unikátnost studijních systémů. Zatímco replikovat studii na myši nebo buněčné kultuře<br />

se obejde bez větších problémů, replikovat studii na karibských ještěrech rodu Anolis jinde<br />

než v Karibiku je prakticky nemožné. Z toho však plyne jiná povinnost pro autory dílčích<br />

studií, a sice prezentovat své výsledky tak, aby byly použitelné v pozdějších metaanalýzách<br />

(Nakagawa & Cuthill 2007). A to je jeden z nejdůležitějších požadavků na prezentaci dobře<br />

designované a provedené studie. Jen málo primárních prací bude citováno ještě za 20 let, ale<br />

každá, pokud je kvalitně provedená, může přispět k pokroku poznání jako jeden datový bod v<br />

budoucí metaanalýze.<br />

Problém neúplné prezentace výsledků jednotlivých studií by byl odstraněn také<br />

dostupností kompletních primárních dat, na nichž je studie založena. V molekulárních<br />

vědách je podobný přístup povinný a studie není publikována, dokud autor nezpřístupní<br />

sekvenční data ve veřejně přístupné databázi (např. GenBank). Podobný přístup se<br />

připravuje také pro ekologické a evoluční vědy (např. Rausher et al. 2010). Toto řešení by<br />

bylo nejlepší, protože by umožňovalo pozdější re‐analýzu dat modernějšími metodami,<br />

případně analýzu více datových souborů dohromady, což by přineslo robustnější a zásadnější<br />

výsledky.<br />

22


7. Literatura<br />

Andersson, M. 1994. Sexual Selection. Princeton University Press, Princeton.<br />

Arnold, K.E. et al. 2007. Parental prey selection affects risk‐taking behaviour and spatial learning in<br />

avian offspring. Proceedings of the Royal Society of London B Biological Sciences 274:2563‐2569.<br />

Arnold, K.E. et al. 2010. Seasonal variation in diet quality: antioxidants, invertebrates and blue tits<br />

Cyanistes caeruleus. Biological Journal of the Linnean Society 99:708‐717.<br />

Arnqvist, G. & Wooster, D. 1995. Meta‐analysis: synthesizing research findings in ecology and<br />

evolution. Trends in Ecology and Evolution 10:236‐240.<br />

Battin, J. 2004. When good animals love bad habitats: ecological traps and the conservation of animal<br />

populations. Conservation Biology 18:1482‐1491.<br />

Bennett, P.M. & Owens, I.P.F. 2002. Evolutionary Ecology of Birds. Oxford University Press, Oxford.<br />

Benson, T.J. et al. 2010. Identifying predators clarifies predictors of nest success in a temperate<br />

passerine. Journal of Animal Ecology 79:225‐234.<br />

Berthouly, A. et al. 2008. Sex‐related effects of maternal egg investment on offspring in relation to<br />

carotenoid availability in the great tit. Journal of Animal Ecology 77:74‐82.<br />

Birkhead, T. 2008. The Wisdom of Birds. Bloomsbury, London.<br />

Bowler, P.J. 1989. Evolution: The History of an Idea, Revised ed. University of California Press,<br />

Berkeley.<br />

Butler, M.A. & King, A.A. 2004. Phylogenetic comparative analysis: a modeling approach for adaptive<br />

evolution. American Naturalist 164:683‐695.<br />

Burkhardt, R.W.Jr. 2005. Patterns of Behavior: Konrad Lorenz, Niko Tinbergen and the Founding of<br />

Ethology. University of Chicago Press, Chicago and London.<br />

Burley, N.T. & Johnson, K. 2002. The evolution of avian parental care. Philosophical Transactions of<br />

the Royal Society of London B Biological Sciences 357:241‐250.<br />

Caro, T. 2005. Antipredator Defenses in Birds and Mammals. University of Chicago Press, Chicago and<br />

London.<br />

Case, T.J. 1978. On the evolution and adaptive significance of postnatal growth rates in the terrestrial<br />

vertebrates. Quarterly Review of Biology 53:243‐282.<br />

Chew, B.P. & Park, J.S. 2004. Carotenoid action on the immune response. Journal of Nutrition<br />

134:257S‐261S.<br />

Clutton‐Brock, T.H. 1991. The Evolution of Parental Care. Princeton University Press, Princeton.<br />

Cody, M.L. 1985. Habitat Selection in Birds. Academic Press, London.<br />

Conway, C.J. & Martin, T.E. 2000. Evolution of passerine incubation behavior: influence of food,<br />

temperature, and nest predation. Evolution 54:670‐685.<br />

D'Alba, L. et al. 2009. Thermal benefits of nest shelter for incubating female eiders. Journal of<br />

Thermal Biology 34:93‐99.<br />

Dale, S. et al. 1999. Population divergence in sexual ornaments: The white forehead patch of<br />

Norwegian pied flycatchers is small and unsexy. Evolution 53:1235‐1246.<br />

Darwin, C. 1859. On the Origin of Species by Means of Natural Selection. Penguin Books, London<br />

(reprint prvního vydání r. 1985 v sérii Penguin Classics).<br />

23


Dawkins, R. 1976. The Selfish Gene. Oxford University Press, New York.<br />

Dawkins, R. 2008. The God Delusion. Mariner Books, Boston and New York.<br />

Dawkins, R. 2009. The Greatest Show on Earth: The Evidence for Evolution. Free Press, New York.<br />

DeAyala, R.M. et al. 2006. Vitamin E supplementation enhances growth and condition of nestling<br />

barn swallows (Hirundo rustica). Behavioral Ecology and Sociobiology 60:619‐630.<br />

Deeming, D.C. 2002. Avian Incubation: Behaviour, Environment and Evolution. Oxford University<br />

Press, Oxford.<br />

Doutrelant, C. et al. 2008. Female coloration indicates female reproductive capacity in blue tits.<br />

Journal of Evolutionary Biology 21:226‐233.<br />

Ducrest, A.L. et al. 2008. Pleiotropy in the melanocortin system, coloration and behavioural<br />

syndromes. Trends in Ecology and Evolution 23:502‐510.<br />

Dunn, P.O. et al. 2010. Carotenoid and melanin‐based ornaments signal similar aspects of male<br />

quality in two populations of the common yellowthroat. Functional Ecology 24:149‐158.<br />

Eeva, T. et al. 2009. The effects of diet quality and quantity on plumage colour and growth of great tit<br />

Parus major nestlings: a food manipulation experiment along a pollution gradient. Journal of<br />

Avian Biology 40:491‐499.<br />

Eggers, S. et al. 2008. Predator‐induced reductions in nest visitation rates are modified by forest<br />

cover and food availability. Behavioral Ecology 19:1056‐1062.<br />

Ewen, J.G. et al. 2009. Maternally invested carotenoids compensate costly ectoparasitism in the hihi.<br />

Proceedings of the National Academy of Sciences of the USA 106:12798‐12802.<br />

Farber, P.L. 2000. Finding Order in Nature. The Naturalist Tradition from Linnaeus to E.O. Wilson. The<br />

Johns Hopkins University Press, Baltimore and London.<br />

Felsenstein, J. 1985. Phylogenies and the comparative method. American Naturalist 125:1‐15.<br />

Felsenstein, J. 2008. Comparative methods with sampling error and within‐species variation:<br />

contrasts revisited and revised. American Naturalist 171:13‐25.<br />

Ferns, P.N. & Hinsley, S.A. 2008. Carotenoid plumage hue and chroma signal different aspects of<br />

individual and habitat quality in tits. Ibis 150:152–159.<br />

Fontaine, J.J. et al. 2007. Testing ecological and behavioral correlates of nest predation. Oikos<br />

116:1887‐1894.<br />

Freckleton, R.P. & Jetz, W. 2009. Space versus phylogeny: disentangling phylogenetic and spatial<br />

signals in comparative data. Proceedings of the Royal Society of London B 276:21‐30.<br />

Freckleton, R.P. & Pagel, M. 2010. Recent advances in comparative methods. Pp. 110‐126 in Social<br />

Behaviour: Genes, Ecology and Evolution, Ed. by Székely, T. et al. Cambridge University Press,<br />

Cambridge.<br />

Freckleton, R.P. et al. 2002. Phylogenetic analysis and comparative data: a test and review of<br />

evidence. American Naturalist 160:712‐726.<br />

Galván, I. & Moreno, J. 2009. Variation in effects of male plumage ornaments: the case of Iberian<br />

Pied Flycatchers. Ibis 151:541‐546.<br />

Chalfoun, A.D. & Martin, T.E. 2009. Habitat structure mediates predation risk for sedentary prey:<br />

24<br />

experimental tests of alternative hypotheses. Journal of Animal Ecology 78:497‐503.


Gates, S. 2002. Review of methodology of quantitative reviews using meta‐analysis in ecology.<br />

Journal of Animal Ecology 71:547‐557.<br />

Gil, D. et al. 2007. Evolution of yolk androgens in birds: development, coloniality, and sexual<br />

dichromatism. American Naturalist 169:802‐819.<br />

Gilroy, J.J. & Sutherland, W.J. 2007. Beyond ecological traps: perceptual errors and undervalued<br />

resources. Trends in Ecology and Evolution 22:351‐356.<br />

Griffith, S.C. et al. 2002. Extra pair paternity in birds: a review of interspecific variation and adaptive<br />

function. Molecular Ecology 11:2195‐2212.<br />

Griffith, S.C. et al. 2006. Melanin‐ versus carotenoid‐based sexual signals: is the difference really so<br />

black and red? Animal Behaviour 71:749‐763.<br />

Groothuis, T.G.G. et al. 2005. Maternal hormones as a tool to adjust offspring phenotype in avian<br />

species. Neuroscience and Biobehavioral Reviews 29:329‐352.<br />

Hall, M.E. et al. 2010. Does oxidative stress mediate the trade‐off between growth and self‐<br />

maintenance in structured families? Functional Ecology 24:365‐373.<br />

Harrison, F. et al. 2009. How is sexual conflict over parental care resolved? A meta‐analysis. Journal<br />

of Evolutionary Biology 22:1800‐1812.<br />

Harvey, P.H. & Pagel, M. 1991. The Comparative Method in Evolutionary Biology. Oxford University<br />

Press, Oxford.<br />

Hasselquist, D. & Nilsson, J.A. 2009. Maternal transfer of antibodies in vertebrates: trans‐<br />

generational effects on offspring immunity. Philosophical Transactions of the Royal Society of<br />

London B Biological Sciences 364:51‐60.<br />

Hill, G.E. 2002. A Red Bird in a Brown Bag. Oxford University Press, Oxford and New York.<br />

Hill, G.E. & McGraw, K.J. 2006a. Bird Coloration, Volume 1: Mechanisms and Measurements. Harvard<br />

University Press, Cambridge and London.<br />

Hill, G.E. & McGraw, K.J. 2006b. Bird Coloration, Volume 2: Function and Evolution. Harvadr<br />

University Press, Cambridge and London.<br />

Hillis, D.M. et al. 1996. Molecular Systematics, 2 nd ed. Sinauer Associates, Sunderland.<br />

Huelsenbeck, J.P. et al. 2000. Accommodating phylogenetic uncertainty in evolutionary studies.<br />

Science 288:2349‐2350.<br />

Hunt, J. et al. 2004a. High‐quality male field crickets invest heavily in sexual display but die young.<br />

Nature 432:1024‐1027.<br />

Hunt, J. et al. 2004b. What is genetic quality? Trends in Ecology and Evolution 19:329‐333.<br />

Isaksson, C. & Andersson, S. 2007. Carotenoid diet and nestling provisioning in urban and rural great<br />

tits Parus major. Journal of Avian Biology 38:564‐572.<br />

Ives, A.R. et al. 2007. Within‐species variation and measurement error in phylogenetic comparative<br />

methods. Systematic Biology 56:252‐270.<br />

Jaenike, J. & Holt, R.D. Genetic variation for habitat preference – evidence and explanations.<br />

American Naturalist 137:S67‐S90.<br />

Jetz, W. et al. 2008. The worldwide variation in avian clutch size across species and space. PLoS<br />

Biology 6:e303.<br />

25


Kelly, C.D. 2006. Replicating empirical research in behavioral ecology: How and why it should be done<br />

but rarely ever is. Quarterly Review of Biology 81:221‐236.<br />

Krinsky, N.I. 2001. Carotenoids as antioxidants. Nutrition 17:815‐817.<br />

Krist, M. 2009. Short‐ and long‐term effects of egg size and feeding frequency on offspring quality in<br />

the collared flycatcher (Ficedula albicollis). Journal of Animal Ecology 78:907‐918.<br />

Krist, M. 2011. Egg size and offspring quality: a meta‐analysis in birds. Biological Reviews, in press<br />

(doi: 10.1111/j.1469‐185X.2010.00166.x)<br />

Kruuk, H. 2003. Niko's Nature: A Life of Niko Tinbergen and His Science of Animal Behaviour. Oxford<br />

University Press, Oxford.<br />

Lack, D. 1943. The Life of the Robin. Penguin Books, Melbourne.<br />

Lack, D. 1947. Darwin's Finches. Cambridge University Press, Cambridge.<br />

Lack, D. 1968. Ecological Adaptations for Breeding in Birds. Chapman and Hall, London.<br />

Lailvaux, S.P. 2010. Performance is no proxy for genetic quality: trade‐offs between locomotion,<br />

attractiveness, and life‐history in crickets. Ecology 91:1530‐1537.<br />

Lima, S.L. 2009. Predators and the breeding bird: behavioral and reproductive flexibility under the<br />

risk of predation. Biological Reviews 84:485‐513.<br />

Lloyd, J. & Martin, T.E. 2004. Nest‐site preference and maternal effects on offspring growth.<br />

Behavioral Ecology 15: 816‐823.<br />

Marshall, D.J. & Uller, T. 2007. When is a maternal effect adaptive? Oikos 116:1957‐1963.<br />

Martin, T.E. 1992. Breeding productivity considerations: what are the appropriate habitat features<br />

for management? Pp. 455‐473 in Ecology and Conservation of Neotropical Migratory Landbirds,<br />

Ed. by Hagan, J.M. & Johnston, D.W. Smithsonian Institution, Washington, DC.<br />

Martin, T.E. 1993. Nest predation and nest sites—new perspectives on old patterns. Bioscience<br />

43:523‐532.<br />

Martin, T.E. 1998. Are microhabitat preferences of coexisting species under selection and adaptive?<br />

Ecology 79:656‐670.<br />

Martin, T.E. 2002. A new view of avian life‐history evolution tested on an incubation paradox.<br />

Proceedings of the Royal Society of London B Biological Sciences 269:309‐316.<br />

Martin, T.E. et al. 2000. Nest predation increases with parental activity: separating nest site and<br />

parental activity effects. Proceedings of the Royal Society of London B Biological Sciences<br />

267:2287‐2293.<br />

Martin, T.E. et al. 2007. Geographic variation in avian incubation periods and parental influences on<br />

embryonic temperature. Evolution 61:2558‐2569.<br />

Martin, T.E. & Schwabl, H. 2008. Variation in maternal effects and embryonic development rates<br />

among passerine species. Philosophical Transactions of the Royal Society of London B Biological<br />

Sciences 363:1663‐1674.<br />

Maynard‐Smith, J. & Harper, D. 2003. Animal Signals. Oxford University Press, Oxford.<br />

Mayr, E. 1982. The Growth of Biological Thought: Diversity, Evolution, and Inheritance. Belknap Press,<br />

Cambridge and London.<br />

McGraw, K.J. 2008. An update on the honesty of melanin‐based color signals in birds. Pigment Cell<br />

26<br />

Melanoma Research 21:133‐138.


McGraw, K.J. et al. 2005. Maternally derived carotenoid pigments affect offspring survival, sex ratio,<br />

and sexual attractiveness in a colorful songbird. Naturwissenschaften 92:375‐380.<br />

Metcalfe, N.B. & Monaghan, P. 2001. Compensation for a bad start: Grow now, pay later? Trends in<br />

Ecology and Evolution 16:254‐260.<br />

Meusemann, K. et al. 2010. A phylogenomic approach to resolve the arthropod tree of life. Molecular<br />

Biology and Evolution 27:2451‐2464.<br />

Misenhelter, M.D. & Rotenberry, J.T. 2000. Choices and consequences of habitat occupancy and nest<br />

site selection in sage sparrows. Ecology 81:2892‐2901.<br />

Mitman, G. 1992. The State of Nature: Ecology, Community, and American Social Thought, 1900‐<br />

1950. University of Chicago Press, Chicago and London.<br />

Montgomerie, R.D. & Weatherhead, P.J. 1988. Risks and rewards of nest defense by parent birds.<br />

Quarterly Review of Biology 63:167‐187.<br />

Mousseau, T.A. & Fox, C.W. 1998. Maternal Effects as Adaptations. Oxford University Press, Oxford.<br />

Muchai, M. & du Plessis, M.A. 2005. Nest predation of grassland bird species increases with parental<br />

activity at the nest. Journal of Avian Biology 36:110‐116.<br />

Nager, R.G. 2006. The challenges of making eggs. Ardea 94:323‐346.<br />

Nakagawa, S. & Cuthill, I.C. 2007. Effect size, confidence interval and statistical significance: a<br />

practical guide for biologists. Biological Reviews 82:591‐605.<br />

Newton, I. 1998. Population Limitation in Birds. Academic Press, San Diego.<br />

O’Brien, E.L. & Dawson, R.D. 2008. Parasite‐mediated growth patterns and nutritional constraints in a<br />

cavity‐nesting bird. Journal of Animal Ecology 77: 127‐134.<br />

O'Connor, R.J. 1984. The Growth and Development of Birds. J. Wiley & Sons, Chichester.<br />

Pagel, M. 1997. Inferring evolutionary processes from phylogenies. Zoologica Scripta 26:331‐348.<br />

Pagel, M. 1999. Inferring the historical patterns of biological evolution. Nature 401:877‐884<br />

Palmer, A.R. 2000. Quasireplication and the contract of error: Lessons from sex ratios, heritabilities<br />

and fluctuating asymmetry. Annual Review of Ecology and Systematics 31:441‐480.<br />

Paradis, E. 2006. Analysis of Phylogenetics and Evolution with R. Springer, New York.<br />

Parker, G.A. et al. 2002. Intrafamilial conflict and parental investment: a synthesis. Philosophical<br />

Transactions of the Royal Society of London B Biological Sciences357:295‐307.<br />

Pärt, T. & Qvarnström, A. 1997. Badge size in collared flycatchers predicts outcome of male<br />

competition over territories. Animal Behaviour 54:893‐899.<br />

Partali, V. et al. 1987. Carotenoids in food chain studies. 2. The food chain of Parus spp monitored by<br />

carotenoid analysis. Comparative Biochemistry and Physiology B 87:885‐888.<br />

Peak, R.G. 2003. An experimental test of the concealment hypothesis using american goldfinch nests.<br />

Wilson Bull 115:403‐408.<br />

Pérez‐Rodríguez, L. 2009. Carotenoids in evolutionary ecology: re‐evaluating the antioxidant role.<br />

BioEssays 31:1116‐1126.<br />

Perrins, C. 2009. The Encyclopedia of Birds. Oxford University Press, Oxford.<br />

Polák, J. & Frynta, D. 2009. Sexual size dimorphism in domestic goats, sheep, and their wild relatives.<br />

Biological Journal of the Linnean Society 98:872‐883.<br />

27


Polák, J. & Frynta, D. 2010. Patterns of sexual size dimorphism in cattle breeds support Rensch’s rule.<br />

Evolutionary Ecology 24:1255‐1266.<br />

Price, T.D. 1998. Maternal and Paternal Effects in Birds: Effects on Offspring Fitness. Pp. 202‐226 in<br />

Maternal Effects as Adaptations, Ed. by Mousseau, T.A. and Fox, C.W. Oxford University Press,<br />

New York and Oxford.<br />

Pullin, A.S. & Stewart, G.B. 2006. Guidelines for systematic review in conservation and environmental<br />

management. Conservation Biology 20:1647‐1656.<br />

Purvis, A. & Rambaut, A. 1995. Comparative analysis by independent contrasts (CAIC): an Apple<br />

Macintosh application for analysing comparative data. Computer Applications in the Biosciences<br />

11:247‐251.<br />

Rausher, M.D. et al. 2010. Data archiving. Evolution 64:603‐604.<br />

Revell, L.J. 2010. Phylogenetic signal and linear regression on species data. Methods in Ecology and<br />

Evolution 1:319‐329.<br />

Ricklefs, R.E. 1969a. An analysis of nesting mortality in birds. Smithsonian Contributions to Zoology<br />

9:1‐48.<br />

Ricklefs, R.E. 1969b. Preliminary models for growth rates in altricial birds. Ecology 50:1031‐1039.<br />

Ricklefs, R.E. 1984. The optimization of growth rate in altricial birds. Ecology 65:1602‐1616.<br />

Ricklefs, R.E. et al. 1998. Internal constraints on growth in birds. Pp. 266‐287 in Avian Growth and<br />

Development, Ed. by Starck, J.M. & Ricklefs, R.E. Oxford University Press, Oxford.<br />

Robertson, B.A. 2009. Nest‐site selection in a post‐fire landscape: do parents make tradeoffs<br />

between microclimate and predation risk? Auk 126:500‐510.<br />

Robertson, B.A. & Hutto, R.L. 2006. A framework for understanding ecological traps and an<br />

evaluation of existing evidence. Ecology 87:1075‐1085.<br />

Rodewald, A.D. et al. 2010. Exotic shrubs as ephemeral ecological traps for nesting birds. Biological<br />

Invasions 12:33‐39.<br />

Roff, D.A. 2002. Life History Evolution. Sinauer Associates, Sunderland.<br />

Schaepfer, M.A. et al. 2002. Ecological and evolutionary traps. Trends in Ecology and Evolution<br />

17:474‐480.<br />

Schew, W.A. & Ricklefs, R.E. 1998. Developmental plasticity. Pp. 288‐304 in Avian Growth and<br />

Development, Ed. by Starck, J.M. & Ricklefs, R.E. Oxford University Press, Oxford.<br />

Schwabl, H. et al. 2007. Selection for rapid development leads to higher embryo exposure to<br />

maternal androgens among passerine species. American Naturalist 170:196‐206.<br />

Schwagmeyer, P.L. & Mock, D.W. 2008. Parental provisioning and offspring fitness: size matters.<br />

Animal Behaviour 75:291‐298.<br />

Segerstråle, U. 2000. Defenders of Truth: The Sociobiology Debate. Oxford University Press, Oxford.<br />

Shawkey, M.D. et al. 2008. Do birds differentially distribute antimicrobial proteins within clutches of<br />

eggs? Behavioral Ecology 19:920‐927.<br />

Sillanpää, S. et al. 2008. Carotenoids in a food chain along a pollution gradient. The Science of the<br />

Total Environment 406:247‐255.<br />

Starck, J.M. & Ricklefs, R.E. 1998. Avian Growth and Development: Evolution within the Altricial‐<br />

28<br />

Precocial Spectrum. Oxford University Press, Oxford.


Stockwell, C.A. et al. 2003. Contemporary evolution meets conservation biology. Trends in Ecology<br />

and Evolution 18:94‐101.<br />

Surai, P.F. 2002. Natural Antioxidants in Avian Nutrition and Reproduction. Nottingham University<br />

Press, Nottingham.<br />

Tanvez, A. et al. 2009. Maternal effects and β‐carotene assimilation in Canary chicks. Physiology and<br />

Behavior 96:389‐393.<br />

Timmermans, M.J.T.N. et al. 2010. Why barcode? High‐throughput multiplex sequencing of<br />

mitochondrial genomes for molecular systematics. Nucleic Acid Research 38:e197.<br />

Török, J. et al. 2003. Depigmented wing patch size is a condition‐dependent indicator of viability in<br />

male collared flycatchers. Behavioral Ecology 14:382‐388.<br />

Trivers, R.L. 1974 Parent–offspring conflict. American Zoologist 14:249‐264.<br />

Webb, T.J. 2010. Who cares? Quantifying the evolution of division of parental effort. Methods in<br />

Ecology and Evolution 1:221‐230.<br />

Weidinger, K. 2004. Relative effects of nest size and site on the risk of predation in open nesting<br />

passerines. Journal of Avian Biology 35:515‐523.<br />

Weidinger, K. 2008. Identification of nest predators: a sampling perspective. Journal of Avian Biology<br />

39:640‐646.<br />

Weidinger, K. 2009. Nest predators of woodland open‐nesting songbirds in central Europe. Ibis<br />

151:352‐360.<br />

Wiebe, K.L. & Martin, K. 1998. Costs and benefits of nest cover for ptarmigan: changes within and<br />

between years. Animal Behaviour 56:1137‐1144.<br />

Williams, G.C. 1966. Adaptation and Natural Selection. Princeton University Press, Princeton.<br />

Williams, T.D. 2005. Mechanisms underlying the costs of egg production. Bioscience 55:39‐48.<br />

Wilson, A.J. & Nussey, D.H. 2010. What is individual quality? An evolutionary perspective. Trends in<br />

Ecology and Evolution 25:207‐214.<br />

29


8. Seznam zařazených prací<br />

Tato habilitační práce je založena na následujících primárních vědeckých příspěvcích:<br />

A. Výběr hnízdního prostředí a hnízdní predace<br />

[1] Remeš, V. 2000. How can maladaptive habitat choice generate source‐sink population<br />

dynamics? Oikos 91:579‐582.<br />

[2] Remeš, V. 2003. Effects of exotic habitat on nesting success, territory density, and<br />

settlement patterns in the Blackcap (<strong>Sylvia</strong> <strong>atricapilla</strong>). Conservation Biology 17:1127‐<br />

1133.<br />

[3] Remeš, V. 2003. Breeding biology of the Blackcap (<strong>Sylvia</strong> <strong>atricapilla</strong>) in the Czech<br />

Republic: an analysis of nest record cards. <strong>Sylvia</strong> 39:25‐34.<br />

[4] Remeš, V. 2005. Birds and rodents destroy different nests: a study of Blackcap (<strong>Sylvia</strong><br />

<strong>atricapilla</strong>) using the removal of nest concealment. Ibis 147:213‐216.<br />

[5] Remeš, V. 2005. Nest concealment and parental behaviour interact in affecting nest<br />

survival in the blackcap (<strong>Sylvia</strong> <strong>atricapilla</strong>): an experimental evaluation of the parental<br />

compensation hypothesis. Behavioral Ecology and Sociobiology 58:326‐332.<br />

B. Evoluce a diverzita životních znaků<br />

[1] Remeš, V. & T. E. Martin. 2002. Environmental influences on the evolution of growth<br />

and developmental rates in passerines. Evolution 56:2505‐2518.<br />

[2] Roff, D.A., V. Remeš & T.E. Martin. 2005. The evolution of fledging age in songbirds.<br />

Journal of Evolutionary Biology 18:1425‐1433.<br />

[3] Remeš, V. 2006. Growth strategies of passerine birds are related to brood parasitism by<br />

the Brown‐headed Cowbird (Molothrus ater). Evolution 60:1692‐1700.<br />

[4] Remeš, V. 2007. Avian growth and development rates and age‐specific mortality: the<br />

roles of nest predation and adult mortality. Journal of Evolutionary Biology 20:320‐325.<br />

[5] Remeš, V. 2010. Explaining postnatal growth plasticity in a generalist brood parasite.<br />

Naturwissenschaften 97:331‐335.<br />

[6] Remeš, V. & T. Székely. 2010. Domestic chickens defy Rensch’s rule: sexual size<br />

dimorphism in chicken breeds. Journal of Evolutionary Biology 23:2754‐2759.<br />

C. Mateřské efekty a nutriční ekologie<br />

[1] Krist, M., V. Remeš, L. Uvírová, P. Nádvorník & S. Bureš. 2004. Egg size and offspring<br />

performance in the collared flycatcher (Ficedula albicollis): a within‐clutch approach.<br />

Oecologia 140:52‐60.<br />

[2] Krist, M. & V. Remeš. 2004. Maternal effects and offspring performance: in search of<br />

the best method. Oikos 106:422‐426.<br />

30


[3] Remeš, V. & M. Krist. 2005. Nest design and the abundance of parasitic Protocalliphora<br />

blow flies in two hole‐nesting passerines. Écoscience 12:549‐553.<br />

[4] Remeš, V., M. Krist, V. Bertacche & R. Stradi. 2007. Maternal carotenoid<br />

supplementation does not affect breeding performance in the Great Tit (Parus major).<br />

Functional Ecology 21:776‐783.<br />

[5] Lambrechts, M. & 55 coauthors (incl. V. Remeš ). 2010. The design of artificial<br />

nestboxes for the study of secondary hole‐nesting birds: a review of methodological<br />

inconsistencies and potential biases. Acta Ornithologica 45:1‐26.<br />

D. Ornamenty a rodičovské investice<br />

[1] Matysioková, B. & V. Remeš. 2010. Assessing the usefulness of ptilochronology in the<br />

study of melanin‐ and carotenoid‐based ornaments in the Great Tit Parus major. Ibis<br />

152:397‐401.<br />

[2] Matysioková, B. & V. Remeš. 2010. Incubation feeding and nest attentiveness in a<br />

socially monogamous songbird: role of feather colouration, territory quality, and<br />

ambient environment. Ethology 116:596‐607.<br />

[3] Matysioková, B. & V. Remeš. 2011. Responses to increased costs of activity during<br />

incubation in a songbird with female‐only incubation: does feather colour signal coping<br />

ability? Journal of Ornithology, in press.<br />

[4] Remeš, V. 2011. Yolk androgens in great tit eggs are related to male attractiveness,<br />

breeding density, and territory quality. Behavioral Ecology and Sociobiology, in press.<br />

31


A. Výběr hnízdního prostředí a hnízdní predace


O N<br />

P O<br />

I I<br />

N<br />

I I<br />

P O<br />

O N<br />

Opinion is intended to facilitate communication between reader and author and reader and<br />

reader. Comments, viewpoints or suggestions arising from published papers are welcome.<br />

Discussion and debate about important issues in ecology, e.g. theory or terminology, may<br />

also be included. Contributions should be as precise as possible and references should be<br />

kept to a minimum. A summary is not required.<br />

How can maladapti�e habitat choice generate source-sink<br />

population dynamics?<br />

Vladimír Remesˇ, Dept of Zoology and Anthropology, Faculty of Science, Palacky´ Uni�., trˇ. S�obody 26, CZ-771 46<br />

Olomouc, Czech Republic (remes@prfnw.upol.cz).<br />

Several theoretical models have been proposed to describe population<br />

dynamics in a spatially heterogeneous environment. The<br />

source-sink model is among the most popular. Diffendorfer<br />

recently summarized its assumptions and predictions. Given the<br />

model reviewed, he argued that source-sink population dynamics<br />

arises if dispersal is somehow constrained. I offer an additional<br />

mechanism by suggesting that source-sink population dynamics<br />

can be generated by anthropogenic changes in landscapes that<br />

occur so quickly that organisms no longer make optimal habitat<br />

selection decisions. Individuals select the same habitats as their<br />

ancestors but these decisions no longer provide high fitness<br />

because of human-induced changes in habitat quality, such as<br />

increased rates of predation and/or parasitism. Provided that<br />

some of the habitats selected are turned by human-induced<br />

changes into sink habitats, source-sink population dynamics can<br />

emerge.<br />

Habitat heterogeneity in a spatial, landscape context is<br />

an important issue in contemporary ecology (Blondel<br />

and Lebreton 1996). Individual habitat patches can be<br />

of varying suitability for growth, survival and reproduction<br />

of individuals and these differences have consequences<br />

for their population dynamics. Many<br />

population models based on different assumptions and<br />

leading to different predictions have been proposed to<br />

account for the population dynamics in heterogeneous<br />

landscapes (Kareiva 1990). Among the most popular,<br />

the source-sink model (Holt 1985, Pulliam 1988) assumes<br />

habitat patches of highly varying quality. In<br />

sources natality exceeds mortality and they are net<br />

exporters of individuals whereas in sinks mortality exceeds<br />

natality and they are net importers of individuals.<br />

This model predicts a net flow of individuals from<br />

sources to sinks (or to pseudosinks sensu Watkinson<br />

and Sutherland 1995; reviewed in Dias 1996).<br />

OIKOS 91:3 (2000)<br />

It may be rewarding to consider population models<br />

in terms of an individual’s behavioural decisions<br />

(L�omnicki 1999). There is no benefit for an individual<br />

to select a habitat where mortality exceeds natality.<br />

This logic stems from the ideal free distribution model<br />

of Fretwell and Lucas (1970). Then, for source-sink<br />

population dynamics to arise, we should explain why<br />

an individual would arrive at a habitat where mortality<br />

exceeds natality, i.e., at a sink. Three possible mechanisms<br />

have been proposed, all of them involving some<br />

constraint on dispersal: 1) passive dispersal (e.g., wind<br />

or water dispersal of propagules forcing individuals to<br />

grow and reproduce in a poor habitat), 2) territoriality,<br />

or despotic distribution (in active dispersers dominant<br />

individuals can exclude subordinates from good habitats<br />

thereby forcing them to live in poor habitats; Dias<br />

1996, Diffendorfer 1998), and 3) temporal barrier (preventing<br />

successful colonisation of otherwise suitable<br />

habitat; Boughton 1999).<br />

For a better understanding of the subsequent reasoning,<br />

two facts should be stressed. First, habitat selection<br />

can be viewed as a two-stage process. On the proximate<br />

level, an individual selects, through an interaction of its<br />

preferences with environmental cues, a part of the<br />

environment that becomes its habitat. The appropriateness<br />

of these behavioural decisions involved in the<br />

selection process is evaluated by natural selection on<br />

the ultimate level (Fretwell and Lucas 1970). Phenotypes<br />

possessing the best habitat selection rules (judged<br />

in practice by some appropriate correlate of fitness)<br />

produce most offspring. A prerequisite for this mechanism<br />

to allow animals to adapt is a long-term correlation<br />

between cues used by individuals while selecting<br />

habitat and the real suitability of that habitat. Second,<br />

organisms are adapted to their past environments. Nat-<br />

579


ural selection is backward, not forward looking and the<br />

usefulness of an individual’s adaptation is dependent on<br />

the temporal ‘‘sameness’’ of its environment (Freeman<br />

and Herron 1998: 45).<br />

Anthropogenic changes in landscapes<br />

Habitat fragmentation generally results in a landscape<br />

consisting of remnant areas of native vegetation surrounded<br />

by a matrix of agricultural or other developed<br />

land. Typically, it is characterized by loss of the original<br />

habitat, reduction in habitat patch size, and increasing<br />

isolation of habitat patches (Andrén 1994). The<br />

effects of habitat fragmentation can lower the quality of<br />

fragmented habitats, potentially generating source-sink<br />

population dynamics (Donovan et al. 1995, Robinson<br />

et al. 1995). These effects include increased nest predation<br />

and parasitism rates a) on habitat edges and b)<br />

inside remnant patches of native habitat.<br />

The ecological trap hypothesis was originally developed<br />

by Gates and Gysel (1978) to account for maladaptive<br />

nest-site selection by open-nesting passerines<br />

on abrupt forest-field edges. The argument goes as<br />

follows: birds, especially small passerines, are expected<br />

to select highly concealed nest sites to avoid nest predation<br />

(Martin 1993). Modified dense vegetation at edges<br />

can exploit these habitat preferences and function as a<br />

(supernormal, see Manning and Dawkins 1998: 143)<br />

stimulus soliciting settling response and attracting birds<br />

to breed. This leads to overcrowding of nests in edge<br />

vegetation and can enhance, through density dependence,<br />

nest predation and parasitism rates (McCollin<br />

1998). Birds breeding in/near edge vegetation consequently<br />

suffer from poor breeding performance (reviewed<br />

in Paton 1994). Such a habitat can become a<br />

demographic (pseudo)sink.<br />

Besides creating abrupt vegetation edges, habitat<br />

fragmentation has a negative impact on forest-interior<br />

birds through increasing the intensity of predation pressure<br />

on their nests inside remnant patches of native<br />

habitat (e.g., Andrén 1992, Donovan et al. 1995). Increased<br />

nest predation can be explained by a landscapewide<br />

increase of generalist predators supported by a<br />

matrix of highly productive agricultural land (Andrén<br />

et al. 1985). The increase in generalist predators must<br />

outweigh the decrease in forest-interior predators to<br />

result in rising predation rates in fragmented forests.<br />

Where the matrix ecosystems are not capable of supporting<br />

generalist predators (Donovan et al. 1997), or<br />

when we are concerned with naturally scattered habitats<br />

(Tewksbury et al. 1998), the effect of an increased<br />

overall predation pressure is absent. Another mechanism<br />

which can combine with that outlined above is a<br />

mesopredator release, i.e., an increase in the abundance<br />

of small omnivores (= mesopredators) in the absence<br />

of human-exterminated top predators (large canids and<br />

felids). The mesopredators can induce high predation<br />

pressure on open-nesting passerines (Rogers and Caro<br />

1998, Crooks and Soulé 1999).<br />

Negative effects of nest predation can be further<br />

strengthened by increased intensity of brood parasitism<br />

in fragmented landscapes (Trine et al. 1998). Humancaused<br />

changes in landscapes resulted in cowbirds<br />

(brood parasites) expanding their ranges and using new<br />

host species. In particular, the fragmentation of forests<br />

and the spread of animal husbandry in North America<br />

over the past 150 years appear to have favoured cowbirds<br />

(Cruz et al. 1998).<br />

Habitat selection is a hierarchical process and migratory<br />

birds encounter multiple stimuli on their journey<br />

from the wintering grounds (Cody 1985). Deterioration<br />

of habitat quality through habitat fragmentation can<br />

certainly occur on several spatial scales. On these different<br />

spatial scales different processes occur while birds<br />

are approaching their breeding grounds. At larger spatial<br />

scales site tenacity and species-specific natal/breeding<br />

dispersal may be important while at finer spatial<br />

scales habitat selection controlled by specific stimuli is<br />

more important. With the help of such hierarchically<br />

occurring processes birds can be led to forest fragments<br />

not being aware of their poor quality caused by recent<br />

human disturbances (extermination of top predators,<br />

maintenance of highly productive surrounding matrix,<br />

see above) because there are no stimuli they can use to<br />

assess the poor quality.<br />

In summary, a potentially strong effect of habitat<br />

fragmentation is the deterioration of the link between<br />

the cues used by animals for making habitat selection<br />

decisions and the qualities of those chosen habitats. If<br />

these habitats are recently created sinks, then sourcesink<br />

dynamics can emerge. The most important thing,<br />

however, is that these changes come too quickly for<br />

animals to be able to cope with them (see Holt and<br />

Gomulkiewicz 1997, and references therein, for prerequisites<br />

for adaptive evolution in sink habitats, Thompson<br />

1998 for examples of rapid evolution).<br />

Conclusions<br />

Current models of source-sink population dynamics<br />

(summarized by Diffendorfer 1998) propose constraints<br />

on dispersal (territoriality, or despotic distribution in<br />

active dispersers) as the only mechanism causing<br />

source-sink dynamics because individuals are unable to<br />

achieve all possible dispersal patterns. I suggest that<br />

human-induced alterations of natural habitats can have<br />

the same effect: either through providing animals with<br />

novel cues which they misinterpret as signals of highquality<br />

habitats (abrupt edges), or through connecting<br />

cues used as indicators of good habitats with poor<br />

580 OIKOS 91:3 (2000)


fitness rewards (elevated predation and parasitism rates<br />

inside forest patches).<br />

The two approaches – the traditional approach (i.e.,<br />

territoriality, or despotic distribution) and maladaptive<br />

habitat choice approach – should generate different<br />

predictions to be testable and separable. Whereas the<br />

despotic distribution predicts that animals should in the<br />

first instance select the best habitat and as these are<br />

filled poor ones, the main prediction of the maladaptive<br />

habitat choice hypothesis is that animals should first<br />

select a poor habitat (the other two predictions, namely<br />

that poor habitat is a true sink and that there is a net<br />

flow of individuals from sources to sinks, are common<br />

to both approaches and are readily testable with the use<br />

of standard methods). There are several ways to show<br />

that individuals prefer a poor habitat to a good one.<br />

Either directly – animals should settle, after arrival on<br />

the breeding grounds, at first in a poor habitat (i.e., we<br />

can use a temporal settling pattern), or indirectly –<br />

individuals in a poor habitat are to be bigger (Dias and<br />

Blondel 1996) or to have better developmental stability<br />

(Møller 1995). Since the indirect approach assumes that<br />

competitive abilities of individuals are identifiable from<br />

some of their phenotypic traits, the direct approach is<br />

superior. However, the direct approach is unfortunately<br />

applicable only for migratory animals.<br />

What is important to realize is that dispersal constraints<br />

and maladaptive habitat choice are completely<br />

different mechanisms. Previous models of source-sink<br />

dynamics assume that animals are able to correctly<br />

assess habitat quality but they cannot for some reason<br />

settle in a good one. Diffendorfer (1998) argues that in<br />

organisms with active dispersal, which can assess habitat<br />

quality and make decisions regarding whether to<br />

stay or leave, source-sink dynamics should not appear<br />

because it makes little evolutionary sense for an individual<br />

to remain in a sink habitat. He suggests that such<br />

individuals will be rarely found in poor habitats because<br />

they can assess poor quality and avoid it. On the<br />

contrary, I assume that animals make, using cues that<br />

worked well in the past, bad habitat selection decisions.<br />

This scenario is most plausible in habitats that have<br />

changed so rapidly that natural selection has not yet<br />

reshaped habitat choice. Consequently, we could find<br />

source-sink population dynamics even in active dispersers<br />

living in human-altered habitats (as might be<br />

the case in North American forest-interior passerines,<br />

Donovan et al. 1995, Robinson et al. 1995).<br />

On the other hand, purely ecological processes can be<br />

responsible. For example, population fluctuations<br />

(Dunn 1977, Hogstad 1995), range expansions (Rogers<br />

and Caro 1998), fires and storms all change the strength<br />

of biotic interactions; this can result in changes in<br />

quality of some habitats, with the potential consequences<br />

for population dynamics outlined above. I<br />

focused on habitat fragmentation because it is rapidly<br />

ongoing, the best studied and currently the most important<br />

factor influencing species’ habitats.<br />

Acknowledgements – I thank Paula C. Dias, Tomásˇ Grim,<br />

Milosˇ Krist, Václav Pavel, David Storch, Emil Tkadlec, Karel<br />

Weidinger and especially James E. Diffendorfer for helpful<br />

discussion or comments on the manuscript.<br />

References<br />

Andrén, H. 1992. Corvid density and nest predation in relation<br />

to forest fragmentation: a landscape perspective. – Ecology<br />

73: 794–804.<br />

Andrén, H. 1994. Effects of habitat fragmentation on birds<br />

and mammals in landscapes with different proportions of<br />

suitable habitat: a review. – Oikos 71: 355–366.<br />

Andrén, H., Angelstam, P., Lindström, E. and Widén, P. 1985.<br />

Differences in predation pressure in relation to habitat<br />

fragmentation: an experiment. – Oikos 45: 273–277.<br />

Blondel, J. and Lebreton, J. D. 1996. The biology of spatially<br />

structured populations: concluding remarks. – Acta Oecol.<br />

17: 687–693.<br />

Boughton, D. A. 1999. Empirical evidence for complex sourcesink<br />

dynamics with alternative states in a butterfly metapopulation.<br />

– Ecology 80: 2727–2739.<br />

Cody, M. L. 1985. An introduction to habitat selection in<br />

birds. – In: Cody, M. L. (ed.), Habitat selection in birds.<br />

Academic Press, pp. 3–56.<br />

Crooks, K. R. and Soulé, M. E. 1999. Mesopredator release<br />

and avifaunal extinctions in a fragmented system. – Nature<br />

400: 563–566.<br />

Cruz, A., Post, W., Wiley, J. W. et al. 1998. Potential impacts<br />

of cowbird range expansion in Florida. – In: Rothstein, S.<br />

I. and Robinson, S. C. (eds), Parasitic birds and their<br />

hosts. Oxford Univ. Press, pp. 313–336.<br />

Dias, P. C. 1996. Sources and sinks in population biology. –<br />

Trends Ecol. Evol. 11: 326–330.<br />

Dias, P. C. and Blondel, J. 1996. Local specialization and<br />

maladaptation in the Mediterranean blue tit (Parus<br />

caeruleus). – Oecologia 107: 79–86.<br />

Diffendorfer, J. E. 1998. Testing models of source-sink dynamics<br />

and balanced dispersal. – Oikos 81: 417–433.<br />

Donovan, T. M, Thompson III, F. R., Faaborg, J. and Probst,<br />

J. R. 1995. Reproductive success of migratory birds in<br />

habitat sources and sinks. – Conserv. Biol. 9: 1380–1395.<br />

Donovan, T. M., Jones, P. W., Annand, E. M. and Thompson<br />

III, F. R. 1997. Variation in local-scale edge effects: mechanisms<br />

and landscape context. – Ecology 78: 2064–2075.<br />

Dunn, E. 1977. Predation by weasels (Mustela ni�alis) on<br />

breeding tits (Parus spp.) in relation to the density of tits<br />

and rodents. – J. Anim. Ecol. 46: 633–652.<br />

Freeman, S. and Herron, J. C. 1998. Evolutionary analysis. –<br />

Prentice-Hall.<br />

Fretwell, S. D. and Lucas Jr, H. R. 1970. On territorial<br />

behavior and other factors influencing habitat distribution<br />

in birds. I. Theoretical development. – Acta Biotheor. 19:<br />

16–36.<br />

Gates, J. E. and Gysel, L. W. 1978. Avian nest dispersion and<br />

fledging success in field-forest ecotones. – Ecology 59:<br />

871–883.<br />

Hogstad, O. 1995. Do avian and mammalian nest predators<br />

select for different nest dispersion patterns of Fieldfares<br />

Turdus pilaris? A 15-year study. – Ibis 137: 484–489.<br />

Holt, R. D. 1985. Population dynamics in two-patch environments:<br />

some anomalous consequences of an optimal habitat<br />

distribution. – Theor. Popul. Biol. 28: 181–208.<br />

Holt, R. D. and Gomulkiewicz, R. 1997. How does immigration<br />

influence local adaptation? A reexamination of a<br />

familiar paradigm. – Am. Nat. 149: 563–572.<br />

Kareiva, P. 1990. Population dynamics in spatially complex<br />

environments: theory and data. – Philos. Trans. R. Soc.<br />

Lond. B 330: 175–190.<br />

L�omnicki, A. 1999. Individual-based models and the individual-based<br />

approach to population ecology. – Ecol. Model.<br />

115: 191–198.<br />

OIKOS 91:3 (2000) 581


Manning, A. and Dawkins, M. S. 1998. An introduction to<br />

animal behaviour. – Cambridge Univ. Press.<br />

Martin, T. E. 1993. Nest predation and nest sites. – Bio-<br />

Science 43: 523–532.<br />

McCollin, D. 1998. Forest edges and habitat selection in birds:<br />

a functional approach. – Ecography 21: 247–260.<br />

Møller, A. P. 1995. Developmental stability and ideal despotic<br />

distribution of blackbirds in a patchy environment. –<br />

Oikos 72: 228–234.<br />

Paton, P. W. C. 1994. The effect of edge on avian nest success:<br />

how strong is the evidence. – Conserv. Biol. 8: 17–26.<br />

Pulliam, H. R. 1988. Sources, sinks, and population regulation.<br />

– Am. Nat. 135: 652–661.<br />

Robinson, S. K., Thompson III, F. R., Donovan, T. M. et al.<br />

1995. Regional forest fragmentation and the nesting success<br />

of migratory birds. – Science 267: 1987–1990.<br />

Rogers, C. M. and Caro, M. J. 1998. Song sparrows, top<br />

carnivores and nest predation: a test of the mesopredator<br />

release hypothesis. – Oecologia 116: 227–233.<br />

Tewksbury, J. J., Hejl, S. J. and Martin, T. E. 1998.<br />

Breeding productivity does not decline with increasing<br />

fragmentation in a western landscape. – Ecology 79:<br />

2890–2903.<br />

Thompson, J. N. 1998. Rapid evolution as an ecological<br />

process. – Trends Ecol. Evol. 13: 329–332.<br />

Trine, C. L., Robinson, W. D. and Robinson, S. K. 1998.<br />

Consequences of brown-headed cowbird brood parasitism<br />

for host population dynamics. – In: Rothstein, S. I. and<br />

Robinson, S. C. (eds), Parasitic birds and their hosts.<br />

Oxford Univ. Press, pp. 273–295.<br />

Watkinson, A. R. and Sutherland, W. J. 1995. Sources, sinks<br />

and pseudo-sinks. – J. Anim. Ecol. 64: 126–130.<br />

582 OIKOS 91:3 (2000)


Effects of Exotic Habitat on Nesting Success, Territory<br />

Density, and Settlement Patterns in the Blackcap<br />

( <strong>Sylvia</strong> <strong>atricapilla</strong>)<br />

VLADIMÍR REMESˇ<br />

Department of Zoology, Palack y´ University, T rˇ . Svobody 26, 771 46 Olomouc, Czech Republic,<br />

and U.S. Geological Survey Biological Resources Division, Montana Cooperative Wildlife Research Unit,<br />

University of Montana, Missoula, MT 59812, U.S.A.<br />

Abstract: Animals are expected to distribute themselves in a heterogeneous environment in such a way that<br />

they maximize their reproductive output. When the environment is profoundly changed by human pressure,<br />

however, cues used for habitat selection in the past may no longer provide reliable information about habitat<br />

quality. I monitored the nesting success of Blackcaps ( <strong>Sylvia</strong> <strong>atricapilla</strong>)<br />

in two types of forest in southern<br />

Moravia in the Czech Republic. I assessed their breeding density and territory size using a territory mapping<br />

method and the minimum convex polygon method. I determined spring arrival through direct observations<br />

and measured vegetation characteristics and pattern of spring leafing of shrubs in both forests. I show that<br />

Blackcaps preferentially settled in a plantation of introduced black locust ( Robinia pseudoacacia) upon their<br />

return from spring migration. In this plantation, they reached twice the density as that observed in a natural<br />

floodplain forest nearby. However, they had significantly lower nesting success (15.5%) than in the floodplain<br />

forest (59%). Returning migrant Blackcaps may be lured by early-leafing shrubs in the exotic plantation<br />

to settle earlier and at higher densities in the reproductively inferior habitat. My results show that (1) it<br />

is not possible to assess habitat quality based solely on breeding densities, (2) human-modified habitats can<br />

function as ecological traps by luring settling birds into unsuitable habitats, and (3) by replacing exotic<br />

plant species with native ones we can restore native communities and increase the breeding productivity of<br />

bird populations.<br />

Efectos de Hábitat Exótico sobre el Éxito de Anidación, Densidad Territorial y Patrones de Establecimiento de<br />

<strong>Sylvia</strong> <strong>atricapilla</strong><br />

Resumen: Se espera que los animales se distribuyan en un medio heterogéneo de tal modo que maximicen<br />

su producción reproductiva. Sin embargo, cuando el ambiente es cambiado profundamente por la presión<br />

humana, los indicios para la selección de hábitat usados en el pasado pueden no proporcionar información<br />

confiable sobre la calidad del hábitat en la actualidad. Se hizo un monitoreo del éxito reproductivo de <strong>Sylvia</strong><br />

<strong>atricapilla</strong> en dos tipos de bosque en el sur de Moravia, república Checa. Se evaluó su densidad reproductiva y<br />

el tamaño del territorio utilizando un método de mapeo de territorio y el método de mínimo polígono convexo.<br />

Se determinó la llegada en primavera por medio de observaciones directas y se midieron las características<br />

de la vegetación y el patrón de desarrollo foliar de arbustos en los dos bosques. Se muestra que <strong>Sylvia</strong> <strong>atricapilla</strong><br />

preferentemente se establecieron en una plantación de Robinia pseudoacacia a su regreso de la<br />

migración primaveral. En esta plantación alcanzaron una densidad dos veces mayor que la observada en<br />

un bosque inundable cercano. Sin embargo, tuvieron un éxito de anidación (15.5%) significativamente<br />

menor que en el bosque inundable (59%). Las aves retornantes pueden ser atraídas por los arbustos con hojas<br />

jóvenes en la plantación exótica y por lo tanto se establecen más temprano y en mayores densidades en el<br />

hábitat reproductivamente inferior. Los resultados muestran que (1) no es posible evaluar la calidad del<br />

Address correspondence to Department of Zoology, Palacky´ University, T ˇr<br />

. Svobody 26, 771 46 Olomouc, Czech Republic,<br />

email remes@prfnw.upol.cz<br />

1127<br />

Conservation Biology, Pages 1127–1133<br />

Volume 17, No. 4, August 2003


1128<br />

Introduction<br />

Effects of Exotic Habitat on Blackcap Remesˇ<br />

hábitat basado en las densidades reproductivas únicamente, (2) los hábitats modificados por humanos<br />

pueden funcionar como trampas ecológicas al atraer aves hacia hábitats inadecuados y (3) reemplazando<br />

las especies de plantas exóticas con nativas podemos reestablecer comunidades nativas e incrementar la productividad<br />

reproductiva de poblaciones de aves.<br />

Animals are expected to maximize their reproductive<br />

output in a heterogeneous environment through spatial<br />

distribution (Pulliam 1996). Under the ideal free distribution<br />

(IFD) model of habitat selection, individuals are<br />

free to settle anywhere and distribute themselves in such<br />

a way that their reproductive output in all habitats is the<br />

same (Fretwell & Lucas 1970; Bernstein et al. 1991).<br />

There is ample evidence, however, that the breeding success<br />

and reproductive output of birds can differ across<br />

habitats on multiple spatial scales (e.g., Donovan et al.<br />

1995; Dias 1996; Hatchwell et al. 1996; Donovan et al.<br />

1997; Huhta et al. 1998; Purcell & Verner 1998; Tewksbury<br />

et al. 1998). One possible explanation for this is<br />

provided by the ideal despotic distribution (IDD) model<br />

of habitat selection (Fretwell & Lucas 1970; Bernstein et<br />

al. 1991). Under this model, dominant individuals preempt<br />

better habitats, thus forcing subordinates to settle<br />

in poorer habitats, with reproductive parameters differing<br />

between habitats accordingly (Andrén 1990; Huhta<br />

et al. 1998).<br />

Another explanation for habitat-specific reproductive<br />

success is based on human-induced habitat changes. Humans<br />

are exerting strong pressure on native habitats,<br />

changing them and their biotic interactions profoundly<br />

(Yahner 1988; Paton 1994; Murcia 1995; Trine 1998; Fagan<br />

et al. 1999). These changes include, among others,<br />

the introduction of exotic species, which can lead to<br />

changes in the appearance, phenology, and functioning<br />

of communities (Wilson & Belcher 1989; Penloup et al.<br />

1997; Shigesada & Kawasaki 1997; Courchamp et al.<br />

2000; Martin et al. 2000; Roemer et al. 2002). In a recently<br />

human-modified landscape, the cues used by animals<br />

successfully in the past for detecting highly rewarding<br />

breeding habitats and the actual current quality of<br />

those habitats can be decoupled (Rolstad 1991). This<br />

means animals no longer have complete and reliable<br />

knowledge of potential habitats as presumed by habitat<br />

selection models. This can happen if, while choosing<br />

their breeding habitat, they rely on those features of habitats<br />

that were changed by the introduction of exotic<br />

species (e.g., phenology or physiognomy) (Schmidt &<br />

Whelan 1999). Animals can be misled and can make<br />

wrong decisions about where to settle, with potentially<br />

detrimental consequences for reproduction (Pulliam<br />

1996; Reme sˇ 2000).<br />

Conservation Biology<br />

Volume 17, No. 4, August 2003<br />

Human-modified habitats that look suitable but provide<br />

poor reproductive rewards are called ecological<br />

traps (Gates & Gysel 1978), which can be generated by<br />

habitat fragmentation (Gates & Gysel 1978; Rolstad<br />

1991; Purcell & Verner 1998) and introduction of exotic<br />

plant species (Schmidt & Whelan 1999; Misenhelter &<br />

Rotenberry 2000). Exotic plant species have high “trap”<br />

potential because they can change habitat phenology<br />

and physiognomy profoundly. One such species is black<br />

locust ( Robinia pseudoacacia),<br />

a tree of North American<br />

origin that was introduced into other parts of the<br />

world (including Europe) as an ornamental and timber<br />

species. Black locust accumulates soil nitrogen, facilitating<br />

dominance by nitrogen-responsive understory species,<br />

which leads to lower species diversity of shrub and<br />

herb layers (Peloquin & Hiebert 1999) and changes the<br />

phenology of the understory vegetation.<br />

I hypothesize that habitat changes caused by black locust<br />

can have detrimental effects on breeding birds.<br />

Here, I test this hypothesis by comparing settlement patterns,<br />

territory density, and nesting success of the Blackcap<br />

( <strong>Sylvia</strong> <strong>atricapilla</strong>),<br />

a small, insectivorous migratory<br />

songbird, between two habitats, a black locust<br />

plantation and a native floodplain forest. If the exotic<br />

black locust plantation is inferior for breeding birds<br />

compared with the native floodplain forest, the specific<br />

predictions generated by the different habitat selection<br />

models are (1) IFD, in which both habitats are settled simultaneously<br />

with higher density in the floodplain forest<br />

and no difference in nesting success; (2) IDD, in<br />

which native-floodplain forest is settled preferentially<br />

and with resulting higher nesting success; and (3) the<br />

ecological trap hypothesis, in which the black locust<br />

plantation is settled preferentially, with higher density<br />

but lower nesting success.<br />

Methods<br />

Study Sites<br />

This study was conducted on two 15- to 20-ha study<br />

plots, separated by 1.3 km, within the large Doubrava<br />

2<br />

forest of approximately 90 km , north of Hodonín in<br />

southern Moravia, Czech Republic (lat. 48�52�N, long.<br />

17�05�E, 170 m above sea level). Farmland and a chain<br />

of ponds surrounded the forest. The forest cover of Dou


Remesˇ Effects of Exotic Habitat on Blackcap<br />

brava is disrupted by openings, clearcuts, and roads but<br />

is still relatively continuous. Forest management activities<br />

include selective logging of trees and systematic cutting<br />

of shrub understory. The first plot was located<br />

within a black locust plantation. The shrub layer consisted<br />

solely of common elder ( Sambucus nigra),<br />

and<br />

the herb layer was dominated by catch-weed bedstraw<br />

( Galium aparine)<br />

and nettle ( Urtica dioica).<br />

The second<br />

plot was located within a natural floodplain forest<br />

that was floristically much richer. It had at least nine<br />

tree species (mostly oaks [ Quercus spp], limes [ Tilia<br />

spp], poplars [ Populus spp], European ash [ Fraxinus<br />

excelsior], and black alder [Alnus glutinosa]) and 14<br />

shrub species (mainly saplings of limes; hawthorns [ Crataegus<br />

spp], red dogwood [ Cornus sanquinea],<br />

raspberry<br />

[ Rubus idaeus],<br />

common buckthorn [ Rhamnus<br />

cathartica],<br />

bird-cherry [ Padus racemosa],<br />

blackthorn<br />

[ Prunus spinosa],<br />

wayfaring tree [ Viburnum lantana]<br />

and rose [ Rosa sp]).<br />

Vegetation Structure and Leafing<br />

I characterized the vegetation by measuring shrub cover<br />

and height and tree cover, height, and density on both<br />

study plots. I counted the trees (tree density) in 50 randomly<br />

distributed circles (5-m radius) on both plots. I divided<br />

each circle into four quarters, and in each quarter<br />

I measured the height of shrubs and estimated shrub and<br />

canopy cover. I averaged the values from each quarter<br />

to obtain shrub height and shrub and tree cover for the<br />

circle. I chose seven trees at random on each plot and<br />

measured their height with a clinometer. In 2000–2001 I<br />

measured the leafing of understory vegetation, which is<br />

defined as growth of new leaves from buds after a winter<br />

period of vegetative inactivity. On both study plots, I<br />

chose 20 shrubs at random. I chose one branch of each<br />

of these shrubs randomly and measured all its new<br />

leaves with a caliper. The average length of these leaves<br />

provided one data point for subsequent analyses. Thus,<br />

for both study plots I collected 20 measurements of leaf<br />

lengths (averages of individual shrubs) approximately<br />

every third day (for exact dates see Fig. 1).<br />

Nesting Success, Territory Density, and Settlement Patterns<br />

In 1998–1999 I monitored the nesting success of Blackcaps.<br />

I searched for nests by systematically inspecting all<br />

shrub and herbaceous vegetation on the study plots and<br />

subsequently checked them every 1–7 days (median, 3<br />

days). Nest searches and nest checks were performed<br />

from late April to early July. For each nest, I recorded<br />

height, supporting plant species, clutch (or brood) size,<br />

and egg size (1999 only). With a caliper, I took egg<br />

length and two measurements of egg width in two perpendicular<br />

directions. I used these measurements to calculate<br />

egg volume according to the formula given by<br />

1129<br />

Figure 1. A schematic depiction of leafing of understory<br />

shrubs in the black locust plantation (two upper<br />

curves) and the floodplain forest (two lower curves)<br />

in 2000 and 2001 (cm, mean � SE, n � 20 in all<br />

cases). Arrows show the date of the first detection of a<br />

singing male on each plot. Trees were completely<br />

without leaves at that time in both habitats.<br />

Hoyt (1979). For computation of nesting success, I used<br />

the Mayfield method (Mayfield 1975). Nests that fledged<br />

at least one young were considered successful. Disappearance<br />

of nest contents was taken as evidence of predation.<br />

Number of fledglings was defined as number of<br />

young deemed to have fledged from the nest.<br />

In 1997–1998 I quantified breeding density of the<br />

Blackcap using the territory mapping method, which<br />

provides absolute densities of breeding pairs (Bibby et<br />

al. 1992). I surveyed plots weekly, in either the morning<br />

or evening. Each census lasted over 3 hours. Morning<br />

censuses started before sunrise, and evening censuses<br />

continued until sunset. I began mapping territories in<br />

late April and continued until early July. During a slow<br />

walk through the study plot, I recorded all Blackcaps<br />

noted both visually and aurally and recorded their location<br />

on a map of the study plot. Typically, registrations<br />

from subsequent censuses form clusters on the map, and<br />

each cluster depicts a territory of a single male (minimum<br />

number of registrations forming a territory was<br />

set at three). To determine the size of singing territories,<br />

I connected outermost registrations in each cluster<br />

by a straight line and computed the extent of the area<br />

using the minimum convex polygon method (White &<br />

Garrott 1990). To compare spacing of territories in the<br />

two habitats, I calculated the mean distance between<br />

neighboring territories on both plots. These distances<br />

were taken between visually estimated centers of the<br />

territories.<br />

In 2000–2001 I monitored the spring arrival of Blackcaps<br />

on breeding grounds by careful visual and audi-<br />

Conservation Biology<br />

Volume 17, No. 4, August 2003


1130<br />

Effects of Exotic Habitat on Blackcap Remesˇ<br />

Table 1. Vegetation structure characteristics of the two study plots<br />

(mean � SE).<br />

Variable<br />

tory inspection of the study plots and their broader surroundings<br />

approximately each third day ( for exact<br />

dates see Fig. 1). On both study plots I established six<br />

observation points 100 m apart. From each observation<br />

point I recorded all birds for 30 minutes. I also recorded<br />

all birds I observed while moving between the<br />

observation points.<br />

Potential Predators<br />

To assess potential nest predators, I used snap-traps to<br />

catch small mammals on both study sites from late April<br />

to mid-July in 1997 (25 traps � 2 transects � 1 night exposure<br />

� 5 times per season � 250 trap-nights per study<br />

site). During censuses of Blackcaps and nest searches, I<br />

also recorded observations of potential avian predators.<br />

Of the species known to prey on Blackcap nests (Sell<br />

1998; Weidinger 2002), I trapped bank vole ( Clethrionomys<br />

glareolus)<br />

and wood/yellow-necked mouse ( Apodemus<br />

sylvaticus/A. flavicollis)<br />

and recorded Jay ( Garrulus<br />

glandarius ) and Great-spotted Woodpecker<br />

( Dendrocopos major)<br />

on both study sites. The presence<br />

of Eurasian badger ( Meles meles),<br />

Pine martin ( Martes<br />

martes),<br />

and stoat ( Mustela erminea)<br />

was probable but<br />

not directly proved.<br />

Conservation Biology<br />

Volume 17, No. 4, August 2003<br />

Plantation<br />

(n)<br />

Floodplain<br />

forest<br />

(n)<br />

Shrub cover (%) 32.8 � 0.60 (50) 31.6 � 0.58 (50)<br />

Shrub height (m)* 2.9 � 0.03 (50) 3.7 � 0.03 (50)<br />

Tree cover (%) 93.8 � 1.73 (50) 92.5 � 1.70 (50)<br />

Tree height (m) 27.8 � 1.32 (7) 24.5 � 1.22 (7)<br />

Tree density (no. in<br />

10-m-diameter circle) 2.1 � 0.03 (50) 2.0 � 0.03 (50)<br />

* Significantly different at p � 0.01. All other variables not significant<br />

(Mann-Whitney U tests).<br />

Statistical Analyses<br />

Breeding parameters of Blackcaps were similar in all<br />

years (all p � 0.1); thus, I pooled data across years, except<br />

for egg volume, which was measured in 1999 only.<br />

Vegetation height, density, and cover data were not normally<br />

distributed, and no transformation improved their<br />

distribution, so I tested the difference between the two<br />

plots by Mann-Whitney U tests. I analyzed the pattern of<br />

leaf growth with repeated-measures analysis of variance<br />

and the difference in arrival date of the first male by Wilcoxon<br />

signed-ranks test for paired data. All statistical<br />

tests were two-tailed, and the differences were considered<br />

significant at p � 0.05. All statistical analyses were<br />

performed with SPSS (SPSS 1996).<br />

Results<br />

Vegetation Structure and Leafing<br />

Despite floristic differences, the two plots had similar<br />

vegetation structure and differed only in the height of<br />

the shrub layer (Table 1). However, the difference in<br />

timing of leafing between the two plots was highly significant<br />

( F1,76<br />

� 961.16, p � 0.001, Fig. 1). There was<br />

also significant difference between years ( F1,76<br />

� 8.70,<br />

p � 0.004) due to an overall earlier growth of leaves in<br />

2000 than in 2001 in the black locust plantation. Finally,<br />

there was a significant interaction between leaf growth<br />

and plot ( F3,74<br />

� 3755.31, p � 0.001) and between leaf<br />

growth and year ( � 6007.64, p � 0.001; Fig. 1).<br />

F<br />

3,74<br />

Nesting Success, Territory Density, and Settlement Patterns<br />

Table 2. Parameters of Blackcap breeding populations on the plantation and floodplain forest study plots.<br />

a Variable<br />

Of all the breeding parameters I measured, only nesting<br />

success differed between the two populations: nesting<br />

success in the black locust plantation was much lower<br />

than in the natural floodplain forest (Table 2).<br />

Year Plantation Floodplain forest<br />

Density (pairs/10 ha) 1997–1998 20 12<br />

Singing territory size [ha, mean � SE ( n)]<br />

Distance to the nearest neighboring territory<br />

1997–1998 0.23 � 0.034 (40) 0.26 � 0.049 (24)<br />

[m, mean � SE (n)] b<br />

1997–1998 44.96 � 1.708 (40) 63.94 � 4.704 (24)<br />

Daily nest survival rate [mean � SE (n)] c 1998–1999 0.9253 � 0.018 (48) 0.9783 � 0.011 (25)<br />

Nesting success [%, mean (95% CI), per 24 days] 1998–1999 15.5 (8.2 � 28.9) 59.0 (40.7 � 85.5)<br />

Clutch size [mean � SE (n)] 1998–1999 4.69 � 0.155 (28) 4.81 � 0.090 (20)<br />

No. of fledglings [mean � SE (n)] 1998–1999 3.71 � 0.194 (14) 3.67 � 0.291 (18)<br />

Egg volume [cm3 , mean � SE (n)] 1999 2.17 � 0.046 (22) 2.17 � 0.045 (15)<br />

Nest height [m, mean � SE (n)] 1998–1999 0.56 � 0.065 (45) 0.54 � 0.100 (25)<br />

a Except for “distance to nearest neighboring territory” and “daily nest survival rate,” variables are not significant (t tests).<br />

b Test: t test, t � �4.41, p � 0.001.<br />

c Tested according to Johnson (1979): z � 3.71, p � 0.001. All other variables not significant (t tests).


Remesˇ Effects of Exotic Habitat on Blackcap 1131<br />

Blackcaps reached much higher density in the plantation<br />

than in the floodplain forest, but territory size did<br />

not differ between the two plots (Table 2). Given the almost<br />

two times higher density of the black locust population<br />

and the identical territory sizes, there must have<br />

been much more interstitial, unoccupied space in the<br />

floodplain forest. This can be seen when comparing<br />

mean distance to the nearest neighboring territory: it<br />

was almost 1.5 times greater in the floodplain forest<br />

than in the black locust plantation (Table 2). The higher<br />

density of Blackcaps in the plantation was not due to differences<br />

in the availability of nest sites because the two<br />

plots did not differ in the cover of shrubs (Table 1),<br />

which is the nesting substrate for Blackcaps. Instead, the<br />

higher density of Blackcaps in the black locust plantation<br />

appears to reflect a preference for the exotic habitat.<br />

This was supported by the 2000–2001 arrival data.<br />

Males settled and began to sing about 1 week earlier in<br />

the black locust plantation than in the floodplain forest<br />

(Fig. 1). Although the difference in the arrival date between<br />

the plots was not statistically significant (Wilcoxon<br />

signed ranks test: Z � �1.34, p � 0.18), this was<br />

caused by the extremely small power of the test (only 2<br />

years of data were available). Although statistically nonsignificant,<br />

the average difference of 8.5 days in arrival<br />

time is biologically highly significant. Moreover, at the<br />

time of detection of the first singing male in the floodplain<br />

forest, it was possible to see or hear four to five<br />

males simultaneously in the black locust plantation from<br />

one observation point. Thus, it seems that not only the<br />

arrival date of the first male but also the overall settling<br />

pattern differed between the two plots, the black locust<br />

plantation being at least partially filled before any male<br />

even appeared in the floodplain forest. The settling pattern<br />

could not be explained by any geographical effect<br />

because the study plots were 1.3 km apart, a trivial distance<br />

for a long-distance migrant.<br />

Discussion<br />

Arriving Blackcaps settled earlier in the black locust<br />

plantation at higher densities but suffered from lower<br />

nesting success. These findings are in accordance with<br />

predictions derived from the ecological trap hypothesis<br />

applied to this study system.<br />

One potential mechanism leading to earlier settling<br />

and higher density at the black locust plantation is the<br />

earlier leafing of shrubs in the plantation (Fig. 1). Moreover,<br />

because of monospecific (elder) species composition,<br />

all shrubs leafed simultaneously. Male Blackcaps arrive<br />

earlier in the spring than females and strive to<br />

defend territories with the biggest potential for dense<br />

vegetation later in the breeding season (Hoi-Leitner et al.<br />

1995), perhaps because territories with dense foliage<br />

around a nest have better prospects for nesting success<br />

(Martin 1992; Hoi-Leitner et al. 1995; Weidinger 2002).<br />

Thus, I suggest that early and simultaneously leafing elders<br />

lured arriving males into the black locust plantation.<br />

Although alternative explanations for the observed<br />

pattern could be invoked (e.g., that arriving Blackcaps<br />

cue on food instead on foliage), concealment serves to<br />

deter nest predation in Blackcaps (Hoi-Leitner et al.<br />

1995; Weidinger 2002) and predation is the main cause<br />

of nest failure in this species (Sell 1998; Weidinger<br />

2000, 2002; this study). Furthermore, Weidinger (2000)<br />

showed that Blackcaps breed earlier at the sites with earlier<br />

leafing of shrubs, and there is no evidence of food<br />

limitation in this species (V. R., personal observation).<br />

Because my study lacks true spatial replicates, different<br />

nesting success at the two study plots could be explained<br />

in several ways. One, there could simply be different<br />

densities of nest predators on the two study sites.<br />

Two, the high density of birds in the black locust plantation<br />

(Table 2) could lead to low nesting success caused<br />

by density-dependent nest predation. With the exception<br />

of one nestling found dead on the nest, all nest<br />

losses on both plots were attributable to predation.<br />

Moreover, Blackcap nests in the plantation were almost<br />

all ( 91.9% in 1998, 95.7% in 1999 ) placed in elder,<br />

whereas nests in the floodplain forest were more evenly<br />

distributed among various support plants (maximum<br />

proportions of 22.2% in Prunus spinosa, Tilia, and Crataegus<br />

in 1998 and 56.3% in Tilia in 1999). A highdensity<br />

concentration of nests in one shrub species<br />

could facilitate nest searching by predators (Martin<br />

1988, 1996; Schmidt & Whelan 1998). However, more<br />

studies are needed to ascertain the actual cause of the<br />

differences in rates of nest predation.<br />

Several researchers, based on ecological trap reasoning,<br />

suggest that birds exhibit maladaptive selection of<br />

breeding habitat (Gates & Gysel 1978; Purcell & Verner<br />

1998) and nest sites (Misenhelter & Rotenberry 2000).<br />

However, all these researchers based their conclusions<br />

on indirect, correlative evidence. For example, higher<br />

density in a certain habitat was taken as evidence of its<br />

higher attractiveness for breeding birds and for their active<br />

selection of it. Here, I show directly that birds arriving<br />

on the breeding grounds preferentially selected reproductively<br />

inferior breeding habitat. Furthermore, I<br />

suggest that cueing on dense understory vegetation may<br />

have been a rewarding strategy in natural habitats but<br />

that human alteration of the landscape has decoupled<br />

this cue from actual habitat suitability (Gates & Gysel<br />

1978; Reme sˇ<br />

2000). This finding shows that one of the<br />

most important assumptions of the habitat selection theory,<br />

namely that dispersing individuals should first select<br />

the most rewarding habitat (Fretwell & Lucas 1970;<br />

Bernstein et al. 1991), does not always hold true. Moreover,<br />

for all Blackcap life-history parameters, the black<br />

locust population falls under the self-sustaining threshold<br />

(V. R., unpublished data). This implies that human<br />

Conservation Biology<br />

Volume 17, No. 4, August 2003


1132 Effects of Exotic Habitat on Blackcap Remesˇ<br />

alteration can create demographically inferior habitats<br />

that are nevertheless attractive to breeding animals<br />

(Reme sˇ 2000).<br />

It is known that introduced, non-native vegetation<br />

can alter the community composition and nesting success<br />

of birds ( Wilson & Belcher 1989; Schmidt &<br />

Whelan 1999). Introduced black locust replaces native<br />

habitats and destroys native communities ( Hruska<br />

1991). Because this study was conducted in a single location,<br />

however, with one plot within each habitat<br />

type (native and exotic), larger-scale and multispecies<br />

studies should be conducted to confirm that black locust<br />

plantations have detrimental consequences for regional<br />

breeding bird populations. Nevertheless, three<br />

conclusions are worth stressing: (1) it is not possible<br />

to assess habitat quality based solely on breeding densities<br />

(see also Van Horne 1983; Vickery et al. 1992); (2)<br />

human-modified habitats can function as ecological<br />

traps by luring settling birds into unsuitable habitats<br />

(Gates & Gysel 1978; Rolstad 1991), possibly leading to<br />

demographically non-self-sustaining populations (Remesˇ<br />

2000); and (3) by replacing exotic plant species with<br />

native ones, we might gain multiple benefits—not only<br />

the restoration of native communities but also an increase<br />

in the breeding productivity of bird populations<br />

(Schmidt & Whelan 1999).<br />

Acknowledgments<br />

I am obliged to K. Weidinger for his advice at all stages of<br />

this work. J. D. Lloyd, T. E. Martin, M. A. Villard, and two<br />

anonymous reviewers provided valuable comments that<br />

greatly improved the manuscript. My father, V. Reme sˇ ,<br />

and my brother, R. Reme sˇ , helped in various stages of this<br />

project. I am very grateful for their assistance.<br />

Literature Cited<br />

Andrén, H. 1990. Despotic distribution, unequal reproductive success,<br />

and population regulation in the jay Garrulus glandarius L. Ecology<br />

71:1796–1803.<br />

Bernstein, C., J. R. Krebs, and A. Kacelnik. 1991. Distribution of birds<br />

amongst habitats: theory and relevance to conservation. Pages 317–<br />

345 in C. M. Perrins, J.-D. Lebreton, and G. J. M. Hirons, editors.<br />

Bird population studies: relevance to conservation and management.<br />

Oxford University Press, Oxford, United Kingdom.<br />

Bibby, C. J., N. D. Burgess, and D. A. Hill. 1992. Bird census techniques.<br />

Academic Press, London.<br />

Courchamp, F., M. Langlais, and G. Sugihara. 2000. Rabbits killing<br />

birds: modelling the hyperpredation process. Journal of Animal<br />

Ecology. 69:154–164.<br />

Dias, P. C. 1996. Sources and sinks in population biology. Trends in<br />

Ecology & Evolution 11:326–330.<br />

Donovan, T. M., F. R. Thompson, J. Faaborg, and J. R. Probst. 1995. Reproductive<br />

success of migratory birds in habitat sources and sinks.<br />

Conservation Biology 9:1380–1395.<br />

Donovan, T. M., P. W. Jones, E. M. Annand, and F. R. Thopson. 1997.<br />

Conservation Biology<br />

Volume 17, No. 4, August 2003<br />

Variation in local-scale edge effects: mechanisms and landscape<br />

context. Ecology 78:2064–2075.<br />

Fagan, W. F., R. S. Cantrell, and C. Cosner. 1999. How habitat edges<br />

change species interactions. The American Naturalist 153:165–<br />

182.<br />

Fretwell, S. D., and H. R. Lucas. 1970. On territorial behavior and other<br />

factors influencing habitat distribution in birds. I. Theoretical development.<br />

Acta Biotheoretica 19:16–36.<br />

Gates, J. E., and L. W. Gysel. 1978. Avian nest dispersion and fledging<br />

success in field-forest ecotones. Ecology 59:871–883.<br />

Hatchwell, B. J., D. E. Chamberlain, and C. M. Perrins. 1996. The demography<br />

of blackbirds Turdus merula in rural habitats: is farmland<br />

a sub-optimal habitat? Journal of Applied Ecology 33:1114–<br />

1124.<br />

Hoi-Leitner, M., H. Nechtelberger, and H. Hoi. 1995. Song rate as a signal<br />

for nest site quality in Blackcaps (<strong>Sylvia</strong> <strong>atricapilla</strong>). Behavioral<br />

Ecology and Sociobiology 37:399–405.<br />

Hoyt, D. F. 1979. Practical methods of estimating volume and fresh<br />

weight of bird eggs. Auk 96:73–77.<br />

Hruska, K. 1991. Human impact on the forest vegetation in the western<br />

part of the Pannonic Plain (Yugoslavia). Vegetatio 92:161–166.<br />

Huhta, E., J. Jokimäki, and P. Rahko. 1998. Distribution and reproductive<br />

success of the Pied Flycatcher Ficedula hypoleuca in relation<br />

to forest patch size and vegetation characteristics: the effect of<br />

scale. Ibis 140:214–222.<br />

Johnson, D. H. 1979. Estimating nest success: the Mayfield method and<br />

an alternative. Auk 96:651–661.<br />

Martin, J. L., J. C. Thibault, and V. Bretagnolle. 2000. Black rats, island<br />

characteristics, and colonial nesting birds in the Mediterranean:<br />

consequences of an ancient introduction. Conservation Biology<br />

14:1452–1466.<br />

Martin, T. E. 1988. On the advantage of being different: nest predation<br />

and the coexistence of bird species. Proceedings of the National<br />

Academy of Sciences of the United States of America 85:2196–<br />

2199.<br />

Martin, T. E. 1992. Breeding productivity considerations: what are the<br />

appropriate habitat features for management? Pages 455–473 in<br />

J. H. Hagan and D. W. Johnston, editors. Ecology and conservation<br />

of Neotropical migrant landbirds. Smithsonian Institution Press,<br />

Washington.<br />

Martin, T. E. 1996. Fitness costs of resource overlap among coexisting<br />

bird species. Nature 380:338–340.<br />

Mayfield, H. F. 1975. Suggestions for calculating nest success. Wilson<br />

Bulletin 87:456–466.<br />

Misenhelter, M. D., and J. T. Rotenberry. 2000. Choices and consequences<br />

of habitat occupancy and nest site selection in Sage Sparrows.<br />

Ecology 81:2892–2901.<br />

Murcia, C. 1995. Edge effects in fragmented forests: implications for<br />

conservation. Trends in Ecology & Evolution 10:58–62.<br />

Paton, P. W. C. 1994. The effect of edge on avian nest success: how<br />

strong is the evidence. Conservation Biology 8:17–26.<br />

Peloquin, R. L., and R. D. Hiebert. 1999. The effects of black locust<br />

(Robinia pseudoacacia L.) on species diversity and composition<br />

of black oak savanna/woodland communities. Natural Areas Journal<br />

19:121–131.<br />

Penloup, A., J. L. Martin, G. Gory, D. Brunstein, and V. Bretagnolle.<br />

1997. Distribution and breeding success of Pallid Swifts, Apus pallidus,<br />

on Mediterranean islands: nest predation by the roof rat, Rattus<br />

rattus, and nest site quality. Oikos 80:78–88.<br />

Pulliam, H. R. 1996. Sources and sinks: empirical evidence and population<br />

consequences. Pages 45–69 in O. E. Rhodes, R. K. Chesser,<br />

and M. H. Smith, editors. Population dynamics in ecological space<br />

and time. University of Chicago Press, Chicago.<br />

Purcell, K. L., and J. Verner. 1998. Density and reproductive success of<br />

California Towhees. Conservation Biology 12:442–450.<br />

Reme sˇ<br />

, V. 2000. How can maladaptive habitat choice generate sourcesink<br />

population dynamics? Oikos 91:579–582.


Remesˇ Effects of Exotic Habitat on Blackcap 1133<br />

Roemer, G. W., C. J. Donlan, and F. Courchamp. 2002. Golden Eagles,<br />

feral pigs, and insular carnivores: how exotic species turn native<br />

predators into prey. Proceedings of the National Academy of Sciences<br />

of the United States of America 99:791–796.<br />

Rolstad, J. 1991. Consequences of forest fragmentation for the dynamics<br />

of bird populations: conceptual issues and the evidence. Biological<br />

Journal of the Linnean Society 42:149–163.<br />

SPSS. 1996. SPSS base 7.0 for Windows user’s guide. SPSS, Chicago.<br />

Schmidt, K. A., and C. J. Whelan. 1998. Predator-mediated interactions<br />

between and within guilds of nesting songbirds: experimental<br />

and observational evidence. The American Naturalist 152:<br />

393–402.<br />

Schmidt, K. A., and C. J. Whelan. 1999. Effects of exotic Lonicera and<br />

Rhamnus on songbird nest predation. Conservation Biology 13:<br />

1502–1506.<br />

Sell, K. 1998. Dauerbeobachtung von Singvogelnestern mit Hilfe von<br />

Videokameras. Wissenschaftliche Arbeit, Universität Konstanz,<br />

Konstanz.<br />

Shigesada, N., and K. Kawasaki. 1997. Biological invasions: theory and<br />

practice. Oxford University Press, Oxford, United Kingdom.<br />

Tewksbury, J. J., S. J. Hejl, and T. E. Martin. 1998. Breeding productiv-<br />

ity does not decline with increasing fragmentation in a western<br />

landscape. Ecology 79:2890–2903.<br />

Trine, C. L. 1998. Wood Thrush population sinks and implications for<br />

the scale of regional conservation strategies. Conservation Biology<br />

12:576–585.<br />

Van Horne, B. 1983. Density as a misleading indicator of habitat quality.<br />

Journal of Wildlife Management 47:893–901.<br />

Vickery, P. D., M. L. Hunter, and J. V. Wells. 1992. Is density an indicator<br />

of breeding success? Auk 109:706–710.<br />

Weidinger, K. 2000. The breeding performance of Blackcap <strong>Sylvia</strong> <strong>atricapilla</strong><br />

in two types of forest habitat. Ardea 88:225–233.<br />

Weidinger, K. 2002. Interactive effects of concealment, parental behaviour<br />

and predators on the survival of open passerine nests. Journal<br />

of Animal Ecology 71:424–437.<br />

White, G. C., and R. A. Garrott. 1990. Analysis of wildlife radio-tracking<br />

data. Academic Press, New York.<br />

Wilson, S. D., and J. W. Belcher. 1989. Plant and bird communities of<br />

native prairie and introduced Eurasian vegetation in Manitoba, Canada.<br />

Conservation Biology 3:39–44.<br />

Yahner, R. H. 1988. Changes in wildlife communities near edges. Conservation<br />

Biology 2:333–339.<br />

Conservation Biology<br />

Volume 17, No. 4, August 2003


ÚVOD<br />

Ptáci jsou dÛleÏitou a populární modelovou<br />

skupinou ekologického v˘zkumu.<br />

SYLVIA 39 /2003<br />

Hnízdní biologie pûnice ãernohlavé (<strong>Sylvia</strong> <strong>atricapilla</strong>)<br />

v âeské republice: anal˘za hnízdních karet<br />

Breeding biology of the Blackcap (<strong>Sylvia</strong> <strong>atricapilla</strong>)<br />

in the Czech Republic: an analysis of nest record<br />

cards<br />

Vladimír Reme‰<br />

Ornitologická laboratofi, <strong>Univerzita</strong> <strong>Palackého</strong>, tfi. Svobody 26, CZ-771 46 Olomouc;<br />

e-mail: remes@prfnw.upol.cz<br />

Projekty hnízdních karet mohou pfiinést cenné údaje o hnízdní biologii mnoha ptaãích druhÛ.<br />

V této práci jsem analyzoval hnízdní karty pûnice ãernohlavé (n = 232, z toho 180 aktivních<br />

hnízd) získané mezi lety 1945–1983 bûhem projektu hnízdních karet na území âeské republiky.<br />

PrÛmûrné stáfií nalezeného hnízda bylo 8,5 dne. Medián data zahájení snÛ‰ky byl 16. kvûtna.<br />

Denní míra pfieÏívání hnízd byla 0,9799 a neli‰ila se mezi fázemi kladení vajec, inkubace<br />

a péãe o mláìata. Hnízdní úspû‰nost byla 57,4 %, líhnivost 93,4 %, ãásteãné ztráty se vyskytly<br />

u 17,7 % hnízd. Hnízda byla nalezena na 40 rÛzn˘ch podkladov˘ch rostlinách. PrÛmûrná snÛ‰ka<br />

dosáhla 4,78 vejce a v˘‰ka hnízda 1,09 m. Velikost snÛ‰ky i v˘‰ka hnízda klesaly bûhem sezóny.<br />

Velikost snÛ‰ky se mezi roky nemûnila, zatímco v˘‰ka hnízda vzrÛstala. Rok nalezení<br />

hnízda, sezóna ani v˘‰ka hnízda nemûly vliv na pravdûpodobnost pfieÏití hnízda. Pomocí anal˘zy<br />

hnízdních karet je tedy moÏné zjistit mnoho údajÛ o hnízdní biologii ptákÛ, coÏ je potû‰itelné<br />

vzhledem k právû probíhajícímu novému projektu hnízdních karet na na‰em území.<br />

Nest record cards schemes can produce valuable data on breeding biology of many bird species.<br />

In this study, nest record cards of the Blackcap (n = 232; n = 180 for active nests) from a national<br />

nest record cards scheme run on the territory of the Czech Republic in 1945–1983, are<br />

analysed. Average age of the found nest was 8.5 days. Median nest initiation date was 16 May.<br />

Daily mortality rate of nests was 0.9799 and did not differ between egg-laying, incubation, and<br />

nestling phases. Nesting success was 57.4%, hatchability 93.4%, and partial losses occurred in<br />

17.7% of nests. The nests were found on 40 different supporting plant species. Clutch size averaged<br />

4.78 eggs and nest height 1.09 m. Both clutch size and nest height decreased within season.<br />

Clutch size did not differ among years, whereas nest height increased. Year, season, and<br />

nest height had no influence on nest survival. Nest record cards can produce valuable information<br />

on breeding biology of birds, which is of particular importance with regard to a new<br />

nest record cards scheme in the Czech Republic.<br />

Keywords: nest record cards, nesting success, Blackcap, <strong>Sylvia</strong> <strong>atricapilla</strong>, Czech Republic,<br />

breeding biology<br />

Detailní poznání Ïivotního cyklu ptákÛ<br />

a kvantifikace jeho jednotliv˘ch ãástí<br />

25


Remeš V. / Hnízdní biologie pěnice černohlavé<br />

jsou nejen cílem základního v˘zkumu,<br />

ale také nezbytn˘m pfiedpokladem fundovan˘ch<br />

rozhodování v ochranû pfiírody.<br />

Av‰ak získání kvalitních údajÛ<br />

o hnízdní biologii jednotliv˘ch druhÛ je<br />

ãasovû a finanãnû nároãné. Existují<br />

v podstatû dva zpÛsoby jak tyto údaje<br />

získat – jsou to buì intenzivní studie zamûfiené<br />

na vybran˘ modelov˘ druh, nebo<br />

extenzivní shromaÏìování údajÛ na<br />

hnízdních kartách vyplÀovan˘ch dobrovolníky<br />

a lidmi, ktefií pfiíleÏitostnû naleznou<br />

ptaãí hnízdo. Intenzivní v˘zkum se<br />

vminulosti osvûdãil napfiíklad pfii v˘zkumu<br />

biologie s˘kor v Holandsku a Anglii<br />

nebo lejskÛ ve ·védsku. Tyto a podobné<br />

v˘zkumy pomohly vyfie‰it mnoho zajímav˘ch<br />

otázek v ekologii. BohuÏel není<br />

moÏné z finanãních a ãasov˘ch dÛvodÛ<br />

takto intenzivnû zkoumat v‰echny ptaãí<br />

druhy, u kter˘ch by to bylo Ïádoucí.<br />

A právû u nich mohou b˘t velmi uÏiteãné<br />

hnízdní karty.<br />

Dlouholeté projekty hnízdních karet<br />

úspû‰nû bûÏí napfi. ve Velké Británii, Holandsku,<br />

Finsku nebo USA (napfi. Koskimies<br />

& Väisänen 1991, Weso∏owski &<br />

Czapulak 1993, Martin et al. 1997, Aebischer<br />

1999). Data shromáÏdûná díky tûmto<br />

projektÛm pomohla osvûtlit napfiíklad<br />

takové otázky, jako je v˘bûr hnízdního<br />

místa a jeho vliv na hnízdní úspû‰nost<br />

(Tuomenpuro 1991), prostorová variabilita<br />

v hnízdní úspû‰nosti (Paradis et al.<br />

2000) nebo anal˘za faktorÛ, které mohou<br />

zapfiíãiÀovat mizení nûkter˘ch druhÛ<br />

pûvcÛ ze zemûdûlské krajiny (Siriwardena<br />

et al. 2000). Také na území<br />

âeské republiky bûÏel léta úspû‰nû projekt<br />

prÛzkumu hnízdní biologie ptákÛ<br />

s pomocí hnízdních karet vyplÀovan˘ch<br />

amatérsk˘mi ornitology, fiízen˘ pracovníky<br />

dne‰ního Ústavu biologie obratlovcÛ<br />

AV âR. Na datech získan˘ch díky tomuto<br />

projektu jsou zaloÏeny v˘sledky uvedené<br />

v ãástech pojednávajících o hnízdní<br />

biologii jednotliv˘ch druhÛ v základním<br />

26<br />

díle o na‰ich ptácích, Faunû âSSR (Hudec<br />

1983). Bez údajÛ získan˘ch díky tomuto<br />

projektu by nemohlo b˘t toto dílo<br />

v jeho souãasné podobû v podstatû vydáno.<br />

Cílem pfiedkládané práce je reanalyzovat<br />

hnízdní karty pûnice ãernohlavé<br />

shromáÏdûné v letech 1945–1983 bûhem<br />

v˘‰e uvedeného projektu hnízdních karet.<br />

Aãkoliv ãásteãné v˘sledky anal˘zy<br />

tûchto karet jiÏ byly publikovány (Hudec<br />

1983), pfii v˘poãtu hnízdního úspûchu<br />

nebyla pouÏita moderní metodika, hlavnû<br />

v‰ak nebyla vyuÏita ve‰kerá informace<br />

v kartách obsaÏená. Hlavním cílem této<br />

práce je ukázat, jak˘ typ dat a jaké<br />

jejich mnoÏství je moÏné z hnízdních karet,<br />

byÈ shromáÏdûn˘ch v na‰ich skromn˘ch<br />

podmínkách, získat. Tato otázka je<br />

nyní aktuální i v souvislosti s právû bûÏícím<br />

nov˘m projektem v˘zkumu hnízdní<br />

biologie na‰ich ptákÛ s pomocí hnízdních<br />

karet (Kulí‰ková & ·álek 2002).<br />

METODIKA<br />

Hnízdní karty, které jsem analyzoval,<br />

byly vypracovány amatérsk˘mi ornitology<br />

na území âeské Republiky v letech<br />

1945–1983 a jsou uloÏeny v Ústavu biologie<br />

obratlovcÛ AVâR v Brnû. Z kaÏdé<br />

hnízdní karty jsem se snaÏil získat tyto<br />

základní údaje: datum snesení prvního<br />

vejce, velikost snÛ‰ky, líhnivost a v˘‰ku<br />

hnízda. Z data nalezení hnízda a data<br />

snesení prvního vejce jsem vypoãítal stáfií<br />

hnízda pfii nalezení. Dále jsem vypoãítal<br />

hnízdní úspû‰nost a vliv prÛbûhu sezóny<br />

a roku nalezení hnízda na velikost<br />

snÛ‰ky, v˘‰ku hnízda a hnízdní úspû‰nost.<br />

Hnízdní úspû‰nost jsem poãítal Mayfieldovou<br />

metodou, která umoÏÀuje vypoãítat<br />

hnízdní úspû‰nost pfiesnûji neÏ<br />

tradiãní metoda podílu úspû‰n˘ch hnízd<br />

ze v‰ech nalezen˘ch hnízd (viz Mayfield<br />

1975). Pfii pouÏití této metody spoãítáme,<br />

jak dlouho byla v‰echna hnízda ve vzor-


ku pozorována, a to v tzv. hnízdodnech<br />

(jeden hnízdoden je jedno hnízdo pozorované<br />

jeden den). Denní míru úmrtnosti<br />

hnízd získáme podílem hnízdních ztrát<br />

(poãet hnízd, která nepfieÏila do vyvedení<br />

mláìat) ke hnízdodnÛm. Denní míra<br />

pfieÏívání hnízd je pak: 1 – denní míra<br />

úmrtnosti hnízd. Hnízdní úspû‰nost se<br />

spoãítá jako denní míra pfieÏívání umocnûná<br />

na poãet dní, které trvá hnízdní cyklus<br />

druhu. Tato hnízdní úspû‰nost je<br />

vlastnû pravdûpodobnost, Ïe hnízdo pfie-<br />

Ïije cel˘ hnízdní cyklus a vyletí z nûho<br />

alespoÀ jedno mládû.<br />

Rozdíl v denní mífie pfieÏívání hnízd<br />

mezi fázemi kladení vajec, inkubace<br />

a péãe o mláìata jsem analyzoval programem<br />

CONTRAST (Sauer & Williams<br />

1989). Vliv roku nalezení hnízda, data<br />

zahnízdûní a v˘‰ky hnízda na hnízdní<br />

úspûch jsem analyzoval pomocí zobecnûného<br />

lineárního modelu s logit spojovací<br />

funkcí a binominální distribucí chybového<br />

ãlenu modelu. ProtoÏe poãet hnízd<br />

v jednotliv˘ch letech se v˘raznû li‰il (viz<br />

obr. 1), rozdûlil jsem tuto promûnnou na<br />

osm ãasov˘ch úsekÛ s pfiibliÏnû stejn˘m<br />

poãtem hnízd (viz obr. 8). Jednotkou<br />

anal˘zy je v tomto pfiípadû hnízdo a modelovanou<br />

promûnnou je poãet úspû‰n˘ch<br />

hnízdodní s binominálním dûlitelem<br />

rovn˘m celkovému poãtu hnízdodní<br />

(Aebischer 1999). Tato anal˘za byla poãítána<br />

procedurou GENMOD v programu<br />

SAS (SAS Institute Inc. 2000).<br />

Pfii anal˘ze hnízdních karet byla délka<br />

inkubaãní periody stanovena na 11 dní<br />

od data, kdy byla snÛ‰ka kompletní, doba<br />

pobytu mláìat v hnízdû byla stanovena<br />

na 9 dní; dále jsem pfiedpokládal, Ïe<br />

vejce jsou kladena jedno dennû. Denní<br />

míra pfieÏívání byla umocnûna na 24, coÏ<br />

je pfiedpokládaná délka hnízdního cyklu<br />

pûnice ãernohlavé pfii modální snÛ‰ce<br />

5 vajec a zaãátku inkubace od pfiedposledního<br />

vejce. Pfiedpokládal jsem, Ïe ke<br />

hnízdním ztrátám do‰lo uprostfied inter-<br />

SYLVIA 39 /2003<br />

valu mezi dvûma následujícími kontrolami<br />

hnízda. Kategorie spolehlivosti pro<br />

urãení velikosti snÛ‰ky byly stanoveny<br />

takto (v pofiadí klesající spolehlivosti):<br />

pozorovatel sledoval hnízdo bûhem kladení<br />

vajec a po dva po sobû následující<br />

dny zaznamenal stejn˘ poãet vajec (kategorie<br />

1); pozorovatel kontroloval hnízdo<br />

alespoÀ dvakrát bûhem inkubaãní periody<br />

se stejn˘m poãtem vajec (kategorie 2);<br />

pozorovatel kontroloval hnízdo jednou<br />

bûhem inkubaãní periody (kategorie 3).<br />

Ostatní hnízda nebyla pro urãení velikosti<br />

snÛ‰ky pouÏita.<br />

Data byla analyzována programem<br />

JMP (SAS Institute Inc. 1995). V‰echny statistické<br />

testy byly oboustranné a za v˘znamnou<br />

byla povaÏována hladina a = 0,05.<br />

âísla uvádûná v závorce za odhadem regresního<br />

koeficientu jsou stfiední chyba<br />

prÛmûru (SE).<br />

V¯SLEDKY<br />

Analyzované hnízdní karty (n = 232) obsahovaly<br />

rÛzné mnoÏství vyplnûn˘ch informací.<br />

K anal˘ze jsem pouÏil jen hnízda,<br />

která byla nalezena jako aktivní, to<br />

znamená buì s vejci nebo s mláìaty<br />

(n = 180). Ale protoÏe i karty tûchto aktivních<br />

hnízd se li‰ily mnoÏstvím údajÛ,<br />

poãet hnízd, která bylo moÏné pouÏít<br />

pro jednotlivé anal˘zy, se li‰il a je vÏdy<br />

uveden.<br />

Hnízdní karty pocházely z let 1945–1983<br />

a jejich poãty se li‰ily mezi roky, s patrn˘m<br />

vrcholem poãetnosti v ‰edesát˘ch<br />

letech (obr. 1). PrÛmûrné stáfií nalezeného<br />

hnízda bylo 8,5 dne (SE = 0,77, minimum<br />

= -10, maximum = 30, n = 141, viz<br />

obr. 2) a toto stáfií se nemûnilo s hnízdní<br />

sezónou (obr. 3).<br />

Anal˘zou hnízdních karet jsem získal<br />

základní data o hnízdní biologii pûnice<br />

ãernohlavé. Nejãasnûj‰í datum zahájení<br />

snÛ‰ky bylo 13. dubna (v roce 1981),<br />

nejpozdnûj‰í 9. ãervence (v roce 1971),<br />

27


Remeš V. / Hnízdní biologie pěnice černohlavé<br />

28<br />

Obr. 1. Zastoupení<br />

hnízdních karet<br />

v jednotliv˘ch letech<br />

(n = 175).<br />

Fig. 1. Distribution<br />

of nest record cards<br />

among years (n =<br />

175).<br />

Obr. 2. Distribuce<br />

dat zahájení hnízdûní<br />

(sloupce) a dat<br />

nalezení hnízda<br />

(ãára s body) bûhem<br />

hnízdní sezóny (n<br />

= 141). Patrn˘ je posun<br />

dat nalezení<br />

hnízda vÛãi datÛm<br />

zahájení hnízdûní.<br />

Fig. 2. Distribution<br />

of nest initiation<br />

dates (empty bars)<br />

and dates when the<br />

nest was found<br />

(black line with dots)<br />

throughout the<br />

breeding season<br />

(n = 141).<br />

Obr. 3. Závislost stáfií nalezeného hnízda (dny) na hnízdní sezónû vyjádfiené datem zahájení<br />

hnízdûní (lineární regrese: R 2 < 0,01; F 1,139 = 0,06; p = 0,805; n = 141; stáfií = 10,06 (6,27) –<br />

0,011 (0,044) * sezóna; den 1 = 1. leden).<br />

Fig. 3. Linear regression of the age of the found nest (days) on the breeding season (R 2 <<br />

0.01, F 1,139 = 0.06, p = 0.805, n = 141; age = 10.06 (6.27) – 0.01 (0.04) * season, day 1 = 1<br />

January).


zatímco medián byl 16. kvûtna (n = 141)<br />

(obr. 2). Celková denní míra pfieÏívání<br />

hnízd byla 0,9799 ± 0,0033 (odhad ± 1<br />

SE); pro jednotlivé fáze hnízdního cyklu<br />

byla denní míra pfieÏívání: 0,9894 ±<br />

0,0074 ve fázi kladení vajec (n = 46),<br />

0,9847 ± 0,0044 ve fázi inkubace (n = 92)<br />

a 0,9864 ± 0,0043 ve fázi péãe o mláìata<br />

(n = 95). Denní míra pfieÏívání se mezi<br />

fázemi hnízdního cyklu neli‰ila (χ 2 = 0,34;<br />

d.f. = 2; p = 0,8448). Hnízdní úspû‰nost<br />

pûnice ãernohlavé byl 57,4 % (tab. 1),<br />

zatímco líhnivost, vyjádfiená jako procento<br />

vajec, která se vylíhla z tûch, která se<br />

vylíhnout mohla, byla odhadnuta na 93,4<br />

Tab. 1. Celkov˘ pfiehled hnízdní úspû‰nosti u pûnice ãernohlavé.<br />

SYLVIA 39 /2003<br />

% (data viz tab. 2). âásteãné ztráty se vyskytly<br />

v 17,7 % hnízd (n = 124). Velikost<br />

snÛ‰ky bylo moÏné urãit u 82 hnízd a její<br />

prÛmûr byl 4,78 vejce (tab. 3). PrÛmûrná<br />

v˘‰ka hnízda byla 1,09 m (SE = 0,042;<br />

n = 175) (obr. 4). Ze 161 aktivních hnízd,<br />

u nichÏ byla uvedena podkladová rostlina,<br />

bylo 40 hnízd na bezu ãerném (Sambucus<br />

nigra), 25 na smrku (Picea abies),<br />

12 na habru (Carpinus betulus), 7 v maliníku<br />

(Rubus idaeus), 6 ve stfiem‰e (Padus<br />

avium) a shodnû 5 v rÛÏi (Rosa sp.)<br />

a v kopfiivách (Urtica dioica); ãetnost<br />

ostatních podkladov˘ch rostlin (n = 33)<br />

byla ménû neÏ 5 hnízd.<br />

poãet hnízd / no. of nests 134<br />

poãet hnízdodní / no. of successful nest-days 1805,3<br />

poãet ztrát / no. of losses 37<br />

denní míra pfieÏívání ± SE / daily nest survival rate ±SE 0,9799 ± 0,0033<br />

hnízdní úspû‰nost (24 dní) / nesting success (24 days) 61,40%<br />

líhnivost 1 / hatchability 1 0,934<br />

celková hnízdní úspû‰nost (hnízdní úspû‰nost x líhnivost) 57,40%<br />

overall nesting success (nesting success x hatchability)<br />

1 Data pro v˘poãet líhnivosti viz tab. 2 / Data for hatchability computation in Table 2<br />

Tab. 2. Poãet hnízd s neoplozen˘mi vejci (n = 124).<br />

Table 2. Number of nests with addled eggs (n = 124).<br />

líhnivost / hatchability poãet hnízd poãet neopl. vajec poãet úspû‰. vajec<br />

no. of nests no. of addled eggs no. of successful eggs<br />

hnízda s niωí líhnivostí / lowered-hatch. nests 16 19 58<br />

hn. se 100% líhnivostí / 100%-hatch. nests 48 0 230<br />

líhnivost neznámá / hatch. not known 60 – –<br />

Tab. 3. Velikost snÛ‰ky pûnice ãernohlavé.<br />

Table 3. Clutch size characteristics for the Blackcap.<br />

spolehlivost velikost snÛ‰ky poãet snÛ‰ek prÛmûr SE medián<br />

reliability clutch size no. of clutches mean median<br />

3 4 5 6<br />

1 0 1 8 3 12 5,17 0,17 5<br />

2 0 10 16 2 28 4,71 0,11 5<br />

3 2 11 26 3 42 4,71 0,1 5<br />

celkem / in total 2 22 50 8 82 4,78 0,07 5<br />

29


Zahlavi<br />

Analyzoval jsem zmûnu velikosti<br />

snÛ‰ky a v˘‰ky hnízda na dvou ãasov˘ch<br />

‰kálách: bûhem hnízdní sezóny a mezi<br />

roky. Bûhem hnízdní sezóny klesala jak<br />

velikost snÛ‰ky (s patrn˘m vrcholem<br />

v první tfietinû sezóny, obr. 5) tak v˘‰ka<br />

hnízda (obr. 6). Velikost snÛ‰ky se mezi<br />

roky nemûnila (R2 = 0,01; F1,78 = 0,10;<br />

p = 0,754; n = 80; snÛ‰ka = 11,01 (19,78)<br />

– 0,003 (0,010) * rok; rozmezí let 1945 –<br />

1983), zatímco v˘‰ka hnízda vzrÛstala<br />

(obr. 7). Analyzoval jsem také vliv roku<br />

nalezení hnízda, sezóny a v˘‰ky hnízda<br />

na pravdûpodobnost pfieÏití hnízda.<br />

30<br />

Obr. 4. Distribuce<br />

v˘‰ky hnízda pûnice<br />

ãernohlavé (metry)<br />

s kumulativní kfiivkou<br />

v procentech<br />

(n = 175).<br />

Fig. 4. Frequency<br />

histogram of nest<br />

height (m), with cumulative<br />

percentage<br />

function (n = 175).<br />

Tab. 4. Zobecnûn˘ lineární model analyzující<br />

vliv roku (osm kategorií, viz obr. 8), sezóny<br />

a v˘‰ky na pravdûpodobnost pfieÏití hnízda.<br />

Hodnoty p a χ 2 statistiky jsou z testu pomûru<br />

vûrohodností (test typu III), n = 107.<br />

Table 4. Generalized linear model with logit<br />

link and binomial error term relating nest<br />

survival to year (eight categories, see Fig. 8),<br />

season, and height. P and χ 2 -values are from<br />

likelihood-ratio test (type III test), n = 107.<br />

faktor / effect d.f. χ 2 p<br />

rok / year 7 10,95 0,1409<br />

sezóna / season 1 1,81 0,1785<br />

v˘‰ka / height 1 1,55 0,2124<br />

Obr. 5. Závislost velikosti<br />

snÛ‰ky (poãet<br />

vajec) na hnízdní sezónû,<br />

vyjádfiené datem<br />

zahájení hnízdûní (polynomiální<br />

regrese<br />

druhého stupnû: R 2 =<br />

0,30; F 2,79 = 18,36; p <<br />

0,001 pro oba ãleny; n<br />

= 82; velikost snÛ‰ky =<br />

-10,12 (3,79) + 0,223<br />

(0,053) * sezóna –<br />

0,0008 (0,0002) * sezona<br />

2 ; den 1 = 1. leden).<br />

Fig. 5. Second-order<br />

polynomial regression<br />

of clutch size (no. of eggs) on the breeding season (R 2 = 0.30, F 2,79 = 18.36, p < 0.001 for both<br />

terms, n = 82; clutch size = -10.12 (3.79) + 0.223 (0.053) * season – 0.0008 (0.0002) *<br />

season 2 , day 1 = 1 January).


