10.01.2013 Views

Autogenous and Allogeneic Bone Grafts in Periodontal Therapy

Autogenous and Allogeneic Bone Grafts in Periodontal Therapy

Autogenous and Allogeneic Bone Grafts in Periodontal Therapy

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Critical Reviews <strong>in</strong> Oral Biology & Medic<strong>in</strong>e<br />

http://cro.sagepub.com/<br />

<strong>Autogenous</strong> <strong>and</strong> <strong>Allogeneic</strong> <strong>Bone</strong> <strong>Grafts</strong> <strong>in</strong> <strong>Periodontal</strong> <strong>Therapy</strong><br />

James T. Mellonig<br />

CROBM 1992 3: 333<br />

DOI: 10.1177/10454411920030040201<br />

The onl<strong>in</strong>e version of this article can be found at:<br />

http://cro.sagepub.com/content/3/4/333<br />

Published by:<br />

http://www.sagepublications.com<br />

On behalf of:<br />

International <strong>and</strong> American Associations for Dental Research<br />

Additional services <strong>and</strong> <strong>in</strong>formation for Critical Reviews <strong>in</strong> Oral Biology & Medic<strong>in</strong>e can be found at:<br />

Email Alerts: http://cro.sagepub.com/cgi/alerts<br />

Subscriptions: http://cro.sagepub.com/subscriptions<br />

Repr<strong>in</strong>ts: http://www.sagepub.com/journalsRepr<strong>in</strong>ts.nav<br />

Permissions: http://www.sagepub.com/journalsPermissions.nav<br />

>> Version of Record - Jan 1, 1992<br />

What is This?<br />

Downloaded from<br />

cro.sagepub.com by guest on January 10, 2013 For personal use only. No other uses without permission.


Critical Reviews <strong>in</strong> Oral Biology <strong>and</strong> Medic<strong>in</strong>e, 3(4):333-352 (1992)<br />

<strong>Autogenous</strong> <strong>and</strong> <strong>Allogeneic</strong> <strong>Bone</strong> <strong>Grafts</strong> <strong>in</strong><br />

<strong>Periodontal</strong> <strong>Therapy</strong><br />

James T. Mellonig, D.D.S., M.S.<br />

Department of Periodontics, The University of Texas, Health Science Center, San Antonio, TX 78284<br />

ABSTRACT: This article is limited to a review of bone autografts <strong>and</strong> allografts, as used <strong>in</strong> periodontal therapy.<br />

The various graft materials are discussed with respect to case reports, controlled cl<strong>in</strong>ical trials, <strong>and</strong> human<br />

histology. Other reviewed areas are wound heal<strong>in</strong>g with periodontal bone grafts, tissue bank<strong>in</strong>g <strong>and</strong> freeze-dried<br />

bone allografts, <strong>and</strong> the use of bone grafts <strong>in</strong> guided tissue regeneration.<br />

KEY WORDS: <strong>Periodontal</strong>, bone autograft, bone allograft, tissue bank<strong>in</strong>g, guided tissue regeneration.<br />

I. INTRODUCTION<br />

Bacterially <strong>in</strong>duced periodontitis leads to the<br />

destruction of tooth-support<strong>in</strong>g tissues, culm<strong>in</strong>at<strong>in</strong>g<br />

<strong>in</strong> tooth loss. Disease reversal with regeneration<br />

of new bone, cementum, <strong>and</strong> periodontal<br />

ligament about a root surface previously<br />

contam<strong>in</strong>ated by bacterial plaque is the ultimate<br />

goal of periodontal therapy.<br />

<strong>Bone</strong> grafts, both autogenous <strong>and</strong> allogeneic,<br />

are felt by some to be essential if restoration of<br />

lost bone accompanied by a functional attachment<br />

apparatus is to be achieved. "<strong>Bone</strong> graft<strong>in</strong>g<br />

materials will enhance regeneration of a new attachment<br />

apparatus" (Bowers et aL, 1989c).<br />

"Osseous graft<strong>in</strong>g therapy has been shown to be<br />

cl<strong>in</strong>ically successful for time <strong>in</strong>tervals exceed<strong>in</strong>g<br />

20 years when encompassed <strong>in</strong> a comprehensive<br />

care program based on effective daily plaque control<br />

by the patient <strong>and</strong> a professionally supervised<br />

periodontal ma<strong>in</strong>tenance program" (Schallhorn,<br />

1980).<br />

Others believe that the use of bone grafts to<br />

enhance regeneration of the periodontium is unacceptable.<br />

' 'Not one of the human implant studies<br />

has provided the type of experimental model<br />

that clearly demonstrates new attachment for-<br />

1045-4411/92/$.50<br />

© 1992 by CRC Press, Inc.<br />

mation. Many of the <strong>in</strong>vestigators have failed to<br />

provide controls, <strong>and</strong> none have provided the<br />

unequivocal histologic evidence of new attachment<br />

to previously diseased roots" (Gara <strong>and</strong><br />

Adams, 1981). "From the st<strong>and</strong>po<strong>in</strong>t of scientific<br />

documentation, the value (of regenerative<br />

procedures) is not clear. Spectacular results of<br />

"bone fill" <strong>in</strong> <strong>in</strong>trabony pockets have been reported<br />

with or without bone implantation"<br />

(Ramfjord, 1984).<br />

Still others are conv<strong>in</strong>ced that bone grafts are<br />

detrimental. "Ignorance of the contribution of<br />

the various tissue components <strong>in</strong> periodontal<br />

wound heal<strong>in</strong>g may expla<strong>in</strong> the widespread use<br />

of bone transplants <strong>in</strong> the treatment of <strong>in</strong>trabony<br />

pockets" (Kar<strong>in</strong>g et aL, 1984). "S<strong>in</strong>ce granulation<br />

tissue derived from bone has the potential<br />

to <strong>in</strong>duce root resorption <strong>and</strong> ankylosis, the rationale<br />

of favor<strong>in</strong>g bone growth with the use of<br />

bone transplants is highly questionable" (Karr<strong>in</strong>g<br />

etaL, 1980).<br />

Cl<strong>in</strong>ical case reports, controlled cl<strong>in</strong>ical trials,<br />

<strong>and</strong> human histology document<strong>in</strong>g the results with<br />

bone grafts have been reviewed previously (Pfeifer,<br />

1969; Groff, 1976a <strong>and</strong> b; Ellegaard, 1976;<br />

Schallhorn, 1977; Schallhorn, 1980; Mellonig,<br />

1980; Wirthl<strong>in</strong>, 1981; Gara <strong>and</strong> Adams, 1981;<br />

Downloaded from<br />

cro.sagepub.com by guest on January 10, 2013 For personal use only. No other uses without permission.<br />

333


Bowers et ai, 1982; Pierce, 1982; Diaz-Arnold<br />

<strong>and</strong> Zach, 1985; Gonsalez, 1986; Mellonig, 1986;<br />

Yazdi <strong>and</strong> Schonfeld, 1987; Egelberg, 1987;<br />

Krejci <strong>and</strong> Farah, 1987; Wiseman <strong>and</strong> Tenebaum,<br />

1988; Hancock, 1989; Mellonig <strong>and</strong> Bowers,<br />

1990; Mellonig, 1991). The purpose of this<br />

article is to evaluate the literature <strong>in</strong> an attempt<br />

to clarify the current state of the art of regeneration<br />

with periodontal bone graft therapy.<br />

II. TERMINOLOGY<br />

The def<strong>in</strong>itions provided here are adapted<br />

from the American Academy of Periodontology's<br />

Glossary of Periodontic Terms.<br />

Regeneration is the reproduction or reconstitution<br />

of a lost or <strong>in</strong>jured part. As applied to<br />

periodontics, it means the formation of new bone,<br />

cementum, <strong>and</strong> periodontal ligament on a previously<br />

diseased root surface.<br />

At one time the terms regeneration <strong>and</strong> new<br />

attachment were synonymous. Today, new attachment<br />

means the reunion of connective tissue<br />

with a root surface that has been deprived of its<br />

periodontal ligament. This reunion occurs by the<br />

formation of new cementum with <strong>in</strong>sert<strong>in</strong>g collagen<br />

fibers. The formation of new bone is not<br />

necessarily a condition of new attachment. In<br />

addition, new attachment to a root surface may<br />

be mediated through epithelial adhesion (junctional<br />

epithelium) or connective tissue adhesion.<br />

Likewise, <strong>in</strong> the past, the terms new attachment<br />

<strong>and</strong> reattachment were often used <strong>in</strong>terchangeably.<br />

Reattachment means to attach aga<strong>in</strong>,<br />

the reunion of connective tissue with a root surface<br />

on which viable periodontal tissue is present.<br />

The area of reattachment is not affected by bacterial<br />

contam<strong>in</strong>ation.<br />

Attachment apparatus refers to the cementum,<br />

the alveolar bone, <strong>and</strong> the periodontal<br />

ligament.<br />

Repair is the heal<strong>in</strong>g of a wound by tissue<br />

that does not fully restore the architecture or function<br />

of the part.<br />

<strong>Bone</strong> fill is the presence of hard tissue <strong>in</strong> a<br />

periodontal osseous defect, as determ<strong>in</strong>ed by<br />

cl<strong>in</strong>ical re-entry of the orig<strong>in</strong>al defect site. This<br />

term does not <strong>in</strong>dicate the nature of the histologic<br />

attachment to the tooth. The amount of bone fill<br />

334<br />

is usually determ<strong>in</strong>ed by surgical reentry<br />

procedures.<br />

Intraosseous (<strong>in</strong>trabony) refers to a periodontal<br />

defect with<strong>in</strong> bone.<br />

An autograft is a tissue graft (bone) transferred<br />

from one position to a new position <strong>in</strong> the<br />

same <strong>in</strong>dividual.<br />

An allograft (homograft) is a tissue graft<br />

(bone) between <strong>in</strong>dividuals of the same species<br />

but with nonidentical genetic composition.<br />

A xenograft (heterograft) is a tissue graft between<br />

members of different species.<br />

III. PERIODONTAL BONE GRAFTS:<br />

HISTORICAL PERSPECTIVE<br />

The use of bone grafts <strong>in</strong> periodontal therapy<br />

can be traced to the work of Hegedus (1923). He<br />

reported success <strong>in</strong> six cases by transplant<strong>in</strong>g autogenous<br />

bone from the tibia to the jaws to treat<br />

"advanced pyorrhea". Subsequent to this report<br />

<strong>and</strong> for the next several decades, the evaluation<br />

of xenografts of various types became the ma<strong>in</strong><br />

focus of attention.<br />

Buebe <strong>and</strong> Silvers (1936) used boiled cow<br />

bone powder to successfully repair <strong>in</strong>trabony defects<br />

<strong>in</strong> humans. Studies <strong>in</strong> dogs (Beube, 1934<br />

<strong>and</strong> 1942) suggested that surgically created periodontal<br />

defects had an accelerated rate of heal<strong>in</strong>g<br />

after placement of boiled cow bone powder, with<br />

bone <strong>and</strong> cementum be<strong>in</strong>g deposited more rapidly<br />

<strong>in</strong> grafted defects.<br />

Os purum is ox bone that is soaked <strong>in</strong> potassium<br />

hydroxide to remove collagen, <strong>in</strong> acetone<br />

to remove lipid, <strong>and</strong> <strong>in</strong> a salt solution to remove<br />

prote<strong>in</strong>s. Forsberg (1956) used this material <strong>in</strong><br />

11 human <strong>in</strong>trabony defects. One showed excellent<br />

results, seven were satisfactory, <strong>and</strong> three<br />

were unsatisfactory.<br />

Anorganic bone is bov<strong>in</strong>e bone from which<br />

the organic material is extracted by means of<br />

ethylenediam<strong>in</strong>e <strong>and</strong> autoclaved. Melcher (1962)<br />

grafted 187 bone defects <strong>in</strong> 163 patients with a<br />

m<strong>in</strong>imum follow-up of 3 years. He felt that protracted<br />

sequestration <strong>and</strong> slow resorbtion mitigated<br />

aga<strong>in</strong>st the use of anorganic bone. Patur<br />

<strong>and</strong> Glickman (1962) found similar results.<br />

Boplant is bov<strong>in</strong>e bone that is prepared by<br />

detergent extraction, chloroform methanol ex-<br />

Downloaded from<br />

cro.sagepub.com by guest on January 10, 2013 For personal use only. No other uses without permission.


traction to reduce lipid content, sterilization <strong>in</strong><br />

propiolactone, <strong>and</strong> freeze dry<strong>in</strong>g. In 77 <strong>in</strong>traosseous<br />

defects <strong>in</strong> 56 patients, Scopp et al (1966)<br />

reported pocket depth reduction of 3 mm at 6<br />

months <strong>and</strong> an additional millimeter after 1 year.<br />

Older (1967) reported good results <strong>in</strong> four cases,<br />

fair results <strong>in</strong> three, <strong>and</strong> unsuccessful results <strong>in</strong><br />

two, as measured by prob<strong>in</strong>g depth reduction <strong>and</strong><br />

<strong>in</strong>creas<strong>in</strong>g radiographic density. The widespread<br />

cl<strong>in</strong>ical use that followed these reports resulted<br />

<strong>in</strong> rout<strong>in</strong>e rejection <strong>and</strong> failure (Emm<strong>in</strong>gs, 1974).<br />

Boplant was subsequently withdrawn from the<br />

market (Emm<strong>in</strong>gs, 1974).<br />

IV. CASE REPORTS AND CONTROLLED<br />

CLINICAL TRIALS WITH AUTOGENOUS<br />

AND ALLOGENEIC BONE GRAFTS<br />

Case reports document the cl<strong>in</strong>ical success<br />

or failure of a therapeutic procedure, provide <strong>in</strong>formation<br />

on technique sensitivity, <strong>and</strong> may stimulate<br />

research <strong>in</strong>to the validity of the procedure.<br />

They have scientific value only when a large<br />

number of cases are reported <strong>and</strong> become anecdotal<br />

when published as isolated procedures. In<br />

addition, the repeatability of results, as reported<br />

by a significant number of <strong>in</strong>vestigators, lends<br />

credence to cl<strong>in</strong>ical predictability. Because early<br />

bone graft literature was concerned ma<strong>in</strong>ly with<br />

cl<strong>in</strong>ical feasibility <strong>and</strong> technique, comparisons<br />

with procedures that have the same or similar<br />

objectives were not accomplished. It was only<br />

later that controlled cl<strong>in</strong>ical trials were felt to be<br />

necessary, as several authors speculated that an<br />

equivalent amount of bone fill could be achieved<br />

irrespective of whether the procedure <strong>in</strong>cluded a<br />

bone graft (Rosl<strong>in</strong>g et al., 1976; Ellegaard et al.,<br />

1971; Poison <strong>and</strong> Heijle, 1978). In addition, as<br />

judged by present-day st<strong>and</strong>ards, many of the<br />

early controlled studies were <strong>in</strong>adequately designed<br />

because the patient did not serve as the<br />

unit of control (Hujoel et al., 1990). Yet a critical<br />

analysis of these studies revealed that <strong>in</strong> no <strong>in</strong>stance<br />

was the control procedure (open flap debridement)<br />

to be superior to the bone graft (Table<br />

1).<br />

A. <strong>Autogenous</strong> <strong>Bone</strong> <strong>Grafts</strong><br />

There are several types of autogenous bone<br />

grafts that have been or are be<strong>in</strong>g used cl<strong>in</strong>ically.<br />

They <strong>in</strong>clude cortical bone chips, osseous coagulum,<br />

bone blend, <strong>in</strong>traoral <strong>and</strong> extraoral cancellous<br />

bone, <strong>and</strong> marrow.<br />

1. Cortical <strong>Bone</strong> Chips<br />

The impetus for the modern-day use of periodontal<br />

bone grafts can be traced to the work of<br />

Nabers <strong>and</strong> O'Leary (1965). They reported that<br />

shav<strong>in</strong>gs of cortical bone removed by h<strong>and</strong> chisels<br />

dur<strong>in</strong>g osteoplasty <strong>and</strong> ostectomy from sites<br />

with<strong>in</strong> the surgical area could be used successfully<br />

to effect a coronal <strong>in</strong>crease <strong>in</strong> bone height.<br />

The <strong>in</strong>traosseous defects so treated were primarily<br />

one- <strong>and</strong> two-walled <strong>and</strong> not felt by the authors<br />

to be amenable to other methods of treatment.<br />

Subsequently, Nabers reported long-term<br />

success with 18- to 24-month posttreatment cl<strong>in</strong>ical<br />

documentation for six cases (Nabers, 1984).<br />

Although there is a paucity of <strong>in</strong>formation with<br />

respect to cortical bone chips, a more recent publication<br />

suggests that this type of graft is still <strong>in</strong><br />

use <strong>and</strong> may result <strong>in</strong> bone fill with decreased<br />

prob<strong>in</strong>g depth (Langer et al, 1986). Cortical<br />

chips, due to their relatively large particle size<br />

— 1,559.6 x 183 fxm (Zayer <strong>and</strong> Yukna, 1983)<br />

— <strong>and</strong> potential for sequestration, were replaced<br />

by autogenous osseous coagulum <strong>and</strong> bone blend.<br />

2. Osseous Coagulum <strong>and</strong> <strong>Bone</strong> Blend<br />

Intra-oral bone, when obta<strong>in</strong>ed with high- or<br />

low-speed round burs <strong>and</strong> mixed with blood, becomes<br />

a coagulum (Rob<strong>in</strong>son, 1969; Jacobs <strong>and</strong><br />

Rosenberg, 1984). The rationale for the use of<br />

osseous coagulum is the belief that the smaller<br />

the particle size of the donor bone, the more<br />

certa<strong>in</strong> its resorption <strong>and</strong> replacement with host<br />

bone (Rob<strong>in</strong>son, 1969). It was subsequently<br />

demonstrated <strong>in</strong> monkeys that small bone particles<br />

of 100 |xm could provide for earlier <strong>and</strong><br />

greater osteogenic activity than particles ten times<br />

as large (Rivault et al, 1971).<br />

The bone blend technique was designed to<br />

overcome some of the disadvantages of osseous<br />

coagulum, <strong>in</strong>clud<strong>in</strong>g <strong>in</strong>ability to aspirate dur<strong>in</strong>g<br />

the collection process, unknown quantity <strong>and</strong><br />

Downloaded from<br />

cro.sagepub.com by guest on January 10, 2013 For personal use only. No other uses without permission.<br />

335


336<br />

TABLE 1<br />

Human Controlled Studies with <strong>Bone</strong> Autografts <strong>and</strong> Allografts <strong>in</strong> the<br />

Treatment of <strong>Periodontal</strong> Osseous Defects<br />

Graft<br />

material<br />

ICBM<br />

OC-BB<br />

ECBM<br />

ICBM<br />

ICMB<br />

ICBM<br />

ICBM<br />

ECBM<br />

ICBM<br />

ECBM<br />

CBMA<br />

ICBM<br />

CBMA<br />

CBMA<br />

CBMA<br />

FDBA<br />

FDBA<br />

FDBA<br />

FDBA<br />

+<br />

TCN<br />

DFDBA<br />

DFDBA<br />

DFDBA<br />

DFDBA<br />

DFDBA<br />

Method of<br />

evaluation<br />

Prob<strong>in</strong>g <strong>and</strong><br />

radiographs<br />

Reentry<br />

Prob<strong>in</strong>g<br />

Prob<strong>in</strong>g <strong>and</strong><br />

X-rays<br />

Prob<strong>in</strong>g bone<br />

level<br />

Reentry<br />

Histology<br />

Histology<br />

Reentry <strong>and</strong><br />

prob<strong>in</strong>g bone<br />

Reentry<br />

Reentry<br />

Histology<br />

Reentry<br />

X-ray<br />

Histology<br />

Reentry<br />

Reentry<br />

Histology<br />

Graft<br />

Mean iesults<br />

Equal degree of success<br />

2.98 mm<br />

(71% bone fill)<br />

4.36 mm<br />

(61% fill)<br />

3.07 mm (2-wall)<br />

2.35 mm (1-wall)<br />

3.2 mm ga<strong>in</strong><br />

attachment<br />

1.2 mm ga<strong>in</strong><br />

(significant only<br />

for deepest<br />

defects)<br />

Control<br />

0.66 mm<br />

(22% fill)<br />

2.15 mm (2-wall)<br />

2.25 mm (1-wall)<br />

2.0 mm ga<strong>in</strong><br />

attachment<br />

0.8 mm<br />

No significant difference<br />

Graft improved results of treatment<br />

Regeneration<br />

consistently<br />

found<br />

New bone <strong>and</strong><br />

cementum<br />

4.83 mm fill<br />

1.6 mm<br />

(54% bone fill)<br />

Lack of cementogenesis<br />

<strong>and</strong><br />

bone formation<br />

Little if any new<br />

cementum or<br />

bone<br />

0.22 mm fill<br />

0.8 mm<br />

(33% bone fill)<br />

60% defects 60% defects<br />

>50% bone fill >50% fill<br />

New attachment greater <strong>in</strong> grafted<br />

sites<br />

1.9 mm (39% fill)<br />

2.8 mm (61% fill)<br />

1.38 mm fill<br />

No difference <strong>in</strong> heal<strong>in</strong>g<br />

1.0 mm (31% fill)<br />

1.4 mm (36% fill)<br />

0.3 mm fill<br />

2.57 mm<br />

1.26 mm<br />

(65% bone fill) (38% fill)<br />

No difference between defects treated<br />

with <strong>and</strong> without IDone grafts<br />

Regeneration <strong>in</strong> both grafted <strong>and</strong><br />

nongrafted sites <strong>in</strong> the submerged<br />

environment; greater <strong>and</strong> more frequent<br />

regeneration <strong>in</strong> grafted sites<br />

Downloaded from<br />

cro.sagepub.com by guest on January 10, 2013 For personal use only. No other uses without permission.<br />