SYLVIA 39 /2003<br />

Obr. 6. Závislost v˘‰ky<br />

hnízda (metry) na sezónû,<br />

vyjádfiené datem zahájení<br />

hnízdûní (lineární<br />

regrese: R 2 = 0,02; F 1,139<br />

= 4,01; p < 0,05; n =<br />

141; v˘‰ka = 1,77 (0,35)<br />

– 0,005 (0,002) * sezóna,<br />

den 1 = 1. leden).<br />

Fig. 6. Linear regression<br />

of nest height (m) on the<br />

breeding season<br />

(R 2 = 0.02, F 1,139 = 4.01,<br />

p < 0.05, n = 141; height<br />

= 1.77 (0.35) – 0.005<br />

(0.002) * season, day 1<br />

= 1 January).<br />

Obr. 7. Závislost v˘‰ky<br />

hnízda (metry) na roku<br />

nálezu hnízda (lineární<br />

regrese: R 2 = 0,03;<br />

F 1,168 = 6,18; p = 0,014;<br />

n = 170; v˘‰ka = -30,04<br />

(12,53) + 0,016 (0,006) *<br />

rok; rozmezí let<br />

1945–1983).<br />

Fig. 7. Linear regression<br />

of nest height (m) on the<br />

year when the nest was<br />

found (R 2 = 0.03,<br />

F 1,168 = 6.18, p = 0.014,<br />

n = 170; height = -30.04<br />

(12.53) + 0.016 (0.006)<br />

* year, years 1945 –<br />

1983).<br />

Obr. 8. Hnízdní úspû‰nost<br />

(v %, ± 1 SE) pro<br />

osm ãasov˘ch úsekÛ vybran˘ch<br />

tak, aby poãet<br />

hnízd v nich byl pfiibliÏnû<br />

stejn˘ (viz ãísla ve<br />

sloupcích).<br />

Fig. 8. Nesting success<br />

(in %, ± 1 SE) for eight<br />

time periods chosen so<br />

as to have similar number<br />

of nests (numbers in<br />

columns).<br />

31


Remeš V. / Hnízdní biologie pěnice černohlavé<br />

Aãkoliv se hnízdní úspû‰nost mezi lety<br />

na první pohled li‰ila (obr. 8), vliv roku<br />

na pravdûpodobnost pfieÏití hnízda nebyl<br />

statisticky v˘znamn˘; stejnû tak nebyl<br />

v˘znamn˘ vliv sezóny ani v˘‰ky hnízda<br />

(tab. 4).<br />

DISKUSE<br />

Základní parametry hnízdní biologie se<br />

neli‰ily od publikovan˘ch údajÛ pro pûnici<br />

ãernohlavou (Berthold et al. 1990,<br />

Weidinger 2000, 2001, 2002, Reme‰ 2003).<br />

V˘jimkou nebyla ani hnízdní úspû‰nost,<br />

která je pro pûnici ãernohlavou uvádûna<br />

mezi 40 % – 60 % (viz Berthold et al.<br />

1990). Tyto hodnoty v‰ak byly vypoãítány<br />

klasickou metodou, tj. podílem úspû‰n˘ch<br />

hnízd ze v‰ech hnízd nalezen˘ch,<br />

pfiiãemÏ víme, Ïe tato metoda nadhodnocuje<br />

hnízdní úspû‰nost (Mayfield 1975).<br />

Tomu by také odpovídal fakt, Ïe hodnota<br />

hnízdní úspû‰nosti vypoãítaná Mayfieldovou<br />

metodou pro pûnici ãernohlavou<br />

b˘vá kolem 30 % (Weidinger 2000, Reme‰<br />

2003, V. Reme‰, nepublikovaná data).<br />

Jak tedy vysvûtlit, Ïe hnízdní úspû‰nost<br />

zji‰tûná v této studii je tak vysoká,<br />

tj. 57,4 %, aã je spoãítan˘ Mayfieldovou<br />

metodou? Jedním z moÏn˘ch vysvûtlení<br />

je rozdíln˘ zpÛsob hledání hnízd: zatímco<br />

u projektÛ hnízdních karet jsou hnízda<br />

nalézána spí‰e náhodnû a pfiíleÏitostnû,<br />

u intenzivních studií zamûfien˘ch na<br />

jeden druh jsou hnízda hledána systematicky<br />

a velmi intenzivnû (Weidinger 2000,<br />

Reme‰ 2003). Tak mohou b˘t u hnízdních<br />

karet, v porovnání s intenzivními studiemi,<br />

nalézána ãastûji hnízda s vy‰‰í pravdûpodobností<br />

úspûchu (tedy ta, která jsou<br />

déle aktivní) a následnû mÛÏe b˘t zji‰tûná<br />

hnízdní úspû‰nost nadhodnocena. Tomuto<br />

vysvûtlení by odpovídala hnízdní<br />

úspû‰nost 56,2 % vypoãítaná Mayfieldovou<br />

metodou pro 87 hnízd pûnice ãernohlavé<br />

nalezen˘ch mezi lety 1959–1981 ve<br />

v˘chodním Pobaltí (Pajevskij 1985).<br />

32<br />

Vzhledem k tomu, Ïe ne v‰echny druhy<br />

ptákÛ, u nichÏ potfiebujeme znát základní<br />

parametry hnízdní biologie, je moÏné<br />

studovat systematicky v intenzivních<br />

studiích, metoda v˘zkumu hnízdní biologie<br />

pomocí programÛ hnízdních karet<br />

pro nû zÛstává jedinou alternativou. Tato<br />

studie ukazuje, Ïe je moÏné touto metodou<br />

nashromáÏdit údaje o pomûrnû velkém<br />

poãtu hnízd a Ïe jejich dÛkladná anal˘za<br />

mÛÏe poskytnout zajímavé vhledy do biologie<br />

tûchto druhÛ. V˘hodou programÛ<br />

hnízdních karet je navíc to, Ïe díky nim<br />

získáme data, která není moÏné získat jinak.<br />

Sem patfií napfiíklad anal˘zy dlouhodob˘ch<br />

ãasov˘ch trendÛ (viz V¯SLEDKY,<br />

tab. 4, obr. 7, 8) nebo anal˘zy geografické<br />

variability napfi. v hnízdní úspû‰nosti (napfi.<br />

Aebischer 1999, Paradis et al. 2000). Samozfiejmû<br />

naopak nûkteré údaje je moÏné<br />

získat jen intenzivními studiemi, napfiíklad<br />

produktivitu populace vztaÏenou na samici,<br />

protoÏe v tomto pfiípadû potfiebujeme<br />

znát navíc, které hnízdo patfií které<br />

samici. Ideální situací by ov‰em bylo mít<br />

pro kaÏd˘ druh údaje z obou typÛ v˘zkumu,<br />

jejichÏ v˘sledky by se doplÀovaly.<br />

Závûrem je tfieba zopakovat, Ïe projekty<br />

hnízdních karet jsou cenné neboÈ<br />

nám umoÏÀují získat údaje o hnízdní biologii<br />

mnoha druhÛ zároveÀ a navíc i takov˘ch<br />

druhÛ, které nejsou z rÛzn˘ch<br />

dÛvodÛ vhodné pro intenzivní studie.<br />

Z tohoto hlediska se slibnû rozvíjí nov˘<br />

projekt hnízdních karet koordinovan˘<br />

âSO (Kulí‰ková & ·álek 2002). Je v‰ak<br />

tfieba upozornit na to, Ïe hnízdní karty<br />

musí b˘t vyplÀovány peãlivû. Bezcenné<br />

jsou záznamy o neaktivních hnízdech<br />

(v této studii 52 z 232 hnízd, tj. 22,4 %)<br />

apro v˘poãet hnízdní úspû‰nosti i hnízda<br />

nav‰tívená pouze jednou (zde 46 ze<br />

180 aktivních hnízd, tj. 25,6 %).<br />

PODùKOVÁNÍ<br />

Dûkuji M. Honzovi za umoÏnûní pfiístu-


pu k hnízdním kartám a K. Weidingerovi<br />

za cenné rady bûhem práce. Nejvût‰í dík<br />

v‰ak patfií desítkám amatérsk˘ch ornitologÛ,<br />

bez jejichÏ úsilí by nebylo moÏné<br />

tuto práci napsat, a která je takto stejnû<br />

jejich prací jako mojí.<br />

SUMMARY<br />

The aim of this study was to re-analyse<br />

nest record cards for the Blackcap (<strong>Sylvia</strong><br />

<strong>atricapilla</strong>) collected as a part of the national<br />

nest record cards scheme in the<br />

Czech Republic. This re-analysis should<br />

show what kind of data can such analysis<br />

produce. This is timely also with respect<br />

to a new nest record cards scheme<br />

initiated recently in the Czech Republic<br />

(Kulí‰ková & ·álek 2002).<br />

Nest cards (n = 232) contained varying<br />

amount of information. Only the nest<br />

cards of active nests (n = 180) were used<br />

in the analysis. Nest cards (from the<br />

years 1945–1983) were unevenly distributed<br />

among years with a marked<br />

peak in the 1960s (Fig. 1). The average<br />

age of the found nest was 8.5 days (SE =<br />

0.77, min = -10, max = 30, n = 141, see<br />

Fig. 2), and the age did not change with<br />

the season (Fig. 3).<br />

The earliest nest initiation date was<br />

May 13 (in 1981), the latest July 9<br />

(1971), with median being 16 May (n =<br />

141) (Fig. 2). The daily mortality rate estimated<br />

for the whole nesting cycle was<br />

0.9799 ± 0.0033 (mean ± 1 SE); it was<br />

0.9894 ± 0.0074 in egg-laying phase (n =<br />

46), 0.9847 ± 0.0044 in incubation<br />

phase (n = 92), and 0.9864 ± 0.0043 in<br />

nestling phase (n = 95). There was no<br />

difference in daily survival rate between<br />

phases of the nesting cycle (χ 2 = 0.34,<br />

d.f. = 2, p = 0.8448; tested by program<br />

CONTRAST, see Sauer & Williams 1989).<br />

The overall nesting success (Mayfield<br />

method) was 57.4% (Table 1), whereas<br />

hatchability was 93.4% (data in Table<br />

2). Partial losses occurred in 17.7% of<br />

nests (n = 124). Clutch size averaged<br />

4.78 eggs (Table 3). Average nest height<br />

was 1.09 m (SE = 0.042, n = 175) (Fig.<br />

4). Out of 161 active nests where the supporting<br />

plant was indicated, 40 nests<br />

were on Sambucus nigra, 25 on Picea<br />

abies, 12 on Carpinus betulus, 7 on Rubus<br />

idaeus, 6 on Padus avium, 5 on Rosa sp.<br />

and 5 on Urtica dioica; there were 33<br />

other supporting plant species with frequency<br />

less than 5 nests.<br />

Potential change in clutch size and<br />

nest height during the breeding season<br />

and among years was analysed. Both<br />

clutch size (Fig. 5) and nest height (Fig.<br />

6) decreased during the breeding season.<br />

There was no change of clutch size<br />

among years, whereas nest height increased<br />

(Fig. 7). Potential influence of<br />

year, season, and nest height on nest survival<br />

was also analysed (after Aebischer<br />

1999, in PROC GENMOD of SAS, unit of<br />

analysis was nest, dependent variable<br />

was the number of successful nest-days<br />

with the total number of nest-days as binomial<br />

denominator). Although nesting<br />

success differed markedly among years<br />

(Fig. 8), there was no statistically significant<br />

influence of year on nest survival;<br />

similarly, there was no influence of either<br />

season or nest height (Table 4).<br />

LITERATURA<br />

SYLVIA 39 /2003<br />

Aebischer N. J. 1999: Multi-way comparisons<br />

and generalized linear models of nest success:<br />

extensions of the Mayfield method.<br />

Bird Study 46: 22-31.<br />

Berthold P., Querner U. & Schlenker R. 1990:<br />

Die Mönchsgrasmücke. Ziemsen, Wittenberg.<br />

Hudec K. (ed.) 1983: Fauna âSSR. Ptáci<br />

3/I. Academia, Praha.<br />

33


Remeš V. / Hnízdní biologie pěnice černohlavé<br />

Koskimies P. & Väisänen R. A. 1991: Nest<br />

record scheme. In: Koskimies P. & Väisänen<br />

R. A. (eds): Monitoring Bird Populations.<br />

Zoological Museum, Helsinki: 75-86.<br />

Kulí‰ková P. & ·álek M. 2002: V˘sledky projektu<br />

hnízdních karet za období 1999–2001.<br />

Zprávy âSO 54: 50-51.<br />

Martin T. E., Paine C. R., Conway C. J.,<br />

Hochachka W. M., Allen P. & Jenkins W.<br />

1997: BBIRD Field Protocol. Montana Cooperative<br />

Wildlife Research Unit, University<br />

of Montana, Missoula, Montana, USA<br />

(http: //pica. wru. umt. edu/BBIRD).<br />

Mayfield H. F. 1975: Suggestions for calculating<br />

nest success. Wilson Bull. 87: 456-465.<br />

Pajevskij V. A. 1985: Uspe‰nosÈ rozmnoÏenija<br />

ptic i metody jejo opredûlenija. Ornitologija<br />

20: 161-169.<br />

Paradis E., Baillie S. R., Sutherland W. J., Dudley<br />

C., Crick H. Q. P. & Gregory R. D. 2000:<br />

Large-scale spatial variation in the breeding<br />

performance of Song Thrushes Turdus<br />

philomelos and Blackbirds T. merula in<br />

Britain. J. Appl. Ecol. 37: 73-87.<br />

Reme‰ V. 2003: Effects of exotic habitat on<br />

nesting success, territory density and settlement<br />

patterns in the Blackcap, <strong>Sylvia</strong> <strong>atricapilla</strong>.<br />

Conserv. Biol. 17: 1127–1133.<br />

SAS Institute Inc. 1995: JMP Statistics and<br />

Graphics Guide, Version 3.2. SAS Institute<br />

Inc., Cary.<br />

SAS Institute Inc. 2000: SAS Online Doc., Version<br />

8. SAS Institute Inc., Cary.<br />

34<br />

Sauer J. R. & Williams B. K. 1989: Generalized<br />

procedures for testing hypotheses about<br />

survival or recovery rates. J. Wildlife Manage.<br />

53: 137-142.<br />

Siriwardena G. M., Baillie S. R., Crick H. Q.<br />

P. & Wilson J. D. 2000: The importance of<br />

variation in the breeding performance of<br />

seed-eating birds in determining their population<br />

trends on farmland. J. Appl. Ecol.<br />

37: 128-148.<br />

Tuomenpuro J. 1991: Effect of nest site on<br />

nest survival in the Dunnock Prunella<br />

modularis. Ornis Fenn. 68: 49-56.<br />

Weidinger K. 2000: The breeding performance<br />

of blackcap <strong>Sylvia</strong> <strong>atricapilla</strong> in two<br />

types of forest habitat. Ardea 88: 225-233.<br />

Weidinger K. 2001: Laying dates and clutch<br />

size of open-nesting passerines in the<br />

Czech Republic: a comparison of systematically<br />

and incidentally collected data. Bird<br />

Study 48: 38-47.<br />

Weidinger K. 2002: Interactive effects of concealment,<br />

parental behaviour and predators<br />

on the survival of open passerine<br />

nests. J. Anim. Ecol. 71: 424-437.<br />

Weso∏owski T. & Czapulak A. 1993: Kartoteka<br />

gniazd i l´gów. Universytet Wroc∏awski,<br />

Wroc∏aw.<br />

Do‰lo 10. února 2003, pfiijato 18. dubna 2003.<br />

Received February 10, 2003; accepted April<br />

18, 2003.


Ibis (2005), 147, 213–216<br />

Blackwell Oxford, IBI Ibis 0019-1019 British ? 146 ? 2004 Ornithologists' UKPublishing,<br />

Ltd. Union, 2004<br />

Short communication<br />

Birds, V. Short Reme[scaron] communication<br />

rodents and nest predation<br />

Birds and rodents destroy<br />

different nests: a study of<br />

Blackcap <strong>Sylvia</strong> <strong>atricapilla</strong><br />

using the removal of nest<br />

concealment<br />

VLADIMÍR REMEÍ*<br />

Laboratory of Ornithology, Palacky University, T‰.<br />

Svobody 26, CZ-771 46 Olomouc, Czech Republic<br />

Nest predation is a major factor limiting the reproductive<br />

output of small passerines (Ricklefs 1969). Thus, selecting<br />

safe nest-sites is critically important for these birds. Nest<br />

concealment can inhibit transmission of visual, chemical<br />

or auditory cues to predators (Martin 1993). However,<br />

although there are numerous studies demonstrating the<br />

positive effects of concealment on nest survival (reviewed<br />

in Martin 1992), other studies were unable to find such an<br />

effect (e.g. Willson & Gende 2000).<br />

There are at least two reasons for the mixed results. First,<br />

we typically do not know the identity of nest predators.<br />

Different predators can select for different aspects of nest<br />

concealment, with the net result that there is no single best<br />

‘value’ of concealment, and nests differing in their concealment<br />

may be depredated at similar rates (Filliater et al. 1994).<br />

Moreover, densities of different predators can fluctuate<br />

both among years and among sites, with net selection varying<br />

temporally and geographically. Secondly, the majority<br />

of studies have simply used a correlational approach. However,<br />

as the effects of concealment may be confounded by<br />

other nest-site features or with parental quality, an experimental<br />

approach is needed to separate independent<br />

effects of concealment. I am aware of only two experimental<br />

studies of the effects of concealment on nest survival<br />

(Howlett & Stutchbury 1996, Stokes & Boersma 1998).<br />

In this study I investigated the effects of concealment,<br />

height and season on nest survival in the Blackcap <strong>Sylvia</strong><br />

<strong>atricapilla</strong>. I used natural Blackcap nests baited with artificial<br />

plasticine clutches to identify predators. I manipulated<br />

concealment by removing part of the foliage obscuring nests<br />

and tested whether different types of nest predators (birds vs.<br />

rodents) selected for different degrees of nest concealment.<br />

METHODS<br />

The Blackcap is a small (c. 20 g), insectivorous, migratory<br />

passerine that breeds from late April to July in mature<br />

forests and wood-lots, building its thin-walled, open-cup<br />

*Email: remes@prfnw.upol.cz<br />

© 2004 British Ornithologists’ Union<br />

nests in shrub and herbaceous layers, approximately 1 m<br />

above the ground. For details of the general breeding<br />

biology from similar habitats see Weidinger (2000) and<br />

Remes (2003).<br />

I conducted this study during two breeding seasons<br />

(2000, 2001) in a deciduous forest near Grygov (49°31′N,<br />

17°19′E, 205 m asl) in the eastern Czech Republic. The<br />

forest was dominated by Oak Quercus spp., Ash Fraxinus<br />

excelsior, Lime Tilia spp., Bird Cherry Prunus padus and<br />

Elder Sambucus nigra.<br />

I worked on two study plots (total area 30 ha, 150 m<br />

apart). Nests were located primarily in Bird Cherry, Elder<br />

and Nettle Urtica dioica. I estimated the degree of concealment<br />

of each nest visually as a percentage of the nest bowl<br />

obscured by foliage (10% increment). I estimated horizontal<br />

and vertical concealment 1 m from a nest in the four cardinal<br />

directions and 1 m above a nest, and averaged these five<br />

estimates to obtain a single percentage for a nest.<br />

In every second nest found I removed some of the foliage<br />

concealment by cutting twigs and leaves and removing<br />

them from the vicinity of a nest. In the vicinity of control<br />

nests, I spent an equivalent amount of time to that needed<br />

for foliage removal (c. 3 min). I estimated concealment<br />

of every nest twice: (1) when it was found and (2) when<br />

baited with plasticine eggs (in experimental nests also after<br />

foliage removal).<br />

I baited Blackcap nests with four brown plasticine eggs<br />

(clutch size in this population averages 4.7 eggs) of similar<br />

colour and size to natural eggs, i.e. 20 × 15 mm. The time<br />

between fledging/failure of a nest and its baiting was<br />

7.3 ± 0.3 days (mean ± se). Each plasticine egg was mounted<br />

on a thin wire anchored to the nest cup to prevent its<br />

removal. Clutches were checked after 14 days, equivalent to<br />

the egg-laying plus incubation period of natural Blackcap<br />

clutches, and removed. A predation event was recorded if<br />

any of the four plasticine eggs was marked by a potential<br />

predator. Predators were identified by noting triangular bill<br />

marks (bird predation) or incisor marks (rodent predation).<br />

The probability of an artificial clutch surviving was analysed<br />

by logistic regression. To identify variables associated<br />

with the probability of nest depredation by different types<br />

of predators, I performed logistic regressions with three<br />

different response variables: (a) nest survived vs. depredated<br />

by any predator, (b) nest survived vs. depredated by<br />

a bird predator and (c) nest survived vs. depredated by a<br />

rodent predator. Interactions of continuous variables with<br />

year were always non-significant and thus removed. In the<br />

predator-specific analyses, I excluded clutches depredated<br />

by both kinds of predators. All the analyses were done in<br />

JMP (SAS Institute Inc. 1995).<br />

RESULTS<br />

In total, there were 108 nests, from which 60 were control<br />

and 48 experimental. Of these, in 2000 there were 60<br />

nests (33 control, 27 experimental), and in 2001 there<br />

were 48 nests (27 control, 21 experimental).


214 V. Remeß<br />

Nest concealment measured when the nest was found<br />

decreased with nest height (t = −2.1, P = 0.03) but did not<br />

change with nest initiation date, year or experimental<br />

treatment (all P values > 0.05, n = 108, ls means ± se:<br />

experimental nests 87 ± 2%, control nests 81 ± 2%). After<br />

concealment was reduced in approximately half of the<br />

nests, its relationship to nest height disappeared and nest<br />

treatment (experimental vs. control) was the sole significant<br />

predictor (t = 12.0, P < 0.01, n = 108, ls means ± se:<br />

experimental nests 29 ± 3%, control nests 76 ± 2%). Again,<br />

neither date nor year had any effect.<br />

The proportion of nests depredated by both types of<br />

predators together differed significantly between years<br />

(Fig. 1, Table 1). However, the proportion depredated by<br />

birds vs. rodents did not differ (Pearson = 0.1, P = 0.71,<br />

n = 66). Artificial clutches in natural Blackcap nests survived<br />

better with higher nest concealment, whereas nest<br />

height or date had no influence (Table 1, Fig. 2). The probability<br />

of nest depredation by birds increased strongly with<br />

decreasing concealment and increasing nest height,<br />

whereas the probability of rodent depredation increased<br />

only with decreasing nest height (Table 1, Fig. 2).<br />

DISCUSSION<br />

Different nest predators (birds vs. rodents) selected for different<br />

nest-site characteristics in terms of nest concealment<br />

and height. Diurnal, visually orientated birds depredated<br />

less concealed nests with greater probability (see also Dion<br />

et al. 2000, Weidinger 2002), whereas there was no effect<br />

of concealment on depredation by nocturnal rodents,<br />

which chiefly use olfaction to find food. The effect of nest<br />

height on the probability of nest depredation by birds vs.<br />

rodents may be caused by different spatial patterns of<br />

activity of these two predator types. Whereas birds (most<br />

probably Jay Garrulus glandarius and woodpeckers Picoides<br />

spp.) forage predominantly in canopies and shrubs, rodents<br />

(most probably mice Apodemus spp., and Bank Vole<br />

© 2004 British Ornithologists’ Union, Ibis, 147, 213–216<br />

Clethrionomys glareolus) forage mainly on the ground,<br />

although they can climb shrubs and trees.<br />

These results demonstrate the substantial potential,<br />

driven by the composition of nest predator fauna, to alter<br />

patterns of selection on nest-site characteristics, as previously<br />

suggested (Filliater et al. 1994, Dion et al. 2000). In<br />

line with this, Clark and Nudds (1991), reviewing 28<br />

studies on natural nest survival in relation to concealment,<br />

found that concealment was a significant predictor of nest<br />

survival in 16 of 20 studies in which the predominant nest<br />

predators were birds, but only two of eight studies in<br />

which mammals were the major predators (see also Martin<br />

& Joron 2003).<br />

To minimize bias introduced by using artificial nests<br />

(Major & Kendal 1996, Weidinger 2001) I used natural<br />

Blackcap nests. Plasticine clutches were of clutch size, egg<br />

Table 1. Logistic regression of the influence of nest concealment (measured when the experiment was initiated), nest height (log 10 -<br />

transformed), date of initiation of experiment (day 1 = 1 January) and year (2000 = 0, 2001 = 1) on the probability of artificial clutch<br />

depredation by (a) both predator types together, (b) bird predators and (c) rodent predators, all over a 14-day period. Modelled is the<br />

probability of clutch survival, so positive parameter estimates mean higher nest survival with increasing value of the factor.<br />

Factor<br />

Parameter ± se<br />

Both Birds Rodents<br />

Wald<br />

χ 2<br />

P Parameter ± se<br />

Wald<br />

χ 2<br />

P Parameter ± se<br />

Concealment 0.016 ± 0.007 4.8 0.03 0.031 ± 0.011 8.6 < 0.01 0.011 ± 0.009 1.5 0.22<br />

Height 0.084 ± 0.950 < 0.1 0.93 −3.595 ± 1.523 5.6 0.02 2.724 ± 1.309 4.3 0.04<br />

Date 0.012 ± 0.018 0.5 0.50 0.017 ± 0.022 0.6 0.44 −0.001 ± 0.022 < 0.1 0.95<br />

Year 0.617 ± 0.238 6.7 0.01 0.296 ± 0.329 0.8 0.37 0.738 ± 0.303 5.9 0.02<br />

χ 4 2<br />

χ 1 2<br />

Figure 1. The proportion of natural Blackcap nests baited with<br />

artificial clutches depredated by different types of predators,<br />

separated for 2000 (n = 60) and 2001 (n = 48). The proportion of<br />

depredated nests differed significantly between years: Pearson<br />

2<br />

χ1 = 6.3, P = 0.01, n = 108.<br />

Overall models: (a) R 2 = 0.09, = 12.5, P = 0.01, n = 108, intercept ± se = −3.732 ± 3.505; (b) R 2 = 0.26, = 22.8, P < 0.01, n = 64,<br />

intercept ± se = 2.027 ± 4.841; (c) R 2 2<br />

= 0.11, χ4 = 10.7, P = 0.03, n = 68, intercept ± se = −4.893 ± 4.277.<br />

χ 4 2<br />

Wald<br />

χ 2<br />

P


Birds, rodents and nest predation 215<br />

Figure 2. The probability of survival of natural Blackcap nests baited with artificial plasticine clutches in relation to nest concealment<br />

(%) and height (cm) over a 14-day period, separated for nest mortality caused by different types of predators, in 2000 (lower curves)<br />

and 2001 (upper curves). Projections are made from multiple logistic regressions for nests initiated on 30 May and 0.5 m high (above)<br />

or with 50% concealment (below), respectively.<br />

size, egg shape and egg coloration as similar to a natural situation<br />

as possible. Although plasticine eggs may bias the<br />

composition of predators depredating the nests, e.g. because<br />

of the smell of plasticine (Maier & DeGraaf 2001), my<br />

results are not based on comparing predation rates on natural<br />

vs. artificial nests but on comparing predation patterns<br />

by different types of predators (birds vs. rodents) on the<br />

same kinds of nests (natural nests with artificial clutches).<br />

In natural nests, parental activity adds an additional<br />

layer of complexity to the benefits and costs of nest-site<br />

selection with respect to nest concealment. Parental activity<br />

around natural nests can disclose nests to visually orientated<br />

predators (Martin et al. 2000). The influence of<br />

concealment on nest survival may be different in natural<br />

nests, because parents defend nests and concealment can<br />

influence the ability of a parent to detect an approaching<br />

predator (Koivula & Rönkä 1998). Parents may also<br />

compensate for poor nest concealment by more vigorous<br />

nest defence (McLean et al. 1986). Moreover, concealment<br />

may affect not only the probability of nest survival<br />

but also the survival probability of the incubating parent<br />

(Wiebe & Martin 1998). However, the selection patterns<br />

© 2004 British Ornithologists’ Union, Ibis, 147, 213–216


216 V. Remeß<br />

on nest concealment and height uncovered in this study<br />

with artificial clutches may be understood to show the<br />

basic vulnerability of nest-sites to predation that the parents<br />

must cope with and take into account when selecting<br />

a nest-site.<br />

To find out whether the different predation patterns<br />

revealed in this study represent the natural situation, it is<br />

necessary to identify predators at natural nests. Existing<br />

results from studies with video cameras are promising in<br />

this respect (e.g. Sanders & Maloney 2002).<br />

I thank K. Weidinger for valuable comments on the manuscript.<br />

I was supported by PalackY University (grant<br />

IG32103014) and Ministry of Education of the Czech<br />

Republic (MSM153100012).<br />

REFERENCES<br />

Clark, R.G. & Nudds, T.D. 1991. Habitat patch size and duck<br />

nesting success: the crucial experiments have not been<br />

performed. Wildl. Soc. Bull. 19: 534–543.<br />

Dion, N., Hobson, K.A. & Larivière, S. 2000. Interactive effects<br />

of vegetation and predators on the success of natural and<br />

simulated nests of grassland songbirds. Condor 102: 629–<br />

634.<br />

Filliater, T.S., Breitwisch, R. & Nealen, P.M. 1994. Predation<br />

on Northern Cardinal nests – does choice of nest site matter?<br />

Condor 96: 761–768.<br />

Howlett, J.S. & Stutchbury, B.J. 1996. Nest concealment and<br />

predation in Hooded Warblers: experimental removal of nest<br />

cover. Auk 113: 1–9.<br />

Koivula, K. & Rönkä, A. 1998. Habitat deterioration and<br />

efficiency of antipredator strategy in a meadow-breeding<br />

wader, Temminck’s Stint (Calidris temminckii ). Oecologia<br />

116: 348–355.<br />

Maier, T.J. & DeGraaf, R.M. 2001. Differences in depredation by<br />

small predators limit the use of plasticine and Zebra Finch<br />

eggs in artificial-nest studies. Condor 103: 180–183.<br />

Major, R.E. & Kendal, C.E. 1996. The contribution of artificial<br />

nest experiments to understanding avian reproductive<br />

success: a review of methods and conclusions. Ibis 138:<br />

298–307.<br />

Martin, T.E. 1992. Breeding productivity considerations: what<br />

are the appropriate habitat features for management? In<br />

Hagan, J.M. & Johnston, D.W. (eds) Ecology and Conservation<br />

© 2004 British Ornithologists’ Union, Ibis, 147, 213–216<br />

of Neotropical Migratory Landbirds: 455–473. Washington,<br />

DC: Smithsonian Institution Press.<br />

Martin, T.E. 1993. Nest predation and nest sites – new perspective<br />

on old patterns. Bioscience 43: 523–532.<br />

Martin, J.L. & Joron, M. 2003. Nest predation in forest birds:<br />

influence of predator type and predator’s habitat quality.<br />

Oikos 102: 641–653.<br />

Martin, T.E., Scott, J. & Menge, C. 2000. Nest predation<br />

increases with parental activity: separating nest site and parental<br />

activity effects. Proc. R. Soc. Lond. B 267: 2287–2293.<br />

McLean, I.G., Smith, J.M. & Stewart, K.G. 1986. Mobbing<br />

behavior, nest exposure, and breeding success in the<br />

American Robin. Behaviour 96: 171–185.<br />

Reme!, V. 2003. Effects of exotic habitat on nesting success,<br />

territory density and settlement patterns in the Blackcap<br />

(<strong>Sylvia</strong> <strong>atricapilla</strong>). Conserv. Biol. 17: 1127–1133.<br />

Ricklefs, R.E. 1969. An analysis of nesting mortality in birds.<br />

Smithson. Contrib. Zool. 9: 1– 48.<br />

Sanders, M.D. & Maloney, R.F. 2002. Causes of mortality at<br />

nests of ground-nesting birds in the Upper Waitaki Basin,<br />

South Island, New Zealand: a 5-year video study. Biol. Conserv.<br />

106: 225–236.<br />

SAS Institute Inc. 1995. JMP Statistics and Graphics Guide,<br />

Version 3.2. Cary, NC: SAS Institute Inc.<br />

Stokes, D.L. & Boersma, P.D. 1998. Nest-site characteristics<br />

and reproductive success in Magellanic Penguins (Spheniscus<br />

magellanicus). Auk 115: 34–49.<br />

Weidinger, K. 2000. The breeding performance of Blackcap<br />

<strong>Sylvia</strong> <strong>atricapilla</strong> in two types of forest habitat. Ardea 88:<br />

225–233.<br />

Weidinger, K. 2001. How well do predation rates on artificial<br />

nests estimate predation on natural passerine nests? Ibis<br />

143: 632–641.<br />

Weidinger, K. 2002. Interactive effects of concealment, parental<br />

behaviour and predators on the survival of open passerine<br />

nests. J. Anim. Ecol. 71: 424–437.<br />

Wiebe, K.L. & Martin, K. 1998. Costs and benefits of nest cover<br />

for Ptarmigan: changes within and between years. Anim.<br />

Behav. 56: 1137–1144.<br />

Willson, M.F. & Gende, S.M. 2000. Nesting success of forest<br />

birds in southeast Alaska and adjacent Canada. Condor 102:<br />

314–324.<br />

Received 10 July 2003; revision accepted 10 June 2004;<br />

first published (online) 18 August 2004<br />

(doi: 10.1111/j.1474-919x.2004.00339).


Behav Ecol Sociobiol (2005) 58: 326–333<br />

DOI 10.1007/s00265-005-0910-1<br />

ORIGINAL ARTICLE<br />

Vladimír Remeˇs<br />

Nest concealment and parental behaviour interact in affecting<br />

nest survival in the blackcap (<strong>Sylvia</strong> <strong>atricapilla</strong>): an experimental<br />

evaluation of the parental compensation hypothesis<br />

Received: 23 August 2004 / Revised: 6 December 2004 / Accepted: 11 January 2005 / Published online: 11 March 2005<br />

C○ Springer-Verlag 2005<br />

Abstract Nest concealment varies strongly within<br />

populations of many species. Although some studies<br />

have revealed the beneficial effects of concealment in<br />

mitigating predation pressure on nests, other studies were<br />

unable to find similar effects. One potential reason for the<br />

mixed results is that parental behaviour may compensate<br />

for the effects of nest cover, and specifically designed<br />

experimental studies are needed to reveal this compensation.<br />

I studied the effects of concealment on the probability<br />

of nest survival in the blackcap (<strong>Sylvia</strong> <strong>atricapilla</strong>), by<br />

experimentally manipulating the degree of nest-foliage<br />

cover. There was a significant effect of the treatment<br />

depending on nest type and the phase of nesting. Whereas<br />

there was no effect of concealment on nest survival in<br />

natural nests, there was a positive effect in real nests baited<br />

with plasticine clutches (i.e. without parental activity).<br />

Parents probably behaviourally compensated for poor<br />

concealment in natural nests (nest guarding, defence). In<br />

line with this, there was no effect of concealment on nest<br />

survival during incubation, whereas there was probably a<br />

positive effect in the nestling phase. Parents spent more<br />

time on the nest during incubation (80%) than during<br />

the care of nestlings (40%) and, consequently, had more<br />

opportunities to compensate for poor cover. In general, we<br />

cannot use single measures of behaviours or states (nest<br />

concealment) as an indication of predation risk because of<br />

the capacity for compensation in other behaviours.<br />

Keywords Predation . Nest-site selection . Nest defence .<br />

Nest concealment<br />

Communicated by C. Brown<br />

V. Remeˇs (�)<br />

Laboratory of Ornithology, Palack´y University,<br />

Tˇr. Svobody 26,<br />

77146 Olomouc, Czech Republic<br />

e-mail: remes@prfnw.upol.cz<br />

Tel.: +420-58-5634221<br />

Fax: +420-58-5225737<br />

Introduction<br />

Nest predation is the main source of nest mortality in small<br />

passerines (Ricklefs 1969). Consequently, bird parents are<br />

expected to select a safe nest site to avoid destruction of<br />

their nests by predators. A well-concealed site is an obvious<br />

option, because foliage cover reduces the transmission of<br />

auditory, visual, and olfactory cues from the nest to potential<br />

predators (Martin 1993). Thus, well-concealed nests<br />

should have higher survival prospects compared to poorly<br />

concealed ones. However, both beneficial and no effects of<br />

concealment have been regularly found in studies looking<br />

at the effects of nest cover on nest survival (e.g. Willson and<br />

Gende 2000; Jakober and Stauber 2002; review in Martin<br />

1992a). Reasons for the mixed results are at least threefold.<br />

First, a diverse community of predators may depredate nests<br />

with different cover at a similar rate, and different predators<br />

may select for different degree of nest concealment (Clark<br />

and Nudds 1991; Martin and Joron 2003; Remeˇs 2005).<br />

Second, almost all studies made to date examine natural<br />

variation in nest concealment that may be selectively neutral<br />

(there are only three experimental studies: Howlett and<br />

Stutchbury 1996; Stokes and Boersma 1998; Peak 2003).<br />

Third, parental behaviour at the nest may lead to complex<br />

relationships between nest concealment and survival<br />

(Weidinger 2002).<br />

Parent birds often defend their nests by attacking and<br />

distracting potential predators (Montgomerie and Weatherhead<br />

1988). However, other parental behaviours (e.g. feeding)<br />

attract predators to the nest and increase the probability<br />

of its depredation (Martin et al. 2000a, 2000b; Tewksbury<br />

et al. 2002). Both these sets of behaviours may interact<br />

with nest concealment (Weidinger 2002). Although parents<br />

may compensate for poor nest concealment and nest conspicuousness<br />

by nest defence, they may, conversely, reveal<br />

poorly concealed nests to visually orientated predators by<br />

their activity around the nest (McLean et al. 1986; Cresswell<br />

1997a; Martin et al. 2000b). Thus the relationships<br />

between parental behaviour, nest cover, and survival may<br />

be complex and differ among species (Murphy et al. 1997;<br />

Flaspohler et al. 2000; Weidinger 2002).


One fruitful approach to studing the effect of nest cover<br />

on the survival prospects of nests and its interaction with<br />

parental behaviour is to compare natural nests with parental<br />

activity and artificial clutches without parents (Cresswell<br />

1997a; Weidinger 2002). There are three likely outcomes<br />

with respect to nest concealment: (1) no effect of concealment<br />

in both artificial and natural nests: nest cover is a<br />

selectively neutral trait and parental behaviour does not interact<br />

with it. (2) A positive effect of concealment in both<br />

artificial and natural nests: nest cover has beneficial effects,<br />

again no interaction. (3) A positive effect of concealment<br />

in artificial nests but no effect in natural nests: nest concealment<br />

has favourable effects, but parents are able to<br />

compensate for poor cover (the parental compensation hypothesis).<br />

There have been major reservations about the approaches<br />

using artificial nests in avian ecology (Burke et al. 2004;<br />

Moore and Robinson 2004; Thompson and Burhans 2004).<br />

However, these reservations concern studies that assume<br />

that predation rates are the same on both natural and artificial<br />

nests, which is obviously not true (review in Moore and<br />

Robinson 2004). The experimental approach described<br />

above does not make similar assumptions. Different<br />

patterns of predation on natural versus artificial clutches<br />

are assumed and are, in fact, the object of this study. Since<br />

the absence of parents on artificial nests is the essence of<br />

the approach, the only possible methodological bias could<br />

be introduced by the type of artificial nests and clutches<br />

used, which was minimised in this study (see Discussion).<br />

In this work, I studied nest survival in relation to nest concealment<br />

in the blackcap (<strong>Sylvia</strong> <strong>atricapilla</strong>). I manipulated<br />

nest cover and followed the effects of this manipulation<br />

on the probability of nest depredation. To reveal whether<br />

parental behaviour compensates for poor nest cover, I compared<br />

the effects of concealment on nest survival between<br />

natural and artificial clutches. I also analysed the effects<br />

of concealment on nest survival separately for the incubation<br />

and nestling phases. These phases differ strongly in<br />

the fraction of time parents spend on the nest, which could<br />

have important consequences for the potential of parents to<br />

defend their nest and distract predators from its vicinity.<br />

Methods<br />

The blackcap is a small (ca. 20 g), insectivorous, migratory<br />

passerine building its thin-walled, open-cup nests in the<br />

shrub and herbaceous layers of mature forests, about 1 m<br />

high. It breeds from late April until July and its nesting success<br />

is about 30% (Weidinger 2000;Remeˇs 2003a, 2003b).<br />

I conducted this study during two seasons (2000, 2001) on<br />

two study plots (total area 30 ha, 150 m apart) in a deciduous<br />

forest near Grygov, eastern Czech Republic (49 ◦ 31 ′ N,<br />

17 ◦ 19 ′ E, 205 m a.s.l.). The forest was dominated by oak<br />

(Quercus spp.), ash (Fraxinus excelsior), lime (Tilia spp.),<br />

bird cherry (Prunus padus), and elder (Sambucus nigra).<br />

Blackcaps built their nests primarily in bird cherry, elder<br />

(height of both shrubs ca. 3–6 m) and nettle (Urtica dioica,<br />

height increasing with the season up to ca. 2 m).<br />

327<br />

I searched nests from late April to early July by careful<br />

inspection of shrubs and herbaceous vegetation. Shrubs<br />

formed a loose patchwork with open space, and their cover<br />

was 30–70% depending on location. In every nest found, I<br />

determined its height above the ground, clutch/brood size<br />

and its age. I also estimated the degree of concealment of<br />

each nest visually as a percentage of the nest bowl obscured<br />

by foliage (10% increment). I estimated horizontal<br />

and vertical concealment 1 m from a nest in the four cardinal<br />

directions and 1 m above a nest, and averaged these five estimates<br />

to obtain a single percentage for a nest. Nests were<br />

most often built near the edge of a supporting shrub/herb,<br />

and vegetation cover within 1 m was critical for nest visibility<br />

even from a greater distance. I subsequently monitored<br />

the nest at 3-day intervals until fledging or predation. The<br />

majority of nest losses in this study were caused by depredation<br />

(97%, losses not due to predation were excluded<br />

from the analyses). Typically, the whole contents of a nest<br />

disappeared, sometimes leaving remnants of egg shells.<br />

In approximately half the nests, I removed a part of foliage<br />

concealment by cutting twigs and leaves and removing<br />

them from the vicinity of a nest. For the experiment,<br />

I used every other nest found. In the vicinity of control<br />

nests, I spent an equivalent amount of time to that needed<br />

for the foliage removal at experimental nests (ca. 3 min). I<br />

estimated concealment of every nest when it was found and<br />

when baited with plasticine eggs. To judge the effectiveness<br />

of the foliage-removal treatment, I estimated concealment<br />

of experimental nests also immediately after the foliage<br />

removal.<br />

I baited blackcap nests with 4 brown plasticine eggs<br />

(clutch size in this population averages 4.7 eggs) of similar<br />

colour and size to natural eggs (20×15 mm). The<br />

time between fledging/failure of a nest and its baiting was<br />

7.2±3.5 days (mean±SD, n=109). Each plasticine egg was<br />

mounted on a thin wire anchored to the nest cup to prevent<br />

its removal. Clutches were monitored and removed after<br />

14 days exposure (in the blackcap, incubation lasts 11 days,<br />

the nestling phase 9 days). A predation event was recorded<br />

if any of the four plasticine eggs was marked by a potential<br />

predator. There was no relationship between the fate of a<br />

natural nest and the same nest later on when baited with a<br />

plasticine clutch (χ 2 =0.03, df=1, P=0.871, n=109).<br />

I quantified the time parents spent on the nest by counting<br />

nest visits when at least one parent was present on the<br />

nest (events) and total nest visits (trials). I did this for<br />

every nest separately for incubation and the nestling phase,<br />

and analysed it in a binomial model with the events/trials<br />

response variable (i.e. binomial proportion; the phase of<br />

the nest cycle was treated as a within-subject factor in<br />

GEE analysis in proc GENMOD of SAS). First visits were<br />

excluded.<br />

I evaluated nest survival using the Mayfield method<br />

(Mayfield 1975), as implemented in a multivariate<br />

framework by Aebischer (1999). I analysed the effects of<br />

the experimental removal of concealment (experimental vs<br />

control nests) on the probability of survival in natural nests<br />

compared to artificial nests (by looking at the interaction<br />

between these terms). For natural nests, I compared


328<br />

the effects of the removal between the incubation and<br />

the nestling phases (again by looking at the interaction<br />

term). In both these analyses, I controlled for nest height<br />

[log10-transformed, median=0.48 m (range 0.1–2.2 m)],<br />

season [date of the first egg in natural nests, 7 May<br />

(22 April to 24 June); date of the initiation of the<br />

experiment in artificial clutches, 2 June (4 May to 6<br />

July)], and year. Initially, all two-way interactions of these<br />

factors were included and those that were non-significant<br />

were eliminated in a stepwise manner. Since natural and<br />

artificial clutches were studied in the same nests, and<br />

similarly, incubation and the nestling phase of the breeding<br />

cycle took place within the same nest, these factors were<br />

treated as within-subject factors in repeated-measures<br />

analyses. Both focal interactions were significant. Thus<br />

I analysed the effects of the cover-removal treatment<br />

separately for natural and artificial nests, and in natural<br />

nests also separately for incubation and the nesting period.<br />

Sample sizes in individual analyses vary because of<br />

missing data in some cells; for example, when a nest was<br />

depredated during incubation, it was no longer available<br />

for the nestling-phase analysis. All tests were two-tailed<br />

with α=0.05, and were done in SAS (SAS Institute 2000).<br />

Results<br />

The total number of nests was 124, of which 55 were experimental<br />

and 69 control. The concealment of nests before the<br />

foliage removal was 87.0±14.8% (mean±SD) in experimental<br />

and 79.8±19.7% in control nests, and decreased<br />

to 33.5±12.3% in experimental nests immediately after<br />

the experimental removal. The concealment of nests when<br />

they were baited with artificial clutches was 29.9±15.9%<br />

in experimental and 76.5±20.9% in control nests. This<br />

shows that the experimental treatment was highly effective<br />

in decreasing foliage concealment in experimental nests. A<br />

slight decrease of concealment on both control and experimental<br />

nests with artificial clutches compared to the natural<br />

situation can be ascribed to the desiccation of vegetation.<br />

Table 1 Generalised linear<br />

models (binomial error<br />

distribution, logit link) of the<br />

probability of nest survival in<br />

relation to selected factors for:<br />

(1) all nests (n=124) and (2)<br />

only natural nests (n=115). χ 2<br />

statistic is a score statistic for<br />

type 3 GEE analysis in proc<br />

GENMOD of SAS. Focal<br />

interactions showing whether<br />

the effect of the treatment is<br />

differential with respect to the<br />

nest type and/or the phase of the<br />

nesting cycle are given in bold.<br />

Within-subject effects are given<br />

in italics; “na” denotes the<br />

factors/interactions not<br />

applicable in the particular<br />

analysis<br />

Fig. 1 Probability of nest survival (over 1 day) separated for different<br />

types of nests and phases of the nesting cycle. Least squares means<br />

and their 95% confidence intervals from the analyses reported in<br />

Results. Note that the y-axis begins at 0.7<br />

Daily survival rate of natural nests was 0.926±0.007<br />

(mean±SE, n=124), and in artificial clutches it was<br />

0.915±0.009 (n=109). When nest survival was analysed<br />

in all nests together, there was a significant interaction<br />

between the nest type (natural vs artificial) and the experimental<br />

treatment (control vs experimental). In natural nests,<br />

there was also a significant interaction between the phase of<br />

the nesting cycle (incubation vs nestling) and the treatment<br />

(Table 1). This shows that the effects of the experimental<br />

removal of nest cover differed between: (a) natural and artificial<br />

nests, and (b) incubation and the nestling phase of the<br />

breeding cycle in natural nests. Thus, I analysed the effects<br />

of the removal treatment on the probability of nest survival<br />

separately for natural and artificial nests, and also for incubation<br />

and the nestling phase in natural nests. The removal<br />

of concealment had a significant negative effect on nest survival<br />

in artificial clutches (χ 2 =6.27, P=0.012, n=109) and,<br />

though not significant, a negative effect during the nestling<br />

phase in natural nests (χ 2 =3.08, P=0.079, n=64). In contrast,<br />

there was no effect in natural nests across both nesting<br />

phases (χ 2


Parents spent more time on their nest during incubation<br />

compared to the nestling phase (χ 2 =21.85, P


330<br />

Alternative explanations and potential<br />

methodological bias<br />

A major alternative explanation for the results of this study<br />

is the potentially different composition of the predator<br />

fauna robbing natural and artificial clutches. This could<br />

be caused by: (a) a methodological bias or (b) parental<br />

behaviour, in which case the cause would be regarded as<br />

natural.<br />

Inspection of the bill and tooth marks on plasticine eggs<br />

revealed that major predators in this system are birds [jay<br />

(Garrulus glandarius) and woodpeckers (Picoides spp.)]<br />

and small mammals [most probably mice (Apodemus spp.)<br />

and bank vole (Clethrionomys glareolus), Remeˇs 2005].<br />

However, artificial nests and eggs may bias the composition<br />

of the predator fauna compared to the natural situation<br />

(Rangen et al. 2000; Maier and DeGraaf 2001; Thompson<br />

and Burhans 2004). Since I used natural blackcap nests in<br />

their original position, the most probable bias introduced<br />

by the use of plasticine eggs is an overestimation of the<br />

depredation by olfactorily orientated rodents. They may<br />

be attracted by the odour of the plasticine (Rangen et al.<br />

2000; but see Cresswell 1997b) or may more easily penetrate<br />

plasticine eggs as compared to real eggs (Maier and<br />

DeGraaf 2001). However, this would make my test of the<br />

parental compensation hypothesis conservative. If olfactorily<br />

orientated rodents were overrepresented as predators in<br />

artificial clutches, there should be no relationship between<br />

nest cover and success (see Remeˇs 2005). This prediction<br />

goes against that made by the parental compensation hypothesis,<br />

which predicts that there should be a positive<br />

effect of nest concealment in artificial nests (see above).<br />

Alternatively, overrepresentation of rodents as predators<br />

of artificial clutches may be offset by underrepresentation<br />

of the olfactorily orientated pine marten (Martes martes),<br />

which appears to be an important predator of natural nests<br />

in similar habitats (K. Weidinger, personal communication).<br />

Moreover, I used natural blackcap nests, which are<br />

much better than the generally discredited wicker nests<br />

(e.g. Davison and Bollinger 2000), and results obtained by<br />

the comparison of artificial with natural clutches were validated<br />

on natural nests by comparing incubation with the<br />

period of care for the young.<br />

Artificial nests may be found by predators according to<br />

their visibility, which may result in the positive effect of nest<br />

concealment on nest survival. In contrast, predators may<br />

locate natural nests predominately by cuing on parental behaviour<br />

(e.g. feeding), which would lead to the absence of<br />

any concealment effect. The feasibility of this alternative,<br />

if at work at all, would depend on the details of the foraging<br />

behaviour of potential predators, which is generally not<br />

known. However, two lines of evidence suggest that this alternative<br />

was not responsible for the pattern detected in this<br />

study. First, indirect evidence indicates that predators of the<br />

blackcap search for nests actively or find them randomly<br />

instead of observing adults (Schaefer 2004). Second, validation<br />

on natural nests points in the same direction. There<br />

was no effect of concealment on nest survival during incubation<br />

with low parental activity, whereas there was a<br />

positive, though not significant, effect during care for the<br />

young, when parental activity is high. Parental activity here<br />

means the number of approaches to the nest, which could<br />

be used by predators to locate nests, and which in small<br />

songbirds is generally lower during incubation than during<br />

care for the young (Martin et al. 2000b).<br />

Although the alternative explanation outlined above cannot<br />

be automatically ruled out, the arguments and the evidence<br />

presented indicate that active behavioural compensation<br />

for poor concealment by parents was the more probable<br />

causal mechanism behind the findings of this study.<br />

Conclusions<br />

Given that here behavioural compensation for poor nest<br />

cover was the major mechanism and provided it is costly,<br />

it pays parents to choose well-covered nest sites. From<br />

this point of view, it would be wrong to conclude that<br />

there is no selection on nest concealment, and similarly<br />

that predation is a random process (as evidenced by artificial<br />

clutches). However, such conclusions were often<br />

made based on the finding that there is no effect of nest<br />

cover on the probability of nest depredation in natural nests<br />

(e.g. Filliater et al. 1994; Howlett and Stutchbury 1996;<br />

Willson and Gende 2000). Moreover, many studies showed<br />

that birds select nest sites differentially with respect to<br />

some features (vegetative cover, support plant species etc.)<br />

but that later on these features do not affect the probability<br />

of nest depredation. They often concluded that birds selected<br />

a particular nest-site feature for other reasons than<br />

reducing predation (Braden 1999; Bisson and Stutchbury<br />

2000). However, predation can still be the causal agent<br />

because the selected features may disengage parents from<br />

the need to invest in costly compensation. Conclusions regarding<br />

the randomness of nest predation, the absence of<br />

selection on concealment or the irrelevance of predation in<br />

driving nest-site selection may often have originated from<br />

basing conclusions on observed patterns without analysing<br />

the processes behind them (see also Schmidt and Whelan<br />

1999).<br />

To sum up, the effects of the experimental manipulation<br />

of nest concealment on the probability of nest survival<br />

in the blackcap separated for natural and artificial nests,<br />

and for incubation and nestling care, suggest that parents<br />

behaviourally compensated for poor nest cover. Species<br />

systematically differ according to their life-history in their<br />

likelihood to take risks in nest defence (Ghalambor and<br />

Martin 2001). This may partly explain why researchers in<br />

the past have obtained varied and conflicting results concerning<br />

the relationship between the degree of nest concealment<br />

and survival. My results also demonstrate that the<br />

absence of positive effects of nest cover on nest survival<br />

does not automatically mean a lack of natural selection on<br />

higher nest concealment. Generally, we cannot use single<br />

measures of behaviours or states (here nest concealment)<br />

as an indication of predation risk because of the capacity<br />

for compensation in other behaviours (see also Cotton<br />

et al. 2004).


Acknowledgements I thank K. Weidinger for fruitful discussions<br />

and help, and C.R. Brown, W. Cresswell and an anonymous reviewer<br />

for suggestions that improved the manuscript. This study was supported<br />

by Palack´y University (grant IG32103014) and the Ministry<br />

of Education of the Czech Republic (MSM153100012). The experiment<br />

carried out during this research complies with the current laws<br />

of the Czech Republic<br />

References<br />

Aebischer NJ (1999) Multi-way comparisons and generalized linear<br />

models of nest success: extensions of the Mayfield method.<br />

Bird Study 46:22–31<br />

Bisson IA, Stutchbury BJM (2000) Nesting success and nest-site<br />

selection by a neotropical migrant in a fragmented landscape.<br />

Can J Zool 78:858–863<br />

Braden GT (1999) Does nest placement affect the fate or productivity<br />

of california gnatcatcher nests? Auk 116:984–993<br />

Bures S, Pavel V (2003) Do birds behave in order to avoid disclosing<br />

their nest site? Bird Study 50:73–77<br />

Burhans DE (2000) Avoiding the nest: responses of field sparrows<br />

to the threat of nest predation. Auk 117:803–806<br />

Burhans DE, Thompson FR (2001) Relationship of songbird nest<br />

concealment to nest fate and flushing behavior of adults. Auk<br />

118:237–242<br />

Burke DM, Elliott K, Moore L, Dunford W, Nol E, Phillips J,<br />

Holmes S, Freemark K (2004) Patterns of nest predation on<br />

artificial and natural nests in forests. Conserv Biol 18:381–388<br />

Clark RG, Nudds TD (1991) Habitat patch size and duck nesting<br />

success—the crucial experiments have not been performed.<br />

Wildl Soc Bull 19:534–543<br />

Cotton PA, Rundle SD, Smith KE (2004) Trait compensation<br />

in marine gastropods: shell shape, avoidance behavior, and<br />

susceptibility to predation. Ecology 85:1581–1584<br />

Cramp S (1992) The birds of the western Palearctic, vol VI. Oxford<br />

University Press, Oxford<br />

Cresswell W (1997a) Nest predation: the relative effects of nest<br />

characteristics, clutch size and parental behaviour. Anim Behav<br />

53:93–103<br />

Cresswell W (1997b) Nest predation rates and nest detectability<br />

in different stages of breeding in Blackbirds Turdus merula. J<br />

Avian Biol 28:296–302<br />

Davison WB, Bollinger E (2000) Predation rates on real and artificial<br />

nests of grassland birds. Auk 117:147–153<br />

Filliater TS, Breitwisch R, Nealen PM (1994) Predation on northern<br />

cardinal nests—does choice of nest site matter. Condor<br />

96:761–768<br />

Flaspohler DJ, Temple SA, Rosenfield RN (2000) Relationship<br />

between nest success and concealment in two ground-nesting<br />

passerines. J Field Ornithol 71:736–747<br />

Ghalambor CK, Martin TE (2001) Fecundity-survival trade-offs and<br />

parental risk taking in birds. Science 292:494–497<br />

Gill SA, Grieef PM, Staib LM, Sealy SG (1997) Does nest defence<br />

deter or facilitate cowbird parasitism? A test of the nesting-cue<br />

hypothesis. Ethology 103:56–71<br />

Götmark F, Blomqvist D, Johansson OC, Bergkvist J (1995) Nest<br />

site selection: a trade-off between concealment and view of the<br />

surroundings? J Avian Biol 26:305–312<br />

Grim T (2005) Host recognition of brood parasites: implications<br />

for methodology in studies of enemy recognition. Auk<br />

(in press)<br />

Howlett JS, Stutchbury BJ (1996) Nest concealment and predation<br />

in hooded warblers: experimental removal of nest cover. Auk<br />

113:1–9<br />

Jakober H, Stauber W (2002) Why do red-backed shrikes not build<br />

better concealed nests? J Ornithol 143:397–404<br />

Kleindorfer S, Fessl B, Hoi H (2003) The role of nest site cover for<br />

parental nest defence and fledging success in two Acrocephalus<br />

warblers. Avian Sci 3:21–29<br />

331<br />

Koivula K, Rönkä A (1998) Habitat deterioration and efficiency of<br />

antipredator strategy in a meadow breeding wader, Temminck’s<br />

stint (Calidris temminckii). Oecologia 116:348–355<br />

Komdeur J, Kats RKH (1999) Predation risk affects trade-off<br />

between nest guarding and foraging in Seychelles warblers.<br />

Behav Ecol 10:648–658<br />

Maier TJ, DeGraaf RM (2001) Differences in depredation by small<br />

predators limit the use of plasticine and zebra finch eggs in<br />

artificial-nest studies. Condor 103:180–183<br />

Martin JL, Joron M (2003) Nest predation in forest birds: influence of<br />

predator type and predator’s habitat quality. Oikos 102:641–653<br />

Martin TE (1992a) Breeding productivity considerations: what are<br />

the appropriate habitat features for management? In: Hagan JM,<br />

Johnston DW (eds) Ecology and conservation of Neotropical<br />

migratory landbirds. Smithsonian Institution, Washington, DC,<br />

pp 455–473<br />

Martin TE (1992b) Interaction of nest predation and food limitation<br />

in reproductive strategies. Curr Ornithol 9:163–197<br />

Martin TE (1993) Nest predation and nest sites—new perspectives<br />

on old patterns. Bioscience 43:523–532<br />

Martin TE, Martin PR, Olson CR, Heidinger BJ, Fontaine JJ (2000a)<br />

Parental care and clutch sizes in North and South American<br />

birds. Science 287:1482–1485<br />

Martin TE, Scott J, Menge C (2000b) Nest predation increases<br />

with parental activity: separating nest site and parental activity<br />

effects. Proc R Soc Lond B 267:2287–2293<br />

Mayfield HF (1975) Suggestions for calculating nest success. Wilson<br />

Bull 87:456–466<br />

McLean IG, Smith JM, Stewart KG (1986) Mobbing behavior,<br />

nest exposure, and breeding success in the american robin.<br />

Behaviour 96:171–185<br />

Montgomerie RD, Weatherhead PJ (1988) Risks and rewards of nest<br />

defence by parent birds. Q Rev Biol 63:167–187<br />

Moore RP, Robinson WD (2004) Artificial bird nests, external<br />

validity, and bias in ecological field studies. Ecology 85:1562–<br />

1567<br />

Murphy MT, Cummings CL, Palmer MS (1997) Comparative<br />

analysis of habitat selection, nest site and nest success by<br />

cedar waxwings (Bombycilla cedrorum) and eastern kingbirds<br />

(Tyrannus tyrannus). Am Midl Nat 138:344–356<br />

Peak RG (2003) An experimental test of the concealment hypothesis<br />

using american goldfinch nests. Wilson Bull 115:403–408<br />

Rangen SA, Clark RG, Hobson KA (2000) Visual and olfactory<br />

attributes of artificial nests. Auk 117:136–146<br />

Remeˇs V (2003a) Breeding biology of the blackcap (<strong>Sylvia</strong> <strong>atricapilla</strong>)<br />

in the Czech Republic: an analysis of nest record cards.<br />

<strong>Sylvia</strong> 39:25–34<br />

Remeˇs V (2003b) Effects of exotic habitat on nesting success,<br />

territory density, and settlement patterns in the blackcap (<strong>Sylvia</strong><br />

<strong>atricapilla</strong>). Conserv Biol 17:1127–1133<br />

Remeˇs V (2005) Birds and rodents destroy different nests: a<br />

study of blackcap <strong>Sylvia</strong> <strong>atricapilla</strong> using the removal of nest<br />

concealment. Ibis 147:213–217<br />

Ricklefs RE (1969) An analysis of nesting mortality in birds.<br />

Smithson Contrib Zool 9:1–48<br />

Røskaft E, Moksnes A, Stokke BG, Bicík V, Moskat C (2002)<br />

Aggression to dummy cuckoos by potential European cuckoo<br />

hosts. Behaviour 139:613–628<br />

SAS Institute (2000) SAS Online Doc, version 8. SAS Institute, Cary<br />

Schaefer T (2002) Chiffchaff (Phylloscopus collybita) defends nest<br />

against Apodemus mouse. Vogelwarte 41:211–212<br />

Schaefer T (2004) Video monitoring of shrub-nests reveals nest<br />

predators. Bird Study 51:170–177<br />

Schmidt KA, Whelan CJ (1999) Nest placement and mortality:<br />

Is nest predation a random event in space and time? Condor<br />

101:916–920<br />

Stokes DL, Boersma PD (1998) Nest-site characteristics and<br />

reproductive success in magellanic penguins (Spheniscus<br />

magellanicus). Auk 115:34–49<br />

Tewksbury JJ, Martin TE, Hejl SJ, Kuehn MJ, Jenkins JW (2002)<br />

Parental care of a cowbird host: caught between the costs of eggremoval<br />

and nest predation. Proc R Soc Lond B 269:423–429


332<br />

Thompson FR, Burhans DE (2004) Differences in predators of<br />

artificial and real songbird nests: evidence of bias in artificial<br />

nest studies. Conserv Biol 18:373–380<br />

Weidinger K (2000) The breeding performance of blackcap <strong>Sylvia</strong><br />

<strong>atricapilla</strong> in two types of forest habitat. Ardea 88:225–233<br />

Weidinger K (2002) Interactive effects of concealment, parental<br />

behaviour and predators on the survival of open passerine nests.<br />

J Anim Ecol 71:424–437<br />

Wiebe KL, Martin K (1998) Costs and benefits of nest cover for<br />

ptarmigan: changes within and between years. Anim Behav<br />

56:1137–1144<br />

Willson MF, Gende SM (2000) Nesting success of forest birds<br />

in southeast Alaska and adjacent Canada. Condor 102:314–<br />

324


B. Evoluce a diverzita životních znaků


Evolution, 56(12), 2002, pp. 2505–2518<br />

ENVIRONMENTAL INFLUENCES ON THE EVOLUTION OF GROWTH AND<br />

DEVELOPMENTAL RATES IN PASSERINES<br />

VLADIMíR REMESˇ 1,2 AND THOMAS E. MARTIN 1,3<br />

1 U.S. Geological Survey Biological Resources Division, Montana Cooperative Wildlife Research Unit, Natural Science Building,<br />

University of Montana, Missoula, Montana 59812<br />

3 E-mail: tmartin@selway.umt.edu<br />

Abstract. The reasons why growth and developmental rates vary widely among species have remained unclear.<br />

Previous examinations of possible environmental influences on growth rates of birds yielded few correlations, leading<br />

to suggestions that young may be growing at maximum rates allowed within physiological constraints. However,<br />

estimations of growth rates can be confounded by variation in relative developmental stage at fledging. Here, we reestimate<br />

growth rates to control for developmental stage. We used these data to examine the potential covariation of<br />

growth and development with environmental variation across a sample of 115 North American passerines. Contrary<br />

to previous results, we found that growth rates of altricial nestlings were strongly positively correlated to daily nest<br />

predation rates, even after controlling for adult body mass and phylogeny. In addition, nestlings of species under<br />

stronger predation pressure remained in the nest for a shorter period, and they left the nest at lower body mass relative<br />

to adult body mass. Thus, nestlings both grew faster and left the nest at an earlier developmental stage in species<br />

with higher risk of predation. Growth patterns were also related to food, clutch size, and latitude. These results support<br />

a view that growth and developmental rates of altricial nestlings are strongly influenced by the environmental conditions<br />

experienced by species, and they generally lend support to an adaptive view of interspecific variation in growth and<br />

developmental rates.<br />

Key words. Adaptation, aerial foraging, allometry, comparative analysis, development, independent contrasts, nest<br />

predation.<br />

A major question in evolutionary biology is to explain why<br />

life-history traits vary among species (Roff 1992, 2002;<br />

Stearns 1992; Charnov 1993). Most attention has focused on<br />

traits such as fecundity, age at first reproduction, survival,<br />

and rate of aging. Growth and developmental rates have received<br />

less attention even though they are integral components<br />

of life-history strategies and vary widely among species.<br />

As a result, our understanding of why growth and development<br />

varies among species remains unclear.<br />

Life-history theory predicts that individuals should grow<br />

and develop at an infinite rate to achieve maximum output<br />

of offspring (Stearns 1992). However, this ‘‘Darwinian demon’’<br />

ideal is not possible because of basic limits set by<br />

physiological constraints on growth rates (Ricklefs 1969b;<br />

West et al. 2001). Nevertheless, organisms might be expected<br />

to grow and develop at the fastest rate possible within these<br />

constraints (Ricklefs 1969b, 1979a; Ricklefs et al. 1998).<br />

Such views have been reinforced by an absence of correlations<br />

between growth rates and environmental variation in<br />

past interspecific examinations (see Ricklefs et al. 1998). On<br />

the other hand, benefits of maximum growth rates might be<br />

compromised by physiological or environmental costs. For<br />

example, fast growth can yield costs to reproductive output<br />

(Roff 1992; Stearns 1992), antiherbivore defense (Herms and<br />

Mattson 1992), starvation, predation, parasitism, disease susceptibility<br />

(Nylin and Gotthard 1998; Lankford et al. 2001),<br />

physical performance (Billerbeck et al. 2001), and adult body<br />

size (Nylin and Gotthard 1998) based on intraspecific studies<br />

of growth in plants, insects, fish, frogs, and lizards (summarized<br />

in Arendt 1997; Metcalfe and Monaghan 2001). Con-<br />

2 Present address: Department of Zoology, Faculty of Science,<br />

Palacky´ University, Trˇ. Svobody 26, CZ-771 46 Olomouc, Czech<br />

Republic; E-mail: remes@prfnw.upol.cz.<br />

� 2002 The Society for the Study of Evolution. All rights reserved.<br />

Received April 11, 2002. Accepted August 20, 2002.<br />

2505<br />

sequently, we might expect growth rates to be optimized<br />

among species that occupy different environmental conditions<br />

that vary in such costs and benefits. A critical question<br />

then centers on which selection pressures cause variation in<br />

growth rates among species.<br />

Birds are ideal for addressing this question for four reasons.<br />

First, data on growth rates are relatively abundant. Second,<br />

birds vary widely in growth rates and nestling periods (at<br />

least a 30-fold difference from seabirds to small passerines;<br />

Ricklefs 1979a, 1983). Third, a rich array of factors has been<br />

hypothesized to influence the evolution of growth and developmental<br />

rates in birds, with little resolution of the relative<br />

importance of these differing factors (see Table 1; summarized<br />

in Starck and Ricklefs 1998a). Finally, different theoretical<br />

models of avian growth and development differ substantially<br />

in their assumptions and predictions. For instance,<br />

some predicted a strong relationship between time-dependent<br />

juvenile mortality and growth rates (Case 1978), whereas<br />

others predicted a very weak one or even the absence of such<br />

a relationship (Ricklefs 1969b, 1984). In support of the latter,<br />

some comparative studies found no correlation between nest<br />

mortality rates and growth rates (Ricklefs 1969b; Ricklefs et<br />

al. 1998). In contrast, a negative correlation between nest<br />

mortality rates and duration of the nestling period has been<br />

consistently observed (Ricklefs 1969b; Bosque and Bosque<br />

1995; Martin 1995; Ricklefs et al. 1998). These contrasting<br />

results may suggest that nest mortality rates influence duration<br />

of the nestling period, but does not influence rate of<br />

growth. However, previous analyses may have been compromised<br />

by a confounding between growth rate and duration<br />

of the nestling period. In particular, nestlings of species with<br />

low mortality remain in the nest longer and generally achieve<br />

either a longer period of asymptotic growth or weight re-


2506 V. REMESˇ AND T. E. MARTIN<br />

TABLE 1. Summary of factors that were hypothesized to drive the<br />

evolution of growth and development in birds together with the conceived<br />

direction. A � means higher growth rates and longer nestling<br />

periods, a � means slower growth rates and shorter nestling periods,<br />

and 0 means no effect.<br />

Factor Growth<br />

Body size 1<br />

Developmental mode (altricial or<br />

precocial) 2<br />

Clutch size (energetic limitation) 3<br />

Sibling competition 4<br />

Time-dependent mortality 5<br />

Foraging ecology 6<br />

Latitude 7<br />

Nutritional limitation 8<br />

Growth rate (K) 9<br />

�<br />

�<br />

�<br />

�<br />

� or 0<br />

�<br />

�<br />

�<br />

n/a<br />

Nestling<br />

period<br />

1 Ricklefs 1968a; Starck and Ricklefs 1998d.<br />

2 From altricial to precocial species, that is, slower growth and shorter to<br />

lacking nestling period; Ricklefs 1973, 1979a; Starck and Ricklefs 1998c.<br />

3 Lack 1968; Ricklefs 1986a.<br />

4 Werschkul and Jackson 1979; Ricklefs 1982; Bortolotti 1986; Royle et al.<br />

1999.<br />

5 Williams 1966; Lack 1968; Ricklefs 1984 (positive effect), 1969b, 1979a<br />

(no effect).<br />

6 Unpredictability of food, Case 1978; aerial foragers, O’Connor 1978; seabirds,<br />

Ricklefs 1979a, 1982.<br />

7 Ricklefs 1976; Oniki and Ricklefs 1981.<br />

8 Concerns tropical frugivorous birds, Ricklefs 1983.<br />

9 We can expect that species growing at higher rates (K) will also fledge earlier.<br />

cession than for species that leave the nest earlier. These<br />

differences can cause overestimation of growth rate for species<br />

that remain in the nest longer (see Fig. 1 and Methods)<br />

and, thereby, may obfuscate relationships between growth<br />

rates and nest mortality rates.<br />

Here we re-examine the potential relationships between<br />

growth rates and nest mortality, as well as other potential<br />

environmental selection pressures for a sample of 115 North<br />

American passerines. We used original data and recalculated<br />

growth rates to standardize for analytical approach and to<br />

examine the possible interaction of nestling period on growth<br />

rate estimates. We controlled for the influence of developmental<br />

mode (altricial–precocial spectrum) by including only<br />

altricial passerines. Our primary ecological factors of interest<br />

were time-dependent nest mortality caused by predation, latitude,<br />

and foraging ecology. Foraging ecology was suggested<br />

to influence growth and developmental strategies in seabirds<br />

(Ricklefs 1979a). So, we examined aerial versus nonaerial<br />

foragers because aerial foragers differ from other passerine<br />

groups by unpredictability of their food supply over evolutionary<br />

time, which seems to influence life-history strategies<br />

(O’Connor 1978; Martin 1995). We also examined clutch<br />

size, which may influence the per capita rate of food delivery.<br />

We use a comparative approach, which cannot test causal<br />

hypotheses, but can provide insight into possible selective<br />

forces by examining which factors explain variation in<br />

growth and developmental rates among species.<br />

METHODS<br />

Dataset<br />

We collected data for as many species of passerines as we<br />

could find in the literature (see Appendix 1). Data on growth<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

FIG. 1. Schematic depiction of the influence of the pattern of<br />

growth data (either with weight recession in later phases of the<br />

growth or without it) on the estimation of parameters of the logistic<br />

growth curve. Both datasets have the same initial rate of the weight<br />

increase up to day 18. The growth curve parameters for the growth<br />

data without recession (full circles with growth curve) are: K �<br />

0.5, A � 20, ti � 6. The same parameters for the data with recession<br />

(open circles, lower growth curve) are K � 0.54, A � 18.3, ti �<br />

5.5. The difference is caused by the recession data forcing the<br />

asymptote of the best fit curve to be lower and K to be higher.<br />

Consequently, we get two different values of K for the exact same<br />

rate of increase because of differing patterns of development after<br />

reaching the maximum weight in the nest (see Fig. 2).<br />

rates, latitudes, and nest predation rates are from original<br />

sources. We began with data on nestling growth listed by<br />

Starck and Ricklefs (1998b), but we checked and reanalyzed<br />

all growth rate estimates (see below). In addition, we were<br />

able to locate additional data, yielding primary growth data<br />

for 183 populations of 115 species of North American passerines.<br />

Of these, we were able to locate data on nest predation<br />

rates (proportion of nests taken by predators) for 107<br />

species. Data on the duration of nestling period, clutch size,<br />

and foraging category (aerial vs. nonaerial foragers) were<br />

from Poole and Gill (1992–2002). Data on adult body mass<br />

were from Dunning (1993). Where separate data on adult<br />

mass are given for males and females, we took the average.<br />

Time-dependent mortality is the only part of nest mortality<br />

that can be expected to favor elevated growth and developmental<br />

rates (Ricklefs 1969a; Case 1978). Other sources of<br />

mortality that do not bear direct relation to the length of nest<br />

cycle are not relevant for the evolution of growth rates. Timedependent<br />

mortality of nests can be caused, for example, by<br />

inclement weather but its main source is nest predation (Ricklefs<br />

1969a; Martin 1993). Percent of nests lost to predation<br />

was the common form of data available from primary sources<br />

and they are a compound result of the rate of time-dependent<br />

mortality caused by nest predation and the duration of nesting<br />

cycle. Thus, we transformed our data on nest predation to<br />

daily nest mortality rates by the formula: dmr ��(ln S)/T,<br />

where dmr is daily nest mortality rate caused by nest predation,<br />

S is proportion of nests that were successful (1—<br />

proportion depredated), and T is the duration of the nest cycle<br />

(for discussion on this transformation procedure see Ricklefs<br />

1969a; Ricklefs et al. 1998).<br />

Growth rate can be characterized as an increase in body


mass over time, whereas development is characterized by<br />

timing of developmental events during ontogeny of an individual.<br />

For example, nestlings of species that fledge earlier<br />

develop their body functions more quickly than nestlings in<br />

later-fledging species (Ricklefs 1967b, 1979b; Austin and<br />

Ricklefs 1977). This different rate of maturation of body<br />

functions is certainly connected to the demands of life outside<br />

the nest, and we tried to analyze which ecological factors<br />

might be responsible for timing of nest leaving (i.e., duration<br />

of the nestling period), while controlling for the effect of<br />

growth rate. In addition, we analyzed relative fledging mass,<br />

defined as the ratio of body mass at fledging to adult body<br />

mass as an estimate of the relative stage of development at<br />

fledging. Body mass at fledging was defined as the average<br />

mass of nestlings at the last day in the nest and was taken<br />

from the original studies.<br />

Body mass increases in passerines in an S-shaped function,<br />

which is expected on theoretical grounds (West et al. 2001).<br />

Many S-shaped mathematical curves could potentially fit<br />

growth data, but the logistic growth curve is traditionally<br />

used (Ricklefs 1967a, 1968a). Although Brisbin et al. (1987)<br />

criticized its use and suggested the use of more complex<br />

curves that are able to describe shape as well as rate, the<br />

advantage of the logistic growth curve is that it produces<br />

only three parameters that are readily biologically interpretable.<br />

The logistic growth curve has a form of W(t) � A/{1<br />

� e [�K(t�t i)]<br />

}, where W(t) denotes body mass of a nestling at<br />

time t, A is the asymptotic body mass that the nestling approaches,<br />

t i is the inflection point on the time axis in which<br />

growth changes from accelerating to decelerating, e is the<br />

base of natural logarithm, and K is a constant scaling rate of<br />

growth. Because the value of K indexes growth rate independently<br />

of absolute time of growth (in time �1 ), it is a convenient<br />

measure for comparative purposes (Ricklefs 1968a).<br />

Estimates of K (growth rate) are problematic for comparative<br />

purposes because of a negative correlation between K<br />

and A (asymptotic body mass). The most serious problem<br />

arises in species with nestlings that remain in the nest longer<br />

and experience weight recession in later phases of the nestling<br />

period (see Ricklefs 1968b). Here the downward hook of the<br />

data, after a maximum value is achieved, forces A to be<br />

estimated lower than it would be without this hook, and consequently<br />

the estimate of K is artificially inflated (see Fig.<br />

1). Consequently, species with the exact same growth during<br />

the initial growth period (illustrated by the vertical line in<br />

Fig. 1) yield different estimates of K when they remain in<br />

the nest for differing periods of time (Fig. 1; V. Remesˇ,<br />

unpubl. data). Recently, a new modification of the logistic<br />

growth curve was developed to deal with this problem in<br />

seabirds (Huin and Prince 2000). It has two K parameters,<br />

one for mass increase (K1) and the other for the rate of mass<br />

decrease during weight recession phase (K2). However, it<br />

suffers from the same shortcoming as the traditional method.<br />

Although this new approach fits growth data with weight<br />

recession well, the value of K1 (which equals K of the traditional<br />

model and is of interest to us) still depends on the<br />

pattern and extent of weight recession (V. Remesˇ, unpubl.<br />

data).<br />

To overcome these problems and obtain growth estimates<br />

that are comparable across different ecological groups of<br />

GROWTH STRATEGIES OF PASSERINES<br />

2507<br />

FIG. 2. Estimates of growth rate constant K (mean � SE) for aerial<br />

(n � 20) and nonaerial (n � 95) foragers for raw data and when<br />

adjusted for weight recession. In general, K is higher for unadjusted<br />

data than when data were truncated at the highest mass reached by<br />

the young. This effect was pronounced only in aerial foragers due<br />

to their typical growth pattern with strong weight recession in the<br />

nest (see also Fig. 1). Paired t-tests: t 1,188 ��4.27, P � 0.0001, n<br />

� 190 for nonaerial foragers; t 1,38 ��4.10, P � 0.0006, n � 40<br />

for aerial foragers.<br />

birds, we used two approaches. First, we fit the traditional<br />

logistic curve to the growth data truncated at the highest mass<br />

achieved by nestlings in species that remained in the nest<br />

past a maximum mass; truncation was necessary for 61 populations<br />

of 39 species, including 15 (of 20) species of aerial<br />

foragers, and 24 (of 95) species of nonaerial foragers. The<br />

effect of this adjustment on the estimation of K was marked<br />

only in aerial foragers, because these have a high incidence<br />

of weight recession (see above and Fig. 2). However, even<br />

after this adjustment, estimations of K could still be confounded<br />

by differences in ages and relative mass at fledging.<br />

Consequently, our second approach was to fit the logistic<br />

curve to the growth series truncated at 70% of adult body<br />

mass. This approach completely standardizes the relative<br />

nestling mass over which growth rates are estimated. We<br />

chose 70% as a compromise between retaining as much of<br />

the growth curve as possible and the maximum number of<br />

species possible (some species leave the nest at a lighter mass<br />

than 70% of adult body mass and consequently had to be<br />

excluded). This procedure led to loss of 18 species but still<br />

yielded highly standardized data on 97 species. Both these<br />

adjustments yield more standardized and appropriate estimation<br />

of K than in previous analyses. Analyses based on K<br />

fit to the growth data without either of the two adjustments<br />

produced virtually identical results to adjusted data, with exception<br />

that the explanatory power of aerial foraging for K<br />

was significantly reduced. Given the redundancy of these<br />

analytical results, we report only results of the analyses with<br />

the two standardized sets of K.<br />

For our analyses we used average K for species. However,<br />

growth rate of nestlings can be adversely affected by poor<br />

environmental, especially food, conditions during rearing<br />

(e.g., Martin 1987; Gebhardt-Henrich and Richner 1998;


2508 V. REMESˇ AND T. E. MARTIN<br />

TABLE 2. Multiple regression analyses of the constant K of the logistic growth curve in North American passerines in relation to potential<br />

ecological factors and covariates. Sample sizes are numbers of species for raw species data (not corrected for phylogenetic relationships) and<br />

of phylogenetically independent contrasts for PICs (corrected for phylogenetic relationships). For partial regression and correlation coefficients<br />

from the analysis of raw species data, see Figure 3.<br />

Adult body mass<br />

Clutch size<br />

Dmr 3<br />

Foraging mode 4<br />

Latitude<br />

�6.50<br />

�1.14<br />

4.49<br />

�1.90<br />

1.69<br />

Full model<br />

t P<br />

Raw species data (n � 107) PICs (n � 103)<br />

�0.0001<br />

0.2587<br />

�0.0001<br />

0.0604<br />

0.0940<br />

�6.54<br />

—<br />

5.11<br />

�1.97<br />

—<br />

Best model 2<br />

t P<br />

�0.0001<br />

—<br />

�0.0001<br />

0.0515<br />

—<br />

1 Fit to the growth data that were truncated at the highest mass reached by the young in the nest.<br />

2 Selected by the backward selection procedure in the multiple regression model of SPSS.<br />

3 Dmr is daily nest mortality rate caused by nest predation.<br />

4 Foraging mode is aerial foragers (coded 1) and nonaerial foragers (coded 0).<br />

Schew and Ricklefs 1998). As a result, we repeated analyses<br />

with maximum K for species, which might better reflect evolutionary<br />

responses of growth rates than average values. Nevertheless,<br />

results of these two analyses did not differ. Consequently,<br />

only the results of the analyses with average values<br />

of K are reported because we used average values for all<br />

other variables.<br />

Phylogenetic Analyses<br />

We analyzed raw species data, but also employed the method<br />

of phylogenetically independent contrasts to control for<br />

possible phylogenetic influences (Felsenstein 1985; Harvey<br />

and Pagel 1991) based on the CAIC software package (Purvis<br />

and Rambaut 1995). We analyzed the independent contrasts<br />

in a phylogenetic regression framework (Grafen 1989), in<br />

which contrasts computed by CAIC (CRUNCH algorithm)<br />

were analyzed with standard multiple linear regressions<br />

forced through the origin (see Garland et al. 1992).<br />

For analyses adjusting for phylogenetic relationships, we<br />

used a working phylogeny depicted in Martin and Clobert<br />

(1996), which is based on Sibley and Ahlquist’s (1990) DNA-<br />

DNA hybridization phylogenetic hypothesis, and supplemented<br />

it with more recent molecular phylogenetic information<br />

(details are available from the authors upon request).<br />

We did not have consistent estimates of branch lengths<br />

and so we used equal branch lengths (Garland et al. 1993).<br />

Previous analyses comparing equal branch lengths versus<br />

variable ones found little effect on results (Martins and Garland<br />

1991). Estimation of branch lengths is an empirical issue<br />

and their performance should be statistically tested (Garland<br />

et al. 1992). We checked the performance of equal branch<br />

lengths by plotting the absolute values of the standardized<br />

contrasts against their standard deviations (Garland et al.<br />

1992). In all cases, performance of equal branch lengths was<br />

good and much better than that of another option, Grafen’s<br />

(1989) branch lengths.<br />

Statistics<br />

Logistic growth curves were fit in nonlinear regression in<br />

SPSS (1996). We used the Levenberg-Marquardt estimation<br />

method, sum of squared residuals loss function, and no pa-<br />

K 1<br />

�2.34<br />

�0.16<br />

4.53<br />

0.49<br />

0.94<br />

Full model<br />

t P<br />

0.0214<br />

0.8764<br />

�0.0001<br />

0.6257<br />

0.3509<br />

�2.39<br />

—<br />

4.48<br />

—<br />

—<br />

Best model 2<br />

t P<br />

0.0188<br />

—<br />

�0.0001<br />

—<br />

—<br />

rameter constraints. The ability of various factors to explain<br />

interspecific variation in the growth rate constant K, duration<br />

of nestling period, relative fledging mass, and premature<br />

fledging was tested by multiple linear regressions in SPSS.<br />

The best models were selected by the backward selection<br />

procedure. Our P-to-enter and P-to-remove values were 0.05<br />

and 0.1, respectively (Sokal and Rohlf 1995). Selection of<br />

the final model in backward selection procedure depends in<br />

part on these P-values. Thus, we also validated the models<br />

by the means of Akaike’s information criterion (AIC), which<br />

is computed as nln(SSE/n) � 2p, where n is the number of<br />

observations, SSE is the sum-of-squares error, and p is the<br />

number of model parameters. This is a general criterion for<br />

choosing the best number of parameters to include in a model.<br />

We chose a model with the minimum number of parameters<br />

from the set of models for which the difference between<br />

AIC(i) and AIC(min) was lower than two, where AIC(i) is<br />

AIC of the particular model and AIC(min) is minimum AIC<br />

of all the possible models (see Anderson et al. 2000). Marginal<br />

means for raw species data were estimated by AN-<br />

COVAs in SPSS. Phylogenetic regressions were performed<br />

on independent contrasts as ordinary multiple linear regressions<br />

forced through the origin.<br />

Relative fledging mass was distributed normally. Other<br />

variables were transformed to meet the assumption of normal<br />

distribution. Adult body mass, clutch size, K, latitude, and<br />

premature fledging were log 10 transformed and daily mortality<br />

rates caused by nest predation were square-root transformed.<br />

RESULTS<br />

Growth Rate (K)<br />

Growth rates (K) fit to the data truncated at the highest<br />

mass achieved by nestlings were significantly correlated with<br />

adult body mass and daily nest predation rates (full model:<br />

R 2 adj. � 0.45, F 5,101 � 18.07, P � 0.0001; reduced model:<br />

R 2 adj. � 0.44, F 3,103 � 28.81, P � 0.0001). The influence<br />

of foraging mode was only marginally significant (Table 2,<br />

Fig. 3). Results were essentially the same for phylogenetically<br />

independent contrasts, with the exception that foraging<br />

mode was dropped from the model (Table 2).


FIG. 3. Scattergrams of the standardized residuals from the multiple<br />

regression model of raw species data for K fit to the growth<br />

data that were truncated at the highest mass reached by the young<br />

in the nest (see Table 2). (A) K versus adult body mass (full circles,<br />

Corvidae; open circles, others), both corrected for daily predation<br />

rates and foraging mode; (B) K versus daily predation rates, both<br />

corrected for adult body mass and foraging mode; and (C) marginal<br />

means for foraging mode (black bars, all species; white bars, without<br />

four species of Empidonax), adjusted for adult body mass and<br />

daily predation rates. K relates to adult body mass, daily predation<br />

rates, and foraging mode (coded as nonaerial foragers � 0[n �<br />

89], aerial foragers � 1[n � 18]) by the equation: log(K [day �1 ])<br />

��0.256 (0.040) � 0.128 (0.020) log(body mass [g]) � 0.976<br />

(0.191) square root (dpr [day �1 ]) � 0.039 (0.020) foraging mode.<br />

Parameters are partial regression coefficients (SE). r p-values are<br />

partial correlation coefficients.<br />

GROWTH STRATEGIES OF PASSERINES<br />

2509<br />

In the analyses of raw species data, the relationship between<br />

K and daily predation rate was curvilinear (Fig. 3B),<br />

as indicated by a significant nonlinear quadratic term (t 1,104<br />

��3.44, P � 0.0008), when effects of adult body mass and<br />

foraging mode were controlled. No such effect was apparent<br />

in the analyses of phylogenetically independent contrasts<br />

when adult body mass was controlled (t 1,101 ��0.02, P �<br />

0.9807).<br />

Although foraging mode was marginally significant in the<br />

analysis of raw species data (Table 2), this influence was due<br />

to four species of the genus Empidonax (see Fig. 3C), and<br />

after adjusting for phylogenetic effects it disappeared (Table<br />

2). A strong phylogenetic effect was also apparent in the<br />

scaling of growth rate with adult body mass due to the influence<br />

of the family Corvidae (see Fig. 3A). After accounting<br />

for the effects of phylogeny, the influence of adult body mass<br />

on growth rate was much smaller (Tables 2, 3). Moreover,<br />

when the contrast between Corvidae and Vireonidae was excluded,<br />

the effect of adult body mass on growth rate completely<br />

disappeared (t 1,100 ��0.99, P � 0.3257, r p ��0.10)<br />

and daily predation rate became the best predictor (t 1,100 �<br />

4.69, P � 0.0001, r p � 0.43).<br />

Very similar results were obtained from the analyses of<br />

growth rates (K) fit to the data truncated at 70% of adult body<br />

mass. The difference was that both clutch size and latitude<br />

also entered the model in both raw species data (full model:<br />

R 2 adj. � 0.44, F 5,83 � 13.23, P � 0.0001; reduced model:<br />

R 2 adj. � 0.44, F 4,84 � 16.52, P � 0.0001) and phylogenetically<br />

independent contrasts (Table 3).<br />

Nestling Period<br />

Adult body mass, daily nest predation rates, foraging mode,<br />

and K were significantly related to the length of the nestling<br />

period when estimates of K were fit to the data truncated at<br />

the highest mass achieved by the nestlings (R2 adj. � 0.72,<br />

F5,101 � 56.15, P � 0.0001; Table 4, Fig. 4). The same results<br />

were found when analyses were performed on phylogenetically<br />

independent contrasts (Table 4). When the covariate K<br />

was based on data truncated at 70% of adult body mass, the<br />

analyses of factors influencing length of the nestling period<br />

yielded virtually identical results.<br />

Premature Fledging<br />

We also examined the extent to which nestlings were willing<br />

to fledge prematurely, defined as duration of the normal<br />

nestling period minus duration of the nestling period when<br />

nestlings fledge prematurely. The extent of premature fledging<br />

decreased with daily predation rates (t1,30 ��3.93, P �<br />

0.0005, n � 33) after accounting for the effect of adult body<br />

mass (t1,30 � 3.70, P � 0.0009, n � 33; Fig. 5; whole model:<br />

R2 � 0.43, F2,30 � 13.16, P � 0.0001). This was the same<br />

for phylogenetically independent contrasts. Neither clutch<br />

size nor the growth rate constant K entered these models.<br />

Relative Fledging Mass<br />

Relative fledging mass (� SE, n), defined as the ratio of<br />

the mass at fledging to adult body mass, averaged 0.819<br />

(� 0.015, 115) over all species. Both daily predation rates


2510 V. REMESˇ AND T. E. MARTIN<br />

TABLE 3. Multiple regression analyses of the constant K of the logistic growth curve in North American passerines in relation to potential<br />

ecological factors and covariates. Sample sizes are numbers of species for raw species data (not corrected for phylogenetic relationships) and<br />

of phylogenetically independent contrasts for PICs (corrected for phylogenetic relationships).<br />

Adult body mass<br />

Clutch size<br />

Dmr 3<br />

Foraging mode 4<br />

Latitude<br />

�5.78<br />

�2.57<br />

2.41<br />

�0.70<br />

3.13<br />

Full model<br />

t P<br />

Raw species data (n � 89) PICs (n � 85)<br />

�0.0001<br />

0.0121<br />

0.0181<br />

0.4885<br />

0.0024<br />

�5.76<br />

�2.59<br />

2.81<br />

—<br />

3.18<br />

Best model 2<br />

t P<br />

�0.0001<br />

0.0114<br />

0.0061<br />

—<br />

0.0021<br />

1 Fit to the growth data that were truncated at 70% of adult body mass.<br />

2 Selected by the backward selection procedure in the multiple regression model of SPSS.<br />

3 Dmr is daily nest mortality rate caused by nest predation.<br />

4 Foraging mode is aerial foragers (coded 1) and nonaerial foragers (coded 0).<br />

and foraging mode were significantly related to relative<br />

fledging mass, with adult body mass controlled (Table 5,<br />

Fig. 6; whole model: R 2 adj. � 0.46, F 3,102 � 30.24, P �<br />

0.0001). Examination of phylogenetically independent<br />

contrasts, with adult body mass controlled, still yielded<br />

significant effects of daily predation rates, but foraging<br />

mode was dropped from the stepwise selection procedure<br />

(Table 5).<br />

Relative fledging mass was curvilinearly related to daily<br />

predation rate, as reflected by a significant nonlinear quadratic<br />

term (t 1,103 � 2.46, P � 0.0154), when the effects of<br />

adult body mass and foraging mode were controlled (see Fig.<br />

6B). However, no such term was apparent in phylogenetically<br />

adjusted data, when the effect of adult body mass was taken<br />

into account (t 1,100 � 0.86, P � 0.3928). All analyses of the<br />

relative fledging mass were performed without the strongly<br />

outlying Leucosticte tephrocotis (relative fledging mass �<br />

1.54; see also Appendix 1).<br />

K 1<br />

�3.86<br />

�2.19<br />

2.15<br />

0.08<br />

2.45<br />

Full model<br />

t P<br />

0.0002<br />

0.0317<br />

0.0342<br />

0.9374<br />

0.0163<br />

�3.90<br />

�2.20<br />

2.17<br />

—<br />

2.47<br />

Best model 2<br />

t P<br />

0.0002<br />

0.0307<br />

0.0327<br />

—<br />

0.0157<br />

TABLE 4. Multiple regression analyses of the duration of the nestling period in North American passerines in relation to potential ecological<br />

factors and covariates. Sample sizes are numbers of species for raw species data (not corrected for phylogenetic relationships) and of phylogenetically<br />

independent contrasts for PICs (corrected for phylogenetic relationships). For partial regression and correlation coefficients from<br />

the analysis of raw species data, see Figure 4.<br />

Adult body mass<br />

Clutch size<br />

Dmr 2<br />

Foraging mode 3<br />

K 4<br />

DISCUSSION<br />

Previous comparative studies of variation in growth rates<br />

found little in the way of environmental correlates (see Ricklefs<br />

et al. 1998). In direct contrast, we found very strong<br />

effects of predation, with smaller but significant contributing<br />

3.95<br />

1.92<br />

�3.55<br />

6.08<br />

�5.74<br />

Full model<br />

t P<br />

Nestling period<br />

Raw species data (n � 107) PICs (n � 103)<br />

0.0001<br />

0.0570<br />

0.0006<br />

�0.0001<br />

�0.0001<br />

3.73<br />

—<br />

�4.34<br />

5.98<br />

�5.74<br />

Best model 1<br />

t P<br />

0.0003<br />

—<br />

�0.0001<br />

�0.0001<br />

�0.0001<br />

1 Selected by the backward selection procedure in the multiple regression model of SPSS.<br />

2 Dmr is daily nest mortality rate caused by nest predation.<br />

3 Foraging mode is aerial foragers (coded 1) and nonaerial foragers (coded 0).<br />

4 Fit to the growth data that were truncated at the highest mass reached by the young in the nest.<br />

effects of foraging mode, clutch size, and latitude on both<br />

growth rate and developmental strategies. These results show<br />

that growth and development of altricial nestlings are shaped<br />

by extrinsic environmental forces.<br />

Daily predation rates scaled positively with growth rates<br />

and negatively with duration of the nestling period (after<br />

controlling for growth rates; Tables 2–4; Figs. 3B, 4B). Furthermore,<br />

species with higher nest predation fledged at lighter<br />

relative mass (Table 5, Fig. 6B). These results suggest that<br />

multidimensional aspects of the growth strategies of altricial<br />

nestlings are strongly influenced by risk of nest predation.<br />

Such results are in line with theoretical arguments made by<br />

Lack (1968) and Case (1978), and with empirical studies of<br />

Kleindorfer et al. (1997) and Hałupka (1998).<br />

However, the benefits of growing faster and shortening the<br />

nestling period may reach a point of diminishing returns.<br />

Indeed, the curvilinear relationship between nest mortality<br />

versus growth rates (Fig. 3B; Results) and relative fledging<br />

mass (Fig. 6B; Results) could arise if costs (ecological: Martin<br />

1992; Martin et al. 2000a,b; physiological: Metcalfe and<br />

Monaghan 2001) of even faster growth exceed the benefits.<br />

Alternatively, leveling off of growth rates could be caused<br />

by reaching the maximum growth rate possible within cellular<br />

and physiological constraints (see Ricklefs 1969b). More-<br />

3.91<br />

1.23<br />

�2.64<br />

2.54<br />

�2.56<br />

Full model<br />

t P<br />

0.0002<br />

0.2220<br />

0.0095<br />

0.0126<br />

0.0121<br />

3.80<br />

—<br />

�2.88<br />

2.61<br />

�2.52<br />

Best model 1<br />

t P<br />

0.0003<br />

—<br />

0.0048<br />

0.0105<br />

0.0134


GROWTH STRATEGIES OF PASSERINES<br />

2511<br />

FIG. 4. Scattergrams of the standardized residuals from the multiple regression model of raw species data for the duration of the nestling<br />

period, with K fit to the growth data that were truncated at the highest mass reached by the young in the nest (see Table 4). (A) Duration<br />

of the nestling period versus adult body mass, both corrected for daily predation rates, foraging mode, and K; (B) nestling period versus<br />

daily predation rates, both corrected for adult body mass, foraging mode, and K; (C) nestling period versus K, both corrected for adult<br />

body mass, daily predation rates, and foraging mode; (D) marginal means for foraging mode adjusted for adult body mass, daily predation<br />

rates, and K. Nestling period relates to adult body mass, daily predation rates, K, and foraging mode (coded as nonaerial foragers � 0<br />

[n � 89], aerial foragers � 1[n � 18]), by the equation: log(nestling period [days]) � 0.862 (0.053) � 0.097 (0.026) log(body mass<br />

[g]) � 1.038 (0.239) square root (dpr [day �1 ] � 0.634 (0.110) log(K [day �1 ]) � 0.135 (0.022) foraging mode. Parameters are partial<br />

regression coefficients (SE). r p-values are partial correlation coefficients.<br />

over, because birds that grow quicker also fledge and mature<br />

earlier, the trade-off between growth and maturation could<br />

play a role (Ricklefs et al. 1994, 1998; but see Krijgsveld et<br />

al. 2001).<br />

Several studies have shown that duration of the nestling<br />

period scales negatively with nest predation rates (Lack 1968;<br />

Martin and Li 1992; Bosque and Bosque 1995; Martin 1995;<br />

Yanes and Suárez 1997). We show that this is true even after<br />

accounting for pure growth rates (Table 4, Fig. 4B). Thus,<br />

shorter nestling periods result not only from faster growth,<br />

but also from earlier timing of nest-leaving at an earlier stage<br />

of development. The latter is clearly reflected by the lower<br />

relative fledging mass in species with higher predation rates<br />

(Table 5, Fig. 6B). However, the precocity of fledging is<br />

clearly limited. This limit is evident from the negative relationship<br />

between the extent of premature fledging relative<br />

to nest predation rates. Whereas species with high predation<br />

already leave at an early stage of development and cannot<br />

leave many days earlier, species with low predation stay in<br />

the nest to a much later stage of development and have the<br />

capability of fledging many days earlier than they do (see<br />

Fig. 5). In addition, the reduction in fledging mass when<br />

fledging prematurely can be so high and costs connected with<br />

it so strong (Lindén and Møller 1989; Magrath 1991; Gebhardt-Henrich<br />

and Richner 1998; Lindström 1999) that it can<br />

be advantageous to keep this strategy as optional for the<br />

circumstances of real predation danger.<br />

Predation was not the only environmental correlate of<br />

growth and development. Food limitation has long been proposed<br />

to explain the evolution of growth and development<br />

of birds through energetic expensiveness of large clutch sizes<br />

(Lack 1968), shorter time available for feeding offspring at<br />

lower latitudes (Ricklefs 1976), and unpredictability of food<br />

supply (O’Connor 1978). Of these three, growth rates were<br />

associated with aerial foraging when using K fit to the growth<br />

data truncated at the highest mass (Table 2) and with clutch<br />

size and latitude when using K fit to the growth data truncated<br />

at 70% of adult body mass (Table 3). Nestling period duration<br />

differed strongly between aerial and nonaerial foragers (Table<br />

4, Fig. 4D). In contrast, the influence of aerial foraging on<br />

relative fledging mass was rather weak in the raw species<br />

data (Table 5, Fig. 6C), and disappeared after adjusting for


2512 V. REMESˇ AND T. E. MARTIN<br />

FIG. 5. Scattergram of the standardized residuals of premature<br />

fledging (reduction of the duration of the nestling period when<br />

fledging prematurely as compared to normal fledging, in days) versus<br />

daily predation rates, both corrected for adult body mass, for<br />

raw species data. Log(premature fledging [day]) � 0.333 (0.159)<br />

� 3.444 (0.876) square root (dpr [day �1 ]) � 0.336 (0.091) log(body<br />

mass [g]), n � 33. Parameters are partial regression coefficients<br />

(SE). r p-value is partial correlation coefficient.<br />

phylogeny (Table 5). This is not surprising, however, because<br />

aerial foragers show a high incidence of weight recession<br />

(see Methods), and thus rather long nestling periods do not<br />

translate to very high mass of fledglings relative to adult body<br />

mass.<br />

Aerial foragers seem to be food limited in general (Martin<br />

1987, 1995). Their food supply is temporally unpredictable<br />

and there is an ample evidence that adverse climatic conditions<br />

can lead on a proximate level to longer incubation and<br />

nestling periods and impaired growth, condition, and survival<br />

of nestlings (e.g., Bryant 1975; O’Connor 1978; McCarty<br />

and Winkler 1999). Nestlings of aerial foragers must survive<br />

relatively long periods without parental attendance during<br />

inclement weather conditions, whose incidence and duration<br />

are unpredictable. Adaptations to sustain these periods include<br />

extensive fat deposition and early thermal independence<br />

of the nestlings (Ricklefs 1967b; O’Connor 1978). It<br />

is possible to speculate that these adaptations aimed at decreasing<br />

susceptibility to starvation could also have led to or<br />

have been connected with adjustments in growth strategies<br />

TABLE 5. Multiple regression analyses of the relative fledging mass (fledging mass/adult body mass) in North American passerines in relation<br />

to potential ecological factors and covariates. Sample sizes are number of species for raw species data (not corrected for phylogenetic relationships)<br />

and of phylogenetically independent contrasts for PICs (corrected for phylogenetic relationships). For partial regression and correlation<br />

coefficients from the analysis of raw species data, see Figure 6.<br />

Adult body mass<br />

Dmr 2<br />

Foraging mode 3<br />

Relative fledging mass<br />

Raw species data (n � 106) PICs (n � 102)<br />

Full and best model 1<br />

t P<br />

�6.01<br />

�5.14<br />

2.62<br />

�0.0001<br />

�0.0001<br />

0.0101<br />

Full model<br />

t P<br />

�4.58<br />

�2.92<br />

�0.34<br />

1 Selected by the backward selection procedure in the multiple regression model of SPSS.<br />

2 Dmr is daily nest mortality rate caused by nest predation.<br />

3 Foraging mode is aerial foragers (coded 1) and nonaerial foragers (coded 0).<br />

of nestlings (O’Connor 1978), including lower growth rates<br />

and longer nestling periods. On the other hand, the strongest<br />

result concerning aerial foragers (i.e., longer nestling periods)<br />

can be explained alternatively—that they must wait in the<br />

nest until the maturation of their flight muscles that are critical<br />

for their demanding flight life. Thus, results concerning<br />

aerial foragers must be interpreted with caution and more<br />

analyses are clearly needed, but the positive results found<br />

here with relatively low power hold promise for future analyses.<br />

Lack (1968) proposed a trade-off between clutch size and<br />

growth rate (see also Ricklefs 1968a). Our data illustrate<br />

negative covariation among species; species with larger<br />

clutch size show slower growth of nestlings for the same<br />

adult body mass, nest predation, and latitude. Such a covariation<br />

could be merely a correlated response to the same<br />

factor—lower nest predation risk may simply favor both larger<br />

clutches (Martin 1995) and slower growth (Case 1978)<br />

independently. However, because we control for nest predation<br />

by multiple regression, it may be that this is cause<br />

and effect (i.e., a trade-off). A positive relationship between<br />

growth rate of nestlings and latitude was predicted by Ricklefs<br />

(1976). Although he suggested this effect to explain<br />

slower growth of tropical species, we show that this can be<br />

true even on a much smaller geographical scale. However,<br />

because both the effect of clutch size and latitude were apparent<br />

only when using K fit to the growth data truncated at<br />

70% of adult body mass, they should be taken with caution<br />

and be subject to additional analyses.<br />

Adult body mass can have an allometric influence on lifehistory<br />

traits. Because K indexes growth rate independently<br />

of body mass (Ricklefs 1968a; Starck and Ricklefs 1998b),<br />

however, there is no a priori reason to expect its negative<br />

scaling with growth rate. The negative scaling observed here<br />

may suggest basic design constraints of large body size (West<br />

et al. 2001). Alternatively, slower growth rates and longer<br />

nestling periods of larger birds could be a result of lower<br />

parental investment in offspring. Larger birds have higher<br />

adult survival rates (Sæther 1987, 1988, 1989; Martin 1995),<br />

and species with higher adult survival are expected to invest<br />

less in progeny (Charnov and Schaffer 1973; Martin 2002).<br />

Adult body mass could work here just as a reflection of adult<br />

survival rate. To test this hypothesis, comparative studies of<br />

�0.0001<br />

0.0043<br />

0.7383<br />

Best model 1<br />

t P<br />

�4.58<br />

�2.91<br />

—<br />

�0.0001<br />

0.0044<br />


FIG. 6. Scattergrams of the standardized residuals from the multiple<br />

regression model of raw species data for the relative fledging<br />

mass (fledging mass/adult body mass; see Table 5). (A) Relative<br />

fledging mass versus adult body mass, both corrected for daily<br />

predation rates and foraging mode; (B) relative fledging mass versus<br />

daily predation rates, both corrected for adult body mass and foraging<br />

mode; and (C) marginal means for foraging mode, adjusted<br />

for adult body mass and daily mortality rates. Relative fledging<br />

mass relates to adult body mass, daily predation rates, and foraging<br />

mode (coded as nonaerial foragers � 0[n � 88], aerial foragers �<br />

1[n � 18]) by the equation: relative fledging mass � 1.244 (0.062)<br />

� 0.182 (0.030) log(adult body mass [g]) � 1.524 (0.296) square<br />

root (dpr [day �1 ]) � 0.080 (0.031) foraging mode. Parameters are<br />

partial regression coefficients (SE). r p-values are partial correlation<br />

coefficients.<br />

GROWTH STRATEGIES OF PASSERINES<br />

2513<br />

growth strategies including adult survival rates and feeding<br />

rates are needed.<br />

In sum, we show that growth rates, duration of nestling<br />

period, and relative developmental stage at nest-leaving covary<br />

in altricial nestlings with nest predation rates, aerial foraging,<br />

clutch size, and latitude after taking into account adult<br />

body mass and phylogenetic effects. This is in line with the<br />

view that growth strategies of altricial nestlings are finely<br />

tuned to environmental conditions typical of each species<br />

(Lack 1968; Kleindorfer et al. 1997) and lends support to an<br />

adaptive view of variation in growth and development<br />

(Arendt 1997). Moreover, we show that studies addressing<br />

evolution of growth strategies should simultaneously examine<br />

both pure growth and timing of developmental events<br />

(here, fledging), because these two show independent evolution<br />

in relation to extrinsic selective forces.<br />

ACKNOWLEDGMENTS<br />

During the work on this manuscript, VR was supported by<br />

a grant from J. W. Fulbright Commission, and TEM by grants<br />

from National Science Foundation (DEB-9707598, DEB-<br />

9981527). We thank R. E. Ricklefs and an anonymous reviewer<br />

for comments that greatly improved quality of the<br />

manuscript.<br />

LITERATURE CITED<br />

Anderson, D. R., K. P. Burnham, and W. L. Thompson. 2000. Null<br />

hypothesis testing: problems, prevalence, and an alternative. J.<br />

Wildl. Manage. 64:912–923.<br />

Arendt, J. D. 1997. Adaptive intrinsic growth rates: an integration<br />

across taxa. Q. Rev. Biol. 72:149–177.<br />

Austin, G. T., and R. E. Ricklefs. 1977. Growth and development<br />

of the rufous-winged sparrow (Aimophila carpalis). Condor 79:<br />

37–50.<br />

Billerbeck, J. M., T. E. Lankford Jr.,and D. O. Conover. 2001.<br />

Evolution of intrinsic growth and energy acquisition rates. I.<br />

Trade-offs with swimming performance in Menidia menidia.<br />

Evolution 55:1863–1872.<br />

Bortolotti, G. R. 1986. Evolution of growth-rates in eagles: sibling<br />

competition vs. energy considerations. Ecology 67:182–194.<br />

Bosque, C., and M. T. Bosque. 1995. Nest predation as a selective<br />

factor in the evolution of developmental rates in altricial birds.<br />

Am. Nat. 145:234–260.<br />

Brisbin, I. L., Jr., C. T. Collins, G. C. White, and D. A. McCallum.<br />

1987. A new paradigm for the analysis and interpretation of<br />

growth data: the shape of things to come. Auk 104:552–555.<br />

Bryant, D. M. 1975. Breeding biology of house martins Delichon<br />

urbica in relation to aerial insect abundance. Ibis 117:180–216.<br />

Case, T. J. 1978. On the evolution and adaptive significance of<br />

postnatal growth rates in the terrestrial vertebrates. Q. Rev. Biol.<br />

53:243–282.<br />

Charnov, E. L. 1993. Life history invariants. Oxford Univ. Press,<br />

Oxford, U.K.<br />

Charnov, E. L., and W. M. Schaffer. 1973. Life-history consequences<br />

of natural selection: Cole’s result revisited. Am. Nat.<br />

107:791–793.<br />

Dunning, J. B., Jr. 1993. Body weights of 686 species of North<br />

American birds. Eldon Publishing, Cave Creek, AZ.<br />

Felsenstein, J. 1985. Phylogenies and the comparative method. Am.<br />

Nat. 125:1–15.<br />

Garland, T., P. H. Harvey, and A. R. Ives. 1992. Procedures for<br />

the analysis of comparative data using phylogenetically independent<br />

contrasts. Syst. Biol. 41:18–32.<br />

Garland, T., A. W. Dickerman, C. M. Janis, and J. A. Jones. 1993.<br />

Phylogenetic analysis of covariance by computer simulation.<br />

Syst. Biol. 42:265–292.


2514 V. REMESˇ AND T. E. MARTIN<br />

Gebhardt-Henrich, S., and H. Richner. 1998. Causes of growth variation<br />

and its consequences for fitness. Pp. 324–339 in J. M.<br />

Starck and R. E. Ricklefs, eds. Avian growth and development.<br />

Oxford Univ. Press, Oxford, U.K.<br />

Grafen, A. 1989. The phylogenetic regression. Philos. Trans. R.<br />

Soc. Lond. B Biol. Sci. 326:119–157.<br />

Hałupka, K. 1998. Partial nest predation in an altricial bird selects<br />

for the accelerated development of young. J. Avian Biol. 29:<br />

129–133.<br />

Harvey, P. H., and M. D. Pagel. 1991. The comparative method in<br />

evolutionary biology. Oxford Univ. Press, Oxford, U.K.<br />

Herms, D. A., and W. J. Mattson. 1992. The dilemma of plants: to<br />

grow or defend. Q. Rev. Biol. 67:283–335.<br />

Huin, N., and P. A. Prince. 2000. Chick growth in albatrosses: curve<br />

fitting with a twist. J. Avian Biol. 31:418–425.<br />

Kleindorfer, S., H. Hoi, and R. Ille. 1997. Nestling growth patterns<br />

and antipredator responses: a comparison between four Acrocephalus<br />

warblers. Biologia (Bratisl.) 52:677–685.<br />

Krijgsveld, K. L., J. M. Olson, and R. E. Ricklefs. 2001. Catabolic<br />

capacity of the muscles of shorebird chicks: maturation of function<br />

in relation to body size. Physiol. Biochem. Zool. 74:<br />

250–260.<br />

Lack, D. 1968. Ecological adaptations for breeding in birds. Methuen,<br />

London.<br />

Lankford, T. E., Jr., J. M. Billerbeck, and D. O. Conover. 2001.<br />

Evolution of intrinsic growth and energy acquisition rates. II.<br />

Trade-offs with vulnerability to predation in Menidia menidia.<br />

Evolution 55:1873–1881.<br />

Linden, M., and A. P. Møller. 1989. Cost of reproduction and covariation<br />

of life-history traits in birds. Trends Ecol. Evol. 4:<br />

367–371.<br />

Lindström, J. 1999. Early development and fitness in birds and<br />

mammals. Trends Ecol. Evol. 14:343–348.<br />

Magrath, R. D. 1991. Nestling weight and juvenile survival in the<br />

blackbird, Turdus merula. J. Anim. Ecol. 60:335–351.<br />

Martin, T. E. 1987. Food as a limit on breeding birds—a life-history<br />

perspective. Annu. Rev. Ecol. Syst. 18:453–487.<br />

———. 1992. Interaction of nest predation and food limitation in<br />

reproductive strategies. Curr. Ornithol. 9:163–197.<br />

———. 1993. Nest predation among vegetation layers and habitat<br />

types: revising the dogmas. Am. Nat. 141:897–913.<br />

———. 1995. Avian life-history evolution in relation to nest sites,<br />

nest predation, and food. Ecol. Monogr. 65:101–127.<br />

———. 2002. A new view of avian life-history evolution tested on<br />

an incubation paradox. Proc. R. Soc. Lond. B Biol. Sci. 269:<br />

309–316.<br />

Martin, T. E., and J. Clobert. 1996. Nest predation and avian lifehistory<br />

evolution in Europe versus North America: a possible<br />

role of humans? Am. Nat. 147:1028–1046.<br />

Martin, T. E., and P. J. Li. 1992. Life-history traits of open-nesting<br />

vs. cavity-nesting birds. Ecology 73:579–592.<br />

Martin, T. E., P. R. Martin, C. R. Olson, B. J. Heidinger, and J. J.<br />

Fontaine. 2000a. Parental care and clutch sizes in North and<br />

South American birds. Science 287:1482–1485.<br />

Martin, T. E., J. Scott, and C. Menge. 2000b. Nest predation increases<br />

with parental activity: separating nest site and parental<br />

activity effects. Proc. R. Soc. Lond. B Biol. Sci. 267:2287–2293.<br />

Martins, E. P., and T. Garland Jr. 1991. Phylogenetic analyses of<br />

the correlated evolution of continuous characters: a simulation<br />

study. Evolution 45:534–557.<br />

McCarty, J. P., and D. W. Winkler. 1999. Relative importance of<br />

environmental variables in determining the growth of nestling<br />

tree swallows Tachycineta bicolor. Ibis 141:286–296.<br />

Metcalfe, N. B., and P. Monaghan. 2001. Compensation for a bad<br />

start: Grow now, pay later? Trends Ecol. Evol. 16:254–260.<br />

Nylin, S., and K. Gotthard. 1998. Plasticity in life-history traits.<br />

Annu. Rev. Entomol. 43:63–83.<br />

O’Connor, R. J. 1978. Growth strategies in nestling passerines.<br />

Living Bird 16:209–238.<br />

Oniki, Y., and R. E. Ricklefs. 1981. More growth rates of birds in<br />

the humid new world tropics. Ibis 123:349–354.<br />

Poole, A., and F. Gill, eds. 1992–2002. The birds of North America.<br />

The Birds of North America, Philadelphia, PA.<br />

Purvis, A., and A. Rambaut. 1995. Comparative analysis by independent<br />

contrasts (CAIC): an Apple-Macintosh application for<br />

analyzing comparative data. Comput. Appl. Biosci. 11:247–251.<br />

Ricklefs, R. E. 1967a. A graphical method of fitting equations to<br />

growth curves. Ecology 48:978–980.<br />

———. 1967b. Relative growth, body constituents, and energy content<br />

of nestling barn swallows and red-winged blackbirds. Auk<br />

84:560–570.<br />

———. 1968a. Patterns of growth in birds. Ibis 110:419–451.<br />

———. 1968b. Weight recession in nestling birds. Auk 85:30–35.<br />

———. 1969a. An analysis of nesting mortality in birds. Smithson.<br />

Contrib. Zool. 9:1–48.<br />

———. 1969b. Preliminary models for growth rates in altricial<br />

birds. Ecology 50:1031–1039.<br />

———. 1973. Patterns of growth in birds. II. Growth rate and mode<br />

of development. Ibis 115:177–201.<br />

———. 1976. Growth rates of birds in the humid New World tropics.<br />

Ibis 118:179–207.<br />

———. 1979a. Adaptation, constraint, and compromise in avian<br />

postnatal development. Biol. Rev. (Camb.) 54:269–290.<br />

———. 1979b. Patterns of growth in birds. V. A comparative study<br />

of development in the starling, common tern, and Japanese quail.<br />

Auk 96:10–30.<br />

———. 1982. Some considerations on sibling competition and avian<br />

growth rates. Auk 99:141–147.<br />

———. 1983. Avian postnatal development. Pp. 1–83 in D. S.<br />

Farner, ed. Avian biology. Vol. VII. Academic Press, New York.<br />

———. 1984. The optimization of growth rate in altricial birds.<br />

Ecology 65:1602–1616.<br />

Ricklefs, R. E., R. E. Shea, and I. H. Choi. 1994. Inverse relationship<br />

between functional maturity and exponential growth rate of avian<br />

skeletal muscle: a constraint on evolutionary response. Evolution<br />

48:1080–1088.<br />

Ricklefs, R. E., J. M. Starck, and M. Konarzewski. 1998. Internal<br />

constraints on growth in birds. Pp. 266–287 in J. M. Starck and<br />

R. E. Ricklefs, eds.<br />

Roff, D. A. 1992. The evolution of life histories: theory and analysis.<br />

Chapman and Hall, New York.<br />

———. 2002. Life history evolution. Sinauer Associates, Sunderland,<br />

MA.<br />

Royle, N. J., I. R. Hartley, I. F. Owens, and G. A. Parker. 1999.<br />

Sibling competition and the evolution of growth rates in birds.<br />

Proc. R. Soc. Lond. B Biol. Sci. 266:923–932.<br />

Sæther, B-E. 1987. The influence of body weight on the covariation<br />

between reproductive traits in European birds. Oikos 48:79–88.<br />

———. 1988. Pattern of covariation between life-history traits of<br />

European birds. Nature 331:616–617.<br />

———. 1989. Survival rates in relation to body weight in European<br />

birds. Ornis Scand. 20:13–21.<br />

Schew, W. A., and R. E. Ricklefs. 1998. Developmental plasticity.<br />

Pp. 288–304 in J. M. Starck and R. E. Ricklefs, eds. Avian<br />

growth and development. Oxford Univ. Press, Oxford, U.K.<br />

Sibley, C. G., and J. E. Ahlquist. 1990. Phylogeny and classification<br />

of birds. Yale Univ. Press, New Haven, CT.<br />

Sokal, R. R., and F. J. Rohlf. 1995. Biometry. 3rd ed. W. H. Freeman,<br />

New York.<br />

SPSS, Inc. 1996. SPSS Base 7.0 for Windows user’s guide. SPSS,<br />

Inc., Chicago, IL.<br />

Starck, J. M., and R. E. Ricklefs, eds. 1998a. Avian growth and<br />

development. Oxford Univ. Press, Oxford, U.K.<br />

———. 1998b. Data set of avian growth parameters. Pp. 381–423<br />

in J. M. Starck and R. E. Ricklefs, eds. Avian growth and development.<br />

Oxford Univ. Press, Oxford, U.K.<br />

———. 1998c. Patterns of development: the altricial-precocial<br />

spectrum. Pp. 3–30 in J. M. Starck and R. E. Ricklefs, eds. Avian<br />

growth and development. Oxford Univ. Press, Oxford, U.K.<br />

———. 1998d. Variation, constraint, and phylogeny: comparative<br />

analysis of variation in growth. Pp. 247–265 in J. M. Starck and<br />

R. E. Ricklefs, eds. Avian growth and development. Oxford<br />

Univ. Press, Oxford, U.K.<br />

Stearns, S. C. 1992. The evolution of life histories. Oxford Univ.<br />

Press, Oxford, U.K.