Ref.<br />

Ellegaard <strong>and</strong><br />

Loe(1971)<br />

Froum et al.<br />

(1976)<br />

Carraro et al.<br />

(1976)<br />

Mov<strong>in</strong> et al.<br />

(1982)<br />

Renvert et al.<br />

(1985)<br />

Patur(1974)<br />

Hiatt et al.<br />

(1978)<br />

Listgarten <strong>and</strong><br />

Rosenberg<br />

(1979)<br />

Hiatt et al.<br />

(1986)<br />

Schrad <strong>and</strong><br />

Tuss<strong>in</strong>g<br />

(1985)<br />

Altiere et al.<br />

(1979)<br />

Moomaw<br />

(1978)<br />

Mabry et al.<br />

(1985)<br />

Pearson et al.<br />

(1981)<br />

Dragoo <strong>and</strong><br />

Kaldahl<br />

(1983)<br />

Mellonig (1984)<br />

Santes et al.<br />

(1988)<br />

Bowers et al.<br />

(1989b)


DFDBA<br />

DFDBA<br />

OC-BB<br />

ICBM<br />

ECBM<br />

CBMA<br />

FDBA<br />

FDBA +<br />

TCN<br />

DFDBA<br />

Histology<br />

Reentry<br />

New bone, cementum,<br />

PDL<br />

2.60 mm bone fi<br />

No new attachment<br />

apparatus<br />

0.38 mm bone fill<br />

= Osseous coagulum-bone-blend autograft.<br />

= Intraoral cancellous bone <strong>and</strong> marrow autograft.<br />

= Extraoral (iliac) cancellous bone <strong>and</strong> marrow autograft.<br />

= Cancellous bone <strong>and</strong> marrow allograft.<br />

= Freeze-dried bone allograft.<br />

= Freeze-dried bone allograft plus tetracycl<strong>in</strong>e.<br />

= Decalcified freeze-dried bone allograft.<br />

= Significant difference <strong>in</strong> favor of bone graft<strong>in</strong>g.<br />

quality of collected bone fragments, <strong>and</strong> fluidity<br />

of the material (Diem et al, 1972). <strong>Bone</strong> blend<br />

is cortical or cancellous bone that is procured<br />

with a treph<strong>in</strong>e or rongeurs, placed <strong>in</strong> an amalgam<br />

capsule, <strong>and</strong> triturated to the consistency of<br />

a slushy osseous mass. The resultant particle size<br />

is <strong>in</strong> the range of 210 x 105 |xm (Zayer <strong>and</strong><br />

Yukna, 1983). Case reports <strong>in</strong>dicate that <strong>in</strong>traosseous<br />

defects can be successfully managed with<br />

this graft material (Rob<strong>in</strong>son, 1969). A mean<br />

bone fill of 73% was obta<strong>in</strong>ed <strong>in</strong> 25 defects<br />

(Froum et al, 1975). Froum et al (1976) reported<br />

the osseous coagulum-bone-blend type of<br />

grafts provided 2.98 mm coronal growth of alveolar<br />

bone, compared with 0.66 mm obta<strong>in</strong>ed<br />

when open flap debridement alone was used.<br />

3. Intraoral Cancellous <strong>Bone</strong> <strong>and</strong><br />

Marrow<br />

Heal<strong>in</strong>g bony wounds, heal<strong>in</strong>g extraction<br />

sockets, edentulous ridges, m<strong>and</strong>ibular retromolar<br />

areas, <strong>and</strong> the maxillary tuberosity have<br />

all been used as sources of <strong>in</strong>traoral cancellous<br />

bone <strong>and</strong> marrow (Hiatt <strong>and</strong> Schallhorn, 1973;<br />

Ross <strong>and</strong> Cohen, 1968; Soehren <strong>and</strong> Von Swol,<br />

1979; Halliday, 1969; Rosenberg, 1971). <strong>Bone</strong><br />

fill <strong>in</strong> all types of <strong>in</strong>traosseous <strong>and</strong> furcation defects<br />

has been demonstrated with this material<br />

(Hiatt <strong>and</strong> Schallhorn, 1973; Soehren <strong>and</strong> Von<br />

Swol, 1979; Halliday, 1969; Rosenberg, 1971).<br />

A mean bone fill of 3.65 mm, with up to 12 mm<br />

<strong>in</strong> some lesions, <strong>and</strong> >50% bone fill on a predictable<br />

basis have been achieved (Hiatt <strong>and</strong><br />

Bowers et al.<br />

(1989c)<br />

Blumenthal <strong>and</strong><br />

Ste<strong>in</strong>berg<br />

(1990)<br />

Schallhorn, 1973; Rosenberg, 1971). In an evaluation<br />

of 191 defects <strong>in</strong> 91 subjects, Ellegaard<br />

<strong>and</strong> Loe (1971) reported that grafts of <strong>in</strong>traoral<br />

cancellous bone <strong>and</strong> marrow did not appear to<br />

<strong>in</strong>fluence the cl<strong>in</strong>ical outcome when compared<br />

with surgical curettage. Likewise, Renvert et al.<br />

(1985) found limited differences between grafted<br />

<strong>and</strong> nongrafted sites. They did, however, note<br />

significant differences <strong>in</strong> favor of grafted sites<br />

when only the deepest defects were compared<br />

<strong>and</strong> suggested that <strong>in</strong>traoral grafts be limited to<br />

treat<strong>in</strong>g deep lesions. As determ<strong>in</strong>ed by prob<strong>in</strong>g<br />

depth measurements, Carrraro et al. (1976) found<br />

no difference <strong>in</strong> the response between grafted <strong>and</strong><br />

nongrafted one-walled defects. Two-walled defects<br />

responded more favorably when grafted than<br />

ungrafted controls. Also, Mov<strong>in</strong> et al. (1982)<br />

reported a 3.2-mm ga<strong>in</strong> <strong>in</strong> cl<strong>in</strong>ical attachment <strong>in</strong><br />

grafted defects <strong>and</strong> 2.0 mm <strong>in</strong> nongrafted defects.<br />

4. Extra-oral Cancellous <strong>Bone</strong> <strong>and</strong><br />

Marrow<br />

It is generally agreed that the extraoral cancellous<br />

bone <strong>and</strong> marrow offer the greatest potential<br />

for new bone growth (Cush<strong>in</strong>g, 1969; Sottosanti<br />

<strong>and</strong> Bierly, 1975; Amler, 1984). This<br />

material is obta<strong>in</strong>ed from either the anterior or<br />

the posterior iliac crest (Schallhorn, 1968; Dragoo<br />

<strong>and</strong> Irw<strong>in</strong>, 1972). Schallhorn's reports of<br />

complete eradication of furcation <strong>and</strong> <strong>in</strong>terproximal<br />

crater defects spurred <strong>in</strong>terest <strong>in</strong> this material<br />

(Schallhorn, 1967 <strong>and</strong> 1968). Subsequently, additional<br />

case reports attested to the efficacy of<br />

Downloaded from<br />

cro.sagepub.com by guest on January 10, 2013 For personal use only. No other uses without permission.<br />

337


this approach when used by different cl<strong>in</strong>icians<br />

to successfully treat furcations, dehiscences, <strong>and</strong><br />

defects of vary<strong>in</strong>g osseous morphology (Schallhorn<br />

et al, 1970; Haggerty <strong>and</strong> Maeda, 1971;<br />

Patur, 1974; Seibert, 1970; Mattout <strong>and</strong> Roche,<br />

1984). Mean cl<strong>in</strong>ical bone fill of 3.33 mm <strong>in</strong> 182<br />

defects <strong>and</strong> 4.36 mm <strong>in</strong> 7 defects has been reported<br />

(Froum et al, 1975; Schallhorn et al.,<br />

1970). Patur (1974) <strong>in</strong>dicated that graft<strong>in</strong>g improved<br />

the results of treatment. In addition, a<br />

mean bone apposition of 2.54 mm <strong>in</strong> crestal or<br />

zero-wall defects has been documented (Schallhorn<br />

etal., 1970).<br />

B. <strong>Bone</strong> Al log rafts<br />

The need for an allogeneic source of bone<br />

arose from the need for <strong>in</strong>creased donor material<br />

<strong>and</strong> the problems associated with autogenous bone<br />

procurement, namely, the morbidity accompany<strong>in</strong>g<br />

a second surgical site <strong>and</strong> the need for a<br />

sufficient quantity of material to fill multiple defects<br />

(Mellonig, 1980 <strong>and</strong> 1991). Three types of<br />

bone allografts are used cl<strong>in</strong>ically. Underm<strong>in</strong>eralized<br />

(m<strong>in</strong>eralized), freeze-dried bone allograft<br />

(FDBA) <strong>and</strong> dem<strong>in</strong>eralized (decalcified), FDBA<br />

are used rout<strong>in</strong>ely; frozen iliac cancellous bone<br />

<strong>and</strong> marrow are used spar<strong>in</strong>gly.<br />

1. Iliac Cancellous <strong>Bone</strong> <strong>and</strong> Marrow<br />

Allograft<br />

The need for extensive cross-match<strong>in</strong>g of donor<br />

<strong>and</strong> recipient <strong>and</strong> the possibility of disease<br />

transfer restrict the use of iliac cancellous bone<br />

<strong>and</strong> marrow allograft (Hiatt <strong>and</strong> Schallhorn, 1971;<br />

Schallhorn, 1977). A mean coronal ga<strong>in</strong> of bone<br />

amount<strong>in</strong>g to 3.07 mm <strong>in</strong> 26 patients at reentry<br />

has been reported (Schallhorn <strong>and</strong> Hiatt, 1972).<br />

When compared with open flap debridement of<br />

osseous defects, allogeneic grafts of cancellous<br />

bone <strong>and</strong> marrow resulted <strong>in</strong> greater defect fill,<br />