Werschkul, D. F., and J. A. Jackson. 1979. Sibling competition and<br />

avian growth rates. Ibis 121:97–102.<br />

West, G. B., J. H. Brown, and B. J. Enquist. 2001. A general model<br />

for ontogenetic growth. Nature 413:628–631.<br />

Williams, G. C. 1966. Adaptation and natural selection. Princeton<br />

Univ. Press, Princeton, NJ.<br />

GROWTH STRATEGIES OF PASSERINES<br />

2515<br />

APPENDIX 1<br />

Species means used in the analyses for adult body mass (Abm, g), clutch size (Cl, no. of eggs per nest), duration of nestling period (Nstl,<br />

days), duration of shortened nestling period when fledging prematurely (Nstl prem, days), growth rate constant K of the logistic curve fit to<br />

the growth data truncated at the highest mass achieved by nestlings (K, day �1 ), data truncated at 70% of adult body mass (K 70%, day �1 ), body<br />

mass at fledging (Fl mass, g), latitude of the study of growth (Lat, �N), number of primary growth series for the species (No. stud), foraging<br />

mode (Forag; n, nonaerial; a, aerial foragers), proportion of nests taken by predators (Pred, %), and references for primary sources (Ref ).<br />

Species Abm Cl Nstl<br />

Agelaius phoeniceus<br />

Aimophila botterii<br />

Aimophila carpalis<br />

Aimophila cassinii<br />

Ammodramus bairdii<br />

Ammodramus caudacutus<br />

Ammodramus maritimus<br />

Ammodramus savannarum<br />

Amphispiza bellli<br />

Anthus spinoletta<br />

Anthus spragueii<br />

Aphelocoma coerulescens<br />

Auriparus flaviceps<br />

Bombycilla cedrorum<br />

Calamospiza melanocorys<br />

Calcarius lapponicus<br />

Calcarius mccownii<br />

Calcarius ornatus<br />

Calcarius pictus<br />

Campylorhynchus<br />

bruneicapillus<br />

Cardinalis cardinalis<br />

Carduelis flammea<br />

Carduelis pinus<br />

Carpodacus mexicanus<br />

Catharus bicknelli<br />

Catharus fuscescens<br />

Catharus guttatus<br />

Catharus ustulatus<br />

Chondestes grammacus<br />

Cinclus mexicanus<br />

Cistothorus palustris<br />

Cistothorus platensis<br />

Corvus brachyrhynchos<br />

Corvus caurinus<br />

Dendroica discolor<br />

Dendroica kirtlandii<br />

Dendroica petechia<br />

Dendroica striata<br />

Dendroica virens<br />

Dolichonyx oryzivorus<br />

Dumetella carolinensis<br />

Empidonax difficilis<br />

Empidonax minimus<br />

Empidonax oberholseri<br />

Empidonax traillii<br />

Eremophila alpestris<br />

Euphagus cyanocephalus<br />

Geothlypis trichas<br />

Gymnorhinus<br />

cyanoephalus<br />

Hirundo pyrrhonota<br />

Hirundo rustica<br />

52.6<br />

19.9<br />

15.3<br />

18.9<br />

17.5<br />

19.3<br />

23.3<br />

17.0<br />

18.9<br />

20.9<br />

25.3<br />

83.3<br />

6.8<br />

31.9<br />

37.6<br />

27.3<br />

23.2<br />

18.9<br />

26.4<br />

38.9<br />

44.7<br />

13.6<br />

14.6<br />

21.4<br />

28.1<br />

31.2<br />

31.0<br />

30.8<br />

29.0<br />

57.8<br />

11.3<br />

9.0<br />

448.0<br />

391.5<br />

7.7<br />

13.8<br />

9.5<br />

13.0<br />

8.8<br />

31.6<br />

36.9<br />

10.9<br />

10.3<br />

10.4<br />

13.4<br />

31.4<br />

62.7<br />

10.1<br />

103.0<br />

21.6<br />

18.6<br />

47.4<br />

3.28<br />

3.65<br />

3.80<br />

3.97<br />

4.33<br />

3.90<br />

3.39<br />

4.30<br />

3.28<br />

4.60<br />

4.50<br />

3.27<br />

3.70<br />

4.06<br />

3.80<br />

5.25<br />

3.43<br />

4.29<br />

4.08<br />

3.37<br />

3.00<br />

4.20<br />

3.80<br />

4.26<br />

3.53<br />

4.00<br />

3.46<br />

3.57<br />

4.09<br />

4.30<br />

4.92<br />

6.59<br />

5.00<br />

4.02<br />

3.89<br />

4.63<br />

4.27<br />

4.32<br />

4.00<br />

5.00<br />

3.64<br />

3.30<br />

3.86<br />

3.78<br />

3.48<br />

3.10<br />

5.13<br />

4.00<br />

4.00<br />

3.50<br />

4.53<br />

3.25<br />

11.5<br />

10.0<br />

8.5<br />

8.0<br />

9.0<br />

9.7<br />

10.0<br />

8.0<br />

95.<br />

14.1<br />

11.2<br />

18.0<br />

19.0<br />

15.5<br />

8.5<br />

9.0<br />

10.0<br />

10.0<br />

8.1<br />

21.0<br />

9.5<br />

11.0<br />

15.0<br />

15.0<br />

11.6<br />

11.0<br />

12.0<br />

13.0<br />

11.5<br />

25.4<br />

14.0<br />

13.0<br />

33.3<br />

31.7<br />

9.4<br />

9.4<br />

8.4<br />

9.5<br />

10.0<br />

10.5<br />

10.5<br />

15.5<br />

14.3<br />

17.8<br />

13.5<br />

9.5<br />

13.3<br />

9.8<br />

21.0<br />

22.7<br />

20.3<br />

13.5<br />

Nstl<br />

prem K K 70%<br />

—<br />

8.0<br />

—<br />

—<br />

—<br />

8.0<br />

8.0<br />

7.5<br />

—<br />

12.0<br />

—<br />

12.0<br />

—<br />

—<br />

7.0<br />

—<br />

—<br />

—<br />

—<br />

—<br />

7.0<br />

—<br />

12.0<br />

13.0<br />

—<br />

—<br />

—<br />

10.0<br />

7.0<br />

—<br />

12.5<br />

11.0<br />

—<br />

25.0<br />

—<br />

8.0<br />

—<br />

—<br />

9.0<br />

8.8<br />

—<br />

—<br />

—<br />

—<br />

—<br />

—<br />

—<br />

8.0<br />

—<br />

—<br />

—<br />

—<br />

Yanes, M., and F. Suárez. 1997. Nest predation and reproductive<br />

traits in small passerines: a comparative approach. Acta Oecol.<br />

18:413–426.<br />

0.533<br />

0.489<br />

0.555<br />

0.515<br />

0.410<br />

0.564<br />

0.579<br />

0.462<br />

0.492<br />

0.491<br />

0.515<br />

0.302<br />

0.337<br />

0.439<br />

0.456<br />

0.545<br />

0.480<br />

0.511<br />

0.486<br />

0.396<br />

0.598<br />

0.435<br />

0.375<br />

0.627<br />

0.519<br />

0.646<br />

0.448<br />

0.510<br />

0.675<br />

0.312<br />

0.466<br />

0.408<br />

0.216<br />

0.264<br />

0.507<br />

0.547<br />

0.579<br />

0.538<br />

0.736<br />

0.511<br />

0.516<br />

0.433<br />

0.452<br />

0.434<br />

0.388<br />

0.522<br />

0.501<br />

0.537<br />

0.309<br />

0.442<br />

0.431<br />

0.529<br />

0.585<br />

0.484<br />

0.580<br />

—<br />

0.461<br />

0.546<br />

0.565<br />

—<br />

0.490<br />

0.448<br />

—<br />

0.296<br />

0.463<br />

0.479<br />

—<br />

0.535<br />

0.492<br />

0.462<br />

0.594<br />

0.380<br />

—<br />

0.548<br />

0.427<br />

—<br />

0.694<br />

0.632<br />

0.467<br />

0.518<br />

—<br />

0.242<br />

0.487<br />

0.342<br />

0.236<br />

0.272<br />

0.469<br />

0.398<br />

0.562<br />

0.499<br />

0.566<br />

0.511<br />

0.495<br />

0.413<br />

0.474<br />

0.394<br />

0.499<br />

0.559<br />

0.519<br />

0.598<br />

0.355<br />

0.455<br />

0.429<br />

0.550<br />

Fl<br />

mass Lat<br />

35.6<br />

14.7<br />

11.9<br />

12.0<br />

13.6<br />

15.4<br />

16.8<br />

10.5<br />

13.9<br />

18.6<br />

15.5<br />

59.8<br />

6.7<br />

33.2<br />

23.6<br />

22.1<br />

18.7<br />

14.9<br />

22.0<br />

31.3<br />

27.1<br />

9.2<br />

18.6<br />

11.8<br />

24.8<br />

24.5<br />

24.8<br />

28.9<br />

14.0<br />

53.0<br />

11.5<br />

7.4<br />

390.0<br />

303.0<br />

6.3<br />

12.7<br />

8.9<br />

11.3<br />

7.7<br />

22.1<br />

28.5<br />

10.5<br />

10.8<br />

10.1<br />

12.5<br />

22.3<br />

46.0<br />

10.3<br />

81.3<br />

20.8<br />

18.0<br />

36.7<br />

41.6<br />

31.5<br />

32.0<br />

31.5<br />

50.8<br />

40.3<br />

40.3<br />

45.0<br />

43.8<br />

45.0<br />

50.8<br />

27.3<br />

33.4<br />

41.6<br />

40.5<br />

69.5<br />

45.7<br />

49.0<br />

58.8<br />

32.2<br />

40.4<br />

59.8<br />

40.8<br />

46.9<br />

44.0<br />

40.9<br />

44.1<br />

44.6<br />

34.0<br />

46.9<br />

44.3<br />

44.0<br />

45.9<br />

49.7<br />

39.2<br />

44.0<br />

50.6<br />

—<br />

45.5<br />

43.3<br />

45.0<br />

36.4<br />

50.2<br />

37.9<br />

44.6<br />

48.9<br />

41.7<br />

43.5<br />

35.2<br />

37.9<br />

43.5<br />

40.9<br />

Corresponding Editor: T. Smith<br />

No.<br />

stud Forag Pred Ref<br />

3<br />

1<br />

1<br />

1<br />

1<br />

2<br />

2<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

2<br />

4<br />

4<br />

1<br />

1<br />

2<br />

2<br />

1<br />

1<br />

1<br />

1<br />

2<br />

1<br />

1<br />

1<br />

1<br />

1<br />

2<br />

2<br />

1<br />

1<br />

4<br />

1<br />

1<br />

1<br />

1<br />

2<br />

1<br />

1<br />

2<br />

5<br />

1<br />

2<br />

1<br />

2<br />

2<br />

1<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

a<br />

a<br />

a<br />

n<br />

n<br />

n<br />

n<br />

a<br />

a<br />

n<br />

44.40<br />

29.20<br />

68.00<br />

30.77<br />

43.00<br />

36.20<br />

24.53<br />

58.90<br />

43.20<br />

33.33<br />

32.75<br />

29.50<br />

19.50<br />

21.43<br />

54.14<br />

32.40<br />

38.46<br />

44.74<br />

25.32<br />

28.60<br />

54.00<br />

—<br />

—<br />

45.80<br />

68.53<br />

55.00<br />

60.10<br />

35.14<br />

38.70<br />

3.80<br />

41.39<br />

22.70<br />

45.61<br />

49.10<br />

61.80<br />

40.10<br />

34.20<br />

—<br />

—<br />

29.80<br />

31.20<br />

58.90<br />

53.30<br />

55.50<br />

44.20<br />

24.90<br />

45.50<br />

14.50<br />

41.20<br />

13.62<br />

10.35<br />

52.50<br />

1, 4<br />

5, 6<br />

7<br />

6, 8<br />

9, 10<br />

11, 12<br />

11, 13<br />

1, 14<br />

1, 15<br />

16<br />

9, 17<br />

1, 18<br />

19<br />

20<br />

21<br />

1, 22<br />

9, 23, 23a<br />

9, 24<br />

25<br />

1, 26<br />

1, 27, 32<br />

28<br />

29<br />

1, 30<br />

31<br />

2, 27<br />

1, 33<br />

34<br />

1, 35<br />

36<br />

1, 37<br />

1, 38<br />

39<br />

1, 40<br />

1, 41<br />

1, 42<br />

1, 43<br />

44<br />

45<br />

1, 46<br />

1, 47<br />

1, 48<br />

1, 49<br />

1, 50<br />

1, 51<br />

1, 9, 52<br />

1, 53<br />

1, 54<br />

1, 55<br />

56<br />

23a, 57<br />

1, 27


2516 V. REMESˇ AND T. E. MARTIN<br />

Species Abm Cl Nstl<br />

Hylocichla mustelina<br />

Icteria virens<br />

Junco phaeonotus<br />

Lanius ludovicianus<br />

Leucosticte tephrocotis<br />

Melospiza lincolnii<br />

Melospiza melodia<br />

Mimus polyglottos<br />

Myioborus pictus<br />

Myiodynastes luteiventris<br />

Oporornis formosus<br />

Oreoscoptes montanus<br />

Parus atricapillus<br />

Passerculus sandwichensis<br />

Passerina amoena<br />

Pheuticus melanocephalus<br />

Pica pica<br />

Pipilo aberti<br />

Pipilo erythrophthalmus<br />

Piranga olivacea<br />

Piranga rubra<br />

Plectrophenax nivalis<br />

Pooecetes gramineus<br />

Progne subis<br />

Protonotaria citrea<br />

Quiscalus major<br />

Quiscalus mexicanus<br />

Quiscalus quiscula<br />

Riparia riparia<br />

Sayornis nigricans<br />

Sayornis phoebe<br />

Seiurus aurocapillus<br />

Seiurus motacilla<br />

Setophaga ruticilla<br />

Sialia currucoides<br />

Sialia mexicana<br />

Sialia sialis<br />

Spizella arborea<br />

Spizella breweri<br />

Spizella pallida<br />

Spizella passerina<br />

Spizella pusilla<br />

Stelgidopteryx serripennis<br />

Sturnella neglecta<br />

Tachycineta bicolor<br />

Tachycineta thalassina<br />

Toxostoma curvirostre<br />

Toxostoma longirostre<br />

Toxostoma rufum<br />

Troglodytes aedon<br />

Turdus migratorius<br />

Tyrannus forficatus<br />

Tyrannus tyrannus<br />

Tyrannus verticalis<br />

Vermivora peregrina<br />

Vireo atricapillus<br />

Vireo belli<br />

Vireo griseus<br />

Vireo olivaceus<br />

Xanthocephalus<br />

xanthocephalus<br />

Zonotrichia albicollis<br />

Zonotrichia <strong>atricapilla</strong><br />

Zonotrichia leucophrys<br />

Zonotrichia querula<br />

25.3<br />

20.4<br />

47.4<br />

26.3<br />

17.4<br />

20.8<br />

48.5<br />

7.9<br />

46.3<br />

14.0<br />

43.3<br />

10.8<br />

20.1<br />

15.5<br />

44.5<br />

177.5<br />

46.0<br />

40.5<br />

28.6<br />

29.0<br />

42.2<br />

25.7<br />

49.4<br />

16.2<br />

166.5<br />

149.0<br />

113.5<br />

14.6<br />

18.7<br />

19.8<br />

19.4<br />

20.3<br />

8.3<br />

29.0<br />

28.1<br />

31.6<br />

20.1<br />

10.4<br />

12.0<br />

12.3<br />

12.5<br />

15.9<br />

97.7<br />

20.1<br />

14.2<br />

79.4<br />

69.9<br />

68.8<br />

10.9<br />

77.3<br />

43.2<br />

39.5<br />

39.6<br />

10.0<br />

8.5<br />

8.5<br />

11.4<br />

16.7<br />

64.6<br />

25.9<br />

28.8<br />

28.1<br />

36.3<br />

3.69<br />

3.54<br />

5.40<br />

4.48<br />

4.24<br />

3.88<br />

3.70<br />

3.40<br />

3.42<br />

4.12<br />

3.80<br />

7.00<br />

4.13<br />

3.37<br />

3.40<br />

6.48<br />

2.85<br />

3.30<br />

3.53<br />

3.20<br />

5.71<br />

4.00<br />

4.52<br />

4.61<br />

2.77<br />

3.50<br />

4.80<br />

4.38<br />

4.16<br />

4.58<br />

4.20<br />

5.00<br />

3.92<br />

5.39<br />

5.00<br />

4.40<br />

4.96<br />

3.27<br />

4.00<br />

3.60<br />

3.83<br />

6.25<br />

5.10<br />

5.45<br />

4.40<br />

3.12<br />

3.75<br />

3.60<br />

6.34<br />

3.30<br />

4.58<br />

3.40<br />

3.89<br />

5.50<br />

4.00<br />

3.40<br />

3.74<br />

3.20<br />

3.78<br />

4.15<br />

4.48<br />

3.90<br />

3.92<br />

8.9<br />

11.5<br />

18.1<br />

18.5<br />

10.5<br />

10.8<br />

12.0<br />

13.0<br />

17.0<br />

8.5<br />

11.9<br />

16.0<br />

9.3<br />

10.0<br />

11.5<br />

28.4<br />

12.5<br />

10.5<br />

10.0<br />

9.5<br />

12.8<br />

10.5<br />

28.5<br />

10.0<br />

13.5<br />

12.0<br />

13.5<br />

19.4<br />

19.5<br />

17.0<br />

8.5<br />

10.0<br />

9.0<br />

19.5<br />

21.4<br />

18.0<br />

9.0<br />

8.00<br />

8.00<br />

10.5<br />

7.5<br />

19.3<br />

11.0<br />

20.0<br />

23.5<br />

15.0<br />

13.0<br />

10.8<br />

17.0<br />

13.0<br />

15.4<br />

16.5<br />

16.0<br />

11.5<br />

10.5<br />

11.3<br />

10.0<br />

11.0<br />

10.5<br />

8.5<br />

9.8<br />

9.3<br />

9.1<br />

APPENDIX 1<br />

Continued.<br />

Nstl<br />

prem K K 70%<br />

—<br />

—<br />

—<br />

—<br />

—<br />

—<br />

10.0<br />

10.0<br />

—<br />

7.0<br />

—<br />

12.0<br />

8.0<br />

8.0<br />

—<br />

—<br />

—<br />

7.5<br />

—<br />

—<br />

—<br />

—<br />

—<br />

9.0<br />

—<br />

—<br />

—<br />

—<br />

14.5<br />

12.0<br />

—<br />

9.0<br />

7.5<br />

—<br />

—<br />

—<br />

—<br />

—<br />

—<br />

8.0<br />

5.0<br />

—<br />

8.0<br />

17.0<br />

—<br />

—<br />

—<br />

—<br />

—<br />

—<br />

—<br />

—<br />

—<br />

—<br />

—<br />

—<br />

—<br />

—<br />

—<br />

—<br />

—<br />

7.8<br />

—<br />

0.528<br />

0.457<br />

0.370<br />

0.363<br />

0.574<br />

0.484<br />

0.514<br />

0.557<br />

0.355<br />

0.680<br />

0.480<br />

0.402<br />

0.519<br />

0.480<br />

0.358<br />

0.223<br />

0.497<br />

0.519<br />

0.431<br />

0.704<br />

0.569<br />

0.612<br />

0.306<br />

0.654<br />

0.403<br />

0.422<br />

0.458<br />

0.377<br />

0.450<br />

0.425<br />

0.473<br />

0.590<br />

0.613<br />

0.369<br />

0.487<br />

0.463<br />

0.543<br />

0.543<br />

0.532<br />

0.558<br />

0.656<br />

0.478<br />

0.469<br />

0.511<br />

0.357<br />

0.403<br />

0.5456<br />

0.471<br />

0.515<br />

0.519<br />

0.382<br />

0.438<br />

0.413<br />

0.654<br />

0.412<br />

0.576<br />

0.486<br />

0.554<br />

0.492<br />

0.513<br />

0.636<br />

0.564<br />

0.541<br />

—<br />

0.472<br />

0.416<br />

0.479<br />

0.492<br />

0.480<br />

0.504<br />

0.478<br />

0.386<br />

0.530<br />

0.463<br />

0.431<br />

0.511<br />

0.604<br />

0.385<br />

0.324<br />

0.497<br />

—<br />

0.477<br />

—<br />

0.556<br />

0.600<br />

0.364<br />

0.520<br />

—<br />

—<br />

—<br />

0.277<br />

0.416<br />

0.414<br />

0.550<br />

0.575<br />

0.575<br />

0.541<br />

0.476<br />

0.436<br />

0.539<br />

0.631<br />

0.497<br />

0.539<br />

0.677<br />

0.449<br />

—<br />

0.491<br />

0.589<br />

—<br />

—<br />

—<br />

0.471<br />

0.466<br />

0.388<br />

0.457<br />

0.459<br />

0.558<br />

0.357<br />

0.737<br />

0.526<br />

0.559<br />

0.495<br />

0.506<br />

0.557<br />

0.567<br />

—<br />

Fl<br />

mass Lat<br />

16.3<br />

17.7<br />

44.3<br />

40.5<br />

14.7<br />

17.8<br />

35.0<br />

8.8<br />

39.0<br />

12.5<br />

38.0<br />

11.3<br />

15.4<br />

12.6<br />

33.0<br />

180.5<br />

31.3<br />

0.24.7<br />

20.5<br />

18.2<br />

30.4<br />

17.5<br />

52.0<br />

12.7<br />

77.7<br />

100.5<br />

60.5<br />

14.5<br />

18.7<br />

17.5<br />

13.5<br />

17.1<br />

7.7<br />

25.8<br />

25.1<br />

27.2<br />

16.7<br />

9.6<br />

10.3<br />

10.6<br />

8.9<br />

14.1<br />

40.0<br />

20.6<br />

16.5<br />

46.6<br />

37.3<br />

41.5<br />

10.2<br />

56.9<br />

30.1<br />

31.8<br />

36.0<br />

7.3<br />

8.2<br />

8.1<br />

10.4<br />

13.8<br />

45.1<br />

20.3<br />

23.1<br />

20.2<br />

24.5<br />

40.0<br />

31.9<br />

39.5<br />

51.5<br />

40.5<br />

40.0<br />

28.2<br />

36.0<br />

32.0<br />

38.0<br />

44.0<br />

42.4<br />

43.3<br />

42.0<br />

37.6<br />

49.7<br />

33.6<br />

39.6<br />

42.5<br />

39.0<br />

71.4<br />

43.1<br />

42.3<br />

42.2<br />

28.0<br />

30.6<br />

40.9<br />

42.7<br />

36.0<br />

39.0<br />

41.6<br />

42.4<br />

43.5<br />

46.3<br />

46.0<br />

42.5<br />

58.5<br />

42.8<br />

53.5<br />

43.3<br />

41.6<br />

42.2<br />

50.8<br />

45.1<br />

48.8<br />

30.2<br />

28.2<br />

39.0<br />

49.5<br />

42.4<br />

39.0<br />

40.2<br />

39.0<br />

49.8<br />

32.0<br />

32.0<br />

36.8<br />

43.5<br />

42.9<br />

45.8<br />

55.2<br />

47.9<br />

63.7<br />

No.<br />

stud Forag Pred Ref<br />

1<br />

1<br />

2<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

2<br />

1<br />

4<br />

1<br />

1<br />

2<br />

1<br />

2<br />

1<br />

1<br />

1<br />

2<br />

1<br />

1<br />

1<br />

1<br />

3<br />

2<br />

1<br />

1<br />

2<br />

1<br />

1<br />

3<br />

1<br />

2<br />

1<br />

3<br />

1<br />

4<br />

4<br />

1<br />

1<br />

3<br />

1<br />

2<br />

1<br />

1<br />

3<br />

2<br />

1<br />

3<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

5<br />

1<br />

1<br />

6<br />

1<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

a<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

a<br />

n<br />

n<br />

n<br />

n<br />

a<br />

a<br />

a<br />

n<br />

n<br />

n<br />

a<br />

a<br />

a<br />

n<br />

n<br />

n<br />

n<br />

n<br />

a<br />

n<br />

a<br />

a<br />

n<br />

n<br />

n<br />

n<br />

n<br />

a<br />

a<br />

a<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

n<br />

52.90<br />

26.00<br />

19.40<br />

16.70<br />

42.00<br />

28.10<br />

47.10<br />

37.90<br />

—<br />

30.00<br />

32.00<br />

19.70<br />

43.40<br />

35.00<br />

34.00<br />

29.00<br />

63.80<br />

51.90<br />

32.60<br />

64.00<br />

27.90<br />

52.90<br />

6.25<br />

31.00<br />

41.24<br />

31.08<br />

19.35<br />

—<br />

7.29<br />

15.90<br />

24.50<br />

—<br />

37.80<br />

10.81<br />

29.59<br />

48.60<br />

—<br />

20.50<br />

54.20<br />

41.20<br />

60.40<br />

19.00<br />

46.90<br />

29.44<br />

5.70<br />

40.20<br />

62.00<br />

29.00<br />

28.50<br />

40.20<br />

25.95<br />

32.70<br />

37.60<br />

40.00<br />

39.10<br />

38.50<br />

17.02<br />

24.90<br />

34.40<br />

41.30<br />

37.00<br />

51.10<br />

30.00<br />

1, 58<br />

2, 59<br />

1, 23a, 60<br />

61<br />

2, 62<br />

1, 63<br />

1, 64<br />

65<br />

66<br />

1, 67<br />

68<br />

1, 69<br />

1, 9, 70<br />

71<br />

1, 72<br />

73<br />

1, 74<br />

1, 27, 75<br />

1, 76<br />

77<br />

1, 78<br />

1, 79<br />

80<br />

1, 81<br />

82<br />

83<br />

84<br />

85<br />

86<br />

1, 87<br />

1, 27, 88<br />

89<br />

1, 90<br />

91, 92<br />

92<br />

1, 93<br />

94<br />

1, 23a, 95<br />

1, 96<br />

1, 97<br />

1, 98<br />

2, 99<br />

1, 9<br />

1, 100<br />

101<br />

1, 102<br />

103<br />

1, 104<br />

1, 105<br />

1, 106<br />

107<br />

1, 87, 108<br />

1, 108<br />

109<br />

110<br />

1, 110<br />

111<br />

1, 112<br />

1, 113<br />

1, 114<br />

115<br />

1, 116, 117<br />

1, 117


APPENDIX 2<br />

Sources of growth rate (G) and nest predation (P) data in Appendix<br />

1 (for sources of other variables, see Methods).<br />

(1) Martin 1995 (P); (2) Conway and Martin 2000 (P); (3) Starck<br />

and Ricklefs 1998b (G); (4) Williams 1940, Holcomb and Twiest<br />

1968, Cronmiller and Thompson 1980 in 3 (G); (5) Webb and Bock<br />

1996, no. 216 in 118 (P); (6) Maurer, B. A., E. A. Webb, and R.<br />

K. Bowers. 1989. Nest characteristics and nestling development of<br />

Cassin’s and Botteri’s sparrows in southeastern Arizona. Condor<br />

91:736–738 (G); (7) Lowther et al. 1999, no. 422 in 118 (P); Austin<br />

and Ricklefs 1977 in 3 (G); (8) Dunning et al. 1999, no. 471 in<br />

118 (P); (9) Maher, W. J. 1972. Growth of ground-nesting passerine<br />

birds at Matador, Saskatchewan, Canada. Pp. 85–102 in S. C. Kendeigh<br />

and J. Pinowski, eds. Productivity, population dynamics and<br />

systematics of granivorous birds. Polish Scientific Publishers, Warszawa<br />

(G); (10) Davis, S. K., and S. G. Sealy. 1998. Nesting biology<br />

of the Baird’s sparrow in southwestern Manitoba. Wilson Bull. 110:<br />

262–270 (P); (11) Woolfenden 1956 in 3 (G); (12) Greenlaw and<br />

Rising 1994, no. 112 in 118 (G, P); (13) Post and Greenlaw 1994,<br />

no. 127 in 118 (G); Post, W. 1981. The influence of rice rats Oryzomys<br />

palustris on the habitat use of the seaside sparrow Ammospiza<br />

maritima. Behav. Ecol. Sociobiol. 9:35–40 (P); Post, W. 1974. Functional<br />

analysis of space-related behavior in the seaside sparrow.<br />

Ecology 55:564–575 (P); (14) Walkinshaw, L. H. 1940. Some Michigan<br />

notes on the grasshopper sparrow. Jack-Pine Warbler 18:50–<br />

59 (G); (15) Petersen et al. 1986 in 3 (G); (16) Verbeek, N. A. M.<br />

1970. Breeding ecology of the water pipit. Auk 87:425–451 (G, P);<br />

(17) Maher, W. J. 1973. Birds. I. Population dynamics. Canadian<br />

Committee for the International Biological Programme (Matador<br />

project) Technical report no. 34. Univ. of Saskatchewan, Saskatoon<br />

(P); (18) Woolfenden 1978 in 3 (G); (19) Taylor, W. K. 1971. A<br />

breeding biology study of the Verdin, Auriparus flaviceps (Sundevall)<br />

in Arizona. Am. Midl. Nat. 85:289–328 (G, P); Austin, G.<br />

T. 1977. Production and survival of the Verdin. Wilson Bull. 89:<br />

572–582 (P); (20) Putnam 1949 in 3 (G); Young, H. 1949. A comparative<br />

study of nesting birds in a five-acre park. Wilson Bull. 61:<br />

36–47 (P); (21) Shane 2000, no. 542 in 118 (G, P); (22) Maher<br />

1964, Fox et al. 1987 in 3 (G); (23) Mickey 1943 in 3 (G); With<br />

1994, no. 96 in 118 (G); (23a) Porter, D. K., and R. A. Ryder.<br />

1974. Avian density and productivity studies and analysis on the<br />

pawnee site in 1972. Grassland biome US International Biological<br />

Program Technical Report no. 252 (G, P); (24) Hill and Gould 1997,<br />

no. 288 in 118 (G); O’Grady, D. R., D. P. Hill, and R. M. R. Barelay.<br />

1996. Nest visitation by humans does not increase pred on chestnutcollared<br />

longspur eggs and young. J. Field Ornithol. 67:275–280<br />

(P); (25) Jehl, J. R., Jr. 1968. The breeding biology of Smith’s<br />

longspur. Wilson Bull. 80:123–149 (G); Briskie 1993, no. 34 in<br />

118 (P); (26) Anderson and Anderson 1961 in 3 (G); (27) Norris<br />

1947 in 3 (G); (28) Grinnell 1943 in 3 (G); Walkinshaw, L. H.<br />

1948. Nesting of some passerine birds in western Alaska. Condor<br />

50:64–70 (G); (29) Perry 1965 in 3 (G); (30) Badyaev, A. V., and<br />

T. E. Martin. 2000. Individual variation in growth trajectories: phenotypic<br />

and genetic correlations in ontogeny of house finch (Carpodacus<br />

mexicanus). J. Evol. Biol. 13:290–301 (G); (31) Wallace<br />

1939 in Rimmer, C. C., K. P. McFarland, W. G. Ellison, and J. E.<br />

Goetz. 2001. Bicknell’s thrush (Catharus bicknelli) in A. Poole and<br />

F. Gill, eds. The birds of North America. no. 592. The Birds of<br />

North America, Inc., Philadelphia, PA (G); BBIRD database,<br />

MCWRU, Univ. of Montana, Missoula (P); (32) Eckerle, K. P., and<br />

R. Breitwisch. 1997. Reproductive success of the northern cardinal,<br />

a large host of brown-headed cowbirds. Condor 99:169–178 (G);<br />

(33) Perry, E. M., and W. A. Perry. 1918. Home life of the vesper<br />

sparrow and the hermit thrush. Auk 35:310–321 (G); Gross, A. O.<br />

1964. Eastern hermit thrush (Hylocichla guttata faxoni Bangs and<br />

Penard). Pp. 143–162 in A. C. Bent. Life histories of North American<br />

thrushes, kinglets and their allies. Dover Publications, Inc.,<br />

New York (G); (34) Stanwood 1913 in 3 (G); Evans Mack and<br />

Yong 2000, no. 540 in 118 (P); (35) Martin and Parrish 2000, no.<br />

488 in 118 (G); (36) Sullivan, J. O. 1973. Ecology and behavior<br />

of the dipper: adaptations of a passerine to an aquatic environment.<br />

Ph.D. diss., University of Montana, Missoula (G, P); (37) Welter,<br />

W. A. 1935. The natural history of the long-billed marsh wren.<br />

Wilson Bull. 47:3–34 (G, P); (38) Crawford, R. D. 1977. Polygy-<br />

GROWTH STRATEGIES OF PASSERINES<br />

2517<br />

nous breeding of short-billed marsh wrens. Auk 94:359–362 (G);<br />

(39) Parmalee 1952 in 3 (G); Ignatiuk, J. B., and R. G. Clark. 1991.<br />

Breeding biology of American crow in Saskatchewan, Canada,<br />

parkland habitat. Can. J. Zool. 69:168–175 (G); Caffrey, C. 2000.<br />

Correlates of reproductive success in cooperatively breeding western<br />

American crows: if helpers help, it’s not by much. Condor 102:<br />

333–341 (P); (40) Butler et al. 1984 in 3 (G); Verbeek, N. A. M.<br />

1995. Body temperature and growth of nestling northwestern crows,<br />

Corvus caurinus. Can. J. Zool. 73:1019–1023 (G); (41) Nolan, V.,<br />

Jr. 1978. The ecology and behavior of the prairie warbler Dendroica<br />

discolor. Ornithological Monographs no. 26. The American Ornithologists’<br />

Union (G); (42) Mayfield 1960 in 3 (G); (43) Schrantz<br />

1943 in 3 (G); Biermann, G. C., and S. G. Sealy. 1982. Parental<br />

feeding of nestling yellow warblers in relation to brood size and<br />

prey availability. Auk 99:332–341 (G); Weatherhead, P. J. 1989.<br />

Sex ratios, host-specific reproductive success, and impact of brownheaded<br />

cowbirds. Auk 106:358–366 (G); Briskie, J. V. 1995. Nesting<br />

biology of the yellow warbler at the northern limit of its range.<br />

J. Field Ornithol. 66:531–543 (G); (44) Hunt and Eliason 1999, no.<br />

431 in 118 (G); (45) Pitelka, F. A. 1940. Breeding behavior of the<br />

black-throated green warbler. Wilson Bull. 52:3–18 (G); (46) Martin,<br />

S. G. 1974. Adaptations for polygynous breeding in the bobolink,<br />

Dolichonyx oryzivorus. Am. Zool. 14:109–119 (G); (47) Zimmerman,<br />

J. L. 1963. A nesting study of the catbird in southern<br />

Michigan. Jack-Pine Warbler 41:142–160 (G); (48) Davis et al.<br />

1963 in 3 (G); Lowther 2000, no. 556 in 118 (G); (49) Briskie, J.<br />

V., and S. G. Sealy. 1989. Determination of clutch size in the least<br />

flycatcher. Auk 106:269–278 (G); (50) Pereyra, M. E., and M. L.<br />

Morton. 2001. Nestling growth and thermoregulatory development<br />

in subalpine dusky flycatchers. Auk 118:116–136 (G); (51) King<br />

1955 in 3 (G); Walkinshaw, L. H. 1966. Summer biology of Traill’s<br />

flycatcher. Wilson Bull. 78:31–46 (G); (52) Pickwell 1931, Beason<br />

and Franks 1973, Cunnings and Threlfall 1981 in 3 (G); Maher,<br />

W. J. 1980. Growth of the horned lark at Rankin Inlet, Northwest<br />

Territories. Can. Field-Nat. 94:405–410 (G); (53) Balph 1975 in 3<br />

(G); (54) Stewart 1953 in 3 (G); Hofslund, P. B. 1959. A life history<br />

study of the yellowthroat, Geothlypis trichas. Proc. Minn. Acad.<br />

Sci. 27:144–174 (G); (55) Bateman and Balda 1973 in 3 (G); (56)<br />

Stoner 1945, Chapman and George 1991 in 3 (G); Brown, C. R.,<br />

and M. B. Brown. 1996. Coloniality in the cliff swallow. University<br />

of Chicago Press, Chicago, (P); (57) Stoner 1935 in 3 (G); Shields,<br />

W. M., and J. R. Crook. 1987. Barn swallow coloniality: a net cost<br />

for group breeding in the Adirondacks? Ecology 68:1373–1386 (G);<br />

(58) Eckerle and Thompson 2001, no. 575 in 118 (G); (59) Weathers,<br />

W. W., and K. A. Sullivan. 1991. Growth and energetics of<br />

nestling yellow-eyed juncos. Condor 93:138–146 (G); (60) Miller,<br />

A. H. 1931. Systematic revision and natural history of American<br />

shrikes (Lanius). Univ. Calif. Publ. Zool. 38:11–242 (G); (61) Yarbrough,<br />

C. G. 1970. The development of endothermy in nestling<br />

gray-crowned rosy finches, L. t. griseonucha. Comp. Biochem. Physiol.<br />

34:917–925 (G); Twining, H. 1940. Foraging behavior and<br />

survival in the Sierra Nevada rosy finch. Condor 42:64–72 (P); (62)<br />

Ammon 1995, no. 191 in 118 (G); (63) Nice 1937 in 3 (G); (64)<br />

Fischer 1983 in 3 (G); (65) Marshall, J., and R. P. Balda. 1974.<br />

The breeding ecology of the painted redstart. Condor 76:89–101<br />

(G, P); Christoferson, L. L., and M. L. Morrison. 2001. Integrating<br />

methods to determine breeding and nesting status of 3 western<br />

songbirds. Wildl. Soc. Bull. 29:688–696 (P); (66) Ligon, J. D. 1971.<br />

Notes on the breeding of the sulphur-bellied flycatcher in Arizona.<br />

Condor 73:250–252 (G); (67) McDonald 1998, no. 324 in 118 (G);<br />

(68) Reynolds et al. 1999, no. 463 in 118 (G); Rotenberry, J. T.,<br />

and J. A. Wiens. 1989. Reproductive biology of shrubsteppe passerine<br />

birds: geographical and temporal variation in clutch size,<br />

brood size and fledging success. Condor 91:1–14 (P); (69) Kluyver<br />

1961 in 3 (G); (70) Williams and Prints 1986 in 3 (G); Threlfall,<br />

W, and R. J. Cannings. 1979. Growth of nestling savannah sparrows.<br />

Bird-Banding 50:164–166 (G); Rogers, C. M. 1985. Growth rate<br />

and determinants of fledging weight in Michigan-breeding savannah<br />

sparrows. Condor 87:302–303 (G); (71) Greene et al. 1996, no. 232<br />

in 118 (G, P); (72) Weston, H. G., Jr. 1955. Notes on the development<br />

of immature black-headed grosbeaks (Pheuticus melanocephalus).<br />

Proc. Iowa Acad. Sci. 61:636–646 (G); (73) Dhindsa,<br />

M. S., and D. A. Boag. 1990. The effect of food supplementation


2518 V. REMESˇ AND T. E. MARTIN<br />

on the reproductive success of black-billed magpies Pica pica. Ibis<br />

132:595–602 (G); Todd, K. S., Jr. 1968. Weights of black-billed<br />

magpies from southwestern Montana. Auk 85:508–510 (G); Reese,<br />

K. P., and J. A. Kadlec. 1985. Influence of high density and parental<br />

age on the habitat selection and reproduction of black-billed magpies<br />

Pica pica hudsonia. Condor 87:96–105 (P); (74) Finch 1984<br />

in 3 (G); (75) Barbour, R. W. 1950. Growth and feather development<br />

of towhee nestlings. Am. Midl. Nat. 44:742–749 (G); (76) Prescott,<br />

K. W. 1965. The scarlet tanager Piranga olivacea. NJ State Museum<br />

Investigations no. 2. New Jersey State Museum, Trenton (G); (77)<br />

Fitch, H. S., and V. R. Fitch. 1955. Observations on the summer<br />

tanager in northeastern Kansas. Wilson Bull. 67:45–54 (G); White,<br />

D. H., B. R. Chapman, J. H. Brunjes IV, R. V. Raftovich, Jr., and<br />

J. T. Segniak. 1999. Abundance and reproduction of songbirds in<br />

burned and unburned pine forests of the Georgia Piedmont. J. Field<br />

Ornithol. 70:414–424 (P); (78) Maher 1964 in 3 (G); (79) Perry,<br />

E. M., and W. A. Perry. 1918. Home life of the vesper sparrow and<br />

the hermit thrush. Auk 35:310–321 (G); Dawson and Evans 1960<br />

in 3 (G); (80) Allen, R. W., and M. M. Nice. 1952. A study of the<br />

breeding biology of the purple martin (Progne subis). Am. Midl.<br />

Nat. 47:606–665 (G); Stutchbury, B. J. 1991. Coloniality and breeding<br />

biology of purple martins Progne subis hisperia in saguaro cacti.<br />

Condor 93:666–675 (P); (81) Walkinshaw, L. H. 1938. Nesting<br />

studies of the prothonotary warbler. Bird-Banding 9:32–46 (G); (82)<br />

Bancroft 1984 in 3 (G); Dunham, M. L. 1990. Nest site selection<br />

by boat-tailed grackles. Wilson Bull. 102:702–706 (P); (83) Gotie<br />

and Kroll 1973 in 3 (G); McIIhenny, E. A. 1937. Life history of<br />

the boat-tailed grackle in Louisiana. Auk 54:274–295 (P); (84) Willson,<br />

M. F., R. D. St. John, R. J. Lederer, and S. J. Muzos. 1971.<br />

Clutch size in grackles. Bird-Banding 42:28–35 (G); Hamel, P. B.<br />

1974. Age and sex determination of nestling common grackles.<br />

Bird-Banding 45:16–23 (G); Peer, B. D., and E. K. Bollinger. 1997.<br />

Explanation for the infrequent cowbird parasitism in common<br />

grackles. Condor 99:151–161 (G); Peterson, A., and H. Young.<br />

1950. A nesting study of the bronzed grackle. Auk 67:466–476 (P);<br />

(85) Petersen, A. J. 1955. The breeding cycle in the bank swallow.<br />

Wilson Bull. 67:235–286 (G); Marsh, R. L. 1979. Development of<br />

endothermy in nestling barn swallows (Riparia riparia). Physiol.<br />

Zool. 52:340–353 (G); (86) Wolf, B. O. 1991. The reproductive<br />

biology and natural history of the black phoebe (Sayornis nigricans<br />

Swainson) in central California. M. A. thesis, California State University<br />

San Jose (G); Wolf 1997, no. 268 in 118 (P); (87) Murphy,<br />

M. T. 1981. Growth and aging of nestling eastern kingbirds and<br />

eastern phoebes. J. Field Ornithol. 52:309–316 (G); (88) Hann 1937<br />

in 3 (G); (89) Eaton 1958 in 3 (G); (90) Baker 1944 in 3 (G); (91)<br />

Power, H. W., III. 1966. Biology of the mountain bluebird in Montana.<br />

Condor 68:351–371 (G); Herlugson, C. J. 1983. Growth of<br />

nestling mountain bluebirds. J. Field Ornithol. 54:259–265 (G); (92)<br />

McCluskey, D. C., J. W. Thomas, and E. C. Meslow. 1977. Effects<br />

of aerial application of DDT on reproduction in house wrens and<br />

mountain and western bluebirds. USDA Forest Service Research<br />

Paper PNW-228. Pacific northwest forest and range experimental<br />

station. USDA Forest Service, Portland, OR (G, P); (93) Hamilton<br />

1943 in 3 (G); Pinkowski, B. C. 1975. Growth and development of<br />

eastern bluebirds. Bird-Banding 46:273–289 (G); (94) Baumgartner,<br />

A. M. 1938. A study of development of young tree sparrows<br />

at Churchill, Manitoba. Bird-Banding 9:69–79 (G); (95) Petersen<br />

et al. 1986 in 3 (G); Rotenberry et al. 1999, no. 390 in 118 (G);<br />

(96) Salt, W. R. 1966. A nesting study of Spizella pallida. Auk 83:<br />

274–281 (G); (97) Weaver 1937, Walkinshaw 1944, Dawson and<br />

Evans 1957, Reynolds 1984 in 3 (G); (98) Walkinshaw 1936, Dawson<br />

and Evans 1957, Best 1977 in 3 (G); Carey, M. 1990. Effects<br />

of brood size and nestling age on parental care by male field sparrows<br />

(Spizella pusilla). Auk 107:580–586 (G); (99) Lunk, W. A.<br />

1962. The rough-winged swallow: a study based on its breeding<br />

biology in Michigan. Bulletin of the Nuttall Ornithological Club<br />

no. 4 (G); (100) Paynter 1954 in 3 (G); Zach, R., and K. R. Mayoh.<br />

1982. Weight and feather growth of nestling tree swallows. Can.<br />

J. Zool. 60:1080–1090 (G); Quinney, T. E., D. J. T. Hussell, and<br />

C. D. O. Ankney. 1986. Sources of variation in growth of tree<br />

swallows. Auk 103:389–400 (G); Finch, D. M. 1990. Effects of<br />

predation and competitor inference on nesting success of house<br />

wrens and tree swallows. Condor 92:674–687 (P); (101) Edson 1943<br />

in 3 (G); Brawn, J. D. 1987. Density effects on reproduction of<br />

cavity nesters in north Arizona. Auk 104:783–788 (P); (102) Rand<br />

1941, Fischer 1983 in 3 (G); (103) Fischer 1983 in 3 (G); Fischer,<br />

D. H. 1980. Breeding biology of curve-billed thrashers Toxostoma<br />

curvirostre and long-billed thrasher Toxostoma longirostre in southern<br />

Texas, USA. Condor 82:392–397 (P); (104) Cavitt and Haas<br />

2000, no. 557 in 118 (G); (105) Edson 1930 in 3 (G); Huggins, S.<br />

E. 1940. Relative growth in the house wren. Growth 4:225–236<br />

(G); Zach, R. 1982. Nestling house wrens: weight and feather<br />

growth. Can. J. Zool. 60:1417–1425 (G); (106) Hamilton 1935,<br />

Howell 1942 in 3 (G); (107) Murphy 1988 in 3 (G); Nolte, K. R.,<br />

and T. E. Fulbright. 1996. Nesting ecology of scissor-tailed flycatchers<br />

in South Texas. Wilson Bull. 108:302–316 (P); (108) Murphy<br />

1983, 1988 in 3 (G); (109) Holmes, S. B. 1998. Reproduction<br />

and nest behaviour of Tennessee warblers Vermivora peregrina in<br />

forests treated with Lepidoptera-specific insecticides. J. Appl. Ecol.<br />

35:185–194 (G); Rimmer and McFarland 1998, no. 350 in 118 (P);<br />

(110) Graber, J. W. 1961. Distribution, habitat requirements, and<br />

life history of the black-capped vireo (Vireo <strong>atricapilla</strong>). Ecol. Monogr.<br />

31:313–336 (G, P); (111) Hopp et al. 1995, no. 168 in 118 (G,<br />

P); (112) Southern, W. E. 1958. Nesting of the red-eyed vireo in<br />

the Douglas Lake Region, Michigan. Jack-Pine Warbler 36:185–<br />

207 (G); (113) Fautin 1941, Willson 1966, Richter 1983 in 3 (G);<br />

Richter, W. 1984. Nestling survival and growth in the yellow-headed<br />

blackbird, Xanthocephalus xanthocephalus. Ecology 65:597–608<br />

(G); Ortega, C. P., and A. Cruz. 1992. Differential growth patterns<br />

of nestling Brown-headed Cowbirds and Yellow-headed Blackbirds.<br />

Auk 109:368–376 (G); (114) Knapton 1984 in 3 (G); (115) Hendrick<br />

1987 in 3 (G); Norment et al. 1998, no. 352 in 118 (P); (116) Banks<br />

1959, Morton et al. 1972 in 3 (G); King, J. R., and J. D. Hubbard.<br />

1981. Comparative patterns of nestling growth in white-crowned<br />

sparrows. Condor 83:362–369 (G); (117) Norment, C. J. 1992. Comparative<br />

breeding biology of Harris’ sparrows and Gambel’s whitecrowned<br />

sparrows in the northwest territories of Canada. Condor<br />

94:955–975 (G); (118) Poole and Gill 1992–2002.


The evolution of fledging age in songbirds<br />

D. A. ROFF,*V.REMES ˇ &T.E.MARTINà<br />

*Department of Biology, University of California, Riverside, CA, USA<br />

Laboratory of Ornithology, Faculty of Science, Palacky´ University, Olomouc, Czech Republic<br />

àUS Geological Survey Biological Resources Discipline, Montana Cooperative Wildlife Research Unit, University of Montana, Missoula, MT, USA<br />

Keywords:<br />

age at maturity;<br />

evolution;<br />

fledging age;<br />

logistic growth;<br />

nest mortality;<br />

optimality;<br />

passerines.<br />

Introduction<br />

Abstract<br />

The central equation of life history theory is the Euler or<br />

characteristic equation, which comprises the age-schedules<br />

of reproduction and mortality and the Malthusian<br />

parameter, r, the last parameter being a measure of<br />

fitness (Fisher, 1930; Charlesworth, 1994; Roff, 2002).<br />

An analysis of the Euler equation shows that an important<br />

determinant of fitness is the age at first reproduction<br />

(Lewontin, 1965; reviewed in Roff, 1992). The evolution<br />

of this trait is the result of the integration of two other<br />

classes of traits, namely growth rate parameters and agespecific<br />

mortality rates. The importance of age-specific<br />

mortality rates on the evolution of the age at first<br />

reproduction is obvious. However, the influence of<br />

growth rate parameters is indirect, with their effects, in<br />

large measure, acting via effects on mortality rates and<br />

body size. The latter trait does not itself enter directly into<br />

the Euler equation but is important because it typically<br />

Correspondence: Derek A. Roff, Department of Biology, University of<br />

California, Riverside, CA 92521, USA.<br />

Tel.: 951 827 2437; fax: 951 827 4286; e-mail: Derek.roff@ucr.edu<br />

doi:10.1111/j.1420-9101.2005.00958.x<br />

In birds with altricial young an important stage in the life history is the age at<br />

fledging. In this paper we use an approach proven successful in the prediction<br />

of the optimal age at maturity in fish and reptiles to predict the optimal age of<br />

fledging in passerines. Integrating the effects of growth on future fecundity<br />

and survival leads to the prediction that the optimal age at fledging is given by<br />

a function that comprises survival to maturity, the exponent of the fecunditybody<br />

size relationship and nestling growth. Growth is described by the logistic<br />

equation with parameters, A, K and ti. Assuming that the transitional mortality<br />

curve can be approximated by the nestling mortality, M n, the optimal fledging<br />

age, tf, is given by a simple formula involving the three growth parameters,<br />

nestling mortality (Mn) and the exponent (d) of the fecundity-body size<br />

relationship. Predictions of this equation underestimate the true values by<br />

11–16%, which is expected as a consequence of the transitional mortality<br />

function approximation. A transitional mortality function in which mortality<br />

is approximately 0.3–0.4 of nesting mortality (i.e. mortality declines rapidly<br />

after fledging) produces predictions which, on average, equal the observed<br />

values. Data are presented showing that mortality does indeed decline rapidly<br />

upon fledging.<br />

determines reproductive success, either by increasing<br />

mating probability (e.g. dominance/territoriality in either<br />

males or females) or by increasing the number of<br />

propagules produced (reviewed in Roff, 1992, p. 126–<br />

128). A positive covariation between fecundity and body<br />

size is well demonstrated within ectotherm species<br />

(reviewed in Roff, 1992, p. 126) and has been frequently<br />

observed in those mammal species that produce relatively<br />

large litters (reviewed in Roff, 1992, p. 127).<br />

Using a model based on the observed growth curve,<br />

the fecundity-body size relationship and adult mortality<br />

rates, Roff (1984) produced a simple model that predicted<br />

with considerable accuracy the age at first reproduction<br />

in a wide range of fish species. This model was later<br />

successfully extended to turtles, snakes and lizards (Roff,<br />

2002, p. 217–220). All taxa thus far examined are<br />

ectotherms and thus the question arises whether this<br />

model is also appropriate for endotherms in general or at<br />

least for some classes of endotherms. In the present paper<br />

we adopt the same modelling approach to address this<br />

question with respect to age at maturity and fledging age<br />

in passerines. For this purpose we make use of the<br />

extensive database compiled by Remesˇ & Martin (2002)<br />

J. EVOL. BIOL. 18 (2005) 1425–1433 ª 2005 EUROPEAN SOCIETY FOR EVOLUTIONARY BIOLOGY 1425


1426 D. A. ROFF ET AL.<br />

on the growth characteristics and nestling mortality rates<br />

of 107 North American passerines.<br />

The model<br />

Assumptions and database<br />

(1) Following the empirical analyses of Ricklefs (1968),<br />

Starck & Ricklefs (1998) and Remesˇ & Martin (2002), we<br />

assume that nestling growth follows the logistic equation<br />

A<br />

WðtÞ ¼<br />

ð1Þ<br />

1 þ e Kðt tiÞ<br />

where W(t) is mass at age t, A is the asymptotic size, K is a<br />

measure of ‘growth rate’ and ti is the inflection point on<br />

the growth curve. Where there were data from multiple<br />

populations of the same species, Remesˇ & Martin (2002)<br />

averaged across populations to produce species-specific<br />

parameter values. Similarly, where data on both sexes<br />

were available, Remesˇ & Martin (2002) used the average<br />

value. Because some species show a weight recession just<br />

prior to or after leaving the nest, Remesˇ & Martin (2002)<br />

estimated the growth parameters in two ways: first they<br />

fitted the growth function with the data truncated at the<br />

maximum nestling mass and, second they estimated<br />

parameter values using data truncated at 70% of adult<br />

mass. The results presented by Remesˇ & Martin (2002)<br />

did not differ qualitatively between these two estimation<br />

approaches, but to ensure that the present analysis is<br />

robust to the method of estimation we here present<br />

results using both sets of estimates.<br />

The data of Remesˇ & Martin (2002) shows that fledging<br />

mass is approximately 80% of adult mass on average and<br />

that the two are highly correlated (Fig. 1, Table 1).<br />

Adult wt (gm)<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0<br />

0 20 40 60 80 100<br />

0 100 200 300 400 500<br />

Fledging wt (gm)<br />

Fig. 1 Plots of adult mass on fledging mass, showing that adult mass<br />

is proportional to fledging mass (inset shows data spread excluding<br />

the three largest species). Data are from Remesˇ & Martin (2002).<br />

200<br />

150<br />

100<br />

50<br />

Table 1 Summary of regressions relating observed adult mass,<br />

observed fledging mass, and two asymptotic masses (A 1 is the<br />

maximum mass achieved in the nest, A 2 is 70% of adult mass).<br />

Response<br />

variable<br />

Predictor<br />

variable r 2<br />

However, the regression slopes (i.e. 1.18 and 1.17) of<br />

adult mass on the asymptotic mass parameters (see<br />

Table 1) indicate that these parameters are not direct<br />

estimates of adult mass but are proportional to it. The<br />

regression slopes of asymptotic mass parameters on<br />

fledging mass are very close to, and not significantly<br />

different from, unity (1.02 and 1.00), indicating that<br />

these parameters estimate the asymptotic mass at fledging<br />

not adult mass. The difference in slopes between<br />

adult mass vs. asymptotic mass on fledging mass implies<br />

that growth subsequent to fledging is not simply a<br />

continuation of the nestling logistic growth function.<br />

(2) Survival during the nestling period can be specified<br />

as<br />

Rt f<br />

MðxÞdx<br />

e 0 ¼ e Mntf ð2Þ<br />

where M(x) is the age-specific nestling mortality rate and<br />

tf is the age of fledging. Because of the limitations of the<br />

available data, we shall assume that this mortality can be<br />

reasonably approximated by a constant instantaneous<br />

mortality rate of Mn (Fig. 2: Note that an increase in Mn,<br />

as indicated by dotted line in Fig. 2, will favour a<br />

decreased fledging age, as already observed by Remesˇ &<br />

Martin, 2002). Being unable to fend for itself and avoid<br />

predators during early development, the mortality rate of<br />

the chick that leaves the nest, M0, exceeds the mortality<br />

rate of a chick that remains within the nest. Initially, the<br />

survival rate of an altricial hatchling displaced from the<br />

nest is zero (i.e. M0 ¼ ¥), but as development proceeds,<br />

chicks become increasingly capable of mobility outside<br />

the nest and more likely to evade predation away from<br />

the nest than within the nest. At some age, tf, the<br />

mortality rate inside the nest exceeds that outside the<br />

nest and selection favours fledging. The rate of mortality<br />

declines following the fledging to an adult instantaneous<br />

mortality rate of Ma (Deevey, 1947; Sullivan, 1989;<br />

Anders et al., 1997; Perkins & Vickery, 2001; Gardali<br />

et al., 2003).<br />

(3) At some age ta ‘adult’ mass is achieved and no further<br />

growth takes place. The age of adult mass consists of the<br />

time to fledging, tf, and the time from fledging to ta,<br />

denoted as t0 (Fig. 2): hence ta ¼ tf + t0. No data are<br />

available on ta but, following from the assumption/<br />

n<br />

Intercept<br />

(SE) Slope (SE)<br />

Adult mass Fledging mass 0.96 115 2.55 (1.33) 1.21 (0.02)<br />

Adult mass A1 0.96 115 0.80 (1.30) 1.18 (0.02)<br />

Adult mass A 2 0.98 97 )1.29 (1.09) 1.17 (0.02)<br />

A 1 Fledging mass 1.00 115 1.47 (0.27) 1.02 (0.005)<br />

A2 Fledging mass 0.98 97 1.83 (0.87) 1.00 (0.015)<br />

J. EVOL. BIOL. 18 (2005) 1425–1433 ª 2005 EUROPEAN SOCIETY FOR EVOLUTIONARY BIOLOGY


Mortality rate<br />

Increased M n<br />

Mortality<br />

in nest, M n<br />

Mortality rate of chick outside the nest, MO<br />

Age<br />

t o<br />

g′ (t f,t a) = Mn<br />

g′ (t f,t a) = bMn<br />

"Adult" mortality, Ma<br />

Age of fledging, t f Age at "maturity", t a= t f+t o<br />

Fig. 2 A schematic plot of the relationship between the mortality<br />

rate within and outside the nest as a function of the age of the<br />

nestling. The mortality curve for chicks outside the nest is<br />

hypothetical and simply illustrates the assumption that, for altricial<br />

birds, leaving the nest cannot be achieved until development has<br />

proceeded to the point at which the chicks have reasonable mobility<br />

and thermoregulatory ability. Dotted line illustrates that the effect of<br />

increasing nest mortality is to decrease fledging age. The dot-dashed<br />

lines show the two transitional mortality functions used as approximations<br />

to the declining function indicated by the solid line.<br />

observation that adult mass is proportional to fledging<br />

mass (Table 1), we can write the mass at age t a, G(t a)as<br />

CA<br />

GðtaÞ ¼CWðtfÞ ¼<br />

ð3Þ<br />

Kðtf 1 þ e tiÞ<br />

where, as described above, W(t) is the nestling growth<br />

function and C is the proportionality constant.<br />

(4) In ectotherms fecundity is typically an allometric<br />

function of size, with an exponent of approximately 3 for<br />

linear body measures and 1 for mass measures (Roff,<br />

1992, p. 126). Data for passerines is complicated by the<br />

general observation that egg mass increases with female<br />

size, both within and among species (Christians, 2002;<br />

Martin et al., 2004). The reasons for this increase are<br />

unknown, though a larger egg produces a larger hatchling,<br />

which probably increases both pre- and postfledging<br />

survival (Magrath, 1991; Roff, 1992, p. 350;<br />

Williams, 1994; Barbraud et al., 1999). This does not<br />

explain why egg size should covary with body size.<br />

However, because of this covariation, the total clutch<br />

mass increases with body size (Saether, 1987; Visman<br />

et al., 1996; Barbraud et al., 1999; T.E. Martin, unpublished<br />

data). We shall assume that increased clutch mass<br />

effectively increases fecundity by increasing the survival<br />

probability of chicks, and that this ‘effective fecundity’ is<br />

an allometric function of adult body size<br />

FðtaÞ ¼cGðtaÞ d ¼ c½CWðtfÞŠ d<br />

ð4Þ<br />

where c is a constant, characteristic of the population or<br />

species. We shall assume that the exponent d lies<br />

between 0.75, the exponent obtained from an interspecific<br />

analysis (Visman et al., 1996) and also the<br />

exponent for metabolic rate and productivity (Charnov,<br />

2000), and 1.00, which is the value typically observed for<br />

ectotherms and can be justified on geometric considerations<br />

(Roff, 1984,1992).<br />

(5) We assume that population size is stable, in which<br />

case the appropriate measure of fitness depends upon<br />

how density-dependence acts (Charnov, 1993; Charlesworth,<br />

1994; Mylius & Diekmann, 1995; Benton &<br />

Grant, 2000; Roff, 2002). Provided that there is no<br />

genetic variation for the characteristics that favour<br />

survival through the period during which densitydependence<br />

acts, or that the traits under study are<br />

genetically uncorrelated with such characteristics, the<br />

appropriate fitness measure is the expected lifetime<br />

fecundity of a female, R0. Even in the absence of these<br />

conditions being met, R 0 may often be a reasonable<br />

measure (Benton & Grant, 2000). In the absence of<br />

sufficient information to include density-dependent<br />

functions, we shall assume that one or both of the<br />

foregoing conditions hold and use R 0. If this measure is<br />

inappropriate then prediction should be compromised.<br />

Analysis<br />

Under the above scenario, and assuming an equal sex<br />

ratio, we have<br />

R0 ¼ 0:5cGðtaÞ d e<br />

J. EVOL. BIOL. 18 (2005) 1425–1433 ª 2005 EUROPEAN SOCIETY FOR EVOLUTIONARY BIOLOGY<br />

Evolution of fledging age 1427<br />

Z<br />

Mntf gðtf;taÞ<br />

1<br />

0<br />

e Max dx ð5Þ<br />

where x is adult age scaled to commence at the age at first<br />

reproduction, and e )g(tf ,ta) is the survival between tf and<br />

t a (the period labelled t 0 in Fig. 2), which is a function of<br />

the ‘M0’ curve. Note that this age is here set to the point<br />

at which growth ceases. In most cases there will be a<br />

period during which ecological conditions, such as<br />

winter, do not favour reproduction and do not permit<br />

further growth: these periods affect all life histories<br />

equally and hence can be ignored in this analysis. We are<br />

interested in determining the optimal value of t a. Because<br />

terms involving ta do not enter into the integral, we can<br />

write fitness, w, as<br />

wðtaÞ ¼0:5GðtaÞ d e Mntf gðtf;taÞ ¼ 0:5cGðtaÞ d e hðtaÞ<br />

ð6Þ<br />

To find the optimal value of ta ¼ tf + t0we differentiate<br />

with respect to ta and find the value at the differential<br />

equals zero (see appendix), which is when<br />

h 0 ðtaÞ ¼ dG0ðtaÞ GðtaÞ ¼ dW 0ðtaÞ WðtaÞ<br />

ð7Þ<br />

where W 0ðtfÞ ¼ @WðtfÞ<br />

@tf and h0ðtaÞ ¼ @hðtaÞ<br />

: In the absence of<br />

@ta<br />

data on the transition function for mortality upon<br />

fledging to a constant adult mortality rates we shall<br />

assume, as a first approximation, g(tf,ta) Mnt0 ¼


1428 D. A. ROFF ET AL.<br />

Mn(ta ) tf), from which we obtain h¢(ta) ¼ Mn. This ‘step’<br />

function will overestimate the transitional mortality rate<br />

(Fig. 2). We can more closely approximate the transitional<br />

mortality by g(tf,ta) bMnt0 ¼ bMn(ta ) tf), where<br />

b is a proportionality factor that is population- or speciesspecific.<br />

Assuming this, we have h(ta) ¼ bMnta +<br />

Mntf(1 ) b). Because tf is much smaller than ta, we can<br />

use the approximation h(t a) bM nt a, from which we<br />

obtain h¢(t a) ¼ bM n. In the absence of estimates of b we<br />

shall use a single value. In doing this we merely imply<br />

that the distribution of b values is not very wide: if this<br />

assumption is incorrect it should not be possible to find a<br />

value of b that improves the fit between predicted and<br />

observed ages at fledging.<br />

Substituting the appropriate values in eqn 7 and<br />

rearranging gives<br />

tf ¼ 1 BðdK MnÞ<br />

ln<br />

K Mn<br />

¼ ti þ 1<br />

K ln<br />

dK<br />

Mn 1<br />

; ð8Þ<br />

where B ¼ e Kt i . Predictions for the alternate transitional<br />

mortality rate are obtained by substituting b Mn for Mn .<br />

The above equation predicts the optimal age at fledging<br />

and hence also the optimal age at first reproduction,<br />

excluding any time period, such as the winter, when<br />

growth and reproduction are ecologically unfavourable.<br />

Testing the model<br />

Predicted vs. observed ages at fledging<br />

We test the predictions of the above model by comparing<br />

the predicted values of tf with the observed age at the end<br />

of the nestling period using the two sets of parameter<br />

estimates (i.e. maximum nestling mass, and 70% adult<br />

mass) based on data reported in Remesˇ & Martin (2002).<br />

For both parameter sets there is a highly significant<br />

correlation between observed and predicted values, with<br />

the fecundity exponent, d, having little effect on the<br />

correlation or regression parameters (Fig. 3, Table 2).<br />

The percentage deviation between observed and predicted<br />

vary from 0.1 to 55.7% across individual species, with<br />

a mean ranging from 16 to 17%, a SD of 11% (Table 2)<br />

and a SE of 1%. The predictions using the first<br />

transitional mortality function g¢(ta,tf) ¼ Mn, are proportional<br />

to the observed values but tend to underestimate<br />

them by 11–16%. In the first estimate set this underestimation<br />

is significant both for the regression model<br />

(slope significantly greater than 1, Table 2) and a paired<br />

t-test (Table 2), but it is significant only for the paired ttest<br />

in the second estimate set (Table 2). The underestimation<br />

can be accounted for by the overestimation of the<br />

transitional mortality, as shown by slopes obtained using<br />

values of b less than unity (Fig. 4). Values of b less than<br />

approximately 0.29 produce slopes that overestimate tf,<br />

whereas values of b greater than approximately 0.39<br />

underestimate tf (Fig. 4). These results predict that there<br />

Observedt f (age at fledging)<br />

Observedt f (age at fledging)<br />

30<br />

20<br />

10<br />

d = 1.00<br />

Regression for d = 1.00<br />

1 : 1 line<br />

d = 0.75<br />

Regression for d = 0.75<br />

0<br />

0 10 20 30<br />

30<br />

20<br />

10<br />

Predicted t f<br />

0<br />

0 10 20 30<br />

Predicted t f<br />

Fig. 3 A comparison of observed and predicted ages at fledging in<br />

passerines. The left panel shows results for growth parameters<br />

estimated using data truncated at maximum nestling mass. The right<br />

panel shows results for growth parameters estimated using data<br />

truncated at 70% adult mass.<br />

is a significant decline in mortality rate between fledging<br />

and the cessation of growth.<br />

Contributions of parameters to the predicted age at<br />

fledging<br />

There are four parameters in the predictive equation<br />

(ti, K,Mn, d), one of which, d, little influences the<br />

J. EVOL. BIOL. 18 (2005) 1425–1433 ª 2005 EUROPEAN SOCIETY FOR EVOLUTIONARY BIOLOGY


Table 2 A comparison of the predicted age<br />

at fledging with the observed age at fledging<br />

using the first transitional mortality function<br />

g(t a,t f) ¼ M nt 0.<br />

Slope<br />

1.20<br />

1.15<br />

1.10<br />

1.05<br />

1.00<br />

0.95<br />

0.90<br />

0.85<br />

Max nestling mass, d = 1.00<br />

Max nestling mass, d = 0.75<br />

70% adult mass, d = 1.00<br />

70% adult mass, d = 0.75<br />

Slope = 1.00<br />

Growth parameters<br />

estimated by truncation at d*<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0<br />

Fig. 4 The relationship between the slope of the regression of<br />

observed on predicted t f and b.<br />

prediction within the limits over which it is likely<br />

to range (Fig. 4). To examine the potential contribution<br />

of the other three parameters we first rewrite eqn<br />

8as<br />

tf ¼ ti þ 1<br />

1<br />

ðlnðdK MnÞþlnðMn ÞÞ: ð9Þ<br />

K<br />

The growth parameter K, ranges from 0.22 to 0.74<br />

(0.165 < dK < 0.74), with a median value of 0.49,<br />

whereas daily nestling mortality rate, Mn, ranges from<br />

0.0009 to 0.05, with a median of 0.016. Consequently,<br />

we can write<br />

tf ti þ 1<br />

1<br />

ðlnðdÞþlnðKÞþlnðMn ÞÞ: ð10Þ<br />

K<br />

The ln(d) ranges only from 0 to )0.29, which explains<br />

why it has relatively little effect on fledging age. The<br />

inflexion parameter ti varies approximately between 3<br />

and 6, which is similar to the range of lnðM 1<br />

n Þ (Fig. 5),<br />

but the effect of the latter is modulated by the reciprocal<br />

β<br />

Regression of observed on predicted<br />

Intercept (SE) Slope (SE)§ r<br />

of the growth parameter K, which varies largely within<br />

the range 1.5–2.5 (Fig. 5). Fledging age ranges from 7.5d<br />

to 33.25d, with a median of 11.5d, and thus all three<br />

parameters can potentially contribute significantly to its<br />

variation. This is confirmed by the correlations between<br />

each parameter and fledging age: 0.80 for ti, )0.66 for K<br />

and )0.52 for Mn (Table 3).<br />

The effect of asymptotic size on the optimal age at<br />

fledging<br />

Asymptotic size does not enter into the optimality<br />

solution but this does not mean that this trait cannot<br />

influence the optimal age at fledging/maturity. Changing<br />

the asymptotic size will change fecundity and very likely<br />

will also change survival rates (Saether, 1987,1988,1989;<br />

Martin, 1995). Further, if the growth parameters are not<br />

independent traits, changing one parameter will produce<br />

a change in the other parameters. In the present data set<br />

all three growth parameters significantly covary<br />

(Table 3), which could be a result of independent<br />

optimizations that happen to generate covariation, or<br />

more likely, and as indicated below, is a consequence of<br />

functional constraints among the three traits.<br />

West et al. (2001) working from fundamental principles<br />

derived a growth curve applicable to a wide range of<br />

taxa, including invertebrates, fish, mammals and birds:<br />

" #<br />

0:25<br />

W0<br />

at<br />

4W WðtÞ ¼Wmax 1 1<br />

e<br />

0:25<br />

( ) 4<br />

max ð11Þ<br />

Wmax<br />

Deviationà<br />

Maximum mass 0.75 )0.33 (0.76) 1.16 (0.06) 0.76 16.7 (10.6)<br />

Maximum mass 1.00 )0.60 (0.77) 1.12 (0.06) 0.78 15.8 (10.6)<br />

70% adult mass 0.75 0.07 (1.08) 1.15 (0.09) 0.67 17.5 (11.8)<br />

70% adult mass 1.00 )0.19 (1.10) 1.11 (0.08) 0.67 17.3 (10.9)<br />

*Exponent of the fecundity function.<br />

All regressions highly significant (P < 0.0001).<br />

àDeviation ¼ 100 · (Predicted ) Observed)/Observed.<br />

§Test of deviation from a slope of 1, from top to bottom: t 105 ¼ 2.62, P ¼ 0.0100; t 105 ¼ 2.06,<br />

P ¼ 0.0417; t 87 ¼ 1.72, P ¼ 0.0883; t 87 ¼ 1.33, P ¼ 0.1882. Results, from top to bottom, for<br />

paired t-test using observed and predicted ages: t 106 ¼ 6.26, P < 0.0001; t 106 ¼ 3.71,<br />

P ¼ 0003; t 88 ¼ 5.37, P < 0.0001; t 88 ¼ 3.52, P ¼ 0.0007.<br />

SD: standard deviation.<br />

J. EVOL. BIOL. 18 (2005) 1425–1433 ª 2005 EUROPEAN SOCIETY FOR EVOLUTIONARY BIOLOGY<br />

Evolution of fledging age 1429<br />

which, like the logistic has just three parameters, W max,<br />

which is the asymptotic size, W0, which is the initial<br />

mass, and a parameter ‘a’, which controls the rate at<br />

which the asymptotic value is approached. Unlike the<br />

logistic used in the present paper, the asymptotic mass is<br />

embedded within the growth equation and is not simply<br />

a scaling parameter. The growth curve generated by the<br />

above function can be readily fitted by the logistic<br />

equation, as illustrated in the case of the robin, Erithacus


1430 D. A. ROFF ET AL.<br />

Numbers<br />

Numbers<br />

Numbers<br />

40<br />

30<br />

20<br />

10<br />

14<br />

12<br />

10<br />

0<br />

1 2 3 4 5 6 7<br />

1/K<br />

8 9 10 11 12<br />

8<br />

6<br />

4<br />

2<br />

0<br />

25<br />

20<br />

15<br />

10<br />

5<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

t i<br />

0<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

ln(1/M n)<br />

Fig. 5 Distributions of the three parameters, ti, K and Mn. The latter<br />

two are transformed to reflect their contribution to t f. Parameters<br />

estimated using the ‘first’ data set (maximum nesting mass). One t i<br />

value (15.86) not shown.<br />

rubecula (Fig. 6). If only the asymptotic value in equation<br />

is changed all three fitted values of the logistic equation<br />

also change, demonstrating that these components are<br />

not completely separate entities (Fig. 6). Thus selection<br />

that acted on asymptotic size alone would, according to<br />

the model of West et al. (2001), create a change in the<br />

other growth parameters, which would then induce an<br />

evolutionary change in the optimal age at fledging.<br />

Table 3 Correlations between growth parameters (estimated using<br />

nestling mass up to 70% of adult mass), observed fledging and adult<br />

masses, fledging age and nest mortality rate.<br />

Further, as shown in Fig. 6, we can predict that A should<br />

be negatively correlated with K but positively correlated<br />

with t i, and that K should be negatively correlated with t i.<br />

All three predictions are supported by the data of Remesˇ<br />

& Martin (2002), Table 3).<br />

Discussion<br />

The predictive model for fledging age in passerines<br />

developed in this paper is remarkably simple, but<br />

produces an excellent correspondence between predicted<br />

and observed fledging ages (Fig. 3, Table 2). The first<br />

transitional mortality function, (g(tf,ta) ¼ Mnt0), which is<br />

a step function that necessarily overestimates the mortality<br />

rate during the transitional period (Fig. 2), produces<br />

predictions that are 11–16% too small (Fig. 3). To<br />

estimate the average change in mortality rate required to<br />

eliminate this discrepancy we used an intermediate step<br />

function (g(tf,ta) ¼ bMnt0) that requires an additional<br />

parameter, b. This analysis indicated that a transitional<br />

mortality function in which mortality is approximately<br />

0.3–0.4 of nesting mortality produces predictions which,<br />

on average, equal the observed values (Fig. 4). These<br />

results suggest that the mortality rate averaged over the<br />

nestling period is significantly higher than that immediately<br />

following fledging. Support for this hypothesis is<br />

given by a comparison of juvenile mortality rates in<br />

passerines (data from Saether, 1989) with nestling<br />

mortality rates (data from Remesˇ & Martin, 2002):<br />

juvenile mortality rates average 0.003 (SE ¼ 0.0001,<br />

n ¼ 17), whereas nest mortality rates average 0.017<br />

(SE ¼ 0.0009, n ¼ 115), a difference that is highly<br />

significant (t122 ¼ 5.92, P < 0.001; Kruskal–Wallis test,<br />

v 2 1<br />

K A ti tf Mn<br />

Adult<br />

weight<br />

Fledging<br />

weight<br />

K 0* 0 0 0 0 0<br />

A )0.50 0 0 0.193 0 0<br />

t i )0.80 0.75 0 0.001 0 0<br />

t f )0.66 0.63 0.73 0 0 0<br />

Mn 0.40 )0.14 )0.34 )0.52 0.456 0.197<br />

Adult weight )0.47 0.99 0.69 0.55 )0.07 0<br />

Fledging weight )0.48 0.99 0.71 0.62 )0.13 0.98<br />

Correlations are shown below the diagonal, probabilities above the<br />

diagonal.<br />

*0 Indicates P < 0.001.<br />

¼ 36:1; P < 0.001). Moreover, studies that tracked<br />

young after fledging also indicate a rapid decrease in<br />

mortality with age following fledging (e.g. Sullivan,<br />

1989; Anders et al., 1997; Perkins & Vickery, 2001;<br />

Gardali et al., 2003). Finally, these results also suggest<br />

an interesting relationship that is previously undescribed:<br />

selection favours an age of fledging where post-fledging<br />

J. EVOL. BIOL. 18 (2005) 1425–1433 ª 2005 EUROPEAN SOCIETY FOR EVOLUTIONARY BIOLOGY


Fig. 6 Upper left panel shows the growth<br />

curve (•) generated by fitting data from the<br />

robin (E. rubecula) to equation 11. Parameter<br />

values (W max ¼ 22g, W 0 ¼ 1g, a ¼ 1.9) from<br />

West et al. (2001). The solid line shows the<br />

logistic equation fitted by nonlinear least<br />

squares regression (A ¼ 21.557, K ¼ 0.3506,<br />

t i ¼ 5.824). The remaining three panels<br />

show the changes in the fitted values of A, K<br />

and t i when only W max is varied.<br />

mortality is roughly 0.3–0.4 that experienced in the nest.<br />

This relationship encompasses observations that birds<br />

fledge at younger ages and developmental stages when<br />

nest mortality is greater (i.e. Remesˇ & Martin, 2002), but<br />

provides a more quantitative predictor of the actual age<br />

this should occur based on relative rates of pre- and postfledging<br />

mortality.<br />

Mass at fledging is generally less than the adult mass<br />

and the nestling growth curve shows that this adult mass<br />

cannot be estimated simply by projecting the nestling<br />

growth curve. This indicates that there is a significant<br />

change in growth following fledging, which, given the<br />

radical change in the thermal (i.e. no longer surrounded<br />

by warm siblings) and energetic (i.e. increased movement)<br />

environment of the fledgling, is not surprising. To<br />

further develop the model we require estimates of the<br />

change in mass between fledging and the attainment of<br />

adult mass. The model predicts the optimal age at<br />

fledging based upon the premise that the mass at this<br />

age is proportional to the mass at maturity (¼cessation of<br />

growth). This premise is supported by observation but<br />

the lack of data on growth subsequent to fledging hinders<br />

theoretical development.<br />

Whereas parental provisioning rate will reduce the<br />

likelihood of nestling starvation, nestling mortality due to<br />

predation may be largely beyond the control of the<br />

parents or chicks. Reduced begging by chicks and<br />

reduced provisioning rates may decrease mortality rates<br />

from predators that can use such cues, but many<br />

predators use alternate modes of detection for which<br />

there are few, if any, defenses (Montgomerie & Weatherhead,<br />

1988; Briskie et al., 1999; Martin et al., 2000;<br />

Ghalambor & Martin, 2002). A reduction in clutch size<br />

Wt<br />

K<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 5 10 15 20 25 30<br />

Age<br />

0.30<br />

10 15 20 25 30 35 40<br />

J. EVOL. BIOL. 18 (2005) 1425–1433 ª 2005 EUROPEAN SOCIETY FOR EVOLUTIONARY BIOLOGY<br />

0.42<br />

0.40<br />

0.38<br />

0.36<br />

0.34<br />

0.32<br />

Wmax<br />

A<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

10 15 20 25 30 35 40<br />

7.5<br />

7.0<br />

6.5<br />

6.0<br />

ti 5.5<br />

5.0<br />

4.5<br />

4.0<br />

Evolution of fledging age 1431<br />

Wmax<br />

3.5<br />

10 15 20 25 30 35 40<br />

Wmax<br />

may increase the survival probability of the parent but an<br />

increase in provisioning rate may decrease parental<br />

survival (reviewed in Roff, 2002, p. 134–139). The<br />

optimal evolutionary response will depend upon how<br />

these components interact. To illustrate the complexity of<br />

this evolutionary response, consider the consequences of<br />

a reduction in clutch size at a given age at maturity, ta.<br />

Such a reduction can be modelled by changing the<br />

constant, c, in the fecundity eqn 4 (i.e. F(ta) ¼ cG(ta) d ).<br />

Because this coefficient does not enter the optimality<br />

equation (e.g. eqn 7), this change per se has no direct<br />

effect on the optimal age at fledging/maturity. However,<br />

changing c changes fecundity and hence changes the<br />

provisioning rate per nestling if total provisioning rate<br />

remains unchanged. Such a change would alter the<br />

nestling growth rate, which would then favour a change<br />

in the optimal age at fledging/maturity. On the other<br />

hand the parents might alter their total provisioning rate,<br />

which would most likely affect their mortality rate,<br />

which would then favour a change in the optimal age at<br />

maturity.<br />

Using stepwise multiple regressions Remesˇ & Martin<br />

(2002) found that fledging age to be a function of adult<br />

body mass, K, Mn and foraging mode (aerial vs.<br />

nonaerial). Rearrangement of the logistic growth eqn 1<br />

1 A<br />

gives time to fledging as tf ¼ ti K ln WðtfÞ 1 and<br />

hence in a multiple regression it would not be surprising<br />

to find significant contributions by K and by adult mass<br />

(which is highly correlated to both A and fledging mass:<br />

Table 3). Unlike these growth parameters the entry of Mn<br />

is not dictated by any necessary algebraic relationship<br />

and its retention in the final regression model is predicted<br />

by the model presented in this paper. Further, this model


1432 D. A. ROFF ET AL.<br />

provides no indication that nest mortality rate should be<br />

a function of body size measures, except in as much as<br />

they are correlated with the growth parameters. Thus the<br />

lowest correlations should appear between nest mortality<br />

rate and the three body mass measures, A, adult and<br />

fledging mass, which is indeed the case, none even being<br />

significant (Table 3).<br />

There remain a number of questions to be addressed in<br />

the future: (1) what is the growth function subsequent to<br />

fledging, (2) what trade-offs dictate the optimal combination<br />

of growth parameters, (3) what is the age-specific<br />

mortality curve and what proximate mechanisms generate<br />

this trajectory, (4) what is the mortality curve<br />

associated with fledging at an earlier age, (5) what is<br />

the relationship between clutch mass and body mass, (6)<br />

what are the consequences of changes in egg size upon<br />

growth and survival? The present analysis highlights the<br />

importance of these components of the life history in the<br />

evolution of fledging age in passerines and similarly<br />

highlights the importance of gathering further data.<br />

Acknowledgments<br />

The data for this work was obtained and generated in<br />

part when VR was supported by a grant from J. W.<br />

Fulbright Commission and GACR No. 206/05/P581, and<br />

TEM by grants from National Science Foundation (DEB-<br />

9707598, DEB-9981527). Support to DAR was provided<br />

by an IC grant from UCR.<br />

References<br />

Anders, A.D., Dearborn, D.C., Faaborg, J. & Thompson, F.R., III,<br />

1997. Juvenile survival in a population of neotropical migrant<br />

birds. Cons. Biol. 11: 698–707.<br />

Barbraud, C., Weimerskirch, H., Robertson, G.G. & Jouventin, P.<br />

1999. Size-related life history traits: Insights from a study of<br />

snow petrels (Pagodroma nivea). J. Anim. Ecol. 68: 1179–1192.<br />

Benton, T.G. & Grant, A. 2000. Evolutionary fitness in ecology:<br />

comparing measures of fitness in stochastic, density-dependent<br />

environments. Evol. Ecol. Res. 2: 769–789.<br />

Briskie, J., Martin, P.R. & Martin, T.E. 1999. Nest predation and<br />

the evolution of nestling begging. Proc. Roy. Soc. Lond. B 266:<br />

2153–2160.<br />

Charlesworth, B. 1994. Evolution in Age Structured Populations.<br />

Cambridge University Press.<br />

Charnov, E.L. 1993. Life History Invariants. Oxford University<br />

Press, Oxford.<br />

Charnov, E.L. 2000. Evolution of life-history variation among<br />

species of altricial birds. Evol. Ecol. Res. 2: 365–373.<br />

Christians, J.K. 2002. Avian egg size: variation within species<br />

and inflexibility within individuals. Biol. Rev. 77: 1–26.<br />

Deevey, E.S. 1947. Life tables for natural populations of animals.<br />

Quart. Rev. Biol. 22: 283–314.<br />

Fisher, R.A. 1930. The Genetical Theory of Natural Selection.<br />

Clarendon Press, Oxford.<br />

Gardali, T., Barton, D.C., White, J.D. & Geupel, G.R. 2003.<br />

Juvenile and adult survival of Swainson’s thrush (Catherus<br />

ustulatus) in coastal California: annual estimates using capture-recapture<br />

analyses. The Auk 120: 1188–1194.<br />

Ghalambor, C.K. & Martin, T.E. 2002. Comparative manipulation<br />

of predation risk in incubating birds reveals variability in<br />

the plasticity of responses. Behav. Ecol. 13: 101–108.<br />

Lewontin, R.C. 1965. In: Selection for colonizing ability, The Genetics<br />

of Colonizing Species (H. G. Baker & G. L. Stebbins, eds), pp. 77–<br />

94. Academic Press, New York.<br />

Magrath, R.D. 1991. Nestling weight and juvenile survival in the<br />

blackbird, Turdus merula. J. Anim. Ecol. 60: 335–351.<br />

Martin, T.E. 1995. Avian life history evolution in relation to nest<br />

sites, nest predation, and food. Ecol. Monogr. 65: 101–127.<br />

Martin, T.E., Scott, J. & Menge, C. 2000. Nest predation<br />

increases with parental activity: Separating nest site and<br />

parental activity effects. Proc. Roy. Soc. Lond. B: Biol. Sci. 267:<br />

2287–2293.<br />

Montgomerie, R.D. & Weatherhead, P.J. 1988. Risks and<br />

rewards of nest defence by parent birds. Quart. Rev. Biol. 63:<br />

167–187.<br />

Mylius, S.D. & Diekmann, O. 1995. On evolutionarily stable life<br />

histories, optimization and the need to be specific about<br />

density dependence. Oikos 74: 218–224.<br />

Perkins, D.W. & Vickery, P.D. 2001. Annual survival of an<br />

endangered passerine, the Florida Grasshopper Sparrow<br />

Wilson Bull. 113: 211–216.<br />

Remesˇ, V. & Martin, T.E. 2002. Environmental influences on the<br />

evolution of growth and developmental rates in passerines.<br />

Evolution 56: 2505–2518.<br />

Ricklefs, R.E. 1968. Patterns of growth in birds. Ibis 110:<br />

419–451.<br />

Roff, D.A. 1984. The evolution of life history parameters in<br />

teleosts. Can. J. Fish. Aquat. Sci. 41: 984–1000.<br />

Roff, D.A. 1992. The Evolution of Life Histories: Theory and Analysis.<br />

Chapman and Hall, New York.<br />

Roff, D.A. 2002. Life History Evolution. Sinauer Associates,<br />

Sunderland, MA.<br />

Saether, B.E. 1987. The influence of body weight on the<br />

covariation between reproductive traits in European birds.<br />

Oikos 48: 79–88.<br />

Saether, B.E. 1988. Pattern of covariation between life-history<br />

traits of European birds. Nature 331: 616–617.<br />

Saether, B.E. 1989. Survival rates in relation to body weight in<br />

European birds. Ornis Scand. 20: 13–21.<br />

Starck, J.M. & Ricklefs, R.E. 1998. Oxford Ornithology Series; Avian<br />

growth and development: Evolution within the altricial-precocial<br />

spectrum. Oxford University Press, Oxford, UK.<br />

Sullivan, K.A. 1989. Predation and starvation: age-specific<br />

mortality in juvenile juncos (Junco phaenotus). J. Anim. Ecol.<br />

58: 275–286.<br />

Visman, V., Pesant, S., Dion, J., Shipley, B. & Peters, R.H. 1996.<br />

Joint effects of maternal and offspring sizes on clutch mass and<br />

fecundity in plants and animals. Ecoscience 3: 173–182.<br />

West, G.B., Brown, J.H. & Enquist, B.J. 2001. A general model<br />

for ontogenetic growth. Nature (London) 413: 628–631.<br />

Williams, T.D. 1994. Intraspecific variation in egg size and egg<br />

composition in birds: Effects on offspring fitness. Biol. Rev. 69:<br />

35–59.<br />

J. EVOL. BIOL. 18 (2005) 1425–1433 ª 2005 EUROPEAN SOCIETY FOR EVOLUTIONARY BIOLOGY


Appendix<br />

Derivation of the optimal ages at maturity and<br />

fledging<br />

The fitness function is<br />

Mntf gtf;ta ð Þ<br />

w ¼ 0:5cGðtaÞ d e<br />

Letting h(ta) ¼ Mntf + g(tf,ta) we have<br />

ð1Þ<br />

@w<br />

¼ dGðtaÞ<br />

@ta<br />

d 1 0:5cG 0 ðtaÞe hðtaÞ<br />

h 0 ðtaÞe hðtaÞ 0:5cGðtaÞ d<br />

¼ 0:5cGðtaÞ d 1 e hðtaÞ ðdG 0 ðtaÞ h 0 ðtaÞGðtaÞÞ ð2Þ<br />

where G 0 ðtaÞ ¼ @GðtaÞ<br />

@ta<br />

optimum value of ta we set @w<br />

@ta<br />

requires that<br />

and h 0 ðtaÞ ¼ @hðtaÞ<br />

@ta<br />

h 0 ðtaÞ ¼ dG0 ðtaÞ<br />

GðtaÞ ¼ dW 0 ðtfÞ<br />

WðtfÞ<br />

. To find the<br />

¼ 0; which from eqn 2<br />

ð3Þ<br />

Now, if g(tf,ta) ¼ Mn(ta)tf) then h(ta) ¼Mntf + Mn(ta ) tf) ¼<br />

M nt a. Letting B ¼ e Kt i we have W(tf) ¼ A(1 + Be )Kt f ) )1<br />

and hence W¢(tf) ¼ AKBe )Kt f (1 + Be )Kt f) )2 . Substituting in<br />

eqn 3 and rearranging<br />

Mn ¼ dW 0ðtfÞ WðtfÞ ¼ dAKBe Ktfð1 þ Be Ktf Þ 2<br />

Að1 þ Be Ktf<br />

Ktf dKBe<br />

¼<br />

1 þ Be Ktf<br />

Mnð1 þ Be Ktf Þ¼dKBe Ktf<br />

e Ktf Mn<br />

¼<br />

BðdK MnÞ<br />

tf ¼ 1 BðdK MnÞ<br />

ln<br />

K Mn<br />

J. EVOL. BIOL. 18 (2005) 1425–1433 ª 2005 EUROPEAN SOCIETY FOR EVOLUTIONARY BIOLOGY<br />

Evolution of fledging age 1433<br />

Received 11 January 2005; revised 8 April 2005; accepted<br />

13 April 2005<br />

Þ 1<br />

ð4Þ


Evolution, 60(8), 2006, pp. 1692–1700<br />

GROWTH STRATEGIES OF PASSERINE BIRDS ARE RELATED TO BROOD<br />

PARASITISM BY THE BROWN-HEADED COWBIRD (MOLOTHRUS ATER)<br />

VLADIMÍR REMES˘<br />

Department of Zoology, Faculty of Science, Palacky University, Tr. Svobody 26, 77146 Olomouc, Czech Republic<br />

E-mail: vladimir.remes@upol.cz<br />

Abstract. Sibling competition was proposed as an important selective agent in the evolution of growth and development.<br />

Brood parasitism by the brown-headed cowbird (Molothrus ater) intensifies sibling competition in the nests<br />

of its hosts by increasing host chick mortality and exposing them to a genetically unrelated nestmate. Intranest sibling<br />

competition for resources supplied by parents is size dependent. Thus, it should select for high development rates<br />

and short nestling periods, which would alleviate negative impacts of brood parasitic chicks on host young. I tested<br />

these predictions on 134 North American passerines by comparative analyses. After controlling for covariates and<br />

phylogeny, I showed that high parasitism rate was associated with higher nestling growth rate, lower mass at fledging,<br />

and shorter nestling periods. These effects were most pronounced in species in which sibling competition is most<br />

intense (i.e., weighing over about 30 g). When species were categorized as nonhosts versus old hosts (parasitized for<br />

thousands of years) versus new hosts (parasitized the last 100–200 years), there was a clear effect of this parasitism<br />

category on growth strategies. Nestling growth rate was the most evolutionarily flexible trait, followed by mass at<br />

fledging and nestling period duration. Adjustments during incubation (incubation period length, egg volume) were<br />

less pronounced and generally disappeared after controlling for phylogeny. I show that sibling competition caused by<br />

brood parasites can have strong effects on the evolution of host growth strategies and that the evolution of developmental<br />

traits can take place very rapidly. Human alteration of habitats causing spread of brood parasites to new areas thus<br />

cascades into affecting the evolution of life-history traits in host species.<br />

Key words. Brood parasitism, comparative analysis, development, growth, habitat change, sibling competition.<br />

One of the major challenges in evolutionary biology is to<br />

explain interspecific phenotypic variation. Growth is an integral<br />

part of a species’ life history; thus, knowing the factors<br />

responsible for its evolutionary diversification is a key issue.<br />

Many factors were hypothesized to be responsible for driving<br />

the evolution of growth and development rates (review in<br />

Starck and Ricklefs 1998; Remes˘ and Martin 2002). However,<br />

despite substantial research attention, we still have an<br />

incomplete knowledge of the factors critical in shaping the<br />

evolution of growth.<br />

One of the factors with strong potential to drive the evolution<br />

of juvenile growth is sibling competition. Strong sibling<br />

competition over limited resources should lead to elevated<br />

growth rates, provided rapid growth ensures monopolization<br />

of the resources (Werschkul and Jackson 1979;<br />

Ricklefs 1982). Despite the clear logic of this theoretical<br />

concept, empirical studies have generated mixed results<br />

(Werschkul and Jackson 1979; Ricklefs 1982; Bortolotti<br />

1986; Royle et al. 1999; Lloyd and Martin 2003). An emerging<br />

consensus seems to have been that juvenile growth rates<br />

are rather insensitive to sibling competition or at most that<br />

the potential relationship is unclear and obscured by confounding<br />

variables (Ricklefs 1982; Lloyd and Martin 2003;<br />

but see Royle et al. 1999). However, the role of sibling competition<br />

as a selective agent depends on the evolutionary<br />

flexibility of growth rates in response to mortality (Ricklefs<br />

1982). An overview of growth variation in diverse taxa<br />

showed that growth rates are often tuned to prevailing environmental<br />

conditions (Arendt 1997). More importantly, Remes˘<br />

and Martin (2002) showed that bird growth and development<br />

can be evolutionarily flexible in relation to juvenile<br />

mortality. Thus, it seems appropriate to rigorously re-examine<br />

the potential role of sibling competition in the evolution<br />

of growth and development rates.<br />

� 2006 The Society for the Study of Evolution. All rights reserved.<br />

Received March 17, 2006. Accepted May 31, 2006.<br />

1692<br />

The brood parasitic system of the brown-headed cowbird<br />

(Molothrus ater) and its avian hosts in North America is an<br />

ideal model for addressing this issue. The feasibility of this<br />

study system depends on two assumptions: (1) brood parasitism<br />

leads to stronger sibling competition in the host, and<br />

(2) elevated growth provides selective advantage to its bearer<br />

in sibling contest for resources.<br />

First, the intensity of sibling competition is set by an interplay<br />

between the benefits of obtaining more resources and<br />

both direct and indirect costs (Godfray 1991; Mock and Parker<br />

1997). Direct costs include, for example, the danger of<br />

luring nest predators by conspicuous begging behavior (Haskell<br />

1994; Dearborn 1999). Indirect costs include harm to<br />

gene-sharing nestmates (intrabrood conflict) and future offspring<br />

of the parents (interbrood conflict; Trivers 1974) incurred<br />

by nestlings monopolizing food brought by parents.<br />

Young of interspecific brood parasites have zero genetic relatedness<br />

to both their immediate nestmates and future offspring<br />

of the caring parents. Although selfishness of the parasitic<br />

chick is limited by positive effects of host young on<br />

its well-being (Kilner et al. 2004), cowbird young can afford<br />

more unequal monopolization of resources without bearing<br />

indirect costs (i.e., costs to their inclusive fitness; Hamilton<br />

1964). This lower indirect cost leads to the escalation of<br />

sibling competition (more precisely, nestmate competition)<br />

between cowbird and host young and may cascade to affect<br />

the evolution of begging display (e.g., more vigorous begging<br />

by brood parasites and hosts; Briskie et al. 1994; Dearborn<br />

1998, 1999), and host growth rates (Royle et al. 1999). If<br />

the presence of a more selfish nestmate (i.e., cowbird chick)<br />

in the nest leads to higher host young mortality (Lorenzana<br />

and Sealy 1999) and growth rate is evolutionarily sensitive<br />

to nestling mortality (Remes˘ and Martin 2002), this would


also lead to the evolution of more rapid growth (Ricklefs<br />

1982).<br />

Second, the young of brood parasites depend fully on their<br />

foster parents and thus the ability to acquire adequate resources<br />

from them. More importantly, nonevicting brood parasites<br />

(including the brown-headed cowbird) must procure<br />

these resources in the presence of competing host young (Davies<br />

2000). The interaction of parasitic and host young in the<br />

parasitic system of the brown-headed cowbird is strongly<br />

height dependent. Who gets fed depends critically on the<br />

height to which the nestling reaches with its gape (Dearborn<br />

1998; Lichtenstein and Sealy 1998), and young of similarsized<br />

hosts are not out-competed by cowbird nestlings (Dearborn<br />

and Lichtenstein 2002). Thus, it seems reasonable to<br />

speculate that elevated growth rate with resulting larger body<br />

size for a given age bears a clear advantage in this system<br />

(see also Friedmann 1963; Rothstein 1975). It should be noticed<br />

that chick discrimination (preferential feeding of their<br />

own young by host parents) could invalidate this argument.<br />

However, although it is known in several hosts of related<br />

species of cowbird (Fraga 1998; Lichtenstein 2001), it has<br />

not been found in any host of the brown-headed cowbird (see<br />

Grim 2006).<br />

Brown-headed cowbirds (body mass � 45 g, incubation<br />

period 11.5 days) successfully parasitize passerine species<br />

differing widely in adult body mass (Kilpatrick 1999). In<br />

small hosts, the cowbird chick is able to monopolize the<br />

majority of food brought by parents (see above). Consequently,<br />

the competition between other nestlings (i.e., true<br />

siblings) is very intense and every increase of the growth<br />

rate could bring a strong advantage. However, the smaller<br />

the host species, the higher the host young mortality, reaching<br />

even 100% (Lorenzana and Sealy 1999; Hauber 2003a; Kilner<br />

2003). Thus, in small hosts, there is little selection on growth<br />

strategies because a large majority of host young experiencing<br />

the presence of the cowbird young die and do not pass<br />

on their genes into future generations. In contrast, nestlings<br />

of large species fare well even in the company of parasitic<br />

nestmates, who die within a couple of days, thus eliminating<br />

any selection pressure on growth strategies of the host’s<br />

chicks (Scott and Lemon 1996). In intermediate hosts, the<br />

cowbird chick is a strong competitor, and at the same time<br />

host chicks survive to fledge. This combination of factors<br />

should bring the strongest selection on growth strategies in<br />

this size category of host species. Consequently, I predicted<br />

that the effect of the intensity of parasitism on the evolution<br />

of host growth rates would vary with host body mass, with<br />

the highest effect in the intermediate host mass, roughly<br />

equaling the mass of the cowbird.<br />

There are also other possible adjustments of host growth<br />

strategies for coping with the young cowbird in the nest, or<br />

at least for mitigating negative effects of its presence. Host<br />

young may increase their size, and consequently their competition<br />

potential, by hatching from larger eggs for a given<br />

adult body mass, or by shortening the incubation period to<br />

gain a head start in the development. Alternatively, they may<br />

escape direct competition with the cowbird chick by leaving<br />

the nest earlier and with lower body mass. However, since<br />

cowbirds beg vigorously even after leaving the nest (Hauber<br />

and Ramsey 2003), the strength of selection for early nest<br />

AVIAN GROWTH AND BROOD PARASITISM<br />

1693<br />

leaving will depend on the ability of the host young to compete<br />

with the cowbird young while in the nest as compared<br />

to after fledging. I also tested these hypotheses.<br />

Recent expansion of the cowbird breeding range in North<br />

America adds both complexity and appeal to this study system.<br />

Natural breeding habitat for the brown-headed cowbird<br />

is short grass vegetation with low or scattered trees (Lowther<br />

1993). Thus, before European settlement they were mainly<br />

restricted to the grasslands of the Great Plains. Today, cowbirds<br />

breed throughout the whole United States and southern<br />

Canada (Sauer et al. 2005). Their expansion eastwards (from<br />

about the late 1700s) and westwards (from about 1900) was<br />

enabled by transformation of woodlands to pastures and<br />

fields, which are readily adopted for breeding (Mayfield 1965;<br />

Ortega 1998). This led to the contact of the brown-headed<br />

cowbird with a number of new hosts (woodland species) with<br />

no previous experience with brood parasitism. At present,<br />

brown-headed cowbirds parasitize more than 200 passerine<br />

species (Ortega 1998; Davies 2000). New hosts (woodland<br />

species) have been exposed to parasitism for the last 100–<br />

200 years and thus differ from open-country species (either<br />

old hosts or nonhosts) in length of coevolution with the cowbird.<br />

This enables us to test not only the flexibility of avian<br />

growth and development in relation to sibling competition,<br />

but also the tempo of their evolution.<br />

In summary, parasitic young compete directly for food with<br />

host young, cause host young mortality (the strength of which<br />

depends on host size; Lorenzana and Sealy 1999), and can<br />

afford stronger sibling conflict because of its lower indirect<br />

cost for them. Furthermore, competition for resources is size<br />

dependent. These processes should result in selection for<br />

higher growth rates of host young. Alternative developmental<br />

strategies could include a short incubation period, laying<br />

large eggs, and shortening the nestling period by fledging<br />

soon and with low body mass. I tested these predictions on<br />

a sample of 134 species of North American passerines victimized<br />

to a certain degree by the brown-headed cowbird. I<br />

predicted rapid growth, low fledging mass, short nestling and<br />

incubation periods, and large eggs with increasing parasite<br />

pressure. If the tempo of the evolution of adaptation in growth<br />

and development to brood parasitism is slow, I predicted that<br />

old hosts would differ from nonhosts, whereas new hosts<br />

would not. On the contrary, if the tempo of this evolution is<br />

rapid, I predicted that both old and new hosts would differ<br />

from nonhosts.<br />

METHODS<br />

Dataset<br />

General procedures for collection and preparation of lifehistory<br />

data were as in Remes˘ and Martin (2002). After conducting<br />

an exhaustive search of databases, I added growth<br />

and life-history data for an additional 19 species (see Appendix<br />

1 available online only at http://dx.doi.org/10.1554/<br />

06-170.1.s1), making the total of 134 species. I collated data<br />

on growth rate, fledging mass, incubation and nestling periods,<br />

clutch size, adult body mass, nest predation rate, foraging<br />

mode (aerial vs. nonaerial forager), and latitude of the<br />

growth study. As a measure of growth rate for subsequent<br />

analyses, I used the constant K of the logistic growth equation


1694 VLADIMÍR REMES˘<br />

fit both to the growth data truncated at the highest mass<br />

reached in the nest (K max) and at 70% of adult body mass<br />

(K 70), according to analytical procedures developed by Remes˘<br />

and Martin (2002).<br />

For every species I searched data on percentage of nests<br />

parasitized by the brown-headed cowbird (Ortega 1998, appendix<br />

C, D; Poole and Gill 1992–2002), breeding habitat<br />

and nest site (Ehrlich et al. 1988), and rejection rate of parasitic<br />

eggs (Rothstein 1975; Peer and Sealy 2004). I took the<br />

mean parasitism rate for each species by calculating average<br />

weighed by sample size of nests (together there were 844<br />

studies; median number of studies per species: 4; interquartile<br />

range: 1–8). For 590 studies, the years in which they were<br />

conducted were known. Of these studies, 49 were done before<br />

1900, 112 between 1901 and 1950, and the remaining 429<br />

studies after 1950. There was large intraspecific variation in<br />

reported parasitism rates. In species where there were at least<br />

two studies and mean larger than zero, mean coefficient of<br />

variation was 106%, and it decreased with mean parasitism<br />

rate (r ��0.70, P � 0.001, n � 81).<br />

Percentage of nests parasitized by a cowbird is not an ideal<br />

measure of the real impact of parasitism on the host growth<br />

strategies. First, some parasitized clutches are deserted/buried<br />

by hosts; thus, their nestlings are not exposed to cowbird<br />

chicks. Second, the cost of parasitism at the nestling stage<br />

(i.e., percentage of nestlings dying in nests with a cowbird<br />

chick as compared to nests without it) varies widely between<br />

species (Lorenzana and Sealy 1999). I was able to collate<br />

data on percentage of nests deserted/buried for 33 species<br />

(Hosoi and Rothstein 2000) and on the cost of parasitism for<br />

54 species (Lorenzana and Sealy 1999; Hauber 2003a; Kilner<br />

2003). This generated data on the real impact of parasitism<br />

on the growth strategies of host nestlings (i.e., [% parasitized<br />

� (1 � proportion deserted or buried)] � cost of parasitism)<br />

for only 29 species, which is too few for a rigorous analysis.<br />

However, if desertion of a parasitized nest is a rapid event<br />

(Hosoi and Rothstein 2000), then the majority of nests found<br />

and reported in the literature as parasitized do not include<br />

nests later deserted/buried. Thus, the percentage of nests reported<br />

as parasitized may be a rather good predictor of the<br />

force of selection on hosts. Therefore, I used percentage of<br />

nests parasitized as a proxy for the exposure of host nestlings<br />

to cowbird chicks and host body mass as a proxy for the<br />

impact of parasitism on host offspring (Lorenzana and Sealy<br />

1999; see above).<br />

Based on the information on parasitism rate I also categorized<br />

every species as either a host or a nonhost. Species<br />

with parasitism below 2% were categorized as nonhosts and<br />

other species as hosts, with three exceptions. Carduelis tristis<br />

and Bombycilla cedrorum were treated as nonhosts despite<br />

their parasitism rate of about 4%, because they feed their<br />

young with food unsuitable for cowbird chicks. Toxostoma<br />

rufum, in spite of its 4.5% parasitism rate, is a rejecter species<br />

(rejection of cowbird eggs � 96%; Rothstein 1975) and was<br />

also categorized as nonhost. For reasons explained in the<br />

introduction, I also categorized every host species as either<br />

an old or a new host. This categorization was based on breeding<br />

habitat, because that reveals long-term exposure to cowbird<br />

parasitism (for justification, see Hosoi and Rothstein<br />

2000). Forest hosts were categorized as new hosts whereas<br />

hosts breeding in edge, shrub, marsh, and open habitats were<br />

categorized as old hosts. Data are summarized in Appendix<br />

2 available online only at http://dx.doi.org/10.1554/06-170.<br />

1.s2 (for other life-history data for these species, see Remes˘<br />

and Martin 2002). There was no difference in nest predation<br />

rate among habitats (F 4,124 � 1.15, P � 0.335).<br />

Among nonhost species, there are both rejecters (species<br />

ejecting cowbird eggs from their nests at rates � 75%) and<br />

acceptors (species rejecting � 25% of parasitic eggs). Acceptors<br />

are not parasitized for other reasons (e.g., no range<br />

overlap with cowbird, cavity nesting etc.). Species are either<br />

rejecters or acceptors with almost no intermediates (Rothstein<br />

1975, 1992). Also in my sample of nonhosts for which I was<br />

able to collate data on rejection of natural parasitic eggs,<br />

species fell either above 87% (rejecters, n � 16) or below<br />

20% ejection (acceptors, n � 6). Since these two categories<br />

of nonhosts may differ in the length of their coevolutionary<br />

interaction with cowbird, I compared all analyzed traits between<br />

them. There was no difference in either trait (F 2,19 �<br />

2.38, P � 0.140; body mass always controlled). Thus, these<br />

two groups of nonhosts may safely be assumed to have been<br />

correctly grouped.<br />

Analyses<br />

Based on prior knowledge of the factors related to avian<br />

growth and development rates (Starck and Ricklefs 1998;<br />

Remes˘ and Martin 2002) I fitted models with growth rate<br />

(constant K of the logistic equation; day �1 ), relative fledging<br />

mass (mass at fledging/adult body mass), nestling period duration<br />

(day), incubation period duration (day), and egg volume<br />

(cm 3 ) as response variables, and adult body mass (g),<br />

nest predation rate (daily rate of nest loss due to predation;<br />

day �1 ), clutch size (no. of eggs), and foraging mode (aerial<br />

vs. nonaerial forager) as predictors. In the analysis of growth<br />

rate, I also included latitude of the particular growth study<br />

(degrees north). To this baseline model, I added a variable<br />

expressing either the level or the length of cowbird parasitism.<br />

It was either parasitism rate (% of nests parasitized) or<br />

parasitism status (nonhost vs. new host vs. old host). To<br />

minimize the number of statistical tests, I tested interaction<br />

of these parasitism variables only with adult body mass (see<br />

above), nest predation, and the quadratic effect of parasitism<br />

rate and nest predation (to detect possible nonadditive effects<br />

of mortality factors). I selected final models based on backward<br />

elimination of nonsignificant variables (at ��0.05).<br />

In all models, I checked plots of residuals for any deviations<br />

from normality of error, linearity of effects, and homogeneity<br />

of variance (Grafen and Hails 2002). Variables were appropriately<br />

transformed, if necessary.<br />

In all analyses, species were treated as datapoints. Common<br />

descent of species may cause problems in the analysis of<br />

interspecific data. Species are historically related, which<br />

causes nonindependence of varying strength among datapoints.<br />

This violates assumptions of standard statistical techniques<br />

(Harvey and Pagel 1991). To overcome this problem,<br />

I applied the phylogenetic regression of Grafen (1989). This<br />

method is based on generalized least squares and adjusts the<br />

statistical analysis for nonindependence among species. This<br />

method is very flexible and enables fitting of standard sta-


FIG. 1. Relationship between growth rate (K max, day �1 ; top), relative<br />

fledging mass (mass at fledging/adult mass; middle), and nestling<br />

period (day; bottom), and adult host body mass (g) and parasitism<br />

rate (%). Shown are predicted relationships for average<br />

values of continuous variables controlled for in the analyses<br />

AVIAN GROWTH AND BROOD PARASITISM<br />

←<br />

1695<br />

tistical models, including interactions and categorical predictors.<br />

I used the PHYREG macro for SAS written by A.<br />

Grafen (Grafen 2005). I tested significance of either parasitism<br />

rate or parasitism category (or their interaction with a<br />

factor, if necessary) against other covariates that were selected<br />

as significant in the raw species data analyses.<br />

I assembled a working phylogeny of the studied species<br />

based on Sibley and Ahlquist (1990), Martin and Clobert<br />

(1996); and Remes˘ and Martin (2002), supplemented by the<br />

most recent molecular phylogenies (see Appendix 3 available<br />

online only at http://dx.doi.org/10.1554/06-170.1.s3). Since<br />

the phylogeny was assembled from many sources, I had no<br />

consistent estimates of branch lengths. I adopted uniform<br />

branch lengths. However, another arbitrary branch lengths<br />

option, Grafen’s (1989) branch lengths, generated qualitatively<br />

identical results.<br />

RESULTS<br />

Growth Rate<br />

Growth rate (K max) was positively related to parasitism rate,<br />

but this effect depended on adult body mass of the host (interaction<br />

[IN hereafter]: F 1,120 � 6.18, P � 0.014; Fig. 1)<br />

and nest predation rate (IN: F 1,120 � 6.39, P � 0.013). There<br />

was also a positive effect of latitude (F 1,120 � 7.43, P �<br />

0.007; whole model: R 2 � 0.48, F 6,120 � 18.56, P � 0.001).<br />

Similar results were obtained when K 70 was used as a response.<br />

Growth rate was again positively related to parasitism<br />

rate, and this effect depended on adult host body mass (IN:<br />

F 1,101 � 9.24, P � 0.003). There was also a simple positive<br />

effect of nest predation rate (F 1,101 � 7.78, P � 0.006) and<br />

latitude (F 1,101 � 16.14, P � 0.001), and a negative effect<br />

of clutch size (F 1,101 � 7.39, P � 0.008; whole model: R 2<br />

� 0.45, F 6,101 � 13.60, P � 0.001). Phylogenetically adjusted<br />

analyses generated the same results. The effect of parasitism<br />

rate on growth still depended on body mass in both K max (IN:<br />

F 1,117 � 8.15, P � 0.005) and K 70 (IN: F 1,99 � 5.96, P �<br />

0.020).<br />

Growth rate (K max) differed between parasitism categories,<br />

but this effect depended on host body mass (IN: F 2,117 �<br />

3.08, P � 0.050; Fig. 2) and nest predation rate (IN: F 2,117<br />

� 6.45, P � 0.002). There was also a significant positive<br />

effect of latitude (F 1,117 � 6.68, P � 0.011; whole model:<br />

R 2 � 0.50, F 9,117 � 13.16, P � 0.001). Analyses of K 70<br />

generated similar results. There was a difference between<br />

parasitism categories, but this effect depended on host body<br />

mass (IN: F 2,99 � 4.83, P � 0.010). There was also a simple<br />

positive effect of nest predation rate (F 1,99 � 5.69, P � 0.019)<br />

and latitude (F 1,99 � 13.87, P � 0.001), and a negative effect<br />

of clutch size (F 1,99 � 6.42, P � 0.013; whole model: R 2 �<br />

0.46, F 8,99 � 10.56, P � 0.001). Again, the interaction of<br />

parasitism category and adult body mass remained significant<br />

reported in Results (latitude � 42�N, nest predation rate � 0.127)<br />

and aerial foragers. Black dots are observations projected on the<br />

predicted plane, which should highlight parts of the plane that are<br />

most supported by data and thus best interpretable.


1696 VLADIMÍR REMES˘<br />

FIG. 2. Least squares means (�1 SE) of developmental characteristics<br />

(growth rate [day �1 ], relative fledging mass, nestling period<br />

[day], incubation period [day], and egg volume [cm 3 ]) estimated<br />

separately for nonhosts, new hosts, and old hosts, for three host<br />

body masses. These were chosen to represent minimum body mass<br />

found among hosts (10 g), body mass close to the mass of the brownheaded<br />

cowbird (50 g), and body mass twice as large (100 g). There<br />

is no estimate for 100 g for the new hosts, because no new host<br />

was as heavy; no old host was heavier than 100 g. Least squares<br />

means were estimated from analyses reported in Results. Error bars<br />

are hardly visible for egg volume, because standard errors are too<br />

small.<br />

even after adjusting for phylogeny in both K max (IN: F 2,114<br />

� 3.59, P � 0.031) and K 70 (IN: F 2,97 � 4.66, P � 0.012).<br />

Relative Fledging Mass<br />

Relative fledging mass was negatively related to parasitism<br />

rate, but this effect depended on adult body mass of the host<br />

(IN: F1,122 � 19.65, P � 0.001; Fig. 1). There was also a<br />

negative effect of nest predation rate (F1,122 � 18.59, P �<br />

0.001) and a difference between aerial foragers (least squares<br />

mean [SE] � 0.89 [0.023], n � 20) and nonaerial foragers<br />

(0.81 [0.009], n � 108; F1,122 � 10.84, P � 0.001; whole<br />

model: R2 � 0.56, F5,122 � 31.61, P � 0.001). The effect of<br />

parasitism rate on relative fledging mass still depended on<br />

host body mass in the phylogenetically adjusted analyses (IN:<br />

F 1,119 � 5.87, P � 0.017).<br />

Relative fledging mass differed between parasitism categories,<br />

and this effect depended on adult body mass (IN:<br />

F 2,120 � 7.46, P � 0.001; Fig. 2). There was again a significant<br />

negative effect of nest predation (F 1,120 � 18.86, P �<br />

0.001) and a significant effect of foraging mode (F 1,120 �<br />

9.23, P � 0.003; whole model: R 2 � 0.57, F 7,120 � 22.63,<br />

P � 0.001). The effect of parasitism category still interacted<br />

with host body mass in phylogenetic analyses (IN: F 2,117 �<br />

3.34, P � 0.039).<br />

All the analyses of the relative fledging mass were done<br />

without the strongly outlying Leucosticte tephrocotis (relative<br />

fledging mass � 1.54).<br />

Nestling Period<br />

Length of the nestling period was negatively related to<br />

parasitism rate, but this effect depended on adult body mass<br />

(IN: F1,122 � 5.85, P � 0.017; Fig. 1) and nest predation rate<br />

(IN: F1,122 � 12.97, P � 0.001). There was also a difference<br />

between aerial foragers (least squares mean [SE] � 16.2<br />

[1.05] days, n � 20) and nonaerial foragers (11.8 [1.02] days,<br />

n � 108; F1,122 � 38.12, P � 0.001; whole model: R2 �<br />

0.68, F6,122 � 43.49, P � 0.001). In phylogenetically adjusted<br />

analyses, the interaction of parasitism rate with host body<br />

mass became slightly nonsignificant (IN: F1,119 � 2.79, P �<br />

0.097), whereas the interaction with nest predation remained<br />

significant (IN: F1,119 � 8.33, P � 0.005). When the interaction<br />

of parasitism rate with nest predation was removed<br />

from the model, the simple negative effect of parasitism rate<br />

became marginally nonsignificant (F1,121 � 3.23, P � 0.075).<br />

Length of the nestling period differed between parasitism<br />

categories (Fig. 2), but this effect depended on nest predation<br />

rate (IN: F2,121 � 6.54, P � 0.002). However, parasitism<br />

category remained significant even when the interaction with<br />

nest predation rate was removed (F2,123 � 4.06, P � 0.020).<br />

There was a significant positive effect of adult body mass<br />

(F1,121 � 38.04, P � 0.001) and a significant effect of foraging<br />

mode (F1,121 � 35.10, P � 0.001; whole model: R2 �<br />

0.68, F7,121 � 36.92, P � 0.001). When phylogeny was controlled,<br />

the interaction of parasitism category with nest predation<br />

was still significant (IN: F2,118 � 3.83, P � 0.024).<br />

However, when this interaction was removed, the simple effect<br />

of parasitism category became nonsignificant (F2,120 �<br />

1.08, P � 0.342).<br />

Incubation Period<br />

Length of the incubation period was curvilinearly related<br />

to parasitism rate (F 1,122 � 7.86, P � 0.006), and this effect<br />

depended on adult body mass (IN: F 1,122 � 6.04, P � 0.015;<br />

Fig. 3). There was also a negative effect of nest predation<br />

rate (F 1,122 � 14.09, P � 0.001) and a difference between<br />

aerial foragers (least squares mean [SE] � 14.5 [1.02] days,<br />

n � 20) and nonaerial foragers (12.9 [1.01] days, n � 108;<br />

F 1,122 � 25.93, P � 0.001; whole model: R 2 � 0.52, F 6,122<br />

� 21.87, P � 0.001). In phylogenetic analyses, the interaction<br />

of parasitism rate with body mass was no longer significant<br />

(IN: F 1,119 � 0.03, P � 0.856). Moreover, curvilinear effect<br />

of parasitism remained only marginally significant (F 1,120 �


FIG. 3. Relationship between incubation period (day; top) and egg<br />

volume (cm 3 ; bottom), and parasitism rate (%) and adult host body<br />

mass (g). Shown are predicted relationships for average values of<br />

continuous variables controlled for in the analyses reported in Results<br />

(nest predation rate � 0.127, clutch size � 4.1) for aerial<br />

foragers. Black dots are observations projected on the predicted<br />

plane, which should highlight parts of the plane that are most supported<br />

by data and thus best interpretable.<br />

3.86, P � 0.052), and when removed from the model, parasitism<br />

rate had no linear effect on the incubation period<br />

whatsoever (F 1,121 � 0.04, P � 0.836).<br />

Length of the incubation period differed between parasitism<br />

categories, but this effect depended on adult body mass<br />

(IN: F 2,121 � 4.55, P � 0.012; Fig. 2). There was again a<br />

AVIAN GROWTH AND BROOD PARASITISM<br />

1697<br />

significant negative effect of nest predation rate (F 1,121 �<br />

16.67, P � 0.001) and a significant effect of foraging mode<br />

(F 1,121 � 18.93, P � 0.001; whole model: R 2 � 0.50, F 7,121<br />

� 17.38, P � 0.001). In phylogenetically corrected analyses,<br />

the interaction of parasitism category with host body mass<br />

disappeared (IN: F 2,118 � 1.85, P � 0.162), and there was<br />

also no effect of the sole parasitism category (F 2,120 � 0.67,<br />

P � 0.511).<br />

Egg Volume<br />

Egg volume was positively related to parasitism rate, but<br />

this effect depended on adult body mass (IN: F1,128 � 5.05,<br />

P � 0.026; Fig. 3). There was also a negative effect of clutch<br />

size (F1,128 � 9.96, P � 0.002; whole model: R2 � 0.96,<br />

F4,128 � 838.89, P � 0.001). The interaction of parasitism<br />

rate with host body mass disappeared in phylogeny-adjusted<br />

analyses (IN: F1,125 � 2.00, P � 0.160), and there was also<br />

no simple effect of parasitism rate (F1,126 � 1.82, P � 0.180).<br />

Egg volume differed between parasitism categories, but<br />

this effect depended on adult body mass (IN: F2,126 � 4.41,<br />

P � 0.014; Fig. 2). There was also a significant negative<br />

effect of clutch size (F1,126 � 8.12, P � 0.005; whole model:<br />

R2 � 0.97, F6,126 � 595.59, P � 0.001). Also in the case of<br />

parasitism category, both the interaction with host body mass<br />

(IN: F2,123 � 0.52, P � 0.593) and simple effect of parasitism<br />

category (F2,125 � 1.27, P � 0.285) were not significant in<br />

analyses adjusted for phylogeny.<br />

All the analyses of egg volume were performed without<br />

Calcarius ornatus, which was strongly outlying (standardized<br />

residual � 5.9).<br />

DISCUSSION<br />

Brood parasitism caused by the brown-headed cowbird affected<br />

growth and development of its North American hosts.<br />

At the nestling stage, growth rate increased, mass at fledging<br />

decreased, and nestling period duration shortened with increasing<br />

parasitism pressure. All these effects were only present<br />

in medium and large hosts (roughly above 30 g; Fig. 1).<br />

These results were not confounded by relevant covariates<br />

(adult body mass, latitude, clutch size, nest predation, foraging<br />

technique), which were all controlled for in multivariate<br />

analyses. Moreover, these results were also robust to the<br />

incorporation of phylogeny into the analyses. The effects<br />

were less clear at the incubation stage. Incubation period<br />

length was shortest at intermediate levels of parasitism,<br />

whereas egg volume increased with parasitism rate (Fig. 3).<br />

However, these effects largely disappeared when the analyses<br />

were adjusted for phylogeny. These results together lend<br />

strong support for the role of sibling competition caused by<br />

brood parasitism in shaping growth and development strategies<br />

of North American passerine birds. However, it is important<br />

to note that although the effects were clear and thus<br />

support the general effect of brood parasitism on host growth,<br />

they concerned a minority of the studied species. Among 68<br />

hosts, there were only 14 species heavier than 30 g and 31<br />

species heavier than 20 g.<br />

One of the most interesting aspects of these results is the<br />

pervasive presence of the interaction between the effects of<br />

parasitism rate and adult host body mass on growth and de-


1698 VLADIMÍR REMES˘<br />

velopment. The general trend at the nestling stage is for a<br />

minimum or no effect of parasitism rate in the smallest hosts<br />

(up to about 30 g), with the effect increasing up to the largest<br />

host body masses (Fig. 1). This agrees with the patterns of<br />

host mortality in the presence of the cowbird chick. The<br />

smaller the host species, the higher the host young mortality.<br />

In the smallest species (mass about 10–20 g), host mortality<br />

often reaches 100% (Lorenzana and Sealy 1999; Hauber<br />

2003a; Kilner 2003). The small young are easily outcompeted<br />

by much larger cowbird chicks in the begging contest for<br />

resources brought by parents (Dearborn 1998; Lichtenstein<br />

and Sealy 1998). Since this mortality cannot be escaped by<br />

adjusting growth strategies, it has no relevance for the evolution<br />

of growth rate (Ricklefs 1969). Similarly, no host<br />

chicks of the smallest species are exposed to competition<br />

with cowbird young for food (since they all die); thus, there<br />

is presumably no selection for early nest leaving. On the<br />

contrary, young of the hosts that are comparable to the cowbird<br />

in their size are not outcompeted by cowbird nestlings<br />

(Dearborn and Lichtenstein 2002), and they fare comparably<br />

well even in the company of parasitic nestmates (Davies<br />

2000). Thus, young of these species are exposed to direct<br />

competition for resources with the cowbird chick. Moreover,<br />

there is still on average about 20% more nestling mortality<br />

caused by the presence of the cowbird chick in hosts of this<br />

weight category (i.e., 45 g; V. Remes˘, unpublished analyses<br />

of data from Lorenzana and Sealy 1999; Hauber 2003a; Kilner<br />

2003). Since this mortality can be escaped or alleviated<br />

by increasing growth rate (see introduction), it has direct<br />

relevance for the evolution of growth strategies. However,<br />

cowbird-caused nestling mortality in large hosts (above about<br />

80 g) is negligible, and mortality of the cowbird chick in<br />

these hosts is high (Kilner 2003). I would accordingly predict<br />

weak to absent effects of cowbird parasitism on growth strategies<br />

with host mass substantially outreaching cowbird body<br />

mass. Instead, the effect increased up to the highest host<br />

masses. This may be caused by the low sample of large hosts<br />

that are heavily parasitized, which may have distorted the<br />

fitted relationship. Alternatively, there might really be no<br />

such weakening, for which fact there seems to be currently<br />

no explanation.<br />

Developmental adaptations during incubation were less<br />

clear. There was a shortening of the incubation period with<br />

increasing parasitism pressure in hosts above about 40 g,<br />

whereas in smaller hosts the relationship of incubation period<br />

to parasitism was curvilinear (Fig. 3). However, when adjusted<br />

for phylogeny, these effects disappeared. This seems<br />

surprising since incubation period has clear consequences for<br />

host mortality in this system (Hauber 2003a; Kilner 2003)<br />

and is as sensitive to another important selective factor, nest<br />

predation, as growth rate and nestling period duration (e.g.,<br />

Bosque and Bosque 1995; V. Remes˘, unpubl. data). There<br />

are at least two possible explanations. (1) Incubation period<br />

in the brown-headed cowbird (10.5 days) is already very short<br />

for its body and egg mass. In fact, in the sample of species<br />

analyzed here, it lies outside the ranges for this body mass<br />

(45 g) or egg volume (3.46 cm 3 ), and is thus by far the shortest<br />

incubation period. This may make any significant shortening<br />

of the incubation period in the host species as compared to<br />

the cowbird physiologically impossible. Moreover, in species<br />

where the incubation period could be shorter than that of the<br />

cowbird (i.e., in very small species), this may bring no advantage<br />

since their mortality in the presence of the cowbird<br />

chick is extremely high anyway (see above). (2) Further<br />

shortening of the incubation period may be precluded by costs<br />

associated with it. For example, long incubation may bring<br />

significant advantages to the development of the immune<br />

system (Ricklefs 1992, 1993; Palacios and Martin 2006).<br />

Effects of parasitism rate on egg volume were rather weak<br />

(Fig. 3) and they disappeared completely after adjusting for<br />

phylogeny. This could be explained based on the finding that<br />

egg mass variation usually has small effects on subsequent<br />

chick mass (reviewed in Williams 1994; Krist et al. 2004).<br />

Moreover, egg mass is not evolutionarily sensitive to another<br />

major selective factor, nest predation rate (Martin et al. 2006;<br />

V. Remes˘, unpubl. data).<br />

When host species were categorized as nonhosts versus old<br />

hosts versus new hosts, the results were similar, as with simple<br />

parasitism rate, but enabled an insight into the tempo of<br />

the adjustment of growth strategies in relation to brood parasitism.<br />

New hosts have been parasitized for the last 100–<br />

200 years (Mayfield 1965), whereas old hosts have been parasitized<br />

for at least several thousands of years (see also Hosoi<br />

and Rothstein 2000). At the nestling stage, parasitism category<br />

interacted with host body mass in affecting growth rate<br />

and relative fledging mass, whereas there was a simple effect<br />

of parasitism category on nestling period duration (Fig. 2).<br />

These effects were largely supported by phylogenetically adjusted<br />

analyses. In the case of the nestling period and relative<br />

fledging mass, there was a clear effect of the length of coevolution<br />

with a cowbird parasite. Old hosts had the shortest<br />

nestling period and lowest fledging mass, in new hosts these<br />

characteristics were intermediate, and in nonhosts nestling<br />

period was longest and fledging mass largest. In the case of<br />

relative fledging mass, this was true for host body mass of<br />

50 g and higher, which agrees with body mass–dependent<br />

host mortality caused by the cowbird. Growth rate was higher<br />

in old hosts than in nonhosts in species weighing 50 g and<br />

above, but, surprisingly, it was highest in new hosts (Fig. 2).<br />

The effects of parasitism category were less clear during<br />

incubation, and completely disappeared after adjusting for<br />

phylogeny. Again, developmental characteristics were more<br />

flexible at the nestling stage than during incubation. Adjustments<br />

of the nestling period duration and relative fledging<br />

mass agreed with the length of coevolution with the brood<br />

parasite, whereas in growth rate this was not obvious.<br />

There are at least two complications hindering clear-cut<br />

interpretation of the results obtained here. First, I analyzed<br />

the evolution of growth and developmental allometries in<br />

relation to interspecific parasitism; that is, in all analyses,<br />

host adult body mass was controlled for. However, it is possible<br />

that host species under strong parasitism pressure could<br />

adjust adult body mass evolutionarily. Large species do not<br />

suffer much from cowbird parasitism (Lorenzana and Sealy<br />

1999); thus, this would be a logical outcome. However, here<br />

I was concerned with the evolution of developmental allometries<br />

and was not able to analyze possible shifts in host adult<br />

body mass. Second, cowbird host selection could play a role.<br />

If cowbird females selected hosts with, for example, rapid<br />

nestling growth (which could signal high food provisioning),


the relationship between rapid host growth and cowbird parasitism<br />

would emerge. However, such an argument would<br />

not easily apply to other traits (nestling period, relative fledging<br />

mass). Moreover, cowbird females are extreme generalists,<br />

laying many eggs during the breeding season to the<br />

nests of many hosts (reviewed in Ortega 1998; Davies 2000).<br />

Thus, it seems that behavioral adaptations on the side of<br />

parasite could not explain results obtained here.<br />

The evolutionary adjustment of growth strategies of cowbird<br />

hosts has a direct bearing on the evolution of other<br />

antiparasite strategies. The majority of cowbird hosts accept<br />

parasitic eggs (Ortega 1998). Antiparasite defenses at the<br />

nestling stage may include refusal to feed (Payne et al. 2001),<br />

chick desertion (Grim et al. 2003; Langmore et al. 2003), or<br />

direct killing (Redondo 1993). However, no such behavior<br />

is known in cowbird hosts, and relatively infrequent occurrence<br />

of these nestling-stage adaptations in hosts of brood<br />

parasites in general has been an enigma and provoked the<br />

development of multitude of explanations (reviewed in Grim<br />

2006). No study so far has considered elevated growth rates<br />

as a possible host defense against negative effects of parasitism.<br />

Moreover, adjustment of growth strategies may even<br />

partly explain the puzzling absence of other defenses at the<br />

nestling stage. If these growth adjustments mitigate negative<br />

effects of parasitic chicks on host young, they may decrease<br />

the strength of selection on the evolution of alternative defenses<br />

(similar to how egg rejection reduces selection pressure<br />

on the host adaptive response to parasitic chicks, see<br />

Grim 2006). Then the question remains why the adjustment<br />

of growth and development should evolve instead of other<br />

defenses. Obviously, it is free of recognition errors, which<br />

could be a key advantage over chick discrimination. Moreover,<br />

it may be less costly or more evolutionarily flexible.<br />

These hypotheses remain to be tested.<br />

This study showed that brood parasitism by the brownheaded<br />

cowbird affected the evolution of growth strategies<br />

of its hosts. Thus, in addition to juvenile mortality caused<br />

by nest predation (Remes˘ and Martin 2002; Roff et al. 2005),<br />

sibling competition caused by the presence of a genetically<br />

unrelated nestmate emerged as an important selective factor.<br />

This agrees with some previous comparative analyses demonstrating<br />

effects of sibling competition on pre- and postnatal<br />

development rates in birds (Royle et al. 1999; Lloyd and<br />

Martin 2003) and other studies demonstrating effects of parasitism<br />

on host life histories (Martin et al. 2001; Møller<br />

2005). Adjustments during nestling stage were more pronounced<br />

than during incubation. Growth strategies were surprisingly<br />

evolutionarily flexible. The adjustment of growth<br />

rate had to take place during the last 100–200 years, because<br />

new hosts grew at least as fast as old hosts. In the case of<br />

nestling period duration and relative fledging mass, new hosts<br />

were intermediate between old hosts and nonhosts, which<br />

suggests that these characteristics evolve more slowly and<br />

currently lag in their evolutionary response. The recent expansion<br />

of the brown-headed cowbird has been enabled by<br />

human alteration of habitats, especially forest fragmentation<br />

(Lloyd et al. 2005). Human alteration of habitats can thus<br />

have strong cascading effects on the evolution of life-history<br />

traits in birds (see also Martin and Clobert 1996; Hosoi and<br />

Rothstein 2000; Hauber 2003b).<br />

AVIAN GROWTH AND BROOD PARASITISM<br />

ACKNOWLEDGMENTS<br />

1699<br />

This study was supported by the Grant Agency of the Czech<br />

Republic (no. 206/05/P581) and the Ministry of Education,<br />

Youth and Sports (MSM6198959212). The dedication of<br />

many field workers who contributed over the decades to the<br />

collection of data on which this study is based is also acknowledged.<br />

I am obliged to T. Day, T. Grim, M. E. Hauber,<br />

M. Krist, and two anonymous reviewers for discussion or<br />

comments on the manuscript, and to B. Gruberová for ongoing<br />

support.<br />

LITERATURE CITED<br />

Arendt, J. D. 1997. Adaptive intrinsic growth rates: an integration<br />

across taxa. Q. Rev. Biol. 72:149–177.<br />

Bortolotti, G. R. 1986. Evolution of growth-rates in eagles: sibling<br />

competition vs. energy considerations. Ecology 67:182–194.<br />

Bosque, C., and M. T. Bosque. 1995. Nest predation as a selective<br />

factor in the evolution of developmental rates in altricial birds.<br />

Am. Nat. 145:234–260.<br />

Briskie, J. V., C. T. Naugler, and S. M. Leech. 1994. Begging<br />

intensity of nestling birds varies with sibling relatedness. Proc.<br />

R. Soc. Lond. B 258:73–78.<br />

Davies, N. B. 2000. Cuckoos, cowbirds and other cheats. T. and<br />

AD Poyser, London.<br />

Dearborn, D. C. 1998. Begging behavior and food acquisition by<br />

brown-headed cowbird nestlings. Behav. Ecol. Sociobiol. 43:<br />

259–270.<br />

———. 1999. Brown-headed cowbird nestling vocalizations and<br />

risk of nest predation. Auk 116:448–457.<br />

Dearborn, D. C., and G. Lichtenstein. 2002. Begging behaviour and<br />

host exploitation in parasitic cowbirds. Pp. 361–387 in J. Wright,<br />

and M. L. Leonard, eds. The evolution of begging: competition,<br />

cooperation, and communication. Springer, Berlin.<br />

Ehrlich, P. R., D. S. Dobkin, and D. Wheye. 1988. The birder’s<br />

handbook. Simon and Schuster, New York.<br />

Fraga, R. M. 1998. Interactions of the parasitic screaming and shiny<br />

cowbirds (Molothrus rufoaxillaris and M. bonariensis) with a<br />

shared host, the bay-winged cowbird (M. badius). Pp. 173–193<br />

in S. I. Rothstein and S. K. Robinson, eds. Parasitic birds and<br />

their hosts. Oxford Univ. Press, New York.<br />

Friedmann, H. 1963. Host relations of the parasitic cowbirds. U.S.<br />

Natl. Mus. Bull. 233:1–276.<br />

Godfray, H. C. J. 1991. Signalling of need by offspring to their<br />

parents. Nature 352:328–330.<br />

Grafen, A. 1989. The phylogenetic regression. Philos. Trans. R.<br />

Soc. Lond. B 326:119–157.<br />

———. 2005. A user’s guide to the SAS implementation of the<br />

phylogenetic regression. Ver. 0.6. Available via http://users.<br />

ox.ac.uk/�grafen/phylo/.<br />

Grafen, A., and R. Hails. 2002. Modern statistics for the life sciences.<br />

Oxford Univ. Press, Oxford, U.K.<br />

Grim, T. 2006. The evolution of nestling discrimination by hosts<br />

of parasitic birds: Why is rejection so rare? Evol. Ecol. Res. 8:<br />

785–802.<br />

Grim, T., O. Kleven, and O. Mikulica. 2003. Nestling discrimination<br />

without recognition: a possible defence mechanism for hosts<br />

towards cuckoo parasitism? Proc. R. Soc. Lond. B 270:S73–S75.<br />

Hamilton, W. D. 1964. The genetical evolution of social behaviour.<br />

J. Theor. Biol. 7:1–52.<br />

Harvey, P. H., and M. D. Pagel. 1991. The comparative method in<br />

evolutionary biology. Oxford Univ. Press, Oxford, U.K.<br />

Haskell, D. 1994. Experimental evidence that nestling begging behavior<br />

incurs a cost due to nest predation. Proc. R. Soc. Lond.<br />

B 257:161–164.<br />

Hauber, M. E. 2003a. Hatching asynchrony, nestling competition,<br />

and the cost of interspecific brood parasitism. Behav. Ecol. 14:<br />

227–235.<br />

———. 2003b. Interspecific brood parasitism and the evolution of<br />

host clutch sizes. Evol. Ecol. Res. 5:559–570.


1700 VLADIMÍR REMES˘<br />

Hauber, M. E., and C. K. Ramsey. 2003. Honesty in host-parasite<br />

communication signals: the case for begging by fledgling brownheaded<br />

cowbirds Molothrus ater. J. Avian Biol. 34:339–344.<br />

Hosoi, S. A., and S. I. Rothstein. 2000. Nest desertion and cowbird<br />

parasitism: evidence for evolved responses and evolutionary lag.<br />

Anim. Behav. 59:823–840.<br />

Kilner, R. M. 2003. How selfish is a cowbird nestling? Anim. Behav.<br />

66:569–576.<br />

Kilner, R. M., J. R. Madden, and M. E. Hauber. 2004. Brood parasitic<br />

cowbird nestlings use host young to procure resources.<br />

Science 305:877–879.<br />

Kilpatrick, A. M. 1999. Variation in growth of brown-headed cowbird<br />

(Molothrus ater) nestlings and energetic impacts on their<br />

host parents. Can. J. Zool. 80:145–153.<br />

Krist, M., V. Remes˘, L. Uvírová, P. Nádvorník, and S. Bures˘. 2004.<br />

Egg size and offspring performance in the collared flycatcher<br />

(Ficedula albicollis): a within-clutch approach. Oecologia 140:<br />

52–60.<br />

Langmore, N. E., S. Hunt, and R. M. Kilner. 2003. Escalation of<br />

a coevolutionary arms race through host rejection of brood parasitic<br />

young. Nature 422:157–160.<br />

Lichtenstein, G. 2001. Low success of shiny cowbird chicks parasitizing<br />

rufous-bellied thrushes: chick-chick competition or parental<br />

discrimination? Anim. Behav. 61:401–413.<br />

Lichtenstein, G., and S. G. Sealy. 1998. Nestling competition, rather<br />

than supernormal stimulus, explains the success of parasitic<br />

brown-headed cowbird chicks in yellow warbler nests. Proc. R.<br />

Soc. Lond. B 265:249–254.<br />

Lloyd, J. D., and T. E. Martin. 2003. Sibling competition and the<br />

evolution of prenatal development rates. Proc. R. Soc. Lond. B<br />

270:735–740.<br />

Lloyd, P., T. E. Martin, R. L. Redmond, U. Langner, and M. M.<br />

Hart. 2005. Linking demographic effects of habitat fragmentation<br />

across landscapes to continental source-sink dynamics.<br />

Ecol. Appl. 15:1504–1514.<br />

Lorenzana, J. C., and S. G. Sealy. 1999. A meta-analysis of the<br />

impact of parasitism by the brown-headed cowbird on its hosts.<br />

Stud. Avian Biol. 18:241–253.<br />

Lowther, P. E. 1993. Brown-headed cowbird (Molothrus ater). No.<br />

47 in A. Poole and F. Gill, eds. The birds of North America.<br />

The Birds of North America, Inc., Philadelphia, PA.<br />

Martin, T. E., and J. Clobert. 1996. Nest predation and avian lifehistory<br />

evolution in Europe versus North America: a possible<br />

role of humans? Am. Nat. 147:1028–1046.<br />

Martin, T. E., A. P. Møller, S. Merino, and J. Clobert. 2001. Does<br />

clutch size evolve in response to parasites and immunocompetence?<br />

Proc. Natl. Acad. Sci. USA 98:2071–2076.<br />

Martin, T. E., R. D. Bassar, S. K. Bassar, J. J. Fontaine, P. Lloyd,<br />

H. A. Matthewson, A. M. Niklison, and A. Chalfoun. 2006. Lifehistory<br />

and ecological correlates of geographic variation in egg<br />

and clutch mass among passerine species. Evolution 60:<br />

390–398.<br />

Mayfield, H. F. 1965. The brown-headed cowbird, with old and new<br />

hosts. Living Bird 4:13–28.<br />

Mock, D. W., and G. A. Parker. 1997. The evolution of sibling<br />

rivalry. Oxford Univ. Press, Oxford, U.K.<br />

Møller, A. P. 2005. Parasites, predators and the duration of developmental<br />

periods. Oikos 111:291–301.<br />

Ortega, C. 1998. Cowbirds and other brood parasites. Univ. of Arizona<br />

Press, Tucson, AZ.<br />

Palacios, M. G., and T. E. Martin. 2006. Incubation period and<br />

immune function: a comparative field study among coexisting<br />

birds. Oecologia 146:505–512.<br />

Payne, R. B., J. L. Woods, and L. L. Payne. 2001. Parental care in<br />

estrildid finches: experimental tests of a model of Vidua brood<br />

parasitism. Anim. Behav. 62:473–483.<br />

Peer, B. D., and S. G. Sealy. 2004. Correlates of egg rejection in<br />

hosts of the brown-headed cowbird. Condor 106:580–599.<br />

Poole, A., and F. Gill, eds. 1992–2002. The Birds of North America.<br />

The birds of North America, Inc., Philadelphia, PA.<br />

Redondo, T. 1993. Exploitation of host mechanisms for parental<br />

care by avian brood parasites. Etología 3:235–297.<br />

Remes˘, V., and T. E. Martin. 2002. Environmental influences on<br />

the evolution of growth and developmental rates in passerines.<br />

Evolution 56:2505–2518.<br />

Ricklefs, R. E. 1969. An analysis of nesting mortality in birds.<br />

Smithson. Contrib. Zool. 9:1–48.<br />

———. 1982. Some considerations on sibling competition and avian<br />

growth rates. Auk 99:141–147.<br />

———. 1992. Embryonic development period and the prevalence<br />

of avian blood parasites. Proc. Natl. Acad. Sci. USA 89:<br />

4722–4725.<br />

———. 1993. Sibling competition, hatching asynchrony, incubation<br />

period, and lifespan in altricial birds. Curr. Ornithol. 11:<br />

199–276.<br />

Roff, D. A., V. Remes˘, and T. E. Martin. 2005. The evolution of<br />

fledging age in songbirds. J. Evol. Biol. 18:1425–1433.<br />

Rothstein, S. I. 1975. An experimental and teleonomic investigation<br />

of avian brood parasitism. Condor 77:250–271.<br />

———. 1992. Brood parasitism, the importance of experiments and<br />

host defences of avifaunas on different continents. Proc. VII<br />

Pan-Afr. Ornithol. Congr. 521–535.<br />

Royle, N. J., I. R. Hartley, I. F. Owens, and G. A. Parker. 1999.<br />

Sibling competition and the evolution of growth rates in birds.<br />

Proc. R. Soc. Lond. B 266:923–932.<br />

Sauer, J. R., J. E. Hines, and J. Fallon. 2005. The North American<br />

breeding bird survey: results and analysis 1966–2004. Ver.<br />

2005.2. USGS Patuxent Wildlife Research Center, Laurel, MD.<br />

Scott, D. M., and R. E. Lemon. 1996. Differential reproductive<br />

success of brown-headed cowbirds with northern cardinals and<br />

three other hosts. Condor 98:259–271.<br />

Sibley, C. G., and J. E. Ahlquist. 1990. Phylogeny and classification<br />

of birds. Yale Univ. Press, New Haven, CT.<br />

Starck, J. M., and R. E. Ricklefs, eds. 1998. Avian growth and<br />

development. Oxford Univ. Press, Oxford, U.K.<br />

Trivers, R. L. 1974. Parent-offspring conflict. Am. Zool. 11:<br />

249–264.<br />

Werschkul, D. F., and J. A. Jackson. 1979. Sibling competition and<br />

avian growth rates. Ibis 121:97–102.<br />

Williams, T. D. 1994. Intraspecific variation in egg size and egg<br />

composition in birds: effects on offspring fitness. Biol. Rev. 69:<br />

35–59.<br />

Corresponding Editor: T. Day


Avian growth and development rates and age-specific mortality: the<br />

roles of nest predation and adult mortality<br />

V. REMESˇ<br />

Department of Zoology, Palacky University, Olomouc, Czech Republic<br />

Keywords:<br />

age-specific mortality;<br />

development;<br />

growth;<br />

life-history theory;<br />

maternal effects;<br />

nest predation.<br />

Introduction<br />

Abstract<br />

Growth and development rates are an essential component<br />

of the life history of every species. Moreover, they<br />

vary widely among species and many hypotheses have<br />

been advanced to explain this variation (Starck &<br />

Ricklefs, 1998). One hypothesis states that high mortality<br />

of juveniles selects for rapid growth (Williams, 1966;<br />

Lack, 1968; Ricklefs, 1969b; Case, 1978). In birds it is<br />

now well supported empirically: high nest predation<br />

covaries with rapid nestling growth and short incubation<br />

periods (e.g. Bosque & Bosque, 1995; Martin, 1995;<br />

Remesˇ & Martin, 2002).<br />

Life-history theory predicts that high adult mortality<br />

selects for high parental investment into the current<br />

brood at the expense of future reproductive bouts.<br />

Parents of species with high extrinsic mortality are<br />

Correspondence: Vladimír Remesˇ, Department of Zoology, Faculty of<br />

Science, Palacky University, Tr. Svobody 26, 77146 Olomouc, Czech<br />

Republic.<br />

Tel.: ++420 585634221; fax: ++420 585225737;<br />

e-mail: vladimir.remes@upol.cz<br />

doi: 10.1111/j.1420-9101.2006.01191.x<br />

Previous studies have shown that avian growth and development covary with<br />

juvenile mortality. Juveniles of birds under strong nest predation pressure<br />

grow rapidly, have short incubation and nestling periods, and leave the nest at<br />

low body mass. Life-history theory predicts that parental investment increases<br />

with adult mortality rate. Thus, developmental traits that depend on the<br />

parental effort exerted (pre- and postnatal growth rate) should scale positively<br />

with adult mortality, in contrast to those that do not have a direct relationship<br />

with parental investment (timing of developmental events, e.g. nest leaving).<br />

I tested this prediction on a sample of 84 North American songbirds. Nestling<br />

growth rate scaled positively and incubation period duration negatively with<br />

annual adult mortality rates even when controlled for nest predation and<br />

other covariates, including phylogeny. On the contrary, neither the duration<br />

of the nestling period nor body mass at fledging showed any relationship.<br />

Proximate mechanisms generating the relationship of pre- and postnatal<br />

growth rates to adult mortality may include increased feeding, nest attentiveness<br />

during incubation and/or allocation of hormones, and deserve further<br />

attention.<br />

expected to provide more resources to their offspring<br />

(Williams, 1966; Charlesworth, 1994; Roff, 2002). Thus,<br />

development characteristics that are sensitive to the<br />

amount of resources supplied by parents should covary<br />

with adult mortality rates. Age-specific mortality has<br />

been shown to drive the evolution of life histories in<br />

other taxa (e.g. Reznick et al., 1990). However, the<br />

application of this approach in bird studies lagged behind<br />

because of the traditional emphasis on food limitation<br />

(Lack, 1954, 1968; Martin, 1987). Thus, it seems timely<br />

to apply this theoretically well-supported approach to<br />

birds as an important model in evolutionary research (see<br />

Martin, 2002).<br />

High parental investment may be connected with<br />

juvenile growth by several proximate pathways. First is<br />

obviously food: growth rate of songbird nestlings depends<br />

on the amount of food brought by parents (Martin,<br />

1987). Consequently, high supply of food by parents may<br />

lead to rapid growth. Secondly, parents with elevated<br />

death rates may brood nestlings more often and in this<br />

way save their thermoregulatory energetic costs. Saved<br />

resources may be channelled to growth. These are<br />

ª 2006 THE AUTHOR 20 (2007) 320–325<br />

320 JOURNAL COMPILATION ª 2006 EUROPEAN SOCIETY FOR EVOLUTIONARY BIOLOGY


proximate relationships and reflect phenotypic plasticity<br />

of growth (Schew & Ricklefs, 1998). However, they<br />

provide the opportunity for the evolutionary response<br />

and for the fixation of the relationship between adult<br />

mortality and juvenile growth rate on the interspecific<br />

scale.<br />

The proximate link between parental investment and<br />

prenatal development rate (inverse of the incubation<br />

period duration) is more obvious. Egg development is<br />

sensitive to temperature (Webb, 1987). Parents investing<br />

more time into nest attentiveness (time spent on the nest<br />

incubating) achieve higher incubation temperature. This<br />

leads to shorter incubation periods (Martin, 2002).<br />

Moreover, females put androgens into egg yolk.<br />

Although the evidence is mixed, at least in some species<br />

more yolk androgens lead to more rapid growth or more<br />

vigorous begging (reviewed in Groothuis et al., 2005).<br />

If higher levels of maternally derived androgens translate<br />

into higher circulating levels in nestlings, this may also<br />

lead to more rapid growth because high circulating levels<br />

of testosterone are related to more vigorous begging<br />

(Goodship & Buchanan, 2006).<br />

On the other side, developmental traits that are less<br />

sensitive to parental investment need not be related to<br />

adult mortality rates. Timing of nest leaving is related to<br />

nest predation rate, i.e. short nestling periods are related<br />

to high nest predation as predicted by a life-history model<br />

(Roff et al., 2005). However, nestlings are able to leave<br />

the nest even several days before normal fledging time<br />

(Remesˇ & Martin, 2002). This decision seems to be<br />

related to immediate danger of nest predation and thus<br />

cannot be easily related to the level of parental investment.<br />

As body mass of the young at fledging also depends<br />

on the timing of nest leaving, the argument is similar also<br />

for this developmental trait. On the other side, there are<br />

developmental processes the rate of which depends on<br />

the amount of resources supplied by parents and have<br />

direct bearing to timing of nest leaving (e.g. development<br />

of feathers). Thus, there could be a relationship between<br />

adult mortality, parental investment and timing of nest<br />

leaving.<br />

I tested these ideas on a sample of 84 North American<br />

songbirds and collated published data on nestling growth<br />

rate, incubation and nestling period length, and body<br />

mass of the young at fledging. As control variables, adult<br />

body mass, latitude, clutch size, foraging ecology, and<br />

nest predation intensity were used. After controlling for<br />

these variables, and the phylogeny of the species, I tested<br />

for covariation between annual adult mortality rate and<br />

species-specific development characteristics (i.e. nestling<br />

growth rate, incubation and nestling period length, and<br />

body mass at fledging). It was predicted that nestling<br />

growth would covary positively and incubation period<br />

duration negatively with adult mortality. I expected no<br />

relationship of nestling period duration or fledging mass.<br />

These predictions were supported by the comparative<br />

analyses made.<br />

ª 2006 THE AUTHOR 20 (2007) 320–325<br />

JOURNAL COMPILATION ª 2006 EUROPEAN SOCIETY FOR EVOLUTIONARY BIOLOGY<br />

Materials and methods<br />

Avian growth and age-specific mortality 321<br />

I worked with data from the literature and collated data<br />

on growth rates of nestlings from original studies as in<br />

Remesˇ & Martin (2002). Latitude of the growth study<br />

was also taken. Growth rate was quantified by the<br />

constant K of the logistic growth curve fitted to the<br />

growth data truncated at the highest mass achieved by<br />

chicks in the nest (see Remesˇ & Martin, 2002). The<br />

logistic growth curve has a form of W(t) ¼ A/{1 +<br />

exp [)K(t)t i)]}, where W(t) denotes body mass of a<br />

nestling at time t, A is the asymptotic body mass that the<br />

nestling approaches, ti is the inflection point on the time<br />

axis in which growth changes from accelerating to<br />

decelerating, exp represents the exponential function,<br />

and K is a constant scaling rate of growth. Because the<br />

value of K indexes growth rate independently of absolute<br />

time of growth (in time )1 ), it is a convenient measure for<br />

comparative purposes (Ricklefs, 1968). Relative fledging<br />

mass was calculated as mass at fledging divided by adult<br />

body mass. Adult body mass was taken from Dunning<br />

(1993). Data on incubation and nestling period duration,<br />

clutch size and foraging ecology was taken from ‘The<br />

Birds of North America’ series (Poole & Gill, 1992–2002).<br />

Species were categorized as aerial foragers (species<br />

feeding on flying insects) vs. non-aerial foragers (other<br />

foraging techniques). Data on nest predation and adult<br />

mortality rates were taken from original studies (summarized<br />

in Martin, 1995; Remesˇ & Martin, 2002) and the<br />

general reference (Poole & Gill, 1992–2002). Only mortality<br />

that accumulates with time is relevant for the<br />

evolution of growth rates (Ricklefs, 1969a). Nest predation<br />

was available as percentage of nests taken by<br />

predators. As it is the product of daily nest predation<br />

rate and the duration of the nestling period, I converted it<br />

to daily nest predation rate according to: Dpr ¼ )( lnS)/<br />

T, where D pr is daily nest mortality rate caused by nest<br />

predation, S is proportion of nests that were successful<br />

(1 ) proportion depredated), and T is the duration of the<br />

nest cycle (Ricklefs, 1969a). The parameters most limiting<br />

the number of species were growth and adult<br />

mortality. I had growth data on 134 species but found<br />

adult mortality rates and other relevant factors for 84 of<br />

them. Data are summarized in Appendix 1 of Supplementary<br />

Material.<br />

Data were analysed by using multiple regression based<br />

on previous studies (e.g. Martin, 1995; Remesˇ & Martin,<br />

2002) for which a set of covariates – adult body mass (g),<br />

clutch size (no. of eggs in the clutch), foraging mode<br />

(aerial vs. non-aerial foragers) and latitude (°N, only in<br />

the analysis of K) – were selected and included in the<br />

analysis. Against these covariates two mortality factors<br />

were tested: nest predation and adult mortality. Response<br />

variables were growth rate (K, day )1 ), incubation period<br />

duration (i.e. inverse of prenatal development rate, day),<br />

nestling period duration (day), and relative fledging mass<br />

(mass at fledging/adult body mass). I selected effects


322 V. REMESˇ<br />

based on their significance level in a backward stepwise<br />

manner.<br />

Common descent of species may cause problems in the<br />

analysis of interspecific data. Species are historically<br />

related, which causes non-independence of varying<br />

strength among data points. This violates assumptions<br />

of standard statistical techniques (Harvey & Pagel, 1991).<br />

To overcome this problem, the phylogenetic regression of<br />

Grafen (1989) was applied. This method is based on<br />

generalized least squares and adjusts the statistical<br />

analysis for non-independence among species. This<br />

method is very flexible and enables fitting of standard<br />

statistical models, including interactions and categorical<br />

predictors. PHYREG macro for SAS (SAS Institute, 2005)<br />

written by Alan Grafen (Grafen, 2005) available at http://<br />

users.ox.ac.uk/ grafen was used.<br />

A working phylogeny of the studied species based on<br />

Sibley & Ahlquist (1990), Martin & Clobert (1996) and<br />

Remesˇ & Martin (2002), supplemented by the most<br />

recent molecular phylogenies (details are available from<br />

the author upon request) was assembled. As the<br />

phylogeny was assembled from many sources, I had no<br />

consistent estimates of branch lengths. I adopted uniform<br />

branch lengths. However, another arbitrary branch<br />

lengths option, Grafen’s (1989) branch lengths, generated<br />

qualitatively identical results.<br />

Results<br />

Growth rate of nestlings increased with both annual<br />

adult mortality rate and daily nest predation rate. Other<br />

factors were also significant and this model explained<br />

52.3% of variation in growth rate (F6,76 ¼ 13.89,<br />

P < 0.001; Table 1; Fig. 1). Incubation period duration<br />

decreased with both annual adult mortality rate and daily<br />

nest predation rate. Other factors were also significant<br />

and this model explained 45.3% of variation in incubation<br />

period duration (F 4,79 ¼ 16.33, P < 0.001; Table 1,<br />

Fig. 1). There was no relationship between either nestling<br />

period duration or relative fledging mass and adult<br />

mortality. However, both were negatively related to nest<br />

predation rate (Table 1). The models explained 61.1% of<br />

variation in nestling period (F4,79 ¼ 31.01, P < 0.001)<br />

and 61.3% of variation in relative fledging mass (F5,78 ¼<br />

24.73, P < 0.001).<br />

In the phylogenetic regression, I tested the significance<br />

of the two mortality factors while controlling for the<br />

Table 1 Results of the raw species data analyses relating development characteristics to mortality factors (in bold) and relevant covariates<br />

among 84 species of North American songbirds.<br />

Factor<br />

Growth rate Nestling period Relative fledging mass Incubation period<br />

F1,76 P F1,79 P F1,78 P F1,79 P<br />

Body mass 8.51 0.005 12.17


covariates. All the relationships between developmental<br />

traits and mortalities remained qualitatively the same,<br />

including their direction, as in cross-specific analyses<br />

without phylogeny: growth rate [adult mortality (AM):<br />

F 1,76 ¼ 8.55, P < 0.0051; nest predation (NP): F 1,76 ¼<br />

16.94, P < 0.001], incubation period (AM: F1,79 ¼ 7.56,<br />

P < 0.01; NP: F1,79 ¼ 11.37, P < 0.001), nestling period<br />

(AM: F 1,79 ¼ 0.40, P ¼ 528; NP: F 1,79 ¼ 14.65,<br />

P < 0.001), and relative fledging mass (AM: F 1,78 < 0.01,<br />

P ¼ 0.952; NP: F1,78 ¼ 14.44, P < 0.001). There was no<br />

correlation between adult mortality and nest predation<br />

rate across species (r ¼ )0.11, P ¼ 0.299, n ¼ 84).<br />

Discussion<br />

Nestling growth rate scaled positively and incubation<br />

period length negatively with annual adult mortality<br />

rate, even when other relevant factors together with<br />

phylogenetic relationships among species were controlled<br />

for. This seems to be in accordance with the lifehistory<br />

theory predicting higher parental investment into<br />

current offspring when adult mortality is high (Williams,<br />

1966; Charlesworth, 1994; Roff, 2002). On the contrary,<br />

there was no relationship between either nestling period<br />

duration or relative mass at fledging and adult mortality<br />

rates. Timing of fledging is strongly driven by nest<br />

predation (Roff et al., 2005). It is still not clear whether<br />

parents or offspring determine the length of nestling<br />

period on the proximate level (Nilsson & Svensson, 1993;<br />

Johnsen et al., 1994; Johnson et al., 2004), but this<br />

analysis shows that there is little potential for adult<br />

mortality to drive the evolution of this trait.<br />

One possible factor could have confounded this analysis:<br />

if parents with high mortality invested more into<br />

nest defence, this could lead to lower nest predation rates<br />

in these species. Consequently, as nest predation is a<br />

strong determinant of nestling growth (Remesˇ & Martin,<br />

2002), growth could have been slowed in these species.<br />

However, as there was no correlation between nest<br />

predation and adult mortality (see Results), and effects of<br />

adult mortality on development rates were in fact<br />

positive, this seems unlikely. Parents either were unable<br />

to defend nests effectively or directed their extra<br />

investment into other activities. Nest predators may also<br />

behaviourally constrain higher investment into the<br />

brood. Parental activity around the nest leads to higher<br />

risk of nest predation (Martin et al., 2000b; Eggers et al.,<br />

2005; Fontaine & Martin, in press). Risk of nest predation<br />

shaped evolutionarily both incubation feeding by males<br />

(Martin & Ghalambor, 1999) and incubation behaviour<br />

of females (Conway & Martin, 2000). Increasing nest<br />

attentiveness while reducing activity around the nest<br />

may thus be achieved by lengthening on-nest bouts<br />

(Conway & Martin, 2000). Similarly, increasing food<br />

supply while keeping feeding frequency at low levels<br />

may be achieved by increasing food load per feeding trip<br />

(e.g. Martin et al., 2000a).<br />

ª 2006 THE AUTHOR 20 (2007) 320–325<br />

JOURNAL COMPILATION ª 2006 EUROPEAN SOCIETY FOR EVOLUTIONARY BIOLOGY<br />

Avian growth and age-specific mortality 323<br />

The effect of adult mortality on prenatal development<br />

during incubation may have been mediated by egg yolk<br />

hormones. Mother birds allocate androgens into egg yolk<br />

during vitellogenesis and these may have positive effects<br />

on begging and development of the young (e.g. Schwabl,<br />

1996; Eising et al., 2001; Eising & Groothuis, 2003;<br />

Tschirren et al., 2005). Short incubation and nestling<br />

periods covary with high levels of egg androgens<br />

(Gorman & Williams, 2005). In this way, behavioural<br />

constraints imposed by nest predation could also have<br />

been avoided. Moreover, if high egg yolk androgen levels<br />

translate into high circulating levels in nestlings, this may<br />

also lead to rapid growth, as young with high testosterone<br />

levels beg more vigorously (Goodship & Buchanan,<br />

2006). However, egg hormones may also have detrimental<br />

effects on the young (e.g. Sockman & Schwabl,<br />

2000; Navara et al., 2005).<br />

Comparative analyses of course cannot distinguish<br />

between cause and effect. Thus, it is possible that the<br />

causality of the correlations revealed in this study is<br />

reversed. Incubation periods and chick growth rates may<br />

be evolutionarily driven by some hitherto unknown<br />

selection pressure. Then, if there is a causal link between<br />

these developmental traits and adult mortality, adult<br />

mortality may in fact be driven by this selection pressure<br />

through the developmental traits. It has been shown that<br />

mortality caused by both parasites and pathogens<br />

(Møller, 2005) and brood parasitism (Remesˇ, in press)<br />

can influence growth strategies in passerines. Thus, in<br />

further analyses it will be important to control also for<br />

this factor. However, recent results of comparisons of<br />

avian life histories across latitudes suggest that the causal<br />

path from adult mortality down to offspring developmental<br />

traits is at least an acceptable explanation<br />

(Ghalambor & Martin, 2001; Martin, 2002, 2004).<br />

Nevertheless, this issue will have to receive more<br />

attention in future work.<br />

Besides benefits rapid development can also have its<br />

costs, mediated for instance by poorly developed immune<br />

system (Ricklefs, 1992, 1993; Tella et al., 2002; Soler<br />

et al., 2003; Palacios & Martin, 2006). Slow development<br />

with extra energy invested into the maturation of critical<br />

physiological functions (e.g. immune or neural system)<br />

could bring important advantages later in life (see<br />

Ricklefs, 1993; Ricklefs et al., 1998). Thus, the extra<br />

resources provided by parents did not necessarily have to<br />

be channelled to more rapid growth. Moreover, there are<br />

other energetically demanding processes going on during<br />

the individual development in the nest. For example,<br />

development of feathers could use up the extra energy<br />

supplied by parents (Murphy, 1996), which could lead to<br />

earlier functional maturation of wings and consequently<br />

earlier fledging. However, it seems that neither of these<br />

alternatives took place. The first predicts no relationship<br />

of any developmental characteristic to adult mortality,<br />

whereas the second one, a negative relationship between<br />

nestling period and adult mortality. However, there was


324 V. REMESˇ<br />

a positive relationship between adult mortality and<br />

growth rate, but not with either timing of nest leaving<br />

or relative fledging mass. It seems that the extra<br />

resources were mainly channelled to higher tempo of<br />

tissue synthesis and growth, although at least partial<br />

channelling into improving some juvenile physiological<br />

functions cannot be ruled out. To validate this hypothesis,<br />

we will have to analyse potential relationships<br />

between adult mortality and juvenile pre- and postfledging<br />

physical and physiological performance.<br />

In sum, I show that both pre- and postnatal growth<br />

rates scale positively with adult mortality rates in birds,<br />

which accords with life-history theory. More generally,<br />

this study shows that life-history theory has the power to<br />

predict patterns of relationships between suites of lifehistory<br />

and developmental traits (see also Roff et al.,<br />

2005). Developmental traits have recently emerged as an<br />

important model system for the investigation of the<br />

evolution of avian life histories and provide a new<br />

perspective on this attractive issue (Martin, 2002, 2004).<br />

Comparative analysis presented here generates a set of<br />

questions that should be explored based on both published<br />

and new field data. In future work, it will be<br />

critical to explore relationships of mortality rate (both of<br />

adults and nests) to growth rate, incubation period,<br />

feeding frequency, food load per feeding trip, incubation<br />

attentiveness and temperature, hormones in egg yolk<br />

and blood of nestlings, and physical and physiological<br />

performance of offspring (see Martin, 2002; Gorman &<br />

Williams, 2005).<br />

Acknowledgments<br />

This study was supported by grants from the Grant<br />

Agency of the Czech Republic (206/05/P581) and MSMT<br />

(MSM6198959212). I gratefully acknowledge the dedication<br />

of many field workers who contributed over the<br />

decades to the collection of data on which this study is<br />

based. I also thank two anonymous reviewers for<br />

stimulating comments.<br />

References<br />

Bosque, C. & Bosque, M.T. 1995. Nest predation as a selective<br />

factor in the evolution of developmental rates in altricial birds.<br />

Am. Nat. 145: 234–260.<br />

Case, T.J. 1978. On the evolution and adaptive significance of<br />

postnatal growth rates in the terrestrial vertebrates. Q. Rev.<br />

Biol. 53: 243–282.<br />

Charlesworth, B. 1994. Evolution in Age-Structured Populations.<br />

Cambridge University Press, Cambridge, UK.<br />

Conway, C.J. & Martin, T.E. 2000. Effects of ambient temperature<br />

on avian incubation behavior. Behav. Ecol. 11: 178–188.<br />

Dunning, J.B., Jr 1993. Body Weights of 686 Species of North<br />

American Birds. Eldon Publishing, Cave Creek.<br />

Eggers, S., Griesser, M. & Ekman, J. 2005. Predator-induced<br />

plasticity in nest visitation rates in the Siberian jay (Perisoreus<br />

infaustus). Behav. Ecol. 16: 309–315.<br />

Eising, C.M. & Groothuis, T.G.G. 2003. Yolk androgens and<br />

begging behaviour in black-headed gull chicks: an experimental<br />

field study. Anim. Behav. 66: 1027–1034.<br />

Eising, C.M., Eikenaar, C., Schwabl, H. & Groothuis, T.G.G.<br />

2001. Maternal androgens in black-headed gull (Larus<br />

ridibundus) eggs: consequences for chick development. Proc.<br />

R. Soc. Lond. B 268: 839–846.<br />

Fontaine, J.J. & Martin, T.E. 2006. Parent birds assess nest<br />

predation risk and adjust their reproductive strategies. Ecol.<br />

Lett. 9: 428–434.<br />

Ghalambor, C.K. & Martin, T.E. 2001. Fecundity-survival<br />

trade-offs and parental risk-taking in birds. Science 292:<br />

494–497.<br />

Goodship, N.M. & Buchanan, K.L. 2006. Nestling testosterone is<br />

associated with begging behaviour and fledging success in the<br />

pied flycatcher, Ficedula hypoleuca. Proc. R. Soc. Lond. B 273: 71–<br />

76.<br />

Gorman, K.B. & Williams, T.D. 2005. Correlated evolution of<br />

maternally derived yolk testosterone and early developmental<br />

traits in passerine birds. Biol. Lett. 1: 461–464.<br />

Grafen, A. 1989. The phylogenetic regression. Phil. Trans. R. Soc.<br />

Lond. B 326: 119–157.<br />

Grafen, A. 2005. A User’s Guide to the SAS Implementation of the<br />

Phylogenetic Regression, Version 0.6. [www document]. URL<br />

http://users.ox.ac.uk/ grafen/phylo/.<br />

Groothuis, T.G.G., Müller, W., von Engelhardt, N., Carere, C. &<br />

Eising, C.M. 2005. Maternal hormones as a tool to adjust<br />

offspring phenotype in avian species. Neurosci. Biobehav. Rev.<br />

29: 329–352.<br />

Harvey, P.H. & Pagel, M.D. 1991. The Comparative Method in<br />

Evolutionary Biology. Oxford University Press, Oxford.<br />

Johnsen, I., Erikstad, K.E. & Saether, B.E. 1994. Regulation of<br />

parental investment in a long-lived seabird, the puffin<br />

Fratercula arctica – an experiment. Oikos 71: 273–278.<br />

Johnson, L.S., Rauch, R.L. & Dellone, S.L. 2004. The process and<br />

causes of fledging in a cavity-nesting passerine bird, the house<br />

wren (Troglodytes aedon). Ethology 110: 693–705.<br />

Lack, D. 1954. The Natural Regulation of Animal Numbers.<br />

Clarendon Press, Oxford.<br />

Lack, D. 1968. Ecological Adaptations for Breeding in Birds.<br />

Methuen, London.<br />

Møller, A.P. 2005. Parasites, predators and the duration of<br />

developmental periods. Oikos 111: 291–301.<br />

Martin, T.E. 1987. Food as a limit on breeding birds – a lifehistory<br />

perspective. Annu. Rev. Ecol. Syst. 18: 453–487.<br />

Martin, T.E. 1995. Avian life-history evolution in relation to<br />

nest sites, nest predation, and food. Ecol. Monogr. 65: 101–<br />

127.<br />

Martin, T.E. 2002. A new view of avian life-history evolution<br />

tested on an incubation paradox. Proc. R. Soc. Lond. B 269: 309–<br />

316.<br />

Martin, T.E. 2004. Avian life-history evolution has an eminent<br />

past: does it have a bright future? Auk 121: 289–301.<br />

Martin, T.E. & Clobert, J. 1996. Nest predation and avian lifehistory<br />

evolution in Europe versus North America: a possible<br />

role of humans? Am. Nat. 147: 1028–1046.<br />

Martin, T.E. & Ghalambor, C.K. 1999. Males feeding females<br />

during incubation. I. Required by microclimate or constrained<br />

by nest predation. Am. Nat. 153: 131–139.<br />

Martin, T.E., Martin, P.R., Olson, C.R., Heidinger, B.J. &<br />

Fontaine, J.J. 2000a. Parental care and clutch sizes in North<br />

and South American birds. Science 287: 1482–1485.<br />

ª 2006 THE AUTHOR 20 (2007) 320–325<br />

JOURNAL COMPILATION ª 2006 EUROPEAN SOCIETY FOR EVOLUTIONARY BIOLOGY


Martin, T.E., Scott, J. & Menge, C. 2000b. Nest predation<br />

increases with parental activity: separating nest site and<br />

parental activity effects. Proc. R. Soc. Lond. B 267: 2287–2293.<br />

Murphy, M.E. 1996. Energetics and nutrition of molt. In: Avian<br />

Energetics and Nutritional Ecology (C. Carey, ed.), pp. 158–198.<br />

Chapman & Hall, New York.<br />

Navara, K.J., Hill, G.E. & Mendonça, M.T. 2005. Variable effects<br />

of yolk androgens on growth, survival, and immunity in<br />

eastern bluebird nestlings. Physiol. Biochem. Zool. 78: 570–578.<br />

Nilsson, J.A. & Svensson, M. 1993. Fledging in altricial birds:<br />

parental manipulation or sibling competition? Anim. Behav.<br />

46: 379–386.<br />

Palacios, M.G. & Martin, T.E. 2006. Incubation period and<br />

immune function: a comparative field study among coexisting<br />

birds. Oecologia 146: 505–512.<br />

Poole, A. & Gill, F. (eds.) 1992–2002. The Birds of North America.<br />

The Birds of North America, Philadelphia, PA.<br />

Remesˇ, V. 2006. Growth strategies of passerine birds are related<br />

to brood parasitism by the brown-headed cowbird (Molothrus<br />

ater). Evolution, in press.<br />

Remesˇ, V. & Martin, T.E. 2002. Environmental influences on the<br />

evolution of growth and developmental rates in passerines.<br />

Evolution 56: 2505–2518.<br />

Reznick, D.A., Bryga, H. & Endler, J.A. 1990. Experimentally<br />

induced life-history evolution in a natural population. Nature<br />

346: 357–359.<br />

Ricklefs, R.E. 1968. Patterns of growth in birds. Ibis 110: 419–<br />

451.<br />

Ricklefs, R.E. 1969a. An analysis of nesting mortality in birds.<br />

Smithson. Contrib. Zool. 9: 1–48.<br />

Ricklefs, R.E. 1969b. Preliminary models for growth rates in<br />

altricial birds. Ecology 50: 1031–1039.<br />

Ricklefs, R.E. 1992. Embryonic development period and the<br />

prevalence of avian blood parasites. Proc. Natl. Acad. Sci. U.S.A.<br />

89: 4722–4725.<br />

Ricklefs, R.E. 1993. Sibling competition, hatching asynchrony,<br />

incubation period, and lifespan in altricial birds. Curr. Ornithol.<br />

11: 199–276.<br />

Ricklefs, R.E., Starck, J.M. & Konarzewski, M. 1998. Internal<br />

constraints on growth in birds. In: Avian Growth and Development<br />

(J. M. Starck & R. E. Ricklefs, eds), pp. 266–287. Oxford<br />

University Press, Oxford.<br />

Roff, D.A. 2002. Life History Evolution. Sinauer Associates,<br />

Sunderland, MA.<br />

Roff, D.A., Remesˇ, V. & Martin, T.E. 2005. The evolution of<br />

fledging age in songbirds. J. Evol. Biol. 18: 1425–1433.<br />

ª 2006 THE AUTHOR 20 (2007) 320–325<br />

JOURNAL COMPILATION ª 2006 EUROPEAN SOCIETY FOR EVOLUTIONARY BIOLOGY<br />

Avian growth and age-specific mortality 325<br />

SAS Institute 2005. SAS On-Line Doc. SAS Institute, Inc., Cary,<br />

NC.<br />

Schew, W.A. & Ricklefs, R.E. 1998. Developmental plasticity. In:<br />

Avian Growth and Development (J. M. Starck & R. E. Ricklefs,<br />

eds), pp. 288–304. Oxford University Press, Oxford.<br />

Schwabl, H. 1996. Maternal testosterone in the avian egg<br />

enhances postnatal growth. Comp. Biochem. Physiol. 114A:<br />

271–276.<br />

Sibley, C.G. & Ahlquist, J.E. 1990. Phylogeny and Classification of<br />

Birds. Yale University Press, New Haven, CT.<br />

Sockman, K.W. & Schwabl, H. 2000. Yolk androgens reduce<br />

offspring survival. Proc. R. Soc. Lond. B 267: 1451–1456.<br />

Soler, J.J., de Neve, L., Perez-Contreras, T., Soler, M. & Sorci, G.<br />

2003. Trade-off between immunocompetence and growth in<br />

magpies: an experimental study. Proc. R. Soc. Lond. B 270: 241–<br />

248.<br />

Starck, J.M. & Ricklefs, R.E. (eds) 1998. Avian Growth and<br />

Development. Oxford University Press, Oxford.<br />

Tella, J.L., Scheuerlein, A. & Ricklefs, R.E. 2002. Is cell-mediated<br />

immunity related to the evolution of life-history strategies in<br />

birds? Proc. R. Soc. Lond. B 269: 1059–1066.<br />

Tschirren, B., Saladin, V., Fitze, P.S., Schwabl, H. & Richner, H.<br />

2005. Maternal yolk testosterone does not modulate parasite<br />

susceptibility or immune function in great tit nestlings.<br />

J. Anim. Ecol. 74: 675–682.<br />

Webb, D.R. 1987. Thermal tolerance of avian embryos – a<br />

review. Condor 89: 874–898.<br />

Williams, G.C. 1966. Adaptation and Natural Selection. Princeton<br />

University Press, Princeton, NJ.<br />

Supplementary Material<br />

The following supplementary material is available for this<br />

article online:<br />

Appendix S1. Species mean values used in the analyses<br />

for adult body mass, clutch size, duration of incubation<br />

and nestling period, growth rate constant K of the logistic<br />

curve, body mass at fledging, latitude of the study of<br />

growth, foraging mode, daily nest mortality rate caused<br />

by predation, and annual adult mortality rate.<br />

This material is available as part of the online article<br />

from http://www.blackwell-synergy.com<br />

Received 5 April 2006; revised 7 June 2006; accepted 18 June 2006


Naturwissenschaften (2010) 97:331–335<br />

DOI 10.1007/s00114-009-0635-5<br />

SHORT COMMUNICATION<br />

Explaining postnatal growth plasticity in a generalist<br />

brood parasite<br />

Vladimír Remeš<br />

Received: 9 June 2009 /Revised: 27 November 2009 /Accepted: 30 November 2009 /Published online: 19 December 2009<br />

# Springer-Verlag 2009<br />

Abstract Selection of a particular host has clear consequences<br />

for the performance of avian brood parasites.<br />

Experimental studies showed that growth rate and fledging<br />

mass of brood parasites varied between host species<br />

independently of the original host species. Finding correlates<br />

of this phenotypic plasticity in growth is important for<br />

assessing adaptiveness and potential fitness consequences<br />

of host choice. Here, I analyzed the effects of several host<br />

characteristics on growth rate and fledging mass of the<br />

young of brown-headed cowbird (Molothrus ater), a<br />

generalist, non-evicting brood parasite. Cowbird chicks<br />

grew better in fast-developing host species and reached<br />

higher fledging mass in large hosts with fast postnatal<br />

development. A potential proximate mechanism linking fast<br />

growth and high fledging mass of cowbird with fast host<br />

development is superior food supply in fast-developing<br />

foster species. So far, we know very little about the<br />

consequences of the great plasticity in cowbird growth for<br />

later performance of the adult parasite. Thus, cowbird<br />

species could become interesting model systems for<br />

investigating the role of plasticity and optimization in the<br />

evolution of growth rate in birds.<br />

Keywords Brood parasitism . Molothrus . Cuckoo .<br />

Growth . Plasticity<br />

Electronic supplementary material The online version of this article<br />

(doi:10.1007/s00114-009-0635-5) contains supplementary material,<br />

which is available to authorized users.<br />

V. Remeš (*)<br />

Department of Zoology and Laboratory of Ornithology,<br />

Faculty of Science, Palacky University,<br />

Tr. Svobody 26,<br />

77146 Olomouc, Czech Republic<br />

e-mail: vladimir.remes@upol.cz<br />

Introduction<br />

Avian brood parasitism is an excellent model for<br />

investigating coevolutionary interactions between species.<br />

Multiple adaptations were revealed on the side of both<br />

parasites and hosts (Davies 2000). Whereas hosts are<br />

selected to avoid parasitism, one of the key components of<br />

the success of the parasite is to choose a suitable host<br />

(Krüger 2007).<br />

Selection of a particular host species has clear consequences<br />

for the fitness of the brood parasite. In the first<br />

line of defense, hosts differ in the level of aggression near<br />

the nest (Røskaft et al. 2002). Similarly, hosts differ in their<br />

ability to eject parasitic eggs (Peer and Sealy 2004) and to<br />

desert the parasitized nest (Hosoi and Rothstein 2000).<br />

Further, hatching and fledging success of the parasite differ<br />

strongly among host species in both cuckoo (Kleven et al.<br />

2004) and cowbird (Kilner 2003). Even if the parasitic<br />

chick successfully fledges, it might do so in different body<br />

mass and condition with important fitness consequences<br />

(Gebhardt-Henrich and Richner 1998). Brood parasite's<br />

growth rate and fledging mass differed strongly among 10<br />

hosts of common cuckoo (Cuculus canorus; Kleven et al.<br />

1999; Grim 2006; Grim et al. 2009) and 20 hosts of brownheaded<br />

cowbird (Molothrus ater; Kilpatrick 2002). Consequently,<br />

the challenge is to find ecological and life-history<br />

characteristics of host species that explain different growth<br />

performance of parasites in their nests.<br />

Studies done so far used host body size (Kleven et al.<br />

1999; 2004; Kilpatrick 2002; Grim 2006) or hatching<br />

synchrony between parasite and host (Kilner 2003; Tonra et<br />

al. 2008) as predictors of the performance of parasitic<br />

chicks. However, other host traits might be decisive for<br />

parasite's performance, and all potentially important traits<br />

should be studied simultaneously to weigh their relative


332 Naturwissenschaften (2010) 97:331–335<br />

importance. Here, I assessed potential influence of multiple<br />

host traits on the growth and fledging mass of the nestlings<br />

of brown-headed cowbird, a generalist, non-evicting brood<br />

parasite. I studied host body mass, hatching synchrony<br />

between host and cowbird, host postnatal developmental<br />

rate, number of host young reared alongside with the<br />

cowbird young, and the length of historical co-occurrence<br />

between host and cowbird (Kilpatrick 2002; Kilner 2003;<br />

Remeš 2006; Tonra et al. 2008), and statistically separated<br />

their independent effects.<br />

Materials and methods<br />

To test alternative hypotheses about factors decisive for<br />

growth and development of cowbird young, I modeled<br />

effects of multiple explanatory variables on cowbird<br />

growth rate and fledging mass. Based on previous<br />

research, I included host body mass (Kilpatrick 2002),<br />

hatching synchrony between cowbird and host (Kilner<br />

2003; Tonraetal.2008), and the number of host young<br />

raised together with the cowbird chick (Kilner et al. 2004).<br />

I included two other host characteristics. First, length of<br />

the historical co-occurrence of cowbird with a host might<br />

have led to coevolutionary interactions affecting suitability<br />

of a particular host (Hosoi and Rothstein 2000;Hauber2003;<br />

Kilner et al. 2004; Remeš 2006). Second, fast host<br />

development might indicate superior parenting abilities<br />

(Saether 1994) and thus affect cowbird chick growth. I also<br />

included quadratic effects of the following four factors: host<br />

body mass (Rivers 2007), number of host young raised<br />

together with the cowbird chick (Kilner 2003; Kilneretal.<br />

2004), development rate, and hatching synchrony (Tonra et<br />

al. 2008).<br />

I assembled data for this study from published sources. I<br />

took data for cowbird growth rate (day −1 ), cowbird mass at<br />

8 days of age (as a proxy for fledging mass, g), host growth<br />

rate (day −1 ), and host nestling period (days) from Kilpatrick<br />

(2002). Growth rate was quantified as constant K of the<br />

logistic growth model (see Remeš and Martin 2002; Remeš<br />

2007). I took host adult body mass (g) from Dunning<br />

(1993). Host species vary in the average number of own<br />

young that is raised with the parasitic chick, with potential<br />

consequences for cowbird growth (Kilner et al. 2004). I<br />

took this number from Trine et al. (1998), Lorenzana and<br />

Sealy (1999), Kilner et al. (2004), and the BBIRD database<br />

(2005). I calculated the difference between mean cowbird<br />

incubation time (10.5 days; Hauber 2003) and host<br />

incubation time (days; from Tonra et al. 2008) as a rough<br />

estimate of cowbird-host hatching synchrony (Hauber<br />

2003; Tonra et al. 2008). I based the categorization of<br />

hosts into those with long vs. short co-occurrence with<br />

cowbird on habitat association (Hosoi and Rothstein 2000).<br />

Forest species were considered to have had short<br />

co-occurrence, whereas hosts from other habitats were<br />

considered to have had long co-occurrence. I took this<br />

information from Hosoi and Rothstein (2000), Peer and Sealy<br />

(2004), and Remeš (2006). The dataset is presented in<br />

Electronic supplementary material (Appendix S1).<br />

Host growth rate and nestling period length were highly<br />

correlated, Pearson's r=−0.54 (P=0.014, N=20). When<br />

these two variables were combined together by a<br />

principal components analysis, the first component<br />

explained 77.1% of variability. Component loadings were<br />

0.88 for growth rate and −0.88 for nestling period. Thus,<br />

high values of this new composite variable (“development<br />

rate”) indicated fast growth and short nestling period.<br />

Nestling period duration and host body mass were log10<br />

transformed in all the analyses. In all models, I checked<br />

residuals for any deviations from normality, equal variance,<br />

and linearity. First, I present results of univariate analyses of<br />

individual factors. Second, I fit multivariate models of<br />

cowbird growth and fledging mass. Subsequently, I removed<br />

nonsignificant factors (at α=0.05) from multivariate models<br />

starting with the least significant one until I ended with the<br />

minimum adequate model (Grafen and Hails 2002). To<br />

ensure that the results of this procedure were not biased, I<br />

also built the final model by forward addition of individual<br />

factors. I ended up with the same models as in the backward<br />

elimination procedure. Significance level was set at α=0.05.<br />

β statistics are standardized regression coefficients. All<br />

statistical analyses were done in JMP 7.0.1 software (SAS<br />

Institute Inc., Cary, USA).<br />

Results<br />

Growth rate of the cowbird chick varied from 0.3 to<br />

0.7 day −1 (mean ± SD=0.536±0.080 day −1 , N=19) and<br />

fledging mass from 14.8 to 28.2 g (23.6±3.52 g, N=20).<br />

Cowbird growth rate and fledging mass were highly<br />

correlated (r=0.76, P


Naturwissenschaften (2010) 97:331–335 333<br />

Table 1 Univariate relationships of cowbird growth rate and fledging mass (mass at 8 days of age) to several host traits<br />

Predictor Cowbird growth rate Cowbird fledging mass<br />

(F1,16=5.78, P=0.029) and quadratic, nonlinear effect of<br />

host development rate (F2,16=6.19, P=0.024; whole model:<br />

F3,16=9.44, P=0.001, R 2 =0.64; Fig. 1b).<br />

Cowbird growth rate (day -1 )<br />

Cowbird fledging mass (g)<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

30<br />

28<br />

26<br />

24<br />

22<br />

20<br />

18<br />

16<br />

A<br />

B<br />

F P DF β R 2<br />

14<br />

-3 -2 -1 0 1 2 3<br />

Host development rate<br />

Fig. 1 Relationships of a growth rate and b fledging mass of the<br />

cowbird chick to host development rate, characterized as the first<br />

component of PCA on host growth rate and nestling period length (see<br />

“Results”)<br />

Discussion<br />

F P DF β R 2<br />

Host body mass (log) 0.01 0.940 1, 17 0.02


334 Naturwissenschaften (2010) 97:331–335<br />

postnatal development rate (r=0.76, P


Naturwissenschaften (2010) 97:331–335 335<br />

Schew WA, Ricklefs RE (1998) Developmental plasticity. In: Starck<br />

JM, Ricklefs RE (eds) Avian growth and development. Oxford<br />

Univ Press, Oxford, pp 288–304<br />

Tonra CM, Hauber ME, Heath SK, Johnson MD (2008) Ecological<br />

correlates and sex differences in early development of a<br />

generalist brood parasite. Auk 125:205–213<br />

Trine CL, Robinson WD, Robinson SK (1998) Consequences of<br />

brown-headed cowbird brood parasitism for host population<br />

dynamics. In: Rothstein SI, Robinson SK (eds) Parasitic birds<br />

and their hosts: studies in coevolution. Oxford Univ Press,<br />

Oxford, pp 273–295<br />

Weathers WW (1996) Energetics of postnatal growth. In: Carey C (ed)<br />

Avian energetics and nutritional ecology. Chapman & Hall, New<br />

York, pp 461–496<br />

Wiley JW (1986) Growth of Shiny Cowbird and host chicks. Wilson<br />

Bull 98:126–131


SHORT COMMUNICATION<br />

Domestic chickens defy Rensch’s rule: sexual size dimorphism<br />

in chicken breeds<br />

V. REMESˇ * & T. SZÉKELY*<br />

*Biodiversity Laboratory, Department of Biology and Biochemistry, University of Bath, Bath, UK<br />

Laboratory of Ornithology, Faculty of Science, Palacky University, Olomouc, Czech Republic<br />

Keywords:<br />

allometry;<br />

domestication;<br />

Gallus gallus;<br />

Phasianidae;<br />

sexual size dimorphism;<br />

sexually antagonistic.<br />

Introduction<br />

Abstract<br />

Differences between sexes in various morphological,<br />

ecological and behavioural traits have puzzled biologists<br />

for a long time. It was a subject of substantial interest for<br />

Darwin himself (Darwin, 1871). Although recent<br />

research has discovered a great deal about patterns of<br />

variation in sexual dimorphism among taxa at various<br />

phylogenetic levels, the genetic and physiological mechanisms<br />

(Bonduriansky & Chenoweth, 2009) as well as<br />

the selective processes that generate these patterns<br />

remain poorly understood (Shine, 1989; Andersson,<br />

1994; Blanckenhorn, 2005; Fairbairn et al., 2007).<br />

Correspondence: Vladimír Remesˇ, Laboratory of Ornithology,<br />

Faculty of Science, Palacky University, Olomouc, Czech Republic.<br />

Tel.: +420 585634221; fax: +420 585634002;<br />

e-mail: vladimir.remes@upol.cz<br />

doi:10.1111/j.1420-9101.2010.02126.x<br />

Sexual size dimorphism (SSD), i.e. the difference in sizes of males and females,<br />

is a key evolutionary feature that is related to ecology, behaviour and life<br />

histories of organisms. Although the basic patterns of SSD are well<br />

documented for several major taxa, the processes generating SSD are poorly<br />

understood. Domesticated animals offer excellent opportunities for testing<br />

predictions of functional explanations of SSD theory because domestic stocks<br />

were often selected by humans for particular desirable traits. Here, we analyse<br />

SSD in 139 breeds of domestic chickens Gallus gallus domesticus and compare<br />

them to their wild relatives (pheasants, partridges and grouse; Phasianidae, 53<br />

species). SSD was male-biased in all chicken breeds, because males were<br />

21.5 ± 0.55% (mean ± SE) heavier than females. The extent of SSD did not<br />

differ among breed categories (cock fighting, ornamental and breeds selected<br />

for egg and meat production). SSD of chicken breeds was not different from<br />

wild pheasants and allies (23.5 ± 3.43%), although the wild ancestor of<br />

chickens, the red jungle fowl G. gallus, had more extreme SSD (male 68.8%<br />

heavier) than any domesticated breed. Male mass and female mass exhibited<br />

positive allometry among pheasants and allies, consistently with the Rensch’s<br />

rule reported from various taxa. However, body mass scaled isometrically<br />

across chicken breeds. The latter results suggest that sex-specific selection on<br />

males vs. females is necessary to generate positive allometry, i.e. the Rensch’s<br />

rule, in wild populations.<br />

One of the most widespread patterns is an allometric<br />

relationship between body sizes of males and females,<br />

termed the Rensch’s rule (Rensch, 1950; Fairbairn,<br />

1997), whereby the extent of male-biased sexual size<br />

dimorphism (SSD) increases with overall body size across<br />

species, whereas the extent of female-biased SSD<br />

decreases with body size. Although well documented<br />

across diverse taxa, it is by no means universal (Abouheif<br />

& Fairbairn, 1997; Fairbairn, 1997; Cox et al., 2003;<br />

Blanckenhorn et al., 2007; Fairbairn et al., 2007) and is<br />

particularly lacking in taxa with females larger than<br />

males (Webb & Freckleton, 2007; but see Fairbairn, 2005;<br />

Stuart-Fox, 2009).<br />

The extent of SSD within species is usually viewed as<br />

resulting from sex-specific equilibrium of sexual, fecundity<br />

and viability selections (Andersson, 1994; Blanckenhorn,<br />

2005; Cox & Calsbeek, 2009) possibly constrained<br />

by cross-sex genetic correlations (Poissant et al., 2010).<br />

ª 2010 THE AUTHORS. J. EVOL. BIOL. 23 (2010) 2754–2759<br />

2754 JOURNAL COMPILATION ª 2010 EUROPEAN SOCIETY FOR EVOLUTIONARY BIOLOGY


However, why the extent of SSD systematically changes<br />

with body mass across related species is less clear, and<br />

many hypotheses were advanced to explain the occurrence<br />

and strength of the allometry (Abouheif &<br />

Fairbairn, 1997; Fairbairn, 1997, 2005). The most<br />

supported hypothesis at present is sexual selection,<br />

whereby intense sexual selection drives the evolution<br />

of body size of the selected sex, usually the males, with<br />

weaker correlated selection on body size in the other sex<br />

(Székely et al., 2004, 2007; Raihani et al., 2006; Dale<br />

et al., 2007). However, the latter studies focused on a<br />

single animal clade, the birds, under natural conditions.<br />

Studies of Rensch’s rule, as far as we are aware,<br />

focused exclusively on animal populations in their<br />

natural environment with the exception of insects that<br />

have been investigated in the laboratory (e.g. water<br />

strider Aquarius remigis, dung flies Scatophaga spp and<br />

fruit flies Drosophila spp; reviewed in Fairbairn et al.,<br />

2007) and domestic goats and sheep (Polák & Frynta,<br />

2009). However, domesticated animals offer largely<br />

untapped resources for studies of SSD. First, excellent<br />

data exist on the body sizes of males and females from a<br />

large range of breeds. Second, the breeds underwent<br />

substantial diversification during their cohabitation with<br />

humans (Montgomerie, 2009), sometimes surpassing<br />

phenotypic diversification of their wild ancestors (Drake<br />

& Klingenberg, 2010). Third, in many domestic breeds,<br />

the males, females or both sexes were selected for a<br />

particular set of traits, and therefore, the extent and<br />

direction of SSD and allometry should reflect different<br />

artificial selection regimes.<br />

Here, we investigate SSD and size-related allometry<br />

across domestic chicken breeds. By comparison with<br />

their wild relatives (pheasants, partridges, grouse; 172<br />

species; family Phasianidae; del Hoyo et al., 1994), we are<br />

contrasting the patterns between domestic breeds and<br />

Phasianidae. We have two specific objectives: (i) to test<br />

whether the extent and allometry of SSD differ between<br />

chicken breeds and wild pheasants and allies (Aves:<br />

Phasianidae) and (ii) to test whether chicken breeds and<br />

their wild counterparts exhibit the Rensch’s rule. We<br />

expected that if sexual selection had the primary role in<br />

generating Rensch’s rule under natural conditions (Dale<br />

et al., 2007; Székely et al., 2007), the allometry of SSD<br />

consistent with Rensch’s rule would be absent in chicken<br />

breeds. This expectation is based on two lines of argument.<br />

Firstly, in domestic breeds, humans select for<br />

desired traits that are often unrelated to sexual selection,<br />

for instance milk production, meat quality or egg<br />

production. Therefore, sexual selection is expected to<br />

be weak in domestic stocks. For instance, in traditional<br />

extensive poultry farming systems, the farmer may<br />

choose one (or a few) cocks so that female poultry can<br />

only exert a limited, if any, choice (Verhoef-Verhallen &<br />

Rijs, 2009). Secondly, artificial selection is unlikely to<br />

mimic sexually antagonistic selection – a suspected driver<br />

of Rensch’s rule in wild populations – because humans<br />

ª 2010 THE AUTHORS. J. EVOL. BIOL. 23 (2010) 2754–2759<br />

JOURNAL COMPILATION ª 2010 EUROPEAN SOCIETY FOR EVOLUTIONARY BIOLOGY<br />

are using directional selection to obtain the desired traits,<br />

such as increased egg or meat production. Therefore, the<br />

nontargeted sex is allowed to track changes in the<br />

targeted sex.<br />

Materials and methods<br />

We collected data on chicken breeds and wild pheasants,<br />

partridges and grouse from the literature. We obtained<br />

data on adult male and female body mass, and the<br />

number of eggs produced per year in traditional chicken<br />

breeds from Europe, Americas and Asia (Pavel & Tuláček,<br />

2006). As a wild avian group for comparison, we used<br />

family Phasianidae as reconstructed by modern molecular<br />

phylogenetics (Crowe et al., 2006a,b; Kriegs et al.,<br />

2007). This family includes the wild ancestor of chicken<br />

breeds, the red jungle fowl (Gallus gallus; Liu et al., 2006),<br />

and also a congeneric species, the grey jungle fowl (Gallus<br />

sonneratii), which was a potential source of introgression<br />

into domestic chicken lines (Eriksson et al., 2008). We<br />

collected male and female body mass from a comprehensive<br />

source on avian life histories (Lislevand et al.,<br />

2007): mean body masses of adult males and females<br />

preferentially taken during the breeding season. We<br />

calculated sexual dimorphism index (SDI) as follows: we<br />

divided the mass of the heavier sex by the mass of the<br />

lighter sex, subtracted one and made the resulting figure<br />

negative for breeds (or species) in which the males were<br />

the larger sex whereas we let it positive in breeds (or<br />

species) where the females were the larger sex (Lovich &<br />

Gibbons, 1992). SDI is a convenient and readily interpretable<br />

measure of sexual dimorphism (Fairbairn et al.,<br />

2007); for instance, a value of )0.3 indicates the males<br />

are by 30%, or 1.3 times, larger than females, whereas a<br />

zero value indicates monomorphism. The distribution of<br />

SDI significantly departed from normality in both<br />

chicken breeds and wild species (Fig. 1), and it was not<br />

Species or breeds (%)<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Sexual size dimorphism in chicken breeds 2755<br />

Wild species<br />

Breeds<br />

*<br />

M > F<br />

F > M<br />

0<br />

–1.2 –1.0 –0.8 –0.6 –0.4<br />

SDI<br />

–0.2 0.0 0.2<br />

Fig. 1 Frequency distribution of sexual size dimorphism as measured<br />

by SDI (see Materials and methods for explanation) in<br />

pheasants, partridges and grouse (53 species), and in chicken breeds<br />

(139 breeds). Asterisk indicates the ancestor of domestic chicken,<br />

red jungle fowl. Arrows indicate average SDI of pheasants and<br />

allies (black) and chicken breeds (grey). M > F: male heavier than<br />

female and vice versa.


2756 V. REMESˇ AND T. SZÉKELY<br />

possible to normalize it by any transformation. Therefore,<br />

we used nonparametric Kruskal–Wallis tests to compare<br />

median values of SDI between classes.<br />

We categorized chicken breeds according to Pavel &<br />

Tuláček (2006) based on desired characteristics that have<br />

been targeted by the breeders in different breeds. First,<br />

fighting breeds (n = 19) were traditionally kept and bred<br />

for cock fighting. The desired characteristic was fighting<br />

ability in cocks, somehow analogous to the outcome of<br />

male–male competition in the wild. Second, ornamental<br />

breeds (n = 15) were kept for decorative purposes and<br />

pleasure. Here, selection for aesthetic characteristics in<br />

both sexes, perhaps analogous to the outcome of mate<br />

choice acting on both sexes in the wild, prevailed. Third,<br />

there were dual-purpose breeds (n = 105) kept for smallscale<br />

subsidy of eggs and meat. Although individual<br />

breeds in this group differ in their primary use (i.e.<br />

production of eggs, meat or both), most of them are used<br />

as universal breeds and many of them include both egg<br />

and meat producing lines within the breed. Thus, we<br />

made no attempt to split this category into breeds used<br />

predominantly for the production of eggs vs. meat. The<br />

common theme among dual-purpose breeds is artificial<br />

selection for female fecundity and meat production.<br />

These two traits (egg production per year and female<br />

body mass) were positively related in dual-purpose<br />

breeds (r = 0.74, P < 0.001, n = 98) indicating no tradeoff<br />

between fecundity and body mass. The desired<br />

characteristics of the latter breeds appear to include the<br />

analogue of the outcome of fecundity selection in wild<br />

species. Our final data set included 139 chicken breeds<br />

and 53 wild species of pheasants, partridges and grouse.<br />

To test for Rensch’s rule, we fitted major axis regression<br />

(MAR) of log10 male mass against log10 female mass<br />

both for chicken breeds and wild pheasants and allies in<br />

smatr package for R (Warton et al., 2006). We tested the<br />

deviation of the slope from isometry (i.e. slope = 1; smatr<br />

test statistic r), and for heterogeneity of slopes among<br />

breed categories (smatr likelihood ratio test statistic LR).<br />

We also adjusted the analysis of wild pheasants and allies<br />

for phylogenetic relationships among species using phylogenetically<br />

independent contrasts (Felsenstein, 1985)<br />

as suggested by Abouheif & Fairbairn (1997). We fitted<br />

MAR to independent contrasts forced through zero in the<br />

smatr package. For the calculation of phylogenetically<br />

independent contrasts, we used a working phylogeny<br />

based on the most recent molecular phylogenies<br />

(Bloomer & Crowe, 1998; Crowe et al., 2006b; Lislevand<br />

et al., 2009). Our phylogenetic hypothesis for the family<br />

Phasianidae is presented in Appendix S1. The phylogenetic<br />

positions of three species (Francolinus lathami,<br />

Francolinus nathani and Francolinus psilolaemus) were<br />

uncertain, and therefore, these species were excluded<br />

from the phylogenetic analyses. We used a composite<br />

phylogeny with all branches set to the same length. We<br />

calculated the independent contrasts in the CAIC package<br />

for R (Orme et al., 2009) and checked that there was<br />

no relationship between the absolute values of contrasts<br />

and (i) the estimated nodal values and (ii) the square root<br />

of the expected variance at the node (Garland et al.,<br />

1992). Because the CAIC package for R does not allow<br />

polytomies in the phylogeny, we resolved the polytomies<br />

(two polytomies in total) randomly.<br />

Results<br />

Body mass dimorphism in chickens and wild<br />

pheasants and allies<br />

In all chicken breeds, the male was heavier than the<br />

female (Table 1, Fig. 1). The median SDI was not different<br />

among chicken breed categories (Kruskal–Wallis test,<br />

v 2 = 4.1, P = 0.127), although cock fighting breeds<br />

tended to be the most dimorphic (SDI = )0.248 ± 0.020,<br />

mean ± SE), followed by ornamental ()0.224 ± 0.018)<br />

and dual-purpose breeds ()0.208 ± 0.006).<br />

In wild pheasants and allies, however, both malebiased<br />

and female-biased SSD occurred (Table 1, Fig. 1).<br />

The median SDI of chicken breeds and wild pheasants<br />

and allies did not differ (Kruskal–Wallis test, v 2 = 3.0,<br />

P = 0.082). However, SDI was significantly more variable<br />

in wild species than in chicken breeds (Bartlett test:<br />

F1,190 = 155.9, P < 0.001). The red jungle fowl had one<br />

of the most extreme male-biased dimorphisms (SDI =<br />

)0.688, Fig. 1).<br />

Rensch’s rule<br />

Chicken breeds exhibited an isometric relationship in<br />

body mass, because the confidence interval of the slope<br />

of MAR included one (b = 1.011, 95% CI = 0.9959–<br />

1.0257, n = 139; Fig. 2). Furthermore, the MAR slopes<br />

were not significantly different among chicken breed<br />

categories (LR = 2.4, P = 0.308). Wild pheasants and<br />

allies, however, exhibited strong allometry consistent<br />

with the Rensch’s rule using both species-level data<br />

(b = 1.151, 95% CI = 1.1000–1.2049, n = 53; Fig. 2) and<br />

phylogenetically independent contrasts (b = 1.148, 95%<br />

CI = 1.0706–1.2309, n = 48). These patterns remained<br />

Table 1 Body mass and sexual size dimorphism as measured by<br />

SDI (see Materials and methods for explanation) in chicken breeds<br />

and wild pheasants, partridges and grouse.<br />

Male body<br />

mass (g)<br />

Female body<br />

mass (g) SDI<br />

Chicken breeds (n = 139)<br />

Mean ± SE 2103.2 ± 102.65 1727.3 ± 83.71 )0.215 ± 0.006<br />

Range 600–5650 500–4650 )0.089 to )0.469<br />

Pheasants and allies (n = 53)<br />

Mean ± SE 876.2 ± 161.00 636.9 ± 90.62 )0.235 ± 0.034<br />

Range 41–7400 35.6–4222 0.118 to )1.136<br />

SDI, sexual dimorphism index.<br />

ª 2010 THE AUTHORS. J. EVOL. BIOL. 23 (2010) 2754–2759<br />

JOURNAL COMPILATION ª 2010 EUROPEAN SOCIETY FOR EVOLUTIONARY BIOLOGY


SSD<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

–0.1<br />

consistent when we restricted body mass variation to that<br />

exhibited by chicken breeds (from 500 to 5650 g), which<br />

more than halved the sample size (species-level data:<br />

b = 1.209, 95% CI = 1.0206–1.4412, n = 23; independent<br />

contrasts: b = 1.205, 95% CI = 0.9883–1.4813,<br />

n = 21). One may argue that extreme SDI indicates<br />

intense sexual selection: indeed, restricting the analyses<br />

of wild phasianids to SDI exhibited by chicken breeds<br />

()0.089 to )0.469) produced isometric relationships<br />

(species-level data: b = 1.018, 95% CI = 0.9757–1.0616,<br />

n = 35; independent contrasts: b = 1.003, 95% CI =<br />

0.9602–1.0481, n = 31).<br />

Discussion<br />

Isometry<br />

Wild species<br />

Breeds<br />

35 60 120 250 500 1000 2000 4000<br />

Female mass (g)<br />

Fig. 2 Sexual size dimorphism (SSD) (defined here as log(male<br />

mass ⁄ female mass)) against log(female mass) for chicken breeds<br />

(continuous line) and wild pheasant, partridges and grouse (hatched<br />

line). The dotted horizontal line indicates no scaling of SSD with size.<br />

For illustration, shown are ordinary least squares lines of the<br />

relationship between SSD and log(female mass). Note that this<br />

plot is equivalent to plotting log(male mass) against log(female<br />

mass), but it is easier to see differences between chicken breeds<br />

and wild pheasants on this scale. The major axis regression of<br />

log(male mass) on log(female mass) in chicken breeds was not<br />

different from isometry (r = 0.12, P = 0.158), whereas in wild<br />

pheasants, partridges and grouse it was different for both<br />

species-level data (r = 0.66, P < 0.001) and phylogenetically<br />

independent contrasts (r = 0.50, P < 0.001). The arrow indicates<br />

the ancestor of domestic chicken, the red jungle fowl.<br />

Our study provided two major results. First, we showed<br />

that the body masses of chicken breeds were not<br />

consistent with the Rensch’s rule, and the lack of<br />

allometry was consistent across breed categories. Second,<br />

in pheasants and allies, the allometry of SSD was<br />

significantly positive, consistent with previous studies of<br />

Phasianidae (Drovetski et al., 2006; Lislevand et al., 2009;<br />

Fig. 2).<br />

Both the extent of SSD and its isometry across chicken<br />

breed categories remained remarkably conservative<br />

ª 2010 THE AUTHORS. J. EVOL. BIOL. 23 (2010) 2754–2759<br />

JOURNAL COMPILATION ª 2010 EUROPEAN SOCIETY FOR EVOLUTIONARY BIOLOGY<br />

Sexual size dimorphism in chicken breeds 2757<br />

regardless of the selection targets (cock fighting, ornamentation,<br />

or egg and meat production) and whether the<br />

selection was aimed to improve male traits (cock fighting),<br />

female traits (egg and meat production) or traits in<br />

both sexes (ornamentation). Thus, despite varying selective<br />

forces, scaling of SSD with body mass did not diverge<br />

across breed categories. The regression slope (male mass:<br />

female mass) among chicken breeds was 12.2% less than<br />

the comparable slope among wild pheasants and allies.<br />

The reduced slope among domestic chickens is comparable<br />

to domesticated goats and sheep, in which the<br />

slopes decreased by 16.5% and 8.6%, respectively, when<br />

compared to the wild relatives, although both domestic<br />

goats and sheep still showed positive allometry, i.e. the<br />

Rensch’s rule (Polák & Frynta, 2009).<br />

We propose two reasons for the reduced allometry in<br />

domestic breeds. First, male–male competition is usually<br />

relaxed in captivity because breeders often allocate<br />

particular sires to dams. Selection on strong, heavy males<br />

would be thus much reduced. Second, sex-specific or<br />

sexually antagonistic selection might be relaxed or<br />

lacking in captivity. In the wild, males and females are<br />

exposed to natural and sexual selections of different<br />

strengths, resulting in different net selection acting in<br />

males and females on the same traits (Cox & Calsbeek,<br />

2009) that may be either sex-specific (different strengths<br />

but the same direction) or sexually antagonistic (different<br />

direction; Bonduriansky & Chenoweth, 2009). On the<br />

contrary, humans use directional selection to achieve<br />

desired characteristics in the targeted sex and allow for a<br />

phenotypic response in the other sex. This response will<br />

be likely in the same direction in a homologous trait (e.g.<br />

body mass) as in the targeted sex because of high genetic<br />

correlations between the sexes (Lande, 1980; Poissant<br />

et al., 2010). Strong sexual selection for large males leads<br />

under natural conditions to large male body size, with<br />

weaker, correlated selection on female body mass (Kolm<br />

et al., 2007), resulting in allometry of SSD consistent with<br />

Rensch’s rule (Dale et al., 2007). The same is true for<br />

selection for small males (Székely et al., 2004). Full<br />

correlated response in female body mass is often,<br />

although not always, prevented by sex-specific selective<br />

optima. A recent review of selection in wild animal<br />

populations found out that males and females often<br />

differed substantially in the direction and magnitude of<br />

the selection on shared traits (Cox & Calsbeek, 2009). In<br />

captive populations, however, full correlated phenotypic<br />

responses in homologous traits in males and females may<br />

manifest themselves given the lack of opposing selective<br />

forces.<br />

As chicken breeds exhibited a small range of body mass<br />

and SDI compared to wild species (Figs 1 and 2), we<br />

carried out two types of sensitivity analyses. First, we<br />

restricted body mass variation in wild species to fall<br />

within the range of domestic breeds and found that wild<br />

species still exhibited positive allometry. Second, we<br />

restricted SDI and found that allometry was no longer


2758 V. REMESˇ AND T. SZÉKELY<br />

significant. The latter analysis, where all species with<br />

extreme SSD of either direction were removed (Fig. 2),<br />

shows that extreme SSDs are critical for generating<br />

positive allometry. To some extent, this is not too<br />

surprising because these are the very species subject to<br />

intense sex-specific selection – a process suspected to<br />

underlie Rensch’s rule.<br />

Although other aspects of selection on body mass also<br />

change with domestication (loss of resource competition,<br />

lack of predators), we suggest that changes in<br />

sexual selection regimes were more important. The<br />

reason is that the role of differential sex-specific selection<br />

pressures in generating diverse SSD in wild populations<br />

has been recently supported by various studies<br />

(Blanckenhorn, 2005). First, strong sexually antagonistic<br />

selection was present in strongly sexually dimorphic<br />

species (Cox & Calsbeek, 2009). Thus, SSD responds to<br />

sex-specific selection, although it fails to resolve fully<br />

the intralocus sexual conflict (Bonduriansky & Chenoweth,<br />

2009). Second, sexual selection may act on either<br />

females or females to generate allometry of SSD. A key<br />

factor is the aspect of sexual selection related to body<br />

size, i.e. intrasexual competition for mating opportunities<br />

(Dale et al., 2007). Evolution of the allometry of SSD<br />

in domestic chickens is certainly not prevented by<br />

prohibitively high cross-sex genetic correlations, because<br />

they are similar in magnitude, or even slightly lower, in<br />

domestic chickens when compared to red jungle fowl<br />

(Poissant et al., 2010). What is perhaps missing in<br />

captivity is selection pressures connected with sexual<br />

competition and sex-specific reproductive roles. Thus,<br />

our study adds to the available evidence and points to<br />

the importance of sexual selection (Dale et al., 2007;<br />

Lislevand et al., 2009) and sex-specific selection pressures<br />

for generating positive allometry for SSD and its<br />

great variability in the wild (see also De Mas et al.,<br />

2009).<br />

In conclusion, we argue that domestic stocks are<br />

excellent yet rarely used resources for testing hypotheses<br />

of SSD. Using domestic chicken breeds, we show that<br />

unlike their wild relatives, the domestic breeds do not<br />

show positive allometry in body mass. This is a somehow<br />

tantalising result, because domestic chickens originated<br />

from one of the most strongly allometric groups among<br />

all birds (Fairbairn, 1997; Dale et al., 2007; Székely et al.,<br />

2007; Webb & Freckleton, 2007). We propose that<br />

domestic poultry fail to exhibit an allometric relationship<br />

because unlike in wild populations male and female<br />

poultry were not subject to different selection regimes<br />

towards different optima in body sizes of adult males and<br />

females.<br />

Acknowledgments<br />

This study was supported by the Czech Ministry of<br />

Education (MSM6198959212) and INCORE (FP6-2005-<br />

NEST-Path, no. 043318). We thank N. Priest for fruitful<br />

discussion and B. Matysioková for comments of the<br />

manuscript.<br />

References<br />

Abouheif, E. & Fairbairn, D.J. 1997. A comparative analysis of<br />

allometry for sexual size dimorphism. Am. Nat. 149: 540–562.<br />

Andersson, M. 1994. Sexual Selection. Princeton University Press,<br />

Princeton.<br />

Blanckenhorn, W.U. 2005. Behavioral causes and consequences<br />

of sexual size dimorphism. Ethology 111: 977–1016.<br />

Blanckenhorn, W.U., Dixon, A.F.G., Fairbairn, D.J., Foellmer,<br />

M.W., Gibert, P., van der Linde, K., Meier, R., Nylin, S.,<br />

Pitnick, S., Schoff, C., Signorelli, M., Teder, T. & Wiklund, C.<br />

2007. Proximate causes of Rensch’s rule: does sexual size<br />

dimorphism in arthropods result from sex differences in<br />

development time? Am. Nat. 169: 245–257.<br />

Bloomer, P. & Crowe, T.M. 1998. Francolin phylogenetics:<br />

molecular, morphobehavioral, and combined evidence. Mol.<br />

Phylogenet. Evol. 9: 236–254.<br />

Bonduriansky, R. & Chenoweth, S.F. 2009. Intralocus sexual<br />

conflict. Trends Ecol. Evol. 24: 280–288.<br />

Cox, R.M. & Calsbeek, R. 2009. Sexually antagonistic selection,<br />

sexual dimorphism, and resolution of intralocus sexual conflict.<br />

Am. Nat. 173: 176–187.<br />

Cox, R.M., Skelly, S.L. & John-Adler, H.B. 2003. A comparative<br />

test of adaptive hypotheses for sexual size dimorphism in<br />

lizards. Evolution 57: 1653–1669.<br />

Crowe, T.M., Bowie, R.C.K., Bloomer, P., Mandiwana, T.G.,<br />

Hedderson, T.A.J., Randi, E., Pereira, S.L. & Wakeling, J.W.<br />

2006a. Phylogenetics, biogeography and classification of, and<br />

character evolution in, gamebirds (Aves: Galliformes): effects<br />

of character exclusion, data partitioning and missing data.<br />

Cladistics 22: 495–532.<br />

Crowe, T.M., Bloomer, P., Randi, E., Lucchini, V., Kimball, R.,<br />

Braun, E. & Groth, J.G. 2006b. Supra-generic cladistics of<br />

landfowl (Order Galliformes). Acta Zoo. Sinica 52(Suppl): 358–<br />

361.<br />

Dale, J., Dunn, P.O., Figuerola, J., Lislevand, T., Székely, T. &<br />

Whittingham, L.A. 2007. Sexual selection explains Rensch’s<br />

rule of allometry for sexual size dimorphism. Proc. R. Soc. Lond.<br />

B 274: 2971–2979.<br />

Darwin, C. 1871. The Descent of Man, and Selection in Relation to<br />

Sex. John Murray, London.<br />

De Mas, E., Ribera, C. & Moya-Laraño, J. 2009. Resurrecting the<br />

differential mortality model of sexual size dimorphism. J. Evol.<br />

Biol. 22: 1739–1749.<br />

Drake, A.G. & Klingenberg, C.P. 2010. Large-scale diversification<br />

of skull shape in domestic dogs: disparity and modularity. Am.<br />

Nat. 175: 289–301.<br />

Drovetski, S.V., Rohwer, S. & Mode, N.A. 2006. Role of sexual<br />

and natural selection in evolution of body size and shape: a<br />

phylogenetic study of morphological radiation in grouse.<br />

J. Evol. Biol. 19: 1083–1091.<br />

Eriksson, J., Larson, G., Gunnarsson, U., Bed’hom, B., Tixier-<br />

Boichard, M., Strömstedt, L., Wright, D., Jungerius, A.,<br />

Vereijken, A., Randi, E., Jensen, P. & Andersson, L. 2008.<br />

Identification of the yellow skin gene reveals a hybrid origin of<br />

the domestic chicken. PLoS Genet. 4: e1000010.<br />

Fairbairn, D.J. 1997. Allometry for sexual size dimorphism:<br />

pattern and process in the coevolution of body size in males<br />

and females. Annu. Rev. Ecol. Syst. 28: 659–687.<br />

ª 2010 THE AUTHORS. J. EVOL. BIOL. 23 (2010) 2754–2759<br />

JOURNAL COMPILATION ª 2010 EUROPEAN SOCIETY FOR EVOLUTIONARY BIOLOGY


Fairbairn, D.J. 2005. Allometry for sexual size dimorphism:<br />

testing two hypotheses for Rensch’s rule in the water strider<br />

Aquarius remigis. Am. Nat. 166: S69–S84.<br />

Fairbairn, D.J., Blanckenhorn, W.U. & Székely, T. eds. 2007.<br />

Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size<br />

Dimorphism. Oxford Univ. Press, Oxford.<br />

Felsenstein, J. 1985. Phylogenies and the comparative method.<br />

Am. Nat. 125: 1–15.<br />

Garland, T., Harvey, P.H. & Ives, A.R. 1992. Procedures for the<br />

analysis of comparative data using phylogenetically independent<br />

contrasts. Syst. Biol. 41: 18–32.<br />

del Hoyo, J., Elliott, A. & Sargatal, J. 1994. Handbook of the Birds<br />

of the World v. 2. New World Vultures to Guineafowl. Lynx<br />

Edicions, Barcelona.<br />

Kolm, N., Stein, R.W., Mooers, A.O., Verspoor, J.J. & Cunningham,<br />

E.J.A. 2007. Can sexual selection drive female life<br />

histories? A comparative study on Galliform birds J. Evol. Biol.<br />

20: 627–638.<br />

Kriegs, J.O., Matzke, A., Churakov, G., Kuritzin, A., Mayr, G.,<br />

Brosius, J. & Schmitz, J. 2007. Waves of genomic hitchhikers<br />

shed light on the evolution of gamebirds (Aves: Galliformes).<br />

BMC Evol. Biol. 7: 190.<br />

Lande, R. 1980. Sexual dimorphism, sexual selection and<br />

adaptation in polygenic characters. Evolution 34: 292–307.<br />

Lislevand, T., Figuerola, J. & Székely, T. 2007. Avian body sizes<br />

in relation to fecundity, mating system, display behavior, and<br />

resource sharing. Ecology 88: 1605.<br />

Lislevand, T., Figuerola, J. & Székely, T. 2009. Evolution of<br />

sexual size dimorphism in grouse and allies (Aves: Phasianidae)<br />

in relation to mating competition, fecundity demands<br />

and resource division. J. Evol. Biol. 22: 1895–1905.<br />

Liu, Y.P., Wu, G.S., Yao, Y.G., Miao, Y.W., Luikart, G., Baig, M.,<br />

Beja-Pereira, A., Ding, Z.L., Palanichamy, M.G. & Zhang, Y.P.<br />

2006. Multiple maternal origins of chickens: out of the Asian<br />

jungles. Mol. Phylogenet. Evol. 38: 12–19.<br />

Lovich, J.E. & Gibbons, J.W. 1992. A review of techniques for<br />

quantifying sexual size dimorphism. Growth Dev. Aging 56:<br />

269–281.<br />

Montgomerie, R. 2009. Charles Darwin’s fancy. Auk 126: 477–<br />

484.<br />

Orme, D., Freckleton, R., Thomas, G. & Petzoldt, T. 2009. CAIC:<br />

Comparative Analyses Using Independent Contrasts. R package<br />

version 1.0.4-86.<br />

Pavel, I. & Tuláček, F. 2006. Chicken Breeds. Czech Breeders’<br />

Union – Central Committee of Chicken Breeders, Prague (in<br />

Czech).<br />

Poissant, J., Wilson, A.J. & Coltman, D.W. 2010. Sex-specific<br />

genetic variance and the evolution of sexual dimorphism:<br />

a systematic review of cross-sex genetic correlations. Evolution<br />

64: 97–107.<br />

ª 2010 THE AUTHORS. J. EVOL. BIOL. 23 (2010) 2754–2759<br />

JOURNAL COMPILATION ª 2010 EUROPEAN SOCIETY FOR EVOLUTIONARY BIOLOGY<br />

Sexual size dimorphism in chicken breeds 2759<br />

Polák, J. & Frynta, D. 2009. Sexual size dimorphism in domestic<br />

goats, sheep, and their wild relatives. Biol. J. Linn. Soc. 98: 872–<br />

883.<br />

Raihani, G., Székely, T., Serrano-Meneses, M.A., Pitra, C. &<br />

Goriup, P. 2006. The influence of sexual selection and male<br />

agility on sexual size dimorphism in bustards (Otididae). Anim.<br />

Behav. 71: 833–838.<br />

Rensch, B. 1950. Die Abhängigkeit der relativen Sexualdifferenz<br />

von der Körpergrosse. Bonn. Zool. Beitr. 1: 58–69.<br />

Shine, R. 1989. Ecological causes for the evolution of sexual<br />

dimorphism: a review of the evidence. Q. Rev. Biol. 64: 419–461.<br />

Stuart-Fox, D. 2009. A test of Rensch’s rule in dwarf chameleons<br />

(Bradypodion spp.), a group with female-biased sexual size<br />

dimorphism. Evol. Ecol. 23: 425–433.<br />

Székely, T., Freckleton, R.P. & Reynolds, J.D. 2004. Sexual<br />

selection explains Rensch’s rule of size dimorphism in shorebirds.<br />

Proc. Natl Acad. Sci. USA 101: 12224–12227.<br />

Székely, T., Lislevand, T. & Figuerola, J. 2007. Sexual size<br />

dimorphism in birds. In: Sex, Size and Gender Roles (D.J.<br />

Fairbairn, W.U. Blanckenhorn & T. Székely, eds), pp. 27–37.<br />

Oxford University Press, Oxford.<br />

Verhoef-Verhallen, E.J.J. & Rijs, A. 2009. The Complete Encyclopedia<br />

of Chickens. Rebo Publishers, Lisse.<br />

Warton, D.I., Wright, I.J., Falster, D.S. & Westoby, M. 2006.<br />

Bivariate line-fitting methods for allometry. Biol. Rev. 81: 259–<br />

291.<br />

Webb, T.J. & Freckleton, R.P. 2007. Only half right: species with<br />

female-biased dimorphism consistently break Rensch’s rule.<br />

PLoS ONE 9: 1–10.<br />

Supporting information<br />

Additional Supporting Information may be found in the<br />

online version of this article:<br />

Appendix S1 Composite phylogenetic hypothesis of the<br />

family Phasianidae used in our analyses.<br />

As a service to our authors and readers, this journal<br />

provides supporting information supplied by the authors.<br />

Such materials are peer-reviewed and may be reorganized<br />

for online delivery, but are not copy-edited<br />

or typeset. Technical support issues arising from supporting<br />

information (other than missing files) should be<br />

addressed to the authors.<br />

Dryad Digital Repository doi: 10.5061/dryad.1965<br />

Received 17 May 2010; revised 2 September 2010; accepted 3 September<br />

2010


C. Mateřské efekty a nutriční ekologie


Oecologia (2004) 140: 52–60<br />

DOI 10.1007/s00442-004-1568-5<br />

POPULATION ECOLOGY<br />

Miloš Krist . Vladimír Remeš . Lenka Uvírová .<br />

Petr Nádvorník . Stanislav Bureš<br />

Egg size and offspring performance in the collared flycatcher<br />

(Ficedula albicollis): a within-clutch approach<br />

Received: 26 November 2003 / Accepted: 24 March 2004 / Published online: 29 April 2004<br />