1.6 mm (54% defect fill) for grafted sites <strong>and</strong><br />

0.8 mm (33% defect fill) for nongraft sites<br />

(Scharad <strong>and</strong> Tuss<strong>in</strong>g, 1985). When compared<br />

with tricalcium phosphate, frozen allogeneic bone<br />

implants led to greater bone apposition <strong>and</strong> reduction<br />

<strong>in</strong> prob<strong>in</strong>g depth (Strub et al, 1979).<br />

338<br />

2. Freeze-Dried <strong>Bone</strong> Allograft<br />

Undem<strong>in</strong>eralized FDBA was <strong>in</strong>troduced to<br />

periodontal therapy <strong>in</strong> 1976 (Mellonig et al.,<br />

1976). Freeze dry<strong>in</strong>g removes approximately 95%<br />

of the water from bone by a process of sublimation<br />

<strong>in</strong> a vacuum. Although freeze dry<strong>in</strong>g kills<br />

all cells, the morphology, solubility, <strong>and</strong> chemical<br />

<strong>in</strong>tegrity of the orig<strong>in</strong>al specimen are ma<strong>in</strong>ta<strong>in</strong>ed<br />

relatively <strong>in</strong>tact (Friedlaender, 1988; Mellonig,<br />

1980 <strong>and</strong> 1991). Freeze dry<strong>in</strong>g also<br />

markedly reduces the antigenicity of a periodontal<br />

bone allograft (Turner <strong>and</strong> Mellonig, 1981;<br />

Quattlebaum et al, 1988). At no time could any<br />

donor-specific anti-HLA antibodies be detected<br />

<strong>in</strong> any human recipient who received several<br />

FDBA grafts (Quattlebaum et al, 1988).<br />

FDBA is the only graft material that has<br />

undergone extensive field test<strong>in</strong>g <strong>in</strong> the treatment<br />

of adult periodontitis (Mellonig et al, 1976; Sepe<br />

et al, 1978; S<strong>and</strong>ers et al, 1983; Mellonig,<br />

1991). Field test studies provide <strong>in</strong>formation as<br />

to efficacy <strong>and</strong> feasibility but suffer from lack of<br />

project control, erratic documentation, <strong>and</strong><br />

equivocal <strong>in</strong>vestigator compliance. Eighty-n<strong>in</strong>e<br />

cl<strong>in</strong>icians implanted a total of 997 sites with<br />

FDBA alone <strong>and</strong> 524 sites with FDBA plus autogenous<br />

bone (FDBA + A), (Mellonig, 1991).<br />

Sufficient data, as determ<strong>in</strong>ed by surgical reentry<br />

at 6 months, were collected to determ<strong>in</strong>e predictability<br />

<strong>in</strong> 329 sites treated with FDBA <strong>and</strong><br />

176 sites treated with FDBA + A. Complete or<br />

>50% bone fill was obta<strong>in</strong>ed <strong>in</strong> 220 (67%) sites<br />

treated with FDBA <strong>and</strong> 137 (78%) of the sites<br />

treated with FDBA -I- A. Significant prob<strong>in</strong>g<br />

depth reduction occurred <strong>in</strong> 69 <strong>and</strong> 79% of the<br />

sites, respectively (Mellonig, 1991). It can be<br />

concluded from this <strong>and</strong> other studies that FDBA<br />

<strong>in</strong> comb<strong>in</strong>ation with autogenous bone is more<br />

efficacious than FDBA alone, especially <strong>in</strong> the<br />

treatment of furcation <strong>in</strong>vasion defects (Pearson<br />

<strong>and</strong> Freeman, 1980; S<strong>and</strong>ers etal, 1983). Altiere<br />

et al (1979) <strong>in</strong>vestigated FDBA sterilized with<br />

three Mrads of 7-irradiation, when compared with<br />

a nongraft procedure for debridement <strong>in</strong> ten paired<br />

sites. Both graft <strong>and</strong> nongraft sites demonstrated<br />

>50% bone fill <strong>in</strong> 60% of the sites.<br />

A composite graft of FDBA <strong>and</strong> tetracycl<strong>in</strong>e<br />

<strong>in</strong> a 4:1 volume ratio has shown promise <strong>in</strong> the<br />

treatment of the osseous defects associated with<br />

Downloaded from<br />

cro.sagepub.com by guest on January 10, 2013 For personal use only. No other uses without permission.


localized juvenile periodontitis (Yukna <strong>and</strong> Sepe,<br />

1981; Evans et al, 1989). A study that compared<br />

FDB A with <strong>and</strong> without tetracycl<strong>in</strong>e to a nongraft<br />

procedure <strong>in</strong> 12 juvenile periodontitis patients<br />

demonstrated significantly greater bone fill <strong>and</strong><br />

resolution of osseous defects <strong>in</strong> grafted as opposed<br />

to control sites (Mabry et al, 1985).<br />

3. Decalcified Freeze-Dried <strong>Bone</strong><br />

Allograft<br />

Urist <strong>and</strong> co-workers showed through numerous<br />

animal experiments that dem<strong>in</strong>eralization<br />

of a cortical bone graft <strong>in</strong>duces new bone formation<br />

<strong>and</strong> greatly enhances its osteogenic potential<br />

(Urist, 1965; Urist etal, 1967; Urist <strong>and</strong><br />

Dowell, 1968; Urist etal, 1968 <strong>and</strong> 1975). The<br />

work of Urist has been confirmed by others (Kosk<strong>in</strong>en<br />

et al, 1972; Chalmers et al., 1975; Oikarien<br />

<strong>and</strong> Korhonen, 1979; Mellonig et al.,<br />

1981a <strong>and</strong> b). Dem<strong>in</strong>eralization with hydrochloric<br />

acid exposes the bone <strong>in</strong>ductive prote<strong>in</strong>s located<br />

<strong>in</strong> the bone matrix (Urist <strong>and</strong> Strates, 1970).<br />

These prote<strong>in</strong>s are collectively called bone morphogenetic<br />

prote<strong>in</strong> (BMP) (Urist <strong>and</strong> Strates,<br />

1971). They are composed of a group of acidic<br />

polypeptides that have been cloned <strong>and</strong> sequenced<br />

(Urist et al., 1983a <strong>and</strong> b; Wozney et<br />

al., 1988). In addition, there appears to be homology<br />

among bone <strong>in</strong>ductive prote<strong>in</strong>s between<br />

mammalian species (Sampath <strong>and</strong> Reddi, 1987).<br />

BMP stimulates the formation of new bone by<br />

osteo<strong>in</strong>duction (Urist et al, 1970). That is, the<br />

dem<strong>in</strong>eralized graft <strong>in</strong>duces host cells to differentiate<br />

<strong>in</strong>to osteoblasts (Harakas, 1984), whereas<br />

an undem<strong>in</strong>eralized allograft is felt to function<br />

by osteoconduction as it affords a scaffold for<br />

new bone formation (Goldberg <strong>and</strong> Stevenson,<br />

1987). The sequence of bone <strong>in</strong>duction with a<br />

dem<strong>in</strong>eralized bone graft is believed to follow a<br />

bone <strong>in</strong>duction cascade (Reddi et al, 1987; Bowers<br />

<strong>and</strong> Reddi, 1991). At day 1, there is chemotaxis<br />

of fibroblasts <strong>and</strong> cell attachment to the<br />

implanted dem<strong>in</strong>eralized bone matrix. At day 5,<br />

there is cont<strong>in</strong>ued cell proliferation <strong>and</strong> differentiation<br />

of chrondroblasts. At day 7, chrondrocytes<br />

synthesize <strong>and</strong> secrete matrix. From days<br />

10 to 12, there is vascular <strong>in</strong>vasion, differentiation<br />

of osteoblasts <strong>and</strong> bone formation, <strong>and</strong> mi-<br />

neralization. By day 21, there is bone marrow<br />

differentiation. This cascade for the <strong>in</strong>duction of<br />

endochondral bone has been shown to occur <strong>in</strong><br />

heterotopic sites of animals grafted with dem<strong>in</strong>eralized<br />

bone matrix (Reddi et al., 1987). It has<br />

not been demonstrated to occur follow<strong>in</strong>g implantation<br />

of this material <strong>in</strong> a periodontal osseous<br />

defect. A more likely scenario for the periodontal<br />

defect is the <strong>in</strong>duction of new bone<br />

through the <strong>in</strong>termembranous route (Mellonig et<br />

al, 1981b).<br />

Lib<strong>in</strong> et al (1975) were the first to report<br />

the use of cortical <strong>and</strong> cancellous decalcified<br />

FDB A (DFDBA) <strong>in</strong> humans. The three grafted<br />

sites responded with 4 to 10 mm of new bone<br />

formation. Cortical DFDBA was evaluated <strong>in</strong> 27<br />

<strong>in</strong>traosseous periodontal defects <strong>and</strong> yielded a<br />

mean of 2.4 mm of bone fill (Qu<strong>in</strong>tero et al,<br />

1982). In six cases, Werbitt (1987) showed bone<br />

fill rang<strong>in</strong>g from 75 to 95% of the orig<strong>in</strong>al defect.<br />

The results of a radiographic analysis of cancellous<br />

DFDBA <strong>in</strong> 16 patients demonstrated a<br />

mean bone fill of 1.38 mm, whereas six control<br />

sites showed 0.33 mm (Pearson et al, 1981).<br />

The reason for this meager bone fill after a graft<br />

of cancellous DFDBA may lie <strong>in</strong> the fact that the<br />

bone <strong>in</strong>ductive prote<strong>in</strong>s are located <strong>in</strong> the bone<br />

matrix (Urist <strong>and</strong> Iwata, 1973). Because the mass<br />

of bone matrix is lower <strong>in</strong> cancellous bone than<br />

that <strong>in</strong> cortical bone, the yield of new bone could<br />

be expected to be lower with cancellous than<br />

cortical bone (Urist et al, 1970). Another controlled<br />

study <strong>in</strong> 47 periodontal osseous defects<br />

demonstrated a mean bone fill of 2.6 mm (65%<br />

defect fill) <strong>in</strong> sites treated with cortical DFDBA<br />

<strong>in</strong> comparison with 1.3 mm (38% defect fill) <strong>in</strong><br />

sites treated without DFDBA.<br />

Rummelhart et al (1989) cl<strong>in</strong>ically compared<br />

DFDBA <strong>and</strong> FDB A <strong>in</strong> 11 paired sites. No<br />

statistical difference <strong>in</strong> prob<strong>in</strong>g depth reduction,<br />

cl<strong>in</strong>ical attachment ga<strong>in</strong>, or bone fill was reported,<br />

which might have been reflective of <strong>in</strong>sufficient<br />

<strong>in</strong>ductive bone prote<strong>in</strong> <strong>in</strong> DFDBA or<br />

the types <strong>and</strong> depths of the grafted lesions. Additional<br />

factors might also have <strong>in</strong>fluenced the<br />

decision to use a m<strong>in</strong>eralized or dem<strong>in</strong>eralized<br />

preparation. The process<strong>in</strong>g of both preparations<br />

<strong>in</strong>cluded multiple immersions <strong>in</strong> absolute ethanol.<br />