# Springer-Verlag 2004<br />

Abstract Adaptive within-clutch allocation of resources<br />

by laying females is an important focus of evolutionary<br />

studies. However, the critical assumption of these studies,<br />

namely that within-clutch egg-size deviations affect offspring<br />

performance, has been properly tested only rarely.<br />

In this study, we investigated effects of within-clutch<br />

deviations in egg size on nestling survival, weight,<br />

fledgling condition, structural size and offspring recruitment<br />

to the breeding population in the collared flycatcher<br />

(Ficedula albicollis). Besides egg-size effects, we also<br />

followed effects of hatching asynchrony, laying sequence,<br />

offspring sex and paternity. There was no influence of egg<br />

size on nestling survival, tarsus length, condition or<br />

recruitment. Initially significant effect on nestling mass<br />

disappeared as nestlings approached fledging. Thus, there<br />

seems to be limited potential for a laying female to exploit<br />

within-clutch egg-size variation adaptively in the collared<br />

flycatcher, which agrees with the majority of earlier<br />

studies on other bird species. Instead, we suggest that<br />

within-clutch egg-size variation originates from the effects<br />

M. Krist (*)<br />

Museum of Natural History,<br />

nám. Republiky 5,<br />

771 73 Olomouc, Czech Republic<br />

e-mail: krist@prfnw.upol.cz<br />

Tel.: +420-585515128<br />

Fax: +420-585222743<br />

M. Krist . V. Remeš . S. Bureš<br />

Laboratory of Ornithology, Palacký University,<br />

tř. Svobody 26,<br />

771 46 Olomouc, Czech Republic<br />

L. Uvírová . P. Nádvorník<br />

Department of Cell Biology and Genetics, Palacký University,<br />

Šlechtitelů 11,<br />

783 71 Olomouc, Czech Republic<br />

P. Nádvorník . S. Bureš<br />

Department of Zoology, Palacký University,<br />

tř. Svobody 26,<br />

771 46 Olomouc, Czech Republic<br />

of proximate constraints on laying females. If true,<br />

adaptive explanations for within-clutch patterns in egg<br />

size should be invoked with caution.<br />

Keywords Cross-fostering . Intraclutch . Maternal<br />

effects . Nestling growth . Offspring fitness<br />

Introduction<br />

Within-clutch allocation of resources by a laying female is<br />

an important topic in evolutionary ecology. In addition to<br />

studies examining the allocation of resources in relation to<br />

laying order (e.g. O’Connor 1979; Slagsvold et al. 1984;<br />

Wiggins 1990; Williams et al. 1993a; Cichoń 1997;<br />

Viñuela 1997; Hillström 1999), increasing attention is<br />

being paid to possible adaptive allocation in relation to egg<br />

sex (Weatherhead 1985; Leblanc 1987a; Mead et al. 1987;<br />

Teather 1989; Andersson et al. 1997; Cordero et al. 2000,<br />

2001; Rutkowska and Cichoń 2002; Blanco et al. 2003;<br />

Cichoń et al. 2003; Magrath et al. 2003). By allocating<br />

resources differentially in relation to laying order, females<br />

may enhance/impair survival of the later hatching chicks<br />

(Slagsvold et al. 1984) or favour chicks with the highest<br />

reproductive value (Williams et al. 1993a). By targeting<br />

resources to eggs of a particular sex, the female may also<br />

obtain two types of benefits. First, in sexually dimorphic<br />

species, she may boost performance of the smaller sex to<br />

prevent it from starvation due to competition for food with<br />

the larger sib of the other sex (Anderson et al. 1997).<br />

Second, when in good condition she may increase her<br />

fitness by investing selectively resources to the sex with<br />

larger variance in reproductive success (Trivers and<br />

Willard 1973).<br />

The critical assumption of the adaptive allocation of<br />

resources within a given clutch is that the amount of the<br />

invested resources has consequences for offspring fitness.<br />

For example, it is usually assumed that the larger the egg,<br />

the higher the fitness of the offspring that hatches from this<br />

egg. This assumption has been most often tested by the<br />

cross-fostering approach when eggs/nestlings are swapped


etween nests and performance of offspring in relation to<br />

mean egg size of the clutch is analysed (we know of 16<br />

such studies; e.g. Bize et al. 2002; Pelayo and Clark 2003).<br />

However, to test the assumption of the within-clutch<br />

adaptive allocation specifically, it is better to examine<br />

effects of within-clutch deviations in egg size on the<br />

performance of individual offspring. First, variation in egg<br />

size is typically much greater between females than within<br />

clutches of individual females (Christians 2002). Thus,<br />

cross-fostering studies work with the egg-size variability<br />

that is most probably not available to laying females when<br />

allocating resources within a clutch. Second, direct<br />

competition between sibs for resources supplied by<br />

parents, monopolisation of these resources by dominant<br />

sibs and selective parental feeding in relation to offspring<br />

size are common within broods (Budden and Wright<br />

2001). Cross-fostering studies working on the betweenfemale<br />

level do not take into account these within-family<br />

relations and thus may not reliably estimate egg-size<br />

effects present on the within-brood level (see also Nilsson<br />

and Svensson 1993). Third, positive covariation between<br />

direct and maternal pathways of the determination of<br />

offspring phenotype may exist, which would lead to<br />

overestimation of egg-size effects in cross-fostering design<br />

(Krist and Remeš 2004).<br />

Studies testing effects of within-clutch deviations on<br />

offspring performance have been done less frequently than<br />

cross-fostering studies (we know of nine studies; e.g.<br />

Howe 1976; Amat et al. 2001). They often compared<br />

average egg size of surviving versus non-surviving<br />

siblings instead of looking at individual offspring. Moreover,<br />

they did not, for the most part, control for the factors<br />

that are known to affect offspring performance. First, all<br />

nest-mates may be affected in the same way by broodlevel<br />

factors (between-year variation in the quality of<br />

breeding conditions, advancement of breeding season,<br />

territory quality). These factors may be included in the<br />

analyses of egg-size effects on offspring performance to<br />

reduce unexplained variation and thus increase statistical<br />

power of the main test. Second, nest-mates may differ in<br />

performance due to hatching asynchrony (Magrath 1990),<br />

laying order (Ylimaunu and Järvinen 1987), sex (Becker<br />

and Wink 2003), paternity (Sheldon et al. 1997) or<br />

concentration of androgens in eggs (Schwabl 1993). These<br />

individual-level factors may be, in contrast to brood-level<br />

factors, correlated with within-clutch differences in egg<br />

size and as such directly confound any relationship<br />

between the latter and offspring performance.<br />

To test the assumption of adaptive within-clutch<br />

allocation of resources, we examined effects of withinclutch<br />

deviations in egg size on individual offspring<br />

performance in the collared flycatcher (Ficedula albicollis),<br />

a small migratory passerine. Besides egg-size effects,<br />

we also followed effects of other individual-level factors<br />

including hatching asynchrony, laying order, offspring sex<br />

and paternity, which makes our study well suited for<br />

separating an independent effect of egg size on offspring<br />

performance. We examined effects of these factors on<br />

nestling survival, weight, fledgling condition, structural<br />

size and offspring recruitment to the breeding population.<br />

In addition, we also controlled statistically for some<br />

brood-level covariates to render the analyses of egg-size<br />

effects more powerful.<br />

Materials and methods<br />

Field methods<br />

53<br />

The study was conducted in Velký Kosíř forest (49°32′N, 17°04′E,<br />

370–450 m a.s.l.), central Moravia, the Czech Republic, in 2001–<br />

2003. In the study area, there were five plots with the total number<br />

of about 350 nest-boxes. Three plots were located in coniferous<br />

(Picea abies) and the other two in deciduous (Quercus petrea)<br />

forest. Approximately 60 pairs of collared flycatchers bred in the<br />

nest-boxes each year.<br />

The study area was visited daily during the breeding season. Each<br />

egg was numbered with a waterproof felt-pen and measured to the<br />

nearest 0.01 mm with a digital calliper on the day it was laid. Egg<br />

volume was calculated using the formula:<br />

volume=0.51×length×width 2 (Hoyt 1979). Two measures of width<br />

were taken in two perpendicular directions and their average was<br />

used as a measure of width. After 10–13 days of initiation of<br />

incubation, eggs were taken from nests, put into a thermo-box and<br />

then within 10 min of transfer placed into individual compartments<br />

in an incubator. Plastic dummy eggs were put into the nests for<br />

females to incubate. The method was successful since only one out<br />

of 38 artificial clutches was abandoned. Temperature in the<br />

incubator ranged between 37 and 39°C, humidity between 40 and<br />

70%. The incubator was checked for newly hatched young at least<br />

every 3 h throughout the day and night. Hatching time was recorded<br />

for each chick. When hatching was not directly observed, hatching<br />

time was approximated as the midpoint between the check when the<br />

egg was hatched and the preceding check when the egg was still<br />

unhatched. As soon as possible, hatchlings were returned to their<br />

nest of origin. The mean time (±SD) which elapsed between<br />

hatching and the return of the hatchling to the nest was 2.95±2.33 h<br />

(range 10 min–10 h). The longer time periods occurred when the<br />

young hatched in the evening and starved until sunrise, which is also<br />

the case under natural conditions. To ensure that the delay did not<br />

affect our results, we included the time elapsed between hatching<br />

and returning the hatchling to the nest (“time to return” hereafter) as<br />

a covariate into our models (see below). Before their return, the<br />

claws of hatchlings were marked by nail-varnish to enable<br />

individual recognition. Nestlings were checked daily until they<br />

were 13 days old, i.e. close to fledging. Every day, nestlings were<br />

weighed to the nearest 0.25 g with a Pesola spring balance and remarked<br />

if needed. Nestlings were ringed when about 7 days old,<br />

blood sampled (about 25 μl) by brachial venipuncture at 10–13 days<br />

and their tarsi were measured (to the nearest 0.01 mm) at 13 days.<br />

Blood samples were transferred to 1 ml of Queen’s lysis buffer<br />

(Seutin et al. 1991). Dead nestlings were taken from nests and<br />

conserved in 70% ethanol. Putative parents were caught with nestbox<br />

traps while feeding nestlings and their blood was sampled in the<br />

same way as for nestlings.<br />

Each year nearly all adults breeding in the study area were<br />

captured and checked for rings. Thus for the young fledglings in<br />

2001, 2 years of potential recapture as breeding adults were<br />

available, but only 1 year for the young fledgling in 2002. It is<br />

certain that some individuals that had ultimately recruited to the<br />

breeding population were not discovered by us and thus we<br />

erroneously treated them as non-recruits. However, under the<br />

assumption that the dispersal and the probability of starting breeding<br />

in the second year of life are not biased with respect to egg size, our<br />

subsample of the recruits is representative. The first part of the<br />

assumption seems to be realistic as breeding dispersal is unbiased<br />

with respect to other offspring traits such as fledgling weight or<br />

tarsus length in this species (Pärt 1990). Concerning the second part<br />

of the assumption, it is possible that superior individuals already


54<br />

start breeding in the second year of life while individuals in bad<br />

condition are “floaters” at this time but are recruited a year later, in<br />

their third year of life. This would lead to over-representation of<br />

individuals in good condition in our sample of recruits and thus<br />

overestimation of egg-size effects on recruitment (to the extent that<br />

egg size positively affects condition and probability of early<br />

breeding). However, this possibility makes our conclusions even<br />

more conservative (see below).<br />

Sex and paternity<br />

Nestling sex and parentage were determined using standard methods<br />

for the collared flycatcher (Sheldon and Ellegren 1996). In short,<br />

DNA was extracted from blood or tissue samples using the phenolchloroform<br />

method. Sex was determined by polymerase chain<br />

reaction amplification of the CHD gene using primers P2 and P8<br />

(Griffiths et al. 1998), followed by polyacrylamid electrophoresis.<br />

The method was completely accurate: sex of about 60 adults of<br />

known sex was determined rightly in all cases. Parentage was<br />

determined by comparing genotypes of putative parents and<br />

nestlings at three microsatellite loci: FhU2, FhU3 and FhU4. Their<br />

combined exclusion power is about 96% in the collared flycatcher<br />

(Sheldon and Ellegren 1996). This means that in about 4% of cases<br />

nestlings sired by an extra-pair male are erroneously concluded to be<br />

sired by the pair male. It was not possible to determine sex and<br />

parentage in three offspring due to their disappearance from the nest<br />

or decay of tissues.<br />

Samples and statistics<br />

Out of 224 artificially incubated eggs originating from 38 nests, 180<br />

hatched, which represents hatchability of 80.4%. Only nests in<br />

which either all or all but one young hatched were used in this study.<br />

This ensured a natural level of sibling competition in the studied<br />

nests. Mean egg volume of the clutch did not differ between the two<br />

groups of nests (nests with high hatchability, mean egg volume<br />

±SE=1620.9±23.5 mm 3 , n=29; nests with low hatchability, mean<br />

egg volume±SE=1635.3±42.1 mm 3 , n=9; t=0.3, P=0.77). Further,<br />

only nests where both parents were captured, allowing the<br />

determination of parentage, were used. Consequently, 121 chicks<br />

hatched in 22 nests remained for the analyses. Hatchability in these<br />

nests was 92.4%, which equals the natural level (Cramp and Perrins<br />

1993; M. Krist, unpublished data). Clutch sizes were six, five and<br />

seven eggs in 19, two and one nest, respectively. All clutch sizes<br />

were pooled for the analyses. Nevertheless, results were virtually the<br />

same when only six-egg clutches were used (results not shown).<br />

Analyses of tarsus length, nestling mass and fledgling condition<br />

(residuals from the regression of 13-day body mass on tarsus length;<br />

weight=0.852+0.669 tarsus, n=89, P=0.008, r 2 =0.079), were based<br />

only on nestlings that subsequently fledged, because nestlings that<br />

died did not exhibit normal growth for several days before death (i.e.<br />

their mass remained constant or even decreased when the mass of<br />

their sibs increased). The only exception were young from three<br />

nests that were abandoned at the end of the nestling phase, probably<br />

due to depredation of parents. These young grew normally before<br />

their abandonment and were included in the analysis of nestling<br />

mass up to the day before strong mass recession was recorded.<br />

Because the aim of this study was to analyse the effects of<br />

intraclutch egg-size variation, egg volume was converted to relative<br />

egg volume (hereafter termed “egg size”). This was computed as<br />

egg volume minus the mean egg volume of the clutch (i.e. centring).<br />

In this way, between-clutch variation is removed and relative egg<br />

volume then represents egg-size variation within clutches. To enable<br />

comparison between nests, hatching time was computed for every<br />

nestling as follows. The value of zero was assigned to the firsthatched<br />

young. Time (in hours) elapsed between hatching of the first<br />

young and every subsequent nest-mate was assigned to the latter.<br />

The resulting variable is hereafter termed “hatching asynchrony”.<br />

To assess the effect of egg size on offspring performance, five<br />

models were fitted. The response variables in these models were<br />

nestling survival (binomial variable; fledged versus not fledged),<br />

recruitment to the breeding population (binomial variable; recruited<br />

versus not recruited; only young that fledged successfully were used<br />

for this test), fledgling tarsus length, fledgling condition and nestling<br />

mass, respectively. The predictor variables were as follows. Firstly,<br />

egg size, hatching asynchrony, laying sequence, sex and paternity<br />

were retained in all the models as fixed effects of interest. The only<br />

exception was the model for nestling survival, which was fitted<br />

without paternity because all extra-pair young fledged. In this latter<br />

case, maximum likelihood estimates of effects may not exist and<br />

thus the validity of the model fit would be questionable. The reason<br />

for including the above variables in all final models was that their<br />

effects on offspring performance after controlling for the other<br />

factors are not known and that is why they may be of interest.<br />

Secondly, mean egg volume of the clutch, year, advancement of the<br />

breeding season (standardised between years by subtracting the<br />

median date of egg-laying in the particular year from the actual egglaying<br />

date), and the time elapsed between hatching and returning of<br />

the hatchling to the nest were included in initial models as fixedeffects<br />

covariates. To test also for the possibility that the effect of<br />

egg size on the response variables depends on brood-level variables,<br />

interactions of egg size with year, breeding season and mean egg<br />

volume of a clutch were initially fitted in all models. Covariates and<br />

their interactions with egg size were selected according to Akaike’s<br />

information criterion (AIC). The final model was that with the<br />

lowest number of parameters from the series of models which had<br />

AIC between the smallest value and the smallest value+2 (see<br />

Burnham and Anderson 1998). Thirdly, nest was included as a<br />

random effect to control for dependence of data points within nests.<br />

Denominator df were computed using Satterthwaite’s method.<br />

Recruitment and survival were analysed using GLIMMIX macro<br />

of SAS (generalised linear mixed model with binomial error and<br />

logit link), the other models were fitted using PROC MIXED.<br />

The model for nestling mass was more complex than the other<br />

models. First, nestlings were weighed each day until the brood was<br />

13 days old (brood age zero is the day the first egg of a clutch<br />

hatched). Hence, an individual nestling was treated as a second<br />

random factor nested within nest (i.e. higher-level factor) and age of<br />

the brood as an additional fixed effect (for the rationale of the model,<br />

see Singer 1998). Second, all the interactions of brood age with<br />

fixed effects of interest were initially included in the model to<br />

investigate whether the effect of independent variables changes as<br />

young grow. Interactions were selected according to AIC as<br />

described above.<br />

Hatching asynchrony, laying order and egg size were positively<br />

correlated (Fig. 1). Such correlations between independent variables<br />

in multiple regression (multicollinearity) could reduce the power of<br />

the analyses. To assess the influence of multicollinearity on our<br />

significance tests, we looked at variance inflation factors (VIF) for<br />

individual predictors. Predictors with VIF


Fig. 1 a Egg size as a function of the laying sequence. The<br />

regression equation is: egg size (mm 3 )=−52.19+14.96 laying<br />

sequence (F1,129=24.39, P9 days old (Table 1, Figs. 2a, b, 3). Weaker<br />

55<br />

correlation between the mass of 1-day-old nestlings and<br />

egg size is probably a methodological artefact caused by<br />

the fact that the mass was measured only to the nearest<br />

0.25 g. Therefore, the same mass was assigned to many 1day-old<br />

nestlings although in fact they differed in mass.<br />

From a brood age of 3 days onwards, this level of<br />

precision was fully adequate as nestlings were much<br />

heavier.<br />

In contrast to egg size, hatching asynchrony had a<br />

strong effect on offspring performance. Late-hatching<br />

young were smaller and had poorer survival than earlyhatching<br />

young (Table 1). On the other hand, the young<br />

from later eggs in the laying sequence were larger than the<br />

young from earlier eggs (Table 1). Time to return of<br />

offspring to the nest negatively affected offspring survival<br />

probability (Table 1). At the time of fledging, extra-pair<br />

young tended to be in better condition than young sired by<br />

social mates, and sons were in better condition than<br />

daughters (Table 1). As it was impossible to assess the<br />

effect of paternity on offspring survival while controlling<br />

for the effects of other predictors in the generalised linear<br />

model (see Materials and methods), we computed at least<br />

the probability that extra-pair and pair offspring differ in<br />

their survival by Fisher’s exact test. Extra-pair young<br />

tended to survive better than young sired by social mates<br />

(n=101, P=0.067).<br />

To assess the validity of the statistically non-significant<br />

results concerning egg size, we computed 95% confidence<br />

Fig. 2a, b Nestling mass as a function of the relative egg size in the<br />

course of the nestling period. Displayed are a partial regression<br />

(±95% confidence intervals) and b partial correlation coefficients<br />

between the two , partialled with respect to hatching asynchrony,<br />

laying order, offspring sex, paternity and nest. Brood age is in days.<br />

Brood age zero is the day the first egg of a clutch hatched


Table 1 Parameter estimates<br />

and type III F-tests of fixed<br />

effects for recruitment a , nestling<br />

survival a 56<br />

, mass, fledgling tarsus<br />

length and fledgling condition<br />

a In the models for recruitment<br />

and nestling survival the probabilities<br />

for recruitment/survival<br />

are modelled. The model for<br />

recruitment does not contain a<br />

random factor, all other models<br />

contain a random intercept for<br />

nest. The variables are coded as<br />

follows—sex: male = 0, female<br />

= 1; paternity: young sired by<br />

social male = 0, by extra-pair<br />

male = 1; year: 2002 = 0, 2001 =<br />

1 bNumerator df were always 1<br />

intervals for standardised effect sizes of egg size on<br />

fledgling mass, condition and tarsus length (Fig. 4). This<br />

method may be preferable to commonly used power<br />

analysis because confidence intervals have several advantages<br />

as compared to power analysis in evaluating nonsignificant<br />

results (e.g. Steidl et al. 1997; Hoenig and<br />

Heisey 2001). Effects were predicted for mean difference<br />

between the largest and the smallest egg in the clutch, i.e.<br />

177.2 mm 3 (11.6% of the smaller egg). We multiplied this<br />

value by the parameter estimate for the effect of egg size<br />

on a particular trait and its 95% confidence limits and<br />

standardised by dividing them by the SD of the particular<br />

trait. Cohen (1988) suggested a convention that the values<br />

of standardised effects of 0.2, 0.5 and 0.8 could be treated<br />

Estimate SE df b<br />

as small, medium and large effects, respectively, when two<br />

groups are compared. Thus, our data suggest that the<br />

difference between the largest and the smallest eggs within<br />

clutches could at most cause only small positive effects in<br />

fledgling mass and condition (Fig. 4).<br />

Discussion<br />

Egg-size effects<br />

F P<br />

Recruitment<br />

Intercept −2.976 1.198 83<br />

Relative egg size −0.00102 0.00703 83 0.02 0.886<br />

Laying sequence 0.1002 0.335 83 0.09 0.766<br />

Hatching asynchrony 0.0250 0.0460 83 0.30 0.589<br />

Sex −0.375 0.941 83 0.16 0.691<br />

Paternity 0.260 0.944 83 0.08 0.784<br />

Nestling survival<br />

Intercept 8.07 1.62<br />

Relative egg size 0.00868 0.00649 91.6 1.79 0.184<br />

Laying sequence 0.203 0.305 91.1 0.44 0.507<br />

Hatching asynchrony −0.263 0.0522 93.7 25.42


Fig. 3 Nestling mass (mean±2SE, grams) in relation to brood age<br />

(days) for nestlings from large (greater than clutch mean) (open<br />

circle) and small (smaller than clutch mean) (filled circle) eggs.<br />

Brood age zero is the day the first egg of a clutch hatched<br />

Fig. 4 Standardised effects (estimate±95% confidence interval)<br />

caused by the mean difference between the largest and smallest egg<br />

in the clutch (177.2 mm 3 ) for fledgling tarsus length, mass and<br />

condition. The dashed lines refer to small (0.2), medium (0.5) and<br />

large (0.8) standardised effects as suggested by Cohen (1988).<br />

Numbers by the confidence intervals are probabilities (in percent)<br />

that the size of the standardised effect is below that indicated by the<br />

dashed line<br />

deviations in egg size on recruitment, nestling survival,<br />

fledgling condition and fledgling tarsus length of the<br />

collared flycatcher. Similarly, the initially strong effect of<br />

the egg size on the nestling mass diminished steadily as<br />

young were growing, resulting in fledgling mass being<br />

independent of egg size. Moreover, the fact that interactions<br />

between egg size and some brood-level factors (year,<br />

advancement of breeding season and mean egg volume of<br />

the clutch) did not improve the model fit substantially,<br />

suggests that the lack of egg-size effects holds true in a<br />

wide range of external conditions. Of course, it is possible<br />

that within-clutch deviations in egg size affected some<br />

component of offspring fitness that we did not measure<br />

(e.g. immunocompetence). However, fledgling condition,<br />

mass and structural size (indicated by tarsus length) are<br />

generally assumed to be the traits with the greatest<br />

influence on fitness later in life (Gebhardt-Henrich and<br />

Richner 1998). This may be true in the collared flycatcher<br />

because tarsus length and condition at fledging were found<br />

to be under strong directional selection in this species<br />

57<br />

(Kruuk et al. 2001; Merilä et al. 2001). Furthermore, the<br />

narrow confidence intervals for egg-size effects suggest<br />

that the lack of effect was not caused by small sample size,<br />

at least in the three measures of offspring size for which<br />

such confidence intervals can be determined (as the<br />

response variable is distributed normally).<br />

As this is a correlative study, it is impossible to derive<br />

definite conclusions about causal relationships. However,<br />

we have suggested previously that the within-clutch<br />

approach is the most powerful one from the range of<br />

non-experimental approaches available for the analysis of<br />

egg-size effects (Krist and Remeš 2004). Our conclusions<br />

of no egg-size effects could be compromised only when<br />

other pre-laying maternal effects affecting offspring<br />

performance (e.g. concentration of carotenoids or steroids<br />

in egg yolk) are negatively correlated with within-clutch<br />

deviations in egg size thus tending to cancel each other out<br />

(see Krist and Remeš 2004). Although this problem is<br />

solvable only by experimental manipulation of egg size,<br />

we believe that such counteractive pre-laying maternal<br />

effects are unlikely. Thus although the definite answer to<br />

the question of egg-size effects on offspring performance<br />

can be derived only from a manipulative study, results of<br />

our detailed study suggest that within-clutch variation in<br />

egg size is unimportant for offspring performance in the<br />

collared flycatcher.<br />

So far only a few studies have examined effects of<br />

within-clutch differences in egg size on offspring survival<br />

(Leblanc 1987b; Grant 1991; Williams et al. 1993b;<br />

Dawson and Clark 1996; Amat et al. 2001) and even fewer<br />

on their effects on offspring mass in birds (Howe 1976;<br />

Anderson et al. 1997; Erikstad et al. 1998; Magrath et al.<br />

2003). Of the four studies on the effect of intraclutch eggsize<br />

variation on offspring mass, egg size was not<br />

influential in one study (Magrath et al. 2003), was fully<br />

confounded with laying order in another one (Erikstad et<br />

al. 1998) and influential in the remaining two studies<br />

(Howe 1976; Anderson et al. 1997). Out of the five studies<br />

on offspring survival, only one (Amat et al. 2001) found a<br />

positive effect of larger eggs. Thus, our finding of no<br />

effects of within-clutch deviations in egg size on<br />

components of offspring performance is in accordance<br />

with most previous studies, which suggests that adaptive<br />

explanations of intraclutch egg-size patterns should be<br />

invoked with caution.<br />

An alternative to adaptive explanations is that intraclutch<br />

egg-size patterns can be primarily generated by<br />

proximate constraints on egg development. For example,<br />

in studies that found the effect of embryo sex on egg size,<br />

the difference ranged from 1 to 3.5% of the smaller egg<br />

(Mead et al. 1987; Anderson et al. 1997; Cordero et al.<br />

2000, 2001; Blanco et al. 2003; Magrath et al. 2003). It<br />

seems unlikely to us that the 1.3% difference in egg size in<br />

favour of males found in the house sparrow (Passer<br />

domesticus) (Cordero et al. 2000) would be sufficient to<br />

improve offspring fitness significantly when, in the<br />

collared flycatcher, a species with similar nestling development<br />

and breeding biology, a 11.6% difference was<br />

unimportant to the offspring. Instead, the sex of the


58<br />

embryo could affect in some, yet unknown, way the<br />

deposition of albumen into the egg in the oviduct thus<br />

causing the slight difference in egg size. Similarly, a<br />

number of proximate constraints and processes could<br />

generate complex patterns of egg-size variation with<br />

laying sequence. These include the depletion of endogenous<br />

reserves in capital breeders (Pierotti and Bellrose<br />

1986), gearing up physiologically for egg production<br />

(Parsons 1976), changing hormonal levels at the onset of<br />

egg laying and incubation (Mead and Morton 1985),<br />

changing the ambient temperature before egg laying<br />

(Ojanen et al. 1981; Järvinen and Ylimaunu 1986), a<br />

time constraint for laying early (Slagsvold and Lifjeld<br />

1989; Nilsson and Svensson 1993) and a changing food<br />

supply in income breeders (Perrins 1970). A different<br />

degree of importance of individual proximate factors in<br />

different species/populations could be responsible for a<br />

rich diversity of intraclutch egg-size variation patterns<br />

found in birds.<br />

Moreover, the relative importance of individual proximate<br />

factors may change systematically with body size,<br />

breeding habitat or latitude. In an influential study,<br />

Slagsvold et al. (1984) showed that large bird species<br />

lay small last eggs (brood-reduction strategy) and small<br />

species lay big last eggs (brood-survival strategy). They<br />

argued that this pattern is adaptive because large birds are<br />

less vulnerable to nest predation than small species.<br />

However, the alternative explanation could be that this<br />

pattern is driven by proximate constraints. Large species<br />

are often capital breeders, whereas small species are<br />

income breeders (see Meijer and Drent 1999). Since<br />

endogenous reserves may be depleted during laying, large<br />

species could lay relatively small last eggs. In contrast,<br />

small species must forage for all nutrients that they deposit<br />

into eggs and since food supply increases at the time of<br />

laying from day-to-day (Perrins 1970), they may gather<br />

more resources at the end of laying resulting in relatively<br />

large last eggs. This hypothesis seems to explain the<br />

observed pattern, i.e. a gradual change in egg size with<br />

laying sequence (Howe 1976; Wiggins 1990; Cichoń<br />

1997; Hillström 1999; this study), better than the adaptive<br />

hypothesis, which predicts that only the last eggs hatching<br />

asynchronously should be larger/smaller (Howe 1976;<br />

Slagsvold et al. 1984).<br />

Hatching asynchrony, laying sequence and paternity<br />

As in many other studies (reviewed in Magrath 1990),<br />

hatching asynchrony was an important determinant of both<br />

nestling size and survival. This strong effect as compared<br />

to no effect of egg size was probably caused by much<br />

greater mass differences in nestling hierarchies, generated<br />

by hatching asynchrony, than by egg-size differences, as<br />

was found in several other species (e.g. Magrath 1992;<br />

Viñuela 1996). Nestlings hatching from ultimate, and to a<br />

lesser extent penultimate, eggs hatched usually later<br />

(Fig. 1) and thus were disadvantaged. On the other hand,<br />

laying sequence per se tended to affect positively both<br />

nestling mass and fledgling tarsus length suggesting that<br />

egg composition could be responsible. The concentration<br />

of several egg components can change with laying<br />

sequence, including antibodies and carotenoids (Saino et<br />

al. 2002a, b), or steroid hormones (e.g. Schwabl 1993).<br />

Steroid hormones are the most probable candidates<br />

causing the larger size of nestlings from later-laid eggs.<br />

First, their concentration has recently been found to<br />

increase in laying sequence in a number of species (see<br />

Whittingham and Schwabl 2002). Second, steroids<br />

enhance the development of muscles important for<br />

begging (Lipar 2001) and nestling growth (Schwabl<br />

1996).<br />

There was a marginally non-significant effect of<br />

paternity on fledgling condition with extra-pair young<br />

tending to be in better condition than young sired by the<br />

social mate (Table 1), which is in agreement with an earlier<br />

study on the same species by Sheldon et al. (1997). This<br />

finding supports the hypothesis that extra-pair mates are<br />

genetically better than social mates (Sheldon 2000; but see<br />

Colegrave 2001) which would have important implications<br />

for the theory of sexual selection (Griffith et al.<br />

2002). However, it is still not clear whether a difference in<br />

offspring performance in relation to paternity is directly<br />

caused by good genes inherited from extra-pair sires or<br />

female favouritism of extra-pair young (Gil et al. 1999;<br />

Cunningham and Russell 2000). Nevertheless, our study is<br />

the first in which some potential pathways of female<br />

favouritism (i.e. egg size, hatching asynchrony) were<br />

controlled on the within-clutch level. Recently two other<br />

studies have demonstrated that, on the between-female<br />

level, genetic benefits of mate choice (Parker 2003) and<br />

polyandry (Kozielska et al. 2004) exist even after<br />

controlling for female favouritism. Although extra-pair<br />

young tended to survive better in this study it is even more<br />

unclear whether this tendency is due to any genetic effect,<br />

because in this test no other factors were controlled for. It<br />

may be that this tendency was driven by the effect of<br />

hatching asynchrony, since extra-pair young hatch earlier<br />

than their half-sibs in this species (M. Krist, P. Nádvorník,<br />

L. Uvírová, S. Bureš, unpublished data).<br />

Conclusions<br />

It has been often claimed that females exploit intraclutch<br />

egg-size variation adaptively in relation to offspring sex<br />

and laying order. However, the assumption of increasing<br />

offspring performance with increasing egg size has been<br />

rarely properly tested. We found no influence of<br />

intraclutch egg-size variation on offspring performance.<br />

Although a definite conclusion can be made only after<br />

manipulative studies are performed, our results strongly<br />

suggest that the assumption does not hold in the collared<br />

flycatcher, and this finding is in agreement with most<br />

previous studies. Consequently, there seems to be limited<br />

potential for female birds in many species to exploit<br />

within-clutch variation in egg size adaptively. Instead, we<br />

suggest that intraclutch egg-size variation most often has


no adaptive significance and is caused by proximate<br />

constraints on laying females.<br />

Acknowledgements We thank E. Tkadlec, K. Weidinger and<br />

several anonymous referees for valuable comments on or discussion<br />

of the manuscript, and J. Stříteský for exceptional field co-operation.<br />

K. Weidinger kindly provided us with plastic eggs. We thank forest<br />

enterprise Čechy pod Kosířem for providing the nest-boxes and<br />

caravan needed for this work. M. K. thanks Kačenka for everyday<br />

support. This study was supported by a grant from the Czech<br />

Ministry of Education (MSM 153100012) and from GAČR<br />

(no. 206/03/0215). The study was approved and supervised by the<br />

Ethical Committee of Palacký University and complies with the<br />

current law of the Czech Republic.<br />

References<br />

Amat JA, Fraga RM, Arroyo GM (2001) Intraclutch egg-size<br />

variation and offspring survival in the kentish plover Charadrius<br />

alexandrinus. Ibis 143:17–23<br />

Anderson DJ, Reeve J, Bird DM (1997) Sexually dimorphic eggs,<br />

nestling growth and sibling competition in american kestrels<br />

Falco sparverius. Funct Ecol 11:331–335<br />

Becker PH, Wink M (2003) Influences of sex, sex composition of<br />

brood and hatching order on mass growth in common terns<br />

Sterna hirundo. Behav Ecol Sociobiol 54:136–146<br />

Bize P, Roulin A, Richner H (2002) Covariation between egg size<br />

and rearing condition determines offspring quality: an experiment<br />

with the alpine swift. Oecologia 132:231–234<br />

Blanco G, Martínez-Padilla J, Serrano D, Dávila JA, Viñuela J<br />

(2003) Mass provisioning to different-sex eggs within the<br />

laying sequence: consequences for adjustment of reproductive<br />

effort in a sexually dimorphic bird. J Anim Ecol 72:831<br />

Budden AE, Wright J (2001) Begging in nestling birds. In: Nolan V,<br />

Thompson CF (eds) Current ornithology. Kluwer, New York,<br />

pp 83–118<br />

Burnham KP, Anderson DR (1998) Model selection and inference: a<br />

practical information-theoretic approach. Springer, Berlin<br />

Heidelberg New York<br />

Chaterjee S, Hadi AS, Price B (2000) Regression analysis by<br />

example. Wiley, New York<br />

Christians JK (2002) Avian egg size: variation within species and<br />

inflexibility within individuals. Biol Rev 77:1–26<br />

Cichoń M (1997) Egg weight variation in collared flycatchers<br />

Ficedula albicollis. Ornis Fenn 74:141–147<br />

Cichoń M, Dubiec A, Stoczko M (2003) Laying order and offspring<br />

sex in blue tits Parus caeruleus. J Avian Biol 34:355–359<br />

Cohen J (1988) Statistical power analysis for behavioral sciences.<br />

Erlbaum, N.J.<br />

Colegrave N (2001) Differential allocation and “good genes”—<br />

comment from Colegrave. Trends Ecol Evol 16:22–23<br />

Cordero PJ, Griffith SC, Aparicio JM, Parkin DT (2000) Sexual<br />

dimorphism in house sparrow eggs. Behav Ecol Sociobiol<br />

48:353–357<br />

Cordero PJ, Viñuela J, Aparicio JM, Veiga JP (2001) Seasonal<br />

variation in sex ratio and sexual egg dimorphism favouring<br />

daughters in first clutches of the spotless starling. J Evol Biol<br />

14:829–834<br />

Cramp S, Perrins CM (1993) The birds of the western Palearctic.<br />

Oxford University Press, Oxford<br />

Cunningham EJA, Russell AF (2000) Egg investment is influenced<br />

by male attractiveness in the mallard. Nature 404:74–77<br />

Dawson RD, Clark RG (1996) Effects of variation in egg size and<br />

hatching date on survival of lesser scaup Aythya affinis<br />

ducklings. Ibis 138:693–699<br />

Erikstad KE, Tveraa T, Bustnes JO (1998) Significance of<br />

intraclutch egg-size variation in common eider: the role of<br />

egg size and quality of ducklings. J Avian Biol 29:3–9<br />

59<br />

Freckleton RP (2002) On the misuse of residuals in ecology:<br />

regression of residuals vs. multiple regression. J Anim Ecol<br />

71:542–545<br />

Gebhardt-Henrich SG, Richner H (1998) Causes of growth variation<br />

and its consequences for fitness. In: Starck JM, Ricklefs RE<br />

(eds) Avian growth and development: evolution within the<br />

altricial-precocial spectrum. Oxford University Press, Oxford,<br />

pp 324–339<br />

Gil D, Graves J, Hazon N, Wells A (1999) Male attractiveness and<br />

differential testosterone investment in zebra finch eggs. Science<br />

286:126–128<br />

Graham MH (2003) Confronting multicollinearity in ecological<br />

multiple regression. Ecology 84:2809–2815<br />

Grant MC (1991) Relationship between egg size, chick size at<br />

hatching and chick survival in the whimbrel Numenius<br />

phaeopus. Ibis 133:127–133<br />

Griffith SC, Owens IPF, Thuman KA (2002) Extra pair paternity in<br />

birds: a review of interspecific variation and adaptive function.<br />

Mol Ecol 11:2195–2212<br />

Griffiths R, Double MC, Orr K, Dawson RJG (1998) A DNA test to<br />

sex most birds. Mol Ecol 7:1071–1075<br />

Hillström L (1999) Variation in egg mass in the pied flycatcher,<br />

Ficedula hypoleuca: an experimental test of the brood survival<br />

and brood reduction hypotheses. Evol Ecol Res 1:753–768<br />

Hoenig JM, Heisey DM (2001) The abuse of power: the pervasive<br />

fallacy of power calculations for data analysis. Am Stat 55:19–<br />

24<br />

Howe HF (1976) Egg size, hatching asynchrony, sex and brood<br />

reduction in the common grackle. Ecology 57:1195–1207<br />

Hoyt DF (1979) Practical methods of estimating volume and fresh<br />

weight of birds’ eggs. Auk 96:73–77<br />

Järvinen A, Ylimaunu J (1986) Intraclucth egg-size variation in<br />

birds: physiological responses of individuals to fluctuations in<br />

environmental conditions. Auk 103:235–237<br />

Kozielska M, Krzemińska A, Radwan J (2004) Good genes and the<br />

maternal effects of polyandry on offspring reproductive success<br />

in the bulb mite. Proc R Soc Lond B 271:165–170<br />

Krist M, Remeš V (2004) Maternal effects and offspring<br />

performance: in search of the best method. Oikos (in press)<br />

Kruuk LEB, Merilä J, Sheldon BC (2001) Phenotypic selection on a<br />

heritable size trait revisited. Am Nat 158:557–571<br />

Leblanc Y (1987a) Relationships between sex of gosling and<br />

position in the laying sequence, egg mass, hatchling size and<br />

fledgling size. Auk 104:73–76<br />

Leblanc Y (1987b) Egg mass, position in the laying sequence and<br />

brood size in relation to canada goose reproductive success.<br />

Wilson Bull 99:663–672<br />

Lipar JL (2001) Yolk steroids and the development of the hatching<br />

muscle in nestling european starlings. J Avian Biol 32:231–238<br />

Magrath RD (1990) Hatching asynchrony in altricial birds. Biol Rev<br />

65:587–622<br />

Magrath RD (1992) Roles of egg mass and incubation pattern in<br />

establishment of hatching hierarchies in the blackbird (Turdus<br />

merula). Auk 109:474–487<br />

Magrath MJL, Brouwer L, Komdeur J (2003) Egg size and laying<br />

order in relation to offspring sex in the extreme sexually size<br />

dimorphic brown songlark, Cinclorhamphus cruralis. Behav<br />

Ecol Sociobiol 54:240–248<br />

Mead PS, Morton ML (1985) Hatching asynchrony in the mountain<br />

white-crowned sparrow (Zonotrichia leucophrys oriantha): a<br />

selected or incidental trait? Auk 102:781–792<br />

Mead PS, Morton ML, Fish BE (1987) Sexual dimorphism in egg<br />

size and implications regarding facultative manipulation of sex<br />

in mountain white-crowned sparrows. Condor 89:798–803<br />

Meijer T, Drent R (1999) Re-examination of the capital and income<br />

dichotomy in breeding birds. Ibis 141:399–414<br />

Merilä J, Kruuk LB, Sheldon BC (2001) Cryptic evolution in a wild<br />

bird population. Nature 412:76–79<br />

Nilsson JA, Svensson E (1993) Causes and consequences of egg<br />

mass variation between and within blue tit clutches. J Zool<br />

230:469–481


60<br />

O’Connor RJ (1979) Egg weights and brood reduction in the<br />

european swift (Apus apus). Condor 81:133–145<br />

Ojanen M, Orell M, Väisänen A (1981) Egg size variation within<br />

passerine clutches: effects of ambient temperature and laying<br />

sequence. Ornis Fenn 58:93–108<br />

Parker TH (2003) Genetic benefits of mate choice separated from<br />

differential maternal investment in red junglefowl (Gallus<br />

gallus). Evolution 57:2157–2165<br />

Parsons J (1976) Factors determining the number and size of eggs<br />

laid by the herring gull. Condor 78:481–492<br />

Pärt T (1990) Natal dispersal in the collared flycatcher: possible<br />

causes and reproductive consequences. Ornis Scand 21:83–88<br />

Pelayo JT, Clark RG (2003) Consequences of egg size for offspring<br />

survival: a cross-fostering experiment in ruddy ducks (Oxyura<br />

jamaicensis). Auk 120:384–393<br />

Perrins CM (1970) The timing of birds’ breeding seasons. Ibis<br />

112:242–255<br />

Pierotti R, Bellrose CA (1986) Proximate and ultimate causation of<br />

egg size and the third-chick disadvantage in the western gull.<br />

Auk 103:401–407<br />

Rutkowska J, Cichoń M (2002) Maternal investment during egg<br />

laying and offspring sex: an experimental study of zebra<br />

finches. Anim Behav 64:817–822<br />

Saino N, Bertacche V, Ferrari RP, Martinelli R, Møller AP, Stradi R<br />

(2002a) Carotenoid concentration in barn swallow eggs is<br />

influenced by laying order, maternal infection and paternal<br />

ornamentation. Proc R Soc Lond B 269:1729–1733<br />

Saino N, Ferrari RP, Martinelli R, Romano M, Rubolini D, Møller<br />

AP (2002b) Early maternal effects mediated by immunity<br />

depend on sexual ornamentation of the male partner. Proc R<br />

Soc Lond B 269:1005–1009<br />

SAS Institute (2000) SAS online document, version 8. SAS<br />

Institute, Cary, N.C<br />

Schwabl H (1993) Yolk is a source of maternal testosterone for<br />

developing birds. Proc Natl Acad Sci USA 90:11446–11450<br />

Schwabl H (1996) Maternal testosterone in the avian egg enhances<br />

postnatal growth. Comp Biochem Physiol A 114:271–276<br />

Seutin G, White BN, Boag PT (1991) Preservation of avian blood<br />

and tissue samples for DNA analyses. Can J Zool 69:82–90<br />

Sheldon BC (2000) Differential allocation: tests, mechanisms and<br />

implications. Trends Ecol Evol 15:397–402<br />

Sheldon BC, Ellegren H (1996) Offspring sex and paternity in the<br />

collared flycatcher. Proc R Soc Lond B 263:1017–1021<br />

Sheldon BC, Merilä J, Qvarnström A, Gustafsson L, Ellegren H<br />

(1997) Paternal genetic contribution to offspring condition<br />

predicted by size of male secondary sexual character. Proc R<br />

Soc Lond B 264:297–302<br />

Singer JD (1998) Using SAS PROC MIXED to fit multilevel<br />

models, hierarchical models, and individual growth models. J<br />

Educat Behav Stat 24:323–355<br />

Slagsvold T, Lifjeld JT (1989) Constraints on hatching asynchrony<br />

and egg size in pied flycatchers. J Anim Ecol 58:837–849<br />

Slagsvold T, Sandvik J, Rofstad G, Lorentsen O, Husby M (1984)<br />

On the adaptive value of intraclutch egg-size variation in birds.<br />

Auk 101:685–697<br />

Steidl RJ, Hayes JP, Schauber E (1997) Statistical power analysis in<br />

wildlife research. J Wildl Manage 61:270–279<br />

Teather KL (1989) Sex and egg size in great-tailed grackles. Condor<br />

91:203–205<br />

Trivers RL, Willard DE (1973) Natural selection of parental ability<br />

to vary the sex ratio of offspring. Science 179:90–92<br />

Viñuela J (1996) Establishment of mass hierarchies in broods of the<br />

black kite. Condor 98:93–99<br />

Viñuela J (1997) Adaptation vs. constraint: intraclutch egg-mass<br />

variation in birds. J Anim Ecol 66:781–792<br />

Weatherhead PJ (1985) Sex-ratios of red-winged blackbirds by egg<br />

size and laying sequence. Auk 102:298–304<br />

Whittingham LA, Schwabl H (2002) Maternal testosterone in tree<br />

swallow eggs varies with female aggression. Anim Behav<br />

63:63–67<br />

Wiggins DA (1990) Sources of variation in egg mass of tree<br />

swallows Tachycineta bicolor. Ornis Scand 21:157–160<br />

Williams TD, Lank DB, Cooke F (1993a) Is intraclutch egg-size<br />

variation adaptive in the lesser snow goose? Oikos 67:250–256<br />

Williams TD, Lank DB, Cooke F, Rockwell RF (1993b) Fitness<br />

consequences of egg-size variation in the lesser snow goose.<br />

Oecologia 96:331–338<br />

Ylimaunu J, Järvinen A (1987) Do pied flycatchers Ficedula<br />

hypoleuca have brood-survival or brood-reduction strategy?<br />

Ornis Fenn 64:10–15


FORUM<br />

FORUM<br />

FORUM<br />

Maternal effects and offspring performance: in search of the best<br />

method<br />

Milosˇ Krist, Museum of Natural History, nám. Republiky 5, CZ-771 73 Olomouc, Czech Republic<br />

(krist@prfnw.upol.cz). / MK and Vladimír Remesˇ, Laboratory of Ornithology, Palacky´ University, trˇ. Svobody 26,<br />

CZ-771 46 Olomouc, Czech Republic.<br />

Traditionally, maternal effects have been treated as a source of<br />

troublesome environmental variance that confounds our ability to<br />

accurately estimate the genetic basis of the traits of interest.<br />

However, the adaptive significance of maternal effects is currently<br />

at the centre of the attention of ecologists. Thus, in turn, the<br />

genetic basis of traits has become a troublesome source of the<br />

genetic resemblance that confounds our ability to accurately<br />

estimate the maternal effects of interest. This fact is, however, less<br />

widely realized among ecologists. We demonstrate this on the<br />

example of studies investigating egg-size effects on offspring<br />

performance in birds. Traditionally this relationship is being<br />

studied by cross-fostering of eggs or young and it is claimed that<br />

this design is able to separate the effects of egg size per se.<br />

However, a positive covariation between the direct effects of<br />

genes and the maternal effects exists for many studied traits,<br />

which may result in overestimation of the egg-size effects on<br />

offspring performance in cross-fostering studies. Within-clutch<br />

comparisons or direct experimental manipulation of the egg size<br />

are the approaches that do not suffer from such covariation and<br />

therefore give less biased estimates of the egg-size effects than<br />

cross-fostering studies.<br />

Maternal effects in animal ecology<br />

Offspring phenotype is determined by genes and the<br />

environment. Besides the direct effect of genes and the<br />

environment, maternal effects often play a significant<br />

role. Previously, maternal effects have been treated as the<br />

source of confusion in determining precisely quantitative<br />

genetic parameters (Falconer 1989). However, it is now<br />

widely appreciated that they can play an important role<br />

in driving the dynamics of evolution and population<br />

growth. Specifically, by introducing time lags into both<br />

these processes, they may lead to unpredictable evolutionary<br />

trajectories (Kirkpatrick and Lande 1989) and<br />

destabilization of population dynamics, e.g. in the form<br />

of population cycles or decaying oscillations (Ginzburg<br />

1998, Beckerman et al. 2002). Moreover, at the individual<br />

level, maternal effects may influence offspring<br />

fitness and thus serve both offspring and parents as<br />

adaptations. This adaptive significance of maternal<br />

effects has recently become a popular focus of ecological<br />

FORUM is intended for new ideas or new ways of interpreting existing information. It<br />

provides a chance for suggesting hypotheses and for challenging current thinking on<br />

ecological issues. A lighter prose, designed to attract readers, will be permitted. Formal<br />

research reports, albeit short, will not be accepted, and all contributions should be concise<br />

with a relatively short list of references. A summary is not required.<br />

and evolutionary studies (Mousseau and Fox 1998).<br />

Traditionally, maternal effects have been studied in<br />

domesticated species by complex analyses (Lynch and<br />

Walsh 1998), which is not easily applicable to freeranging<br />

animals. Moreover, these analyses just partition<br />

the variance in the focal trait and determine which part<br />

of this variance can be ascribed to maternal effects in<br />

general. Lande and Price (1989) devised a regression<br />

method based on Kirkpatrick and Lande (1989) that is<br />

able to isolate maternal effects specific for certain<br />

maternal traits. However, this method requires that all<br />

the maternal characters exerting maternal effects be<br />

included in the analyses (rather unrealistic condition)<br />

and is not readily applicable to sex-limited characters.<br />

Below we evaluate other methods for studying maternal<br />

effects employed in wild populations, including sexlimited<br />

characters, on the example of the effects of egg<br />

size on offspring performance in birds.<br />

Studying egg-size effects on offspring performance is<br />

important for two areas of evolutionary ecology. One,<br />

life-history theory predicts a trade-off between number<br />

and quality of offspring produced from limited resources.<br />

Two, potentially adaptive allocation of limited<br />

resources among siblings within a clutch is widely<br />

studied in a broad range of species. The critical assumption<br />

in both these cases is that the amount of resources<br />

allocated to an egg has an effect on offspring performance.<br />

Consequently, egg-size effects on offspring<br />

performance are among the most frequently studied<br />

topics in the area of maternal effects and birds are the<br />

taxon in which these effects have been studied most<br />

often. We are aware of at least 60 studies dealing with<br />

this question in birds, 41 of which were reviewed by<br />

Williams (1994). However, the approaches usually employed<br />

do not control for potential confounding factors.<br />

Consequently, despite high research attention, results of<br />

many studies estimating egg-size effects on offspring<br />

performance may be biased.<br />

422 OIKOS 106:2 (2004)


Quantitative genetic framework<br />

To demonstrate how the effect of egg size per se on<br />

offspring performance can be derived, it is useful to<br />

frame the problem in the quantitative genetics terms.<br />

From the quantitative genetics perspective, the phenotypic<br />

value of each trait can be partitioned into the<br />

components attributable to genes (genotypic value) and<br />

the environment (environmental deviation) (Falconer<br />

1989). The genotypic value can be further partitioned<br />

into the breeding value (determined by additive effect of<br />

genes), the dominance deviation (interactions of alleles<br />

within the same locus) and the interaction deviation<br />

(interactions of alleles between loci, i.e. epistasis). In this<br />

basic framework, maternal effects are subsumed under<br />

the environmental effects, because they are defined as the<br />

non-genetic influence of the maternal phenotype on the<br />

offspring’s phenotype (Kirkpatrick and Lande 1989).<br />

For our purposes, egg size is singled out as the<br />

maternal effect of interest, whereas all other maternal<br />

effects (e.g. parental feeding, concentration of testosterone<br />

in the egg) and pure environmental effects<br />

(e.g. weather, food supply) are grouped together as the<br />

offspring environment. Consequently, the phenotypic<br />

value of each offspring’s trait (z x) can be viewed as<br />

being determined by three sources: the direct effect of<br />

genes (Gox), the offspring’s environment Ex, and the egg<br />

size (Sm) which is itself compounded of an environmental<br />

(Emw) and a genetic (Gmw) component (Fig. 1).<br />

Here, subscript x denotes an offspring and w mother; o is<br />

direct pathway of determining offspring phenotype, m<br />

denotes maternal (indirect) pathway through egg size.<br />

Throughout, we assume that direct and indirect genetic<br />

Fig. 1. Path diagram depicting the determination of the<br />

phenotype zx of an individual x by direct genetic effects Gox,<br />

environmental effects E x (including also all parental effects<br />

except of egg size) and egg size S m. The mother of x is denoted<br />

by w. O denotes direct pathway, m denotes maternal pathway.<br />

Modified from Lynch and Walsh (1998).<br />

effects, Gox and Gmw, contain additive effects but do not<br />

exhibit dominance or epistasis. Note that Ex has neither<br />

o nor m subscript, because it includes both direct and<br />

maternal effects, and Sm has neither w nor x subscript,<br />

because it is the trait of both the mother and the<br />

offspring.<br />

If the three sources determining the traits of offspring<br />

were uncorrelated, a simple statistical technique such as<br />

the linear regression would give a reliable estimate of<br />

egg-size effects on any of offspring traits (except of<br />

daughter’s egg size). However, when these sources are<br />

correlated, experimental or statistical techniques will be<br />

needed to separate egg-size effects per se.<br />

A review of methods<br />

In 1990 it was suggested that the size of the egg a female<br />

lays might be positively correlated with the quality of her<br />

territory or subsequent parental feeding rate to young<br />

(i.e. positive CovExSm exists) and that this correlation<br />

can be removed by experimental swapping of clutches/<br />

broods between nests / a technique known as crossfostering<br />

(Amundsen and Stokland 1990, Reid and<br />

Boersma 1990). In both these studies, the authors found<br />

that the size of the eggs which foster mothers originally<br />

laid was a more influential determinant of offspring<br />

traits at fledging than the size of the egg from which the<br />

offspring actually hatched. This suggests that when<br />

cross-fostering is not performed, egg-size effects on<br />

offspring performance are highly overestimated. Therefore<br />

cross-fostering became a very popular technique to<br />

study egg-size effects on offspring performance<br />

(we know of 16 such studies performed to date).<br />

However, although cross-fostering decouples much of<br />

correlation of egg size with offspring environment<br />

(CovExSm, below, Table 1), it does not deal with the<br />

possible covariation between direct effect of genes and<br />

egg size (CovG owS m). Yet, this covariation is likely to be<br />

large in many cases because of the choice of ‘fitness’<br />

measure usually employed in studies of this kind. In<br />

practice, instead of studying directly the effects of egg<br />

size on offspring fitness, we usually study the effects on<br />

some correlate of fitness. Morphological traits of fledglings<br />

such as tarsus length or body weight are frequently<br />

used as these correlates. However, female size is frequently<br />

positively correlated with the size of eggs she lays<br />

(Christians 2002) and at the same time morphological<br />

traits are highly heritable (Merilä and Sheldon 2001).<br />

This means that the size of the trait in the offspring is<br />

highly influenced by direct effect of additive genes but<br />

this effect is ascribed (to the extent to which additive<br />

genes for mother body size are involved in the correlation<br />

between female size and egg size) to the effect of egg<br />

size in the cross-fostering design. In principle this may be<br />

a problem in every studied trait including offspring<br />

OIKOS 106:2 (2004) 423


Table 1. Summarization of relative merits and shortcomings of the individual approaches. CovE xS m is a covariance between<br />

environmental effects and egg size, CovGowSm is a covariance between direct additive genetic effects and egg size.<br />

Approach Controls for Remains uncontrolled Main use<br />

Observational Nothing CovExSm<br />

CovGowSm Do not use<br />

Cross-fostering Partially CovExSm CovExSm (pre-laying parental<br />

effects and differential<br />

feeding of young)<br />

Use with caution<br />

(egg size-number trade-off)<br />

CovG owS m<br />

Within-clutch Partially CovExSm Fully CovGowSm<br />

CovExSm (pre-laying parental effects and<br />

differential feeding of young)<br />

Within-clutch<br />

adaptive allocation of resources<br />

Manipulation Partially CovExSm Fully CovGowSm<br />

CovExSm (differential feeding of young)<br />

For all purposes<br />

survival. Cross-fostering thus does not reveal effects of<br />

egg size per se, which was realized only rarely (Magrath<br />

1992, Styrsky et al. 1999) and was not mentioned in the<br />

most recent cross-fostering studies (Hipfner et al. 2001,<br />

Bize et al. 2002, Pelayo and Clark 2003). The covariation<br />

CovGowSm can arise either through CovGowGmw if, for<br />

example, the same gene facilitates the conversion of food<br />

into yolk in a female and food into flesh in a nestling<br />

(Magrath 1992) or through CovG owE mw if, for example,<br />

larger females or males (more precisely individuals with<br />

larger breeding values for body size) attain better<br />

territories which enable females to produce larger eggs.<br />

These covariations have not been quantified in birds so<br />

far, however, in mammals it has been found that the<br />

genetic covariation between direct and maternal pathways<br />

of determining the offspring phenotype might be<br />

high (Riska et al. 1985, McAdam et al. 2002). Thus it<br />

does not seem reasonable to assume that a similar<br />

covariation does not exist in other taxa.<br />

The direct effect of additive genes may be controlled<br />

statistically by including the midparent value of the trait<br />

as a covariate in the analysis of egg-size effects on the<br />

same trait in offspring. Although this has been done<br />

with the maternal value of the trait in some observational<br />

studies (Larsson and Forslund 1992, Potti and<br />

Merino 1994), it has never been done in any crossfostering<br />

study investigating egg-size effects on offspring<br />

performance. In some cases addition of such a covariate<br />

may be relatively easy / for example when investigating<br />

egg-size effects on fledging tarsus length, which is fully<br />

grown at the time of fledging in many species. However,<br />

this might be very burdensome when investigating traits<br />

that can be measured only in offspring (e.g. growth rate)<br />

and impossible when investigating survival of offspring<br />

up to recruitment, because all parents were successfully<br />

recruited.<br />

However, two other approaches that do not suffer<br />

from CovGowSm can be used to investigate egg-size<br />

effects on offspring performance. First, effects of egg size<br />

on offspring performance may be compared within<br />

clutches. So far, this approach has been used less often<br />

than the cross-fostering approach (we know of nine<br />

studies using the within-clutch approach, e.g. Dawson<br />

and Clark 1996, Amat et al. 2001), and its advantage<br />

over cross-fostering was not mentioned in any of these<br />

studies. Among-clutch variation in egg size may be<br />

removed by centring egg sizes within clutches, i.e. by<br />

subtracting mean egg size of the clutch from the actual<br />

size of every egg in the clutch. Resulting values represent<br />

within-clutch variation and as such are then used in the<br />

statistical analyses. Given that chromosomes segregate at<br />

random in meiosis, CovG oxS m is zero among full-sibs.<br />

Non-zero CovG oxS m could arise if the female was able to<br />

recognize which allele of an allelic pair had come to the<br />

ovum in meiotic division and targeted resources accordingly<br />

or to control the outcome of meiosis in relation to<br />

the size of ovum to be ovulated. Such high female<br />

control, however, seems highly unlikely for alleles on<br />

autosomes or homologous parts of sex-chromosomes.<br />

On the other hand, targeting of resources might perhaps<br />

work in relation to genes that are located at nonhomologous<br />

parts of sex-chromosomes, such as sexdetermining<br />

genes, as suggested by studies demonstrating<br />

differences in egg size between the sexes (Cordero et<br />

al. 2000).<br />

In the within-clutch approach, territory and parents<br />

are the same for all sibs and that is why also CovE xS m is<br />

controlled to a similar degree as in cross-fostering design<br />

(Table 1). Strictly speaking, however, CovE xS m need not<br />

be zero both in within-clutch and cross-fostering design.<br />

Firstly, egg size may be correlated with other pre-laying<br />

maternal effects, for example concentration of hormones,<br />

antibodies or carotenoids in the egg. In this<br />

case the amount of these compounds would increase<br />

allometrically with egg size (slope of the regression of the<br />

amount of a compound on egg size would differ from<br />

one) contrary to the situation when it would increase<br />

isometrically with egg size (slope would equal one). In<br />

the latter case, the amount of these compounds may be<br />

treated as being a part of the egg size. Secondly, parents<br />

may feed more intensely small (or large) young which<br />

hatched from small (or large) eggs. This effect may be<br />

424 OIKOS 106:2 (2004)


stronger in within-clutch approach, because offspring<br />

are raised in the same nest and larger sibs may<br />

monopolize resources supplied by parents. Moreover,<br />

the problem that is specific for the within-clutch<br />

approach is that within-clutch (and also within-female)<br />

variation in egg size is usually much smaller than interfemale<br />

variation. On average, differences in egg size<br />

within clutches explain only 30% of the total egg-size<br />

variation (Christians 2002). Thus effects of great differences<br />

in egg size, which exist at the population level,<br />

cannot be directly estimated by within-clutch approach.<br />

On the other hand, there are many studies investigating<br />

adaptive allocation of resources among individual eggs<br />

within a clutch in relation to laying order (Slagsvold et<br />

al. 1984) and sex (Cordero et al. 2000). These studies rely<br />

on the assumption that within-clutch variability in egg<br />

size has some consequences for offspring performance.<br />

This assumption may be properly tested by the withinclutch<br />

approach outlined above. Possible monopolization<br />

of resources by larger siblings and small differences<br />

in egg size within clutches are not problems in this<br />

context, because they are inherent features of the<br />

relationships among young within a clutch.<br />

The second approach to remove CovGowSm is the<br />

direct manipulation of egg volume. This method is the<br />

best way to elucidate potential effects of egg size on<br />

offspring performance (Sinervo et al. 1992). In birds, it<br />

was used, to our best knowledge, only twice on<br />

domesticated species under laboratory conditions<br />

(Hill 1993, Finkler et al. 1998). In these studies, certain<br />

part of the albumen or yolk of unincubated eggs was<br />

removed by a syringe and a needle. Such an egg size<br />

manipulation removes also the potential correlation<br />

between egg size and other pre-laying maternal effects,<br />

which is an additional advantage compared to the other<br />

approaches. Given the strengths of this approach, it<br />

could become a powerful tool in elucidating effects of<br />

egg size on offspring performance also in populations of<br />

wild-ranging birds. However, although invasive egg<br />

sampling and manipulation have been successfully<br />

applied to some wild bird species (Lipar 2001, Saino et<br />

al. 2003), rather high egg mortality encountered in the<br />

study on hens mentioned above (Finkler et al. 1998)<br />

seems to question broad applicability of this method.<br />

Moreover, we have no information on how big changes<br />

in egg volume in comparison with the natural egg-size<br />

variability are within the reach of this method, while at<br />

the same time keeping egg mortality within acceptable<br />

limits. Both these issues remain to be addressed in<br />

studies on wild species. The manipulative approach<br />

also suffers from the possibility that parents may feed<br />

their young selectively with respect to their size, which<br />

also means to the size of the egg they hatched from. This<br />

could be controlled for by statistically controlling for the<br />

amount of food brought to individual offspring by their<br />

parents or by hand-rearing of the young (Anderson et al.<br />

1997).<br />

Conclusions<br />

In this comment we evaluated relative merits and<br />

shortcomings of the different approaches to the study<br />

of egg-size effects on offspring performance in birds<br />

(Table 1). It has been accepted that the cross-fostering<br />

design is better than the simple observational approach<br />

and thus it became a standard methodological tool. We<br />

argue that there are even better approaches that should<br />

give less biased estimates of egg-size effects: the withinclutch<br />

approach and the direct experimental manipulation<br />

of egg-size. These approaches are relatively readily<br />

applicable to free-ranging populations of animals and<br />

plants. Therefore, further studies using these approaches<br />

would be valuable for better understanding of the<br />

evolution and impact of maternal effects and also for<br />

the evaluation of how much the traditional approaches<br />

for studying adaptive maternal effects suffer from<br />

uncontrolled confounding factors. We focused our<br />

attention on egg-size effects in birds because this is one<br />

of the best-studied systems in the area of maternal effects<br />

and much effort has been devoted to it. However, general<br />

logic of our argument applies equally well to other traits<br />

and other taxa.<br />

Acknowledgements / We thank Loeske Kruuk, Ben Sheldon,<br />

Trevor Price and Emil Tkadlec for valuable comments or<br />

discussion on the manuscript. This study was supported by a<br />

grant from the Czech Ministry of Education (MSM 153100012)<br />

and from GACR (No. 206/03/0215). M. K. thanks Kačka for<br />

her continuous encouragement.<br />

References<br />

Amat, J. A., Fraga, R. M. and Arroyo, G. M. 2001. Intraclutch<br />

egg-size variation and offspring survival in the kentish<br />

plover Charadrius alexandrinus. / Ibis 143: 17 /23.<br />

Amundsen, T. and Stokland, J. N. 1990. Egg size and parental<br />

quality influence nestling growth in the shag. / Auk 107:<br />

410 /413.<br />

Anderson, D. J., Reeve, J. and Bird, D. M. 1997. Sexually<br />

dimorphic eggs, nestling growth and sibling competition in<br />

american kestrels Falco sparverius. / Funct. Ecol. 11: 331 /<br />

335.<br />

Beckerman, A., Benton, T. G., Ranta, E. et al. 2002. Population<br />

dynamic consequences of delayed life-history effects.<br />

/ Trends Ecol. Evol. 17: 263 /269.<br />

Bize, P., Roulin, A. and Richner, H. 2002. Covariation between<br />

egg size and rearing condition determines offspring quality:<br />

an experiment with the alpine swift. / Oecologia 132: 231 /<br />

234.<br />

Christians, J. K. 2002. Avian egg size: variation within<br />

species and inflexibility within individuals. / Biol. Rev. 77:<br />

1 /26.<br />

Cordero, P. J., Griffith, S. C., Aparicio, J. M. et al. 2000. Sexual<br />

dimorphism in house sparrow eggs. / Behav. Ecol. Sociobiol.<br />

48: 353 /357.<br />

OIKOS 106:2 (2004) 425


Dawson, R. D. and Clark, R. G. 1996. Effects of variation in<br />

egg size and hatching date on survival of lesser scaup Aythya<br />

affinis ducklings. / Ibis 138: 693 /699.<br />

Falconer, D. S. 1989. Introduction to quantitative genetics.<br />

/ Longman Scientific & Technical.<br />

Finkler, M. S., Van Orman, J. B. and Sotherland, P. R. 1998.<br />

Experimental manipulation of egg quality in chickens:<br />

influence of albumen and yolk on the size and body<br />

composition of near-term embryos in a precocial bird. / J.<br />

Comp. Physiol. B 168: 17 /24.<br />

Ginzburg, L. R. 1998. Inertial growth: population dynamics<br />

based on maternal effects. / In: Mousseau, T. A. and Fox,<br />

C. V. (eds), Maternal effects as adaptations. Oxford Univ.<br />

Press, pp. 42 /53.<br />

Hill, W. L. 1993. Importance of prenatal nutrition to the<br />

development of a precocial chick. / Develop. Psychobiol.<br />

26: 237 /249.<br />

Hipfner, J. M., Gaston, A. J. and Storey, A. E. 2001. Food<br />

supply and the consequences of egg size in the thick-billed<br />

murre. / Condor 103: 240 /247.<br />

Kirkpatrick, M. and Lande, R. 1989. The evolution of maternal<br />

characters. / Evolution 43: 485 /503.<br />

Lande, R. and Price, T. 1989. Genetic correlations and maternal<br />

effect coefficients obtained from offspring /parent regression.<br />

/ Genetics 122: 915 /922.<br />

Larsson, K. and Forslund, P. 1992. Genetic and social<br />

inheritance of body and egg size in the barnacle goose<br />

(Branta leucopsis ). / Evolution 46: 235 /244.<br />

Lipar, J. L. 2001. Yolk steroids and the development of the<br />

hatching muscle in nestling european starlings. / J. Avian<br />

Biol. 32: 231 /238.<br />

Lynch, M. and Walsh, B. 1998. Genetics and analysis of<br />

quantitative traits. / Sinauer Associates, Inc.<br />

Magrath, R. D. 1992. The effect of egg mass on the growth and<br />

survival of blackbirds: a field experiment. / J. Zool. 227:<br />

639 /653.<br />

McAdam, A. G., Boutin, S., Réale, D. et al. 2002. Maternal<br />

effects and the potential for evolution in a natural population<br />

of animals. / Evolution 56: 846 /851.<br />

Merilä, J. and Sheldon, B. C. 2001. Avian quantitative genetics.<br />

/ In: Nolan, V. (ed.), Current ornithology, Kluwer Academic/Plenum<br />

Publishers.<br />

Mousseau, T. A. and Fox, C. W. 1998. Maternal effects as<br />

adaptations. / Oxford Univ. Press.<br />

Pelayo, J. T. and Clark, R. G. 2003. Consequences of egg size for<br />

offspring survival: a cross-fostering experiment in ruddy<br />

ducks (Oxyura jamaicensis). / Auk 120: 384 /393.<br />

Potti, J. and Merino, S. 1994. Heritability estimates and<br />

maternal effects on tarsus length in pied flycatchers, Ficedula<br />

hypoleuca. / Oecologia 100: 331 /338.<br />

Reid, W. J. and Boersma, P. D. 1990. Parental quality and<br />

selection on egg size in the magellanic penguin. / Evolution<br />

44: 1780 /1786.<br />

Riska, B., Rutledge, J. J. and Atchley, W. R. 1985. Covariance<br />

between direct and maternal genetic effects in mice, with a<br />

model of persistent environmental influences. / Genet. Res.<br />

45: 287 /297.<br />

Saino, N., Ferrari, R., Romano, M. et al. 2003. Experimental<br />

manipulation of egg carotenoids affects immunity<br />

of barn swallow nestlings. / Proc. R. Soc. Lond. B 270:<br />

2485 /2489.<br />

Sinervo, B., Doughty, P., Huey, R. B. et al. 1992. Allometric<br />

engineering: a causal analysis of natural selection on<br />

offspring size. / Science 258: 1927 /1930.<br />

Slagsvold, T., Sandvik, J., Rofstad, G. et al. 1984. On the<br />

adaptive value of intraclutch egg-size variation in birds.<br />

/ Auk 101: 685 /697.<br />

Styrsky, J. D., Eckerle, M. P. and Thompson, C. F. 1999.<br />

Fitness-related consequences of egg mass in nestling house<br />

wrens. / Proc. R. Soc. Lond. B 266: 1253 /1258.<br />

Williams, T. D. 1994. Intraspecific variation in egg size and egg<br />

composition in birds: effects on offspring fitness. / Biol.<br />

Rev. 69: 35 /59.<br />

426 OIKOS 106:2 (2004)


Nest design and the abundance of parasitic<br />

Protocalliphora blow flies in two<br />

hole-nesting passerines 1<br />

Vladimír REMEŠ 2 , Laboratory of Ornithology, Palacky University, Tr. Svobody 26, CZ-771 46 Olomouc,<br />

Czech Republic, e-mail: remes@prfnw.upol.cz<br />

Miloš KRIST, Laboratory of Ornithology, Palacky University, Tr. Svobody 26, CZ-771 46 Olomouc, Czech<br />

Republic, and Museum of Natural History, nam. Republiky 5, CZ-771 73 Olomouc, Czech Republic.<br />

Ectoparasites dwelling in bird nests and feeding on the<br />

blood of nestlings and adults are an important group of parasites.<br />

In hole-nesting birds they include fleas (Siphonaptera),<br />

flies (Diptera), and mites (Acarina). Ectoparasites can cause<br />

lowered breeding performance and nest desertion in adults<br />

(Oppliger, Richner & Christe, 1994), negatively affect<br />

growth and condition of nestlings (Eeva, Lehikoinen &<br />

Nurmi, 1994; Merino & Potti, 1995; Puchala, 2004; review<br />

in Møller, Allander & Dufva, 1990), and reduce lifetime<br />

reproductive success of hosts (Fitze, Tschirren & Richner,<br />

2004). Moreover, they also serve as vectors of internal<br />

1 Rec. 2005-01-06; acc. 2005-04-12.<br />

Associate Editor: Marty Leonard.<br />

2 Author for correspondence.<br />

12 12 (4): 549-xxx 549-553 (2005)<br />

Abstract: Ectoparasites dwelling in bird nests regularly reduce reproductive success and condition of breeding birds. Thus,<br />

establishing the factors that determine the abundance of ectoparasites is important for better understanding of reproductive<br />

trade-offs and life history evolution in birds. A recent hypothesis states that interspecific differences in the abundance of<br />

ectoparasites may be caused by nest composition. For example, great tits (Parus major) have nests made of mosses and<br />

fur, whereas Ficedula flycatchers have nests made of grasses, bast, and bark, and tits are more infested by nest-dwelling<br />

ectoparasites than flycatchers. We swapped nests between pairs of great tits and collared flycatchers (F. albicollis) during<br />

egg-laying or early incubation and counted parasitic Protocalliphora blow flies at the end of breeding to test this hypothesis<br />

experimentally. We controlled statistically for habitat (oak versus spruce forest), brood size, season, year, and mean nestling<br />

weight before fledging. We found a significant effect of bird species (tit > flycatcher), habitat (oak > spruce), and year. There<br />

was no effect of nest type. Consequently, the hypothesis ascribing the different abundance of ectoparasites in great tits and<br />

collared flycatchers to different nest composition was not supported by our study.<br />

Keywords: blow fly, ectoparasites, Ficedula, nest design, Parus, Protocalliphora.<br />

Résumé : Les ectoparasites qui infestent les nids réduisent souvent le succès reproducteur et la condition physique des<br />

oiseaux nicheurs. Il est donc important d’identifier les facteurs qui influencent leur abondance pour mieux comprendre les<br />

caractéristiques de la reproduction et l’évolution du cycle vital chez les oiseaux. Selon une hypothèse récente, les différences<br />

interspécifiques dans l’abondance des ectoparasites pourraient être associées aux matériaux de construction des nids. Par<br />

exemple, les nids de la mésange charbonnière (Parus major) sont fabriqués de mousses et de poils alors que ceux des<br />

gobemouches (Ficedula spp.) sont faits de graminées, de liber et d’écorce. Or, on sait que les mésanges sont plus infestées<br />

par des ectoparasites que les gobemouches. Nous avons échangé les nids construits par des couples de mésanges charbonnières<br />

avec ceux construits par des gobemouches à collier (F. albicollis) pendant la ponte ou au début de l’incubation. Nous avons<br />

par la suite compté les mouches du genre Protocalliphora à la fin de la nidification pour tester l’hypothèse mentionnée plus<br />

haut. Nous avons pu contrôler de façon statistique l’habitat (forêt de chênes ou d’épicéas), la taille de la couvée, la saison,<br />

l’année et le poids moyen des jeunes avant l’envol. Nous avons trouvé un effet significatif pour l’espèce d’oiseau (mésange<br />

> gobemouche), l’habitat (chênes > épicéas) et l’année. Le type de nid n’a eu pour sa part aucun effet sur les ectoparasites.<br />

En conséquence, l’hypothèse d’un lien entre l’abondance d’ectoparasites et les matériaux de construction des nids n'est pas<br />

supporté par les résultats de cette étude.<br />

Mots-clés : design des nids, ectoparasites, Ficedula, mouches, Parus, Protocalliphora.<br />

Nomenclature: Sabrosky, Bennett & Whitworth, 1989; Cramp & Perrins, 1993.<br />

Introduction<br />

parasites and bacterial and viral diseases (Bowman et al.,<br />

1997). Thus, knowledge of the factors that the determine<br />

abundance of these ectoparasites in nests is critical for better<br />

understanding of reproductive trade-offs and life history<br />

evolution in birds (Clayton & Moore, 1997).<br />

Abundance of nest-dwelling ectoparasites varies significantly<br />

among individuals within a given bird host species,<br />

but even bigger variation in both prevalence and<br />

parasite abundance is found between sympatric host species<br />

(Bennett & Whitworth, 1992; Whitworth & Bennett, 1992).<br />

One of the hypotheses suggested to explain interspecific<br />

differences in ectoparasite load posits that the differences<br />

are caused by differences in nest design (Bauchau, 1998),<br />

such as differences in details of nest construction and nest<br />

composition (Hansell, 2000). Fresh plant material in the


Remeš & KRist: Nest desigN aNd blow flies<br />

nest, for example, may have negative effects on parasite<br />

abundance (Clark & Mason, 1985; Petit et al., 2002; but see<br />

Dawson, 2004). Nest design may thus affect (1) demography<br />

of ectoparasite populations within nests (larval mortality,<br />

competition, growth), because demography is driven by<br />

various parameters of the living environment (e.g., humidity;<br />

Heeb, Kölliker & Richner, 2000) and the living environment<br />

depends on nest composition, and/or (2) attractiveness<br />

of the particular nest type for laying/dispersing to females of<br />

parasites, which may cue on specific features of the nest.<br />

In this study we tested the “nest design” hypothesis on<br />

great tits (Parus major) and collared flycatchers (Ficedula<br />

albicollis). The two species build nests of very different<br />

composition: while tit nests are composed of moss and<br />

feather/hair, flycatcher nests consist of dry grass, bast, and<br />

pieces of bark (Cramp & Perrins, 1993). At the same time,<br />

the abundance of larvae of parasitic flies (Protocalliphora<br />

spp.) is regularly higher in nests of the great tit than in<br />

Ficedula flycatchers (Bauchau, 1998). We experimentally<br />

switched nests between great tit and collared flycatcher<br />

pairs and followed the effects of this treatment on the abundance<br />

of parasitic flies in nests. In this way we were able to<br />

separate independent effects of nest design and species. We<br />

also statistically controlled for a number of other factors,<br />

including habitat, year, season, brood size, and mean nestling<br />

weight before fledging.<br />

In line with the “nest design” hypothesis we hypothesized<br />

that the lower number of ectoparasites in Ficedula<br />

flycatchers is caused by the composition of their nests (presence<br />

of bast and bark with toxic secondary compounds;<br />

Pearce, 1996) and, thus, predicted that there would be fewer<br />

parasitic flies in the Ficedula nests regardless of the host<br />

species actually dwelling in the nest.<br />

550<br />

Methods<br />

Great tit and collared flycatcher are small, hole-nesting,<br />

insectivorous passerines breeding widely in various types<br />

of woodlands. They readily accept nest-boxes for breeding.<br />

Great tits are year-round residents, whereas collared flycatchers<br />

are long-distance migrants wintering in Africa. These<br />

two species differ in brood size [great tit: median 11 (range<br />

7–14), collared flycatcher: 6 (4–7), timing of breeding (great<br />

tits start breeding at mid-April, collared flycatchers at the end<br />

of April), body mass (great tit: ca 18 g; collared flycatcher:<br />

ca 14 g, V. Remeš & M. Krist, unpubl. data)]. Otherwise their<br />

breeding ecology is similar.<br />

This study was conducted in 2002-2003 in the Velký<br />

Kosíř area in the eastern Czech Republic (49° 32' N, 17°<br />

04' e, 300-450 m asl). We studied great tits and collared flycatchers<br />

on six nest-box plots, of which three were placed in<br />

spruce (Picea abies) and the other three in an oak (Quercus<br />

spp.) forest, in both cases interspersed with birch (Betula<br />

pendula) and pine (Pinus silvestris). Each plot had 50-90<br />

nest-boxes. In early spring (before tits started nest building),<br />

nest-boxes were checked and cleaned (old nests were<br />

removed). From mid-April to mid-June, as a part of a larger<br />

study, we followed basic breeding biology of both species.<br />

To be able to separate independent effects of nest<br />

design and species per se on the abundance of nest-dwell-<br />

ing flies, we switched nests between great tit and collared<br />

flycatcher pairs. As a control treatment, we swapped nests<br />

between pairs of the same species. Thus, nests of all hosts<br />

were swapped. Two experimental (2 × flycatcher–tit) and<br />

two control (tit–tit, flycatcher–flycatcher) manipulations<br />

were made on the same day each time. We strove to make<br />

manipulations as early as possible in the breeding cycle.<br />

However, tits breed earlier than flycatchers. Consequently,<br />

manipulations on flycatcher nests were made during egg<br />

laying, whereas in tits we made the manipulations up to<br />

the fourth day after the clutch was complete (mean ± SD<br />

number of days from laying of the first egg to nest manipulation<br />

was 2.5 ± 2.97 in flycatchers and 12.5 ± 1.86 in tits).<br />

We increased our sample for flycatchers by also using some<br />

nests of tits in late incubation. In these experimental pairs,<br />

we followed nest-type effects only in the flycatcher, not in<br />

the great tit.<br />

In the week following fledging, we collected nests and<br />

placed them into plastic bags that were sealed so that no fly<br />

could escape. We collected only nests from which at least<br />

one young had fledged. Within four weeks of collection,<br />

we opened the bags, took the nests to pieces, and counted<br />

the number of larvae, pupae, and adult flies (if they had<br />

emerged from pupae in the meantime). Time between fledging<br />

of young and collection of nests was not the same for<br />

all the nests. However, collection of nests within one week<br />

of fledging is a standard procedure in ectoparasite research<br />

(Eeva, Lehikoinen & Nurmi, 1994; Birdblowfly.com). More<br />

importantly, even when some flies had dispersed immediately<br />

after fledging, before a nest was collected, they could<br />

be counted by counting empty pupae, which are very conspicuous<br />

and cannot be overlooked.<br />

Two species of parasitic flies were identified in the<br />

nests: Protocalliphora azurea and P. falcozi. Both species<br />

are regularly found in the nests of European cavity nesters<br />

(Hurtrez-Boussès et al., 1997; Wesołowski, 2001).<br />

All Protocalliphora species overwinter as adults and do<br />

not lay eggs in host nests until young birds hatch (Gold &<br />

Dahlsten, 1989; Sabrosky, Bennett & Whitworth, 1989).<br />

Thus, our experimental procedure of switching the nests<br />

during egg laying or early incubation was sufficient to<br />

separate independent effects of nest type. The two species<br />

of blow flies were lumped together for further analyses<br />

for two reasons (see also Hurtrez-Boussès et al., 1997).<br />

First, all Protocalliphora flies (except P. braueri; Eastman,<br />

Johnson & Kermott, 1989) are intermittent feeders that<br />

feed on the blood of nestlings and in the meantime dwell in<br />

the nest substrate (Sabrosky, Bennett & Whitworth, 1989).<br />

Moreover, P. azurea and P. falcozi are of similar body size<br />

(9-11 mm and 8-10 mm, respectively; Grunin, 1970),<br />

so their effects on hosts can be expected to be similar.<br />

Second, it was not possible to identify all the flies to species<br />

because not all individuals emerged from pupae and to our<br />

best knowledge only adults can be identified in European<br />

Protocalliphora flies.<br />

When analyzing the abundance of flies, we first fit a<br />

generalized linear model with Poisson error distribution and<br />

log link, which is usually suitable for count data. However,<br />

our data were strongly overdispersed (deviance/df = 23.26),


which is common in parasitology (Wilson & Grenfell, 1997).<br />

Thus, we used negative binomial error distribution and log<br />

link, which led to a reasonable dispersion index of data<br />

(deviance/df = 1.50). All these analyses were done in PROC<br />

GENMOD in SAS (SAS Institute, 2000). Initially, we fit a<br />

full model with the following explanatory effects: nest type<br />

(tit versus flycatcher nest), species (tit versus flycatcher),<br />

habitat (spruce versus oak forest), year (2002 versus 2003),<br />

brood size (number of hatched nestlings), season (Julian<br />

hatching date), and mean nestling weight before fledging<br />

(in grams, day 13 after hatching in flycatcher, day 15 in tit);<br />

we also included all two-way interactions between nest type<br />

and all other factors. The final model was selected by backward<br />

elimination of non-significant terms, except for the<br />

two main factors of interest (nest type and species), which<br />

were retained in the model regardless of their significance.<br />

Hatching date, brood size, and mean nestling weight were<br />

standardized by subtracting the value of a given nest from<br />

the mean of a given species (i.e., the values were standardized<br />

within species). However, the results were the same<br />

with non-standardized values. Test statistics (χ 2 -values) and<br />

P-values reported in Results for non-significant terms are<br />

from the backward elimination procedure just before the particular<br />

term (being the least significant) was removed from<br />

the model. Values for significant factors and/or factors of<br />

interest (i.e., nest type and species) are from the final model.<br />

The rationale for the inclusion of the above-mentioned<br />

variables was as follows. Nest type and species were the<br />

main factors of interest. Other factors were included as<br />

covariates to reduce unexplained variation and thus the<br />

power of the main test. Season and habitat could affect<br />

flying activity of the flies (through temperature, humidity,<br />

etc.). Brood size and mean nestling weight could affect survival<br />

and growth of larvae (by determining the amount of<br />

blood available for feeding). Alternatively, the latter factors<br />

could affect oviposition behaviour of fly females.<br />

Results<br />

In total, 13 experimental and 17 control tit pairs and 20<br />

experimental and 19 control flycatcher pairs were available<br />

for the analyses. Sample sizes differ between experimental<br />

and control treatments because some nests were abandoned<br />

or depredated. There was a significant effect of species<br />

(χ 2 = 5.54, P = 0.019), habitat (χ 2 = 9.00, P = 0.003), and<br />

year (χ 2 = 5.99, P = 0.014) on the abundance of parasitic<br />

Protocalliphora flies in nests (Figure 1). Neither nest type<br />

(χ 2 = 0.28, P = 0.595, Figure 1) nor the interaction of nest<br />

type with species (χ 2 = 1.29, P = 0.256, Figure 2) had a significant<br />

influence. Similarly, there was no significant effect<br />

of brood size (χ 2 = 0.01, P = 0.905), mean nestling weight<br />

(χ 2 = 0.85, P = 0.358), season (χ 2 = 0.94, P = 0.332), or any<br />

interaction of nest type with other factors (all χ 2 -values < 0.63,<br />

all P-values > 0.431).<br />

Discussion<br />

We experimentally tested the hypothesis that nest<br />

design is responsible for interspecific differences in ectoparasite<br />

infestation in two species of hole-nesting passerines,<br />

ÉCosCieNCe, vol. 12 (4), 2005<br />

figuRe 1. Number (least squares means ± 95% confidence limits) of<br />

parasitic Protocalliphora flies in the nests of great tit and collared flycatcher<br />

in relation to habitat, year, species, and nest type. FA = collared flycatcher,<br />

PM = great tit. Statistical tests are reported in Results.<br />

figuRe 2. Number (least squares means ± 95% confidence limits) of<br />

parasitic Protocalliphora flies in the great tit (Tit) and collared flycatcher<br />

(Flycatcher) according to nest type (FA = collared flycatcher, PM = great tit).<br />

Statistical tests are reported in Results.<br />

the great tit and the collared flycatcher (Bauchau, 1998).<br />

There was no influence of nest type on the intensity of<br />

infestation by parasitic Protocalliphora flies. We did, however,<br />

find a significant effect of species, habitat, and year.<br />

Females of parasitic Protocalliphora flies overwinter<br />

as adults and lay their eggs in nests during the nestling<br />

phase of the host breeding cycle (Gold & Dahlsten, 1989;<br />

Sabrosky, Bennett & Whitworth, 1989). Larvae hatch within<br />

2 d, feed on blood of nestlings while dwelling in the nest<br />

substrate, and after one to two weeks of growth pupate to<br />

complete the life cycle (Sabrosky, Bennett & Whitworth,<br />

1989; Bennett & Whitworth, 1991). Thus, in these flies both<br />

active choice of a certain nest type by females and demography<br />

of larvae within host nests (competition, growth rate,<br />

mortality) may play a significant role in determining their<br />

abundance in relation to nest type.<br />

Since there was no effect of nest type on fly abundance,<br />

it is likely that neither of the two possible processes played<br />

any role: fly females did not cue on nest composition when<br />

selecting their oviposition site, and demographic processes<br />

among larvae did not influence their abundance in relation<br />

551


Remeš & KRist: Nest desigN aNd blow flies<br />

to nest type. Alternatively, these two processes may have<br />

counteracted each other in determining the abundance of<br />

larvae: flies may have selected the type of nest in which their<br />

larvae had worse performance; however, such a maladaptive<br />

habitat choice seems unlikely to evolve (but see Remeš,<br />

2000). Nevertheless, the absence of any effect of nest type on<br />

the abundance of flies is rather puzzling. It is, for example,<br />

known that pine bark and bast contain toxic secondary compounds<br />

with a strong potential to negatively affect ectoparasites<br />

(Pearce, 1996; Bauchau, 1998). As flycatchers use this<br />

material to build their nests, this should have led to higher<br />

ectoparasite abundance in tit nests.<br />

In contrast to nest type, there was a strong effect of<br />

species per se on the abundance of parasitic flies: tits were<br />

more intensely infested regardless of nest type. Tits and<br />

flycatchers differ in brood size, timing of breeding, nestling<br />

weight, and the nestling period duration (see Methods),<br />

which could in principle cause the difference between species.<br />

For example, the greater number of young in the great<br />

tit and the longer time that great tit young remain in the nest<br />

could mean that more food is available for parasitic larvae,<br />

which could lead to their higher abundance. However, those<br />

factors that we measured and included in the models had no<br />

influence on the abundance of flies within species as evidenced<br />

by their non-significance when used as standardized<br />

factors in the analysis (see Results). Thus, it seems unlikely<br />

that any of these is the causal factor behind the effect of species.<br />

This effect may have several more subtle explanations.<br />

First, adult flycatchers may be more capable of behavioural<br />

anti-parasite defences, for example in the form of nest cleaning<br />

by catching laying females and/or parasitic larvae (see<br />

also Hurtrez-Boussès et al., 2000; Tripet, Glaser & Richner,<br />

2002). Second, flycatcher nestlings may be more resistant<br />

to parasitism and fly larvae suffer greater mortality because<br />

of more effective immune defence. Third, the preference<br />

of laying females for certain bird species may significantly<br />

alter patterns of ectoparasite infestation. The preference for<br />

certain species of hosts (here great tits) may have arisen,<br />

for example, from better performance of fly larvae on their<br />

nestlings (for whatever reason, e.g., different skin thickness,<br />

resistance to parasitism, length of the nestling period, etc.).<br />

Our study was not suited to revealing the proximate mechanism<br />

of the effect of species. However, given the strong<br />

effect of species per se, it would be interesting to find out<br />

which mechanism is responsible.<br />

Habitat was an important determinant of the abundance<br />

of flies: they were more abundant in the oak forest than in<br />

the spruce forest. All three oak plots were situated on warmer<br />

and drier southern slopes, whereas spruce plots were<br />

situated either on the top of the hill (two of them) or on the<br />

colder and more humid northern slope (one plot). Although<br />

known effects of weather (temperature and ambient humidity)<br />

on fly abundance are in accord with this difference<br />

(Merino & Potti, 1996), many uncontrolled factors differing<br />

between the two forest types may have had an influence.<br />

In summary, there was no effect of nest type (nest of<br />

great tit versus collared flycatcher) on the abundance of<br />

nest-dwelling parasitic Protocalliphora flies. Thus, the<br />

hypothesis ascribing different levels of ectoparasite infesta-<br />

552<br />

tion between the great tit and Ficedula flycatchers to nest<br />

design (Bauchau, 1998) was not supported by our experimental<br />

study.<br />

Acknowledgements<br />

We thank J. Stříteský and Lesy ČR for providing nest-boxes,<br />

and L. Mazánek for identifying flies. T. L. Whitworth and two<br />

anonymous referees provided valuable comments on an earlier<br />

version of this paper. This work was supported by grants from the<br />

Ministry of Education of the Czech Republic (MSM6198959212)<br />

and GAČR (No. 206/03/0215).<br />

Literature cited<br />

Bauchau, V., 1998. Comparison of parasitism level in two sympatric<br />

passerines: The pied flycatcher and the great tit. Écoscience,<br />

5: 164–171.<br />

Bennett, G. F. & T. L. Whitworth, 1991. Studies on the life history<br />

of some species of Protocalliphora (Diptera: Calliphoridae).<br />

Canadian Journal of Zoology, 69: 2048-2058.<br />

Bennett, G. F. & T. L. Whitworth, 1992. Host, nest, and ecological<br />

relationships of species of Protocalliphora (Diptera:<br />

Calliphoridae). Canadian Journal of Zoology, 70: 51-61.<br />

Birdblowfly.com. [Online] URL: http://birdblowfly.com/, accessed<br />

7 March 2005.<br />

Bowman, A. S., L. B. Coons, G. R. Needham & J. R. Sauer, 1997.<br />

Tick saliva: Recent advances and implications for vector competence.<br />

Medical and Veterinary Entomology, 11: 277-285.<br />

Clark, L. & J. R. Mason, 1985. Use of nest material as insecticidal<br />

and anti-pathogenic agents by the European starling. Oecologia,<br />

67: 169-176.<br />

Clayton, D. H. & J. Moore, 1997. Host-Parasite Evolution. Oxford<br />

University Press, Oxford.<br />

Cramp, S. & C. M. Perrins, 1993. The Birds of the Western<br />

Palearctic. Volume VII. Oxford University Press, Oxford.<br />

Dawson, R. D., 2004. Does fresh vegetation protect avian nests<br />

from ectoparasites? An experiment with tree swallows.<br />

Canadian Journal of Zoology, 82: 1005-1010.<br />

Eastman, M. D., L. S. Johnson & L. H. Kermott, 1989.<br />

Ectoparasitism of nestling house wrens, Troglodytes aedon,<br />

by larvae of the blow fly Protocalliphora braueri (Diptera:<br />

Calliphoridae). Canadian Journal of Zoology, 67: 2358-2362.<br />

Eeva, T., E. Lehikoinen & J. Nurmi, 1994. Effects of ectoparasites<br />

on breeding success of great tits (Parus major) and Pied<br />

Flycatchers (Ficedula hypoleuca) in an air pollution gradient.<br />

Canadian Journal of Zoology, 72: 624-634.<br />

Fitze, P. S., B. Tschirren & H. Richner, 2004. Life history and fitness<br />

consequences of ectoparasites. Journal of Animal Ecology,<br />

73: 216-226.<br />

Gold, C. S. & D. L. Dahlsten, 1989. Prevalence, habitat selection,<br />

and biology of Protocalliphora (Diptera: Calliphoridae)<br />

found in nests of mountain and chestnut-backed chickadees in<br />

California. Hilgardia, 57: 1-19.<br />

Grunin, K. Y., 1970. Family Calliphoridae. Pages 607-624 in G. Y.<br />

Bey-Bienko (ed.). A Key to the Invertebrates of the European<br />

Part of USSR V, Part 2. Nauka, Leningrad (in Russian).<br />

Hansell, M., 2000. Bird Nests and Construction Behaviour.<br />

Cambridge University Press, Cambridge.<br />

Heeb, P., M. Kölliker & H. Richner, 2000. Bird-ectoparasite interactions,<br />

nest humidity, and ectoparasite community structure.<br />

Ecology, 81: 958-968.<br />

Hurtrez-Boussès, S., P. Perret, F. Renaud & J. Blondel, 1997. High<br />

blowfly parasitic loads affect breeding success in a Mediterranean<br />

population of blue tits. Oecologia, 112: 514-517.


Hurtrez-Boussès, S., F. Renaud, J. Blondel, P. Perret & M. J.<br />

Galan, 2000. Effects of ectoparasites of young on parents’<br />

behavior in a Mediterranean population of blue tits. Journal of<br />

Avian Biology, 31: 266-269.<br />

Merino, S. & J. Potti, 1995. Mites and blowflies decrease growth<br />

and survival in nestling pied flycatchers. Oikos, 73: 95-103.<br />

Merino, S. & J. Potti, 1996. Weather dependent effects of nest<br />

ectoparasites on their bird hosts. Ecography, 19: 107-113.<br />

Møller, A. P., K. Allander & R. Dufva, 1990. Fitness effects of<br />

parasites on passerine birds: A review. Pages 269-280 in J.<br />

Blondel, A. Gosler, J. D. Lebreton & R. H. McCleery (eds.).<br />

Population Biology of Passerine Birds: An Integrated Approach.<br />

Springer-Verlag, Berlin.<br />

Oppliger, A., H. Richner & P. Christe, 1994. Effect of an ectoparasite<br />

on lay date, nest-site choice, and hatching success in the<br />

great tit (Parus major). Behavioural Ecology, 5: 130-134.<br />

Pearce, R. B., 1996. Antimicrobial defences in the wood of living<br />

trees. New Phytologist, 132: 203-233.<br />

Petit, C., M. Hossaert-McKay, P. Perret, J. Blondel & M. M.<br />

Lambrechts, 2002. Blue tits use selected plants and olfaction<br />

to maintain an aromatic environment for nestlings. Ecology<br />

Letters, 5: 585-589.<br />

ÉCosCieNCe, vol. 12 (4), 2005<br />

Puchala, P., 2004. Detrimental effects of larval blow flies<br />

(Protocalliphora azurea) on nestlings and breeding success of<br />

tree sparrows (Passer montanus). Canadian Journal of Zoology,<br />

82: 1285-1290.<br />

Remeš, V., 2000. How can maladaptive habitat choice generate<br />

source-sink population dynamics? Oikos 91: 579-582.<br />

Sabrosky, C. W., G. F. Bennett & T. L. Whitworth, 1989. Bird<br />

blow flies (Protocalliphora) in North America (Diptera:<br />

Calliphoridae) with notes on the Palearctic species. Smithsonian<br />

Institution Press, Washington, DC.<br />

SAS Institute, 2000. SAS Online Doc, version 8. SAS Institute<br />

Inc., Cary, North Carolina.<br />

Tripet, F., M. Glaser & H. Richner, 2002. Behavioural responses<br />

to ectoparasites: Time-budget adjustments and what matters to<br />

blue tits Parus caeruleus infested by fleas. Ibis, 144: 461-469.<br />

Wesołowski, T., 2001. Host-parasite interactions in natural holes:<br />

Marsh tits (Parus palustris) and blow flies (Protocalliphora<br />

falcozi). Journal of Zoology, 255: 495-503.<br />

Whitworth, T. L. & G. F. Bennett, 1992. Pathogenicity of larval<br />

Protocalliphora (Diptera: Calliphoridae) parasitizing nestling<br />

birds. Canadian Journal of Zoology, 70: 2184-2191.<br />

Wilson, T. & B. T. Grenfell, 1997. Generalized linear modelling<br />

for parasitologists. Parasitology Today, 13: 33-38.<br />

553


Functional<br />

Ecology 2007<br />

21,<br />

776–783<br />

© 2007 The Authors.<br />

Journal compilation<br />

© 2007 British<br />

Ecological Society<br />

Blackwell Publishing Ltd<br />

Maternal carotenoid supplementation does not affect<br />

breeding performance in the Great Tit ( Parus major)<br />

VLADIMÍR REMES,*†<br />

MILOS<br />

KRIST,*‡ VITTORIO BERTACCHE§ and<br />

RICCARDO STRADI§<br />

* Department of Zoology, Palack&<br />

University, Tr.<br />

Svobody 26, 77146 Olomouc, Czech Republic,<br />

‡ Museum of Natural<br />

History, Nám. Republiky 5, 77173 Olomouc, Czech Republic,<br />

§ Istituto di Chimica Organica ‘A. Marchesini’<br />

Università degli Studi di Milano, via Venezian 21, 20133 Milan, Italy<br />

Introduction<br />

Summary<br />

1. Carotenoids are micronutrients with many beneficial health-related effects. They are<br />

effective antioxidants and stimulants of the immune system. Carotenoids cannot be<br />

synthesized in animals and must be obtained from food. As such, they may limit reproductive<br />

output and performance, and on the proximate level mediate reproductive<br />

trade-offs.<br />

2. We studied carotenoid limitation in wild Great Tits ( Parus major)<br />

by supplementing<br />

prelaying and laying females with lutein, the most abundant carotenoid in this species.<br />

We followed the effects of this supplementation on egg yolk carotenoid composition,<br />

and offspring and parental performance.<br />

3. Females transferred the supplemented lutein into egg yolks, increasing lutein<br />

concentration to the upper limit of naturally occurring concentrations in control<br />

pairs. Concentrations of zeaxanthin, β-carotene<br />

and α-carotene<br />

did not differ between<br />

supplemented and control pairs.<br />

4. Effects on offspring and parental performance were generally absent or weak. There<br />

were no effects on timing of laying, clutch size, hatching success, nestling survival,<br />

nestling mass (day 6 and 14), tarsus length or T-cell mediated immune response. Males<br />

on supplemented nests fed their young more than those on control nests. There was no<br />

positive effect on female feeding or mass.<br />

5. Negligible effects of lutein supplementation on offspring and parental performance<br />

might be explained by high natural abundance of carotenoids or other antioxidants,<br />

where additional carotenoids bear no strong advantage to the birds. Additionally,<br />

conflicting results of different studies may be explained by species-specific features of<br />

their life-histories.<br />

Key-words:<br />

antioxidants, carotenoids, egg yolk, food supplementation, parental investment, resource<br />

allocation<br />

Functional Ecology (2007) 21,<br />

776–783<br />

doi: 10.1111/j.1365-2435.2007.01277.x<br />

Animals are expected to allocate limited resources<br />

among competing bodily functions so as to maximize<br />

fitness. During reproduction, mothers face a fundamental<br />

decision of how much resources to invest into<br />

current reproductive bout, and how much to retain for<br />

maintenance and future reproduction. Besides elaborate<br />

postnatal parental care females also invest heavily<br />

during the prenatal period into the fabrication of eggs.<br />

Besides energy needed for embryo development, eggs<br />

are packed with many valuable resources, including<br />

†Author to whom correspondence should be addressed.<br />

E-mail: vladimir.remes@upol.cz<br />

antibacterial enzymes, antibodies, hormones and<br />

carotenoids (Blount, Houston & Møller 2000).<br />

Carotenoids are a group of several hundred biologically<br />

active compounds with many important biological<br />

functions in signalling and physiology (Møller et al.<br />

2000). They are widely used in the colouring of bird<br />

plumage and bare parts (Olson & Owens 2005).<br />

Carotenoids enhance the intensity of both cell-mediated<br />

and humoral immune response (Chew & Park 2004).<br />

They are also effective scavengers of reactive oxygen<br />

species (ROS) that arise during metabolic processes<br />

(Krinsky 2001). ROS are free radicals and non-radical<br />

oxygen-containing molecules that are able to damage<br />

proteins, lipids and DNA (de Zwart et al.<br />

1999), a<br />

condition called oxidative stress that has been implicated<br />

776


777<br />

Carotenoids and<br />

breeding<br />

performance<br />

© 2007 The Authors.<br />

Journal compilation<br />

© 2007 British<br />

Ecological Society,<br />

Functional Ecology,<br />

21,<br />

776–783<br />

in the etiology of many diseases and ageing (Crimi<br />

et al.<br />

2006). ROS are removed by the multifaceted<br />

antioxidant system that includes enzymes (e.g. catalase,<br />

superoxide dismutase), water-soluble antioxidants<br />

(ascorbic acid, glutathione) and fat-soluble antioxidants<br />

(vitamin E, carotenoids; Sies & Stahl 1995).<br />

Carotenoids can be synthesized only by plants, certain<br />

bacteria and fungi, while animals must ingest them<br />

with their food. As a ‘diet-dependent’ resource used<br />

in both signalling and physiology, they are a good<br />

candidate for mediating life-history trade-offs (Blount<br />

2004).<br />

Birds deposit carotenoids into egg yolks and the<br />

amount varies markedly within and among species<br />

(Hargitai et al.<br />

2006). Some variation among yolks in<br />

the concentration of carotenoids can be explained by<br />

laying order (e.g. Blount et al.<br />

2002a; Saino et al.<br />

2002),<br />

year (Hargitai et al.<br />

2006) or habitat (Hõrak, Surai &<br />

Møller 2002; Cassey et al.<br />

2005). Studies on both<br />

domestic and wild birds demonstrated higher yolk<br />

carotenoid concentrations in mothers supplemented<br />

by carotenoid-rich diet (Blount et al.<br />

2002b; Bortolotti<br />

et al.<br />

2003; Biard, Surai & Møller 2005; McGraw,<br />

Adkins-Regan & Parker 2005; Ewen et al.<br />

2006;<br />

Berthouly, Helfenstein & Richner 2007). However, we<br />

still do not understand whether these patterns represent<br />

active deposition of carotenoids by mothers (Blount<br />

et al.<br />

2002a, Blount et al.<br />

2002b; Royle, Surai & Hartley<br />

2003) or simply reflect their supply in the diet (Partali<br />

et al.<br />

1987).<br />

Carotenoids are responsible for the typical yellow<br />

to orange colour of yolks and have important physiological<br />

functions. They reduce the susceptibility of yolk<br />

lipids to peroxidative damage (Blount et al.<br />

2002b) and<br />

later protect developing embryo from oxidative stress<br />

(Surai, Noble & Speake 1996). This is important because<br />

birds grow very fast and their intense metabolism<br />

makes them especially vulnerable to oxidative damage<br />

(Blount et al.<br />

2000). Upon hatching, yolk-derived<br />

carotenoids can affect the susceptibility of hatchling<br />

tissues to oxidative damage (Surai et al.<br />

1996), the<br />

ability of chicks to accumulate dietary carotenoids<br />

in their body (Koutsos et al.<br />

2003), or parameters of<br />

their immune function (Haq, Bailey & Chinnah 1996;<br />

Koutsos, López & Klasing 2006). All these studies were<br />

on domestic hens. Three studies on passerines suggest<br />

that similar effects may exist in this group of birds.<br />

McGraw et al.<br />

(2005) found that carotenoid supplementation<br />

of females enhances hatching and fledging<br />

success in captive Zebra Finches ( Taeniopygia guttata).<br />

Under wild conditions Biard et al.<br />

(2005) found that<br />

young hatching from the eggs of carotenoid-supplemented<br />

females had longer tarsi at hatching and more leukocytes<br />

in their blood during growth. Berthouly et al.<br />

(2007) found out that maternally derived carotenoids can<br />

help nestlings cope with stress.<br />

To advance our understanding of potential carotenoid<br />

limitation in wild birds, we performed a carotenoidsupplementation<br />

study in wild Great Tits ( Parus major<br />

Linnaeus 1758). Reproducing parents face a trade-off<br />

of how many limited resources to allocate into current<br />

reproductive bout vs self-maintenance and future<br />

reproduction. In this study we focused on the potential<br />

for carotenoid limitation in the current reproductive<br />

bout. We provided Great Tit pairs with a lutein-rich<br />

supplement before and during egg laying and followed<br />

the effects of this supplementation on yolk carotenoid<br />

concentrations, and reproductive and parental<br />

performance. We tested three possible scenarios: (1)<br />

Supplemented females do not increase yolk lutein<br />

concentration and the intensity of parental care does<br />

not change. This would mean that parents are not<br />

limited during current reproduction. (2) Supplemented<br />

females increase yolk lutein with no effects on offspring<br />

performance and no effects on the intensity of parental<br />

care. In this scenario, parents are not limited in their<br />

current reproductive bout and the female bird just<br />

channels surplus micronutrients into the eggs. (3)<br />

Supplemented females do increase yolk lutein concentration<br />

with positive effects on offspring performance<br />

and/or parents care more intensely. This would<br />

demonstrate carotenoid limitation during current<br />

reproduction.<br />

Methods<br />

field work<br />

Great Tits are small, insectivorous, resident passerines<br />

that breed in nest holes during April–June in various<br />

woodland types. We studied them in 2004 on six nestbox<br />

plots (400 nest-boxes in total) in the Velky<br />

Kos’ r<br />

area in the eastern Czech Republic (49°<br />

32′<br />

N, 17°<br />

04′<br />

E,<br />

300–450 m a.s.l.). Three plots were in a sessile oak<br />

( Quercus petraea)<br />

forest, the other three in a Norway<br />

spruce ( Picea abies)<br />

forest. Before birds started breeding<br />

nest-boxes were checked and cleaned.<br />

We visited nest-boxes daily to determine the start of<br />

nest building and egg laying. We marked eggs daily by<br />

a water-proof pen. Before and during egg laying we<br />

supplemented experimental tit pairs with 25 mg of<br />

CWS lutein (DSM Nutritional Products (Basel,<br />

Switzerland), composition: 7% of lutein, 1% DLα- tocopherol, 1% ascorbyl palmitate, 18% fish gelatine,<br />

46% sucrose, 2% sodium ascorbate and 25% corn starch),<br />

which means 1·75 mg of lutein daily. According to the<br />

information given in Partali et al.<br />

(1987; c. 3·3 µ g of<br />

carotenoids per one lepidopteran larva) this makes<br />

daily increase in carotenoid intake equivalent to c. 530<br />

lepidopteran larvae. Control pairs were supplemented<br />

with a placebo lacking lutein with otherwise identical<br />

composition. We started with 33 experimental and 27<br />

control pairs. Both lutein and placebo were enclosed in<br />

a pill made from animal fat ( c. 0·6 g) and put into a<br />

plastic cup (diameter 3 cm, height 2 cm). It was put<br />

inside the nest-box inhabited by the focal tit pair, c. 5 cm<br />

above the nest rim on one side of the nest-box. Supplemental<br />

units were freshly prepared every evening and


778<br />

V. Reme3<br />

et al.<br />

© 2007 The Authors.<br />

Journal compilation<br />

© 2007 British<br />

Ecological Society,<br />

Functional Ecology,<br />

21,<br />

776–783<br />

stored at –20 ° C and in the dark until use the following<br />

day. To increase the attractiveness of the pill, we always<br />

added five meal-worms into the plastic cup. A pill was<br />

supplemented daily until egg laying was terminated.<br />

We started the supplementation on the day when tits<br />

started to bring animal fur into the moss base of the<br />

nest being built. We did not start the supplementation<br />

earlier, because females may switch between nestboxes<br />

in the earlier phases of nest building. All the<br />

pairs which we started to supplement continued in<br />

breeding. On average 2·4 pills (SD = 2·6, N = 60)<br />

had already been eaten on the day the first egg of<br />

the clutch was laid (supplemented: 2·4 ± 2·8, N = 33;<br />

control: 2·5 ± 2·3, N = 27; F < 0·1, P = 0·818). Supplementation<br />

was regularly taken by birds, only 7 out of<br />

812 pills remained uneaten the next day. We did not<br />

monitor the nest-boxes and thus we do not know<br />

the relative share of the sexes in the consumption of<br />

the supplement. When incubation commenced, apart<br />

from seven cases we collected the egg laid on that day<br />

(i.e. the last egg in the laying sequence that could have<br />

been collected without having been incubated for more<br />

than a few hours) and stored it at –20 ° C before further<br />

analysis. On average, 11·5 (SD = 2·8, N = 53) pills had<br />

been eaten by the birds in each nest before the collected<br />

egg was laid (supplemented: 11·5 ± 3·1, N = 28; control:<br />

11·5 ± 2·5, N = 25; F < 0·1, P = 0·984). Average<br />

position in the laying sequence of this egg was 10·0<br />

(SD = 2·0, N = 53; supplemented: 10·1 ± 2·1, N = 28;<br />

control: 9·9 ± 1·9, N = 25; F = 0·1, P = 0·726).<br />

To recognize the young hatching from late eggs that<br />

had the greatest probability of being affected by the<br />

supplementation, we frequently visited nests around<br />

the expected time of hatching. At most nests, we<br />

identified and marked nestlings hatched from late eggs<br />

in the laying sequence by clipping their dawn feathers.<br />

We weighed all the young when they were 6 days old<br />

and again when they were 14 days old. On day 14 we<br />

also measured their tarsi. On day 13, we measured the<br />

thickness of the right wing web of three young per nest<br />

(those that hatched from late eggs, if known) with a<br />

pressure-sensitive gauge (model PK-1012E, Mitutoyo,<br />

Tokyo, Japan) and then injected it with 0·09 mg of<br />

phytohaemagglutinin (L-8754, Sigma-Aldrich, St.<br />

Louis, MO, USA) in 25 µ L of phosphate buffered<br />

saline. We re-measured the wing web 24 h later (± 2 h).<br />

We always measured the wing web twice and took the<br />

average. T-cell mediated immune response was quantified<br />

as the difference in the wing web thickness<br />

measured 1 day after the injection and a day before.<br />

On average 8·8 pills (SD = 3·0, N = 46; supplemented:<br />

9·2 ± 3·0, N = 25; control: 8·1 ± 2·9, N = 21; F = 1·7,<br />

P = 0·194) had been eaten by parents before the eggs<br />

from which the young that were scored for immune<br />

response originated were laid (mean position in the<br />

laying sequence = 7·4, SD = 2·1, N = 46; supplemented:<br />

7·3 ± 2·0, N = 25; control: 7·4 ± 2·2, N = 21;<br />

F < 0·1, P = 0·985). In some nestlings, we did not<br />

know their exact position in the laying order. In such<br />

cases, we assigned the average of the possible positions<br />

for the chick (e.g. if we knew that the chick hatched<br />

either from egg 7 or 8, its position in the laying order<br />

was assigned to be 7·5).<br />

During incubation we captured females, weighed<br />

them on a spring Pesola balance (to the nearest 0·25 g),<br />

and measured their tarsus with a digital caliper (to the<br />

nearest 0·01 mm). We also quantified male and female<br />

feeding rate per hour when nestlings were 7–11 days<br />

old (median = 9 days). We set up a camera c. 5–10 m<br />

from the nest-box and filmed feeding activity for 75 min.<br />

We then discarded the first 15 min of the recording and<br />

counted number of feeds provided by male and female<br />

during subsequent 60 min.<br />

analysis of carotenoids<br />

In the yolk of the collected eggs we determined<br />

concentrations of lutein, zeaxanthin, α-carotene<br />

and<br />

β-carotene.<br />

To extract carotenoids, weighted amount<br />

of egg yolk (on an average of 200 µ L) was homogenized<br />

with 2 mL of a mixture of 4% NaCl solution and<br />

ethanol (1 : 1, v/v) followed by sonication for 7 min.<br />

We then added 3 mL of hexane and further homogenized<br />

for 5 min. Yolk was then drawn into the tubes and<br />

centrifuged at 6000 r.p.m. for 5 min. After centrifugation<br />

hexane was collected and the extraction was<br />

repeated three times. Hexane extracts were combined<br />

and evaporated under N2<br />

at room temperature, and<br />

the residue was dissolved in 1·5 mL of acetonitrile :<br />

dichloromethane (1 : 1, v/v) and centrifuged. The<br />

supernatant was used for carotenoid determination.<br />

Carotenoids were determined by high performance<br />

liquid chromatography equipped with a binary LC pump<br />

Model 250 (Perkin Elmer, Norwalk, CT, USA), using<br />

two sequential LICHROCARTTM PUROSPHERTM<br />

RP18 columns (250 × 4nn I.D) maintained at 40 ° C by<br />

a column block heater. A mobile phase of acetonitrile :<br />

methanol (85 : 15) and acetonitrile : dichloromethane :<br />

methanol (70 : 20 : 10, v/v) in linear gradient elution<br />

with PDA detection (Series 200, Perkin Elmer) at 450 nm<br />

was used. Peaks were identified and quantified using<br />

reference carotenoids kindly supplied by Carotenature<br />

(Lupsingen, Switzerland).<br />

data analysis<br />

Data were analysed by general linear models. For<br />

every response variable (i.e. offspring and parental<br />

traits), we fit a separate model with treatment as the<br />

main predictor of interest and other explanatory<br />

variables that have been previously shown to be important<br />

as covariates. Initially, we included habitat (oak vs<br />

spruce) and season (Julian date of the first egg, date<br />

1 = 1 January) as covariates to all models. We analysed<br />

these response variables (additional covariates in<br />

parentheses): carotenoid concentration, hatching<br />

success (clutch size), nestling survival until day 14 and<br />

nestling mass at day 6 (brood size at hatching), nestling


779<br />

Carotenoids and<br />

breeding<br />

performance<br />

© 2007 The Authors.<br />

Journal compilation<br />

© 2007 British<br />

Ecological Society,<br />

Functional Ecology,<br />

21,<br />

776–783<br />

tarsus length at day 14 (brood size at day 14, female<br />

tarsus length), nestling body mass at day 14 and T-cell<br />

mediated immunocompetence (brood size at day 14,<br />

tarsus length at day 14), clutch size (female tarsus<br />

length), female body mass (brood size, female tarsus<br />

length, day of the nest cycle when captured), and male<br />

and female feeding rate per hour (brood size at<br />

feeding, hour of day, age of the young). In the case of<br />

nestling mass and tarsus length we used the young<br />

originating from late eggs that had the greatest chance<br />

to be affected by supplementation (the three nestlings<br />

used for the PHA test, see above). However, analyses<br />

using mean values for all the young in the nest generated<br />

identical results (results not shown). Initially, we also<br />

included interactions between the treatment and all<br />

other factors. We gradually removed non-significant<br />

predictors beginning with interactions until only significant<br />

factors remained in the model (at α = 0·05),<br />

with the exception of treatment. It was always retained<br />

as the main factor of interest. Variables were checked<br />

for departures from normality and appropriately<br />

transformed if necessary. We checked the reliability<br />

of our results by calculating standardized effect sizes<br />

(difference in least squares means of the dependent<br />

variable between supplemented and control groups/<br />

SD of the total sample) with their 95% confidence<br />

limits. All tests were performed in JMP software of<br />

SAS Institute, Cary, NC, USA.<br />

Results<br />

egg yolk carotenoids<br />

Egg yolk concentration of lutein was significantly<br />

increased in experimental nests ( F1,51<br />

= 20·4, P < 0·001;<br />

Fig. 1). This increase was within physiological levels<br />

experienced by birds in this population: average<br />

Fig. 1. Mean concentration (± 1 SE, in µg/g) of egg yolk<br />

carotenoids in the Great Tit in lutein-supplemented and<br />

control pairs.<br />

–1<br />

concentration in experimental eggs was 54·6 µ g g ,<br />

whereas one-third (8 of 25) of control nests had lutein<br />

–1<br />

concentration very close to this value (49 µ g g or<br />

–1<br />

higher, maximum value in control eggs was 58·9 µ g g ).<br />

Although zeaxanthin tended to have higher concentration<br />

in experimental pairs, no other carotenoid differed<br />

between experimental and control pairs: zeaxanthin<br />

( F1,51<br />

= 3·4, P = 0·073), α-carotene (F1,47 = 2·2, P = 0·145)<br />

and β-carotene (F1,47 < 0·1, P = 0·944). Surprisingly,<br />

there was a negative relationship between the number<br />

of supplementation units eaten and lutein concentration<br />

in yolk in experimental pairs (r = –0·48, P = 0·009,<br />

N = 28; Fig. 2). However, the significance of this<br />

relationship was caused by one outlying nest and<br />

disappeared after its exclusion (r = –0·33, P = 0·097,<br />

N = 27). There was no significant relationship in<br />

control pairs (r = 0·13, P = 0·535, N = 25; Fig. 2).<br />

Since the overall effect of supplementation was<br />

positive (i.e. increased carotenoid concentration in<br />

experimental as compared to control pairs; Fig. 1), it is<br />

rather difficult to explain this negative correlation. It<br />

might be possible that in females that ate too many<br />

units and therefore had ingested a greater amount of<br />

lutein this interfered in some way with the incorporation<br />

into the egg yolk. However, this is only speculation and<br />

further research with precise doses of lutein would be<br />

needed to solve this puzzle.<br />

offspring traits<br />

There was no effect of supplementation on offspring<br />

performance-related traits, including hatching success<br />

(F 1,49 = 0·3, P = 0·597), nestling survival from hatching<br />

to day 14 of age (F 1,47 = 0·2, P = 0·684), nestling mass<br />

at day 6 (F 1,47 = 0·7, P = 0·402), nestling mass at day 14<br />

(F 1,42 = 0·3, P = 0·571), nestling tarsus length at day 14<br />

(F 1,42 = 0·5, P = 0·478) and T-cell mediated immunocompetence<br />

(F 1,42 = 0·5, P = 0·484; Table 1).<br />

On the other side, these traits were significantly<br />

related to some covariates. Hatching success was<br />

Fig. 2. Relationship between lutein concentration in egg yolk<br />

(µg/g) and number of supplemental units eaten fit separately<br />

for lutein-supplemented and control pairs. One extreme value<br />

(lutein concentration = 156·7 µg g –1 , no. of units eaten = 5) is<br />

omitted from the figure (see Results).