The DFDBA underwent further process<strong>in</strong>g that<br />

<strong>in</strong>cluded immersion <strong>in</strong> 0.6 N HC1 (Mellonig,<br />

Downloaded from<br />

cro.sagepub.com by guest on January 10, 2013 For personal use only. No other uses without permission.<br />

339


1991). Each of these chemical processes was<br />

thought to <strong>in</strong>activate HIV (Mart<strong>in</strong> et al, 1985;<br />

Resnick et al, 1986; Qu<strong>in</strong>nan et al, 1986).<br />

4. Allografts Compared with Alloplasts<br />

Both FDBA <strong>and</strong> DFDBA have been compared<br />

to porous particulate hydroxyapatite, a synthetic<br />

or alloplastic bone graft material. Studies<br />

by Burnett et al. (1989) <strong>and</strong> Bowen et al (1989)<br />

suggest that there is little difference <strong>in</strong> posttreatment<br />

cl<strong>in</strong>ical parameters between allograft <strong>and</strong><br />

the hydroxyapatite graft sites. Another study suggests<br />

a slight difference <strong>in</strong> favor of the alloplast<br />

(Oreamuno et al, 1990). Histologically, grafts<br />

of DFDBA heal with regeneration of the periodontium<br />

(Bowers et al., 1989c), whereas grafts<br />

of synthetic bone heal by repair (Baldock et al.,<br />

1985; Froum et al, 1982; Stahl et al, 1986;<br />

Kenney et al, 1986; Carranza et al, 1987).<br />

Therefore, the choice of material will depend <strong>in</strong><br />

part on the objectives of the cl<strong>in</strong>ician.<br />

V. WOUND HEALING WITH<br />

PERIODONTAL BONE GRAFTS<br />

The objectives of the cl<strong>in</strong>ician who uses bone<br />

grafts are (1) prob<strong>in</strong>g depth reduction; (2) cl<strong>in</strong>ical<br />

attachment ga<strong>in</strong>; (3) bone fill of the osseous defect;<br />

<strong>and</strong> (4) regeneration of new bone, cementum,<br />

<strong>and</strong> periodontal ligament (Schallhorn, 1977).<br />

Case reports <strong>and</strong> controlled cl<strong>in</strong>ical trials provide<br />

valuable <strong>in</strong>formation with respect to the first three<br />

objectives. They do not reveal the type of wound<br />

heal<strong>in</strong>g adjacent to the postgraft<strong>in</strong>g root surface.<br />

Therefore, histologic analysis of the nature of the<br />

attachment apparatus is needed to determ<strong>in</strong>e true<br />

regeneration of the periodontium.<br />

A. Animal Studies<br />

Histologic evaluations <strong>in</strong> animals are of <strong>in</strong>terest<br />

because they <strong>in</strong>dicate the potential of a graft<br />

material to produce favorable results. In a review<br />

of the studies performed over the past several<br />

decades compar<strong>in</strong>g graft <strong>and</strong> nongraft procedures<br />

<strong>in</strong> artificially created defects <strong>in</strong> animals, 75% of<br />

340<br />

the studies <strong>in</strong>dicated that more favorable results<br />

might be obta<strong>in</strong>ed follow<strong>in</strong>g the placement of a<br />

bone graft (Table 2). None of the nongraft control<br />

sites were found to be superior to grafted sites.<br />

The results of animal experimentation must be<br />

viewed with caution, <strong>and</strong> the tendency to extrapolate<br />

this <strong>in</strong>formation directly to the human<br />

situation should be duly tempered.<br />

B. Human Studies<br />

Only <strong>in</strong> cl<strong>in</strong>ical trials can the true potential<br />

of any graft material to regenerate the periodontium<br />

be analyzed. To date, approximately 159<br />

human periodontal bone grafts have been removed<br />

en bloc <strong>and</strong> processed for histologic evaluation<br />

(Dragoo <strong>and</strong> Sullivan, 1973; Ross <strong>and</strong><br />

Cohen, 1968; Nabers et al, 1972; (Hiatt <strong>and</strong><br />

Schallhorn, 1973; Hawley <strong>and</strong> Miller, 1973;<br />

Froum et al., 1975; Moomaw, 1978; Hiatt et al,<br />

1978; Listgarten <strong>and</strong> Rosenberg, 1979; Moskow<br />

et al, 1979; Langer et al, 1981; Evans, 1981;<br />

Froum et al, 1983; Dragoo <strong>and</strong> Kaldahl, 1983;<br />

Bowers et al, 1982; Bowers, 1989a, b, <strong>and</strong> c).<br />

Most human histologic evaluations have been<br />

criticized because they failed to adequately demonstrate<br />

that the adjacent root surface was biologically<br />

contam<strong>in</strong>ated <strong>and</strong> devoid of its connective<br />

tissue attachment. For example, biopsies were<br />

commonly evaluated from the most apical level<br />

of root plan<strong>in</strong>g (Hawley <strong>and</strong> Miller, 1975; Hiatt<br />

etal, 1978; Moskow et al, 1978), from a notch<br />

placed <strong>in</strong> cementum with a bur at the base of the<br />

defect (Nabers et al, 1972; Moomaw, 1978;<br />

Listgarten <strong>and</strong> Rosenberg, 1979), from a notch<br />

placed <strong>in</strong> cementum at the level of the alveolar<br />

crest (Dragoo <strong>and</strong> Sullivan, 1973), or from a<br />

naturally occurr<strong>in</strong>g notch <strong>in</strong> the root surface (Ross<br />

<strong>and</strong> Cohen, 1968; Evans, 1981). All of these<br />

histologic reference po<strong>in</strong>ts, although highly<br />

suggestive of a root exposed to the oral bacterial<br />

contam<strong>in</strong>ation, did not prove that the root surface<br />

had lost its connective tissue attachment (periodontal<br />

ligament). Therefore, reattachment rather<br />

than regeneration might have been the result. Us<strong>in</strong>g<br />

the above cited examples for a histologic<br />

reference po<strong>in</strong>t, new bone cementum <strong>and</strong> periodontal<br />

ligament have been observed follow<strong>in</strong>g<br />

grafts of cortical bone chips (Nabers et al, 1972),<br />

Downloaded from<br />

cro.sagepub.com by guest on January 10, 2013 For personal use only. No other uses without permission.


TABLE 2<br />

Animal Controlled Histologic Studies with <strong>Bone</strong> Autografts <strong>and</strong><br />

Allografts <strong>in</strong> the Treatment of <strong>Periodontal</strong> Osseous Defects<br />

Graft<br />

material<br />

OC<br />

oc<br />

ICBM<br />

ICBM<br />

ICBM<br />

ECBM<br />

ICBM<br />

ECBM<br />

ICBM<br />

ICBM<br />

ICBM<br />

ICBM<br />

ICBM<br />

Defect type<br />

Animal created<br />

4 M Intraosseous<br />

4 M 2- <strong>and</strong> 3-Wall<br />

10 D Intraosseous<br />

10 D Furcation<br />

6 M Furcation<br />

12 M 3-Wall<br />

19 M Furcation<br />

6 D Furcation<br />

8 M Intraosseous<br />

10 D Furcation<br />

6 D Furcation<br />

Results<br />

A sooner <strong>and</strong> greater<br />

osteogenic activity<br />

with small particle<br />

bone graft than<br />

controls<br />

In early stages, grafted<br />

defects demonstrated<br />

a more advanced<br />

level of regeneration<br />

than controls<br />

Grafted defects may be<br />

elim<strong>in</strong>ated by <strong>in</strong>duction<br />

of bone; control<br />

defects heal by adaptation<br />

of epithelial<br />

attachment<br />

A coronal <strong>in</strong>crease of 2<br />

to 3 mm of bone with<br />

graft<br />

No new bone with<br />

control<br />

ICBM <strong>and</strong> frozen<br />

ECBM yielded a<br />

higher frequency of<br />

regeneration than<br />

fresh ECBM <strong>and</strong><br />

controls<br />

Regeneration is obta<strong>in</strong>ed<br />

with equal success<br />

with <strong>and</strong> without<br />

graft<br />

New bone <strong>in</strong> deepest<br />

portion of defect with<br />

graft<br />

No new bone without<br />

graft<br />

Osseous grafts did not<br />

improve results<br />

Both graft <strong>and</strong> control<br />

healed with an epithelial<br />

l<strong>in</strong><strong>in</strong>g along the<br />

root surface with no<br />

new connective tissue<br />

Flap support by the<br />

bone graft may facilitate<br />

regeneration<br />

Abundant new bone,<br />

new cementum, <strong>and</strong><br />

no ankylosis with<br />

graft; control defects<br />

filled with connective<br />

tissue <strong>and</strong> new<br />

cementum<br />

Downloaded from<br />

cro.sagepub.com by guest on January 10, 2013 For personal use only. No other uses without permission.<br />

Ref.<br />

Rivault et al.<br />

(1971)<br />

Coverly et al.<br />

(1975)<br />

Yuktan<strong>and</strong>ana<br />

(1959)<br />

Patterson et al.<br />

(1967)<br />

Ellegaard et al.<br />

(1973)<br />

Elegaard et al.<br />

(1974)<br />

Ellegaard et al.<br />

(1975)<br />

Nilveus et al.<br />

(1978)<br />

Caton et al.<br />

(1980)<br />

Kl<strong>in</strong>ge et al.<br />

(1985)<br />

Passanezi et<br />

al. (1989)<br />

341


342<br />

TABLE 2 (cont<strong>in</strong>ued)<br />

Animal Controlled Histologic Studies with <strong>Bone</strong> Autografts <strong>and</strong><br />

Allografts <strong>in</strong> the Treatment of <strong>Periodontal</strong> Osseous Defects<br />

Graft<br />

material<br />

CBMA<br />

CBMA<br />

FDBA<br />

FDBA<br />

DFDBA<br />

DBP<br />

DFDBA<br />

DFDD<br />

ICBM<br />

DFDBA<br />

Animal<br />

12 D<br />

4M<br />

4D<br />

4M<br />

27 D<br />

8D<br />

4D<br />

6D<br />

3D<br />

Defect type<br />

created<br />

Intraosseous<br />

2-Wall<br />

2-Wall<br />

Intraosseous<br />

Intraosseous<br />

Intraosseous<br />

Furcation<br />

2-Wall<br />

3-Wall<br />

Furcation<br />

Results<br />

No significant difference<br />

<strong>in</strong> heal<strong>in</strong>g between<br />

graft <strong>and</strong><br />

control<br />

Allograft <strong>in</strong>duced a<br />

more rapid osseous<br />

repair than controls<br />

Conv<strong>in</strong>c<strong>in</strong>g evidence of<br />

acceptability of graft;<br />

no advantage or disadvantage<br />

<strong>in</strong> us<strong>in</strong>g<br />

graft<br />

Significantly more regeneration<br />

with graft<br />

than control<br />

Graft was replaced by<br />

new bone <strong>and</strong> marrow;<br />

less new bone at<br />

control sites<br />

DBP successfully <strong>in</strong>duced<br />

new bone; no<br />

differences were seen<br />

between test <strong>and</strong><br />

control<br />

Graft healed by regeneration;<br />

control healed<br />

by a long junctional<br />

epithelium<br />

Complete regeneration<br />

of lost attachment apparatus<br />

with graft;<br />

long junctional epithelium<br />

to base of defect<br />

with controls<br />

<strong>Grafts</strong> showed more<br />

pronounced regeneration<br />

<strong>and</strong> higher periodontal<br />

attachment<br />

than did controls<br />

OC = Osseous coagulum autograft.<br />

ICBM = Intraoral cancellous bone <strong>and</strong> marrow autograft.<br />

ECBM = Extraoral (iliac) cancellous bone <strong>and</strong> marrow autograft.<br />

CBMA = Cancellous bone <strong>and</strong> marrow allograft.<br />

FDBA = Freeze-dried bone allograft.<br />

DFDBA = Decalcified freeze-dried bone allograft.<br />

DFDDA = Decalcified freeze-dried dent<strong>in</strong> allograft.<br />

DBP = Dem<strong>in</strong>eralized bone powder.<br />

D = Dog.<br />

M = Monkey.<br />

Ref.<br />

Hiatt(1970)<br />

Poulsom et al.<br />

(1976)<br />

Hurt (1969)<br />

Mellonig<br />

(1981)<br />

Narang <strong>and</strong><br />

Wells (1972)<br />

Sonis et al.<br />

(1985)<br />

Blumenthal et<br />

al. (1986)<br />

Waal et al.<br />

(1988)<br />

Wada et al.<br />

(1989)<br />

Downloaded from<br />

cro.sagepub.com by guest on January 10, 2013 For personal use only. No other uses without permission.


osseous coagulum (Evans, 1981), bone blend<br />

(Froum et al, 1975), <strong>in</strong>traoral cancellous bone<br />

<strong>and</strong> marrow (Ross <strong>and</strong> Cohen, 1968; Hiatt <strong>and</strong><br />

Schallhorn, 1973; Hawley <strong>and</strong> Miller, 1975; Hiatt<br />

et al., 1978; Listgarten <strong>and</strong> Rosenberg, 1979;<br />

Langer et al., 1981), iliac cancellous bone <strong>and</strong><br />

marrow autograft (Dragoo <strong>and</strong> Sullivan, 1973;<br />

Hiatt et al., 1978), iliac cancellous bone <strong>and</strong><br />

marrow allograft (Hiatt et al., 1979; Listgarten<br />

<strong>and</strong> Rosenberg, 1981), <strong>and</strong> undem<strong>in</strong>eralized<br />

FDBA (Moomaw, 1978).<br />

Currently, only a notch placed <strong>in</strong> the most<br />

apical level of calculus on the root surface is<br />

considered scientifically valid proof of regeneration<br />

of an attachment apparatus (Cole et al.,<br />

1980; Froum et al, 1983; Dragoo <strong>and</strong> Kaldahl,<br />

1983; Bowers et al., 1989a, b, <strong>and</strong> c). Us<strong>in</strong>g this<br />

criterion, new bone, cementum, <strong>and</strong> periodontal<br />

ligament have been identified follow<strong>in</strong>g grafts of<br />

osseous coagulum-bone blend (Froum et al.,<br />

1983) <strong>and</strong> DFDBA (Bowers etal, 1989a, b, <strong>and</strong><br />

c).<br />

C. <strong>Bone</strong> Induction<br />

It has been stated that there is "little <strong>in</strong>dication<br />

that (periodontal bone) grafts of cortical<br />

or cancellous bone have any <strong>in</strong>ductive effect on<br />

the formation of new bone. Also, there is little<br />

reason to believe that such bone grafts would<br />

stimulate connective tissue attachment to the root<br />

surface" (Egelberg, 1987). This concept was<br />

evaluated <strong>in</strong> a study by Bowers et al. (1989b).<br />

They compared the heal<strong>in</strong>g of <strong>in</strong>traosseous defects<br />

with <strong>and</strong> without the placement of DFDBA<br />

<strong>in</strong> defects about teeth that received coronalectomy<br />

<strong>and</strong> were completely covered by soft tissue.<br />

The most apical level of calculus on the root<br />

served as a histologic reference po<strong>in</strong>t to measure<br />

periodontal regeneration <strong>in</strong> 30 grafted <strong>and</strong> 19<br />

nongrafted defects. Results <strong>in</strong>dicated that <strong>in</strong> the<br />

submerged environment, regeneration was possible<br />

with <strong>and</strong> without the placement of a bone<br />

graft. However, more new attachment apparatus<br />

formed <strong>in</strong> grafted than nongrafted sites. In addition,<br />

new bone, new cementum, <strong>and</strong> periodontal<br />

ligament occurred more frequently <strong>in</strong> grafted<br />

than nongrafted sites. These results strongly sug-<br />

gest that bone grafts do have an <strong>in</strong>ductive effect<br />

on the periodontium.<br />

D. Heal<strong>in</strong>g Sequence<br />

The heal<strong>in</strong>g sequence of an autogenous periodontal<br />

bone graft has been identified as <strong>in</strong>itiation<br />

of new bone formation at 7 d, cementogenesis<br />

at 21 d, <strong>and</strong> a new periodontal ligament<br />

at 3 months (Dragoo, 1972). By 8 months, the<br />

graft should be <strong>in</strong>corporated <strong>in</strong>to host bone with<br />

functionally oriented fibers cours<strong>in</strong>g between bone<br />

<strong>and</strong> cementum. Maturation may take as long as<br />

2 years (Dragoo, 1972; Dragoo <strong>and</strong> Sullivan,<br />

1973).<br />

E. Root Resorption <strong>and</strong> Ankylosis<br />

Because granulation tissue derived from bone<br />

may <strong>in</strong>duce root resorption <strong>and</strong> ankylosis, the use<br />

of bone grafts has been questioned (Karr<strong>in</strong>g et<br />

al., 1980). Root resorption is reported as a sequela<br />

of osseous graft<strong>in</strong>g <strong>in</strong> humans but appears<br />

to be a significant disadvantage only with fresh<br />

iliac cancellous bone <strong>and</strong> marrow (Schallhorn et<br />

al., 1970; Schallhorn, 1972; Dragoo <strong>and</strong> Sullivan,<br />

1973; Hoffman <strong>and</strong> Flanagan, 1974; Hiatt<br />

et al., 1978). Cl<strong>in</strong>ical evidence of root resorption<br />

was noted <strong>in</strong> 7 of 250 sites (3% <strong>in</strong> one reported<br />

series (Dragoo <strong>and</strong> Sullivan, 1973) <strong>and</strong> 16 of 275<br />

sites (5%) <strong>in</strong> another (Hiatt et al., 1978). Freez<strong>in</strong>g<br />

seems to attenuate this problem (Schallhorn,<br />

1972). Recently, Bowers <strong>and</strong> co-workers reported<br />

on a series of 62 cases grafted with DFDBA<br />

<strong>and</strong> removed en bloc at 6 months for histologic<br />

observations (Bowers et al., 1989b <strong>and</strong> c). Extensive<br />

root resorption was not observed. Because<br />

this phenomenon has been observed only<br />

with fresh material, viable marrow cells may play<br />

an etiologic role (Ellegaard, 1976). The most<br />

probable cause of root resorption is poor postsurgical<br />

plaque control with subsequent chronic<br />

g<strong>in</strong>gival <strong>in</strong>flammation (Dragoo <strong>and</strong> Sullivan,<br />

1973). This hypothesis has been strengthened by<br />

histologic f<strong>in</strong>d<strong>in</strong>gs that connective tissue <strong>in</strong> resorptive<br />

defects always conta<strong>in</strong>ed an <strong>in</strong>filtrate of<br />

<strong>in</strong>flammatory cells (Ellegaard, 1976). Root re-<br />

Downloaded from<br />

cro.sagepub.com by guest on January 10, 2013 For personal use only. No other uses without permission.<br />

343


sorption <strong>and</strong> ankylosis follow<strong>in</strong>g bone grafts are<br />

more prevalent <strong>in</strong> animal models (Ellegaard et<br />

al., 1973 <strong>and</strong> 1976; Karr<strong>in</strong>g et al, 1980 <strong>and</strong><br />

1984; Nyman et al, 1980) than they are <strong>in</strong> humans<br />

<strong>and</strong> may be a function of the heal<strong>in</strong>g potential<br />

animal model (Sonis et al, 1985; Aukhil<br />

etal, 1990).<br />

Apical migration of junction epithelium between<br />

the alveolar bone <strong>and</strong> the root surface has<br />

been offered as an explanation of why resorption<br />

only <strong>in</strong>frequently takes place after regeneration<br />

attempts with bone grafts (Listgarten <strong>and</strong> Rosenberg,<br />

1979; Karr<strong>in</strong>g et al, 1980; Caton <strong>and</strong> Z<strong>and</strong>er,<br />