780 Table 1. Least squares means (1SE) of offspring and parental traits in lutein-<br />

V. supplemented Reme3 et al. and control pairs. LS means are from final models with only significant<br />

covariates retained<br />

© 2007 The Authors.<br />

Journal compilation<br />

© 2007 British<br />

Ecological Society,<br />

Functional Ecology,<br />

21, 776–783<br />

positively related to clutch size (F 1,49 = 6·2, P = 0·016;<br />

whole model: F 2,49 = 3·3, P = 0·045, R 2 = 0·12), nestling<br />

survival was higher in the oak than in the spruce<br />

habitat (F 1,47 = 15·0, P < 0·001; whole model: F 2,47 = 7·5,<br />

P = 0·001, R 2 = 0·24) and body mass at day 6 was<br />

negatively related to brood size (F 1,47 = 4·3, P = 0·043;<br />

whole model: F 2,47 = 2·6, P = 0·089, R 2 = 0·10).<br />

Further, body mass at day 14 was higher in the oak<br />

than in the spruce habitat (F 1,42 = 9·2, P = 0·004) and<br />

positively related to tarsus length (F 1,42 = 42·7, P < 0·001;<br />

whole model: F 3,42 = 19·3, P < 0·001, R 2 = 0·58), tarsus<br />

length at day 14 was positively related to both brood<br />

size (F 1,42 = 5·9, P = 0·019) and female tarsus length<br />

(F 1,42 = 6·7, P = 0·013; whole model: F 3,42 = 5·5,<br />

P = 0·003, R 2 = 0·28) and T-cell immunocompetence<br />

was positively related to brood size (F 1,42 = 11·7, P =<br />

0·001; whole model: F 2,42 = 5·9, P = 0·006, R 2 = 0·22).<br />

parental traits<br />

LS means (SE)<br />

Supplemented Control<br />

Offspring traits<br />

Hatching success (proportion hatched) 0·86 (0·012) 0·88 (0·014)<br />

Nestling survival (per 14 days) 0·75 (0·055) 0·78 (0·058)<br />

Nestling mass day 6 (g) 8·9 (0·20) 9·2 (0·22)<br />

Nestling mass day 14 (g) 16·9 (0·22) 17·0 (0·22)<br />

Nestling tarsus length (mm) 22·6 (0·11) 22·7 (0·12)<br />

Nestling T-cell immunocompetence (mm) 0·52 (0·026) 0·54 (0·026)<br />

Parental traits<br />

Clutch size (no. of eggs) 10·2 (0·30) 10·3 (0·31)<br />

Laying date (Julian date) 107·2 (0·66) 108·6 (0·73)<br />

Female feeding rate (per hour) 9·2 (1·23) 8·9 (1·31)<br />

Male feeding rate (per hour) 16·2 (1·61) 11·1 (1·72)<br />

Female body mass (g) 19·0 (0·17) 19·3 (0·17)<br />

There was a significant effect of lutein supplementation<br />

on clutch size but it depended on season (interaction:<br />

F 1,50 = 8·3, P = 0·006). In control nests, clutch size<br />

decreased with season whereas in experimental nests it<br />

changed nonlinearly – at first it increased, whereas<br />

later (after Julian day 105) it decreased in a similar<br />

way to control clutches (Fig. 3). Clutch size was<br />

furthermore positively affected by female tarsus length<br />

(F 1,50 = 6·2, P = 0·017) and was larger in the oak as<br />

compared to the spruce forest (F 1,50 = 16·1, P < 0·001;<br />

whole model: F 5,50 = 6·1, P < 0·001, R 2 = 0·38). Experimental<br />

and control pairs did not differ in their timing<br />

of breeding (F 1,58 = 2·1, P = 0·157).<br />

Female feeding rate did not differ between treatments<br />

(F 1,45 < 0·1, P = 0·869, R 2 < 0·01) whereas males<br />

on experimental nests fed more frequently than males<br />

on control nests (F 1,45 = 4·7, P = 0·036, R 2 = 0·09;<br />

Table 1). No other factors were significant in the<br />

analysis of feeding rates. Male and female feeding<br />

Fig. 3. Relationship between clutch size and season (Julian<br />

date of the first egg, date 1 = 1 January) fit separately for<br />

lutein-supplemented and control pairs.<br />

frequencies were not intercorrelated (r = –0·17, P =<br />

0·242, N = 47). Female body mass did not differ between<br />

treatments (F 1,50 = 1·8, P = 0·184), whereas it was higher<br />

in the oak habitat than in the spruce habitat (F 1,50 =<br />

10·5, P = 0·002), scaled positively with female tarsus<br />

length (F 1,50 = 20·5, P < 0·001), and negatively with the<br />

day of the nest cycle at capture (F 1,50 = 32·6, P < 0·001;<br />

whole model: F 4,50 = 19·9, P < 0·001, R 2 = 0·61).<br />

checking the reliability of the<br />

results<br />

In four experimental nests, the concentration of egg<br />

yolk lutein was higher than the highest value in any<br />

control nest. In these nests, unnaturally high doses of<br />

lutein could have toxic effects on nestlings. Then,<br />

mixing of beneficial (physiologically high levels) and<br />

toxic (pharmacological levels) effects of egg carotenoids<br />

in one analysis could have prevented any beneficial<br />

effects showing up. Thus, we repeated all the above<br />

analyses without those four nests. However, the results<br />

did not change. It seems that any potentially harmful<br />

effects of very high doses of carotenoids did not<br />

compromise our analyses.<br />

For the standardized effect sizes (with confidence<br />

intervals) of carotenoid supplementation treatment on<br />

offspring and parental performance traits see Fig. 4.<br />

Discussion<br />

To investigate carotenoid limitation on egg formation<br />

and reproduction in wild birds, we supplemented<br />

prelaying and laying female Great Tits with lutein, the<br />

most abundant egg yolk carotenoid in this species<br />

(Partali et al. 1987). We showed that this supplementation<br />

had a clear effect on egg composition, because<br />

yolks of supplemented females had significantly more<br />

lutein than those of control females (Fig. 1). Strong<br />

effect of lutein supplementation on its concentration in<br />

egg yolk is not surprising. Increased concentrations of<br />

yolk carotenoids in females supplemented with carotenoids<br />

in their diet were demonstrated in both captive


781<br />

Carotenoids and<br />

breeding<br />

performance<br />

© 2007 The Authors.<br />

Journal compilation<br />

© 2007 British<br />

Ecological Society,<br />

Functional Ecology,<br />

21, 776–783<br />

Fig. 4. Standardized effects (with 95% CIs) of treatment on<br />

offspring and parental, performance-related traits. Vertical<br />

dashed lines denote small (0·2), medium (0·5) and large (0·8)<br />

effects, respectively, according to Cohen (1988). For the<br />

definition of the traits, see Methods.<br />

(summarised in Bortolotti et al. 2003; McGraw et al.<br />

2005) and wild birds (Blount et al. 2002b; Biard et al.<br />

2005; Ewen et al. 2006; Berthouly et al. 2007).<br />

On the other hand, subsequent effects on offspring<br />

performance were negligible, whereas the effects on<br />

parental traits were slightly stronger. Clutch size and<br />

male feeding responded significantly to the supplementation,<br />

and although non-significant, confidence<br />

intervals for timing of laying included a strong<br />

negative effect (i.e. advancement of laying date; see<br />

Fig. 4), which suggests that it might have gone<br />

undetected because of low statistical power. The effect<br />

on clutch size was only apparent in the interaction<br />

with season (Fig. 3). These results by and large conform<br />

to the scenario 2 (see Introduction). In this scenario,<br />

parents are not carotenoid limited in their current<br />

reproductive bout and the female bird just channels<br />

surplus micronutrients into the eggs. However, males<br />

on supplemented nests fed their offspring more than<br />

males on control nests. This could mean that males<br />

might have been limited in the intensity of parental<br />

care, which would conform to the scenario 3. Parents<br />

may also have been limited by carotenoids in their selfmaintenance<br />

and future reproduction. However, based<br />

on our data we were not able to test this possibility and<br />

it remains an interesting challenge for future work.<br />

We showed that clutch size decreased with the<br />

advancement of the laying season in control pairs<br />

whereas it changed nonlinearly in supplemented pairs<br />

(Fig. 3). This pattern of clutch size change with the<br />

season is quite puzzling. Whereas one study found a<br />

beneficial effect of carotenoid supplementation on<br />

laying potential of females (in Lesser Black-backed<br />

Gulls, Larus fuscus, Blount et al. 2004) other experiments<br />

did not demonstrate any effects (Biard et al. 2005;<br />

McGraw et al. 2005). Moreover, since there was no<br />

significant effect of carotenoid supplementation on<br />

laying date, we have currently no explanation for the<br />

pattern found.<br />

Another interesting result is the higher feeding rate<br />

of males on supplemented nests as compared to<br />

control nests. This may have been caused by better<br />

male condition if they also consumed the supplement,<br />

in which case they would be carotenoid limited in their<br />

current reproductive bout. Alternatively, they may<br />

have been willing to increase paternal investment<br />

in supplemented broods where supplementation may<br />

have made either females or offspring more attractive<br />

and worthy of increased investment. In this case this<br />

result would not be indicative of carotenoid limitation<br />

in males but rather of differential allocation of parental<br />

effort (see Sheldon 2000). However, the plausibility of<br />

this explanation is decreased by the finding in a recent<br />

study of the Great Tit that the young supplemented by<br />

carotenoids are not more attractive to parents and the<br />

parents do not increase their investment (Tschirren,<br />

Fitze & Richner 2005). If proved by further studies,<br />

higher feeding rate of males on supplemented nests<br />

would be an interesting observation since we currently<br />

know virtually nothing about possible relationships<br />

between male carotenoid supply, health and physiology,<br />

and paternal investment in birds (Blount 2004).<br />

There are several nonexclusive explanations for<br />

weak to absent positive effects of our supplementation<br />

on offspring performance. Confidence intervals for the<br />

effect of supplementation on offspring traits did not<br />

embrace either middle or large positive effects (standardised<br />

effects of 0·5 and 0·8, respectively, according<br />

to Cohen 1988; see Fig. 4). There is a possibility that<br />

there were small positive effects (standardized effect<br />

size of 0·2) that we were not able to detect with our<br />

sample size. However, if there were any important (i.e.<br />

middle or large) positive effects of extra carotenoids in<br />

eggs on offspring performance, we would have been<br />

able to detect them.<br />

Three biologically interesting explanations seem<br />

to be worth discussing. First, the detectability of potential<br />

effects may depend upon the amount of carotenoids<br />

already present in the egg. All eggs may have been<br />

supplied with carotenoids to such an extent that any<br />

increase brought about by our supplementation had<br />

no detectable health and performance related benefits<br />

for the offspring. It is known that beneficial effects<br />

of carotenoids are dose-dependent, increasing with<br />

increasing amounts supplemented but later reaching a<br />

plateau (Alonso-Alvarez et al. 2004).<br />

Second, the antioxidant system of birds consists of<br />

an integrated system of substances, including enzymes,<br />

water-soluble and fat-soluble antioxidants. Vitamin E<br />

is a fat-soluble antioxidant present in bird egg yolk,<br />

including the Great Tit (Hõrak et al. 2002). It is<br />

transferred from egg yolk to the developing young<br />

and increases resistance to oxidative damage of tissues<br />

(Surai, Noble & Speake 1999). Our supplementation<br />

included small amounts of α-tocopherol (see Methods).<br />

It could be possible that α-tocopherol enhanced<br />

the antioxidant system of developing chicks in both<br />

experimental and control nests to such an extent that<br />

its further enhancement by lutein in experimental nests<br />

was not detectable. However, in such a case, young


782<br />

V. Reme3 et al.<br />

© 2007 The Authors.<br />

Journal compilation<br />

© 2007 British<br />

Ecological Society,<br />

Functional Ecology,<br />

21, 776–783<br />

birds would have to be much more sensitive to αtocopherol<br />

than to lutein. Great Tit yolk (c. 0·35 g, V.<br />

Remes, unpublished data) contains about 54 µg of<br />

α-tocopherol (c. 155 µg g –1 ; Hõrak et al. 2002) and about<br />

13 µg of lutein (c. 35–38 µg g –1 ; this study, average for<br />

control pairs; Hõrak et al. 2002). We supplemented<br />

about 250 µg of α-tocopherol (4·6 × the amount in one<br />

yolk) and 1750 µg of lutein (135 × the amount in one<br />

yolk) daily. Thus, we supplemented about 29 times<br />

more intensely with lutein than with α-tocopherol.<br />

Accordingly, this explanation does not seem likely.<br />

However, factorial experiments supplementing laying<br />

mothers with different antioxidant system-enhancing<br />

micronutrients (e.g. Surai 2000) in the wild will be<br />

needed to resolve this issue.<br />

Third, conflicting results of our study and previous<br />

ones could be explained by different study organisms.<br />

For instance, Biard et al. (2005) studied Blue Tits<br />

(P. caeruleus). In these smaller birds clutch mass<br />

comprises a relatively larger proportion of female<br />

body mass than in the closely related Great Tit. Thus,<br />

these authors suggest that laying females in this species<br />

need relatively more carotenoids and are thus more<br />

carotenoid limited than Great Tits (see also Biard,<br />

Surai & Møller 2006). This view concerns limitation<br />

during acquisition of resources. On the other hand,<br />

species differ in their resolution of the trade-off between<br />

current and future reproduction based on their<br />

position on the slow-fast life-history continuum<br />

(Ghalambor & Martin 2001). This might drive the<br />

species-specific patterns of allocation of acquired<br />

(supplemented) micronutrients between offspring and<br />

self-maintenance. Life-history differences between<br />

species together with carotenoid supply in the environment<br />

might thus be responsible for conflicting results<br />

of carotenoid-supplementation experiments. For<br />

further development of this area, it will be critical to<br />

perform similar supplementation studies on various<br />

species differing in their life-history strategies, while at<br />

the same time also following allocation of supplemented<br />

carotenoids to self-maintenance and future reproduction.<br />

In general, carotenoid-supplementation studies<br />

that generated clear and strong positive effects on<br />

offspring performance were either performed in<br />

captivity (McGraw et al. 2005) or carotenoids were<br />

injected directly into the eggs in the wild (Saino et al.<br />

2003). Food supplementation studies made in the wild<br />

up to now generated weak and unconvincing results<br />

(Biard et al. 2005; Berthouly et al. 2007; this study).<br />

Decisiveness of these weak results becomes even<br />

lower in the light of the number of statistical tests often<br />

performed with inherently increased probability of<br />

statistical error and finding false relationships (see<br />

also de Ayala, Martinelli & Saino 2006). This is surprising<br />

given the many beneficial health-related effects of<br />

carotenoids (see above, but see McCall & Frei 1999).<br />

It may be more difficult to detect beneficial effects<br />

of carotenoids in the wild because of less well controlled<br />

experimental conditions. Wild birds may also have<br />

enough carotenoids to provide to their young with<br />

resulting sufficient antioxidant protection. Further<br />

experimental increase of carotenoids may then operate<br />

in the plateau region of the dose-dependent relationship<br />

between carotenoid concentration and beneficial<br />

effects (Alonso-Alvarez et al. 2004). Experiments with<br />

carotenoid-deplete and carotenoid-replete eggs in seminatural<br />

conditions could help to resolve this issue<br />

(e.g. Koutsos et al. 2003). Alternatively, the antioxidant<br />

system of the young may be supported by other antioxidants<br />

to a sufficient level, again precluding any<br />

potentially beneficial effects of carotenoids to show up.<br />

These thoughts are in line with weak beneficial effects<br />

of direct supplementation of nestling food with dietary<br />

carotenoids (Biard et al. 2006) and with vitamin E<br />

(de Ayala et al. 2006) in the wild. Moreover, the effects<br />

detected by Biard et al. (2006) differed between species,<br />

and the authors suggested that the potential for<br />

beneficial effects of supplemental antioxidants might<br />

vary with the life-history strategy of the particular<br />

species. Similar species-specific effects were found in<br />

the relationships between carotenoids, immune function<br />

and male ornamentation in birds (summarized by<br />

Blount 2004). More studies on diverse species taking<br />

into account broader spectrum of antioxidants and<br />

employing more sophisticated study design are clearly<br />

needed to resolve these interesting issues.<br />

Acknowledgements<br />

This study was supported by a grant from the Ministry<br />

of Education of the Czech Republic (MSM6198959212)<br />

and GACR (206/07/P485). We are obliged to Urseta,<br />

s.r.o. for providing lutein supplementation. This study<br />

was approved by the Ethical Committee of Palacky<br />

University and complies with the current law of the<br />

Czech Republic.<br />

References<br />

Alonso-Alvarez, C., Bertrand, S., Devevey, G., Gaillard, M.,<br />

Prost, J., Faivre, B. & Sorci, G. (2004) An experimental test<br />

of the dose-dependent effect of carotenoids and immune<br />

activation on sexual signals and antioxidant activity.<br />

American Naturalist 164, 651–659.<br />

de Ayala, R.M., Martinelli, R. & Saino, N. (2006) Vitamin E<br />

supplementation enhances growth and condition of nestling<br />

barn swallows (Hirundo rustica). Behavioral Ecology and<br />

Sociobiology 60, 619–630.<br />

Berthouly, A., Helfenstein, F. & Richner, H. (2007) Cellular<br />

immune response, stress resistance and competitiveness in<br />

nestling great tits in relation to maternally transmitted<br />

carotenoids. Functional Ecology 21, 335–343.<br />

Biard, C., Surai, P.F. & Møller, A.P. (2005) Effects of carotenoid<br />

availability during laying on reproduction in the blue tit.<br />

Oecologia 144, 32–44.<br />

Biard, C., Surai, P.F. & Møller, A.P. (2006) Carotenoid<br />

availability in diet and phenotype of blue and great tit<br />

nestlings. Journal of Experimental Biology 209, 1004–1015.<br />

Blount, J.D. (2004) Carotenolds and life-history evolution in<br />

animals. Archives of Biochemistry and Biophysics 430, 10–15.<br />

Blount, J.D., Houston, D.C. & Møller, A.P. (2000) Why egg<br />

yolk is yellow. Trends in Ecology and Evolution 15, 47–49.


783<br />

Carotenoids and<br />

breeding<br />

performance<br />

© 2007 The Authors.<br />

Journal compilation<br />

© 2007 British<br />

Ecological Society,<br />

Functional Ecology,<br />

21, 776–783<br />

Blount, J.D., Houston, D.C., Surai, P.F. & Møller, A.P. (2004)<br />

Egg-laying capacity is limited by carotenoid pigment<br />

availability in wild gulls Larus fuscus. Proceedings of the<br />

Royal Society of London B 271, S79–S81.<br />

Blount, J.D., Surai, P.F., Houston, D.C. & Møller, A.P. (2002b)<br />

Patterns of yolk enrichment with dietary carotenoids in<br />

gulls: the roles of pigment acquisition and utilization.<br />

Functional Ecology 16, 445–453.<br />

Blount, J.D., Surai, P.F., Nager, R.G., Houston, D.C.,<br />

Møller, A.P., Trewby, M.L. & Kennedy, M.W. (2002a)<br />

Carotenoids and egg quality in the lesser black-backed gull<br />

Larus fuscus: a supplemental feeding study of maternal<br />

effects. Proceedings of the Royal Society of London B 269,<br />

29–36.<br />

Bortolotti, G.R., Negro, J.J., Surai, P.F. & Prieto, P. (2003)<br />

Carotenoids in eggs and plasma of red-legged partridges:<br />

effects of diet and reproductive output. Physiological and<br />

Biochemical Zoology 76, 367–374.<br />

Cassey, P., Ewen, J.G., Boulton, R.L., Blackburn, T.M.,<br />

Møller, A.P., Biard, C., Olson, V. & Karadas, F. (2005) Egg<br />

carotenoids in passerine birds introduced to New Zealand:<br />

relations to ecological factors, integument coloration and<br />

phylogeny. Functional Ecology 19, 719–726.<br />

Chew, B.P. & Park, J.S. (2004) Carotenoid action on the<br />

immune response. Journal of Nutrition 134, 257S–261S.<br />

Cohen, J. (1988) Statistical power analysis for behavioral<br />

sciences. Lawrence Erlbaum Associates, Hillsdale, NJ.<br />

Crimi, E., Sica, V., Williams-Ignarro, S., Zhang, H., Slutsky,<br />

A.S., Ignarro, L.J. & Napoli, C. (2006) The role of oxidative<br />

stress in adult critical care. Free Radical Biology and Medicine<br />

40, 398–406.<br />

Ewen, J.G., Thorogood, R., Karadas, F., Pappas, A.C. & Surai,<br />

P.F. (2006) Influences of carotenoid supplementation on<br />

the integrated antioxidant system of a free living endangered<br />

passerine, the hihi (Notiomystis cincta). Comparative<br />

Biochemistry and Physiology A 143, 149–154.<br />

Ghalambor, C.K. & Martin, T.E. (2001) Fecundity-survival<br />

trade-offs and parental risk taking in birds. Science 292,<br />

494–497.<br />

Haq, A.U., Bailey, C.A. & Chinnah, A. (1996) Effect of βcarotene,<br />

canthaxanthin, lutein, and vitamin E on neonatal<br />

immunity of chicks when supplemented in the broiler<br />

breeder diets. Poultry Science 75, 1092–1097.<br />

Hargitai, R., Matus, Z., Hegyi, G., Michl, G., Tóth, G. &<br />

Török, J. (2006) Antioxidants in the egg yolk of a wild<br />

passerine: differences between breeding seasons. Comparative<br />

Biochemistry and Physiology B 143, 145–152.<br />

Hõrak, P., Surai, P.F. & Møller, A.P. (2002) Fat-soluble<br />

antioxidants in the eggs of great tits Parus major in relation<br />

to breeding habitat and laying sequence. Avian Science 2,<br />

123–130.<br />

Koutsos, E.A., Clifford, A.J., Calvert, C.C. & Klasing, K.C.<br />

(2003) Maternal carotenoid status modifies the incorporation<br />

of dietary carotenoids into immune tissues of growing chickens<br />

(Gallus gallus domesticus). Journal of Nutrition 133, 1132–<br />

1138.<br />

Koutsos, E.A., López, J.C.G. & Klasing, K.C. (2006)<br />

Carotenoids from in ovo or dietary sources blunt systemic<br />

indices of the inflammatory response in growing chicks<br />

(Gallus gallus domesticus). Journal of Nutrition 136, 1027–1031.<br />

Krinsky, N.I. (2001) Carotenoids as antioxidants. Nutrition<br />

17, 815–817.<br />

McCall, M.R. & Frei, B. (1999) Can antioxidant vitamins<br />

materially reduce oxidative damage in humans? Free<br />

Radical Biology and Medicine 26, 1034–1053.<br />

McGraw, K.J., Adkins-Regan, E. & Parker, R.S. (2005)<br />

Maternally derived carotenoid pigments affect offspring<br />

survival, sex ratio, and sexual attractiveness in a colorful<br />

songbird. Naturwissenschaften 92, 375–380.<br />

Møller, A.P., Biard, C., Blount, J.D., Houston, D.C., Ninni,<br />

P., Saino, N. & Surai, P.F. (2000) Carotenoid-dependent<br />

signals: indicators of foraging efficiency, immunocompetence<br />

or detoxification ability? Avian and Poultry Biology Reviews<br />

11, 137–159.<br />

Olson, V.A. & Owens, I.P.F. (2005) Interspecific variation in<br />

the use of carotenoid-based coloration in birds: diet, life<br />

history and phylogeny. Journal of Evolutionary Biology 18,<br />

1534–1546.<br />

Partali, V., Liaaenjensen, S., Slagsvold, T. & Lifjeld, J.T.<br />

(1987) Carotenoids in food chain studies. 2. The food chain<br />

of Parus spp monitored by carotenoid analysis. Comparative<br />

Biochemistry and Physiology B 87, 885–888.<br />

Royle, N.J., Surai, P.F. & Hartley, I.R. (2003) The effect of<br />

variation in dietary intake on maternal deposition of<br />

antioxidants in zebra finch eggs. Functional Ecology 17,<br />

472–481.<br />

Saino, N., Bertacche, V., Ferrari, R.P., Martinelli, R., Møller,<br />

A.P. & Stradi, R. (2002) Carotenoid concentration in barn<br />

swallow eggs is influenced by laying order, maternal infection<br />

and paternal ornamentation. Proceedings of the Royal<br />

Society of London B 269, 1729–1733.<br />

Saino, N., Ferrari, R., Romano, M., Martinelli, R. & Møller,<br />

A.P. (2003) Experimental manipulation of egg carotenoids<br />

affects immunity of barn swallow nestlings. Proceedings of<br />

the Royal Society of London B 270, 2485–2489.<br />

Sheldon, B.C. (2000) Differential allocation: tests, mechanisms<br />

and implications. Trends in Ecology and Evolution 15, 397–<br />

402.<br />

Sies, H. & Stahl, W. (1995) Vitamins E and C, β-carotene, and<br />

other carotenoids as antioxidants. American Journal of<br />

Clinical Nutrition 62, 1315S–1321S.<br />

Surai, P.F. (2000) Effect of selenium and vitamin E content of<br />

the maternal diet on the antioxidant system of the yolk and<br />

the developing chick. British Poultry Science 41, 235–243.<br />

Surai, P.F., Noble, R.C. & Speake, B.K. (1996) Tissue-specific<br />

differences in antioxidant distribution and susceptibility<br />

to lipid peroxidation during development of the chick<br />

embryo. Biochimica et Biophysica Acta 1304, 1–10.<br />

Surai, P.E., Noble, R.C. & Speake, B.K. (1999) Relationship<br />

between vitamin E content and susceptibility to lipid<br />

peroxidation in tissues of the newly hatched chick. British<br />

Poultry Science 40, 406–410.<br />

Tschirren, B., Fitze, P.S. & Richner, H. (2005) Carotenoidbased<br />

nestling colouration and parental favouritism in the<br />

great tit. Oecologia 143, 477–482.<br />

de Zwart, L.L., Meerman, J.H.N., Commandeur, J.N.M. &<br />

Vermeulen, N.P.E. (1999) Biomarkers of free radical damage<br />

applications in experimental animals and in humans. Free<br />

Radical Biology and Medicine 26, 202–226.<br />

Received 5 October 2006; revised 16 December 2006; accepted<br />

19 March 2007<br />

Editor: Kevin McGraw


ACTA ORNITHOLOGICA<br />

Vol. 45 (2010) No. 1<br />

The design of artificial nestboxes for the study of secondary hole-nesting<br />

birds: a review of methodological inconsistencies and potential biases<br />

Marcel M. LAMBRECHTS*, Frank ADRIAENSEN, Daniel R. ARDIA, Alexandr V. ARTEMYEV,<br />

Francisco ATIÉNZAR, Jerzy BAŃBURA, Emilio BARBA, Jean-Charles BOUVIER, Jordi<br />

CAMPRODON, Caren B. COOPER, Russell D. DAWSON, Marcel EENS, Tapio EEVA, Bruno<br />

FAIVRE, Laszlo Z. GARAMSZEGI, Anne E. GOODENOUGH, Andrew G. GOSLER, Arnaud<br />

GRÉGOIRE, Simon C. GRIFFITH, Lars GUSTAFSSON, L. Scott JOHNSON, Wojciech KANIA,<br />

Oskars KEIŠS, Paulo E. LLAMBIAS, Mark C. MAINWARING, Raivo MÄND, Bruno MASSA,<br />

Tomasz D. MAZGAJSKI, Anders Pape MqLLER, Juan MORENO, Beat NAEF-DAENZER,<br />

Jan-Cke NILSSON, Ana C. NORTE, Markku ORELL, Ken A. OTTER, Chan Ryul PARK,<br />

Christopher M. PERRINS, Jan PINOWSKI, Jiri PORKERT, Jaime POTTI, Vladimir REMES, Heinz<br />

RICHNER, Seppo RYTKÖNEN, Ming-Tang SHIAO, Bengt SILVERIN, Tore SLAGSVOLD, Henrik<br />

G. SMITH, Alberto SORACE, Martyn J. STENNING, Ian STEWART, Charles F. THOMPSON, Piotr<br />

TRYJANOWSKI, Janos TÖRÖK, Arie J. van NOORDWIJK, David W. WINKLER & Nadia ZIANE<br />

*Centre d’Ecologie Fonctionnelle et Evolutive, UMR 5175, CNRS, 1919 route de Mende, 34293 Montpellier Cedex 5,<br />

FRANCE, e-mail: marcel.lambrechts@cefe.cnrs.fr<br />

All authors’ affiliations — see appendix 2<br />

Lambrechts M. M., Adriaensen F., Ardia D. R., Artemyev A. V., Atiénzar F., Bańbura J., Barba E., Bouvier J.-C.,<br />

Camprodon J., Cooper C. B., Dawson R. D., Eens M., Eeva T., Faivre B., Garamszegi L. Z., Goodenough A. E., Gosler<br />

A. G., Grégoire A., Griffith S. C., Gustafsson L., Johnson L. S., Kania W., Keišs O., Llambias P. E., Mainwaring M. C.,<br />

Mänd R., Massa B., Mazgajski T. D., Mrller A. P., Moreno J., Naef-Daenzer B., Nilsson J.- Å., Norte A. C., Orell M.,<br />

Otter K. A., Park Ch. R., Perrins Ch. M., Pinowski J., Porkert J., Potti J., Remes V., Richner H., Rytkönen S., Shiao M.-<br />

T., Silverin B., Slagsvold T., Smith H. G., Sorace A., Stenning M. J., Stewart I., Thompson Ch. F., Török J., Tryjanowski<br />

P., van Noordwijk A. J., Winkler D. W., Ziane N. 2010. The design of artificial nestboxes for the study of secondary<br />

hole-nesting birds: a review of methodological inconsistencies and potential biases. Acta Ornithol. 45: 1–26.<br />

DOI 10.3161/000164510X516047<br />

Abstract. The widespread use of artificial nestboxes has led to significant advances in our knowledge of the ecology,<br />

behaviour and physiology of cavity nesting birds, especially small passerines. Nestboxes have made it easier to perform<br />

routine monitoring and experimental manipulation of eggs or nestlings, and also repeatedly to capture, identify and<br />

manipulate the parents. However, when comparing results across study sites the use of nestboxes may also introduce<br />

a potentially significant confounding variable in the form of differences in nestbox design amongst studies, such as their<br />

physical dimensions, placement height, and the way in which they are constructed and maintained. However, the use<br />

of nestboxes may also introduce an unconsidered and potentially significant confounding variable due to differences<br />

in nestbox design amongst studies, such as their physical dimensions, placement height, and the way in which they are<br />

constructed and maintained. Here we review to what extent the characteristics of artificial nestboxes (e.g. size, shape,<br />

construction material, colour) are documented in the ‘methods’ sections of publications involving hole-nesting passerine<br />

birds using natural or excavated cavities or artificial nestboxes for reproduction and roosting. Despite explicit previous<br />

recommendations that authors describe in detail the characteristics of the nestboxes used, we found that the<br />

description of nestbox characteristics in most recent publications remains poor and insufficient. We therefore list the<br />

types of descriptive data that should be included in the methods sections of relevant manuscripts and justify this by<br />

discussing how variation in nestbox characteristics can affect or confound conclusions from nestbox studies. We also<br />

propose several recommendations to improve the reliability and usefulness of research based on long-term studies of<br />

any secondary hole-nesting species using artificial nestboxes for breeding or roosting.<br />

Key words: methods, nestboxes, nest sites, passerines, secondary cavity-nesting birds, field experiments, tit, flycatcher,<br />

Ficedula, Parus, Cyanistes<br />

Received — Aug. 2009, accepted — April 2010


2 M. M. Lambrechts et al.<br />

INTRODUCTION<br />

Half of the avian orders use some form of cavity<br />

for nesting or roosting (Gill 2007), with up<br />

to 30% of the bird species present in some locations<br />

being cavity-nesters (Newton 1994, Bai &<br />

Mühlenberg 2008). While primary hole-nesters<br />

such as woodpeckers are able to excavate their<br />

own nest holes in trees, obligate secondary holenesters<br />

do not have the physical force to drill large<br />

holes in hard wood, although some are capable of<br />

modifying or enlarging existing cavities in dead or<br />

decaying trees (Newton 1994, Schepps et al. 1999,<br />

Martin & Norris 2007, Atienzar et al. 2009).<br />

Consequently, secondary hole-nesters must rely<br />

upon natural tree cavities or unoccupied holes<br />

excavated by primary hole-nesters (Martin &<br />

Eadie 1999, Remm et al. 2006). Thus, the availability<br />

and characteristics of tree holes suitable for secondary<br />

hole-nesters is partly influenced by the<br />

activity and abundance of primary hole-nesting<br />

species, which in turn depend upon the characteristics<br />

of the tree species present (e.g. size and age,<br />

architecture, hardness) as well as the activity of<br />

other taxonomic groups, such as micro-organisms<br />

(including fungi), insects, amphibians, reptiles,<br />

and mammals (Conner 1977, Wilson et al. 1991,<br />

Bednarz et al. 2004, Jackson & Jackson 2004, Ojeda<br />

et al. 2007, Wesołowski 2007, Camprodon et al.<br />

2008, Koch et al. 2008, Lambrechts et al. 2008,<br />

Matsuoka 2008). Fluctuations in external factors<br />

such as ambient temperature and the intensity<br />

and direction of wind or rain can also influence<br />

the availability and characteristics of holes (e.g.<br />

East & Perrins 1988, Walankiewicz 1991,<br />

Wesołowski et al. 2002). For instance, persistent<br />

strong winds or rain may increase the erosion of<br />

existing small cavities, blow branches from trees<br />

so that new cavities are created, or blow down<br />

dead trees containing cavities.<br />

Each natural hole found in a dead or living tree<br />

probably has a unique combination of variables,<br />

such as the position, orientation and shape of the<br />

entrance hole, and the cavity’s material, wall<br />

thickness, depth, diameter, floor area, shape,<br />

colour, volume, internal surface, light conditions<br />

and age (van Balen et al. 1982, Nilsson 1984, East<br />

& Perrins 1988, Rendell & Robertson 1989, Carlson<br />

et al. 1998, Czeszczewik & Walankiewicz 2003,<br />

Wesołowski & Rowiński 2004, Mazgajski 2007b;<br />

Table 1). The size or other characteristics of cavities<br />

occupied by secondary hole-nesting birds can<br />

vary within and between species (Table 1). Studies<br />

of these cavities can provide the necessary<br />

background data for the better design of research<br />

that uses man-made nestboxes (e.g.<br />

Nilsson 1975, 1984, Mrller 1989, 1992, Wesołowski<br />

2007).<br />

The use of nestboxes to study secondary<br />

hole-nesters<br />

Many secondary hole-nesting species readily<br />

breed in man-made artificial cavities, most of<br />

which are nestboxes placed against tree trunks,<br />

fences or walls, or erected on posts (von<br />

Haartman 1969, Kibler 1969, Perrins 1979, Pikula &<br />

Beklova 1980, Newton 1994, Lesiński 2000, Zingg<br />

et al. 2010). The use of such artificial cavities in<br />

avian research has greatly advanced our understanding<br />

of breeding behaviour in cavity-nesting<br />

species. Nestboxes allow researchers to perform<br />

routine monitoring and experimental manipulation<br />

of eggs or nestlings, as well as repeatedly capture,<br />

identify and manipulate the parents or offspring<br />

(e.g. Sanz 1998, Visser et al. 2003, Both et al.<br />

2004, Griffith et al. 2008). The use of nestboxes<br />

often increases the local population of secondary<br />

hole-nesters available for study, and it may also<br />

help to better control, reduce, or eliminate stochastic<br />

effects associated with abiotic factors or<br />

predation, thus increasing sample sizes and facilitating<br />

data analyses or interpretation. Since the<br />

pioneering investigations of G. Wolda in the<br />

Netherlands (Kluyver 1951, Lack 1955), artificial<br />

nestboxes have been used to aid research in a<br />

range of sub-disciplines of the behavioural and<br />

environmental sciences e.g. behavioural ecology,<br />

cognitive ecology, conservation biology, ecotoxicology,<br />

evolutionary ecology, functional ecology,<br />

molecular ecology, population ecology (e.g. Busse<br />

& Olech 1968, Perrins 1979, Lundberg & Alatalo<br />

1992, Koenig et al. 1992, Newton 1994, Schlaepfer<br />

et al. 2002, Blondel et al. 2006, Seppänen &<br />

Forsman 2007, Slagsvold & Wiebe 2007, Mazgajski<br />

2008, Liedvogel et al. 2009, Mänd et al. 2009,<br />

Holveck et al. 2010, Van den Steen et al. 2010,<br />

Zingg et al. 2010). Nestbox studies have also contributed<br />

significantly to the development of lifehistory<br />

theory in free-ranging organisms (Clut -<br />

ton-Brock 1988, Newton 1989) because of the ease<br />

with which manipulations can be performed.<br />

Consequently, secondary hole-nesting passerines<br />

have become one of the most intensively investigated<br />

free-living bird groups of the world (e.g.<br />

Riddington & Gosler 1995), and occupy top positions<br />

with respect to the total number of papers<br />

returned by two ISI Web of Science searches of<br />

passerine studies by common and scientific name


Table 1. Mean (± SD) dimensions of natural nest holes in three European hole-nesting species. Ranges in brackets. N — sample size. † — data from different seasons, * — calculated<br />

from figures.<br />

Source<br />

Height above entrance diameter holes depth bottom area<br />

the ground (m) (smallest value, cm) (cm) (cm2 )<br />

Species Habitat Country N<br />

Parus major<br />

deciduous UK 10–11 2.67 ± 1.53 4.9 ± 2.0* Edington & Edington 1972<br />

deciduous UK 7–10 5.9 5.7 ± 2.6; 35.8 ± 25.1; East & Perrins 1988<br />

(0.4–11) 5.9 ± 1.6† 35.8 ± 29.3†<br />

NL 33 2.6 ± 0.9 3.9 ± 1.4 139.2 ± 64.3 van Balen et al. 1982<br />

deciduous/mixed SE 10–16 2.3 3.5 ± 0.6* 21.0 ± 6.0 (11–32) Nilsson 1984<br />

deciduous SE 20 5.2 ± 2.2 4.5 ± 2.0 15 ± 15 249 ± 189 Carlson et al. 1998<br />

ash-alder PL 10 5.2 Wesołowski 1989<br />

oak-hornbean PL 27 8.7 Wesołowski 1989<br />

riverine EE 14–17 6.5 (2.2–12) 3.8 (2.5–5.5) 20.9 (8.0–45.0) Remm et al. 2006<br />

boreal/riparian MN 16 5.0 ± 2.7 4.1 ± 1.3 Bai et al. 2005<br />

Design of artificial nestboxes 3<br />

Cyanistes caeruleus<br />

deciduous UK 10 3.24 ± 1.73 3.1 ± 1.2* Edington & Edington 1972<br />

deciduous UK 13–17 5.5; 7.4 † 5.4 ± 2.6; 22.6 ± 6.96; East & Perrins 1988<br />

(0.3–10.3) 5.5 ± 2.5† 24.1 ± 5.71†<br />

NL 20 4.0 ± 2.4 4.0 ± 1.6 88.5 ± 66.4 van Balen et al.1982<br />

deciduous SE 26 4.3 ± 2.6 2.9 ± 0.7 15 ± 7 130 ± 108 Carlson et al. 1998<br />

deciduous/mixed SE 10-11 4.4 3.2 ± 0.8* 13.7 ± 7.1 Nilsson 1984<br />

ash-alder PL 21 11.1 Wesołowski 1989<br />

oak-hornbean PL 81 8.3<br />

oak-hornbean PL 53 8.8 (1.5–18.7) 2.6 15.3 Hebda 2007<br />

riverine EE 14–20 5.6 (0.5–12) 2.7 (2.1–3.2) 21.4 (3.5–19.0) Remm et al. 2006<br />

Ficedula hypoleuca<br />

deciduous UK 17–18 2.37 ± 1.32 3.9 ± 1.2* Edington & Edington 1972<br />

deciduous SE 29 5.4 ± 2.7 4.5 ± 4.7 14 ± 11 199 ± 177 Carlson et al. 1998<br />

deciduous/mixed SE 3.3 Nilsson 1984<br />

deciduous SE 105 (33–735) Alatalo et al. 1988<br />

ash-alder PL 18 9.4 Wesołowski 1989<br />

oak-hornbean PL 18 6.3 Wesołowski 1989<br />

oak-hornbean PL 102–180 8.2 ± 4.6 3.5 ±1.1 19.3 ± 7.6 205 ± 525 Czeszczewik &<br />

(1.2–23) (1.5–8.5) (6–51) (28–2826) Walankiewicz 2003<br />

riverine EE 24–27 6.7 (2.0–12.5) 3.8 (2.5–5.7) 16.6 (3.0–45.0) Remm et al. 2006


4 M. M. Lambrechts et al.<br />

(Average number of publications of the two<br />

searches in 2010 for cavity-nesters: Parus major —<br />

1807, Sturnus vulgaris — 1293, Passer domesticus —<br />

999, Ficedula hypoleuca — 880, Cyanistes caeruleus —<br />

756, Tachycineta bicolor — 744, Sialia sialis — 414<br />

versus non-cavity nesters: Hirundo rustica — 663,<br />

Melospiza melodia — 609, Agelaius phoeniceus — 488,<br />

Carpodacus mexicanus — 335).<br />

However, studies involving birds breeding in<br />

nestboxes have been criticized on the grounds<br />

that the boxes differ in several ways from natural<br />

or excavated cavities, and that avian research<br />

in free-ranging populations is overwhelmingly<br />

dominated by a few ‘classic’ model systems.<br />

Consequently results derived from these studies<br />

may fail to reflect natural variation potentially<br />

reducing their general validity or applicability<br />

(e.g. Nilsson 1975, Mrller 1989, 1992, but see<br />

Koenig et al. 1992, Wesołowski 2007). For instance,<br />

van Balen et al. (1982) cites the main difference<br />

between natural holes and artificial nestboxes<br />

erected in the same location as a higher rate of<br />

nest failure in natural holes because of water logging<br />

or competition from bigger animals, factors<br />

that are often excluded when nestboxes are used.<br />

Whether nestboxes are safer than natural cavities<br />

from nest predators or competitors may depend<br />

on differences in height or positioning between<br />

artificial and natural cavities (Nilsson 1984,<br />

McCleery et al. 1996), or whether protective devices<br />

have been added to the nestboxes to reduce predation.<br />

For instance, metal plates or wire mesh fitted<br />

around the entrance hole of nestboxes may<br />

prevent the hole being enlarged by woodpeckers<br />

or mammals, and pipes placed in the entrancehole<br />

may prevent predators from reaching the<br />

contents. Also, treating wooden nestboxes with<br />

chemicals, such as preservatives or pesticides,<br />

may prevent them from decay due to fungal rot or<br />

burrowing arthropods (e.g. Kibler 1969, Nilsson<br />

1984, McCleery et al. 1996, Miller 2002, Main -<br />

waring & Hartley 2008, Skwarska et al. 2009).<br />

Nestboxes are also designed so that researchers<br />

can frequently inspect their contents which may<br />

cause rapid changes in the chemical environment<br />

within the nest (e.g. CO 2 concentrations influencing<br />

attractiveness of flying insects exploiting avian<br />

hosts — see Tomás et al. 2008) or micro-climate<br />

that do not occur in natural or excavated holes.<br />

Nestbox studies may also be prone to biased sampling<br />

because they may only be occupied by individuals<br />

or species that accept artificial cavities,<br />

while the remainder retain a preference for<br />

natural or excavated cavities (Dhondt 2007). The<br />

proportion of individuals that use either natural<br />

or artificial holes may therefore depend on the difference<br />

in quality between the two or the distribution<br />

of individual preferences for different breeding<br />

sites. The interval between the placement of<br />

nestboxes and the start of a study may also result<br />

in biased sampling. For instance, if nestboxes are<br />

initially erected just a few weeks before the start<br />

of the breeding season of resident species, nonterritorial<br />

first-year birds may be attracted to<br />

study sites that do not provide opportunities for<br />

winter roosting in natural cavities.<br />

While there are many benefits of the intensive<br />

study of model species, there is an obvious danger<br />

of basing our general understanding of birds on<br />

such a small number of cavity-nesting species that<br />

share a similar ecology and are mostly located in<br />

just one region of the world (Europe). To date,<br />

while there are many studies of a variety of holenesters<br />

in North America they have not dominated<br />

the literature to the same extent as have the<br />

European studies (e.g. see also Chamberlain et al.<br />

2009). There are whole regions of the world in<br />

which nestboxes have never been used, although<br />

studies have recently been published on avian<br />

nestbox exploiters in Australia (Griffith et al. 2008),<br />

Argentina (Massoni et al. 2006, Cockle & Bodradi<br />

2009, Llambias & Fernández 2009), Chile (Moreno<br />

et al. 2005, 2007) and China (Wang et al. 2008) (but<br />

see for instance older studies in Tryjanowski et al.<br />

2006 and Evans et al. 2009 for New Zealand or<br />

Eguchi 1980 for Japan). It should also be pointed<br />

out that nestboxes in some countries are widely<br />

distributed throughout the countryside by<br />

forestry administrations or environmental organizations<br />

(e.g. Poland, Spain). For instance, thousands<br />

of nestboxes of a specific design have been<br />

erected for >50 years in many Polish and Spanish<br />

forests, constituting an unavoidable part of the<br />

environment for hole-nesters that does not<br />

depend on researchers and that may have<br />

induced significant selective pressures on populations.<br />

There exist biases in the material used (e.g.<br />

nestbox design), the choice of the model species,<br />

and the environment (e.g. European woodland)<br />

in which research is conducted. The extent to<br />

which all this is really a problem is difficult to<br />

evaluate since few studies have compared biological<br />

aspects of birds which breed in nestboxes<br />

and those which breed in natural or excavated<br />

cavities at the same location (but see e.g. East &<br />

Perrins 1988, Johnson & Kermott 1994, Miller 2002,<br />

Llambias & Fernández 2009 and references


therein). However, this issue can be evaluated<br />

indirectly by examining whether the characteristics<br />

of artificial nestboxes and their occupants<br />

differ from those of natural or excavated nestholes<br />

(e.g. Dhondt 2007), and if there are differences,<br />

whether these would affect the likelihood<br />

of supporting or rejecting a particular hypothesis.<br />

The ecological significance of variation in nestbox<br />

characteristics<br />

Several studies indicate that the characteristics<br />

of each nestbox influence the physical environment<br />

(e.g. ambient temperature, humidity, light<br />

reflectance) or biotic environment (e.g. presence<br />

and biology of other organisms, parent-offspring<br />

interactions) within the nest-chamber, and therefore<br />

the development or survival of the eggs or<br />

nestlings, or the survival or physical condition of<br />

adults using nestboxes for reproduction or roosting<br />

(Löhrl 1973, van Balen 1984, Slagsvold &<br />

Amundsen 1992, Mazgajski 2007a, Dhondt et al.<br />

2010). The internal size of the nest cavity may also<br />

influence clutch size, depending on the size<br />

ranges of the nest-chamber or species involved<br />

(e.g. Karlsson & Nilsson 1977, Moeed & Dawson<br />

1979, Löhrl 1980, van Balen 1984, Gustafsson &<br />

Nilsson 1985, Slagsvold & Amundsen 1992). In<br />

Great Tits Parus major, for instance, an experiment<br />

in which nestboxes were replaced with a different-sized<br />

box shortly after the onset of egg laying<br />

found that size differences in subsequently-produced<br />

clutches may be as large as the variation in<br />

clutch size observed across distinct forest types<br />

(e.g. > 2 eggs, Löhrl 1973, 1980, Sanz 1998). In Pied<br />

Flycatchers Ficedula hypoleuca, this may not be<br />

related to an adjustment of clutch size to cavity<br />

size per se, but could for example result from<br />

females laying larger clutches selecting larger cavities<br />

for breeding or spending more time to find a<br />

large nest cavity (Slagsvold 1987).<br />

Several other variables seem intuitively likely<br />

to affect whether a nestbox is occupied, and if so,<br />

the success of each breeding attempt. For example,<br />

erecting boxes of varying dimensions at the<br />

same location has shown that different individuals<br />

or species use cavities with different characteristics.<br />

The size and position (e.g. height, orientation)<br />

of the entrance hole appears to determine<br />

which individual or species will occupy nestboxes<br />

and how their life-history traits will be expressed<br />

in the presence of other organisms (e.g. Kluyver<br />

1951, Nilsson 1984, Barba & Gil-Delgado 1990,<br />

Dhondt & Adriaensen 1999, Zingg et al. 2010). For<br />

example, large individuals or species cannot enter<br />

Design of artificial nestboxes 5<br />

small entrance holes or nestbox chambers simply<br />

because of physical constraints. Furthermore,<br />

smaller individuals or species may prefer to breed<br />

in nestboxes with small entrance holes, particularly<br />

those located high in trees, to reduce risks related<br />

to predation or competition (Löhrl 1970, 1977,<br />

Slagsvold 1975, Nilsson 1984, Newton 1994, Sorace<br />

& Carere 1996).<br />

A given nestbox type may be preferred in one<br />

environment and yet disfavoured in another. For<br />

instance, local meteorological effects may influence<br />

the preferences for certain nest-cavities<br />

with birds avoiding those with holes oriented in<br />

the direction of prevailing wind or rain (e.g.<br />

Goodenough et al. 2008). Orientation of nests has<br />

been found to influence site selection of natural<br />

cavities and artificial cavities in Tree Swallows<br />

Tachycineta bicolor (Rendell & Robertson 1994,<br />

Ardia et al. 2006), probably because internal nest<br />

temperatures differ as a function of orientation<br />

(Ardia et al. 2006). Orientation of occupied nestboxes<br />

may also be influenced by the location of<br />

conspecifics (Mennill & Ratcliffe 2004). According<br />

to Kluijver (1951), cavity preferences may differ<br />

between males and females and vary seasonally.<br />

Birds may only avoid nestboxes with larger holes<br />

in areas with high perceived predation risk (e.g.<br />

Sorace & Carere 1996). The cleaning practices of<br />

nestboxes may also affect the choice of nestboxes.<br />

(Mazgajski 2007a). For example, Pied Flycatchers<br />

may gain time benefits in nest building if the old<br />

nest is not removed (Orell et al. 1993, Mappes et<br />

al. 1994), House Wrens Troglodytes aedon may prefer<br />

nestboxes containing old nests because they<br />

provide evidence of previous success at that location<br />

(Johnson 1996, Pacejka & Thompson 1996), or<br />

Great Tits may avoid nestboxes containing old<br />

nests with many fleas (Rytkönen et al. 1998). Thus,<br />

the choice and location of nestbox type may interact<br />

with other environmental factors, such as the<br />

availability and properties of natural cavities, and<br />

significantly influence the outcome of ecological<br />

field investigations.<br />

To examine whether scientists working with<br />

secondary hole-nesting passerines have acknowledged<br />

the significance of variation in nestbox<br />

design, we assessed whether nestbox characteristics<br />

have been documented in the ‘methods’ sections<br />

of publications or incorporated into statistical<br />

analyses of long-term databases. We also discuss<br />

how variation in nestbox characteristics can<br />

affect or confound conclusions from nestbox studies<br />

and propose several recommendations to<br />

improve future research.


6 M. M. Lambrechts et al.<br />

METHODS<br />

Three papers published over 15 years ago discussed<br />

the potential artefacts associated with the<br />

use of nestboxes, but also emphasised that many<br />

scientists simply did not report what they did<br />

with their nestboxes (Mrller 1989, 1992, Koenig et<br />

al. 1992). Field ornithologists were urged to: 1)<br />

improve the design of their nestboxes so that they<br />

mimic more closely the characteristics of natural<br />

or excavated holes and 2) describe the characteristics<br />

of their boxes and the procedures used for<br />

maintaining boxes to allow for the exact replication<br />

of protocols across studies (see also Kelly<br />

2006). To assess whether subsequent investigations<br />

followed these recommendations, we examined<br />

the methods section of publications involving<br />

the most commonly investigated hole-nesting<br />

birds. We divided the papers into two groups:<br />

those published before the recommendations of<br />

Koenig et al. (1992) and Mrller (1992) (“older”<br />

publications), and those published from 1992<br />

onwards (“more recent” publications). Based on<br />

the recommendations of Mrller (1989), we predicted<br />

that descriptions of nestbox characteristics<br />

would be more frequent among articles published<br />

from 1992 onwards. We located relevant publications<br />

by using the common or scientific (current or<br />

older) names of secondary hole-nesting passerines<br />

as key words in the leading electronic databases<br />

(ISI Web of Science, Biblio-Vie, BiblioSHS)<br />

and also searching the extensive collection of<br />

reprints possessed by P. Isenmann (CEFE-<br />

Montpellier). We searched the reference section of<br />

each of these publications to identify other relevant<br />

publications that we had not previously<br />

encountered because they were not electronically<br />

indexed. We are aware that publications are often<br />

not independent units, but we have chosen this<br />

entity because it does give the probability that a<br />

new reader misses the relevant information in the<br />

first paper they read. We surveyed a total of 696<br />

publications from 108 different journals, of which<br />

594 (85%) involved a single species. These publications<br />

concerned 12 frequently investigated secondary<br />

hole-nesting species, most of which were<br />

Eurasian tits (Paridae) or old world flycatchers<br />

(Muscicapidae) (Fig. 1).<br />

RESULTS AND DISCUSSION<br />

Our review produced four main results,<br />

leading to the overall conclusion that nestbox<br />

characteristics are variable and often unreported<br />

in the scientific literature and that the significance<br />

of these characteristics is often either ignored or<br />

underappreciated.<br />

1. Detailed descriptions of nestbox properties are<br />

often lacking in recent publications<br />

Around 40% of the older publications (


Parus<br />

major<br />

Cyanistes<br />

caeruleus<br />

Periparus<br />

ater<br />

Poecile<br />

palustris<br />

nestlings addressed to parents or social mates (e.g.<br />

Holveck et al. 2010). Since natural or excavated<br />

tree holes used by secondary hole-nesting birds<br />

can be described using at least 10 different parameters<br />

(Kibler 1969, van Balen et al. 1982, East &<br />

Perrins 1988, Carlson et al. 1998, Remm et al. 2006),<br />

perhaps these same parameters could be defined<br />

and standardized, then used to describe artificial<br />

nestboxes in widely understood details, as architects<br />

do when designing buildings.<br />

2. Nestboxes often represent only a small fraction<br />

of the properties of natural holes<br />

The nestboxes erected in most study sites are<br />

usually identical in shape and dimensions.<br />

Although the nestboxes were probably made to a<br />

consistent design in order to minimize potential<br />

confounding variables and maximize sample sizes<br />

(e.g. Drilling & Thompson 1988, McCleery et al.<br />

1996, Llambias & Fernández 2009), the scientific<br />

rationale for using a particular type of nestbox, for<br />

mounting and positioning them in a particular<br />

way, or for protecting them from predators is<br />

often not provided. This is a particular problem<br />

when nestboxes possess physical properties that<br />

significantly differ from those of tree cavities (e.g.<br />

Nilsson 1975, Karlsson & Nilsson 1977, Moeed &<br />

Dawson 1979, Alatalo et al. 1988, Mrller 1989, 1992,<br />

Purcell et al. 1997) and nestbox characteristics<br />

selected to initiate a long-term study significantly<br />

influence the results of ecological investigations<br />

(e.g. McCleery et al. 1996, García-Navas et al. 2008).<br />

Design of artificial nestboxes 7<br />

Ficedula<br />

hypoleuca<br />

Ficedula<br />

albicollis<br />

Passer<br />

domesticus<br />

Sturnus<br />

vulgaris<br />

Sturnus<br />

unicolor<br />

Troglodytes<br />

aedon<br />

Tachycineta<br />

bicolor<br />

Fig. 1. Percentage of publications describing or citing 0 or more nestbox characteristics in analysed papers in two publication<br />

periods: a — < 1992, b — ≥ 1992. The percentage of publications with information on none (0) one (1), two (2) or more than<br />

two (>2) nest-box properties are indicated, which includes the publications citing references providing the information in the<br />

methods section. Number of papers in parenthesis.<br />

Sialia<br />

sialis<br />

Total<br />

It should be noted though that the continuity of<br />

nestbox characteristics and placements in some<br />

study sites can lead to in-depth research where<br />

confounding (changeable) factors are controlled<br />

(e.g. nestbox orientation, Goodenough et al. 2008).<br />

3. Different research teams often do not use the<br />

same nestbox designs and research protocols<br />

Different research groups studying hole-nesting<br />

birds in different locations rarely use the same<br />

type or size of nestbox, even when studying the<br />

same species (see Appendix 1). There may be several<br />

economic or scientific reasons for such variation<br />

in nestbox design. The material used to construct<br />

nestboxes in each location may depend on<br />

local availability or price (Moeed & Dawson 1979),<br />

or on decisions taken by forestry administrations<br />

or environmental organisations without consulting<br />

researchers regarding the massive distribution<br />

of a certain type of nestbox (e.g. Spain), or may<br />

have been proven to be optimal by local ornithological<br />

organisations (e.g. Baucells et al. 2003).<br />

Conse quently, if nestboxes are designed with particular<br />

characteristics because of local environmental<br />

conditions, such as the use of thick-walled<br />

boxes in areas with more extreme weather conditions,<br />

then nestboxes should be more variable in<br />

species with a larger distributional range.<br />

Although we did find large-scale variation in nestbox<br />

characteristics among research teams studying<br />

the same species, there was little scientific justification<br />

for this, as this variation was not intend-


8 M. M. Lambrechts et al.<br />

ed to better understand biological consequences<br />

of ‘nestbox-environment’ interactions at broad<br />

spatiotemporal scales. Replicates in nestbox<br />

design across study sites are currently often segregated<br />

instead of properly interspersed. Further -<br />

more, nestbox characteristics may also differ within<br />

local populations, as some nestboxes are re -<br />

placed after several years or different boxes may<br />

be erected as new breeding plots are established.<br />

However, it has to be noted that nestbox design or<br />

placement may be constrained by the need to<br />

avoid human predation or destruction of nests in<br />

certain countries. For instance, in Spain nestboxes<br />

are erected at >3 m above the ground to avoid citizens<br />

collecting nests or eggs (but see e. g. nestbox<br />

research in orange monocultures in eastern Spain,<br />

Monrós et al. 1999), in other areas people collect<br />

nestboxes to adorn houses and gardens, and in<br />

Kenya people search nestboxes to collect honey.<br />

There are several potential consequences of<br />

research teams failing to use the same nestbox<br />

design. For example, different nestbox types<br />

necessitate the use of different devices for capturing<br />

birds. A box opened through the roof (e.g.<br />

Wageningen box, van Balen 1984) probably will<br />

require a different trapping device than a box<br />

opened through a front door (Schwegler type, see<br />

www.schwegler-natur.de, Blondel 1985) (Gosler<br />

2004, M. Lambrechts pers. obs.). The use of distinct<br />

types of boxes may also influence the time<br />

devoted to measuring or manipulating certain<br />

traits such as nest characteristics. There may be<br />

biological consequences of the different capture or<br />

monitoring techniques required for each type of<br />

box, since some may be more stressful to the captured<br />

birds than others. Furthermore, avian personalities<br />

or other phenotypic traits may differ<br />

between studies because certain types of nestbox<br />

may influence whether they attract relatively<br />

“shy” or “bold” individuals (see Garamszegi et al.<br />

2009). In addition, the activity of researchers, such<br />

as the frequency of box-monitoring, parent capture<br />

and release behaviour (i.e. relative to chick<br />

age, and using mist nets or box traps), may all<br />

affect the level of desertion or the rate at which<br />

parents feed their chicks (and hence growth rates<br />

and offspring condition). Direct researcher effects<br />

may be limited in populations in which adults are<br />

more resistant to disturbance, as a result of conditioning<br />

(where individuals become habituated to<br />

nestbox design-related research methods over<br />

their lifetimes), or even potentially, and perhaps<br />

more interestingly, by selection over generations<br />

(e.g. Mrller 2010).<br />

Wooden nestboxes have to be treated more<br />

frequently with chemicals than those built from<br />

concrete or a mix of wood and concrete (e.g.<br />

Schwegler boxes), and may also have to be<br />

replaced more frequently. In long-term studies,<br />

replacement boxes should be erected in the same<br />

exact location as the previous box or else there<br />

may be a change in their local environment, for<br />

instance changing the risk of predation (e.g.<br />

Sonerud 1989, Sorace et al. 2004) or exposure to<br />

weather conditions (e.g. Goodenough et al. 2008).<br />

However, keeping the box environment un -<br />

changed may not be possible in commercial<br />

forests due to frequent habitat alterations by forest<br />

practices (see below).<br />

Some unwanted variation in experimental<br />

design complicating data interpretation could be<br />

avoided using consistent nestbox characteristics<br />

across study populations or periods (e.g. “exact”<br />

replication of nestbox design, Hurlbert 1984,<br />

Hairston 1989, Kelly 2006). For instance, if different<br />

study sites containing identical nestboxes, differ<br />

significantly in average clutch size, as is the<br />

case in Blue Tits (e.g. Isenmann 1987), it is unlikely<br />

that the smaller clutch sizes were physically<br />

constrained by the size of the nest-cup (e.g.<br />

Slagsvold 1989), assuming that geographic variation<br />

in clutch size does not result from spatial variation<br />

in monitoring protocols. However, the same<br />

nestbox set up does not allow us to exclude the<br />

hypothesis that the size of the nest cup, physically<br />

limited by the size of the nestbox chamber,<br />

limits the production of clutches larger than those<br />

observed in the nestboxes used. Perhaps a<br />

design replicating more than one nestbox type,<br />

and standardising monitoring protocols, across<br />

study populations or periods could better test<br />

some hypotheses dealing with causal relationships<br />

between nestbox design and life-history<br />

traits.<br />

4. Variation in nestbox characteristics is often<br />

ignored in statistical analyses<br />

Nestbox properties may act as confounding<br />

factors that should be considered as covariates in<br />

statistical analyses of variation in individual or<br />

population characteristics. However, most previous<br />

comparative studies of phenotypic traits in<br />

secondary avian hole-nesters have not included<br />

nestbox design as a factor in statistical analyses<br />

(e.g. Järvinen 1989, Sanz 1998, 2003, Encabo et al.<br />

2002, Both et al. 2004). This was apparently<br />

because variation in nestbox characteristics was<br />

assumed to constitute random noise or because


information on nestbox design was unavailable.<br />

For instance, the nestboxes used since the 1950s to<br />

study tits in Wytham Wood, Oxford, were altered<br />

in the 1970s to make them more resistant to damage<br />

from Great Spotted Woodpeckers Dendrocopos<br />

major and to significantly reduce the impact of<br />

weasels Mustela nivalis entering nestboxes (Perrins<br />

1979). These changes in how nestboxes were constructed<br />

(e.g. first from wood then a mixture of<br />

wood and concrete) and positioned (initially<br />

attached directly on the trunks, later removed<br />

from the trunks and suspended from branches)<br />

resulted in a rapid temporal shift in life-history<br />

traits in Great Tits both at the individual and population<br />

level (McCleery et al. 1996, Julliard et al.<br />

1997), a finding apparently ignored in more recent<br />

analyses of the long-term database from Oxford.<br />

The biological consequences of variation in nestbox<br />

design or position could be investigated if<br />

future publications would provide details on nestbox<br />

characteristics. The non-exhaustive list of<br />

designs and positions of nestboxes presented in<br />

Table 3 could thus be exploited in future comparative<br />

analyses to test for the relative importance of<br />

nestbox design and other environmental factors<br />

(e.g. population density or composition, presence<br />

of other organisms) in the expression of individual<br />

life-history traits. Perhaps variation in nestbox<br />

characteristics (e.g. nest-chamber size) across most<br />

study sites used are often too narrow to become<br />

significant confounding factors in many comparative<br />

analyses that combine data from different<br />

research teams. However, this does not exclude<br />

the possibility that variation in nestbox design<br />

may become a significant confounding variable<br />

when study systems would better reflect the<br />

observed variation in characteristics of exploited<br />

natural or excavated cavities (see Introduction).<br />

CONSTRAINTS ON REPLICATION OF ‘NEST-<br />

BOX DESIGN — ENVIRONMENT’ INTERAC-<br />

TIONS<br />

There are many environmental factors associated<br />

with nesting cavities that affect the life-history<br />

or phenotypic traits of adults or offspring<br />

directly or result from an interaction with the<br />

characteristics or position of the nest cavity. For<br />

instance, exposure to wind may be a dominant<br />

factor in coastal sites, whereas in mountainous<br />

terrain or northern regions, variation in altitude<br />

and solar exposure may create major environmental<br />

differences over small distances. Moreover, the<br />

Design of artificial nestboxes 9<br />

continual growth of trees and forests means that<br />

the environment can change significantly during<br />

long-term investigations at the same study site.<br />

Forest management practices, particularly the<br />

removal of old or dead trees that contain excavated<br />

or natural holes, will have major effects on the<br />

bird species present due to rapid changes in cavity<br />

availability, which may influence other biological<br />

interactions at intraspecific and interspecific<br />

levels (e.g. Newton 1994, Quine et al. 2007, Webb<br />

et al. 2007, Wesołowski 2007, Camprodon et al.<br />

2008, Cornelius et al. 2008, Blondel et al. 2010).<br />

Habitats shared with humans (e.g. city parks, suburban<br />

gardens) during the breeding season may<br />

be more likely to be occupied by individuals not<br />

disturbed by the presence of human activity<br />

(Remacha & Delgado 2009, Mrller 2010). The fact<br />

that characteristics of the habitat and densities of<br />

excavators and secondary hole-nesters may be<br />

influenced by anthropogenic activities means that<br />

the characteristics of natural cavities used may not<br />

(always) mirror the situation in areas that are relatively<br />

unaffected by humans, where they still<br />

exist. Black-capped Chickadees Poecile atricapillus,<br />

for example, will readily utilize nestboxes in urban<br />

landscapes where natural cavities are scarce, and<br />

even accept fairly unusual nesting substrates (e.g.<br />

hollow fenceposts, Smith 1991). This same species<br />

shows low acceptance of these same nestboxes in<br />

mature forests where ample natural nesting sites<br />

exist (K. Otter, unpublished data). The same is<br />

true for Willow Tits Poecile montanus, which do not<br />

accept nestboxes in northern Finland (i.e. they<br />

excavate new holes in decaying stumps each<br />

year, Orell & Ojanen 1983), but readily use<br />

special nestboxes filled with coarse saw-dust<br />

in southern Sweden (von Brömssen & Jansson<br />

1980). Thus studies of birds nesting in cavities<br />

in anthropogenically modified habitat may<br />

not be an ideal basis for generalisations about<br />

the best design, placement and management of<br />

nestboxes. Thus, there are limits to replicating<br />

studies in different areas and to what can be<br />

and should be included in the description of the<br />

study.<br />

Perhaps the existence of logistic constraints on<br />

exactly replicated research in free-ranging populations<br />

may justify the use of experiments in seminatural<br />

conditions better controlling for possible<br />

interactions between nestbox characteristics and<br />

the social or physical environment surrounding<br />

the boxes (e.g. Kempenaers & Dhondt 1991, Velky<br />

et al. 2010, but see Lambrechts et al. 1999). The recommendations<br />

presented below are intended to


10 M. M. Lambrechts et al.<br />

be a minimum list, and the main purpose of the<br />

list is to reduce the likelihood that differences<br />

between studies are not an artefact of differences<br />

in the characteristics of the nestboxes used.<br />

Authors are therefore urged to describe all those<br />

aspects of their study sites they consider relevant<br />

in comparison to other sites.<br />

List of recommendations<br />

We urge authors, referees and editors to ensure<br />

that the following information is accessible or provided<br />

in future publications, or at least as an<br />

online supplement:<br />

1. Nestbox dimensions (e.g. Table 3). Include a<br />

minimum amount of information on nestbox<br />

design, including size and position of the entrance<br />

hole, thickness and material of nestbox walls, and<br />

width, breath, and height of the internal chamber;<br />

2. Location of nestboxes. Report the position of<br />

nestboxes (e.g. placed against tree trunks or hanging<br />

from a branch attached to a cable or metal<br />

hook), including height, supporting structure<br />

(tree, wall, post), orientation, the average distance<br />

between neighbouring boxes and their density<br />

(number of boxes per ha);<br />

3. Maintenance procedures of nestboxes. Report<br />

whether and when old nests are removed, and<br />

whether nestboxes or nests are treated to remove<br />

parasites or microorganisms (e.g. pesticides,<br />

micro-wave treatments, rot prevention chemicals).<br />

Perhaps most importantly, researchers<br />

should report whether nestboxes are cleaned<br />

out before each new nesting season (e.g. to<br />

remove winter nests from secondary hole-nesting<br />

mammals). The use of weather protection devices<br />

should also be mentioned. It should be noted if<br />

boxes are removed from the study sites between<br />

each breeding season. Because old or damaged<br />

boxes are often replaced by new boxes, a study site<br />

can contain nestboxes differing widely in age,<br />

which should be noted.<br />

4. Protection of nestbox occupants. If the nestboxes<br />

incorporate any anti-predator features, including<br />

devices to reinforce entrance holes (e.g. metal<br />

plates), or to prevent predators from entering the<br />

nestbox chamber (e.g. pipes to lengthen the<br />

entrance) they should be mentioned.<br />

5. Inspection of nestboxes. Report how frequently<br />

(and for how long) nestboxes are opened to allow<br />

the contents to be inspected, whether they open<br />

at the front, side or the roof, and whether any<br />

nestbox traps are used to capture the occupants.<br />

In addition, it would be useful to know how<br />

long the study has been operating in this way, the<br />

overall level of desertion of reproductive attempts<br />

and the degree of adult and natal philopatry, as<br />

these will all potentially contribute to the strength<br />

of conditioning or selection on the breeding<br />

adults at the site.<br />

6. Study-site characteristics. Report abiotic and<br />

biotic factors at local study sites which could conceivably<br />

affect ‘nestbox-environment’ interactions.<br />

Report the frequency of artificial holes relative<br />

to the frequency of natural or excavated holes,<br />

or if this is impossible (e.g. for holes >10 m high or<br />

in forest with difficult topography or dense<br />

understory) provide at least data about the dominant<br />

tree species, age of tree stands, and the proportion<br />

of nestboxes occupied. The availability of<br />

similar or different nestboxes in the general geographic<br />

area should also be given if possible, as<br />

people other than researchers erect nestboxes in<br />

many countries. To assess the representativeness<br />

of the biological samples taken from the nestboxes,<br />

a reference survey to assess properties of natural<br />

holes could be carried out in each nestbox plot.<br />

Research is needed through which information<br />

on the phenotypic traits of interest is obtained<br />

from breeders in natural or excavated holes and<br />

these traits are compared with that of birds breeding<br />

in nestboxes. It should also be noted whether<br />

there are any particular habitat management practices<br />

(e.g. selective logging of trees) or patterns of<br />

habitat use (common or occasional recreational<br />

areas during the breeding season), which could<br />

affect the birds’ biology.<br />

PERSPECTIVES<br />

Future research projects dealing with biological<br />

consequences of variation in one or more nestbox<br />

characteristics could either focus on preferences<br />

of birds for particular nestboxes or on the<br />

biological consequences of the choice of particular<br />

types of boxes. For instance, insectivorous birds<br />

which are capable of laying many eggs may prefer<br />

to breed in large nestboxes if hole size provides<br />

reliable information about tree trunk diameter<br />

and canopy size, which could influence the availability<br />

of defoliating insects required to rear the<br />

chicks. Birds may reduce their clutch size in small<br />

nestboxes in order to adjust the number of eggs<br />

laid to the size of the nest cup, thereby improving<br />

incubation behaviour, reducing sibling competition<br />

for limiting space within the nestbox-chamber<br />

or reducing problems related to hyperthermia<br />

in hot environments (e.g. van Balen 1984). Testing


these competing hypotheses about nestbox choice<br />

or adjustment of life-history traits after a nestbox<br />

has been accepted will require different types of<br />

experimental design, which have been conducted<br />

or proposed in former investigations (e.g. Löhrl<br />

1973, 1980, García-Navas et al. 2008). Studies looking<br />

at preferences could erect two or more nestbox<br />

types close together, such as on the same tree (e.g.<br />

Bortolotti 1994) , to better control for variation in<br />

environmental factors other than nestbox design.<br />

Quantifying parental or territory characteristics at<br />

the same time may test whether preferences for<br />

particular nestboxes (e.g. of a given orientation)<br />

are adjusted to particular phenotypic characteristics<br />

of the parents or the territory (e.g. dominant<br />

wind direction). Studies looking at the consequences<br />

of occupying a particular nestbox type<br />

while controlling for biases due to nestbox preferences<br />

could allow birds to settle on a territory then<br />

change nestbox types. These field studies should<br />

ideally avoid experimentally induced biases<br />

caused by nest desertion as much as possible.<br />

Research protocols should also be adjusted to the<br />

life-histories of the biological models involved,<br />

which may require preliminary investigations<br />

before adequate experimental protocols can be<br />

performed. For instance, the consequences of differences<br />

in nestbox design for roosting can only be<br />

studied in populations where roosting in nestboxes<br />

has been confirmed (e.g. Dhondt et al. 2010).<br />

Nestbox characteristics (>10), parental phenotypes<br />

(age, behaviour, physiology, morphology,<br />

genetics), habitat charactertistics (e.g. presence of<br />

other organisms, local climate, light conditions,<br />

type of habitat, social factors, resources, population<br />

density and composition) and fitness components<br />

(e.g. laydate, clutch size, egg characteristics,<br />

egg hatching success, brood size, fledging success,<br />

offspring phenotypes) may interact in a complex<br />

manner, so there are ample opportunities for<br />

development of research projects in different<br />

parts of the world aimed to better understand<br />

these complex relationships. What follows is a<br />

short list of topics that could be developed in<br />

future research or education projects.<br />

1. The biological consequences of existing variation<br />

in nestbox design<br />

Different research teams use replicates in nestbox<br />

design that are currently often segregated, so<br />

that biological consequences of existing spatial<br />

variation in nestbox design cannot always be<br />

properly investigated. Existing spatial variation in<br />

nestbox design could be redistributed across study<br />

Design of artificial nestboxes 11<br />

sites so that design replicates become properly<br />

interspersed. For instance, the effect of differences<br />

in nestbox material commonly used (wood versus<br />

a woodconcrete mix) could be investigated in<br />

local study plots following the experimental<br />

designs proposed above (e.g. García-Navas et al.<br />

2008).<br />

2. The biological consequences of nestbox size in<br />

heterogeneous environments<br />

Previous field investigations focusing on the<br />

life-history consequences of nest-chamber size<br />

have usually only compared two nestbox size<br />

classes (e.g. Löhrl 1977, van Balen 1984, Slagsvold<br />

& Amundsen 1992, but see e.g. Moeed & Dawson<br />

1979, Korpimäki 1985) often without taking environmental<br />

or social factors into account. If bigger<br />

nestbox chambers would result in larger broods,<br />

then smaller nest-chambers which cause birds to<br />

produce smaller clutches may improve fledging<br />

success because of a reduction in brood size, especially<br />

in poor habitat or younger forest patches. If<br />

larger boxes would always be preferred regardless<br />

of the richness of the habitat, the hypothesis that<br />

large nestboxes can become severe ecological or<br />

evolutionary traps in poor habitats can be experimentally<br />

tested, both at the individual (Schlaepfer<br />

et al. 2002, Robertson & Hutto 2006) and population<br />

level (Schlaepfer et al. 2002, Mänd et al. 2009).<br />

These investigations require simultaneous<br />

studies of the proximate mechanisms involved in<br />

nestbox choice (e.g. genetic, environmental or historical<br />

basis) and the fitness consequences of the<br />

choice of a particular nestbox type in different<br />

environmental conditions (e.g. many versus few<br />

food resources).<br />

3. The biological consequences of the nestbox<br />

chemical environment<br />

The biological consequences of variation in the<br />

types of wood used for the construction of nestboxes<br />

have to our knowledge not been experimentally<br />

investigated. In North America, Western<br />

Red Cedar Thuja plicata is often advocated for<br />

nestboxes on hobbyist websites. This wood is<br />

commonly used to line trunks and wardrobes due<br />

to the aromatics it omits deterring moths,<br />

and it likely has an effect on insect colonization<br />

of nestboxes as well. The different types of<br />

wood (e.g. oak versus pine versus exotic) and the<br />

chemical compounds they contain may influence<br />

the species assemblage of invertebrates and<br />

microorganisms that colonize nestboxes, and<br />

thereby potentially interact with the avian


12 M. M. Lambrechts et al.<br />

occupants. These effects may be intensified in<br />

older nestboxes that are not cleaned by<br />

researchers or are rarely opened for monitoring.<br />

4. Nestbox design, perceived microclimate and<br />

biological consequences<br />

Several nestbox characteristics, such as wall<br />

thickness, or the material (e.g. García-Navas et al.<br />

2008) or colours used for the construction of<br />

nestboxes, may influence the nature and stability<br />

of the nest microclimate and therefore the functioning<br />

and interactions amongst organisms occupying<br />

these cavities. The nestbox characteristics<br />

which are more likely to insulate parents, eggs<br />

and offspring against these environmental fluctuations<br />

will likely differ across latitudes or altitudes,<br />

which could be investigated with both<br />

observational and experimental approaches, also<br />

within the framework of climate change. If the<br />

presence of old nests favours roosting conditions<br />

in winter (Pinowski et al. 2006), then nestbox<br />

maintenance procedures may influence climatebird<br />

interactions at the time of nestbox occupation<br />

(e.g. García-Navas et al. 2008 for arguments in the<br />

methods).<br />

5. Effects of different combinations of nestbox<br />

characteristics<br />

An experimental design using different nestbox<br />

characteristics as treatments should ideally<br />

alter box characteristics in such a way that<br />

the ‘optimal’ nestbox shape for given individuals,<br />

territories, populations or habitats can be<br />

identified with high precision. This approach<br />

calls for field experiments combining different<br />

nestbox properties to better reflect variation in<br />

natural or excavated holes exploited. It would<br />

require a large increase in the number of nestbox<br />

types to be erected within or across study<br />

plots. As an example, a design combining three<br />

classes in wall thickness, cavity depth and<br />

cavity width (small, intermediate, and large<br />

values), varying independently of each other<br />

among nestboxes, would require 27 different<br />

nestbox types. In addition, each type should be<br />

sufficiently replicated either within or across<br />

study populations for the quantification of<br />

intra-nestbox type (random) variation. These<br />

boxes should ideally be erected “randomly” in a<br />

local plot following the designs A1-A3 described<br />

in Hurlbert (1984) or experimental designs<br />

proposed above. Such an experiment would<br />

provide unique opportunities for the study of<br />

phenotypic plasticity in life-history traits, with<br />

nest-cavity characteristics perhaps to be considered<br />

as physical constraints imposed on the plasticity<br />

of nest building-dependent life-history<br />

traits. Such a project has been conducted before<br />

(Korpimäki 1985).<br />

6. Nestbox design and nest building<br />

Secondary hole-nesters accepting cavities<br />

initially created by other species often have more<br />

complex nests than do primary hole-nesters. If<br />

nests from secondary hole-nesters are adjusted<br />

in response to shortcomings in nest-cavity characteristics,<br />

the consequences of interactions between<br />

nest structure or composition and nestbox<br />

characteristics could also be investigated. For<br />

instance, bigger nests may be built in artificial<br />

nestboxes with a thinner or colder nestbox wall<br />

(e.g. Nager & van Noordwijk 1992), perhaps to<br />

provide more efficient protection against meteorological<br />

fluctuations in colder environments<br />

(Pinowski et al. 2006). Larger nests appear to<br />

be sexually selected in birds in general (e.g.<br />

Soler et al. 1998), and small hole chambers may<br />

prevent the full expression of this phenotypic<br />

trait. Larger nests built in larger/deeper nestboxes<br />

(cf. Mazgajski & Rykowska 2008) may also contain<br />

and develop larger populations of ectoparasites<br />

(e.g. Tripet & Richner 1997) or other invertebrates.<br />

All this suggests that causal relationships between<br />

nestbox characteristics, nest characteristics and<br />

avian characteristics may be complex, deserving<br />

further study.<br />

7. Research protocols, avian selection and conditioning<br />

Different research teams do not always use the<br />

same procedures for catching birds or monitoring<br />

nestbox contents. What are the effects of researchgroup<br />

dependent behaviours on bird populations<br />

breeding or roosting in artificial nestboxes? Do different<br />

regimes of catching and monitoring result<br />

in different levels of brood desertion or condition?<br />

If adults are caught in a nestbox while feeding<br />

chicks, are they more cautious when entering the<br />

nest in the future, relative to birds caught in a<br />

mist-net outside the box? Perhaps these researchgroup<br />

effects may lead to consistent differences in<br />

fitness components across study sites or research<br />

groups. Avian conditioning to researcher effects<br />

over the lifetime of an individual, or selection over<br />

time, with adults that better cope with researcher<br />

disturbance having higher reproductive success<br />

and passing on these personalities to their offspring,<br />

could also be investigated.


8. Increased standardization and communication<br />

With the development of the internet and the<br />

global real-time availability of information across<br />

all researchers, much more attention should be<br />

paid to the construction of standardized protocols<br />

over large geographic areas (e.g., http://golondrinas.cornell.edu).<br />

Project-specific websites and listserves<br />

can help in all aspects of broadly based collaborations,<br />

from standardization of nestbox plans<br />

and construction to the design and execution of<br />

experiments to objectively evaluate changes to<br />

those designs.<br />

ACKNOWLEDGEMENTS<br />

We are grateful to all team members, colleagues<br />

and students for constructive discussions and suggestions.<br />

Jacques Blondel, Patty Gowaty, Kate<br />

Lessells and Tomasz Wesołowski kindly provided<br />

extensive remarks on an earlier version of the<br />

manuscript. Kristina Cockle, Peter Dunn, Paul<br />

Isenmann, Rimvydas JuÓkaitis, Kathy Martin, Eric<br />

Matthysen, Roger Prodon, Michael Schaub, Jaume<br />

Soler-Zurita and Linda Whit tingham sent data on<br />

the design of their nestboxes or indicated interesting<br />

reprints or books.<br />

REFERENCES<br />

Alatalo R. V., Carlson A., Lundberg A. 1988. Nest cavity size<br />

and clutch size of Pied Flycatchers Ficedula hypoleuca breeding<br />

in natural tree-holes. Ornis Scand. 19: 317–319.<br />

Ardia D. R., Perez J. H., Chad E. K., Voss M. A., Clotfelter E. D.<br />

2009. Temperature and life history: experimental heating<br />

leads female tree swallows to modulate egg temperature<br />

and incubation behaviour. J. Anim. Ecol. 78: 4–13.<br />

Ardia D. R., Perez J. H., Clotfelter E. D. 2006. Nest box orientation<br />

affects internal temperature aand nest site selection by<br />

Tree Swallows. J. Field Ornithol. 77: 339–344.<br />

Atienzar F., Barba E., Holleman L. J. M., Belda E. J. 2009.<br />

Nesting habitat requirements and nestling diet in the<br />

Mediterranean populations of Crested Tits Lophophanes<br />

cristatus. Acta Ornithol. 44: 101–108.<br />

Bai M.-L., Mühlenberg M. 2008. Sequential use of holes by<br />

birds breeding in a natural boreal forest in Mongolia. Bird<br />

Study 55: 161–168.<br />

Bai M.-L., Wichmann F., Mühlenberg M. 2005. Nest-site characteristics<br />

of hole-nesting birds in a primeval boreal forest of<br />

Mongolia. Acta Ornithol. 40: 1–14.<br />

Balandrin M. F., Klocke J. A., Wurtele E. S., Bollinger W. H. 1985.<br />

Natural plant chemical: sources of industrial and medicinal<br />

materials. Science 228: 1154–1160.<br />

Barba E., Gil-Delgado J. A. 1990. Competition for nest-boxes<br />

among four vertebrate species: an experimental study in<br />

orange groves. Holarc. Ecol. 13: 183–186.<br />

Baucells J., Camprodon J., Cerdeira J., Vila P. 2003. [Guide of the<br />

nest-boxes and feeders for birds and other vertebrates].<br />

Lynx Edicions, Barcelona.<br />

Design of artificial nestboxes 13<br />

Bednarz J. C., Ripper D., Radley P. M. 2004. Emerging concepts<br />

and research directions in the study of cavity-nesting<br />

birds: keystone ecological processes. Condor 106: 1–4.<br />

Blondel J. 1985. Breeding strategies of the Blue Tit and Coal Tit<br />

(Parus) in mainland and island Mediterranean habitats: a<br />

comparison. J. Anim. Ecol. 54: 531–556.<br />

Blondel J., Aronson J., Bodiou J.-Y., Boeuf G. 2010. The<br />

Mediterranean Region. Biological Diversity in Space and<br />

Time. Second Edition. Oxford University Press.<br />

Blondel J., Thomas D. W., Charmantier A., Perret P., Bourgault<br />

P., Lambrechts M. M. 2006. A thirty-year study of phenotypic<br />

and genetic variation of Blue Tits in Mediterranean<br />

habitat mosaics. BioScience 56: 661–673.<br />

Bortolotti G. R. 1994. Effects of nest-box size on nest-site preference<br />

and reproduction in American kestrels. J. Raptor<br />

Res. 28: 127–133.<br />

Both C., Artemyev A. V., Blaauw B., Cowie R. J., Dekhuijzen A.<br />

J., Eeva T., Enemar A., Gustafsson L., Ivankina E. V.,<br />

Jarvinen A., Metcalfe N. B., Nyholm N. E. I., Potti J.,<br />

Ravussin P. A., Sanz J. J., Silverin B., Slater F. M., Sokolov L.<br />

V., Török J., Winkel W., Wright J., Zang H., Visser M. E.<br />

2004. Large-scale geographical variation confirms that climate<br />

change causes birds to lay earlier. Proc. R. Soc. Lond.<br />

B 271: 1657–1662.<br />

Busse P., Olech B. 1968. [On some problems of birds spending<br />

nights in nestboxes]. Acta Ornithol. 11: 1–26.<br />

Camprodon J., SalvanyB J., Soler-Zurita J. 2008. The abundance<br />

and suitability of tree cavities and heir impact on holenesting<br />

bird populations in beech forests of NE Iberian<br />

Peninsula. Acta Ornithol. 43: 17–31.<br />

Carlson A., Sandström U., Olsson K. 1998. Availability and use<br />

of natural tree holes by cavity nesting birds in a Swedish<br />

deciduous forest. Ardea 86: 109–119.<br />

Chamberlain D. E., Cannon A. R., Toms M. P., Leech D. I.,<br />

Hatchwell B. J., Gaston K. J. 2009. Avian productivity in<br />

urban landscapes: a review and meta-analysis. Ibis 151:<br />

1–18.<br />

Chapuisat M., Oppliger A., Magliano P., Christe P. 2007. Wood<br />

ants use resin to protect themselves against pathogens.<br />

Proc. R. Soc. Lond. B 274: 2013–2017.<br />

Clutton-Brock T. H. (ed.) 1988. Reproductive Success.<br />

University of Chicago Press. Chicago.<br />

Cockle K. L., Bodrati A. A. 2009. Nesting of the Planalto woodcreeper<br />

(Dendrocolaptes platyrostris). Wilson J. Ornithol. 121:<br />

789–795.<br />

Conner R. N. 1977. The effect of tree hardness on woodpecker<br />

nest entrance orientation. Auk 94: 369–370.<br />

Cornelius C., Cockle K., Politi N., Berkunsky I., Sandoval L.,<br />

Ojeda V., Rivera L., Hunter M. Jr., Martin K. 2008. Cavitynesting<br />

birds in Neotropical forests: cavities as a potentially<br />

limiting resource. Ornithol. Neotrop. 19: 253–268.<br />

Czeszczewik D., Walankiewicz W. 2003. Natural nest sites of<br />

the Pied Flycatcher Ficedula hypoleuca in a primeval forest.<br />

Ardea 91: 221–229.<br />

Dawson R. D., Lawrie C. C., O’Brien E. L. 2005. The importance<br />

of microclimate variation in determining size, growth and<br />

survival of avian offspring: experimental evidence from a<br />

cavity nesting passerine. Oecologia 144: 499–507.<br />

Delmée E., Dachy P., Simon P. 1972. Contribution à la biologie<br />

des Mésanges (Paridae) en milieu forestier. Aves 9: 1–80.<br />

Dhondt A. A. 2007. What drives differences between North<br />

American and Eurasian tit studies. In: Otter K. A. (ed.).<br />

Ecology and Behavior of Chickadees and Titmice: An<br />

Integrated Approach. Oxford University Press, pp. 299–<br />

310.<br />

Dhondt A. A., Adriaensen F. 1999. Experiments on competition<br />

between Great and Blue Tit: effects on Blue Tit reproductive<br />

success and population processes. Ostrich 70: 39–48.


14 M. M. Lambrechts et al.<br />

Dhondt A. A., Blondel J., Perret P. 2010. Why do Corsican Blue<br />

Tits Cyanistes caeruleus ogliastrae not use nest boxes for<br />

roosting? J. Ornithol. 151: 95–101.<br />

Drilling N. E., Thompson C. F. 1988. Natal and breeding dispersal<br />

in House Wrens (Troglodytes aedon). Auk 105: 480–491.<br />

East M. L., Perrins C. M. 1988. The effect of nestboxes on breeding<br />

populations of birds in broadleaved temperate woodlands.<br />

Ibis 130: 393–401.<br />

Edington J. M., Edington M. A. 1972. Spatial patterns and habitat<br />

partition in the breeding birds of an upland wood. J.<br />

Anim. Ecol. 41: 331–357.<br />

Eguchi K. 1980. The feeding ecology of the nestling Great Tit,<br />

Parus major minor, in the temperate ever-green broad -<br />

leaved forest. II. With reference to breeding ecology.<br />

Researches on Population Ecology 22: 284–300.<br />

Encabo S. I., Barba E., Gil-Delgado J. A., Monrós J. S. 2002.<br />

Geographical variation in egg size of the Great Tit Parus<br />

major: a new perspective. Ibis 144: 623–631.<br />

Evans L. E., Ardia D. R., Flux J. E. C. 2009. Breeding synchrony<br />

through social stimulation in a spatially segregated<br />

population of European Starlings. Anim. Behav. 78: 671–<br />

675.<br />

Finch D. M. 1989. Relationships of surrounding riparian habitat<br />

to nest-box use and reproductive outcome in House<br />

Wrens. Condor 91: 848–859.<br />

Garamszegi L. Z., Eens M., Török J. 2009. Behavioural syndromes<br />

and trappability in free-living collared flycatchers,<br />

Ficedula albicollis. Anim. Behav. 77: 803–812.<br />

García-Navas V., Arroyo L., Sanz J. J., Díaz M. 2008. Effect of<br />

nestbox type on occupancy and breeding biology of Tree<br />

Sparrows Passer montanus in central Spain. Ibis 150: 356–<br />

364.<br />

Gill F. B. 2007. Ornithology. W. H. Freeman & Co, New York.<br />

Goodenough A. E., Hart A.G., Elliot S. L. 2008. Variation in offspring<br />

quality with cavity orientation in the Great Tit.<br />

Ethol. Ecol. Evol. 20: 375–389.<br />

Gosler A. 2004. Birds in the hand. In: Sutherland W. J., Newton<br />

I., Green R. E. (eds). 2004. Bird Ecology and Conservation:<br />

a handbook of techniques. Oxford University Press, pp.<br />

85–118.<br />

Griffith S. C., Pryke S. R., Mariette M. 2008. Use of nest-boxes<br />

by the Zebra Finch (Taeniopygia guttata): implications for<br />

reproductive success and research. Emu 108: 311–319.<br />

Gustafsson L., Nilsson S. G. 1985. Clutch size and breeding success<br />

of Pied and Collared Flycatchers Ficedula spp. in nestboxes<br />

of different sizes. Ibis 127: 380–385.<br />

Haartman L. von 1969. The nesting habits of Finnish birds.<br />

Comm. Biologicae 32: 1–187. Societas scientiarum Fennica,<br />

Helsinki.<br />

Hairston N. G. 1989. Ecological Experiments. Purpose, Design,<br />

and Execution. Cambridge University Press, Cambridge.<br />

Hebda G. 2007. Characteristics of natural nest sites of the Blue<br />

Tits Cyanistes caeruleus, in oak hornbeam stands of the<br />

Odra River valley (SW Poland). Hole-breeding Passerines<br />

Meeting, book of abstract, p. 35.<br />

Heeb P., Kölliker M., Richner H. 2000. Bird-ectoparasite interactions,<br />

nest humidity, and ectoparasite community structure.<br />

Ecology 81: 958–968.<br />

Holveck M.-J., Doutrelant C., Guerreiro R., Perret P., Gomez D.,<br />

Grégoire A. (in press). Can eggs in a cavity be a female<br />

secondary sexual signal? Male nest visits and modelling<br />

of egg visual discrimination in blue tits. Biology Letters.<br />

Hurlbert S. H. 1984. Pseudoreplication and the design of<br />

ecological field experiments. Ecol. Monographs 54: 187–<br />

211.<br />

Isenmann P. 1987. Geographic variation in clutch size: the<br />

example of the Blue Tit (Parus caeruleus) in the Mediter -<br />

ranean area. Vogelwarte 34: 93–99.<br />

Jackson J. A., Jackson B. J. S. 2004. Ecological relationships<br />

between fungi and woodpecker cavity sites. Condor 106:<br />

37–49.<br />

Janzen D. H. 1978. Complications in interpreting the chemical<br />

defences of trees against tropical arboreal plant-eating vertebrates.<br />

In: Montgomery G. G. (ed.). The Ecology of Arbo -<br />

real Folivores. The Symposia of the National Zool ogical<br />

Park, Smithsonian Institution, Washington DC, pp. 73–84.<br />

Järvinen A. 1989. Clutch-size variation in the Pied Flycatcher<br />

Ficedula hypoleuca. Ibis 131: 572–577.<br />

Johnson L. S. 1996. Removal of old nest material from the nesting<br />

sites of House Wrens: effects on nest site attrac-tiveness<br />

and ectoparasite loads. J. Field Ornithol. 67: 212–221.<br />

Johnson L. S., Kermott L. S. 1994. Nesting success of cavitynesting<br />

birds using natural cavities. J. Field Ornithol. 65:<br />

36–51.<br />

Julliard R., McCleery R. H., Clobert J., Perrins C. M. 1997.<br />

Phenotypic adjustment of clutch size due to nest predation<br />

in the Great Tit. Ecology 78: 394–404.<br />

Karlsson J., Nilsson S. G. 1977. The influence of nest-box area<br />

on clutch size in some hole-nesting passerines. Ibis 119:<br />

207–211.<br />

Kelly C. D. 2006. Replicating empirical research in behavioral<br />

ecology: how and why it should be done but rarely ever is.<br />

Q. Review Biol. 81: 221–236.<br />

Kempenaers B., Dhondt A. A. 1991. Competition between blue<br />

and great tit for roosting sites in winter – an aviary experiment.<br />

Ornis Scand. 22: 73–75.<br />

Kibler L. F. 1969. The establishment and maintenance of a<br />

Bluebird nest-box project. A review and commentary. Bird-<br />

Banding 40: 114–129.<br />

Kluijver H. N. 1951. The population ecology of the Great Tit,<br />

Parus m. major L. Ardea 39: 1–135.<br />

Koch A. J., Munks S. A., Driscoll D., Kirkpatrick J. B. 2008. Does<br />

hollow occurrence vary with forest type? A case study in<br />

wet and dry Eucalyptus obliqua forest. Forest Ecol. Manage.<br />

255: 3938–3951.<br />

Koenig W. D., Gowaty P. A., Dickinson J. L. 1992. Boxes, barns,<br />

and bridges: confounding factors or exceptional opportunities<br />

in ecological studies? Oikos 63: 305–308.<br />

Korpimäki E. 1985. Clutch size and breeding success in relation<br />

to nest-box size in Tengmalm’s Owl Aegolius funereus.<br />

Holarctic Ecol. 8: 175–180.<br />

Lack D. 1955. British tits (Parus spp.) in nesting boxes. Ardea 43:<br />

50–84.<br />

Lambrechts M. M., Perret P., Maistre M., Blondel J. 1999. Do<br />

experiments with captive non-domesticated animals make<br />

sense without population field studies? A case study with<br />

blue tits’ breeding time. Proc. R. Soc. Lond. B 256: 1311–<br />

1315.<br />

Lambrechts M. M., Schatz B., Bourgault P. 2008. Interactions<br />

between ants and breeding Paridae in two distinct<br />

Corsican oak habitats. Folia Zool. 57: 264–268.<br />

Lesiński G. 2000. Location of bird nests in vertical metal pipes<br />

in suburban built-up area in Warsaw. Acta Ornithol. 35:<br />

211–214.<br />

Liedvogel M., Szulkin M., Knowles S. C. L., Wood M. J.,<br />

Sheldon B. C. 2009. Phenotypic correlates of clock gene<br />

variation in a wild blue tit population: evidence for a role<br />

in seasonal timing. Mol. Ecol. 18: 2444–2456.<br />

Llambias P. E., Fernández G. J. 2009. Effects of nestboxes on the<br />

breeding biology of Southern House Wrens Troglodytes<br />

aedon bonariae in the southern temperate zone. Ibis 151:<br />

113–121.<br />

Löhrl H. 1970. Unterschiedliche Bruthöhlenansprüche von<br />

Meisenarten und Kleibern als Beitrag zum Nischenpro -<br />

blem. Verhandlungsbericht der Deutchen Zoologischen<br />

Gesellschaft 64: 314–317.


Löhrl H. 1973. Einfluß des Brutraumfläche auf die Gelegegröße<br />

der Kohlmeise (Parus major). J. Ornithol. 114: 339–347.<br />

Löhrl H. 1977. Nistökologische und ethologische Anpas -<br />

sungserscheinungen bei Höhlenbrütern. Vogelwarte 29:<br />

92–101.<br />

Löhrl H. 1980. Weitere Versuche zur Frage “Brutraum und<br />

Gelegegröße bei der Kohlmeise (Parus major). J. Ornithol.<br />

121: 403–405.<br />

Lundberg A., Alatalo R. V. 1992. The Pied Flycatcher. T. & A. D.<br />

Poyser Ltd., London.<br />

Mainwaring M. C., Hartley I. R. 2008. Covering nest boxes with<br />

wire mesh reduces Great Spotted Woodpecker Dendrocopos<br />

major predation of Blue Tit Cyanistes caeruleus nestlings,<br />

Lancashire, England. Conservation Evidence 5: 45–46.<br />

Mänd R., Leivits A., Leivits M., Rodenhouse N. L. 2009.<br />

Provision of nestboxes raises the breeding density of Great<br />

Tits Parus major equally in coniferous and deciduous<br />

woodland. Ibis 151: 487–492.<br />

Mappes T., Mappes J., Kotiaho J. 1994. Ectoparasites, nest<br />

choice and breeding success in the Pied Flycatcher.<br />

Oecologia 98: 147–149.<br />

Martin K., Eadie J. M. 1999. Nest webs: a community-wide<br />

approach to the management and conservation of cavitynesting<br />

forest birds. Forest Ecol. Manage. 115: 243–257.<br />

Martin K., Norris A. R. 2007. Life in the small-bodied cavitynester<br />

guild: Demography of sympatric mountain and<br />

Black-capped Chickadees with nest web communities<br />

under changing habitat conditions. In: Otter K. A. (ed.).<br />

Ecology and Behavior of Chickadees and Titmice. An<br />

Integrated Approach. Oxford University Press, pp. 111–<br />

130.<br />

Massoni V., Winkler D. W., Reboreda J. C. 2006. Brood parasitism<br />

of White-rumped Swallows by Shiny Cowbirds. J.<br />

Field Ornithol. 77: 80–84.<br />

Matsuoka S. 2008. Wood hardness in nest trees of the Great<br />

Spotted Woodpecker Dendrocopos major. Ornithol. Sci. 7:<br />

59–66.<br />

Mazgajski T. D. 2007a. Effect of old nest material on nest site<br />

selection and breeding parameters in secondary hole<br />

nesters – a review. Acta Ornithol. 42: 1–14.<br />

Mazgajski T. D. 2007b. Nest hole age decreases nest site attractiveness<br />

for the European Starling Sturnus vulgaris. Ornis<br />

Fennica 84: 32–38.<br />

Mazgajski T. D. 2008. Hole using: adaptations and constraints.<br />

Acta Ornithol. 43: 1–2.<br />

Mazgajski T. D., Rykowska Z. 2008. Dependence of nest mass<br />

on nest hole depth in the Great Tit Parus major. Acta<br />

Ornithol. 43: 49–55.<br />

McCleery R. H., Clobert J., Julliard R., Perrins C. M. 1996. Nest<br />

predation and delayed cost of reproduction in the Great<br />

Tit. J. Anim. Ecol. 65: 96–104.<br />

Mennerat A., Mirleau P., Blondel J., Perret P., Lambrechts M. M.,<br />

Heeb P. 2009. Aromatic plants in nests of the Blue Tit<br />

Cyanistes caeruleus protect chicks from bacteria. Oecologia<br />

161: 849–855.<br />

Mennill D. J., Ratcliffe L. M. 2004. Nest cavity orientation in<br />

Black-capped Chickadees Poecile atricapillus: do the<br />

acoustic properties of cavities influence sound reception in<br />

the nest and extra-pair matings? J. Avian Biol. 35: 477–<br />

482.<br />

Mertens J. A. L. 1977. Thermal conditions for successful breeding<br />

in Great Tits (Parus major L.). I. Relation of growth and<br />

development of temperature regulation in nestling Great<br />

Tits. Oecologia 28: 1–29.<br />

Mertens J. A. L. 1980. The energy requirements for incubation<br />

in Great Tits and other bird species. Ardea 68: 185–192.<br />

Michelsons H. A. 1958. [Report on the overall results on attracting<br />

small forest hole-nesting birds in Latvian SSR[. In:<br />

Design of artificial nestboxes 15<br />

[Attraction of hole-nesting birds valuable for Latvian<br />

forests]. Proceedings of the Institute VI. Academy of<br />

Sciences of the Latvian SSR Press, Riga, pp. 1–72.<br />

Miller K. E. 2002. Nesting success of the Great Crested<br />

Flycatcher in nest boxes and in tree cavities: are nest boxes<br />

safer from nest predation? Wilson Bull. 114: 179–185.<br />

Moeed A., Dawson D. G. 1979. Breeding of Starlings (Sturnus<br />

vulgaris) in nest boxes of various types. New Zealand J.<br />

Zool. 6: 613–618.<br />

Mrller A. P. 1989. Parasites, predators and nest boxes: facts and<br />

artefacts in nest box studies of birds? Oikos 56: 421–423.<br />

Mrller A. P. 1992. Nest boxes and the scientific rigour of experimental<br />

studies. Oikos 63: 309–311.<br />

Mrller A. P. 2010. Interspecific variation in fear responses predicts<br />

urbanization in birds. Behav. Ecol. 21: 365–371.<br />

Monrós J. S., Gómez J., Encabo S. I., Bradt S. 1999. Open nesting<br />

in Great Tits Parus major. Ardeola 46: 89–91.<br />

Moreno J., Lobato E., Merino S., Martínez-de la Puente J. 2008.<br />

Blue-green eggs in Pied Flycatchers: an experimental<br />

demonstration that a supernormal stimulus elicits<br />

improved nestling condition. Ethology 114: 1078–1083.<br />

Moreno J., Merino S., Lobato E., Rodríguez-Gironés M. A.,<br />

Vásquez R. A. 2007. Sexual dimorphism and parental roles<br />

in the Thorn-tailed Rayadito (Furnariidae). Condor 109:<br />

312–320.<br />

Moreno J., Merino S., Vásquez R. A., Armesto J. J. 2005.<br />

Breeding biology of the thorn-tailed rayadito (Furnariidae)<br />

in south-temperate rainforests of Chile. Condor 107: 69–<br />

77.<br />

Moreno J., Morales J., Lobato E., Merino S., Tomás G.,<br />

Martínez-de la Puente J. 2006. More colourful eggs induce<br />

a higher relative parental investment in the Pied<br />

Flycatcher Ficedula hypoleuca: a cross-fostering experiment.<br />

J. Avian Biol. 37: 555–560.<br />

Nager R. G., van Noordwijk A. J. 1992. Energetic limitation in<br />

the egg-laying period of Great Tits. Proc. R. Soc. Lond. B<br />

249: 259–263.<br />

Newton I. (ed.). 1989. Lifetime Reproduction in Birds.<br />

Academic Press. London.<br />

Newton I. 1994. The role of nest sites in limiting the numbers<br />

of hole-nesting birds: a review. Biol. Conserv. 70: 265–276.<br />

Nilsson J. F., Stjernman M., Nillson J. A. 2008. Experimental<br />

reduction of incubation temperature affects both nestling<br />

and adult blue tits Cyanistes caeruleus. J. Avian Biol. 39:<br />

553–559.<br />

Nilsson S. G. 1975. [Clutch size and breeding success of birds in<br />

nest boxes and natural cavities]. VDr FDgelvärld 34:<br />

207–211.<br />

Nilsson S. G. 1984. The evolution of nest-site selection among<br />

hole-nesting birds: the importance of nest predation and<br />

competition. Ornis Scand. 15: 167–175.<br />

Ojeda V. S., Suarez M. L., Kitzberger T. 2007. Crown dieback<br />

events as key processes creating cavity habitat for<br />

Magellanic Woodpeckers. Austral Ecol. 32: 436–445.<br />

Orell M., Ojanen M. 1983. Breeding biology and population<br />

dynamics in the Willow Tit Parus monatnus. Ann. Zool.<br />

Fenn. 20: 90–114.<br />

Orell M., Rytkönen S., Ilomäki K. 1993. Do Pied Flycatchers<br />

prefer nest boxes with old nest material? Ann. Zool. Fenn.<br />

30: 313–316.<br />

Pacejka A. J., Thompson C. F. 1996. Does removal of old nests<br />

from nestboxes by researchers affect mite populations in<br />

subsequent nests of House Wrens? J. Field Ornithol. 67:<br />

558–564.<br />

Perrins C. M. 1979. British Tits. Collins, London.<br />

Pikula J., Beklova M. 1980. The nesting niches of the species of<br />

the genus Parus nesting in Czechoslovakia. Folia Zool. 29:<br />

343–355.


16 M. M. Lambrechts et al.<br />

Pinowski J., Haman A., Jerzak L., Pinowska B., Barkowska M.,<br />

Grodzki A., Haman K. 2006. The thermal properties of<br />

some nests of the Eurasian Tree Sparrow Passer montanus. J.<br />

Therm. Biol. 31: 573–581.<br />

Purcell K. L., Verner J., Oring L. W. 1997. A comparison of the<br />

breeding ecology of birds nesting in boxes and tree cavities.<br />

Auk 114: 646–656.<br />

Quine C. P., Fuller R. J., Smith K. W., Grice P. V. 2007. Stand<br />

management: a threat or opportunity for birds in British<br />

woodlands? Ibis 149: 161–174.<br />

Remacha C., Delgado J. A. 2009. Spatial nest-box selection of<br />

cavity-nesting bird species in response to proximity to<br />

recreational infrastructures. Landscape Urban Plan. 93:<br />

46–53.<br />

Remm J., Lőhmus A., Remm K. 2006. Tree cavities in riverine<br />

forests: what determines their occurrence and use by holenesting<br />

passerines? Forest Ecol. Manage. 221: 267–277.<br />

Rendell W. B., Robertson R. J. 1989. Nest-site characteristics,<br />

reproductive success and cavity availability for tree swallows<br />

breeding in natural cavities. Condor 91: 875–885.<br />

Rendell W. B., Robertson R. J. 1994. Cavity-entrance orientation<br />

and nest-site use by secondary hole-nesting birds. J. Field<br />

Ornithol. 65: 27–35.<br />

Riddington R., Gosler A. G. 1995. Differences in reproductive<br />

success and parental qualities between habitats in the<br />

Great Tit Parus major. Ibis 137: 371–378.<br />

Robertson B. A., Hutto R. L. 2006. A framework for understanding<br />

ecological traps and an evaluation of existing evidence.<br />

Ecology 87: 1075–1085.<br />

Rytkönen S., Lehtonen R., Orell M. 1998. Breeding Great Tits<br />

Parus major avoid nestboxes infested with fleas. Ibis 140:<br />

687–690.<br />

Sanz J. J. 1998. Effects of geographic location and habitat on<br />

breeding parameters of Great Tits. Auk 115: 1034–1051.<br />

Sanz J. J. 2003. Large-scale effect of climate change on breeding<br />

performance of Pied Flycatchers in Western Europe.<br />

Ecography 26: 45–50.<br />

Schepps J., Lohr S., Martin T. E. 1999. Does tree hardness influence<br />

nest-tree selection by primary cavity nesters? Auk<br />

116: 658–665.<br />

Schlaepfer M. A., Runge M. C., Sherman P. W. 2002. Ecological<br />

and evolutionary traps. Trends Ecol. Evol. 17: 474–480.<br />

Sengupta S. 1981. Adaptive significance of the use of margosa<br />

leaves in nests of the House Sparrows Passer domesticus.<br />

Emu 81: 114–115.<br />

Seppänen J.-T., Forsman J. T. 2007. Interspecific social learning:<br />

novel preference can be acquired from a competing<br />

species. Curr. Biol. 17: 1248–1252.<br />

Sipponen A., Peltola R., Jokinen J. J., Laitinen K., Lohi J., Rautio<br />

M., Männistö M., Sipponen P., Lounatmaa K. 2009. Effects<br />

of Norway Spruce (Picea abies) resin on cell wall and cell<br />

membrane of Staphylococcus aureus. Ultrastruct. Pathol. 33:<br />

128–135.<br />

Skwarska J. A., Kaliński A., Wawrzyniak J., Bańbura J. 2009.<br />

Opportunity makes a predator: Great Spotted<br />

Woodpecker predation on tit broods depends on nest box<br />

design. Ornis Fennica 86: 109–112.<br />

Slagsvold T. 1975. Competition between the Great Tit Parus<br />

major and the Pied Flycatcher Ficedula hypoleuca in the<br />

breeding season. Ornis Scand. 6: 179–190.<br />

Slagsvold T. 1987. Nest site preference and clutch size in the<br />

Pied Flycatcher Ficedula hypoleuca. Ornis Scand. 18:<br />

189–197.<br />

Slagsvold T. 1989. Experiments on clutch size and nest size in<br />

passerine birds. Oecologia 80: 297–302.<br />

Slagsvold T., Amundsen T. 1992. Do Great Tits adjust hatching<br />

spread, egg size and offspring sex ratio to changes in<br />

clutch size? J. Anim. Ecol. 61: 249–258.<br />

Slagsvold T., Wiebe K. L. 2007. Learning the ecological niche.<br />

Proc. R. Soc. Lond. B 274: 19–23.<br />

Smith S. M. 1991. The Black-Capped Chickadee: Behavioral<br />

Ecology and Natural History. Cornell University Press,<br />

Ithaca, New York.<br />

Soler J. J., Mrller A. P., Soler M. 1998. Nest building, sexual<br />

selection and parental investment. Evol. Ecol. 12: 427–<br />

441.<br />

Sonerud G. A. 1989. Reduced predation by Pine Martens on<br />

nest of Tengmalm’s Owl in relocated boxes. Anim. Behav.<br />

37: 332–334.<br />

Sorace A., Carere C. 1996. Occupation and breeding parameters<br />

in the Great Tit Parus major and in the Italian Sparrow<br />

Passer italiae in nestboxes of different size. Ornis Svecica 6:<br />

173–177.<br />

Sorace A., Petrassi F., Consiglio C. 2004. Long-distance relocation<br />

of nestboxes reduces nest predation by Pine Marten<br />

Martes martes. Bird Study 51: 119–124.<br />

Tomás G., Merino S., Martínez-de la Puente, Moreno J.,<br />

Morales J., Lobato E. 2008. A simple trapping method to<br />

estimate abundances of blood-sucking flying insects in<br />

avian nests. Anim. Behav. 75: 723–729.<br />

Tripet F., Richner H. 1997. The coevolutionary potential of<br />

a ‘generalist’ parasite, the hen flea Ceratophyllus gallinae.<br />

Parasitol. 115: 419–427.<br />

Tryjanowski P., Flux J. E. C., Sparks T. H. 2006. Date of breeding<br />

of the Starling Sturnus vulgaris in New Zealand is related to<br />

El NiZo Southern Oscillation. Austral Ecol. 31: 634–637.<br />

van Balen J. H. 1984. The relationship between nest-box size,<br />

occupation and breeding parameters of the Great Tit Parus<br />

major and some other hole-nesting species. Ardea 72:<br />

163–175.<br />

van Balen J. H., Booy C. J. H., Franeker van J. A., Osieck E. R.<br />

1982. Studies of hole-nesting birds in natural nest sites. 1.<br />

Availability and occupation of natural nest sites. Ardea 70:<br />

1–24.<br />

von Brömssen A., Jansson C. 1980. Effects of food addition to<br />

Willow Tit Parus montanus and Crested Tit P. cristatus at the<br />

time of breeding. Ornis Scand. 11: 173–178.<br />

Van den Steen E., Pinxten R., Covaci A., Carere C., Eeva T.,<br />

Heeb P., Kempenaers B., Lifjeld J., Massa B., Norte A. C.,<br />

Orell M., Sanz J. J., Senar J. C., Sorace A., Eens M. 2010. The<br />

use of blue tit eggs as a biomonitoring tool for organohalogenated<br />

pollutants in the European environment. Sci. Total<br />

Environ. 408: 1451–1457.<br />

Velky M., Kanuch P., Kristin A. 2010. Selection of winter roosts<br />

in the Great Tit Parus major: influence of microclimate. J.<br />

Ornithol. 151: 147–153.<br />

Visser M. E., Adriaensen F., van Balen J. H., Blondel J., Dhondt<br />

A. A., van Dongen S., du Feu C., Ivankina E. V., Kerimov A.<br />

B., de Laet J., Matthysen E., McCleery R., Orell M.,<br />

Thomson D. L. 2003. Variable responses to large-scale climate<br />

change in European Parus populations. Proc. R. Soc.<br />

Lond. B 270: 367–372.<br />

Walankiewicz W. 1991. Do secondary cavity-nesting birds<br />

suffer more from competition for cavities or from predation<br />

in a primeval deciduous forest. Natural Areas J. 11:<br />

203–212.<br />

Wang N., Zhang Y., Zheng G. 2008. Breeding ecology of the<br />

Narcissus Flycatcher in North China. Wilson J. Ornithol.<br />

120: 92–98.<br />

Webb T. J., Noble D., Freckleton R. P. 2007. Abundance-occupancy<br />

dynamics in a human dominated environment:<br />

linking interspecific and intraspecific trends in British<br />

farmland and woodland birds. J. Anim. Ecol. 76: 123–134.<br />

Wesołowski T. 1989. Nest-sites of hole-nesters in a primaeval<br />

temperate forest (Białowieża National Park, Poland). Acta<br />

Ornithol. 25: 321–351.


Wesołowski T. 2007. Primeval conditions — what can we learn<br />

from them? Ibis 149: 64–77.<br />

Wesołowski T., Czeszczewik D., Rowiński P., Walankiewicz W.<br />

2002. Nest soaking in natural holes – a serious cause of<br />

breeding failure? Ornis Fennica 79: 132–138.<br />

Wesołowski T., Rowiński P. 2004. Breeding behaviour of<br />

Nuthatch Sitta europaea in relation to natural hole attributes<br />

in a primeval forest. Bird Study 51: 143–155.<br />

Wilson R. A., Manley P., Noon B. R. 1991. Covariance patterns<br />

among birds and vegetation in a California Oak woodland.<br />

USDA Forest Service Gen. Tech. Rep. PSW 126–135.<br />

Zingg S., Arlettaz R., Schaub M. 2010. Nestbox design influences<br />

territory occupancy and reproduction in a declining,<br />

secondary cavity-breeding bird. Ardea 98: 67–75.<br />

STRESZCZENIE<br />

[Modele skrzynek lęgowych używanych do<br />

badań dziuplaków wtórnych: ich wpływ na uzy -<br />

skiwane wyniki oraz niespójności metodyczne]<br />

Szerokie wykorzystywanie sztucznych miejsc<br />

gniazdowych, jakimi są skrzynki lęgowe w badaniach<br />

dziuplaków, szczególnie drobnych gatun -<br />

ków wróblowych, doprowadziło do znacznego<br />

zwiększenia naszej wiedzy o ich ekologii, fizjo -<br />

logii i zachowaniu. Skrzynki lęgowe ułatwiają<br />

kontrole lęgów, eksperymentalne zabiegi, którym<br />

poddawane są jaja lub pisklęta oraz chwytanie,<br />

identyfikowanie i eksperymenty na ptakach<br />

dorosłych. Z drugiej strony tak częste wykorzystywanie<br />

sztucznych miejsc lęgowych prowa -<br />

dzi do powstania jak do tej pory pomijanego, ale<br />

potencjalnie istotnie wpływającego na uzyskiwane<br />

wyniki, efektu samych skrzynek — ich<br />

wymiarów, wysokości umieszczenia, sposobu<br />

konstrukcji, otwierania czy konserwacji.<br />

W pracy podsumowano, w jakim zakresie<br />

publikacje naukowe dotyczące dziuplaków wtór -<br />

nych dokumentują charakterystykę skrzynek<br />

lęgowych wykorzystywanych do badań (wymia -<br />

ry, kolor, materiał, z którego są wykonane itd.). Do<br />

analizy publikacje podzielono na te opublikowane<br />

Design of artificial nestboxes 17<br />

przed i po roku 1992, ponieważ w tym roku<br />

ukazały się drukiem dwie prace zalecające m. in.<br />

dokładne opisywanie stosowanych skrzynek<br />

lęgowych. Należało zatem przyjąć, że w now -<br />

szych pracach (po 1992) właściwości skrzynek<br />

(wymiary, materiał, z którego są wykonane itd.)<br />

powinny być opisywane dokładniej. Jednakże<br />

analiza rozdziałów opisujących metody w łącznie<br />

696 publikacjach wykazała, że w pracach publi -<br />

kowanych po 1992 informacje dotyczące wykorzystywanych<br />

w badaniach skrzynek są jeszcze<br />

bardziej fragmentaryczne (Fig. 1).<br />

W pracy zwrócono uwagę, że skrzynki lęgowe<br />

są najczęściej ujednolicone, a ich charakterystyka<br />

odzwierciedla tylko część cech dziupli naturalnych.<br />

Należy pamiętać, że w przypadku dziupli<br />

naturalnych, zmienność, szczególnie wymiarów<br />

wewnętrznych, czy wysokości, na której są<br />

umieszczone, jest bardzo duża zarówno pomię -<br />

dzy poszczególnymi gatunkami dziuplaków, jak<br />

i w obrębie tego samego gatunku (Tab. 1). Prócz<br />

tego analiza cech skrzynek lęgowych używanych<br />

przez różne zespoły badaczy wykazała, że nawet<br />

przy prowadzeniu badań na tym samym gatunku,<br />

stosowane skrzynki i metody mogą bardzo się<br />

różnić. Dużą wartością pracy jest zestawienie<br />

charakterystyk skrzynek lęgowych stosowanych<br />

do badań najpospolitszych dziuplaków, przede<br />

wszystkim w Europie (Apendyks 1).<br />

W pracy podano listę typowych cech, charakteryzujących<br />

używane w badaniach skrzynki<br />

lęgowe, które powinny być zamieszczane w publikacjach.<br />

W pracy wyjaśniono konieczność<br />

prezentowania takich informacji, podając przy -<br />

kłady, jak charakterystyka skrzynek lęgowych<br />

wpływa na dziuplaki. Na zakończenie przedstawiono<br />

kilka generalnych zagadnień związanych<br />

ze zmiennością wykorzystywanych do tej pory<br />

skrzynek lęgowych, które należałoby poddać<br />

badaniom.


18 M. M. Lambrechts et al.<br />

Appendix 1. Characteristics of artificial nestboxes exploited by hole-nesting passerine birds for breeding or roosting. Abbreviations: Nestbox position: H — height above the ground<br />

(in m), O — entrance orientation (r = random, a = all same direction, with direction in parentheses, o = other), ST — nestbox substrate (t = tree, f = fence, b = building, p = post,<br />

aw = attached to a branch with a hook or wire away from hard substrate); Nestbox characteristics (all in cm): EHD — entrance hole diameter, WT — wall thickness; NBCS — nestbox<br />

chamber size (internal height x width x depth, in the case of circular bottom diameter (diam.) is provided), D — distance between lower edge of entrance hole to bottom of nest<br />

chamber, M — material used for construction, Source — citation or publication referring to a nestbox type or citation of people that provided data.– — lack of data. Species: P.m. — Parus<br />

major, P. v. — Parus varius, C.c — Cyanistes caeruleus, P.a — Periparus ater, P.p. — Poecile palustris, F.h. — Ficedula hypoleuca, F.a. — Ficedula albicollis.<br />

Species Period Study site Nestbox position Nestbox design characteristics Source<br />

H O ST EHD WT NBCS D M<br />

Paridae<br />

C.c. 2001–2008 Brabtia, DZ 1.5–2 o t 2.6 2 17.5 x 9 x 11 9 Wood-brown N. Ziane; Chabi &<br />

Isenmann 1997,<br />

Ziane et al. 2006<br />

C.c. 2001–2004 EL-Ghorra, DZ 2 o t 2.6 2 17.5 x 9 x 11 9 Wood-brown N. Ziane; Chabi &<br />

Isenmann 1997;<br />

Ziane et al. 2006<br />

P.m., C.c. 1959–2010 Ghent, BE 2.5 - t 3.0–3.2 - 23 x 9 x 12 16.5 Wood F. Adriaensen;<br />

Dhondt et al. 1984<br />

P.m., C.c. 1978–mid 1980s Antwerp, BE 2.5/1.5 - t 2.6/3.2 1.5 23 x 9 x 12 16.5 Pine F. Adriaensen;<br />

Dhondt 2010<br />

P.m., C.c. Mid 1980s–2010 Antwerp, BE 2.5/1.5 - t 2.6/3.2 1.5 23 x 9 x 12 16.5 Plywood F. Adriaensen;<br />

Dhondt 2010<br />

P.m., C.c. - Antwerp, BE - - t 2.6/3.0 1.5 23.5 x 9 x 12.5 16.5 Wood (green) M. Eens<br />

C.c. 1982–2004 Hrvatsko Zagorje, HR - - - 2.9 - 23 x 12 x 12 - - Dolenec 2007<br />

P.m., C.c. 2005–2010 Olomouc, CZ ~1.6 a (S) t 3.2 2 22.5–25.5 x 11.5 x 13 17.5 Spruce V. Remes;<br />

Matysiokova &<br />

Remes 2010<br />

P.m. 1995–2010 Kilingi-Nõmme, EE 1.5–2 o t 3.5–4.0 2.4 30 x 11 x 11 17–19 Wood R. Mänd;<br />

Mänd et al. 2005<br />

P.m., C.c., - Rødhus, DK 1–2 r t 2.8/3.2 1.5 25 x 15 x 15 20 Spruce A. P. Møller;<br />

P.a., P.p. Møller et al. 2010<br />

P.m., C.c. 1976-2010 Oxford, UK - - aw 2.6/3.2 3 2 17–18 x 12 diam 13/14 Schwegler 2M A. Gosler;<br />

Perrins 1979,<br />

McCleery et al. 1996<br />

P.m., C.c. 1988–1993 Sussex, UK - - - ≤ 3.18 2.2 13.8–17.8 x 8.5 Pine M. Stenning;<br />

(1991–93:2.86) 10 x 11 Stenning 2008<br />

P.m., C.c., 1949–1990 Gloucestershire - - - 2.8 1.9 17.8–25.4 x 10.8 Rough sawn, Plank M. Stenning;<br />

P.a., P.p. (Dean), UK 12.7 x 10.2 Campbell 1968;<br />

Stenning et al. 1988<br />

P.m., C.c., 1990–2010 Gloucestershire ~3 r t 2.8 1.8 21 x 11 x 17 14.2–15.2 5-plywood A. Goodenough;<br />

P.a., P.p. (Dean), UK Sloping roof Goodenough<br />

et al. 2008<br />

C.c. 1997–2010 Lancaster, UK ~1 r t 2.5 2 20 x 15 x 15 12 Sitka spruce M. Mainwaring;<br />

Mainwaring &<br />

Hartley 2009<br />

Continued on the next page


Species Period Study site Nestbox position Nestbox design characteristics Source<br />

H O ST EHD WT NBCS D M<br />

Design of artificial nestboxes 19<br />

P.m., C.c. 1991–2010 Harjavalta, FI ~2 r t 3.2 2.6 20–22 x 12 x 12 17 Spruce T. Eeva;<br />

(1991–96: Eeva et al. 1994<br />

3.6–3.8)<br />

P.m. 1969–2009 Oulu, FI 1.5 (2.5–4) 1 r t 3.2–3.4 2.0–2.2 24 x 12.5 x 12.5 16.5–17.5 Pine M. Orell;<br />

24 x 11 x 11 Orell & Ojanen 1983a<br />

C.c. 1998–2009 Oulu, FI 1.5 r t 2.8 2.2 23 x 8 x 12.5 14 Pine S. Rytkönen<br />

P.m. 2001–2010 Southeastern 2 a (SE) t 3.2 32 17–18 x 12 diam. 13/14 Schwegler B1 J. C. Bouvier;<br />

Avignon, FR Bouvier et al. 2005<br />

P.m., C.c. 1991–2010 Montarnaud, FR ~2–31 o1 t1 2.6/3.2 32 17–18 x 12 diam. 13/14 Schwegler B1 P. Perret;<br />

or concrete3 Dias & Blondel 1996,<br />

Lambrechts et al. 2008<br />

P.m., C.c. 1985–1997 Puéchabon, FR ~1.5–31 o1 t1 2.6/3.2 32 17–18 x 12 diam. 13/14 Schwegler B1 P. Perret;<br />

or concrete3 Dias & Blondel 1996,<br />

Lambrechts et al. 2008<br />

P.m., C.c., P.a. 1976–2010 Ventoux, FR ~2–31 o1 t1 2.6/3.2 32 17–18 x 12 diam. 13/14 Schwegler B1 P. Perret;<br />

or concrete3 Blondel 1985<br />

P.m., C.c. 1993–2010 Muro, Corsica, FR ~2–31 o1 t1 2.6/3.2 32 17–18 x 12 diam 13/14 Schwegler B1 P. Perret;<br />

or concrete3 Lambrechts et al. 2004<br />

P.m., C.c., P.a. 1976–2010 Pirio,Corsica, FR ~2–31 o1 t1 2.6/3.2 32 17–18 x 12 diam. 13/14 Schwegler B1 P. Perret;<br />

or concrete3 Blondel 1985<br />

P.m., C.c. 1982–2010 Pilis Mountains, HU 1.7 r t 3.2 3 24 x 11 x 11 15 Black Locust J. Török<br />

P.m.,C.c., 1993-2010 Sicily, IT - - - 3.4 1 15 x 10.5 x 15 7.8 Coniferous wood B. Massa;<br />

P.a., P.p. (esp. Fir) Massa et al. 2004<br />

P.m. 1990–1992 Tyrrhenian coast, ~3 - t 3.5/3.7/6 - 22 x 14 x 14 ; Wood A. Sorace;<br />

Central IT 35 x 25 x 255 - Sorace & Carere 1996<br />

C.c. 1996–2003 Sicani Mountains, - - - 3.2/5 - 20 x 15 x 15 ; Wood B. Massa;<br />

Madonie, IT 30 x 20 x 205 - Sarà et al. 2005<br />

P.m. Early various places, LV - - - 4.5–5.0 2.5 - x 12 x 12 14 Spruce, O. Keišs;<br />

1980s–2010 triangle Pine, Aspen Vilka 1999<br />

P.m., C.c., P.a. 1978–2010 5 districts, LT - - - 3.5 - 23 x 12 x 12 - Wood R. Juškaitis;<br />

Juškaitis 2006<br />

P.m., C.c. 1955–2010 Oosterhout, NL 2.5 - t 3.2 1.5 23 x 9 x 12 17 Wood A. J. van Noordwijk;<br />

van Balen 1984<br />

P.m., C.c. 1955–2009 Hoge Veluwe, NL 2 - t 3.2 1.5 23 x 9 x 12 17 Wood A. J. van Noordwijk;<br />

van Balen 1984<br />

P.m., C.c., P.a. 1955–2010 Vlieland, NL 2.5 (since - t 3.2 1.5 23 x 9 x 12 17 Wood A. J. van Noordwijk;<br />

1996 partly 1) van Balen 1984<br />

P.m., C.c. 1975–2010 Warnsborn/ 1/2.5 - t 3.2 1.5 23 x 9 x 12 17 Wood A. J. van Noordwijk;<br />

Westerheide, NL van Balen 1984<br />

P.m., C.c. 1983–2010 Buunderkamp, NL 2.5 - t 3.2 1.5 23 x 9 x 12 17 Wood A. J. van Noordwijk;<br />

van Balen 1984<br />

Continued on the next page


20 M. M. Lambrechts et al.<br />

Species Period Study site Nestbox position Nestbox design characteristics Source<br />

H O ST EHD WT NBCS D M<br />

P.m., C.c., P.a. 1979–1984 Northern PL ~4 a (SE) t 3.5 2 4,5 29 x 10 x 11 17.5 Wood W. Kania<br />

(–1988)<br />

P.m., C.c., P.a. 1979–1984 Northern PL ~4 a (SE) t 4.7 2 4,5 37 x 13 x 14 23.3 Wood W. Kania<br />

(–1988)<br />

P.m., C.c. 1999–2010 Łódź, PL - - - 2.9 2.2 22 x 9 x 10; 12– 29 Pine J. Bańbura;<br />

30 x 11 x 11; Alabrudzińska<br />

36 x 13 x 13 et al. 2003<br />

P.m., C.c. 2005–2010 Sekocin, Warsaw, PL 2.5 a t 2.7/3.2 2.58 22 x 13 x 13 - Wood T. Mazgajski;<br />

Mazgajski &<br />

Rykowska 2008<br />

P.m. 2003–2007 Coimbra, PT 2–3 a t 2.8 1.5 18.5 x 13 x 12 16.5 Wood A. C. Norte;<br />

Norte et al. 2008, 2010<br />

P.m. 2004–2007 Coimbra, PT 2–3 a t 3 2 18 x 12 x 15 14 Wood A. C. Norte;<br />

Norte et al. 2008, 2010<br />

P.m. 1979–2010 South Karelia, RU 1.5–1.8 o t 3–3.4 2.4 26 x 10–12 x 10–12 15–16 Pine, Spruce A. Artemyev;<br />

Artemyev 2008<br />

P.m. 2007–2010 Hongreung, 1.2–1.8 r aw 3/3.5 2 25–30 x16 x 15 13.5 Douglas fir C. R. Park<br />

P. v. Seoul, KR<br />

P.m.. 2009–2010 Seogwipo City, KR 1.2–1.8 r aw 3/3.5 2 27.5 x 16 x 15 13.5 Douglas fir C. R. Park<br />

P.m. 2005–2010 Catalonia, ES 3–5 o aw 4 1.5–2 35 x 13 x 155 24 Scotch pine, J. Camprodon;<br />

recycled Baucells et al. 2003<br />

transport pall<br />

C.c., P. p. 2005–2010 Catalonia, ES 3–5 o aw 2.5 1.5-2 26 x 11 x 95 25 Scotch pine, J. Camprodon;<br />

Recycled Baucells et al. 2003<br />

transport pall<br />

P.m., C.c., 1999–2010 Catalonia, ES 3–5 o aw 2.6/3 1.0–2 25 x 10 x 15 18 Scotch pine, J. Camprodon;<br />

P.a., P.p. recycled Baucells et al. 2003<br />

transport pall<br />

P.m.,C.c., P.a. 1999–2004 Catalonia, ES 3–5 o aw 3.1 2 26.5 x 10.1 x 19.48 - GACO 2000 J. Camprodon;<br />

P. p. Pine, recycled Camprodon et al. 2008<br />

transport pall<br />

P.m. - Sagunto, ES - - - 3.2 1.5 18.5 x 10.6– 8.4–12.64 Pine E. Barba;<br />

11.6 x 10.6– Álvarez & Barba 2008<br />

12.14 P.m., C.c., P.a. 1984–2010 La Hiruela -Madrid, ES 2–4 r t 3.5 1.5 17.5–19.5 x 11.5 x 13 10 Pine J. Potti; Potti 2009<br />

P.m., C.c., P.a. 1989–2010 Valsain, ES 3–5 r aw 3.5 1.5 17.5–19.5 x 11.5 x 137 10 Pine J. Moreno;<br />

Merino et al. 2000,<br />

Sanz et al. 1993, 2000<br />

P.m., C.c., P.a. - Göteborg, SE - - - 3.2 1–3 17–18/21 x 12 diam. 15.5 Birch trunk B. Silverin<br />

C.c., P.p., 1983–2010 Revinge, SE ~1.5 r t 2.6 2.2 20 x 7.8 x 9.5 13 Spruce J. Å. Nilsson;<br />

Nilsson & Smith 1988<br />

Continued on the next page


Species Period Study site Nestbox position Nestbox design characteristics Source<br />

H O ST EHD WT NBCS D M<br />

Design of artificial nestboxes 21<br />

P.m. 1991–2010 South Skåne, SE ~1.5 r t 3.4 2.2 24 x 9.5 x 12.4 16 Spruce J. Å. Nilsson; Nilsson &<br />

Källander 2006<br />

P.m., C.c. 1980–2010 Gotland, SE 1.5–1.7 r t 3.2 2 25–30 x 10 x 10 20 Pine L. Gustafsson<br />

P.m., C.c. 1989–1997 Basel, CH - - - 2.8/3.2 c. 1.8 22 x 12 x 15 20 Wood B. Naef- Daenzer;<br />

Naef-Daenzer &<br />

Keller 1999<br />

P.m., C.c. 1985–1992 Birsfelder Hard, 2.5 - t 3.2 1.2 23 x 9 x 12 17 Wood/ concrete A. J. van Noordwijk<br />

Basel, CH<br />

P.m., C.c., P.a. 1985–1992 Blauen, Basel, CH 2.5 - t 3.2 1.2 23 x 9 x 12 17 Wood A. J. Van Noordwijk<br />

P.m., C.c., P.a. 1992–1994 Celerina, CH - - - 2.6/3.2 32 18 x 12 diam. c.15 Schwegler, B. Naef-Daenzer;<br />

Wood-concrete Mattes et al. 1996<br />

P.m. 1990–2010 Bern, CH - - - 3 - - x 12.5 x 12.5 21 Wood Heeb et al. 1996<br />

P.a. 1999–2005 Guan-Yuan, Taiwan ~3 a t 3 0.9 18 x 13 x 135 13 Lauan, M. T. Shiao;<br />

Plywood Shiao et al. 2009<br />

P.a. 2004–2005 Guan-Yuan, Taiwan ~3 a t 4.5 0.9 18 x 13.5 x 13.56 11 Lauan M. T. Shiao;<br />

Plywood Shiao et al. 2009<br />

Muscicapidae<br />

F.h. Mid 80s–1987 Antwerp, BE 2.5 - t 3.2 1.5 23 x 9 x 12 16.5 Plywood Dhondt et al. 1987<br />

F.a. 2005–2010 Olomouc, CZ ~1.6 a (S) t 3.2 2 22.5–25.5 x11.5 x 13 17.5 Spruce V. Remes;<br />

Matysiokova<br />

& Remes 2010<br />

F.h. 1995–2010 Kilingi-Nõmme, EE 1.5–2 o t 3.5-4.0 2.4 30 x 11 x 11 17–19 Wood R. Mänd;<br />

Mänd & Tilgar 2003<br />

F.h. 1949–1990 Gloucestershire - - - 2.8 1.9 21.6x12.7x10.2 10.8 Rough sawn M. Stenning;<br />

(Dean), UK Roof (17.8-25.4) Plank Campbell 1968;<br />

Stenning et al. 1988<br />

F.h. 1990–2010 Gloucestershire ~3 r t 2.8 1.8 21 x 11 x 17 14.2–15.2 5-plywood A.Goodenough;<br />

(Dean), UK Sloping roof Goodenough et al.<br />

2008<br />

F.h. 1991–2010 Harjavalta, FI ~2 r t 3.2 (1991– 2.6 20–22 x 12 x 12 17 Spruce T. Eeva;<br />

96:3.6–3.8) Eeva et al. 1994<br />

F.a. 1982–2010 Pilis Mountains, HU 1.7 r t 3.2 3 24 x 11 x 11 15 Black Locust J. Török<br />

F.h. Early various places, LV - - - 4.5–5.0 2.5 - x 12 x 12 14 Spruce, Pine, Aspen O. Keišs; Vilka 1999<br />

1980s–2010 triangle<br />

F.h. 1978–2010 5 districts, LT - - - 3.5 - 23 x 12 x 12 - Wood R. Juškaitis;<br />

Juškaitis 2006<br />

F.h. 1955–2010 Hoge Veluwe, NL 2 - t 3.2 1.5 23 x 9 x 12 17 Wood A. J. van Noordwijk;<br />

van Balen 1984<br />

F.h. 1975–2010 Warnsborn/ 2.5/1 - t 3.2 1.5 23 x 9 x 12 17 Wood A. J. van Noordwijk;<br />

Westerheide,NL van Balen 1984<br />

F.h. 1983–2010 Buunderkamp,NL 2.5 - t 3.2 1.5 23 x 9 x 12 17 Wood A. J. van Noordwijk;<br />

van Balen 1984<br />

Continued on the next page


22 M. M. Lambrechts et al.<br />

Species Period Study site Nestbox position Nestbox design characteristics Source<br />

H O ST EHD WT NBCS D M<br />

F.h. 1979–1984 Northern PL ~4 a (SE) t 3.5 25 29 x 10 x 11 17.5 Wood W. Kania<br />

(–1988)<br />

F.h. 1979-1984 Northern PL ~4 a (SE) t 4.7 25 37 x 13 x 14 23.3 Wood W. Kania<br />

(–1988)<br />

F.h. 2005–2010 Sekocin, Warsaw, PL 2.5 a t 3.2 2.58 22 x 13 x 13 - Wood T. Mazgajski;<br />

Mazgajski &<br />

Rykowska 2008<br />

F.h. 1979–2010 South Karelia,RU 1.5–1.8 o t 3–3.4 2.4 26 x 10/12 x 10/12 15–16 Pine, spruce A. Artemyev;<br />

Artemyev 2008<br />

F.h. 1984–2010 La Hiruela,Madrid, ES 2–4 r t 3.5 1.5 17.5–19.5 x 11.5 x 13 10 Pine J. Potti; Potti 2008<br />

F.h. 1989–2010 Valsain, ES 3–5 r aw 3.5 1.5 17.5–19.5 x 11.5 x 137 10 Pine J. Moreno;<br />

Moreno et al. 2006,<br />

2008<br />

F.a. 1980–2010 Gotland, SE 1.5–1.7 r t 3.2 2 25–30 x 10 x 10 20 Pine L. Gustafsson<br />

F.h. 1985–1992 Blauen, Basel, CH 2.5 - t 3.2 1.2 23 x 9 x 12 17 Wood A. J. van Noordwijk<br />

Passer domesticus<br />

- Lexington, 2–4 o b 3.9 1.9 28 x 14.1 x 14.1 16 Pine (white) I. Stewart;<br />

Kentucky, USA Westneat et al. 2002<br />

Sturnus vulgaris<br />

- Antwerp, BE - - - 5 1.5 30.25 x 13.5 x 16 19 Wood-brown M. Eens<br />

- Warsaw, PL 4 r t 4.7–5 2.58 - x 12–13 x 15 22 Wood T. Mazgajski;<br />

Mazgajski 2007<br />

1900–2009 Scania, SE ~2/~3.5 - t 5.0 2.0–2.4 36 x 13 x 13 24 Spruce H. G. Smith; Smith<br />

1995<br />

Troglodytes aedon<br />

1980–2010 McLean County, ~1.5 r p 3.2 1.855 22 x 8.4/8.8 x 9 13 Coniferous C. Thompson;<br />

Illinois, USA (brown/redwood) Drilling &<br />

Thompson 1988<br />

1989–2010 Big Horn, ~1.5 - p 2.54 2 18 x 10 x 10 13 Cedar L. S. Johnson;<br />

Wyoming, USA Johnson 1996<br />

Tachycineta bicolor<br />

1997–2010 UWM Field Station, ~1.5 o p 4 1 20.3–25 x 13 x 13 13 Plywood L. Whittingham, P.<br />

WI, USA Dunn; Whittingham &<br />

Dunn 2000<br />

- Queen’s, Ontario, CAN - - - 4 1 20.3–25 x 13 x 13 13 Plywood P. Dunn; Rendell &<br />

Robertson 1993<br />

- Prince George, - - - 3.2 1.5 23–30 x 13.5 x 12.5 13 Plywood R. D. Dawson;<br />

BC, CAN Dawson et al. 2005<br />

Details on nestboxes design for otherTachycineta can be found on http://golondrinas.cornell.edu/Data_and_Protocol/NestBoxDesignCentimeters.html


Comments:<br />

1 Height, orientation and placement of nestboxes may be influenced by the position of trees or branches used to erect nestboxes. Height of nestboxes may<br />

also differ between study sites or study periods in a given region (1969–1988, One nestbox colony in Oulu);<br />

2 Schwegler boxes have a removable front panel which is thinner (1.5–1.8 cm) than the wall thickness of the main body;<br />

3 Some self-made nestboxes consist of concrete or unstandardised mixtures of concrete and wood (P. Perret, Montpellier, pers. comm.);<br />

4 Self-made wooden nest-boxes are usually not “identical” in structure. For instance E. Barba measured a sample of 10 boxes of which the average values<br />

are provided in this table. Nestboxes may also differ in shape because they come from different suppliers (e.g. Álvarez & Barba 2008);<br />

5 Nestboxes all have a permanently mounted trapdoor (e.g. a sliding sheet-metal piece mounted under a redwood piece) over the entrance. The result is<br />

that the entrance hole is deeper than the nestbox wall (e.g. box wall thickness of 1.8 + 2.0 cm redwood trapdoor = 3.8, C. Thompson pers. comm.).<br />

Nestboxes all also have an elongated entrance channel in some study sites (one out of two nestboxes in northern Poland, W. Kania, pers. com.);<br />

6 Some boxes have been constructed to attract specific species (e.g. short-toed tree creeper Certhia brachydactyla, nuthatch Sitta europaea, Italian sparrows<br />

Passer italiae, common dormouse Muscardinus avellanarius, or green-backed tits Parus monticolus), but also exploited by other secondary hole-nesters (e.g.<br />

blue, great, or coal tit);<br />

7 Some nestboxes have a slit (1–1.5 cm) between the roof and the frontal lid increasing light conditions inside the nestbox chamber (J. Moreno pers. comm.);<br />

8 In some nestbox types, a small peace of wood has been added under the entrance hole inside the nestbox chamber, i.e. a small table reinforcing the nestbox<br />

also used by adults before visiting the nest;<br />

8 In some nestbox types, the front wall is thicker than the other walls (e.g. front wall 5 cm, other walls 2.5 cm, e.g. Mazgajski & Rykowska 2008); Most nest-<br />

Design of artificial nestboxes 23<br />

boxes have circular entrance holes (but see e.g. O. Keišs).<br />

Source (In alphabetic order, full list available on request):<br />

Alabrudzińska et al. 2003. Acta Ornithol. 38: 151–154; Álvarez & Barba 2008. Acta Ornithol. 43: 3–9; Artemyev 2008. Moscow, Nauka, pp. 1–267 (In Russian);<br />

Baucells et al. 2003. Lynx Edicions, Barcelona; Blondel 1985. J. Anim. Ecol. 54: 531–556; Bouvier et al. 2005. Environ. Toxicol. Chem. 24: 2846–2852; Campbell<br />

1968. Forestry 41: 27–46; Camprodon et al. 2008. Acta Ornithol. 43: 17–31; Chabi Y., Isenmann P. 1997. Alauda 65: 13–18; Dawson et al. 2005. Oecologia 144:<br />

499–507; Dhondt et al. 1984. Ibis 126: 388–397; Dhondt et al. 1987. Gerfault 77: 333–339; Dhondt 2010. J. Anim. Ecol. 79: 257–265; Dias & Blondel 1996. Ibis<br />

138: 644–649; Dolenec 2007. Wilson J. Ornithol. 119: 299–301; Drilling & Thompson 1988. Auk 105: 480–491; Eeva et al. 1994. Can. J. Zool. 72: 624–635;<br />

Goodenough et al. 2008. Ethol. Ecol. Evol. 20: 375–389; Heeb et al. 1996. J. Anim. Ecol. 65: 474–484; Johnson 1996. J. Field Ornithol. 67: 212–221; Juškaitis<br />

2006. Folia Zool. 55: 225–236; Lambrechts et al. 2004. Oecologia 141: 555–561; Lambrechts et al. 2008. Russ. J. Ecol. 39: 516–522; Mainwaring & Hartley 2009.<br />

Behav. Proc. 81: 144–146; Mänd & Tilgar 2003. Ibis 145: 67–77; Mänd et al. 2005. Biodiv. Conserv. 14: 1823–1840; Massa et al. 2004. Ital. J. Zool. 71: 209–217;<br />

Mattes et al. 1996. Ornithol. Beob. 93: 293–314; Matysiokova & Remes 2010. Ibis 152: 397–401; Mazgajski 2007. Pol. J. Ecol. 55: 377–385; Mazgajski &<br />

Rykowska 2008. Acta Ornithol. 43: 49–55; McCleery et al. 1996. J. Anim. Ecol. 65: 96–104; Merino et al. 2000. Proc. Roy. Soc. Lond. 267: 2507–2510; Mrller et<br />

al. 2010. J. Anim. Ecol.79: 777–784; Moreno et al. 2006. J. Avian Biol. 37: 555–560; Moreno et al. 2008. Ethology 114: 1078–1083; Naef-Daenzer & Keller 1999.<br />

J. Anim. Ecol. 68: 708–718; Nilsson & Källander 2006. J. Avian Biol. 37: 357–363; Nilsson & Smith 1988. J. Anim. Ecol. 57: 917–928; Norte et al. 2008. Auk 125:<br />

943–952; Norte et al. 2010. Condor 112: 79–86; Orell & Ojanen 1983. Ann. Zool. Fenn. 20: 77–98; Perrins 1979. British Tits, Collins, London; Potti 2008. Acta<br />

Oecologica 33: 387–393; Potti 2009. J. Ornithol. 150: 893–901; Rendell & Robertson 1993. Ibis 135: 305–310; SarB et al. 2005. J. Zool. 265: 347–357; Sanz et al.<br />

1993. Ardeola 40: 155–161; Sanz et al. 2000. Oecologia 122: 149–154; Shiao et al. 2009. Auk 126: 906–914; Smith 1995. Proc. R. Soc. Lond. B 260:45–51; Sorace<br />

& Carere 1996. Ornis svecica 6: 173–177; Stenning 2008. Acta Ornithol. 43: 97–106; Stenning et al. 1988. J. Anim. Ecol. 57: 307–317; van Balen 1984. Ardea<br />

72: 163–175; Vilka 1999. Vogelwelt 120: 223–227; Westneat et al. 2002. Condor 104: 598–609; Whittingham & Dunn 2000. Mol. Ecol. 9: 1123–1129; Ziane et<br />

al. 2006. Acta Ornithol. 41: 163–169.


24 M. M. Lambrechts et al.<br />

APPENDIX 2. Authors’ contact information:<br />

Marcel M. LAMBRECHTS<br />

Centre d’Ecologie Fonctionnelle et Evolutive,<br />

UMR 5175, CNRS, 1919 route de Mende, 34293<br />

Montpellier Cedex 5, FRANCE<br />

Frank ADRIAENSEN<br />

Evolutionary Ecology Group, University of<br />

Antwerp, Department of Biology, Campus CGB,<br />

B-2020 Antwerp, BELGIUM<br />

Daniel R. ARDIA<br />

Department of Biology, Franklin & Marshall<br />

College, PO Box 3003, Lancaster, PA 17604, USA<br />

Alexandr V. ARTEMYEV<br />

Russian Academy of Sciences, Karelian Res. Ctr.,<br />

Inst. Biol., Petrozavodsk 185610, RUSSIA<br />

Francisco ATIÉNZAR,<br />

”Cavanilles” Institute of Biodiversity and<br />

Evolutionary Biology, University of Valencia,<br />

Apartado Oficial 2085, E-46071 Valencia, SPAIN<br />

Jerzy BAŃBURA<br />

Department of Experimental Zoology &<br />

Evolutionary Biology, University of Łódź,<br />

Banacha 12/16, 90–237 Łódź, POLAND<br />

Emilio BARBA<br />

Cavanilles” Institute of Biodiversity and<br />

Evolutionary Biology, University of Valencia,<br />

Apartado Oficial 2085, E-46071 Valencia, SPAIN<br />

Jean-Charles BOUVIER<br />

INRA, Plantes & Systčmes de Culture Horticoles,<br />

UR 1115, 84000 Avignon, FRANCE<br />

Jordi CAMPRODON<br />

Biodiversity Department, Forest Technology<br />

Center of Catalonia, 25280 Solsona, Catalonia,<br />

SPAIN<br />

Caren B. COOPER<br />

Cornell Laboratory of Ornithology, 159 Sapsucker<br />

Woods Rd., Ithaca, NY 14850, USA<br />

Russell D. DAWSON<br />

Ecosystem Science and Management Program,<br />

University of Northern British Columbia, Prince<br />

George, BC Canada V2N 4Z9, CANADA<br />

Marcel EENS<br />

Campus Drie Eiken, Department of Biology<br />

(Ethology), Building C, B–2610 Antwerp (Wilrijk),<br />

BELGIUM<br />

Tapio EEVA<br />

Section of Ecology, 20014 University of Turku,<br />

FINLAND<br />

Bruno FAIVRE<br />

Université de Bourgogne, UMR CNRS 5561<br />

BioGéoSciences, 6 Boulevard Gabriel, 21000 Dijon,<br />

FRANCE<br />

Laszlo Z. GARAMSZEGI<br />

Department of Evolutionary Ecology, Estación<br />

Biológica de Dońana – CSIC, 41092 Seville, SPAIN<br />

Anne E. GOODENOUGH<br />

Department of Natural and Social Sciences,<br />

University of Gloucestershire, Glos GL50 4AZ, UK<br />

Andrew G. GOSLER<br />

Edward Grey Institute of Field Ornithology, South<br />

Parks Road, Oxford OX1 3PS, UK<br />

Arnaud GRÉGOIRE<br />

Centre d’Ecologie Fonctionnelle et Evolutive, UMR<br />

5175, Université de Montpellier II, 1919 route de<br />

Mende, 34293 Montpellier Cedex 5, FRANCE<br />

Simon C. GRIFFITH<br />

Department of Brain, Behaviour and Evolution,<br />

Macquarie University, Sydney, NSW 2109,<br />

AUSTRALIA<br />

Lars GUSTAFSSON<br />

Animal Ecology/Department of Ecology and<br />

Evolution, Evolutionary Biology Centre, Uppsala<br />

University, Norbyvägen 18d, S-752 36 Uppsala,<br />

SWEDEN<br />

L. Scott JOHNSON<br />

Department of Biology, Towson University,<br />

Towson MD 21252, USA<br />

Wojciech KANIA<br />

Ornithological Station, Museum and Institute of<br />

Zoology, Polish Academy of Sciences, 80–680<br />

Gdansk, POLAND


Oskars KEIŠS<br />

Laboratory of Ornithology, Institute of Biology,<br />

University of Latvia; LV–2169 Salaspils, LATVIA<br />

Paulo E. LLAMBIAS<br />

Ecologia del Comportamiento Animal, CCT-MEN-<br />

DOZA CONICET, 5500 Mendoza, ARGENTINA<br />

Mark C. MAINWARING<br />

Lancaster Environment Centre, Lancaster<br />

University, Lancaster, LA1 4YQ, UK<br />

Raivo MÄND<br />

Department of Zoology, Institute of Ecology and<br />

Earth Sciences, University of Tartu, 46 Vanemuise<br />

Str., Tartu, 51014, ESTONIA<br />

Bruno MASSA<br />

Stazione Inanellamento c/o Dipartimento SEN-<br />

FIMIZO, Università di Palermo, I–90128 Palermo,<br />

ITALY<br />

Tomasz D. MAZGAJSKI<br />

Museum and Institute of Zoology, Polish<br />

Academy of Sciences, Wilcza 64, 00–679,<br />

Warszawa, POLAND<br />

Anders Pape MqLLER<br />

Laboratoire Ecologie, Systematique et Evolution,<br />

UMR 8079 CNRS-Université Paris-Sud XI-<br />

AgroParisTech, Batiment 362 Université Paris-Sud<br />

XI, F-91405 Orsay Cedex, FRANCE; Center for<br />

Advanced Study, Drammenveien 78, NO-0271<br />

Oslo, NORWAY<br />

Juan MORENO<br />

Departamento de Ecología Evolutiva, Museo<br />

Nacional de Ciencias Naturales-CSIC, J. Gutiérrez<br />

Abascal 2, E-28006 Madrid, SPAIN<br />

Beat Naef-DAENZER<br />

Swiss Ornithological Institute, CH-6204 Sempach,<br />

SWITZERLAND<br />

Jan-Cke NILSSON<br />

Ecology Building, Animal Ecology, Lund<br />

University, 22362 Lund, SWEDEN<br />

Ana C. NORTE<br />

Institute of Marine Research, Department of Life<br />

Sciences, University of Coimbra, Apartado 3046,<br />

3001-401 Coimbra, PORTUGAL<br />

Design of artificial nestboxes 25<br />

Markku ORELL<br />

Department of Biology, University of Oulu, P. O.<br />

Box 3000 FI-90014, FINLAND<br />

Ken A. OTTER<br />

Ecosystem Science and Management Program,<br />

University of Northern British Columbia, Prince<br />

George, BC Canada V2N 4Z9, CANADA<br />

Chan Ryul PARK<br />

Warm-temperate Forest Research Center, Korea<br />

Forest Research Institute, Seogwipo City, Jejudo,<br />

SOUTH KOREA<br />

Christopher M. PERRINS<br />

Edward Grey Institute of Field Ornithology, South<br />

Parks Road, Oxford OX1 3PS, UK<br />

Jan PINOWSKI<br />

Center of Ecological Research, Polish Academy of<br />

Sciences, Dziekanów Leśny, PL 05 092 Lomianki,<br />

POLAND<br />

Jiri PORKERT<br />

Gocarova 542, 500 02 Hradec Kralove, CZECH<br />

REPUBLIC<br />

Jaime POTTI<br />

Department of Evolutionary Ecology, Estación<br />

Biológica de Dońana – Tr. Svobody 26, CSIC, 41092<br />

Seville, SPAIN<br />

Vladimir REMES<br />

Laboratory of Ornithology, Department of<br />

Zoology, Palacky University, CZ–77146 Olomouc,<br />

CZECH REPUBLIC<br />

Heinz RICHNER<br />

University of Bern, Institute of Ecology &<br />

Evolution (IEE), CH-3012 Bern, SWITZERLAND<br />

Seppo RYTKÖNEN<br />

Department of Biology, University of Oulu, P. O.<br />

Box 3000 FI-90014, FINLAND<br />

Ming-Tang SHIAO<br />

Wildlife laboratory, School of Forestry and<br />

Resource Conservation, National Taiwan Univer -<br />

sity, Taipei 106, TAIWAN<br />

Bengt SILVERIN<br />

Department of Zoology, University of Göteborg,<br />

Box 463, 405 30, SWEDEN


26 M. M. Lambrechts et al.<br />

Tore SLAGSVOLD<br />

Centre for Ecological and Evolutionary Synthesis<br />

(CEES), Department of Biology, University of<br />

Oslo, P. O. Box 1066, Blindern, NO-0316 Oslo,<br />

NORWAY<br />

Henrik G. SMITH<br />

Ecology Building, Animal Ecology, Lund Univer -<br />

sity, 22362 Lund, SWEDEN<br />

Alberto SORACE<br />

SROPU, Via R. Crippa 60, Rome, ITALY<br />

Martyn J. STENNING<br />

School of Life Sciences, University of Sussex,<br />

Falmer, Brighton, Sussex BN1 9QG, UK<br />

Ian STEWART<br />

Department of Biology, University of Kentucky,<br />

Lexington KY 40506–0225, USA<br />

Charles F. THOMPSON<br />

Behavior, Ecology, Evolution, and Systematics<br />

Section, School of Biological Sciences, Illinois State<br />

University, Normal, IL 61790-4120, USA<br />

Janos TÖRÖK<br />

Behavioural Ecology Group, Dept. Syst. Zool. &<br />

Ecol., Eötvös University, H–1117, Budapest,<br />

Pázmány P. sétány 1/C, HUNGARY<br />

Piotr TRYJANOWSKI<br />

Institute of Zoology, Poznan University of Life<br />

Sciences, Wojska Polskiego 71 C, 60–625 Poznań,<br />

POLAND<br />

Arie J. VAN NOORDWIJK<br />

Netherlands Institute of Ecology, P. O. Box 40, NL<br />

6666 ZG Heteren, THE NETHERLANDS<br />

David W. WINKLER<br />

Cornell University Museum of Vertebrates,<br />

Laboratory of Ornithology and Department of<br />

Ecology & Evolutionary Biology, Ithaca, NY,<br />

14853, USA<br />

Nadia ZIANE<br />

Laboratoire d’Ecophysiologie animale, Départe -<br />

ment de Biologie, B. P. 12 2300 Annaba, ALGÉRIE


D. Ornamenty a rodičovské investice


Ibis (2010), 152, 397–401<br />

Short communication<br />

Assessing the usefulness<br />

of ptilochronology in the<br />

study of melanin- and<br />

carotenoid-based<br />

ornaments in the Great Tit<br />

Parus major<br />

BEATA MATYSIOKOVÁ* & VLADIMÍR REMESˇ<br />

Department of Zoology and Laboratory of<br />

Ornithology, Palacky´ University, Trˇ. Svobody 26,<br />

77146 Olomouc, Czech Republic<br />

Keywords: feather growth, nutritional condition,<br />

signalling.<br />

Ptilochronology is a method for assessing the nutritional<br />

condition of birds based on the width of daily growth<br />

bars on feathers. Wide growth bars reflect fast feather<br />

growth and as feather growth is costly, the width of the<br />

bars reflects the condition of a bird during moult (Grubb<br />

1989). It is a very simple and inexpensive method,<br />

which makes it ideal for field research (Grubb 2006). In<br />

addition, as a sampled feather is soon replaced by a new<br />

feather, a process that would take place during natural<br />

moult, this method is also harmless to the bird.<br />

Ptilochronology has therefore become a popular<br />

method for assessing the nutritional state of birds in the<br />

wild (Grubb 2006). However, the efficacy of the method<br />

might differ, for example, between sexes (Grubb 1989,<br />

Takaki et al. 2001, Bostrom & Ritchison 2006) or age<br />

categories (Grubb et al. 1991). Kern and Cowie (2002)<br />

failed to find any relationship between the growth of different<br />

types of feathers taken from the same individual.<br />

Furthermore, other studies have concluded that the general<br />

validity of the method is unclear and that it can be<br />

used only under strictly controlled conditions (Murphy<br />

& King 1991).<br />

Despite these reservations, ptilochronology has been<br />

used in several studies of feather ornaments as an indicator<br />

of condition (Hill & Montgomerie 1994, Eeva et al.<br />

1998, Keyser & Hill 1999, Doucet 2002, Senar et al.<br />

2003, van Oort & Dawson 2005, Hegyi et al. 2007,<br />

Siefferman et al. 2008, Kimball 2009). The assumption<br />

*Corresponding author.<br />

Email: betynec@centrum.cz<br />

ª 2010 The Authors<br />

Journal compilation ª 2010 British Ornithologists’ Union<br />

is that these species moult body and contour feathers at<br />

the same time. Thus, if both ornaments and feather<br />

growth bars reflect condition (Griffith et al. 2006,<br />

Grubb 2006, Hill & McGraw 2006), then these two<br />

traits should covary. Carotenoid-based feather ornaments<br />

are expected to reflect a bird’s condition and there is<br />

evidence supporting this claim (von Schantz et al. 1999,<br />

Hill 2002, McGraw 2006a). Although melanin ornaments<br />

were thought not to reflect condition (McGraw<br />

2006b), recent evidence suggests that they might be as<br />

condition-dependent as carotenoid-based ornaments<br />

(Griffith et al. 2006, Galván & Alonso-Alvarez 2008).<br />

No clear-cut relationship between feather ornaments<br />

and feather growth has emerged from studies to date<br />

(see above). As ptilochronology is a very simple method<br />

and has great potential in field ornithology, we examined<br />

the relationships between both carotenoid- and melaninbased<br />

ornaments and feather growth in a large sample of<br />

individuals of a wild passerine. We chose the Great Tit<br />

Parus major because expression of its carotenoid-based<br />

(Hõrak et al. 2000, Tschierren et al. 2003, but see Fitze<br />

& Richner 2002) and melanin-based ornaments (Fitze &<br />

Richner 2002, Galván & Alonso-Alvarez 2008) is known<br />

to depend on condition during moult and feather<br />

growth. Thus, if feather growth also reflects condition<br />

during moult, we expected a positive correlation<br />

between the width of feather growth bars and the<br />

expression of both carotenoid- and melanin-based ornaments.<br />

METHODS<br />

This research was conducted at three adjacent nestbox<br />

plots (188 nestboxes in total) in a deciduous forest near<br />

the village of Grygov (49°31¢N, 17°19¢E) in eastern<br />

Czech Republic. Nestboxes were placed 1.5 m above<br />

the ground and, besides Great Tits, were also inhabited<br />

by Blue Tits Cyanistes caeruleus, Collared Flycatchers<br />

Ficedula albicollis and Nuthatches Sitta europaea. Fieldwork<br />

was carried out between 2005 and 2007 from early<br />

April until mid-June.<br />

During feeding of nestlings (median age of young<br />

females = 7 days, males = 9 days), we captured parents<br />

in the nestbox. We captured females at almost all the<br />

nests (n = 165). However, because of time constraints,<br />

we captured males only from a subset of nests<br />

(n = 109). We measured their tarsus-length with digital<br />

callipers (to the nearest 0.01 mm) and weighed them<br />

on a spring Pesola balance to the nearest 0.125 g. From<br />

each bird we took 10–15 yellow feathers from the<br />

upper right part of the breast for spectrophotometric<br />

analysis. We photographed the bird’s breast with a digital<br />

camera (Panasonic DMC-FZ5). When taking a<br />

picture of the breast, we held the bird outstretched by<br />

its tarsi and beak and photographed it together with a<br />

ruler from a standard distance following the protocol of


398 B. Matysioková & V. Remesˇ<br />

Figuerola and Senar (2000). All measurements and photographs<br />

were taken by V.R. We also plucked the second<br />

outer rectrix from the right side of the tail for later<br />

measurement of growth bars on feathers. We determined<br />

the age of the birds based on their plumage as<br />

1 year old or older (Jenni & Winkler 1994). For each<br />

bird, we calculated its condition as the residual from<br />

the linear regression of body mass on tarsus-length<br />

(Brown 1996).<br />

Analyses of samples<br />

We quantified reflectance spectra of yellow feathers sampled<br />

from the breast using standard procedures (Andersson<br />

& Prager 2006). We used 10–15 feathers from each<br />

bird, which is sufficient to obtain reliable values from<br />

our study species (Quesada & Senar 2006). We used an<br />

Avantes AvaSpec-2048 fibre-optic spectrometer together<br />

with an AvaLight-XE xenon pulsed light source and<br />

WS-2 white reference tile. The probe was used both to<br />

provide light and to sample reflected light and was held<br />

perpendicular to the feather surface. We took five readings<br />

from different parts of each feather. Feathers were<br />

arranged on a black, non-reflective surface so that they<br />

overlapped extensively.<br />

We obtained reflectance (%) from 320 to 700 nm in<br />

1-nm increments. We calculated carotenoid chroma as<br />

(R700–R450) ⁄ R700, where R700 is the reflectance at<br />

700 nm and R450 the reflectance at 450 nm. In statistical<br />

analyses we used the average carotenoid chroma calculated<br />

from the five readings from each set of feathers.<br />

To assess repeatability of our measurements, in a subsample<br />

of feathers we rearranged feathers and took<br />

another five readings, and again averaged the carotenoid<br />

chroma calculated from them. We calculated repeatability<br />

of these two average carotenoid chroma estimates as<br />

an intraclass correlation coefficient (Lessels & Boag<br />

1987), which was sufficiently high (ri = 0.85, P < 0.001,<br />

n = 55). We use carotenoid chroma here because it<br />

reflects the amount of yellow carotenoids (lutein and<br />

zeaxanthin) in breast feathers in the Great Tit (Isaksson<br />

& Andersson 2008, Isaksson et al. 2008).<br />

We analysed photographs of breast feathers in Adobe<br />

PHOTOSHOP CS3 Extended. We used the quick selection<br />

tool to roughly delimit the black stripe. Then we manually<br />

finished the selection so that it was as precise as possible<br />

and measured the surface area of the stripe. We<br />

used a standard in photographs of each bird to adjust the<br />

scale of each photograph and to obtain absolute surface<br />

area (cm 2 ). We defined stripe surface as the area of the<br />

black feathers between the point of inflexion, where the<br />

ventral stripe widens to a throat patch, and the posterior<br />

end of the stripe (Figuerola & Senar 2000). All measurements<br />

were taken by B.M. To assess repeatability, a different<br />

observer measured a subsample of photographs;<br />

repeatability was high (ri = 0.87, P < 0.001, n = 75).<br />

ª 2010 The Authors<br />

Journal compilation ª 2010 British Ornithologists’ Union<br />

As it is not possible to use the standard technique<br />

(see Grubb 1989, 2006) to determine the width of<br />

feather growth bars in the Great Tit (Senar et al. 2003),<br />

we used the modification suggested by Carrascal et al.<br />

(1998). We measured the length of the feather and overall<br />

width of the first 10 measurable distal growth bars to<br />

the nearest 0.1 mm. Growth bars were not apparent in<br />

all the feathers and we excluded these feathers from the<br />

analyses. All measurements were taken twice. To obtain<br />

the width of one growth bar (mm) we divided the average<br />

of the two measurements by 10. Repeatability of the<br />

two measurements was high (ri = 0.99, P < 0.001,<br />

n = 210). All measurements were taken by B.M.<br />

Statistical analyses<br />

We analysed variation in growth bar width using general<br />

linear mixed models (GLMM). As we sampled some<br />

individuals repeatedly across years, we included individual<br />

identity as a repeated factor in the mixed procedure<br />

of SAS. First, we fitted a model with the following factors<br />

and covariates: year, sex, age, carotenoid chroma,<br />

black stripe, length of tail feather and condition. We subsequently<br />

removed non-significant factors (age, black<br />

stripe, condition) until we had only statistically significant<br />

variables at the level of a = 0.05 in the model. F<br />

and P values for non-significant factors given in the<br />

Results section are those immediately before the factor<br />

was removed from the model. Growth bar width was<br />

transformed to the power of four to normalize its originally<br />

left-skewed distribution and all the analyses were<br />

conducted using this transformation. Residuals from<br />

each linear model were checked to conform to the<br />

requirements of normal distribution, equal variance and<br />

linearity (Grafen & Hails 2002).<br />

RESULTS<br />

We obtained tail feathers from 238 birds over 3 years<br />

(146 females, 92 males). Average length of tail feathers<br />

was 65.9 mm (mean ± 3.15 sd, n = 238) and was larger<br />

in males than in females (F1,236 = 226.27, P < 0.001).<br />

Individual identity as a random repeated factor was<br />

significant (estimate = 5.089 ± 0.4685 se, z = 10.86,<br />

P < 0.001).<br />

The width of feather growth bars was 2.87 mm<br />

(mean ± 0.23 sd, n = 210), being larger in females than<br />

in males (F1,202 = 13.14, P < 0.001) and differed with<br />

year (F2,202 = 4.82, P = 0.009). The growth bar width<br />

also correlated negatively with the carotenoid chroma of<br />

yellow breast feathers (F1,202 = 5.82, P = 0.017; Fig. 1a)<br />

and positively with the total length of the feather<br />

(F1,202 = 57.91, P < 0.001; whole model R 2 = 0.56).<br />

There was no significant relationship of growth bar<br />

width to the size of the black breast stripe<br />

(F1,199 < 0.01, P = 0.971; Fig. 1b), to condition


(a) (b)<br />

(F1,200 = 0.83, P = 0.362) or to age (F1,201 = 1.06,<br />

P = 0.305).<br />

Individual identity as a random repeated factor was<br />

significant in the analysis of feather growth in both the<br />

full model (estimate = 332.8 ± 33.88 se, z = 9.82,<br />

P < 0.001) and the final model after non-significant<br />

fixed-factors were removed (estimate = 322.6 ± 32.10<br />

se, z = 10.05, P < 0.001).<br />

DISCUSSION<br />

We found no relationship of growth bar width to the<br />

size of the melanin ornament but, unexpectedly, a negative<br />

relationship to the chroma of the carotenoid ornament.<br />

Thus, the growth rate of tail feathers declined as<br />

carotenoid levels in breast feathers increased.<br />

The available evidence suggests that carotenoid-rich<br />

feather ornaments are a reflection of good body condition<br />

during feather growth (von Schantz et al. 1999, Hill<br />

2002, McGraw 2006a). This is also true for the Great<br />

Tit (Hõrak et al. 2000, Tschierren et al. 2003, but see<br />

Fitze & Richner 2002). Given comparatively well-established<br />

condition-dependence of carotenoid-based feather<br />

ornaments, we expected positive relationships between<br />

their expression and the growth rate of tail feathers.<br />

However, contrary to our expectations, there was a significant<br />

negative relationship between the carotenoid<br />

chroma of yellow breast feathers and growth rate of tail<br />

feathers. This runs contrary to previous studies, where<br />

the correlation between the intensity of carotenoidbased<br />

ornaments and feather growth rate was either<br />

positive (Hill & Montgomerie 1994, Senar et al. 2003)<br />

or absent (Eeva et al. 1998, van Oort & Dawson 2005,<br />

Hegyi et al. 2007). However, the significance of our<br />

results should not be overstated, because the relationship<br />

between carotenoid content and feather growth was not<br />

very strong (r = )0.16; see also Fig. 1).<br />

Melanin-based ornaments were thought not to be<br />

condition-dependent (McGraw 2006b). However, recent<br />

Ptilochronology and ornaments 399<br />

Figure 1. Relationship between the width of growth bars of tail feathers (mm) and (a) carotenoid chroma of yellow breast feathers<br />

(for definition see Methods; n = 210), and (b) black breast stripe area (cm 2 , n = 210). For the sake of convenience, untransformed<br />

data not adjusted for other covariates are presented. However, note that all analyses were conducted on transformed data.<br />

evidence suggests that they might be as conditiondependent<br />

as carotenoid-based ornaments (Griffith et al.<br />

2006). Potential proximate mechanisms of conditiondependence<br />

might include corticosterone-mediated<br />

stress (Roulin et al. 2008), oxidative stress (Galván &<br />

Alonso-Alvarez 2008), or the allocation of calcium<br />

among competing physiological functions (Roulin et al.<br />

2006). However, we found no relationship of growth bar<br />

width to the size of the melanin-based black breast<br />

stripe, commensurate with the findings of previous studies<br />

(Senar et al. 2003, Hegyi et al. 2007, Kimball 2009).<br />

Thus, our study adds to a growing body of evidence that<br />

feather growth does not correlate with the expression of<br />

melanin ornaments, at least in small songbirds.<br />

The usefulness of ptilochronology has been challenged<br />

(Murphy & King 1991, Takaki et al. 2001, Kern<br />

& Cowie 2002, van Oort & Otter 2005, Bostrom &<br />

Ritchison 2006). Here, we did not test methods of conducting<br />

ptilochronology but used standard methods to<br />

compare the relationship between feather ornaments<br />

and feather growth from a large sample of birds. Results<br />

of studies conducted to date are highly inconsistent, even<br />

when conducted on the same species. For instance, in<br />

the Great Tit, feather growth has been shown to correlate<br />

positively with hue of yellow breast feathers (Senar<br />

et al. 2003), negatively with chroma (this study), or not<br />

at all with either brightness (Eeva et al. 1998, Senar<br />

et al. 2003, Hegyi et al. 2007) or chroma (Senar et al.<br />

2003, Hegyi et al. 2007). Similar inconsistencies can be<br />

found in studies of other bird species (Hill & Montgomerie<br />

1994, van Oort & Dawson 2005). At least two possible<br />

conclusions can be drawn from these studies. First,<br />

ptilochronology may be an unreliable approach for<br />

assessing condition in wild-ranging birds, at least until<br />

rigorous methodological studies demonstrate otherwise.<br />

Secondly, ptilochronology may be reliable in certain<br />

species or for application to certain types of ornaments,<br />

but to reveal interspecific patterns would require many<br />

more studies to be conducted on a broader spectrum of<br />

ª 2010 The Authors<br />

Journal compilation ª 2010 British Ornithologists’ Union


400 B. Matysioková & V. Remesˇ<br />

species. Moreover, differences in results within a species<br />

are known to occur due to population differences in the<br />

information content of the ornamental traits (Dunn et al.<br />

2008, Galván & Moreno 2009) and different expression<br />

of ornaments in different populations and subspecies<br />

(Hill 2002). Again, studies conducted on populations<br />

differing in resource limitation (e.g. carotenoids, see Hill<br />

2002) or expression and information content of feather<br />

ornaments could reveal interesting patterns. The usefulness<br />

of ptilochronology as a simple field method to estimate<br />

a bird’s condition during moult could still emerge<br />

from future studies, especially if these are done in an<br />

explicitly inter- or intraspecific comparative framework.<br />

We are grateful to Kristy´na Bártlová and Jana Šuterová for assistance<br />

in the field, and Peter Adamík for helpful comments on<br />

the manuscript. This study was supported by the Czech Ministry<br />

of Education (MSM6198959212). This study complies with<br />

the current law of the Czech Republic.<br />

REFERENCES<br />

Andersson, S. & Prager, M. 2006. Quantifying colors. In Hill,<br />

G.E. & McGraw, K.J. (eds) Bird Coloration, Volume 1.<br />

Mechanisms and Measurements: 41–89. Cambridge, MA:<br />

Harvard University Press.<br />

Bostrom, M.R. & Ritchison, G. 2006. Possible relationships<br />

between morphology, territory quality, and skin color of<br />

American Kestrels. J. Field Ornithol. 77: 392–398.<br />

Brown, M.E. 1996. Assessing body condition in birds. Curr.<br />

Ornithol. 13: 67–135.<br />

Carrascal, L.M., Senar, J.C., Mozetich, I., Uribe, F. &<br />

Domenech, J. 1998. Interactions about environmental<br />

stress, body condition, nutritional status, and dominance in<br />

Great Tits. Auk 115: 727–738.<br />

Doucet, S.M. 2002. Structural plumage coloration, male body<br />

size, and condition in the Blue-black Grassquit. Condor<br />

104: 30–38.<br />

Dunn, P.O., Whittingham, L.A., Freeman-Gallant, C.R. &<br />

DeCoste, J. 2008. Geographic variation in the function of<br />

ornaments in the Common Yellowthroat Geothlypis trichas.<br />

J. Avian Biol. 39: 66–72.<br />

Eeva, T., Lehikoinen, E. & Rönkä, M. 1998. Air pollution<br />

fades the plumage of the Great Tit. Funct. Ecol. 12: 607–<br />

612.<br />

Figuerola, J. & Senar, J.C. 2000. Measurement of plumage<br />

badges: an evaluation of methods used in the Great Tit<br />

Parus major. Ibis 142: 482–484.<br />

Fitze, P.S. & Richner, H. 2002. Differential effects of a parasite<br />

on ornamental structures based on melanins and carotenoids.<br />

Behav. Ecol. 13: 401–407.<br />

Galván, I. & Alonso-Alvarez, C. 2008. An intracellular antioxidant<br />

determines the expression of a melanin-based signal<br />

in a bird. PLoS ONE 3: e3335.<br />

Galván, I. & Moreno, J. 2009. Variation in effects of male<br />

plumage ornaments: the case of Iberian Pied Flycatchers<br />

Ficedula hypoleuca. Ibis 151: 541–546.<br />

Grafen, A. & Hails, R. 2002. Modern Statistics for the Life<br />

Sciences. Oxford: Oxford University Press.<br />

ª 2010 The Authors<br />

Journal compilation ª 2010 British Ornithologists’ Union<br />

Griffith, S.C., Parker, T.H. & Olson, V.A. 2006. Melanin- versus<br />

carotenoid-based sexual signals: is the difference really<br />

so black and red? Anim. Behav. 71: 749–763.<br />

Grubb, T.C. 1989. Ptilochronology: feather growth bars as indicators<br />

of nutritional status. Auk 106: 314–320.<br />

Grubb, T.C. Jr 2006. Ptilochronology. Feather Time and Biology<br />

of Birds. Oxford: Oxford University Press.<br />

Grubb, T.C., Waite, T.A. & Wiseman, A.J. 1991. Ptilochronology:<br />

induced feather growth in Northern Cardinals varies<br />

with age, sex, ambient temperature, and day length. Wilson<br />

Bull. 103: 435–445.<br />

Hegyi, G., Szigeti, B., Török, J. & Eens, M. 2007. Melanin,<br />

carotenoid and structural plumage ornaments: information<br />

content and role in Great Tits Parus major. J. Avian Biol.<br />

38: 698–708.<br />

Hill, G.E. 2002. Red Bird in a Brown Bag. Oxford: Oxford<br />

University Press.<br />

Hill, G.E. & McGraw, K.J. (eds) 2006. Bird Coloration,<br />

Volume. 1. Mechanisms and Measurements. Cambridge,<br />

MA: Harvard University Press.<br />

Hill, G.E. & Montgomerie, R. 1994. Plumage colour signals<br />

nutritional condition in the House Finch. Proc. R. Soc. Lond.<br />

B 258: 47–52.<br />

Hõrak, P., Vellau, H., Ots, I. & Møller, A.P. 2000. Growth<br />

conditions affect carotenoid-based plumage coloration of<br />

Great Tit nestlings. Naturwissenschaften 87: 460–464.<br />

Isaksson, C. & Andersson, S. 2008. Oxidative stress does<br />

not influence carotenoid mobilization and plumage pigmentation.<br />

Proc. R. Soc. Lond. B 275: 309–314.<br />

Isaksson, C., Ornborg, J., Prager, M. & Andersson, S.<br />

2008. Sex and age differences in reflectance and biochemistry<br />

of carotenoid-based colour variation in the Great Tit<br />

Parus major. Biol. J. Linn. Soc. 95: 758–765.<br />

Jenni, L. & Winkler, R. 1994. Moult and Ageing of European<br />

Passerines. London: Academic Press.<br />

Kern, M.D. & Cowie, R.J. 2002. Ptilochronology proves unreliable<br />

in studies of nestling Pied Flycatcher. Ibis 144: 23–29.<br />

Keyser, A.J. & Hill, G.H. 1999. Condition-dependent variation<br />

in the blue-ultraviolet coloration of a structurally based<br />

plumage ornament. Proc. R. Soc. Lond. B 266: 771–777.<br />

Kimball, S.A. 2009. Mating system dynamics in passerine<br />

birds. PhD. Thesis, Ohio State University.<br />

Lessels, C.M. & Boag, P.T. 1987. Unrepeatable repeat abilities:<br />

a common mistake. Auk 104: 116–121.<br />

McGraw, K.J. 2006a. Mechanics of carotenoid-based coloration.<br />

In Hill, G.E. & McGraw, K.J. (eds) Bird Coloration, Volume<br />

1. Mechanisms and Measurements: 177–242.<br />

Cambridge, MA: Harvard University Press.<br />

McGraw, K.J. 2006b. Mechanics of melanin-based coloration.<br />

In Hill, G.E. & McGraw, K.J. (eds) Bird Coloration, Volume<br />

1. Mechanisms and Measurements: 243–294. Cambridge,<br />

MA: Harvard University Press.<br />

Murphy, M.E. & King, J.R. 1991. Ptilochronology: a critical<br />

evaluation of assumptions and utility. Auk 108: 695–704.<br />

van Oort, H. & Dawson, R.D. 2005. Carotenoid ornamentation<br />

of adult male Common Redpolls predicts probability of<br />

dying in a salmonellosis outbreak. Funct. Ecol. 19: 822–<br />

827.<br />

van Oort, H. & Otter, K.A. 2005. Natal nutrition and the habitat<br />

distributions of male and female Black-capped Chickadees.<br />

Can. J. Zool. 83: 1495–1501.


Quesada, J. & Senar, J.C. 2006. Comparing plumage colour<br />

measurements obtained directly from live birds and from<br />

collected feathers: the case of the Great Tit Parus major.<br />

J. Avian Biol. 37: 609–616.<br />

Roulin, A., Dauwe, T., Blust, R., Eens, M. & Beaud, M.<br />

2006. A link between eumelanism and calcium physiology<br />

in the Barn Owl. Naturwissenschaften 93: 426–430.<br />

Roulin, A., Almasi, B., Rossi-Pedruzzi, A., Ducrest, A.L.,<br />

Wakamatsu, K., Miksik, I., Blount, J.D., Jenni-Eiermann,<br />

S. & Jenni, L. 2008. Corticosterone mediates the conditiondependent<br />

component of melanin-based coloration. Anim.<br />

Behav. 75: 1351–1358.<br />

von Schantz, T., Bensch, S., Grahn, M., Hasselquist, D. &<br />

Wittzell, H. 1999. Good genes, oxidative stress and condition-dependent<br />

sexual signals. Proc. R. Soc. Lond. B 266:<br />

1–12.<br />

Senar, J.C., Figuerola, J. & Domènech, J. 2003. Plumage<br />

coloration and nutritional condition in the Great Tit Parus<br />

Ptilochronology and ornaments 401<br />

major: the roles of carotenoids and melanins differ. Naturwissenschaften<br />

90: 234–237.<br />

Siefferman, L., Shawkey, M.D., Bowman, R. & Woolfenden,<br />

G.E. 2008. Juvenile coloration of Florida Scrub-Jays (Aphelocoma<br />

coerulescens) is sexually dichromatic and correlated<br />

with condition. J. Ornithol. 149: 357–363.<br />

Takaki, Y., Eguchi, K. & Nagata, H. 2001. The growth bars<br />

on tail feathers in the male Styan’s Grasshopper Warbler<br />

may indicate quality. J. Avian Biol. 32: 319–325.<br />

Tschierren, B., Fitze, H.S. & Richner, H. 2003. Proximate<br />

mechanisms of variation in the carotenoid-based plumage<br />

coloration of nestling Great Tits (Parus major L.). J. Evol.<br />

Biol. 16: 91–100.<br />

Received 23 July 2009;<br />

revision accepted 8 December 2009.<br />

ª 2010 The Authors<br />

Journal compilation ª 2010 British Ornithologists’ Union


Incubation Feeding and Nest Attentiveness in a Socially<br />

Monogamous Songbird: Role of Feather Colouration, Territory<br />

Quality and Ambient Environment<br />

Beata Matysioková & Vladimír Remesˇ<br />

Department of Zoology and Laboratory of Ornithology, Palacky´ University, Olomouc, Czech Republic<br />

Correspondence<br />

Beata Matysioková, Department of Zoology<br />

and Laboratory of Ornithology, Palacky´<br />

University, Trˇ. Svobody 26, 77146 Olomouc,<br />

Czech Republic.<br />

E-mail: betynec@centrum.cz<br />

Received: December 4, 2009<br />

Initial acceptance: January 30, 2010<br />

Final acceptance: March 5, 2010<br />

(S. Foster)<br />

doi: 10.1111/j.1439-0310.2010.01776.x<br />

Introduction<br />

Abstract<br />

Parental investment and environmental conditions<br />

during reproduction are key determinants of reproductive<br />

output in free-ranging animals. Incubation is<br />

one of the key processes in avian reproduction<br />

(White & Kinney 1974; Deeming 2002a). Some form<br />

of incubation behaviour is present in 99% of all bird<br />

species. In species with uniparental incubation,<br />

which is usually done by females (Skutch 1957), the<br />

incubating individual has reduced time for foraging<br />

and self-maintenance (Drent 1975). As incubation is<br />

energetically demanding (Williams 1996; Thomson<br />

et al. 1998; Tinbergen & Williams 2002), this can<br />

ethology<br />

international journal of behavioural biology<br />

Ethology<br />

Parental investment and environmental conditions determine reproductive<br />

success in wild-ranging animals. Parental effort during incubation,<br />

and consequently factors driving it, has profound consequences for<br />

reproductive success in birds. The female nutrition hypothesis states that<br />

high male feeding enables the incubating female to spend more time on<br />

eggs, which can lead to higher hatching success. Moreover, both male<br />

and female parental investment during incubation might be signalled by<br />

plumage colouration. To test these hypotheses, we investigated relationships<br />

between male and female incubation behaviour and carotenoid<br />

and melanin-based plumage colouration, territory quality and ambient<br />

temperature in the Great Tit Parus major. We also studied the effect of<br />

female incubation behaviour on hatching success. Intensity of male<br />

incubation feeding increased with lower temperatures and was higher in<br />

territories with more food supply, but only in poor years with low overall<br />

food supply. Female nest attentiveness increased with lower temperatures.<br />

Plumage colouration did not predict incubation behaviour of<br />

either parent. Thus, incubation behaviour of both parents was related<br />

mainly to environmental conditions. Moreover, there was no relationship<br />

between male incubation feeding, female nest attentiveness and<br />

hatching success. Consequently, our data were not consistent with the<br />

female nutrition hypothesis.<br />

have negative effects on body condition of the incubating<br />

parent, subsequent care during the same or<br />

next breeding attempt, or survival to the next breeding<br />

season (Heinsohn & Cockburn 1994; Heaney &<br />

Monaghan 1996; Reid et al. 2000; Visser & Lessells<br />

2001; de Heij et al. 2006).<br />

In many species in which the male does not<br />

participate directly in warming the eggs, he feeds the<br />

incubating female. This behaviour is called incubation<br />

feeding (Lack 1940; Kendeigh 1952). In hornbills,<br />

some raptors and some songbirds, the<br />

incubating female is completely dependent on incubation<br />

feeding (Kendeigh 1952; Poulsen 1970;<br />

Verbeek 1972). However, in the majority of species<br />

596 Ethology 116 (2010) 596–607 ª 2010 Blackwell Verlag GmbH


B. Matysioková & V. Remesˇ Incubation Behaviour in Great Tit<br />

males provide only a certain part of the daily food<br />

intake of incubating females (Davies 1977). The<br />

intensity of incubation feeding differs both within<br />

and among species (Kendeigh 1952; Conway & Martin<br />

2000), and can be influenced by various factors.<br />

Its intensity was found to increase with decreasing<br />

ambient temperature (Nilsson & Smith 1988; Smith<br />

et al. 1989; Pearse et al. 2004), higher male quality<br />

(Lifjeld et al. 1987; Siefferman & Hill 2005), or<br />

higher food supply on territory (Zanette et al. 2000).<br />

Currently, the most popular hypothesis to explain<br />

the occurrence and patterns of incubation feeding is<br />

the female nutrition hypothesis (von Haartman<br />

1958; Royama 1966). It claims that incubation feeding<br />

is an important source of energy for the incubating<br />

female. Consequently, male provides female<br />

with an important part of her daily energy intake,<br />

that allows her to spend more time on eggs, i.e. to<br />

increase her nest attentiveness (Martin & Ghalambor<br />

1999; Tewksbury et al. 2002).<br />

As higher nest attentiveness can lead to higher<br />

hatching success (Lyon & Montgomerie 1985; Webb<br />

1987), incubation feeding can significantly affect<br />

reproductive performance of birds. However, nest<br />

attentiveness can be influenced by other factors in<br />

addition to incubation feeding. Females increase nest<br />

attentiveness in cold temperatures to keep eggs<br />

within temperature limits necessary for successful<br />

development of the embryo (Yom-Tov et al. 1978;<br />

Webb 1987; Sanz 1997). High-quality territories with<br />

superior food supply enable females to spend more<br />

time on eggs (Rauter & Reyer 1997; Zanette et al.<br />

2000; Zimmerling & Ankney 2005). Apart from<br />

environmental conditions, higher quality females<br />

also spend more time on eggs (Ardia & Clotfelter<br />

2007), which is also evidenced by a positive relationship<br />

between clutch size and nest attentiveness<br />

found in some species of birds (Blagosklonov 1977;<br />

Jones 1987; Deeming 2002b).<br />

Individual quality and ability to provide parental<br />

care and invest in a given breeding attempt can be<br />

signalled by plumage colouration (Hill & McGraw<br />

2006). Carotenoid-based feather colouration is widespread<br />

in birds (Olson & Owens 2005). Carotenoids<br />

cannot be synthesized by birds, and thus their concentration<br />

in feathers is dependent on both food<br />

availability and foraging efficiency (McGraw 2006a).<br />

Moreover, when deposited into feathers they cannot<br />

be used for important physiological functions,<br />

including immunological defence or mitigating<br />

oxidative stress. Consequently, carotenoids allocated<br />

to feathers should indicate individual quality and ⁄ or<br />

condition (Møller et al. 2000). Although melanin<br />

ornaments are often claimed not to reflect condition<br />

(McGraw 2006b), recent evidence suggests that in<br />

certain conditions they might be as condition-dependent<br />

as carotenoid-based ornaments (Griffith et al.<br />

2006). Potential proximate mechanisms of condition-dependence<br />

might include corticosterone-mediated<br />

stress (Roulin et al. 2008), oxidative stress<br />

(Galván & Alonso-Alvarez 2008, 2009), allocation of<br />

calcium among competing physiological functions<br />

(Roulin et al. 2006) or hormonal control of melanin<br />

deposition (McGraw 2008). Thus, both types of<br />

plumage colouration can be important in signalling<br />

capability of parental investment.<br />

In our study, we examined male and female incubation<br />

behaviour in the Great Tit Parus major, a<br />

typical socially monogamous passerine with femaleonly<br />

incubation. Our aims were to find out: (1)<br />

which factors affect the intensity of male incubation<br />

behaviour, i.e. incubation feeding, (2) what is the<br />

effect of incubation feeding and other factors on<br />

female incubation behaviour, i.e. nest attentiveness,<br />

(3) what is the effect of nest attentiveness on<br />

hatching success, and (4) whether carotenoid- and<br />

melanin-based plumage colouration predicts parental<br />

effort during incubation in both males and females.<br />

Based on the predictions of the female nutrition<br />

hypothesis, we expected to find a positive relationship<br />

between incubation feeding and nest attentiveness;<br />

we also expected a positive relationship<br />

between nest attentiveness and hatching success. We<br />

expected that parental effort will be positively<br />

related to the intensity of both carotenoid- and<br />

melanin-based plumage colourations.<br />

Methods<br />

General Fieldwork<br />

This work was conducted on three adjacent nest-box<br />

plots (188 nest-boxes in total), in a deciduous forest<br />

near Grygov (49°31¢N, 17°19¢E) in eastern Czech<br />

Republic. The forest is dominated by lime Tilia spp.<br />

and oak Quercus spp. with interspersed ash Fraxinus<br />

excelsior, hornbeam Carpinus betulus, and alder Alnus<br />

glutinosa. Nest boxes are placed about 1.5 m above<br />

ground and besides Great Tit are inhabited by Blue<br />

Tit Cyanistes caeruleus, Collared Flycatcher Ficedula<br />

albicollis, and Nuthatch Sitta europea. Fieldwork was<br />

carried out between 2005 and 2007 from early Apr.<br />

until mid-Jun. We checked nest-boxes daily to<br />

record the laying of the first egg and final clutch<br />

size. Later, we checked which eggs hatched to determine<br />

the hatching success. We defined hatching<br />

Ethology 116 (2010) 596–607 ª 2010 Blackwell Verlag GmbH 597


Incubation Behaviour in Great Tit B. Matysioková & V. Remesˇ<br />

success as the percentage of eggs that hatched. We<br />

used only nests where we knew the exact fate of all<br />

the eggs.<br />

Incubation Behaviour<br />

During incubation, we monitored nest attentiveness<br />

of females and incubation feeding by males. We<br />

obtained one sample from each nest. To determine<br />

nest attentiveness, we deployed temperature data<br />

loggers (Hobo H8 Temp ⁄ External; Onset Computer<br />

Corp., Pocasset, MA, USA), by putting their first<br />

probe (1.8 m cable) through the nest wall into the<br />

bottom of the nest cup. The data logger itself with<br />

the second, inner probe was mounted under the<br />

nest-box. These probes measured inner and outer<br />

temperature at every nest from 06.00 until<br />

12.00 hours (i.e. for 6 h) in 9-s intervals. This interval<br />

is the shortest possible to enable the coverage of<br />

6 h of recording with respect to the memory capacity<br />

of our data loggers. To determine incubation feeding,<br />

we placed video cameras about 5 m in front of the<br />

nest-box on the ground and recorded bird activity for<br />

90 min. This is a standard recording period in studies<br />

of incubation feeding in songbirds (e.g. Zanette et al.<br />

2000; Badyaev & Hill 2002; Doerr & Doerr 2007). We<br />

deployed cameras in the morning, between 07.30<br />

and 12.00 hours. We took ambient temperature during<br />

incubation feeding from a local meteorological<br />

station. Both data loggers and cameras were deployed<br />

early in the incubation period. Median was day 4<br />

(range 1–8) for data loggers and day 3 (1–9) for cameras,<br />

where day 0 means the day when the last egg<br />

was laid. Female Great Tits were in full incubation<br />

already on day 1, as evidenced by no significant<br />

effect of the day of incubation on nest attentiveness<br />

(see Results). In 80 nests, cameras were deployed on<br />

the same morning when data loggers were recording<br />

temperature. Setting cameras took very short time<br />

(


B. Matysioková & V. Remesˇ Incubation Behaviour in Great Tit<br />

Territory Quality<br />

We characterized territory quality by assessing food<br />

supply during incubation of every pair in the vicinity<br />

of its nest-box. As the main food consumed by Great<br />

Tit during incubation, which takes place in our population<br />

mostly in early May, is caterpillars (Betts<br />

1955), we characterized food supply as the amount<br />

of caterpillars on trees within the territory. We<br />

determined (1) relative food supply on each of the<br />

five most numerous tree species by the frass fall<br />

method (Zandt 1994) and (2) counted all trees with<br />

a diameter above 10 cm at breast height in a circle<br />

with 20-m radius around every occupied nest-box.<br />

We put three plates (0.15 m 2 ) around an occupied<br />

box during incubation under randomly chosen trees,<br />

always ca. 5 m from the box in three equidistant<br />

directions. We collected fallen frass after 48 h into<br />

small plastic bags that were sealed and stored in a<br />

cold place. After the field season, we let the contents<br />

dry overnight under room temperature and humidity,<br />

removed large debris and weighed the rest to the<br />

nearest 0.0001 g.<br />

We analysed the amount of frass fallen on the<br />

plate in relation to tree species and controlled for<br />

canopy height (three categories: low, medium, high),<br />

year and date. There was a significant effect of tree<br />

species (F4,170 = 11.7, p < 0.001, n = 179). Least<br />

squares means for the five tree species were 0.075<br />

for oak, 0.060 for hornbeam, 0.031 for lime, 0.026<br />

for alder, and 0.016 for ash (in g ⁄ 48 h ⁄ 0.15 m 2 ). We<br />

recalculated these means so that ash, species with<br />

the least frass, had coefficient of 1. Other species had<br />

accordingly higher coefficients: 4.6 for oak, 3.7 for<br />

hornbeam, 1.9 for lime and 1.6 for alder. Thus, for<br />

example one oak was equivalent to 4.6 individuals<br />

of ash, because our data indicated that it had 4.6<br />

times more caterpillars as compared to ash, when<br />

controlled for possible confounding effects of sampling.<br />

Our results concerning relative food supply on<br />

different species of trees agree with previous analyses<br />

(Keller & van Noordwijk 1994; Naef-Daenzer<br />

2000). To determine territory quality, we summed<br />

the number of trees within 20-m radius around the<br />

nest multiplied by their respective coefficients. Tit<br />

parents do not limit their foraging exclusively to<br />

20 m around their nest. The distance where the<br />

great majority of their foraging takes place is given<br />

in literature, variously as within 25 m (Naef-Daenzer<br />

2000), 30 m (Smith & Sweatman 1974) or 45 m<br />

from the nest (Naef–Daenzer & Keller 1999) in similar<br />

habitats to ours. These figures come from studies<br />

done during feeding of the young; comparable<br />

figures for the incubation period are currently lacking.<br />

The radius of 20 m was chosen as a compromise<br />

between biological plausibility and the workload of<br />

counting trees.<br />

Analyses of Samples<br />

We measured the area of the black breast stripe from<br />

photos in Adobe Photoshop CS3 Extended. We used<br />

the quick selection tool to roughly delimit the breast<br />

stripe. Then, we manually finished the selection so<br />

that it was as precise as possible and measured its<br />

area. We used a ruler photographed together with<br />

every bird to adjust the scale of each photo and to<br />

obtain absolute area (in cm 2 ). We defined stripe area<br />

as the area of the black band between the point of<br />

inflexion, where the ventral stripe widens to a throat<br />

patch, and the posterior end of the stripe (Figuerola<br />

& Senar 2000). All measurements were taken by BM.<br />

To assess repeatability, a different observer measured<br />

a subsample of photos. Repeatability, calculated as an<br />

intraclass correlation coefficient (Lessels & Boag<br />

1987), was high (r i = 0.87, p < 0.001, n = 75).<br />

According to standard procedures (Andersson &<br />

Prager 2006), we quantified reflectance spectra of<br />

yellow feathers sampled from the breast. We used<br />

10–15 feathers from each bird, which is enough to<br />

obtain reliable values in Great Tit (Quesada & Senar<br />

2006). We used Avantes AvaSpec-2048 fiber optic<br />

spectrometer (Avantes BV, Eerbeek, The Netherlands)<br />

together with AvaLight-XE xenon pulsed light<br />

source and WS-2 white reference tile. The probe was<br />

used both to provide light and to sample reflected<br />

light stream, and was held perpendicular to feather<br />

surface. We took five readings, each from different<br />

part of each set of feathers. Feathers were arranged<br />

on black, non-reflective surface so that they overlapped<br />

extensively.<br />

We needed a spectrophotometric measure of the<br />

amount of carotenoids in the breast feathers. Senar<br />

et al. (2008) showed that hue, measured by a<br />

Minolta colorimeter (Minolta CR200 colorimeter;<br />

Konica Minolta, Tokyo, Japan), correlated with<br />

lutein content of breast feathers in the Great Tit.<br />

Similarly, Isaksson & Andersson (2008) and Isaksson<br />

et al. (2008) showed that so called carotenoid<br />

chroma correlated positively with feather carotenoids<br />

in the Great Tit. Carotenoids present in Great<br />

Tit breast feathers (lutein, zeaxanthin) absorb the<br />

most at around 450 nm, and theoretical modelling<br />

also showed that carotenoid chroma directly reflects<br />

the amount of carotenoids in feathers (Andersson<br />

& Prager 2006). As we used a spectrophotometric<br />

Ethology 116 (2010) 596–607 ª 2010 Blackwell Verlag GmbH 599


Incubation Behaviour in Great Tit B. Matysioková & V. Remesˇ<br />

approach equal to that of Isaksson & Andersson<br />

(2008) and Isaksson et al. (2008), and as the hue<br />

calculated from spectrophotometric measurement of<br />

feathers does not correlate with the amount of<br />

carotenoids in feathers (Isaksson et al. 2008), we use<br />

here carotenoid chroma. We obtained reflectance<br />

(in %) from the wavelength of 320–700 nm in<br />

1-nm increments. We calculated carotenoid chroma<br />

as (R 700–R 450) ⁄ R 700, where R 700 is reflectance at<br />

700 nm and R 450 reflectance at 450 nm. In statistical<br />

analyses, we used the average carotenoid chroma<br />

calculated from the five readings from each set of<br />

feathers. To assess the repeatability of our measurements,<br />

in a subsample of feathers, we arranged<br />

feathers anew and took another five readings and<br />

again averaged the carotenoid chroma calculated<br />

from them. We calculated repeatability of these two<br />

average carotenoid chroma estimates, calculated as<br />

intraclass correlation coefficient (Lessels & Boag<br />

1987), which was high (ri = 0.85, p < 0.001,<br />

n = 55).<br />

Statistical Analyses<br />

Due to the fidelity of birds to their breeding grounds,<br />

some females were sampled in more than 1 yr (22<br />

females two times, 4 females three times, n = 143).<br />

Thus, we adjusted for this by fitting female identity<br />

as a random effect in mixed models for repeated<br />

measurements. In contrast, only three males were<br />

Factor<br />

Incubation feeding<br />

v 2<br />

df p Estimate (SE)<br />

Intercept 4.44 (0.941)<br />

Year 11.06 2, 81 0.004 0.38 (0.688): 2005<br />

2.42 (0.744): 2006<br />

Clutch size 2.03 1, 80 0.154 +<br />

Laying date 1.63 1, 79 0.202 +<br />

Age of clutch 4.1 1, 81 0.043 )0.22 (0.115)<br />

Time of day 20.78 1, 81


B. Matysioková & V. Remesˇ Incubation Behaviour in Great Tit<br />

Table 2: Results of a general linear mixed<br />

model explaining female nest attentiveness<br />

(n = 143)<br />

Factor<br />

male incubation feeding, we fitted interactions of<br />

territory quality with year, male breast stripe area<br />

and male breast carotenoid chroma (Table 1). In the<br />

analyses of female nest attentiveness, we also fitted<br />

interactions of territory quality with year, female<br />

breast stripe area, female breast carotenoid chroma<br />

and male incubation feeding, and the interaction of<br />

male incubation feeding with year (Table 2). We<br />

included these interactions because we wanted to<br />

know whether effects of territory quality and male<br />

incubation feeding differ with year, and whether the<br />

effects of male and female colouration and male<br />

incubation feeding depend on territory quality. Variables<br />

included into models differed according to the<br />

dependent variable and are apparent from Tables 1–<br />

3. We did not include male incubation feeding as a<br />

predictor in the analysis of hatching success, because<br />

the only way incubation feeding could affect hatching<br />

success is through nest attentiveness. We also<br />

did not include male plumage colouration as a<br />

predictor in the analysis of female nest attentiveness,<br />

because we did not want to test hypotheses on<br />

differential allocation or compensation. Male plumage<br />

colouration was not likely to bias the results<br />

obtained on the effects of female colouration on<br />

nest attentiveness, because there was no assortative<br />

pairing in relation to colouration in our population<br />

(correlation between mates: carotenoid chroma<br />

Nest attentiveness<br />

F df p Estimate (SE)<br />

Intercept 0.76 (0.034)<br />

Year 2.20 2, 137 0.114 2007 > 2005 > 2006<br />

Clutch size 6.76 1, 140 0.010 0.01 (0.003)<br />

Laying date 1.37 1, 139 0.244 +<br />

Age of clutch 0.04 1, 131 0.852 +<br />

Ambient temperature 38.04 1, 140 older<br />

Female stripe area 2.07 1, 136 0.153 )<br />

Female carotenoid chroma 0.13 1, 132 0.720 )<br />

Male incubation feeding 0.14 1, 133 0.710 )<br />

Territory quality · year 0.18 2, 125 0.832<br />

Territory quality · female<br />

stripe area<br />

1.00 1, 130 0.320<br />

Territory quality · female<br />

carotenoid chroma<br />

0.02 1, 124 0.900<br />

Territory quality · male<br />

incubation feeding<br />

0.12 1, 129 0.730<br />

Male incubation feeding · year 0.48 2, 127 0.618<br />

p-values of the final model are in bold. Sign (+ or )) or text in Estimate show the direction of<br />

the non-significant effects; exact parameter estimates are listed only for variables retained in the<br />

final model.<br />

Table 3: Results of a generalised linear mixed model explaining<br />

hatching success (n = 119)<br />

Factor<br />

Hatching success<br />

F df p Estimate (SE)<br />

Intercept 0.21 (1.167)<br />

Year 0.15 2, 110 0.860 2005 > 2006 > 2007<br />

Clutch size 4.98 1, 117 0.028 0.27 (0.121)<br />

Laying date 0.01 1, 112 0.927 +<br />

Female age 0.58 1, 116 0.446 1 yr old > older<br />

Female stripe area 0.10 1, 114 0.751 +<br />

Female carotenoid<br />

chroma<br />

0.12 1, 113 0.729 )<br />

Nest attentiveness 0.25 1, 115 0.619 +<br />

p-values of the final model are in bold. Sign (+ or )) or text in Estimate<br />

show the direction of the non-significant effects; exact parameter<br />

estimates are listed only for variables retained in the final model.<br />

r = )0.15, p = 0.121, n = 104; breast stripe size<br />

r = 0.07, p = 0.487, n = 104). We subsequently<br />

removed one by one the least significant factors until<br />

we ended with only statistically significant variables<br />

of the final model (Grafen & Hails 2002). In tables,<br />

we give F, v 2 , df and p-values of non-significant predictors,<br />

immediately before they were removed from<br />

the model. Residuals were always checked to conform<br />

to the requirements of a particular model.<br />

Denominator df were estimated by Satterthwaite<br />

method.<br />

Ethology 116 (2010) 596–607 ª 2010 Blackwell Verlag GmbH 601


Incubation Behaviour in Great Tit B. Matysioková & V. Remesˇ<br />

Ethical Note<br />

We used standard methods in capturing and handling<br />

birds used in the research of cavity-nesting<br />

passerines. We captured adults in the nest-box. We<br />

handled them for as short time as possible to minimize<br />

any distress. We plucked the smallest number<br />

of feathers possible to obtain reliable results based<br />

on a previous methodological study (Quesada &<br />

Senar 2006). Our temperature probes had no<br />

adverse effects on birds.<br />

This study complies with the current law of the<br />

Czech Republic. We had all necessary permits for<br />

this study and it was overseen by the Ethical<br />

Committee of Palacky University.<br />

Results<br />

Altogether we had 176 active nests over the 3 yr.<br />

However, we did not obtain all measurements for all<br />

the nests and thus, sample sizes for individual<br />

analyses differ. Clutch size was 10.6 1.34 eggs<br />

(mean SD, range 7–16, n = 174), nest attentiveness<br />

75 6% (range 61–89, n = 161), incubation<br />

feeding 0.86 1.19 per hour (range 0–5.4, n = 166),<br />

and hatching success was 94 9.5% (range =<br />

44–100, n = 136).<br />

Incubation Feeding<br />

Male incubation feeding was negatively associated<br />

with ambient temperature (Fig. 2a), time of day<br />

and age of the clutch. Thus, the intensity of incubation<br />

feeding decreased with higher temperatures,<br />

later time of the day and advancing age of the<br />

clutch. The frequency of incubation feeding<br />

increased with territory quality, but only in years<br />

with low overall food supply (2005 and 2007;<br />

Fig 3). Frass fall amounted to 0.14 (g ⁄ 48 h ⁄ 1m 2 )in<br />

2005, 0.11 in 2007 and 0.51 in 2006. Thus, year<br />

2006 had about five times more frass compared<br />

with years 2005 and 2007. Other effects were not<br />

significant (Table 1).<br />

Nest Attentiveness<br />

Nest attentiveness was negatively related to ambient<br />

temperature (Fig. 2b) and positively to clutch size.<br />

Thus, percentage of time females spent on eggs<br />

increased with lower temperatures and a higher<br />

number of eggs in the nest. Other factors were not<br />

significant (Table 2; Fig. 4a).<br />

(a)<br />

(b)<br />

Fig. 2: Relationships of (a) incubation feeding (n = 90) and (b) nest<br />

attentiveness (n = 143) to ambient temperature. Lines are least<br />

squares regression fits to the data.<br />

Fig. 3: Relationship between incubation feeding and territory quality<br />

(for units see Methods) separately for years 2005 (dashed line), 2006<br />

(full line) and 2007 (dotted line; n = 90).<br />

602 Ethology 116 (2010) 596–607 ª 2010 Blackwell Verlag GmbH


B. Matysioková & V. Remesˇ Incubation Behaviour in Great Tit<br />

(a)<br />

(b)<br />

Fig. 4: Relationships between (a) female nest attentiveness and male<br />

incubation feeding (n = 143) and (b) hatching success and nest attentiveness<br />

(n = 114). These relationships are predicted to be positive<br />

under the female nutrition hypothesis.<br />

Hatching Success<br />

Hatching success was positively related to clutch size;<br />

other factors were not significant (Table 3; Fig. 4b).<br />

Discussion<br />

Incubation feeding rate in our population was similar<br />

to that observed in other secondary cavity nesters<br />

(e.g. Moreno & Carlson 1989; Siefferman & Hill<br />

2005) and varied substantially among males (0–5.4<br />

per hour). Neither of male characteristics (plumage<br />

colouration, age) predicted the rate of incubation<br />

feeding, whereas environmental conditions and<br />

characteristics of the nesting attempt did (ambient<br />

temperature, territory quality, time of day and age<br />

of the clutch). Incubation feeding did not predict<br />

nest attentiveness (Fig. 4a). Nest attentiveness was<br />

associated neither with any of the female characteristics<br />

(plumage colouration, age), nor territory quality,<br />

but it was associated with ambient temperature<br />

and clutch size. Nest attentiveness did not predict<br />

hatching success (Fig. 4b).<br />

Predictors of Incubation Behaviour<br />

Carotenoid and melanin-based ornaments can signal<br />

male quality and his capacity to invest in a given<br />

breeding attempt (Griffith & Pryke 2006). However,<br />

in our population of Great Tit neither of the examined<br />

colouration traits predicted male incubation<br />

behaviour. This agrees with results obtained for the<br />

same type of feather colouration in Northern Cardinal<br />

Cardinalis cardinalis (Jawor & Breitwisch 2006)<br />

and Eastern Bluebird Sialia sialis (Siefferman & Hill<br />

2003, 2005), although structural feather colour<br />

predicted incubation feeding in Eastern Bluebird.<br />

The only species where a positive relationship<br />

between carotenoid-based feather colouration and<br />

incubation feeding was observed is House Finch<br />

Carpodacus mexicanus (Hill 1991; Badyaev & Hill<br />

2002). Male age did not correlate with incubation<br />

feeding in our population, whereas it did so in some<br />

other species (Røskaft et al. 1983; Lifjeld & Slagsvold<br />

1986). Statistically significant predictors of incubation<br />

feeding in our population of Great Tit were<br />

ambient temperature, territory quality, time of day<br />

and age of the clutch. Thus, male incubation feeding<br />

in our population was related to environmental<br />

conditions rather than to male characteristics.<br />

All studies examining female parental care and ⁄ or<br />

breeding success in relation to female plumage colouration<br />

have focused on nestling period (Amundsen<br />

& Pärn 2006). Our study is the first that focused<br />

on the relationship between female plumage colouration<br />

and female behaviour during incubation.<br />

Neither carotenoid-based nor melanin-based female<br />

plumage colouration predicted female nest attentiveness<br />

in our population of Great Tit. In species where<br />

male does not participate directly in incubating the<br />

eggs, he can increase female nest attentiveness, and<br />

hence probably hatching success, by higher intensity<br />

of incubation feeding (Sedgwick 1993; Tewksbury<br />

et al. 2002; Fontaine et al. 2007). However, we did<br />

not find such a relationship. Female incubation<br />

behaviour in our population was related only to<br />

ambient temperature and clutch size and not to male<br />

behaviour, female characteristics, or quality of the<br />

breeding territory.<br />

Environmental conditions were the main correlates<br />

of incubation behaviour in both male and<br />

Ethology 116 (2010) 596–607 ª 2010 Blackwell Verlag GmbH 603


Incubation Behaviour in Great Tit B. Matysioková & V. Remesˇ<br />

female Great Tit. In particular, females increased<br />

nest attentiveness with colder temperatures (see also<br />

Hinde 1952; White & Kinney 1974; Sanz 1997),<br />

which was mirrored by increased male incubation<br />

feeding. Attentiveness increased on average from<br />

68% at 20°C to 81% at 4°C. Variation between<br />

females at the same temperature was about 20%<br />

(Fig. 2b). Similarly, male incubation feeding<br />

increased from 0.2 to 1.8 per hour with temperature<br />

drop from 24 to 6°C, whereas variation among males<br />

at the same temperature might have been as high as<br />

from 0 to 5 per hour (Fig. 2a).<br />

Male incubation feeding increased with territory<br />

quality, but only in years with low overall food supply.<br />

Zanette et al. (2000) found out that male Eastern<br />

Yellow Robins Eopsaltria australis fed their<br />

incubating females more in a habitat with higher<br />

food supply. The effect of territory food supply on<br />

male incubation feeding agrees with previous observations<br />

that Great Tit parents on territories with<br />

higher food supply have lower energy expenditure<br />

during nestling feeding (Tinbergen & Dietz 1994),<br />

breed early (Wilkin et al. 2007) or have better growing<br />

nestlings that fledge in higher body weight<br />

(Naef–Daenzer & Keller 1999). Thus, territories with<br />

higher food supply enable parents to invest more in<br />

current breeding attempt and rear higher quality<br />

young or to save energy. It is remarkable that this<br />

effect was apparent only in years with low overall<br />

food supply. It seems that in a good year, all males<br />

had territories with enough food to supply their<br />

incubating mate and male provisioning capacity<br />

played a role only in poor years. On the other hand,<br />

nest attentiveness was not related to territory quality<br />

in our study, whereas in some other species it was<br />

(Rauter & Reyer 1997; Zanette et al. 2000). Extra<br />

resources obtained by females on good territories<br />

could be allocated to self-maintenance rather than to<br />

incubation effort. Thus, females foraging in good territories<br />

during incubation off-bouts and receiving<br />

more food from males during on-bouts might have<br />

lost less weight during incubation, suffered less costs<br />

to other functions (physiological, behavioural) or<br />

increased their parental effort in other parts of the<br />

breeding cycle or in future breeding bouts.<br />

Female Nutrition Hypothesis<br />

Incubation feeding did not predict nest attentiveness,<br />

which in turn was not related to hatching success<br />

(Fig. 4). Thus, our data were not consistent with the<br />

female nutrition hypothesis. However, three alternatives<br />

should be mentioned here. First, as mentioned<br />

above, females might have allocated extra food<br />

obtained from males into self-maintenance instead<br />

of incubation effort. Second, female nest attentiveness<br />

might respond to the amount or quality of food<br />

brought by the male on the nest. Any patterns that<br />

could arise from the effects of food load or quality<br />

would be missed by our approach. Third, Great Tit<br />

male feeds his female also while she is off the nest<br />

(Hinde 1952; Royama 1966; de Heij 2006). Incubation<br />

feeding off the nest is very difficult to record<br />

(Hinde 1952; Nilsson & Smith 1988; Pearse et al.<br />

2004). We were not able to follow females during<br />

off-bouts in the dense canopy of our flood-plain<br />

forest (B. Matysioková & V. Remesˇ, unpubl. data).<br />

Similarly, most of the previous studies focused<br />

exclusively on feeding on the nest, even in species<br />

with off-nest incubation feeding occurring (e.g. Hinde<br />

1952; Lifjeld et al. 1987; Nilsson & Smith 1988;<br />

Smith et al. 1989; Sanz 1997; Pearse et al. 2004; de<br />

Heij 2006; Lloyd et al. 2009; but see Klatt et al.<br />

2008). However, rate of incubation feeding on the<br />

nest need not fully correspond to overall incubation<br />

feeding rate. In the only study that quantified incubation<br />

feeding both on and off the nest, which was<br />

done on Scarlet Tanager Piranga olivacea, no significant<br />

relationship between incubation feeding on and<br />

off the nest was found (Klatt et al. 2008; B. Stutchbury,<br />

pers. comm.). Thus, if incubation feeding off<br />

the nest were more important for the female, we<br />

would have missed some important patterns in our<br />

population. On the other hand, food load delivered<br />

to female when on the nest might be larger, i.e.<br />

more important, than that delivered to female outside<br />

of nest (Nilsson & Smith 1988). However, these<br />

questions remain unresolved.<br />

Conclusions<br />

In summary, our work is one of the first studies that<br />

deal with relationships between feather colouration<br />

and incubation behaviour in birds. Our data suggest<br />

that neither carotenoid-based nor melanin-based colouration<br />

predict bird behaviour during incubation,<br />

which agrees with previous findings in other species<br />

(Siefferman & Hill 2003, 2005; Jawor & Breitwisch<br />

2006; but see Hill 1991). However, it is possible that<br />

they play a role in other parts of the breeding cycle,<br />

e.g. in nestling period (Senar et al. 2002; Doutrelant<br />

et al. 2008; Quesada & Senar 2007; review in Griffith<br />

& Pryke 2006), or during non-breeding season<br />

(review in Senar 2006). On the contrary, we revealed<br />

significant relationships with environmental conditions,<br />

including ambient temperature and territory<br />

604 Ethology 116 (2010) 596–607 ª 2010 Blackwell Verlag GmbH


B. Matysioková & V. Remesˇ Incubation Behaviour in Great Tit<br />

quality. There was no relationship between incubation<br />

feeding, nest attentiveness and hatching success.<br />

Consequently, although alternative explanations are<br />

possible, our data are not consistent with the female<br />

nutrition hypothesis conceived to explain the occurrence<br />

and rate of male incubation feeding in birds.<br />

Acknowledgements<br />

We are grateful to Kristy´na Bártlová and Jana Sˇ uterová<br />

for assistance in the field, Milosˇ Krist, Keith<br />

Tarvin and an anonymous referee for helpful comments<br />

on the manuscript, and Sharon Kennedy for<br />

improving the English. The study was supported by<br />

the Ministry of Education of the Czech Republic<br />

(MSM6198959212).<br />

Literature Cited<br />

Amundsen, T. & Pärn, H. 2006: Female coloration:<br />

review of functional and non-functional hypotheses.<br />

In: Bird Coloration, Vol. II: Function and Evolution<br />

(Hill, G. E. & McGraw, K. J., eds). Harvard Univ. Press,<br />

Cambridge, pp. 280––348.<br />

Andersson, S. & Prager, M. 2006: Quantifying colors. In:<br />

Bird Coloration, Vol. I: Mechanisms and Measurements<br />

(Hill, G. E. & McGraw, K. J., eds). Harvard Univ. Press,<br />

Cambridge, pp. 41––89.<br />

Ardia, D. R. & Clotfelter, E. D. 2007: Individual quality<br />

and age affect responses to an energetic constraint in a<br />

cavity-nesting bird. Behav. Ecol. 18, 259––266.<br />

Badyaev, A. V. & Hill, G. E. 2002: Paternal care as a conditional<br />

strategy: distinct reproductive tactics associated<br />

with elaboration of plumage ornamentation in the<br />

house finch. Behav. Ecol. 13, 591––597.<br />

Betts, M. M. 1955: The food of titmice in oak woodland.<br />

J. Anim. Ecol. 24, 282––323.<br />

Blagosklonov, K. N. 1977: Experimental analysis of the<br />

rhythm of incubation in the pied flycatcher (Ficedula<br />

hypoleuca). Sov. J. Ecol. 8, 340––344.<br />

Conway, C. J. & Martin, T. E. 2000: Evolution of avian<br />

incubation behavior: influence of food, temperature<br />

and nest predation. Evolution 54, 670––685.<br />

Davies, N. B. 1977: Prey selection and the search strategy<br />

of the spotted flycatcher (Muscicapa striata): a field<br />

study on optimal foraging. Anim. Behav. 25, 1016––<br />

1033.<br />

Deeming, D. C. 2002a: Avian Incubation: Behaviour,<br />

Environment and Evolution. Oxford Univ. Press,<br />

Oxford.<br />

Deeming, D. C. 2002b: Behaviour patterns during incubation.<br />

In: Avian Incubation: Behaviour, Environment,<br />

and Evolution (Deeming, D. C., ed.). Oxford Univ.<br />

Press, Oxford, pp. 63––87.<br />

Doerr, E. D. & Doerr, V. A. J. 2007: Positive effects of<br />

helpers on reproductive success in the brown tree<br />

creeper and the general importance of future benefits.<br />

J. Anim. Ecol. 76, 966––976.<br />

Doutrelant, C., Grégoire, A., Grnac, N., Gomez, D.,<br />

Lambrechts, M. M. & Perret, P. 2008: Female coloration<br />

indicates female reproductive capacity in blue tits.<br />

J. Evol. Biol. 21, 226––233.<br />

Drent, R. 1975: Incubation. In: Avian Biology, Vol. V<br />

(Farmer, D. S., King, J. R. & Parkes, K. C., eds).<br />

Academic Press, New York, pp. 333––420.<br />

Figuerola, J. & Senar, J. C. 2000: Measurement of plumage<br />

badges: an evaluation of methods used in the great<br />

tit Parus major. Ibis 142, 482—484.<br />

Fontaine, J. J., Martel, M., Markland, H. M., Niklison, A.<br />

M., Decker, K. L. & Martin, T. E. 2007: Testing ecological<br />

and behavioral correlates of nest predation. Oikos<br />

116, 1887—1894.<br />

Galván, I. & Alonso-Alvarez, C. 2008: An intracellular<br />

antioxidant determines the expression of a melaninbased<br />

signal in a bird. PLoS ONE 3, e3335.<br />

Galván, I. & Alonso-Alvarez, C. 2009: The expression of<br />

melanin-based plumage is separately modulated by<br />

exogenous oxidative stress and a melanocortin. Proc.<br />

R. Soc. B 276, 3089—3097.<br />

Grafen, A. & Hails, R. 2002: Modern Statistics for the Life<br />

Sciences. Oxford Univ. Press, Oxford.<br />

Griffith, S. C. & Pryke, S. R. 2006: Benefits to females to<br />

assessing color displays. In: Bird Coloration, Vol. II:<br />

Function and Evolution (Hill, G. E. & McGraw, K. J.,<br />

eds). Harvard Univ. Press, Cambridge, pp. 233—279.<br />

Griffith, S. C., Parker, T. H. & Olson, V. A. 2006: Melanin-versus<br />

carotenoid-based sexual signals: is the<br />

difference really so black and red? Anim. Behav. 71,<br />

749—763.<br />

von Haartman, L. 1958: The incubation rhythm of the<br />

female pied flycatcher (Ficedula hypoleuca) in the presence<br />

and absence of the male. Ornis. Fenn. 35,<br />

71—76.<br />

Heaney, V. & Monaghan, P. 1996: Optimal allocation of<br />

effort between reproductive phases: the trade-off<br />

between incubation costs and subsequent brood<br />

rearing capacity. Proc. R. Soc. B 263, 1719—1724.<br />

de Heij, M. E. 2006: Costs of avian incubation. PhD. Thesis,<br />

Univ. of Groningen, Groningen, the Netherlands.<br />

de Heij, M. E., van den Hout, P. J. & Tinbergen, J. M.<br />

2006: Fitness cost of incubation in great tits (Parus<br />

major) is related to clutch size. Proc. R. Soc. B 273,<br />

2353—2361.<br />

Heinsohn, R. & Cockburn, A. 1994: Helping is costly to<br />

young birds in cooperatively breeding white–winged<br />

choughs. Proc. R. Soc. B 256, 293—298.<br />

Hill, G. E. 1991: Plumage colouration is a sexually<br />

selected indicator of male quality. Nature 350,<br />

337—339.<br />

Ethology 116 (2010) 596–607 ª 2010 Blackwell Verlag GmbH 605


Incubation Behaviour in Great Tit B. Matysioková & V. Remesˇ<br />

Hill, G. E. & McGraw, K. J. 2006: Bird Coloration, Vol. I<br />

and II. Harvard Univ. Press, Cambridge.<br />

Hinde, R. A. 1952: The behaviour of the great tit (Parus<br />

major) and some other related species. Behav. Suppl. 2,<br />

1—201.<br />

Isaksson, C. & Andersson, S. 2008: Oxidative stress does<br />

not influence carotenoid mobilization and plumage<br />

pigmentation. Proc. R. Soc. B 275, 309—314.<br />

Isaksson, C., Ornborg, J., Prager, M. & Andersson, S.<br />

2008: Sex and age differences in reflectance and<br />

biochemistry of carotenoid-based colour variation in<br />

the great tit Parus major. Biol. J. Linn. Soc. 95,<br />

758—765.<br />

Jawor, J. M. & Breitwisch, R. 2006: Is mate provisioning<br />

predicted by ornamentation? a test with Northern<br />

Cardinals (Cardinalis cardinalis). Ethology 112,<br />

888—895.<br />

Jones, G. 1987: Time and energy constraints during incubation<br />

in free-living swallows (Hirundo rustica): an<br />

experimental study using precision electronic balances.<br />

J. Anim. Ecol. 56, 229—245.<br />

Keller, L. F. & van Noordwijk, A. J. 1994: Effects of local<br />

environmental conditions on nestling growth in the<br />

great tit (Parus major L.). Ardea 82, 349—362.<br />

Kendeigh, S. C. 1952: Parental Care and Its Evolution in<br />

Birds. Illinois Biol. Monogr. 22. Univ. Illinois Press,<br />

Urbana.<br />

Klatt, P. H., Stutchbury, B. J. M. & Evans, M. L. 2008:<br />

Incubation feeding by male scarlet tanagers: a mate<br />

removal experiment. J. Field Ornithol. 79, 1—10.<br />

Lack, D. 1940: Courtship feeding in birds. Auk 57,<br />

169—178.<br />

Lessels, C. M. & Boag, P. T. 1987: Unrepeatable repeat<br />

abilities: a common mistake. Auk 104, 116—121.<br />

Lifjeld, J. T. & Slagsvold, T. 1986: The function of courtship<br />

feeding during incubation in the pied flycatcher<br />

Ficedula hypoleuca. Anim. Behav. 34, 1441—1453.<br />

Lifjeld, J. T., Slagsvold, T. & Stenmark, G. 1987: Allocation<br />

of incubation feeding in a polygynous mating<br />

system: a study on pied flycatcher Ficedula hypoleuca.<br />

Anim. Behav. 35, 1663—1669.<br />

Lloyd, P., Taylor, A., du Plessis, M. A. & Martin, T. E.<br />

2009: Females increase reproductive investment in<br />

response to helper-mediated improvements in allofeeding,<br />

nest survival, nestling provisioning and postfledging<br />

survival in the Karoo scrub-robin Cercotrichas<br />

coryphaeus. J. Avian Biol. 40, 400—411.<br />

Lyon, B. E. & Montgomerie, R. 1985: Incubation feeding<br />

in snow buntings: female manipulation or indirect<br />

male parental care? Behav. Ecol. Sociobiol. 17,<br />

279—284.<br />

Martin, T. E. & Ghalambor, C. K. 1999: Males feeding<br />

females during incubation. I. Required by microclimate<br />

or constrained by nest predation? Am. Nat. 153,<br />

131—139.<br />

McGraw, K. J. 2006a: Mechanics of carotenoid-based<br />

coloration. In: Bird Coloration, Vol. I: Mechanisms and<br />

Measurements (Hill, G. E. & McGraw, K. J., eds).<br />

Harvard Univ. Press, Cambridge, pp. 177—242.<br />

McGraw, K. J. 2006b: Mechanics of melanin-based coloration.<br />

In: Bird Coloration, Vol. I: Mechanisms and<br />

Measurements (Hill, G. E. & McGraw, K. J., eds).<br />

Harvard Univ. Press, Cambridge, pp. 243—294.<br />

McGraw, K. J. 2008: An update on the honesty of<br />

melanin-based color signals in birds. Pigment Cell<br />

Melanoma Res. 21, 133—138.<br />

Møller, A. P., Biard, C., Blount, J. D., Houston, D. C.,<br />

Ninni, P., Saino, N. & Surai, P. F. 2000: Carotenoiddependent<br />

signals: indicators of foraging efficiency,<br />

immunocompetence or detoxification ability? Avian<br />

Poultry Biol. Rev. 11, 137—159.<br />

Moreno, J. & Carlson, A. 1989: Clutch size and the costs<br />

of incubation in the pied flycatcher Ficedula hypoleuca.<br />

Ornis Scand. 20, 123—128.<br />

Naef-Daenzer, B. 2000: Patch time allocation and patch<br />

sampling by foraging great and blue tits. Anim. Behav.<br />

59, 989—999.<br />

Naef-Daenzer, B. & Keller, L. F. 1999: The foraging performance<br />

of great and blue tits (Parus major and P.<br />

caerulens) in relation to caterpillar development, and its<br />

consequences for nestling growth and fledging weight.<br />

J. Anim. Ecol. 68, 708—718.<br />

Nilsson, J. A. & Smith, H. G. 1988: Incubation feeding as<br />

a male tactic for early hatching. Anim. Behav. 36,<br />

641—647.<br />

Olson, V. A. & Owens, I. P. F. 2005: Interspecific variation<br />

in the use of carotenoid-based coloration in birds:<br />

diet, life history and phylogeny. J. Evol. Biol. 18,<br />

1534—1546.<br />

Pearse, A. T., Cavitt, J. F. & Cully, J. F. 2004: Effects of<br />

food supplementation on female nest attentiveness and<br />

incubation mate feeding in two sympatric wren<br />

species. Wilson Bull. 116, 23—30.<br />

Poulsen, H. 1970: Nesting behaviour of the black–<br />

casqued hornbill Ceratogymna atrata (Temm.) and the<br />

great hornbill Buceros bicornis L. Ornis Scand. 1,<br />

11—15.<br />

Quesada, J. & Senar, J. C. 2006: Comparing plumage<br />

colour measurements obtained directly from live birds<br />

and from collected feathers: the case of the great tit<br />

Parus major. J. Avian Biol. 37, 609—616.<br />

Quesada, J. & Senar, J. C. 2007: The role of melaninand<br />

carotenoid-based plumage coloration in nest<br />

defence in the Great Tit. Ethology 113, 640—647.<br />

Rauter, C. & Reyer, H.-U. 1997: Incubation patterns and<br />

foraging effort of female water pipit (Anthus spinoletta)<br />

in relation to temperature, nest site, food availability<br />

and incubation feeding. Ibis 139, 441—446.<br />

Reid, J. M., Monaghan, P. & Ruxton, G. D. 2000:<br />

Resource allocation between reproductive phases: the<br />

606 Ethology 116 (2010) 596–607 ª 2010 Blackwell Verlag GmbH


B. Matysioková & V. Remesˇ Incubation Behaviour in Great Tit<br />

importance of thermal conditions in determining the<br />

cost of incubation. Proc. R. Soc. B 267, 37—41.<br />

Røskaft, E., Eapmark, Y. & Järvi, T. 1983: Reproductive<br />

effort and breeding success in relation to age<br />

by the Rook Corvus frugilegus. Ornis Scand. 14,<br />

169—174.<br />

Roulin, A., Dauwe, T., Blust, R., Eens, M. & Beaud, M.<br />

2006: A link between eumelanism and calcium<br />

physiology in the barn owl. Naturwissenschaften 93,<br />

426—430.<br />

Roulin, A., Almasi, B., Rossi-Pedruzzi, A., Ducrest, A.,<br />

Wakamatsu, K., Miksik, I., Blount, J. D., Eiermann, S.<br />

& Jenni, L. 2008: Corticosterone mediates the condition-dependent<br />

component of melanin-based coloration.<br />

Anim. Behav. 75, 1351—1358.<br />

Royama, T. 1966: A re-interpretation of courtship feeding.<br />

Bird Study 13, 116—129.<br />

Sanz, J. J. 1997: Clutch size manipulation in the pied<br />

flycatcher: effects on nestling growth, parental care<br />

and moult. J. Avian Biol. 28, 157—162.<br />

Sedgwick, J. A. 1993: Reproductive ecology of dusky<br />

flycatchers in western Montana. Wilson Bull. 105,<br />

84—92.<br />

Senar, J. C. 2006: Color displays as intersexual signals of<br />

aggression and dominance. In: Bird Coloration, Vol. II:<br />

Function and Evolution (Hill, G. E. & McGraw, K. J.,<br />

eds). Harvard Univ. Press, Cambridge, pp. 87—136.<br />

Senar, J. C., Figuerola, J. & Pascual, J. 2002: Brighter<br />

yellow blue tits make better parents. Proc. R. Soc. B<br />

269, 257—261.<br />

Senar, J. C., Negro, J. J., Quesada, J., Ruiz, I. & Garrido,<br />

J. 2008: Two pieces of information in a single trait?<br />

The yellow breast of the great tit (Parus major) reflects<br />

both pigment acquisition and body condition. Behaviour<br />

145, 1195—1210.<br />

Siefferman, L. & Hill, G. E. 2003: Structural and melanin<br />

coloration indicate parental effort and reproductive<br />

success in male eastern bluebirds. Behav. Ecol. 14,<br />

855—861.<br />

Siefferman, L. & Hill, G. E. 2005: Blue structural coloration<br />

of male eastern bluebirds Sialia sialis predicts incubation<br />

provisioning to females. J. Avian Biol. 36,<br />

488—493.<br />

Skutch, A. 1957: The incubation patterns of birds. Ibis<br />

99, 69—93.<br />

Smith, J. N. M. & Sweatman, H. P. A. 1974: Food-searching<br />

behavior of titmice in patchy environments. Ecology<br />

55, 1216—1232.<br />

Smith, H. G., Källander, H., Hultman, J. & Sanzén, B.<br />

1989: Female nutritional state affects the rate of male<br />

incubation feeding in the pied flycatcher Ficedula hypoleuca.<br />

Behav. Ecol. Sociobiol. 24, 417—420.<br />

Svensson, L. 1992: Identification Guide to European Passerines,<br />

4th edn. British Trust for Ornithology, London.<br />

Tewksbury, J. J., Martin, T. E. & Hejl, S. J. 2002: Parental<br />

care of a cowbird host: caught between the costs of<br />

egg-removal and nest predation. Proc. R. Soc. B 269,<br />

423—429.<br />

Thomson, D. L., Monaghan, P. & Furness, R. W. 1998:<br />

The demands of incubation and avian clutch size. Biol.<br />

Rev. 73, 293—304.<br />

Tinbergen, J. M. & Dietz, M. W. 1994: Parental energy<br />

expenditure during brood rearing in the great tit<br />

(Parus major) in relation to body mass, temperature,<br />

food availability and clutch size. Funct. Ecol. 8,<br />

563—572.<br />

Tinbergen, J. M. & Williams, J. B. 2002: Energetics of<br />

incubation. In: Avian Incubation: Behaviour, Environment<br />

and Evolution (Deeming, D. C., ed.). Oxford<br />

Univ. Press, Oxford, pp. 298—313.<br />

Verbeek, N. A. M. 1972: Daily and annual time budget of<br />

the yellow-billed magpie. Auk 89, 567—582.<br />

Visser, M. E. & Lessells, C. M. 2001: The costs of egg<br />

production and egg incubation in great tits (Parus<br />

major). Proc. R. Soc. B 268, 1271—1277.<br />

Webb, D. R. 1987: Thermal tolerance of avian embryo:<br />

a review. Condor 89, 874—898.<br />

White, F. N. & Kinney, J. L. 1974: Avian incubation.<br />

Science 186, 107—115.<br />

Wilkin, T. A., Perrins, C. M. & Sheldon, B. C. 2007: The<br />

use of GIS in estimating spatial variation in habitat<br />

quality: a case study of lay-date in the great tit Parus<br />

major. Ibis 149(Suppl. 2), S110—S118.<br />

Williams, J. B. 1996: Energetics of avian incubation.<br />

In: Avian Energetics and Nutritional Ecology<br />

(Carey, C., ed.). Chapman and Hall, London,<br />

pp. 375—415.<br />

Yom-Tov, Y., Ar, A. & Mendelssohn, H. 1978: Incubation<br />

behavior of the Dead Sea sparrow. Condor 80,<br />

340—343.<br />

Zandt, H. S. 1994: A comparison of three sampling techniques<br />

to estimate the population size of caterpillars in<br />

trees. Oecologia 97, 399—406.<br />

Zanette, L., Doyle, P. & Trémont, S. M. 2000: Food shortage<br />

in small fragments: evidence from an area-sensitive<br />

passerine. Ecology 81, 654—666.<br />

Zimmerling, J. R. & Ankney, C. D. 2005: Variation in<br />

incubation patterns of red-winged blackbirds nesting at<br />

lagoons and ponds in eastern Ontario. Wilson Bull.<br />

117, 280—290.<br />

Ethology 116 (2010) 596–607 ª 2010 Blackwell Verlag GmbH 607


J Ornithol<br />

DOI 10.1007/s10336-010-0594-9<br />

ORIGINAL ARTICLE<br />

Responses to increased costs of activity during incubation<br />

in a songbird with female-only incubation: does feather colour<br />

signal coping ability?<br />

Beata Matysioková • Vladimír Remesˇ<br />

Received: 9 January 2010 / Revised: 2 September 2010 / Accepted: 28 September 2010<br />