1976; Moskow etal, 1979). The junctional<br />

epithelium was specifically located <strong>in</strong> 74 human<br />

biopsies where bone graft<strong>in</strong>g was performed<br />

(Bowers et al, 1982). The junctional epithelium<br />

was located apical to the alveolar crest <strong>in</strong> 14<br />

(19%) sites. In an additional 32 graft sites, Bowers<br />

et al (1989c) showed that grafted sites consistently<br />

formed a new attachment apparatus. The<br />

junctional epithelium proliferated apically, but<br />

the epithelium was rarely observed apical to the<br />

level of active bone formation. Junctional epithelium<br />

was never observed beyond the level of<br />

new cementum formation (Bowers et al, 1989c).<br />

Authors report<strong>in</strong>g epithelial migration between<br />

the grafted site <strong>and</strong> the root surface also report<br />

chronic <strong>in</strong>flammatory cells adjacent to the epithelium<br />

(Hiatt et al, 1978) or extend<strong>in</strong>g <strong>in</strong>to the<br />

marrow spaces (Moskow et al, 1979). Poor<br />

plaque control is therefore a likely explanation<br />

as proliferation of epithelium is more extensive<br />

<strong>and</strong> rapid <strong>in</strong> surgical sites with no postoperative<br />

plaque control than <strong>in</strong> areas where bacterial deposits<br />

have been removed (Yumet <strong>and</strong> Poison,<br />

1985).<br />

VI. TISSUE BANKING AND FDBA<br />

The possibility of disease transfer with bone<br />

allografts is unlikely if the material is procured<br />

<strong>and</strong> processed by us<strong>in</strong>g established tissue bank<strong>in</strong>g<br />

protocols (Friedlaender, 1987; American Association<br />

of Tissue Banks, 1984). If exclusionary<br />

techniques such as medical <strong>and</strong> social screen<strong>in</strong>g,<br />

antibody test<strong>in</strong>g, direct antigen tests, other serologic<br />

tests, bacterial cultur<strong>in</strong>g, autopsy, <strong>and</strong> follow-up<br />

studies of grafts from the same donor are<br />

344<br />

used, the possibility of disease transfer are approximately<br />

one <strong>in</strong> 2 million (Buck et al, 1989).<br />

Freez<strong>in</strong>g the bone allograft reduces the risk to<br />

one <strong>in</strong> 8 million (Buck et al, 1990). An estimated<br />

40,000 periodontal grafts of m<strong>in</strong>eralized <strong>and</strong> dem<strong>in</strong>eralized<br />

bone are performed annually (Mellonig,<br />

1991). There are no reported cases of disease<br />

transfer with processed (treatment with<br />

virucidal agents <strong>and</strong> dem<strong>in</strong>eralization <strong>in</strong> hydrochloric<br />

acid) FDBA.<br />

Concerns with disease transfer have led some<br />

tissue banks to sterilize the bone allograft with<br />

irradiation or ethylene oxide. Irradiation of a bone<br />

allograft is reported both to markedly attenuate<br />

(Bur<strong>in</strong>g, 1967; Towle et al, 1987; Munt<strong>in</strong>g et<br />

al., 1988) <strong>and</strong> not to affect (Wientroub et al,<br />

1988) bone <strong>in</strong>duction. Furthermore, the currently<br />

used dose of 1.5 Mrad will not reliably <strong>in</strong>activate<br />

HIV <strong>in</strong> bone allografts with an acceptable safety<br />

marg<strong>in</strong> (Conway et al, 1990). There is little<br />

question that ethylene oxide sterilization renders<br />

a bone allograft non<strong>in</strong>fectious (Eastlund et al,<br />

1989). However, like irradiation, ethylene oxide<br />

may <strong>in</strong>terfere with bone <strong>in</strong>duction (Zislis et al,<br />

1989). Residual levels of ethylene oxide <strong>in</strong> the<br />

graft have been shown to be toxic to fibroblasts<br />

<strong>and</strong> cause morphologic changes that may or may<br />

not be reversible (Kudryk, 1990). Others have<br />

found ethylene oxide sterilization to be acceptable<br />

<strong>and</strong> safe (Prolo et al, 1980).<br />

The process<strong>in</strong>g of a bone allograft for dental<br />

use will usually <strong>in</strong>clude the follow<strong>in</strong>g steps (Mellonig,<br />

1991):<br />

1. Cortical bone is harvested <strong>in</strong> a sterile manner<br />

with<strong>in</strong> 12 h of death of the donor. Cortical<br />

bone is less antigenic than cancellous<br />

bone (Friedlaender et al, 1976) <strong>and</strong> has a<br />

higher concentration of bone-<strong>in</strong>ductive prote<strong>in</strong>s<br />

(Urist <strong>and</strong> Do well, 1968; Urist et al,<br />

1970).<br />

2. The bone is rough cut to 0.5 to 5 cm <strong>and</strong><br />

immersed <strong>in</strong> 100% ethanol for 1 h. Viral<br />

<strong>in</strong>fectivity is undetectable with<strong>in</strong> 1 m<strong>in</strong> of<br />

treatment (Resnick et al, 1986), <strong>and</strong> the<br />

ethanol completely penetrates through the<br />

cortical bone (Prewitt et al, 1991).<br />

3. The bone is frozen. Freez<strong>in</strong>g decreases the<br />

risk of disease transfer (Buck et al, 1990).<br />

4. The cortical bone is ground to a f<strong>in</strong>al par-<br />

Downloaded from<br />

cro.sagepub.com by guest on January 10, 2013 For personal use only. No other uses without permission.


tide size of approximately 250 to 800<br />

Particle sizes with<strong>in</strong> this range have been<br />

shown to promote osteogenesis, whereas a<br />

particle size below 125 |xm <strong>in</strong>duces a macrophage<br />

response (Mellonig <strong>and</strong> Levey,<br />

1984).<br />

5. The graft is aga<strong>in</strong> immersed <strong>in</strong> ethanol.<br />

6. The bone may or may not be dim<strong>in</strong>eralized.<br />

7. The allograft is freeze dried. Freeze dry<strong>in</strong>g<br />

permits long-term storage <strong>and</strong> reduces antigenicity<br />

(Turner <strong>and</strong> Mellonig, 1981;<br />

Quattlebaum et al, 1988).<br />

VII. GUIDED TISSUE REGENERATION<br />

AND BONE GRAFTS<br />

Case reports <strong>and</strong> controlled cl<strong>in</strong>ical trials have<br />

<strong>in</strong>dicated that the placement of a physical barrier<br />

between the g<strong>in</strong>gival flap <strong>and</strong> the root surface<br />

enhances the potential for wound heal<strong>in</strong>g (Nyman<br />

et al, 1982; Becker et al, 1987 <strong>and</strong> 1988; Pontoriero<br />

et al, 1988 <strong>and</strong> 1989; Lekovic et al,<br />

1989; Caffesse et al, 1990; Gager <strong>and</strong> Schultz,<br />

1991). This procedure retards apical migration<br />

of epithelium, excludes g<strong>in</strong>gival connective tissue<br />

cells from the wound, <strong>and</strong> favors heal<strong>in</strong>g<br />

from the periodontal ligament cells (Gottlow et<br />

al., 1986). The histologic result is new attachment<br />

(Gottlow et al, 1986; Becker et al, 1987;<br />

Nyman et al, 1987).<br />

A recent study <strong>in</strong>dicates that the periodontal<br />

ligament cells migrate only a short distance <strong>and</strong>,<br />

at the same rate, with <strong>and</strong> without the placement<br />

of a physical barrier (Aukhil <strong>and</strong> Iglhaut, 1988).<br />

Therefore, the critical role of a physical barrier<br />

may be that of space creation to allow migrat<strong>in</strong>g<br />

cells sufficient time to undergo amplify<strong>in</strong>g cell<br />

division <strong>and</strong> populate the root surface (Aukhil et<br />

al., 1990). In addition, cells from the bone may<br />

play a role <strong>in</strong> guided tissue regeneration. Cells<br />

from the endosteal spaces of alveolar bone can<br />

synthesize cementumlike tissue <strong>and</strong> may migrate<br />

from bone <strong>in</strong>to the periodontal ligament (Melcher<br />

etal, 1986).<br />

A number of case reports suggest that the<br />

comb<strong>in</strong>ation of an osseous graft <strong>and</strong> the physical<br />

barrier enhances bone fill <strong>and</strong> promotes more<br />

favorable results (Schallhorn <strong>and</strong> McCla<strong>in</strong>, 1988).<br />

Anderegg et al (1991) compared 15 pairs of<br />

furcation defects <strong>in</strong> 15 patients treated by DFDBA<br />

plus an exp<strong>and</strong>ed polytetrafluoroethylene (Gore-<br />

Tex <strong>Periodontal</strong> Material, W. L. Gore & Associates,<br />

Flagstaff, AZ) physical barrier or by a<br />

physical barrier alone. They found both horizontal<br />

<strong>and</strong> vertical bone fill to be more favorable<br />

with the use of the graft plus barrier. However,<br />

Garrett et al. (1988), us<strong>in</strong>g a graft of DFDBA<br />

<strong>and</strong> dura mater sheets between the replaced surgical<br />

flaps <strong>and</strong> the tooth surfaces, found limited<br />

improvement of the treated defects over pretreatment<br />

levels. Stahl <strong>and</strong> Froum (1991) have most<br />

recently shown cementogenesis on teeth treated<br />

by osseous allograft <strong>and</strong> an exp<strong>and</strong>ed polytetrafluoroethylene<br />

membrane. Osseous remodel<strong>in</strong>g<br />

<strong>and</strong> crestal osteogenesis were seen <strong>in</strong> association<br />

with cementogenesis. New attachment was histologically<br />

present with<strong>in</strong> two of four calculus<br />

notches <strong>in</strong> this sample.<br />

VIII. FUTURE DIRECTIONS<br />

Although bone grafts have been shown to be<br />

efficacious for the treatment of periodontal osseous<br />

lesions, the reconstruction appears to be<br />

limited to a mean bone fill of approximately 3.0<br />

mm irrespective of the type of bone graft material<br />

(Table 1). Because the ultimate goal of periodontal<br />

therapy is to reverse the disease process<br />

<strong>and</strong> completely regenerate the periodontium, additional<br />

stimuli to enhance the regenerative process<br />

clearly are needed. Polypeptide growth factors,<br />

a potent class of natural biologic response<br />

modifiers, may be the answer. Factors such as<br />

osteogen<strong>in</strong> (Bowers <strong>and</strong> Reddi, 1991) or the comb<strong>in</strong>ation<br />

of platelet-derived growth factor (PDGF)<br />

<strong>and</strong> <strong>in</strong>sul<strong>in</strong>like growth factor (IGF) (Lynch et al,<br />

1989) may have potential. Other growth factors<br />

such as transform<strong>in</strong>g growth factor- (3 <strong>and</strong> basic<br />

fibroblast growth factor may also have a place<br />

(Graves <strong>and</strong> Cochran, 1990). However, the use<br />

of growth factors (GFs) to augment periodontal<br />

regeneration also poses many questions, such as<br />

1. What is the proper dose of GFs?<br />

2. What is the best biologic carrier for the GF?<br />

3. When should the GF be released <strong>in</strong>to the<br />

heal<strong>in</strong>g cascade?<br />

Downloaded from<br />

cro.sagepub.com by guest on January 10, 2013 For personal use only. No other uses without permission.<br />