Ó Dt. Ornithologen-Gesellschaft e.V. 2010<br />

Abstract Individuals differ in their ability to cope with<br />

energetically demanding situations while caring for the<br />

current brood, and they can signal this ability by their<br />

colouration. We examined the impact of handicapping<br />

(clipping of wing and tail feathers) on an energetically<br />

demanding care behaviour (incubation) in female Great<br />

Tits (Parus major). We hypothesised that the intensity of<br />

carotenoid-based breast feather colouration signals the<br />

ability to cope with impaired flight ability and the consequent<br />

increased energetic demands. If this is the case,<br />

females with more intensely coloured feathers should cope<br />

better with the handicap compared with less intensely<br />

coloured females, i.e. the impact of handicapping on mass<br />

loss and nest attentiveness should be negatively correlated<br />

with colouration. Handicapped females lost more weight<br />

than control females but did not decrease nest attentiveness<br />

to a greater extent, suggesting that females take the costs of<br />

handicapping on themselves. Females in poor condition<br />

were more severely influenced by handicapping. Intensity<br />

of female breast feather colouration did not correlate with<br />

either change in nest attentiveness or body mass loss during<br />

incubation. Intensity of breast feather colouration therefore<br />

does not appear to signal female ability to cope with this<br />

energetically demanding situation during incubation.<br />

Keywords Feather colouration Female ornaments<br />

Great Tit Handicapping Incubation behaviour<br />

Nest attentiveness<br />

Communicated by T. Friedl.<br />

B. Matysioková (&) V. Remesˇ<br />

Department of Zoology and Laboratory of Ornithology, Palacky´<br />

University, Trˇ. Svobody 26, 77146 Olomouc, Czech Republic<br />

e-mail: betynec@centrum.cz<br />

Zusammenfassung Reaktionen auf erhöhte Kosten bei der<br />

Bebrütung von Singvögeln mit Inkubation ausschließlich<br />

durch das Weibchen: Ist die Gefiederfarbe ein Anzeichen für<br />

bessere Stressbewältigung? Individuen unterscheiden sich in<br />

ihrer Fähigkeit mit energetisch ungünstigen Situationen<br />

während der Brutpflege umzugehen und sie zeigen dies anhand<br />

ihrer Gefiederfarbe. Wir untersuchten die Auswirkung<br />

einer zusätzlichen Belastung (dem Stutzen von Flügel- und<br />

Schwanzfedern) auf die Energie aufwändige Inkubation bei<br />

Weibchen der Kohlmeise (Parus major). Wir nahmen dabei<br />

an, dass die Intensität der auf Karotinoiden basierenden Färbung<br />

der Brustfedern die Fähigkeit anzeigt, mit der energetisch<br />

kostspieligen Einschränkung der Flugfähigkeiten<br />

umzugehen. Sollte dies der Fall sein, sollten intensiver<br />

gefärbte Weibchen besser mit der zusätzlichen Belastung<br />

umgehen können, als weniger stark gefärbte Weibchen.<br />

Dementsprechend sollten der Masseverlust und die Nestattraktivität<br />

negativ mit der Gefiederfärbung korreliert sein.<br />

Weibchen mit gestutzten Federn nahmen stärker ab als die<br />

Weibchen der Kontrollgruppe, hatten aber nicht deutlich unattraktivere<br />

Nester, was darauf hindeutet, dass beeinträchtigte<br />

Weibchen die Mehrkosten durch die zusätzliche Belastung<br />

auf sich nehmen. Bereits schwache Weibchen wurden durch<br />

die zusätzliche Belastung stärker beeinträchtigt. Die Intensität<br />

der Färbung des Brustgefieders korrelierte weder mit<br />

Nestattraktivität noch mit Gewichtsverlust während der<br />

Inkubation. Das deutet darauf hin, dass die Färbung des<br />

Brustgefieders nicht auf die Fähigkeit der Stressbewältigung<br />

eines Weibchens während der Inkubation schließen lässt.<br />

Introduction<br />

One of the basic tenets of evolutionary biology is that<br />

individuals differ in their ability to survive and cope with<br />

123


challenging environmental conditions. This ability can be<br />

influenced by the quality, age and condition of the individual<br />

(Fox et al. 2001). Individual quality and condition<br />

can be signalled to potential mates or rivals by various<br />

types of ornaments, including those based on carotenoids<br />

(Searcy and Nowicki 2005). Carotenoid-based colouration<br />

is widespread in animals, including feathers and bare parts<br />

in birds (Olson and Owens 2005). Carotenoids cannot be<br />

synthesised by animals, must be obtained from food, and<br />

thus are potentially in short supply (Olson and Owens<br />

1998). Full expression of carotenoid-based colouration is<br />

costly, and carotenoids are involved in a number of tradeoffs<br />

with important physiological functions, including<br />

immune function and the level of oxidative stress (von<br />

Schantz et al. 1999; McGraw 2006). Consequently, intensity<br />

of carotenoid-based colouration is expected to indicate<br />

individual quality, condition, and/or capability of parental<br />

effort (Møller et al. 2000; Griffith et al. 2006).<br />

The role of feather ornaments as indicators of quality,<br />

condition, and parental effort has been traditionally studied<br />

in males (reviewed in Griffith and Pryke 2006). However,<br />

there has been a recent surge of interest in the function and<br />

evolution of female ornaments (reviewed in Amundsen<br />

2000; Amundsen and Pärn 2006; Kraaijeveld et al. 2007;<br />

Clutton-Brock 2009). Recent studies have demonstrated<br />

that female ornaments might work as badges of status<br />

enabling better access to resources (Murphy et al. 2009;<br />

Griggio et al. 2010) or as signals of good parenting abilities<br />

(Linville et al. 1998; Siefferman and Hill 2005; but see<br />

Smiseth and Amundsen 2000; Griggio et al. 2010). It has<br />

been even demonstrated that breeding success might be<br />

correlated with female ornament expression (Morales et al.<br />

2007; Bitton et al. 2008), and males might base their mate<br />

choice at least partly on the degree of female ornamentation<br />

(Griggio et al. 2009; but see Murphy et al. 2009).<br />

However, studies examining female ornaments during<br />

reproduction in birds have been carried out during the<br />

nestling period, while incubation was almost completely<br />

neglected (Amundsen 2000; Amundsen and Pärn 2006; but<br />

see Hanssen et al. 2006).<br />

Incubation is a very important part of the breeding cycle<br />

in birds, and parental effort during incubation can have<br />

strong consequences for the reproductive success of the<br />

pair (Deeming 2002). Normal embryo development<br />

requires eggs to be kept within a narrow range of temperatures<br />

(Webb 1987). Nonoptimal temperatures can lead<br />

to reduced hatchability and longer incubation periods<br />

(Lyon and Montgomerie 1985; Webb 1987; Martin 2008).<br />

At the same time, incubation is energetically demanding<br />

for the incubating individual (Williams 1996; Thomson<br />

et al. 1998; Tinbergen and Williams 2002), who has to split<br />

its time between warming the eggs and foraging for itself.<br />

Hence, the ability to cope with energetically challenging<br />

123<br />

situations during incubation can be very important for the<br />

reproductive success of the pair. In species with femaleonly<br />

incubation, females can signal this ability by their<br />

carotenoid-based feather colouration, and males might<br />

accordingly base their mate choice on the intensity of<br />

the female’s colouration (Amundsen and Pärn 2006;<br />

Kraaijeveld et al. 2007).<br />

Handicapping is a useful and widely employed method<br />

to study the effects of energetically challenging situations<br />

on bird behaviour (Harrison et al. 2009). Birds can be<br />

handicapped by adding weights (Wright and Cuthill 1989;<br />

Griggio et al. 2005), taping their feathers (Senar et al.<br />

2002a) or feather clipping (Slagsvold and Lifjeld 1988;<br />

Sanz et al. 2000). The last method is particularly suitable<br />

because it simulates events that can happen in the wild due<br />

to attacks by predators, and hence represents a risk to<br />

which birds might have become adapted (Slagsvold and<br />

Lifjeld 1990). Broken or missing feathers are among the<br />

most commonly encountered natural handicaps in freeranging<br />

birds (Dawson et al. 2001). The ability to cope<br />

with such a handicap might therefore reveal an important<br />

component of individual quality (Harding et al. 2009).<br />

In our study, we examined the effects of handicapping<br />

(feather clipping) on incubation behaviour in the Great Tit<br />

(Parus major), a small, short-lived songbird with femaleonly<br />

incubation. In particular, we determined whether<br />

females differed in their responses to this energetic constraint<br />

in relation to the intensity of their yellow, carotenoidbased<br />

feather colouration. We predicted that impaired flight<br />

ability caused by handicapping would (1) extend the time<br />

females spent foraging off the nest, and hence decrease the<br />

time they spent on the nest, and/or (2) lead to higher body<br />

mass loss during incubation compared with controls.<br />

Moreover, if carotenoid-based feather colouration of the<br />

Great Tit females indicates ability to cope with such an<br />

energetic constraint, females with more intense feather colouration<br />

can be expected to be less affected by the challenge<br />

(Smiseth and Amundsen 2000; Doutrelant et al. 2008).<br />

Methods<br />

General field work<br />

J Ornithol<br />

This work was conducted on three adjacent nest-box plots<br />

which are ca. 1 km apart in a broad-leaved forest dominated<br />

by oak (Quercus petraea) on Velky´ Kosírˇ in the east<br />

of the Czech Republic (49°32 0 N, 17°04 0 E). There are 300<br />

nest-boxes in total placed about 1.5 m above the ground.<br />

Besides Great Tits, these nest-boxes are inhabited by<br />

Collared Flycatchers (Ficedula albicollis), Blue Tits<br />

(Cyanistes caeruleus), Nuthatches (Sitta europea) and Coal<br />

Tits (Periparus ater). Fieldwork was carried out in 2008


J Ornithol<br />

from early April until May. We checked nest-boxes daily<br />

to record the laying of the first egg and the final clutch size.<br />

Day 0 was the day when the last egg was laid. Eggs in our<br />

population usually start to hatch on days 11–13, and<br />

hatching lasts for 2–3 days.<br />

Cross-fostering<br />

We wanted to isolate the direct effects of female incubation<br />

behaviour (i.e. egg warming) on hatching success and<br />

incubation period length, excluding any genetic or maternal<br />

effects. Therefore, we matched pairs of nests by their<br />

age and clutch size and exchanged clutches between pairs<br />

of nests. Clutches were exchanged as soon as, or immediately<br />

after, egg laying ended. We took the whole clutch<br />

from a nest, weighed it on a digital balance to the nearest<br />

0.01 g, and swapped it within the dyad (in 67 out of 82<br />

nests on day 1, range 0–3). Nests were always exactly<br />

matched by the date when the last egg was laid. There was<br />

no difference in clutch size in 52 nests, a difference of one<br />

egg in 28 nests, and of two eggs in two nests. The transfer<br />

of eggs took on average 8 min (range = 3–14 min).<br />

Nest attentiveness<br />

During incubation, we monitored the percentage of time<br />

incubating females spent on eggs, i.e. nest attentiveness.<br />

We deployed temperature data loggers by inserting a probe<br />

through the nest wall into the bottom of the nest cup. A<br />

second probe was mounted under the nest-box. We measured<br />

inner and outer temperatures from 5 a.m. until<br />

10:40 p.m. in 16-s intervals. In the nest temperature<br />

recordings, the time when the incubating female is away<br />

from the nest is recognizable by downward spikes. The<br />

temperature drops quickly when the female leaves the<br />

clutch (off-bout) and then starts to increase sharply when<br />

she returns (on-bout; Fig. 1). Consequently, it is easy to tell<br />

the difference between an attended and an empty nest (e.g.<br />

Zimmerling and Ankney 2005). From the pattern of nest<br />

temperatures, we calculated nest attentiveness throughout<br />

the day. To get ambient temperature for every nest, we took<br />

the outer temperature for the start of each on-bout and offbout<br />

and averaged it across the day. The data loggers were<br />

deployed on day 3 or 4 of incubation, and the nest attentiveness<br />

was measured on the subsequent day (i.e. on days<br />

4–5). Four days after experimental treatment (see below),<br />

we measured nest attentiveness again in the same way<br />

(i.e. on days 9–10).<br />

Experimental treatment<br />

The day after nest attentiveness was measured for the first<br />

time, we captured females in the nest-box (i.e., on days<br />

Temperature (°C)<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

Nest temperature<br />

Ambient temperature<br />

5<br />

05:00:00 10:00:00 15:00:00 20:00:00<br />

Time of day<br />

Fig. 1 Graph of a typical incubation profile for the Great Tit<br />

5–6) and weighed them on a spring Pesola balance (to the<br />

nearest 0.25 g). We handicapped every first and second<br />

female and left every third female as a control. In experimental<br />

females, we clipped primaries 5, 6 and 8 (out of the<br />

total of 10 primaries, counted from the outside) on both<br />

wings, together with the four central tail feathers (out of the<br />

total of 12 tail feathers). We clipped the feathers as close to<br />

their bases as possible. This methodology was modified<br />

from Slagsvold and Lifjeld (1990). We handled control<br />

females in the same way as experimental females, except<br />

that we did not clip the feathers. We returned all of the<br />

females back to the nest-box through the entrance. Then we<br />

covered the entrance and waited for about one minute<br />

before leaving. The effect of handicapping was temporary<br />

and lasted until the post-breeding moult. Experimental and<br />

control females did not differ significantly in their initial<br />

body weight (F1,75 = 1.2, P = 0.283).<br />

Females and clutches<br />

The day after nest attentiveness was measured for the second<br />

time, we captured females in the nest-box again (i.e., on<br />

days 10–11). We aged them (one year old or older,<br />

Svensson 1992), weighed them on a spring Pesola balance<br />

(nearest 0.25 g), and measured their tarsus by a digital<br />

calliper (nearest 0.01 mm). We took 10–15 yellow feathers<br />

from the upper right part of the breast for later spectrophotometric<br />

analysis. Experimental and control females did<br />

not differ significantly in their tarsus length (F1,54 = 0.14,<br />

P = 0.706). After this day we checked nest-boxes daily to<br />

determine hatching success. We removed eggs that did not<br />

hatch and dissected them to determine the cause of hatching<br />

failure, i.e. eggs with no sign of embryo development or an<br />

apparent dead embryo. We defined hatching success as<br />

percentage of fertilised eggs that hatched. Since we were<br />

interested in the effects of incubation behaviour on hatching<br />

success, we excluded eggs with no sign of embryo<br />

123


development from the analyses. Some unhatched eggs disappeared<br />

from the nest before we were able to dissect them.<br />

We removed these nests from the analyses of hatching<br />

success and thus the sample size was reduced. We calculated<br />

incubation period as the time from laying the last egg<br />

to hatching the first egg (Lyon and Montgomerie 1985).<br />

Laboratory analyses<br />

We quantified reflectance spectra of yellow feathers sampled<br />

from the breast using standard procedures (Andersson<br />

and Prager 2006). We used 10–15 feathers from each bird,<br />

which is sufficient to obtain reliable values from our species<br />

(Quesada and Senar 2006). We used an Avantes<br />

AvaSpec-2048 fibre optic spectrometer together with an<br />

AvaLight-XE xenon pulsed light source and a WS-2 white<br />

reference tile. The probe was used both to provide light and<br />

to sample the reflected light, and was held perpendicular to<br />

the feather surface. We took five readings, each from a<br />

different part of each set of feathers. Feathers were arranged<br />

on a black, nonreflective surface so that they overlapped<br />

extensively.<br />

We obtained the reflectance (%) in the wavelength region<br />

of 320–700 nm in 1-nm increments (Fig. 2). We calculated<br />

so-called carotenoid chroma because it has been demonstrated<br />

that it is positively correlated with the amount of<br />

carotenoids deposited in feathers in the Great Tit (Isaksson<br />

et al. 2008; Isaksson and Andersson 2008; see also Andersson<br />

and Prager 2006). Carotenoid chroma is a preferable<br />

index of the concentration of carotenoids in feathers in<br />

unsaturated carotenoid-based colours (Andersson and Prager<br />

2006). Carotenoids present in Great Tit breast feathers<br />

(lutein, zeaxanthin) absorb maximally at around 450 nm<br />

(Andersson and Prager 2006), and the colour of our Great<br />

Reflectance (%)<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

320 360 400 440 480 520 560 600 640 680<br />

Wavelength (nm)<br />

Fig. 2 Average (± SD) reflectance spectrum of yellow breast<br />

feathers of female Great Tits, as measured in 1-nm increments<br />

(n = 56)<br />

123<br />

Tits was unsaturated, because we still had reasonable<br />

reflectance around 450 nm (see Fig. 2). We calculated<br />

carotenoid chroma as (R700 minus R450) divided by R700,<br />

where R700 is the reflectance at 700 nm and R450 is the<br />

reflectance at 450 nm. In statistical analyses, we used the<br />

average carotenoid chroma calculated from the five readings<br />

from each set of feathers. To assess the repeatability of our<br />

measurements, in a subsample of feathers, we arranged<br />

feathers anew, took another five readings and again averaged<br />

the carotenoid chroma calculated from them. We calculated<br />

the repeatability of these two average carotenoid chroma<br />

estimates using the intraclass correlation coefficient (Lessels<br />

and Boag 1987), which was high (ri = 0.85, P \ 0.001,<br />

n = 55). As previous studies also used other characteristics<br />

derived from reflectance spectra, we also calculated brightness<br />

(Ravg), hue (kR50), and UV chroma (see Montgomerie<br />

2006). We calculated brightness (R avg) and hue (k R50)<br />

according to Andersson and Prager (2006, p. 78). Ravg is the<br />

reflectance averaged over the interval from 320 to 700 nm.<br />

k R50 is the wavelength halfway between R max and R min,<br />

where Rmax is the maximum reflectance and Rmin is the<br />

minimum reflectance between 320 and 700 nm. We also<br />

calculated UV chroma as the reflectance between 320 and<br />

400 nm divided by the reflectance between 320 and 700 nm.<br />

Experimental and control females did not differ significantly<br />

in either of the four colour characteristics: carotenoid chroma<br />

(F1,54 = 0.02, P = 0.883), brightness (F1,54 = 0.78,<br />

P = 0.381), hue (F1,54 = 1.49, P = 0.227), and UV chroma<br />

(F 1,54 = 1.43, P = 0.237).<br />

Statistical analyses<br />

J Ornithol<br />

We analysed the effects of experimental treatment on<br />

desertion rate (likelihood-ratio test), change in nest attentiveness<br />

and female mass, incubation period length (general<br />

linear models), and hatching success (generalised linear<br />

models with a binomial error distribution and a logit link).<br />

We analysed all data using JMP software, with the exception<br />

of hatching success, where we used SAS. Binomial<br />

models were fitted as the number of eggs that hatched/<br />

clutch size. We confirmed that the data met the assumptions<br />

of general linear models where these were used (Grafen and<br />

Hails 2002). We also checked that data in the binomial<br />

model were not overdispersed (deviance/df = 1.30).<br />

Initial models included treatment and relevant other<br />

factors as predictors, which are apparent from Tables 1 and<br />

2. In the analyses of the change in nest attentiveness<br />

(attentiveness before treatment minus after treatment) and<br />

body mass (mass after treatment minus before treatment),<br />

we also fitted interactions of treatment with female initial<br />

condition and breast carotenoid chroma (see Table 1). We<br />

did this because we wanted to know whether females differed<br />

in their response to handicapping based on their


J Ornithol<br />

initial condition and yellow colouration. In the analyses of<br />

incubation period length and hatching success, we fitted<br />

only the interaction of treatment with female breast<br />

carotenoid chroma (see Table 2). We also re-ran all the<br />

models with other colour characteristics (hue, brightness,<br />

UV chroma) instead of carotenoid chroma (see Table 3).<br />

Table 1 Models explaining the changes in nest attentiveness and female body mass during incubation<br />

Factor Change in nest attentiveness (%) a<br />

Change in body mass (g) b<br />

F df P c<br />

Estimate (SE) d<br />

F df P c<br />

Estimate (SE) d<br />

Intercept -4.71 (2.370) -0.36 (0.116)<br />

Treatment 0.1 1, 49 0.818 0.35 (1.531) (handic.) 10.0 1, 52 0.003 -0.46 (0.144) (handic.)<br />

Date of experiment 7.4 1, 49 0.009 0.84 (0.308) 0.3 1, 49 0.601 ?<br />

Female carotenoid chroma \0.1 1, 46 0.952 ? 1.6 1, 50 0.213 -<br />

Female age 3.6 1, 48 0.064 Older [ 1 year old 3.1 1, 51 0.086 Older [ 1 year old<br />

Female condition 2.2 1, 47 0.144 ? 5.8 1, 52 0.020 -0.41 (0.140)<br />

Female condition 9 treatment 0.1 1, 44 0.719 5.2 1, 52 0.026 0.40 (0.175) (handic.)<br />

Female carotenoid chroma 9 treatment 0.6 1, 45 0.461 0.6 1, 48 0.425<br />

Final models: a F 2,49 = 3.7, P = 0.031, R 2 = 0.13, n = 52<br />

b F3,52 = 5.9, P = 0.002, R 2 = 0.25, n = 56<br />

c P values of the final models are shown in italics<br />

d Sign (? or -) or text in the estimate shows the direction of the nonsignificant effect; exact parameter estimates are listed only for variables<br />

retained in final models, including treatment, whatever its significance<br />

Table 2 Models explaining incubation period length and hatching success<br />

Factor Incubation period (day) a<br />

F df P c<br />

Estimate (SE) d<br />

Hatching success (logit scale) b<br />

v 2<br />

df P c<br />

Estimate (SE) d<br />

Intercept 13.43 (0.358) 3.74 (0.584)<br />

Treatment 0.8 1, 44 0.372 0.21 (0.236) (handic.) 0.3 1, 39 0.570 0.44 (0.771) (handic.)<br />

Date of experiment 24.1 1, 44 \0.001 -0.23 (0.047) 0.1 1, 35 0.925 -<br />

Temperature-indep. nest attentiveness 4.6 1, 44 0.037 -7.14 (3.325) 0.4 1, 37 0.515 ?<br />

Clutch size 1.5 1, 43 0.232 ? 1.8 1, 38 0.186 ?<br />

Female carotenoid chroma 0.3 1, 42 0.567 ? 0.3 1, 36 0.592 -<br />

Female carotenoid chroma 9 treatment 0.1 1, 41 0.730 3.5 1, 34 0.063<br />

Final models: a F 3,44 = 10.3, P \ 0.001, R 2 = 0.41, n = 48<br />

b n = 41<br />

c P values of the final models are shown in italics<br />

d<br />

Sign (? or -) in the estimate shows the direction of nonsignificant effects; exact parameter estimates are listed only for variables retained in<br />

final models, including treatment, whatever its significance<br />

Table 3 Tests of the effects of brightness (R avg), hue (k R50), and UV chroma, together with their interaction with handicapping, on changes in<br />

nest attentiveness and body mass, incubation period length, and hatching success<br />

Attentiveness (%) Body mass (g) Incubation period (day) Hatching success (logit scale)<br />

F df P F df P F df P v 2<br />

df P<br />

Ravg \0.1 1, 45 0.838 0.3 1, 49 0.59 0.4 1, 42 0.543 0.7 1, 35 0.407<br />

Ravg 9 treatment 0.3 1, 44 0.564 0.1 1, 48 0.753 0.7 1, 41 0.406 \0.1 1, 34 0.879<br />

kR50 \0.1 1, 45 0.874 1.2 1, 49 0.286 0.1 1, 42 0.778 0.1 1, 35 0.769<br />

kR50 9 treatment 0.1 1, 44 0.795 0.2 1, 48 0.701 0.2 1, 41 0.621 0.5 1, 34 0.472<br />

UV chroma 0.8 1, 45 0.386 0.9 1, 49 0.336 \0.1 1, 42 0.870 \0.1 1, 35 0.930<br />

UV chroma 9 treatment 0.1 1, 44 0.733 1.1 1, 48 0.299 0.9 1, 41 0.353 2.5 1, 34 0.115<br />

Colour characteristics were tested while added in turn to the full models presented in Tables 1 and 2 (without carotenoid chroma)<br />

123


Date of experiment was set so that the day of first experiment<br />

= 1. Body condition for each female was calculated<br />

as the residual from the linear regression of initial body<br />

mass on tarsus length. We always retained treatment in the<br />

final model as our main factor of interest whatever its<br />

statistical significance (see Grafen and Hails 2002). Other<br />

predictors were removed from the models starting with<br />

interactions. We removed nonsignificant predictors until<br />

we ended up only with factors significant at a = 0.05. In<br />

the tables, we give F, df, and P values of nonsignificant<br />

predictors immediately before they were removed from the<br />

model. Data are presented as mean ± SD.<br />

Nest attentiveness is strongly affected by ambient temperature<br />

in the Great Tit (Kluijver 1950). Thus, when using<br />

attentiveness as a predictor in the analyses of incubation<br />

period length and hatching success, we adjusted for variation<br />

in ambient temperature among nests during sampling<br />

as follows. We fitted a regression of nest attentiveness on<br />

ambient temperature separately for both measurements<br />

(i.e., before and after treatment). In both cases there was a<br />

significant negative relationship (linear regression: before<br />

treatment F1,75 = 13.3, P = 0.001, R 2 = 0.15; after treatment<br />

F 1,50 = 18.6, P \ 0.001, R 2 = 0.27). We calculated<br />

the residual nest attentiveness and averaged the residuals<br />

from these two regressions. In this way, we obtained<br />

temperature-independent attentiveness for each female as a<br />

predictor variable.<br />

When analysing observational data on mass decrease, it is<br />

necessary to take into account the problem of the regression<br />

toward the mean. Regression toward the mean occurs in<br />

repeated-measures analyses where subsets of population are<br />

compared based on their initial measurements. Thus, for<br />

instance, it follows from this effect that initially heavy<br />

individuals will lose more mass than initially light individuals.<br />

However, since regression to the mean will affect both<br />

experimental and control groups, experimental studies are<br />

not subject to this problem (Kelly and Price 2005).<br />

Accordingly, in our study, we interpret only the difference in<br />

mass loss between handicapped and control females, not the<br />

pattern in control females itself, which may be subject to the<br />

problem of the regression to the mean. However, this does<br />

not seem to be the case, because our results are the same<br />

even when the data is mathematically adjusted according to<br />

Kelly and Price (2005: Equation 6; results not shown).<br />

Results<br />

Altogether we performed cross-fostering on 82 nests. Five<br />

females deserted their nests after cross-fostering, leaving<br />

77 females for our experiment (54 experimental and 23<br />

control). There was a strong tendency for experimental<br />

females to desert their nests more often after treatment<br />

123<br />

compared to control females (18 experimental and three<br />

control, v 2 = 3.68, P = 0.055, n = 77). Clutch size in our<br />

population was 10.4 ± 1.20 eggs (n = 82). Carotenoid<br />

chroma of yellow breast feathers was 0.64 ± 0.06 (range:<br />

0.44–0.75), brightness was 0.24 ± 0.038 (0.17–0.33), hue<br />

was 501.3 ± 3.95 (495.0–505.6), and UV chroma was<br />

0.14 ± 0.008 (0.12–0.16, n = 56 in all four cases).<br />

Nest attentiveness<br />

Nest attentiveness before the treatment was 76.6 ± 4.77%<br />

(n = 77), and did not differ between experimental and<br />

control females (F1,75 \ 0.1, P = 0.875). On average, nest<br />

attentiveness decreased between the first and second measurements<br />

by 1.4 ± 5.52% (n = 52). Treatment had no<br />

influence on the amount of change in nest attentiveness.<br />

However, although our nests were highly synchronised and<br />

differed by less than 14 days, there was a significant effect<br />

of date. In the first nests of the breeding season, nest<br />

attentiveness increased by about 5%, whereas in the last<br />

nests, it decreased by about 5% (Table 1). No other factor<br />

had any influence on the change in nest attentiveness<br />

(Table 1, Fig. 3a).<br />

Female mass (g)<br />

(a)<br />

Nest attentiveness (%)<br />

(b)<br />

80<br />

78<br />

76<br />

74<br />

72<br />

20.5<br />

20.0<br />

19.5<br />

19.0<br />

Before After<br />

J Ornithol<br />

Control<br />

Experimental<br />

Control<br />

Experimental<br />

Fig. 3a–b Nest attentiveness (a; mean ± SE) and body mass of<br />

incubating females (b) in control and experimental nests before and<br />

after handicapping (feather clipping)


J Ornithol<br />

Mass change (g)<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

-1.5<br />

-2.0<br />

-2.5<br />

Body mass loss<br />

Female body mass before the experiment was<br />

20.37 ± 0.88 g (n = 77). Body mass loss between the first<br />

and the second weighings was 0.66 ± 0.58 g (n = 56).<br />

Mass loss was significantly higher in experimental females<br />

(0.81 ± 0.52 g, n = 36) than in control females<br />

(0.38 ± 0.59 g, n = 20; simple effect of treatment:<br />

F1,54 = 8.0, P = 0.007, Fig. 3b). Mass loss was, however,<br />

also related to the initial condition of the female, and the<br />

relationship differed between experimental and control<br />

females, as evidenced by the significant interaction<br />

between treatment and initial female condition (Table 1,<br />

Fig. 4). No other factors were significant (Table 1).<br />

Incubation period<br />

Length of the incubation period was 11.8 ± 0.97 days<br />

(n = 48). Treatment had no effect on the length of the<br />

incubation period. It was negatively related to season and<br />

temperature-independent nest attentiveness; other factors<br />

were not significant (Table 2).<br />

Hatching success<br />

Control<br />

Experimental<br />

-2 -1 0 1 2<br />

Female condition before treatment<br />

Fig. 4 Body mass change of incubating Great Tit females in relation<br />

to female condition before the experiment (mass residuals in relation<br />

to tarsus), shown separately for control and experimental (clipped<br />

feathers) nests. More negative values of mass change mean higher<br />

mass loss over incubation<br />

Overall hatching success was 91.1 ± 11.52% (n = 51).<br />

There was no effect of treatment on hatching success;<br />

similarly, no other factor was significant (Table 2).<br />

It follows from the above results that female carotenoidbased<br />

feather colouration expressed as carotenoid chroma<br />

was not correlated with her ability to cope with energetic<br />

handicap during incubation (see also Table 1). Similarly,<br />

no other colour characteristic (hue, brightness or UV<br />

chroma) was correlated with female coping ability, incubation<br />

period length or hatching success (Table 3).<br />

Discussion<br />

Handicapping had no influence on female incubation<br />

behaviour, length of incubation period or hatching success.<br />

However, during incubation, handicapped females lost<br />

more body weight overall than control females. Females in<br />

poor condition were more severely influenced by handicapping.<br />

Intensity of female breast feather colouration did<br />

not correlate with either female incubation behaviour, body<br />

mass loss during incubation, incubation period length or<br />

hatching success.<br />

It seems that most of the costs of handicapping were<br />

channelled to female mass loss. This agrees with a previous<br />

study of the Great Tit, where handicapped females kept<br />

feeding rates to the nestlings unchanged at the cost of<br />

deteriorating their own body conditions (Sanz et al. 2000).<br />

Similar results were obtained in a study of the Tree<br />

Swallow Tachycineta bicolor, where the costs of handicapping<br />

were paid through the loss of female body mass,<br />

while nestling condition was unaffected (Winkler and<br />

Allen 1995). However, in incubating Tree Swallows,<br />

handicapped females both lost more mass than control<br />

females and also slightly decreased nest attentiveness<br />

(Ardia and Clotfelter 2007). In some other species, handicapping<br />

did not influence female body mass or body<br />

condition, but it did influence feeding rate and consequently<br />

nestling condition and growth, e.g. in Antarctic<br />

Petrels Thalassoica antarctica, Leach’s Storm-petrels<br />

Oceanodroma leucorhoa, Cory’s Shearwaters Calonectris<br />

diomedea, and tropical House Wrens Troglodytes aedon<br />

(Sæther et al. 1993; Mauck and Grubb 1995; Navarro and<br />

Gonzáles-Solís 2007; Tieleman et al. 2008). The two species<br />

where females invested in the current brood at the<br />

expense of their own conditions (Great Tits and Tree<br />

Swallows) are both short-lived, with low probabilities of<br />

future reproduction, which selects for increased investment<br />

into the current breeding attempt. On the contrary, longlived<br />

species with a high probability of future reproduction,<br />

including Antarctic Petrels, Leach’s Storm-petrels, Cory’s<br />

Shearwaters, and tropical House Wrens, are expected to<br />

reduce any increases of investment into the current brood<br />

in order to maximise their own survival (Roff 1992;<br />

Ghalambor and Martin 2001).<br />

Our experimental treatment affected females that were<br />

in poor condition disproportionately more than those in<br />

good condition (see Fig. 4). The importance of a good<br />

overall female state for successful incubation in the Great<br />

Tit is further supported by our finding that handicapped<br />

females deserted their clutches more often than control<br />

123


females. Similar relationships between female condition<br />

and nest desertion have been also found in other species<br />

(Wiggins et al. 1994; Yorio and Boersma 1994; Merilä and<br />

Wiggins 1997; but see Bleeker et al. 2005). An obvious<br />

explanation for this pattern is that incubation is energetically<br />

demanding and females in poor condition, caused by<br />

low body mass or impaired flight abilities, are not able to<br />

withstand the energetic stress (Williams 1996; Thomson<br />

et al. 1998; Tinbergen and Williams 2002).<br />

Intensity of yellow breast feather colouration was not<br />

related to the ability of females to cope with the handicap.<br />

One might ask how female colouration could help prevent<br />

a change in body mass. Handicapping is a standard way of<br />

testing whether an individual is of higher quality, i.e. is<br />

better able to cope with a challenging situation. Our<br />

experimental approach was motivated by a widespread<br />

finding that individual quality often shows up only under<br />

unfavourable conditions (e.g. brood size manipulations,<br />

various forms of handicapping, food restrictions; e.g. Ardia<br />

and Clotfelter 2007; Doutrelant et al. 2008). We conjecture<br />

that handicapped females could overcome the handicap by<br />

working harder. On a mechanistic basis, this means putting<br />

more energy into flight to get resources (self-maintenance)<br />

and simultaneously caring for the clutch (incubating)<br />

without these functions being compromised. Of course, this<br />

higher effort is expected to bear costs, e.g. a higher metabolic<br />

rate and higher oxidative stress generated by heavy<br />

work. This can presumably be achieved only by higherquality<br />

individuals. There certainly was a variation among<br />

females in the degree of their body mass loss (see Figs. 3,<br />

4), i.e. in their ability to cope. We were interested in<br />

whether this variation could be ascribed to female colouration,<br />

and found out that this was not the case.<br />

We would like to mention three potential problems when<br />

generalising our results. First, costs of the manipulation<br />

could also have been observed after hatching. This might<br />

have been particularly true during nestling feeding, when<br />

females have to fly more. Previously, all studies examining<br />

female feather colouration during reproduction in birds<br />

have been carried out during the nestling period (Amundsen<br />

and Pärn 2006; but see Hanssen et al. 2006). Several of them<br />

investigated the function of yellow breast feather colouration<br />

in Great and Blue Tits, but generated mixed results.<br />

Some found a positive relationship between the intensity of<br />

female yellow colouration and breeding success, whereas<br />

others found no or even a negative relationship (correlative<br />

studies: Senar et al. 2002b; Mänd et al. 2005; Hidalgo-<br />

Garcia 2006; experiment: Doutrelant et al. 2008). Hence,<br />

the information content of female yellow colouration might<br />

differ between parts of the breeding cycle, i.e. incubation<br />

versus feeding of young. Second, the colouration of the<br />

females that deserted just after the manipulation is missing.<br />

It is possible that these deserting females had low<br />

123<br />

carotenoid chroma values and were of inferior quality.<br />

Consequently, if we were left with only higher-quality<br />

individuals, our test of the indicator potential of the carotenoid-based<br />

colouration in females would have been<br />

weakened. Third, males feed females during incubation in<br />

the Great Tit. If we found better coping ability in more<br />

colourful females, we would not be sure whether they cope<br />

better because they are able to work harder, or because they<br />

are more helped by their males. However, male incubation<br />

feeding is not a source of potential bias in our study,<br />

because we found no effect of female colour on the ability<br />

to cope with energetic stress. Moreover, we studied this<br />

problem for three years in a nearby population, and there<br />

was no effect of female colour on male incubation feeding<br />

(Matysioková and Remesˇ 2010).<br />

While bearing the abovementioned reservations in mind,<br />

our results are not consistent with a role for feather<br />

carotenoids as indicators of female quality or capacity for<br />

extra parental effort, as has been demonstrated by several<br />

other studies (see above). Differences in the results of<br />

multiple studies investigating feather ornaments in the<br />

same species are known to occur due to population differences<br />

in the information content of the ornamental traits<br />

(Dunn et al. 2008; Galván and Moreno 2009) and different<br />

expressions of ornaments in different populations and<br />

subspecies (Hill 2002). Great Tit subspecies differ strongly<br />

in the intensity of yellow breast colouration (Harrap and<br />

Quinn 1996). However, there is no work quantifying differences<br />

in yellow colouration and in the functional ecology<br />

of feather ornaments among populations of the Great<br />

Tit. Nevertheless, it is at least possible that different populations<br />

are subject to different constraints on the expression<br />

of yellow colouration, and that the information content<br />

of feather ornaments varies in space. Only rigorous studies<br />

conducted in an explicitly comparative framework may<br />

provide answers to the heterogeneity of studies conducted<br />

so far (Senar et al. 2002b; Mänd et al. 2005; Hidalgo-<br />

Garcia 2006; Doutrelant et al. 2008; this study).<br />

Acknowledgments We are grateful to Freya Harrison and Milosˇ<br />

Krist for helpful comments on the manuscript. This study was supported<br />

by the Czech Ministry of Education (MSM6198959212). It<br />

complies with the current laws of the Czech Republic.<br />

References<br />

J Ornithol<br />

Amundsen T (2000) Why are female birds ornamented? Trends Ecol<br />

Evol 15:149–155<br />

Amundsen T, Pärn H (2006) Female coloration: review of functional<br />

and nonfunctional hypotheses. In: Hill GE, McGraw KJ (eds)<br />

Bird coloration, volume II: function and evolution. Harvard<br />

University Press, Cambridge, pp 280–348<br />

Andersson S, Prager M (2006) Quantifying colors. In: Hill GE,<br />

McGraw KJ (eds) Bird coloration, volume I: mechanisms and<br />

measurements. Harvard University Press, Cambridge, pp 41–89


J Ornithol<br />

Ardia DR, Clotfelter ED (2007) Individual quality and age affect<br />

responses to an energetic constraint in a cavity-nesting bird.<br />

Behav Ecol 18:259–266<br />

Bitton PP, Dawson RD, Ochs CL (2008) Plumage characteristics,<br />

reproductive investment and assortative mating in Tree Swallows<br />

Tachycineta bicolor. Behav Ecol Sociobiol 62:1543–1550<br />

Bleeker M, Kingma SA, Szentirmai I, Székely T, Komdeur J (2005)<br />

Body condition and clutch desertion in penduline tit Remiz<br />

pendulinus. Behaviour 142:1465–1478<br />

Clutton-Brock T (2009) Sexual selection in females. Anim Behav<br />

77:3–11<br />

Dawson RD, Bortolotti GR, Murza GL (2001) Sex-dependent<br />

frequency and consequences of natural handicaps in American<br />

Kestrels. J Avian Biol 32:351–357<br />

Deeming DC (2002) Avian incubation: behaviour, environment and<br />

evolution. Oxford University Press, Oxford<br />

Doutrelant C, Grégoire A, Grnac N, Gomez D, Lambrechts MM,<br />

Perret P (2008) Female coloration indicates female reproductive<br />

capacity in blue tits. J Evol Biol 21:226–233<br />

Dunn PO, Whittingham LA, Freeman-Gallant CR, De Coste J (2008)<br />

Geographic variation in the function of ornaments in the<br />

common yellowthroat Geothlypis trichas. J Avian Biol 39:66–72<br />

Fox CW, Roff DA, Fairbairn DJ (eds) (2001) Evolutionary ecology.<br />

Oxford University Press, Oxford<br />

Galván I, Moreno J (2009) Variation in effects of male plumage<br />

ornaments: the case of Iberian Pied Flycatchers. Ibis<br />

151:541–546<br />

Ghalambor CK, Martin TE (2001) Fecundity-survival trade-offs and<br />

parental risk-taking in birds. Science 292:494–497<br />

Grafen A, Hails R (2002) Modern statistics for the life sciences.<br />

Oxford University Press, Oxford<br />

Griffith SC, Pryke SR (2006) Benefits to female birds of assessing<br />

color displays. In: Hill GE, McGraw KJ (eds) Bird coloration,<br />

volume II: function and evolution. Harvard University Press,<br />

Cambridge, pp 233–279<br />

Griffith SC, Parker TH, Olson VA (2006) Melanin- versus carotenoidbased<br />

sexual signals: is the difference really so black and red?<br />

Anim Behav 71:749–763<br />

Griggio M, Matessi G, Pilastro A (2005) Should I stay or should I go?<br />

Female brood desertion and male counterstrategy in rock<br />

sparrows. Behav Ecol 16:435–441<br />

Griggio M, Devigili A, Hoi H, Pilastro A (2009) Female ornamentation<br />

and directional male mate preference in the rock sparrow.<br />

Behav Ecol 20:1072–1078<br />

Griggio M, Zanollo V, Hoi H (2010) Female ornamentation, parental<br />

quality and competitive ability in the rock sparrow. J Ethol. doi:<br />

10.1007/s1016401002055<br />

Hanssen SA, Folstad I, Erikstad KE (2006) White plumage reflects<br />

individual quality in female eiders. Anim Behav 71:337–343<br />

Harding AMA, Kitaysky AS, Hall ME, Welcker J, Karnovsky NJ,<br />

Talbot SL, Hamer KC, Grémillet D (2009) Flexibility in the<br />

parental effort of an Arctic-breeding seabird. Funct Ecol<br />

23:348–358<br />

Harrap S, Quinn D (1996) Tits, nuthatches and treecreepers. A & C<br />

Black, London<br />

Harrison F, Barta Z, Cuthill I, Székely T (2009) How is sexual<br />

conflict over parental care resolved? A meta-analysis. J Evol<br />

Biol 22:1800–1812<br />

Hidalgo-Garcia S (2006) The carotenoid-based plumage coloration of<br />

adult Blue Tits Cyanistes caeruleus correlates with the health<br />

status of their brood. Ibis 148:727–734<br />

Hill GE (2002) A red bird in a brown bag. Oxford University Press,<br />

Oxford<br />

Isaksson C, Andersson S (2008) Oxidative stress does not influence<br />

carotenoid mobilization and plumage pigmentation. Proc R Soc<br />

B 275:309–314<br />

Isaksson C, Ornborg J, Prager M, Andersson S (2008) Sex and age<br />

differences in reflectance and biochemistry of carotenoid-based<br />

colour variation in the great tit Parus major. Biol J Linn Soc<br />

95:758–765<br />

Kelly C, Price TD (2005) Correcting for regression to the mean in<br />

behavior and ecology. Am Nat 166:700–707<br />

Kluijver HN (1950) Daily routines of the great tit, Parus m. major L.<br />

Ardea 38:99–135<br />

Kraaijeveld K, Kraaijeveld-Smit FJL, Komdeur J (2007) The<br />

evolution of mutual ornamentation. Anim Behav 74:657–677<br />

Lessels CM, Boag PT (1987) Unrepeatable repeat abilities: a common<br />

mistake. Auk 104:116–121<br />

Linville SU, Breitwisch R, Schilling AJ (1998) Plumage brightness as<br />

an indicator of parental care in northern cardinals. Anim Behav<br />

55:119–127<br />

Lyon BE, Montgomerie R (1985) Incubation feeding in snow<br />

buntings: female manipulation or indirect male parental care?<br />

Behav Ecol Sociobiol 17:279–284<br />

Mänd R, Tilgar V, Møller AP (2005) Negative relationship between<br />

plumage colour and breeding output in female great tits, Parus<br />

major. Evol Ecol Res 7:1013–1023<br />

Martin TE (2008) Egg size variation among tropical and temperate<br />

songbirds: an embryonic temperature hypothesis. Proc Natl Acad<br />

Sci USA 105:9268–9271<br />

Matysioková B, Remesˇ V (2010) Incubation feeding and nest<br />

attentiveness in a socially monogamous songbird: role of feather<br />

colouration, territory quality and ambient environment. Ethology<br />

116:596–607<br />

Mauck RA, Grubb TC (1995) Petrel parents shunt all experimentally<br />

increased reproductive costs to their offspring. Anim Behav<br />

49:999–1008<br />

McGraw KJ (2006) Mechanics of carotenoid-based coloration. In:<br />

Hill GE, McGraw KJ (eds) Bird coloration, volume I: mechanisms<br />

and measurements. Harvard University Press, Cambridge,<br />

pp 177–242<br />

Merilä J, Wiggins DA (1997) Mass loss in breeding blue tits: the role<br />

of energetic stress. J Anim Ecol 66:452–460<br />

Møller AP, Biard C, Blount JD, Houston DC, Ninni P, Saino N, Surai<br />

PF (2000) Carotenoid-dependent signals: indicators of foraging<br />

efficiency, immunocompetence or detoxification ability? Avian<br />

Poultry Biol Rev 11:137–159<br />

Montgomerie R (2006) Analyzing colors. In: Hill GE, McGraw KJ<br />

(eds) Bird coloration, volume I: mechanisms and measurements.<br />

Harvard University Press, Cambridge, pp 90–147<br />

Morales J, Moreno J, Merino S, Sanz JJ, Tomás G, Arriero E, Lobato<br />

E, Puente JM (2007) Female ornaments in the Pied Flycatcher<br />

Ficedula hypoleuca: associations with age, health and reproductive<br />

success. Ibis 149:245–254<br />

Murphy TG, Rosenthal MF, Montgomerie R, Tarvin KA (2009)<br />

Female American goldfinches use carotenoid-based bill coloration<br />

to signal status. Behav Ecol 20:1348–1355<br />

Navarro J, Gonzáles-Solís J (2007) Experimental increase of flying<br />

costs in a pelagic seabird on foraging strategies, nutritional state<br />

and chick condition. Oecologia 151:150–160<br />

Olson VA, Owens IPF (1998) Costly sexual signals: are carotenoids<br />

rare, risky or required? Trends Ecol Evol 13:510–514<br />

Olson VA, Owens IPF (2005) Interspecific variation in the use of<br />

carotenoid-based coloration in birds: diet, life history and<br />

phylogeny. J Evol Biol 18:1534–1546<br />

Quesada J, Senar J (2006) Comparing plumage colour measurements<br />

obtained directly from live birds and from collected feathers: the<br />

case of the great tit Parus major. J Avian Biol 37:609–616<br />

Roff DA (1992) The evolution of life histories: theory and analysis.<br />

Chapman and Hall, New York<br />

Sæther BE, Andersen R, Pedersen HC (1993) Regulation of parental<br />

effort in a long-lived seabird: an experimental manipulation of<br />

123


the cost of reproduction in the Antarctic petrel, Thalassoica<br />

antarctica. Behav Ecol Sociobiol 33:147–150<br />

Sanz JJ, Kranenbarg S, Tinbergen JM (2000) Differential response by<br />

males and females to manipulation of partner contribution in the<br />

great tit (Parus major). J Anim Ecol 69:74–84<br />

Searcy WA, Nowicki S (2005) The evolution of animal communication.<br />

Princeton University Press, Princeton<br />

Senar JC, Domènech J, Uribe F (2002a) Great tits (Parus major)<br />

reduce body mass in response to wing area reduction: a field<br />

experiment. Behav Ecol 13:725–727<br />

Senar JC, Figuerola J, Pascual J (2002b) Brighter yellow blue tits<br />

make better parents. Proc R Soc B 269:257–261<br />

Siefferman L, Hill GE (2005) Evidence for sexual selection on<br />

structural plumage coloration in female eastern bluebirds (Sialia<br />

sialis). Evolution 59:1819–1828<br />

Slagsvold T, Lifjeld JT (1988) Ultimate adjustment of clutch size to<br />

parental feeding capacity in a passerine bird. Ecology<br />

69:1918–1922<br />

Slagsvold T, Lifjeld JT (1990) Influence of male and female quality<br />

on clutch size in tits (Parus spp.). Ecology 71:1258–1266<br />

Smiseth PT, Amundsen T (2000) Does female plumage coloration<br />

signal parental quality? A male removal experiment with the<br />

bluethroat (Luscinia s. svecica). Behav Ecol Sociobiol<br />

47:205–212<br />

Svensson L (1992) Identification guide to European passerines.<br />

British Trust for Ornithology, London<br />

Thomson DL, Monaghan P, Furness RW (1998) The demands of<br />

incubation and avian clutch size. Biol Rev 73:293–304<br />

Tieleman BI, Dijkstra TH, Klasing KC, Visser GH, Williams JB<br />

(2008) Effects of experimentally increased costs of activity<br />

123<br />

J Ornithol<br />

during reproduction on parental investment and self-maintenance<br />

in tropical house wrens. Behav Ecol 19:949–959<br />

Tinbergen JM, Williams JB (2002) Energetics of incubation. In:<br />

Deeming DC (ed) Avian incubation: behaviour, environment and<br />

evolution. Oxford University Press, Oxford, pp 298–313<br />

von Schantz T, Bensch S, Grahn M, Hasselquist D, Wittzell H (1999)<br />

Good genes, oxidative stress and condition-dependent sexual<br />

signals. Proc R Soc B 266:1–12<br />

Webb DR (1987) Thermal tolerance of avian embryos: a review.<br />

Condor 89:874–898<br />

Wiggins DA, Pärt T, Gustafsson L (1994) Correlates of clutch<br />

desertion by female Collared Flycatchers Ficedula albicollis.<br />

J Avian Biol 25:93–97<br />

Williams JB (1996) Energetics of avian incubation. In: Carey C (ed)<br />

Avian energetics and nutritional ecology. Chapman and Hall,<br />

London, pp 375–415<br />

Winkler DW, Allen PE (1995) Effects of handicapping on female<br />

condition and reproduction in tree swallows (Tachycineta<br />

bicolor). Auk 112:737–747<br />

Wright J, Cuthill I (1989) Manipulation of sex differences in parental<br />

care. Behav Ecol Sociobiol 25:171–181<br />

Yorio P, Boersma PD (1994) Causes of nest desertion during<br />

incubation in the Magellanic Penguin (Spheniscus magellanicus).<br />

Condor 96:1076–1083<br />

Zimmerling JR, Ankney CD (2005) Variation in incubation patterns<br />

of red-winged blackbirds nesting at lagoons and ponds in eastern<br />

Ontario. Wilson Bull 117:280–290


Behav Ecol Sociobiol<br />

DOI 10.1007/s00265-011-1139-9<br />

ORIGINAL PAPER<br />

Yolk androgens in great tit eggs are related to male<br />

attractiveness, breeding density and territory quality<br />

Vladimír Remeš<br />

Received: 15 July 2010 /Revised: 21 November 2010 /Accepted: 4 January 2011<br />

# Springer-Verlag 2011<br />

Abstract Females can adaptively adjust phenotype of their<br />

offspring via deposition of various compounds into eggs,<br />

including androgens and other hormones. Here, I investigated<br />

how egg yolk androgens (testosterone and androstenedione)<br />

related to environmental conditions and parental<br />

traits in the great tit (Parus major) across three breeding<br />

seasons. Male and female traits studied included age,<br />

condition and multiple feather ornaments, both carotenoidand<br />

melanin-based (carotenoid and UV chroma of yellow<br />

breast feathers, area of black breast band and white cheek<br />

immaculateness). Yolk mass increased with laying temperature,<br />

laying date and area of male black breast band.<br />

Concentration of androgens increased with breeding density,<br />

territory quality and carotenoid chroma of male yellow<br />

breast feathers and was higher in mates of 1 year old as<br />

compared to older males. Yolk androgens were not related<br />

to any of the female traits analysed. These patterns were<br />

thus consistent with (1) social and environmental effects on<br />

yolk mass and composition and (2) both positive and<br />

negative differential allocation strategies of resource allocation<br />

in females. Overall, male traits were the most<br />

important predictors of egg yolk characteristics in this<br />

socially monogamous songbird.<br />

Communicated by J. Graves<br />

Electronic supplementary material The online version of this article<br />

(doi:10.1007/s00265-011-1139-9) contains supplementary material,<br />

which is available to authorized users.<br />

V. Remeš (*)<br />

Laboratory of Ornithology, Palacký University,<br />

Tr. Svobody 26,<br />

77146 Olomouc, Czech Republic<br />

e-mail: vladimir.remes@upol.cz<br />

Keywords Feather colouration . Maternal effects .<br />

Offspring engineering . Paternal effects . Sexual selection<br />

Introduction<br />

Parents can significantly affect phenotype and performance<br />

of their offspring through non-genetic pathways by modifying<br />

prenatal and rearing environments of their young<br />

(Badyaev and Uller 2009). Birds are particularly interesting<br />

animals in this context because embryo development takes<br />

place within a sealed system, the egg, whose contents are<br />

fixed by the mother at laying, and no further adjustments of<br />

the egg components are possible once the egg is laid.<br />

Besides altering egg size (Krist 2010), avian mothers transfer<br />

to their eggs many valuable compounds, including antioxidants<br />

(Surai 2002), hormones (Groothuis et al. 2005a) and<br />

antibodies (Grindstaff et al. 2003). In this way, mothers<br />

modify the quality of their eggs and, indirectly, morphology,<br />

physiology and behaviour of the offspring.<br />

Androgens in avian eggs can have multiple effects on<br />

embryo and the young (Groothuis et al. 2005a) mediated<br />

by various potential proximate pathways (Navara and<br />

Mendonça 2008). So far, the range of these hormonal<br />

effects identified has involved benefits in terms of enhanced<br />

growth and competitive ability (Eising et al. 2001; Eising<br />

and Groothuis 2003; Groothuis et al. 2005b; Navara et al.<br />

2005; Müller et al. 2009; but see Andersson et al. 2004;<br />

Pilz et al. 2004) as well as costs in terms of immunosuppression<br />

(Andersson et al. 2004; Groothuis et al. 2005b;<br />

Müller et al. 2005; Navara et al. 2005; but see Navara et al.<br />

2006a; Pitala et al. 2009), poor survival (Müller et al. 2009)<br />

and elevated metabolic rate (Tobler et al. 2007). These<br />

effects are, moreover, often sex-specific (Saino et al. 2006;<br />

von Engelhardt et al. 2006; Sockman et al. 2008; Pitala et


al. 2009), environment-dependent (Pilz et al. 2004; Müller<br />

et al. 2010) and might not be demonstrated until well later<br />

in life (Strasser and Schwabl 2004; Eising et al. 2006;<br />

Rubolini et al. 2007; Müller et al. 2009). Thus, there is no<br />

simple relationship between yolk androgens and offspring<br />

performance, but the outcome of embryonic androgen<br />

exposure likely depends on the post-hatching circumstances<br />

for the developing offspring such as parasite exposure and<br />

the degree of sibling competition.<br />

Deposition of androgens in eggs can be affected by<br />

various characteristics of environmental conditions, females<br />

and males. Egg yolk androgens were found to be related to<br />

food supply (Sandell et al. 2007; Dentressangle et al. 2008),<br />

timing of breeding (Gil et al. 2006) and breeding density<br />

(Pilz and Smith 2004; Eising et al. 2008; Safran et al. 2010;<br />

but see Gil et al. 2006). They were also related to female<br />

age (Pilz et al. 2003) and condition (Tobler et al. 2007),<br />

female aggressive behaviour (Whittingham and Schwabl<br />

2002), female social status (Müller et al. 2002; Tanvez et al.<br />

2008) and social stress (Mazuc et al. 2003), female immune<br />

status (Gil et al. 2006) and exposure to parasites (Tschirren<br />

et al. 2004). Females might also positively or negatively<br />

differentially allocate yolk androgens in relation to social<br />

mate quality and attractiveness (Gil et al. 1999, 2006;<br />

Tanvez et al. 2004; Michl et al. 2005; Navara et al. 2006b;<br />

Loyau et al. 2007; Dentressangle et al. 2008; Safran et al.<br />

2008; Kingma et al. 2009; Garcia-Fernandez et al. 2010;<br />

Ratikainen and Kokko 2010).<br />

Identifying robust correlates of egg yolk androgen<br />

deposition is a prerequisite for better understanding of<br />

parental investment strategies, potential role of these substances<br />

in context-dependent adaptive offspring engineering<br />

and the role of environment in modulating patterns of<br />

deposition (Gilbert et al. 2005). Here, I investigated<br />

correlates of androgen (testosterone and androstenedione)<br />

deposition in egg yolk in a wild-ranging population of the<br />

great tit Parus major in terms of both environmental<br />

conditions and female and male quality. Environmental<br />

conditions often strongly modulate deposition of egg<br />

androgens, either facilitating or constraining it (see above).<br />

Thus, (1) I studied how timing of breeding, temperature,<br />

breeding density and territory quality predicted yolk mass<br />

and deposition of androgens. Females of high quality should<br />

allocate more yolk androgens to their eggs (investment<br />

hypothesis; Safran et al. 2008). Thus, (2) I studied how<br />

female characteristics (feather colouration, condition and<br />

age) predicted yolk mass and deposition of yolk androgens.<br />

Further, females paired to high quality males might allocate<br />

more (positive differential allocation) or less (negative<br />

differential allocation, Ratikainen and Kokko 2010) resources<br />

to their eggs. Thus, (3) I studied how social male<br />

characteristics (feather colouration, condition and age)<br />

predicted yolk mass and deposition of yolk androgens.<br />

Methods<br />

General fieldwork<br />

Behav Ecol Sociobiol<br />

This work was conducted on three adjacent nest-box plots<br />

(188 nest-boxes in total) in a deciduous forest near<br />

Grygov (49°31′N, 17°19′E, 205 ma.s.l.) in eastern Czech<br />

Republic. The forest was dominated by lime Tilia and oak<br />

Quercus with interspersed ash Fraxinus excelsior, hornbeam<br />

Carpinus betulus and alder Alnus glutinosa. Nestboxes<br />

were placed about 1.6 m above ground, and besides<br />

the great tit were inhabited by collared flycatchers<br />

Ficedula albicollis, blue tits Cyanistes caeruleus and<br />

nuthatches Sitta europea.<br />

Fieldwork was carried out between 2005 and 2007 from<br />

early April until mid-June. Nest-boxes were checked daily<br />

to record laying of the first egg and final clutch size. When<br />

there were between six and seven eggs laid (i.e. before the<br />

incubation started, V. Remeš, unpublished data), the fourth<br />

egg was collected. This egg was weighed to the nearest<br />

0.01 g and placed into the freezer under −20°C. Within<br />

1 month after the field season had ended, the eggs were let<br />

thaw under room temperature, yolk was separated, weighed<br />

and again frozen under −20°C. Yolk androgens were<br />

analysed during autumn but no later than in October. I<br />

collected only one egg per clutch because of ethical reasons<br />

and also because this population is subject to detailed<br />

investigation taking place during chick rearing (including<br />

capturing the adults). One egg should reasonably represent<br />

the whole clutch, because in the great tit, variation in<br />

steroid hormone concentrations between clutches is much<br />

higher than within clutches (Tschirren et al. 2004).<br />

During feeding of nestlings (median age of young for<br />

females=7 days, for males=9 days), parents were captured<br />

in the nest-box. Females were captured on all the nests (n=<br />

163). However, because of time constraints, males were<br />

captured on a subset of nests only (n=101). Tarsus length<br />

was measured with a digital calliper (nearest 0.01 mm), and<br />

birds were weighed on a spring Pesola balance (nearest<br />

0.125 g). Body condition was calculated as residuals from<br />

the regression of body mass on tarsus length. From each<br />

bird, 10 to 15 yellow feathers were taken from the upper<br />

right part of the breast for later spectrophotometric analysis.<br />

The bird's white cheek (right side of the head) and breast<br />

were photographed with a digital camera (Panasonic DMC-<br />

FZ5). While the picture of the cheek was taken, the bird<br />

was held in a standardised position on its left side. While<br />

the picture of the breast was taken, the bird was held<br />

outstretched by its tarsi and beak and photographed<br />

together with a ruler from a standard distance following<br />

the protocol of Figuerola and Senar (2000). The age of the<br />

birds was determined based on their plumage as 1 year old<br />

or older (Svensson 1992).


Behav Ecol Sociobiol<br />

Breeding density was defined as the number of adjacent<br />

nest-boxes (within 2.5 ha centred on the breeding nest-box)<br />

occupied by great tit pairs during the formation of the yolk<br />

of the sampled egg, i.e. during 7 days preceding egg laying<br />

(Perrins 1979). Breeding density varied from zero to nine.<br />

The area of 2.5 ha was chosen because this figure lies at the<br />

upper end of territory sizes reported for great tit (Wilkin et<br />

al. 2006 and references therein). Territory quality was<br />

defined as the number of years in which the particular nestbox<br />

was occupied by great tit between 2005 and 2009.<br />

Territory quality varied between one and five. Laying<br />

temperature was defined as the mean of average daytime<br />

temperatures (from 0600 to 2000 hours) during 7 days<br />

preceding the laying of the sampled egg.<br />

Quantification of feather colouration<br />

The following characteristics of feather colouration were<br />

chosen for the analysis: area of the black breast stripe<br />

(Norris 1990), carotenoid and UV chroma of yellow breast<br />

feathers (Isaksson et al. 2008), and immaculateness of the<br />

white cheek (Ferns and Hinsley 2004). Photos of breast and<br />

cheek were analysed in Adobe Photoshop CS3 Extended.<br />

Quick selection tool was used to roughly delimit the black<br />

stripe or the white cheek. Selection was then finished<br />

manually so that it was as precise as possible and measured<br />

the surface area of the stripe or cheek. A ruler photographed<br />

with every bird was used to adjust the scale of each photo<br />

and to obtain absolute surface area (in square centimetre)<br />

and in the case of the cheek also perimeter (in centimetre).<br />

Stripe surface was defined as the area of the black feathers<br />

between the point of inflexion, where the ventral stripe<br />

widens to a throat patch, and the posterior end of the stripe<br />

(Figuerola and Senar 2000). Immaculateness of the white<br />

cheek was calculated as 4*π*(area per square perimeter),<br />

which served as an index to measure regularity of the<br />

cheek's borders. It is equivalent to the index used by Ferns<br />

and Hinsley (2004), and the value of 1 indicates a perfect<br />

circle, whereas lower values (approaching zero) indicate<br />

shapes with lower area for a given perimeter, i.e. shapes<br />

with irregular borders and thus having lower immaculateness<br />

(Ferns and Hinsley 2004). To assess repeatability, a<br />

different observer measured a subsample of photos.<br />

Repeatability, calculated as the intraclass correlation coefficient<br />

(Lessells and Boag 1987), was high for both stripe<br />

area (r i=0.87, p


as described previously. The methanol phase was then<br />

evaporated to dryness. The dry residue was dissolved in<br />

20 mM sodium phosphate-buffered saline pH 7.0 containing<br />

1 mg/ml BSA (T, 600 μl; A4, 300 μl) and used for<br />

radioimmunoanalysis.<br />

Radioimmunoassay for T was prepared as follows: [ 125 I]<br />

iodo testosterone-3-carboxymethyl-tyrosine methyl ester<br />

(8.5 kBq/ml) in 20 mM PBS pH 7.0 as a tracer, polyclonal<br />

antibody raised against testosterone-3-O-carboxymethyl-<br />

BSA conjugate (dilution 1:40,000 in 20 mM PBS pH 7.0)<br />

and testosterone (from 0 to 8.0 nM) in 20 mM PBS pH 7.0<br />

as a standard. Analogously, for A4: [1,2,6,7-3 H]-Δ4androstenedione<br />

(6.5 kBq/ml) in 20 mM PBS pH 7.0 as a<br />

tracer, polyclonal antibody raised against 6β-hydroxy-Δ4androstenedione-6β-hemisuccinate-BSA<br />

conjugate (dilution<br />

1:20,000 in 20 mM PBS pH 7.0) and Δ 4 -androstenedione<br />

(from 0 to 34.915 nM) in 20 mM PBS pH 7.0 as a standard.<br />

The content of tubes was mixed and incubated (12 h,<br />

4°C). Dextran-coated charcoal (500 μl)wasaddedtoeach<br />

sample except those for total activity determination. The<br />

mixture was mixed briefly, incubated (10 min, 4°C) and<br />

centrifuged (3,000×g, 10 min, 4°C). The supernatant was<br />

decanted and taken for assessment of [ 125 I] radioactivity<br />

(T)or[ 3 H] radioactivity (A4). Concentrations of T and A4<br />

were calculated from the log-logit plot and corrected<br />

according to previously determined losses.<br />

All samples were assayed in duplicates, and intra-assay<br />

coefficients of variation were 8.2% for T and 5.8% for A4.<br />

Inter-assay coefficients of variation were 10.7% for T and<br />

11.6% for A4. Recovery rates ranged between 61% and 75%.<br />

The cross-reactivity between T and A4 was less than 2%.<br />

Statistical analyses<br />

I was not a priori sure whether the concentration or the<br />

amount of yolk androgens is biologically more relevant<br />

(Safran et al. 2008). Thus, as dependent variables, I<br />

modelled (1) total summed concentration of androgens<br />

and (2) total amount of androgens per yolk, obtained by<br />

multiplying concentrations by yolk mass. To provide more<br />

detailed insight and statistical estimates for potential future<br />

meta-analyses, I also modelled testosterone and androstenedione<br />

concentrations separately. Besides yolk androgens,<br />

I also modelled yolk mass. To use as much data as possible<br />

and to avoid overly complex models, three sets of variables<br />

were used as predictors: (1) environmental factors (laying<br />

date, laying temperature, breeding density and territory<br />

quality), (2) female phenotypic traits (UV and carotenoid<br />

chroma of yellow breast feathers, area of the black breast<br />

band, cheek immaculateness, condition, age and clutch<br />

size) and (3) male phenotypic traits (the same as in females<br />

except clutch size). To compare relative importance of these<br />

three sets of predictors, I compared the models when using<br />

the exact same data for which I had all the predictors. I<br />

compared the strength of evidence for each of the three<br />

models by means of Akaike information criterion (AIC) in<br />

Proc Mixed of SAS.<br />

Some females were sampled in more than one season.<br />

Seven females were sampled in three seasons, 21 females in<br />

two seasons and 100 females in one season only. Female<br />

identity was used as a random factor with random intercepts<br />

only; general linear mixed models (Proc Mixed of SAS)<br />

were always used. No male was sampled in more than one<br />

season, which was certainly caused by much lower number<br />

of males captured. Denominator degrees of freedom were<br />

calculated by the Satterthwaite method.<br />

Concentrations of yolk androgens significantly differed<br />

among years (testosterone: F2,160=134.8, p


Behav Ecol Sociobiol<br />

(SD=0.03, median=0.34, n=128) and it made on average<br />

20.48% of egg mass (relative yolk mass hereafter, SD=<br />

1.58, median=20.42, n=126). Average testosterone concentration<br />

for individual females was 55.89 pg/mg (SD=<br />

29.04, median=50.12, n=128), androstenedione concentration<br />

was 47.87 pg/mg (SD=15.25, median=47.43, n=128)<br />

and total androgens per yolk averaged 35.09 pg (SD=<br />

13.95, median=33.58, n=128).<br />

Egg and yolk mass were highly positively correlated,<br />

whereas egg mass and relative yolk mass were correlated<br />

negatively (Table S1 in the Online Resource). Correlations<br />

between yolk mass and relative yolk mass, and androgen<br />

concentrations were weak, but consistently negative. This<br />

resulted in no overall correlation between yolk mass and the<br />

amount of androgens per yolk. However, correlations<br />

between androgen concentrations and the amount of<br />

androgens per yolk were highly positive (Table S1 in the<br />

Online Resource). These results suggest that the amount of<br />

androgens in yolks was driven more by androgen concentration<br />

than by yolk mass. Concentrations of testosterone<br />

and androstenedione were highly positively correlated<br />

(Table S1 in the Online Resource).<br />

Standardized regression coefficients for the relationships<br />

between yolk characteristics and the three sets of predictors<br />

(environment and female and male traits) are presented in<br />

Figs. 1 and 2.<br />

Standardized regression<br />

coefficient (SE)<br />

0.4<br />

0.2<br />

0.0<br />

-0.2<br />

-0.4<br />

*<br />

Yolk mass<br />

Total androgens<br />

Androgens per yolk<br />

** *<br />

Laying date<br />

Laying temperature<br />

Breeding density<br />

Territory quality<br />

Predictor variable<br />

Fig. 1 Summary of the linear mixed models relating yolk mass and<br />

composition to the factors of the environment. Full results of<br />

modelling are available in Table S2 in the Online Resource. Asterisks<br />

denote significance at **p


chroma of yellow breast feathers of males, which was driven<br />

by testosterone. However, the amount of androgens per yolk<br />

was not related to carotenoid chroma of males. Androgen<br />

concentration was higher in 1-year-old males as compared to<br />

older males, which was driven by androstenedione. However,<br />

the amount of androgens per yolk was not related to male<br />

age. Although yolk mass increased with the area of male<br />

black breast band, the amount of androgens per yolk did not<br />

increase significantly (Fig. 2b; Table S2 in the Online<br />

Resource).<br />

As environmental factors, female traits and male traits<br />

were generally not inter-correlated, the results of independent<br />

modelling of the effects of these three sets of<br />

predictors were genuine and not confounded (Table S3 in<br />

the Online Resource). Comparison of AIC values for the<br />

three sets of predictors suggested that male traits were the<br />

most important set of predictors in explaining variation in<br />

egg composition (Table S2 in the Online Resource).<br />

Discussion<br />

Androgen concentrations<br />

Yolk composition in terms of androgen concentrations was<br />

similar to values reported by other studies of the great tit.<br />

Yolk testosterone concentration in a Swiss population of the<br />

great tit was 25.3 pg/mg, whereas concentration of<br />

androstenedione was 52.8 pg/mg (Tschirren et al. 2004),<br />

values broadly comparable to mine. Concentration of<br />

testosterone in my population of the great tit was higher<br />

than any species-specific value reported for 36 songbird<br />

species (Garamszegi et al. 2007) and for 101 other bird<br />

species (Gil et al. 2007). Androstenedione concentration<br />

fell within the values reported by Gil et al. (2007) for the<br />

same sample of 101 species of bird.<br />

Environment<br />

Yolk mass increased with laying date and temperature,<br />

which has been observed previously in another population<br />

of the great tit (Lessells et al. 2002). It has been suggested<br />

that when temperatures are low, females are either constrained<br />

by low activity of insect food during egg formation<br />

or they must devote more energy to maintenance metabolism<br />

and less is spared to form the eggs. Alternatively,<br />

increasing yolk mass with laying date might be an adaptive<br />

strategy to provide extra prenatal resources for offspring.<br />

Food supply, foraging success (Naef-Daenzer and Keller<br />

1999) and survival prospects of fledging great tits decline<br />

with season (Perrins 1979; Naef-Daenzer et al. 2001), and<br />

thus, it might be adaptive to boost offspring performance<br />

with extra resources (Krist 2010). However, increases of<br />

yolk mass with laying date and temperature did not<br />

translate into more androgens per yolk due to consistently<br />

negative correlations between yolk mass and androgen<br />

concentrations (see Table S1 in the Online Resource). Their<br />

consistently negative direction might have been enough to<br />

weaken the relationship between laying date and temperature<br />

and the amount of androgens per yolk.<br />

The concentration of androstenedione increased with<br />

breeding density and territory quality. Higher yolk androgen<br />

concentrations in denser populations were reported in<br />

the European starling Sturnus vulgaris (Pilz and Smith<br />

2004; Eising et al. 2008) and the house sparrow Passer<br />

domesticus (Mazuc et al. 2003), but not in the barn swallow<br />

Hirundo rustica (Gil et al. 2006; Safran et al. 2010).<br />

Females may actively allocate androgens to eggs laid under<br />

high density, thus preparing offspring for a difficult<br />

breeding situation. Alternatively, high frequency or intensity<br />

of aggressive interactions can lead to high yolk<br />

androgen concentrations (Whittingham and Schwabl 2002;<br />

Hargitai et al. 2009), thus possibly providing an example of<br />

physiological constraint which females cannot avoid (Pilz<br />

and Smith 2004). Recent evidence suggests that food<br />

supply may modify deposition of yolk androgens in relation<br />

to laying order (Sandell et al. 2007) or male attractiveness<br />

(Dentressangle et al. 2008). If my measure of territory<br />

quality (frequency of occupation over 5 years) reflected<br />

food supply, more resources would enable females to<br />

deposit more androstenedione into eggs. Alternatively,<br />

attractive territories might be pre-empted by high-quality<br />

females with an intrinsic ability of depositing more<br />

androgens into eggs without a direct effect of food supply.<br />

Female traits<br />

Behav Ecol Sociobiol<br />

Neither yolk mass nor composition was related to any of<br />

female phenotypic characteristics. This is quite surprising<br />

given the evidence from other great tit populations that<br />

feather ornaments are condition-dependent (Senar et al.<br />

2003) and signal individual condition or quality (Hõrak et<br />

al. 2001; Ferns and Hinsley 2004, 2008). However, the<br />

signal content of individual ornaments might differ between<br />

populations. For example, there was a negative relationship<br />

between the intensity of yellow feather colour and fledging<br />

success in great tits in Estonia (Mänd et al. 2005). In a<br />

similar vein, in my population and in a population in<br />

Hungary, neither yellow breast feather colour nor the size of<br />

the black breast stripe was correlated with and index of<br />

condition (Hegyi et al. 2007; Matysioková and Remeš<br />

2010a). This contrasts with a Spanish population where<br />

carotenoid-based yellow colour was condition-dependent,<br />

whereas the size of the black stripe was not (Senar et al.<br />

2003). Accordingly, in my population, there was no<br />

correlation between carotenoid chroma of yellow breast


Behav Ecol Sociobiol<br />

feathers or the size of their black breast stripe in females<br />

and female incubation effort (Matysioková and Remeš<br />

2010b). Similarly, carotenoid chroma of breast feathers did<br />

not indicate an ability of females to cope with energetic<br />

stress (assessed by a handicapping experiment, Matysioková<br />

and Remeš 2010c). All this evidence indicates that feather<br />

colouration is not an indicator of female quality in my<br />

population of the great tit, and thus the absence of any<br />

relationships between yolk mass and composition and female<br />

phenotype agrees with other findings from the same<br />

population.<br />

Male traits<br />

It has been suggested that females should allocate more<br />

resources into offspring when paired with higher-quality<br />

males, indicated for instance by their ornaments, a strategy<br />

known as positive differential allocation. On the contrary,<br />

females might instead boost performance of offspring of<br />

lower-quality males, a strategy called negative differential<br />

allocation (Harris and Uller 2009; Ratikainen and Kokko<br />

2010). Several studies of yolk androgens in wild birds<br />

reported patterns consistent with both positive and negative<br />

differential allocation. First, females of the blue tit<br />

deposited more yolk androgens for more attractive social<br />

partners (Kingma et al. 2009), and females of the grey<br />

partridge Perdix perdix deposited more androgens for<br />

preferred males (Garcia-Fernandez et al. 2010). Second,<br />

females in the collared flycatcher laid eggs with higher<br />

concentration of yolk testosterone for young as opposed to<br />

older males (Michl et al. 2005). Similarly, female house<br />

finches Carpodacus mexicanus deposited significantly<br />

more androgens into eggs sired by less attractive males<br />

(Navara et al. 2006b). Finally, there was no relationship of<br />

yolk volume or testosterone concentration to the area of a<br />

white forehead patch of males in the collared flycatcher<br />

(Michl et al. 2005; Török et al. 2007). The complexity of<br />

situation is demonstrated by studies on the barn swallow. In<br />

a Spanish population, females increased the concentration<br />

of androgens in their eggs when mated to males with<br />

experimentally elongated tails (Gil et al. 2006). In a US<br />

population, androgen concentration increased with male<br />

throat colour but did not change with his tale length (Safran<br />

et al. 2008). These results hint to possible differences<br />

between populations and different male ornaments in<br />

female allocation strategies.<br />

Females in my population deposited yolk mass and<br />

androgens consistent with both positive and negative<br />

differential allocation strategies. First, females laid larger<br />

yolks for males with larger black band area, although this<br />

did not translate into more androgens per yolk due to<br />

negative correlations between yolk mass and androgen<br />

concentrations (see Table S1 in the Online Resource). They<br />

deposited testosterone in higher concentrations when mated<br />

to males with more intense carotenoid chroma of yellow<br />

breast feathers, but at the same time laid lighter yolks with<br />

the result that the total amount of androgens per yolk did<br />

not change. All these patterns are consistent with the<br />

positive differential allocation, provided carotenoid- and<br />

melanin-based male ornaments in the great tit indicate male<br />

quality. Size of the black breast band was positively related<br />

to the social status of the bird (Lemel and Wallin 1993) and<br />

to the frequency (Norris 1990) and intensity of nest defence<br />

(Quesada and Senar 2007). Thus, black stripe signals the<br />

ability of the male to win agonistic intraspecific encounters<br />

and defend offspring. It may also indicate the ability of the<br />

male to provide superior parental care (Norris 1990).<br />

Saturation of carotenoid-based colouration might signal<br />

the superior foraging ability of individuals in terms of food<br />

quality or quantity (foraging performance hypothesis,<br />

Møller et al. 2000). In a Swedish population of the great<br />

tit, nestling plumage carotenoid chroma was predicted by<br />

the chroma of the rearing father (after cross-fostering of the<br />

young), indicating that foraging ability of the social mate<br />

might have significant effects on offspring phenotype<br />

(Isaksson et al. 2006). However, although it has been<br />

demonstrated that great tits prefer carotenoid-rich food<br />

items in general (Senar et al. 2010), specific tests of the<br />

foraging performance hypothesis remain to be carried out.<br />

Second, females laid eggs with higher concentration of<br />

yolk androstenedione for 1 year old as opposed to older<br />

males, similarly to the situation in the collared flycatcher<br />

(Michl et al. 2005). This pattern is consistent with the negative<br />

differential allocation and might reflect an attempt by the<br />

female to boost the growth of offspring of an inferior father.<br />

An alternative explanation is that females try to manipulate<br />

their partner's contribution to parental care by allocating yolk<br />

androgens that boost offspring solicitation behaviour (Michl<br />

et al. 2005). However, this explanation seems unlikely for the<br />

great tit because it has been demonstrated that males are not<br />

responsive to androgen-mediated solicitation signals in this<br />

species (Tschirren and Richner 2008), which is also true in<br />

the collared flycatcher (Ruuskanen et al. 2009) and canary<br />

Serinus canaria (Müller et al. 2010).<br />

Besides direct benefits (offspring feeding and defence),<br />

females might gain indirect, genetic benefits from more<br />

ornamented males and allocate yolk compounds accordingly.<br />

For example, great tit offspring of males with large black<br />

band area survived better (Norris 1993). However, revealing<br />

allocation based on indirect benefits might be undermined<br />

by the occurrence of extra-pair paternity. Then, if<br />

most offspring were sired by male(s) other that the social<br />

mate, or if social and genetic mates differed systematically<br />

in their ornaments, patterns revealed without paying<br />

attention to extra-pair paternity could be misleading.<br />

However, both of these potential sources of complications


seem to be minimal in the great tit. First, rates of extra-pair<br />

paternity are comparatively low in this species, accounting<br />

for less than 10% of the young (Verboven and Mateman<br />

1997; Krokene et al. 1998; Strohbach et al. 1998; Lubjuhn<br />

et al. 1999, 2001; Otter et al. 2001; Johannessen et al.<br />

2005). Second, social and genetic mates do not differ in<br />

feather ornaments (Krokene et al. 1998; Strohbach et al.<br />

1998), and effects of male quality on paternity loss are<br />

generally low in this species (Lubjuhn et al. 1999; Otter et<br />

al. 2001; Johannessen et al. 2005). The only exception was<br />

a Japanese population (a different subspecies, P. major<br />

minor), where 16.6% of offspring were sired by extra-pair<br />

males, and extra-pair sires had larger black breast band than<br />

social mates (Kawano et al. 2009).<br />

Conclusions<br />

It is not clear whether the concentration or the total amount<br />

of a compound per yolk is more important for developing<br />

offspring (Safran et al. 2008). In this study, correlations<br />

between yolk mass and androgen concentrations were not<br />

significant but overall were slightly negative. This was the<br />

reason for the observation that although yolk mass<br />

increased with certain factors (laying temperature and male<br />

breast band area), total androgens per yolk did not (Figs. 1<br />

and 2). Similarly, although the total androgen concentration<br />

increased with male carotenoid chroma, androgen amount<br />

per yolk did not because yolk mass correlated slightly<br />

negatively with male carotenoid chroma (Fig. 2). These<br />

results suggest that offspring may originate from eggs with<br />

different combinations of yolk mass, androgen concentrations<br />

and total amounts of androgens with possibly different<br />

consequences for their performance.<br />

The main findings of this study of yolk androgens in the<br />

great tit were as follows. (1) Correlations of androgens with<br />

yolk mass were weak. (2) Comparison of Figs. 1 and 2 and<br />

AIC values of comparable models (Table S2 in the Online<br />

Resource) suggest that male traits were the best predictors<br />

of egg characteristics. Further, I conclude that large<br />

variation among females in egg yolk androgens suggests<br />

that there is a potential for adaptive offspring engineering in<br />

relation to environmental and social factors. However, it is<br />

important to acknowledge that androgens can have positive<br />

as well as negative effects on offspring (see “Introduction”<br />

section). Thus, understanding adaptiveness or otherwise of<br />

the patterns indentified in this study will require an<br />

experimental approach.<br />

Acknowledgements I am grateful to Kristýna Bártlová, Beata<br />

Matysioková and Jana Šuterová for assistance in the field, Lubomír Kříž<br />

for running androgen assays, and Beata Matysioková and two anonymous<br />

reviewers for helpful comments on the manuscript. This study was<br />

supported by Czech Ministry of Education (MSM6198959212).<br />

References<br />

Behav Ecol Sociobiol<br />

Andersson S, Prager M (2006) Quantifying colors. In: Hill GE,<br />

McGraw KJ (eds) Bird coloration, vol I, Mechanisms and<br />

measurements. Harvard University Press, Cambridge, pp 41–89<br />

Andersson S, Uller T, Lõhmus M, Sundström F (2004) Effects of egg<br />

yolk testosterone on growth and immunity in a precocial bird. J<br />

Evol Biol 17:501–505<br />

Badyaev AV, Uller T (2009) Parental effects in ecology and evolution:<br />

mechanisms, processes and implications. Philos Trans R Soc<br />

Lond B 364:1169–1177<br />

Dentressangle F, Boeck L, Torres R (2008) Maternal investment in<br />

eggs is affected by male feet colour and breeding conditions in<br />

the blue-footed booby, Sula nebouxii. Behav Ecol Sociobiol<br />

62:1899–1908<br />

Eising CM, Groothuis TGG (2003) The effect of yolk androgens on<br />

begging behaviour in black-headed gull chicks. Anim Behav<br />

66:1027–1034<br />

Eising CM, Eikenaar C, Schwabl H, Groothuis TGG (2001) Maternal<br />

androgens in black-headed gull (Larus ridibundus) eggs: consequences<br />

for chick development. Proc R Soc Lond B 268:839–<br />

846<br />

Eising CM, Müller W, Groothuis TGG (2006) Avian mothers create<br />

different phenotypes by hormone deposition in their eggs. Biol<br />

Lett 2:20–22<br />

Eising CM, Pavlova D, Groothuis TGG, Eens M, Pinxten R (2008)<br />

Maternal yolk androgens in European starlings: affected by social<br />

environment or individual traits of the mother? Behaviour<br />

145:51–72<br />

Ferns PN, Hinsley SA (2004) Immaculate tits: head plumage pattern<br />

as an indicator of quality in birds. Anim Behav 67:261–272<br />

Ferns PN, Hinsley SA (2008) Carotenoid plumage hue and chroma<br />

signal different aspects of individual and habitat quality in tits.<br />

Ibis 150:152–159<br />

Figuerola J, Senar JC (2000) Measurement of plumage badges: an<br />

evaluation of methods used in the great tit Parus major. Ibis<br />

142:482–484<br />

Garamszegi LZ, Biard C, Eens M, Møller AP, Saino N (2007)<br />

Interspecific variation in egg testosterone levels: implications for<br />

the evolution of bird song. J Evol Biol 20:950–965<br />

Garcia-Fernandez V, Guasco B, Tanvez A, Lacroix A, Cucco M,<br />

Leboucher G, Malacarne G (2010) Influence of mating preferences<br />

on yolk testosterone in the grey partridge. Anim Behav<br />

80:45–49<br />

Gil D, Graves J, Hazon N, Wells A (1999) Male attractiveness and<br />

differential testosterone investment in zebra finch eggs. Science<br />

286:126–128<br />

Gil D, Ninni P, Lacroix A, de Lope F, Tirard C, Marzal A, Møller AP<br />

(2006) Yolk androgens in the barn swallow (Hirundo rustica): a<br />

test of some adaptive hypotheses. J Evol Biol 19:123–131<br />

Gil D, Biard C, Larcoix A, Spottiswoode CN, Saino N, Puerta M,<br />

Møller AP (2007) Evolution of yolk androgens in birds:<br />

development, coloniality, and sexual dichromatism. Am Nat<br />

169:802–819<br />

Gilbert L, Rutstein AN, Hazon N, Graves JA (2005) Sex-biased<br />

investment in yolk androgens depends on female quality and<br />

laying order in zebra finches (Taeniopygia guttata). Naturwissenschaften<br />

92:178–181<br />

Grindstaff JL, Brodie ED III, Ketterson ED (2003) Immune function<br />

across generations: integrating mechanism and evolutionary<br />

process in maternal antibody transfer. Proc R Soc B 270:2309–<br />

2319<br />

Groothuis TGG, Eising CM, Dijkstra C, Müller W (2005a) Balancing<br />

between costs and benefits of maternal hormone deposition in<br />

avian eggs. Biol Lett 1:78–81


Behav Ecol Sociobiol<br />

Groothuis TGG, Müller W, von Engelhardt N, Carere C, Eising CM<br />

(2005b) Maternal hormones as a tool to adjust offspring<br />

phenotype in avian species. Neurosci Biobehav Rev 29:329–352<br />

Hampl R (1994) Comparison of three immunoassays for testosterone<br />

determination. In: Gőrőg S (ed) Advances in steroid analysis '93.<br />

Akadémiai Kiadó, Budapest, pp 163–169<br />

Hargitai R, Arnold KE, Herényi M, Prechl J, Török J (2009) Egg<br />

composition in relation to social environment and maternal<br />

physiological condition in the collared flycatcher. Behav Ecol<br />

Sociobiol 63:869–882<br />

Harris WE, Uller T (2009) Reproductive investment when mate<br />

quality varies: differential allocation versus reproductive compensation.<br />

Philos Trans R Soc Lond B 364:1039–1048<br />

Hegyi G, Szigeti B, Török J, Eens M (2007) Melanin, carotenoid and<br />

structural plumage ornaments: information content and role in<br />

great tits Parus major. J Avian Biol 38:698–708<br />

Hõrak P, Ots I, Vellau H, Spottiswoode C, Møller AP (2001)<br />

Carotenoid-based plumage coloration reflects hemoparasite infection<br />

and local survival in breeding great tits. Oecologia<br />

126:166–173<br />

Isaksson C, Andersson S (2008) Oxidative stress does not influence<br />

carotenoid mobilization and plumage pigmentation. Proc R Soc<br />

B 275:309–314<br />

Isaksson C, Uller T, Andersson S (2006) Parental effects on<br />

carotenoid-based plumage coloration in nestling great tits, Parus<br />

major. Behav Ecol Sociobiol 60:556–562<br />

Isaksson C, Ornborg J, Prager M, Andersson S (2008) Sex and age<br />

differences in reflectance and biochemistry of carotenoid-based<br />

colour variation in the great tit Parus major. Biol J Linn Soc<br />

95:758–765<br />

Johannessen LE, Slagsvold T, Hansen BT, Lifjeld JT (2005)<br />

Manipulation of male quality in wild tits: effects on paternity<br />

loss. Behav Ecol 16:747–754<br />

Kawano KM, Yamaguchi N, Kasuya E, Yahara T (2009) Extra-pair<br />

mate choice in the female great tit Parus major: good males or<br />

compatible males. J Ethol 27:349–359<br />

Kingma SA, Komdeur J, Vedder O, von Engelhardt N, Korsten P,<br />

Groothuis TGG (2009) Manipulation of male attractiveness<br />

induces rapid changes in avian maternal yolk androgen deposition.<br />

Behav Ecol 20:172–179<br />

Krist M (2010) Egg size and offspring quality: a meta-analysis in<br />

birds. Biol Rev. doi:10.1111/j.1469-185X.2010.00166.x<br />

Krokene C, Rigstad K, Dale M, Lifjeld JT (1998) The function of<br />

extrapair paternity in blue tits and great tits: good genes or<br />

fertility insurance. Behav Ecol 9:649–656<br />

Lemel J, Wallin K (1993) Status signalling, motivational condition<br />

and dominance: an experimental study in the great tit, Parus<br />

major L. Anim Behav 45:549–558<br />

Lessells CM, Boag PT (1987) Unrepeatable repeatabilities: a common<br />

mistake. Auk 104:116–121<br />

Lessells CM, Dingemanse NJ, Both C (2002) Egg weights, egg<br />

component weights, and laying gaps in great tits (Parus major) in<br />

relation to ambient temperature. Auk 119:1091–1103<br />

Loyau A, Saint Jalme M, Mauget R, Sorci G (2007) Male sexual<br />

attractiveness affects the investment of maternal resources into<br />

the eggs in peafowl (Pavo cristatus). Behav Ecol Sociobiol<br />

61:1043–1052<br />

Lubjuhn T, Strohbach S, Brün J, Gerken T, Epplen JT (1999) Extrapair<br />

paternity in great tits (Parus major)—a long term study.<br />

Behaviour 136:1157–1172<br />

Lubjuhn T, Brün J, Gerken T, Epplen JT (2001) Inconsistent pattern of<br />

extra-pair paternity in first and second broods of the great tit<br />

Parus major. Ardea 89:69–73<br />

Mänd R, Tilgar V, Møller AP (2005) Negative relationship between<br />

plumage colour and breeding output in female great tits, Parus<br />

major. Evol Ecol Res 7:1013–1023<br />

Matysioková B, Remeš V (2010a) Assessing the usefulness of<br />

ptilochronology in the study of melanin- and carotenoid-based<br />

ornaments in the great tit Parus major. Ibis 152:397–401<br />

Matysioková B, Remeš V (2010b) Incubation feeding and nest<br />

attentiveness in a socially monogamous songbird: role of feather<br />

colouration, territory quality and ambient environment. Ethology<br />

116:596–607<br />

Matysioková B, Remeš V (2010c) Responses to increased costs of<br />

activity during incubation in a songbird with female-only<br />

incubation: does feather colour signal coping ability? J Ornithol.<br />

doi:10.1007/s10336-010-0594-9<br />

Mazuc J, Bonneaud C, Chastel O, Sorci G (2003) Social environment<br />

affects female and egg testosterone levels in the house sparrow<br />

(Passer domesticus). Ecol Lett 6:1084–1090<br />

Michl G, Török J, Péczely P, Garamszegi LZ, Schwabl H (2005)<br />

Female collared flycatchers adjust yolk testosterone to male age,<br />

but not to attractiveness. Behav Ecol 16:383–388<br />

Møller AP, Biard C, Blount JD, Houston DC, Ninni P, Saino N, Surai<br />

PF (2000) Carotenoid-dependent signals: indicators of foraging<br />

efficiency, immunocompetence or detoxification ability? Avian<br />

Poult Biol Rev 11:137–159<br />

Müller W, Eising CM, Dijkstra C, Groothuis TGG (2002) Sex<br />

differences in yolk hormones depend on maternal social status<br />

in leghorn chickens (Gallus gallus domesticus). Proc R Soc B<br />

269:2249–2255<br />

Müller W, Groothuis TGG, Kasprzik A, Dijkstra C, Alatalo RV, Siitari<br />

H (2005) Prenatal androgen exposure modulates cellular and<br />

humoral immune function of black-headed gull chicks. Proc R<br />

Soc Lond B 272:1971–1977<br />

Müller W, Vergauwen J, Eens M (2009) Long-lasting consequences of<br />

elevated yolk testosterone levels on female reproduction. Behav<br />

Ecol Sociobiol 63:809–816<br />

Müller W, Boonen S, Groothuis TGG, Eens M (2010) Maternal yolk<br />

testosterone in canary eggs: toward a better understanding of<br />

mechanisms and function. Behav Ecol 21:493–500<br />

Naef-Daenzer B, Keller LF (1999) The foraging performance of great<br />

and blue tits (Parus major and P. caeruleus) in relation to<br />

caterpillar development, and its consequences for nestling growth<br />

and fledging weight. J Anim Ecol 68:708–718<br />

Naef-Daenzer B, Widmer F, Nuber M (2001) Differential postfledging<br />

survival of great and coal tits in relation to their<br />

condition and fledging date. J Anim Ecol 70:730–738<br />

Navara KJ, Mendonça MT (2008) Yolk androgens as pleiotropic<br />

mediators of physiological processes: a mechanistic review.<br />

Comp Biochem Physiol A 150:378–386<br />

Navara KJ, Hill GE, Mendonça MT (2005) Variable effects of yolk<br />

androgens on growth, survival, and immunity in eastern bluebird<br />

nestlings. Physiol Biochem Zool 78:570–578<br />

Navara KJ, Hill GE, Mendonça MT (2006a) Yolk androgen deposition<br />

as a compensatory strategy. Behav Ecol Sociobiol 60:392–398<br />

Navara KJ, Hill GE, Mendonça MT (2006b) Yolk testosterone<br />

stimulates growth and immunity in house finch chicks. Physiol<br />

Biochem Zool 79:550–555<br />

Norris KJ (1990) Female choice and the quality of parental care in the<br />

great tit Parus major. Behav Ecol Sociobiol 27:275–281<br />

Norris KJ (1993) Heritable variation in a plumage indicator of<br />

viability in male great tits Parus major. Nature 362:537–539<br />

Otter KA, Stewart IRK, McGregor PK, Terry AMR, Dabelsteen T,<br />

Burke T (2001) Extra-pair paternity among great tits Parus major<br />

following manipulation of male signals. J Avian Biol 32:338–344<br />

Perrins CM (1979) British tits. Collins, London<br />

Pilz KM, Smith HG (2004) Egg yolk androgen levels increase with<br />

breeding density in the European starling, Sturnus vulgaris.<br />

Funct Ecol 18:58–66<br />

Pilz KM, Smith HG, Sandell MI, Schwabl H (2003) Interfemale<br />

variation in egg yolk androgen allocation in the European


starling: do high-quality females invest more? Anim Behav<br />

65:841–850<br />

Pilz KM, Quiroga M, Schwabl H, Adkins-Regan E (2004) European<br />

starling chicks benefit from high yolk testosterone levels during a<br />

drought year. Horm Behav 46:179–192<br />

Pitala N, Ruuskanen S, Laaksonen T, Doligez B, Tschirren B,<br />

Gustafsson L (2009) The effects of experimentally manipulated<br />

yolk androgens on growth and immune function of male and<br />

female nestling collared flycatchers Ficedula albicollis. J Avian<br />

Biol 40:225–230<br />

Quesada J, Senar JC (2006) Comparing plumage colour measurements<br />

obtained directly from live birds and from collected feathers: the<br />

case of the great tit Parus major. J Avian Biol 37:609–616<br />

Quesada J, Senar JC (2007) The role of melanin- and carotenoid-based<br />

plumage coloration in nest defence in the great tit. Ethology<br />

113:640–647<br />

Ratikainen II, Kokko H (2010) Differential allocation and compensation:<br />

who deserves the silver spoon? Behav Ecol 21:195–200<br />

Rubolini D, Martinelli R, von Engelhardt N, Romano M, Groothuis TGG,<br />

Fasola M, Saino N (2007) Consequences of prenatal androgen<br />

exposure for the reproductive performance of female pheasants<br />

(Phasianus colchicus). Proc R Soc Lond B 274:137–142<br />

Ruuskanen S, Doligez B, Tschirren B, Pitala N, Gustafsson L,<br />

Groothuis TGG, Laaksonen T (2009) Yolk androgens do not<br />

appear to mediate sexual conflict over parental investment in the<br />

collared flycatcher Ficedula albicollis. Horm Behav 55:514–519<br />

Saino N, Ferrari RP, Romano M, Martinelli R, Lacroix A, Gil D,<br />

Møller AP (2006) Maternal allocation of androgens and<br />

antagonistic effects of yolk androgens on sons and daughters.<br />

Behav Ecol 17:172–181<br />

Safran RJ, Pilz KM, McGraw KJ, Correa SM, Schwabl H (2008) Are<br />

yolk androgens and carotenoids in barn swallow eggs related to<br />

parental quality? Behav Ecol Sociobiol 62:427–438<br />

Safran RJ, McGraw KJ, Pilz KM, Correa SM (2010) Egg-yolk<br />

androgen and carotenoid deposition as a function of maternal<br />

social environment in barn swallows Hirundo rustica. J Avian<br />

Biol 41:470–478<br />

Sandell MI, Adkins-Regan E, Ketterson ED (2007) Pre-breeding diet<br />

affects the allocation of yolk hormones in zebra finches<br />

Taeniopygia guttata. J Avian Biol 38:284–290<br />

Senar JC, Figuerola J, Domènech J (2003) Plumage coloration and<br />

nutritional condition in the great tit Parus major: the roles of<br />

carotenoids and melanins differ. Naturwissenschaften 90:234–237<br />

Senar JC, Møller AP, Ruiz I, Negro JJ, Broggi J, Hohtola E (2010)<br />

Specific appetite for carotenoids in a colorful bird. PLoS ONE 5:<br />

e10716<br />

Behav Ecol Sociobiol<br />

Sockman KW, Weiss J, Webster MS, Talbott V, Schwabl H (2008)<br />

Sex-specific effects of yolk-androgens on growth of nestling<br />

American kestrels. Behav Ecol Sociobiol 62:617–625<br />

Strohbach S, Curio E, Bathen A, Epplen JT, Lubjuhn T (1998)<br />

Extrapair paternity in the great tit (Parus major): a test of the<br />

“good genes” hypothesis. Behav Ecol 9:388–396<br />

Strasser R, Schwabl H (2004) Yolk testosterone organizes behavior<br />

and male plumage coloration in house sparrows (Passer<br />

domesticus). Behav Ecol Sociobiol 56:491–497<br />

Svensson L (1992) Identification guide to European passerines, 4th<br />

edn. British Trust for Ornithology, London<br />

Surai PF (2002) Natural antioxidants in avian nutrition and reproduction.<br />

Nottingham University Press, Nottingham<br />

Tanvez A, Béguin N, Chastel O, Lacroix A, Leboucher G (2004)<br />

Sexually attractive phrases increase yolk androgens deposition in<br />

Canaries (Serinus canaria). Gen Comp Endocrinol 138:113–120<br />

Tanvez A, Parisot M, Chastel O, Leboucher G (2008) Does maternal<br />

social hierarchy affect yolk testosterone deposition in domesticated<br />

canaries? Anim Behav 75:929–934<br />

Tobler M, Nilsson JÅ, Nilsson JF (2007) Costly steroids: egg<br />

testosterone modulates nestling metabolic rate in the zebra finch.<br />

Biol Lett 3:408–410<br />

Török J, Hargitai R, Hegyi G, Matus Z, Michl G, Péczely P, Rosivall<br />

B, Tóth G (2007) Carotenoids in the egg yolks of collared<br />

flycatchers (Ficedula albicollis) in relation to parental quality,<br />

environmental factors and laying order. Behav Ecol Sociobiol<br />

61:541–550<br />

Tschirren B, Richner H (2008) Differential effects of yolk hormones<br />

on maternal and paternal contribution to parental care. Anim<br />

Behav 75:1989–1994<br />

Tschirren B, Richner H, Schwabl H (2004) Ectoparasite-modulated<br />

deposition of maternal androgens in great tit eggs. Proc R Soc<br />

Lond B 271:1371–1375<br />

Verboven N, Mateman AC (1997) Low frequency of extra-pair<br />

fertilizations in the great tit Parus major revealed by DNA<br />

fingerprinting. J Avian Biol 28:231–239<br />

von Engelhardt N, Carere C, Dijkstra C, Groothuis TGG (2006) Sexspecific<br />

effects of yolk testosterone on survival, begging and<br />

growth of zebra finches. Proc R Soc Lond B 273:65–70<br />

Wilkin TA, Garant D, Gosler AG, Sheldon BC (2006) Density effects<br />

on life-history traits in a wild population of the great tit Parus<br />

major: analyses of long-term data with GIS techniques. J Anim<br />

Ecol 75:604–615<br />

Whittingham LA, Schwabl H (2002) Maternal testosterone in tree<br />

swallow eggs varies with female aggression. Anim Behav 63:63–<br />

67

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!