345


4. What are the possible local <strong>and</strong> systemic<br />

side effects of GFs?<br />

5. Can the effects of the GFs be limited to the<br />

local environment?<br />

6. Can results obta<strong>in</strong>ed with GFs <strong>in</strong> animal<br />

model systems be extrapolated to humans?<br />

7. What is the mechanism of action of GFs <strong>in</strong><br />

the periodontal environment?<br />

8. What is the most effective GF <strong>in</strong> the periodontal<br />

environment?<br />

IX. CONCLUSIONS<br />

1. Numerous case reports <strong>and</strong> controlled cl<strong>in</strong>ical<br />

studies <strong>in</strong>dicate that autogenous bone<br />

grafts can be used successfully <strong>in</strong> periodontal<br />

therapy.<br />

2. Multiple histologic reports suggest that regeneration<br />

of a new attachment apparatus<br />

is possible with different types of autogenous<br />

bone grafts.<br />

3. Root resorption <strong>and</strong> ankylosis may be observed<br />

only follow<strong>in</strong>g grafts of fresh iliac<br />

cancellous bone <strong>and</strong> marrow.<br />

4. Iliac cancellous bone <strong>and</strong> marrow are a graft<br />

of high osteogenic potential.<br />

5. Both FDBA <strong>and</strong> DFDBA have been shown<br />

to be cl<strong>in</strong>ically effective <strong>in</strong> the reconstruction<br />

of periodontal bone defects.<br />

6. Sites implanted with DFDBA demonstrate<br />

more prob<strong>in</strong>g depth reduction, cl<strong>in</strong>ical attachment<br />

ga<strong>in</strong>, <strong>and</strong> bone fill than similar<br />

defects that are not grafted.<br />

7. Regeneration of new bone, cementum, <strong>and</strong><br />

periodontal ligament is a frequent f<strong>in</strong>d<strong>in</strong>g<br />

with grafts of DFDBA.<br />

8. <strong>Bone</strong> formation may be enhanced if guided<br />

tissue regeneration attempts are augmented<br />

with bone grafts.<br />

9. <strong>Bone</strong> allografts <strong>and</strong> alloplasts offer similar<br />

advantages with respect to bone fill. Regeneration<br />

is generally the result after grafts<br />

of DFDBA, whereas repair is the result after<br />

grafts of synthetic bone.<br />

10. Dental bone allografts are safe for human<br />

use if proper exclusionary techniques <strong>and</strong><br />

process<strong>in</strong>g are employed.<br />

346<br />

REFERENCES<br />

Altiere, E., C. Reeve, <strong>and</strong> P. Sheridan: Lyophilized <strong>Bone</strong><br />

Allografts <strong>in</strong> <strong>Periodontal</strong> Osseous Defects. J. PeriodontoL<br />

50:510-519(1979).<br />

American Association of Tissue Banks: St<strong>and</strong>ards for Tissue<br />

Bank<strong>in</strong>g. Arl<strong>in</strong>gton, Virg<strong>in</strong>ia, American Association of<br />

Tissue Banks (1984).<br />

Amler, M. H.: The Effectiveness of Regenerat<strong>in</strong>g Versus<br />

Mature Marrow <strong>in</strong> Physiologic <strong>Autogenous</strong> Transplants.<br />

J. PeriodontoL 55:268-272 (1984).<br />

Anderegg, C. R., S. J. Mart<strong>in</strong>, J. L. Gray, J. T. Mellonig,<br />

<strong>and</strong> M. E. Gher: Cl<strong>in</strong>ical Evaluation of The Use of<br />

Decalcified Freeze-Dried <strong>Bone</strong> Allograft with Guided<br />

Tissue Regeneration <strong>in</strong> the Treatment of Molar Furcation<br />

Invasions. J. PeriodontoL 62:264-268 (1991).<br />

Aukhil, I. <strong>and</strong> J. Iglhaut: <strong>Periodontal</strong> Ligament Cell K<strong>in</strong>etics<br />

Follow<strong>in</strong>g Experimental Regenerative Procedures. J.<br />

Cl<strong>in</strong>. PeriodontoL 15:374-382 (1988).<br />

Aukhil, I., K. Nishimura, <strong>and</strong> W. Fernyhough: Experimental<br />

Regeneration of the Periodontium. Oral Biol.<br />

OralMed. 1:101-115 (1990).<br />

Baldock, W., L. Hutchens, W. McFall, <strong>and</strong> D. Simpson:<br />

An Evaluation of Tricalcium Phosphate Implants <strong>in</strong> Human<br />

<strong>Periodontal</strong> Osseous Defects <strong>in</strong> Two Patients. J.<br />

PeriodontoL 56:1-7 (1985).<br />

Barnett, J., J. Mellonig, H. Towle, <strong>and</strong> J. Gran: Comparison<br />

of Freeze-Dried <strong>Bone</strong> Allograft <strong>and</strong> Porous Hydroxyapatite<br />

<strong>in</strong> Human <strong>Periodontal</strong> Defects. J. PeriodontoL<br />

60:231-237(1989).<br />

Becker, W., B. Becker, C. Berg, J. Prichard, R. Caffessee,<br />

<strong>and</strong> E. Rosenberg: New Attachment After Treatment<br />

with Root Isolation Procedures: Report for Treated Class<br />

III <strong>and</strong> Class II Furcations <strong>and</strong> Vertical Osseous Defects.<br />

Int. J. Periodontics Restorative Dent. 8(3):9-24 (1988).<br />

Becker, W., B. Becker, J. Prichard, R. Caffessee, E. Rosenberg,<br />

<strong>and</strong> J. Gian-Grasso: Root Isolation for New<br />

Attachment Procedures — A Surgical <strong>and</strong> Sutur<strong>in</strong>g<br />

Method: Three Case Reports. J. PeriodontoL 58:819-<br />

826 (1987).<br />

Beube, F. E.: Observations on the formation cementum,<br />

periodontal membrane <strong>and</strong> bone, 20 months postopertively,<br />

with the use of boiled cow bone powder. J. Dent.<br />

Res. 21:298-299 (1942).<br />

Beube, F. E. <strong>and</strong> H. F. Silvers: Influence of Devitalized<br />

Heterogenous <strong>Bone</strong>-Powder on Regeneration of Alveolar<br />

<strong>and</strong> Maxillary <strong>Bone</strong> of Dogs. J. Dent. Res. 14:15-19<br />

(1934).<br />

Beube, F. E. <strong>and</strong> H. F. Silvers: Further Studies on <strong>Bone</strong><br />

Regeneration with the Use of Boiled Heterogenous <strong>Bone</strong>.<br />

J. PeriodontoL 7:17-21 (1936).<br />

Blumenthal, N., T. Sabe, <strong>and</strong> E. Barr<strong>in</strong>gton: Heal<strong>in</strong>g Responses<br />

to Graft<strong>in</strong>g of Comb<strong>in</strong>ed Collagen-Decalcified<br />

<strong>Bone</strong> <strong>in</strong> <strong>Periodontal</strong> Defects <strong>in</strong> Dogs. J. PeriodontoL<br />

57:84-90 (1986).<br />

Blumenthal, N. <strong>and</strong> J. Ste<strong>in</strong>berg: The Use of Collagen<br />

Membrane Barriers <strong>in</strong> Conjunction with Comb<strong>in</strong>ed De-<br />

Downloaded from<br />

cro.sagepub.com by guest on January 10, 2013 For personal use only. No other uses without permission.


m<strong>in</strong>eralized <strong>Bone</strong>-Collagen Gel Implants <strong>in</strong> Human Intrabony<br />

Defects. J. Periodontol. 61:319-327 (1990).<br />

Bowen, J., J. Mellonig, J. Gray, <strong>and</strong>H. Towle: Comparison<br />

of Decalcified Freeze-Dried <strong>Bone</strong> Allograft <strong>and</strong> Porous<br />

Particulate Hydroxyapatite <strong>in</strong> Human <strong>Periodontal</strong> Osseous<br />

Defects. J. Periodontol. 60:647-654 (1989).<br />

Bowers, G., B. Chadroff, R. Carnevale, J. Mellonig, R.<br />

Corio, J. Emerson, M. Stevens, <strong>and</strong> E. Romberg: Histologic<br />

Evaluation of New Human Attachment Apparatus<br />

Formation <strong>in</strong> Humans, Part I. J. Periodontol. 60:664-<br />

674 (1989a).<br />

Bowers, G., B. Chadroff, R. Carnevale, J. Mellonig, R.<br />

Corio, J. Emerson, J. Stevens, <strong>and</strong> E. Romberg: Histologic<br />

Evaluation of New Human Attachment Apparatus<br />

<strong>in</strong> Humans, Part II. J. Periodontol. 60:675-682 (1989b).<br />

Bowers, G., B. Chadroff, R. Carnevale, J. Mellonig, R.<br />

Corio, J. Emerson, M. Stevens, <strong>and</strong> E. Romberg: Histologic<br />

Evaluation of New Human Attachment Apparatus<br />

<strong>in</strong> Humans, Part III. J. Periodontol. 60:683-693 (1989c).<br />

Bowers, G. <strong>and</strong> H. Reddi: Regenerat<strong>in</strong>g the Periodontium<br />

<strong>in</strong> Advanced <strong>Periodontal</strong> Disease. J. Am. Dent. Assoc.<br />

122:45-48 (1991).<br />

Bowers, G. G., R. G. Schallhorn, <strong>and</strong> J. T. Mellonig:<br />

Histologic Evaluation of New Attachment <strong>in</strong> Human Intrabony<br />

Defects: A Literature Review. J. Periodontol.<br />

53:509-514(1982).<br />

Buck, B., T. Mal<strong>in</strong><strong>in</strong>, <strong>and</strong> M. Brown: <strong>Bone</strong> Transplantation<br />

<strong>and</strong> Human Immunodeficiency Virus: An Estimate of<br />

Risk Acquired Immunodeficiency Syndrome (AIDS).<br />

Cl<strong>in</strong>. Orthop. 240:129-134 (1989).<br />

Buck, B., B. Resnick, S. Shah, <strong>and</strong> T. Mal<strong>in</strong><strong>in</strong>: Human<br />

Immunodeficiency Virus Cultured from <strong>Bone</strong>. Implications<br />

for Transplantation. Cl<strong>in</strong>. Orthop. 251:249-253<br />

(1990).<br />

Bur<strong>in</strong>g, K. <strong>and</strong> M. Urist: Effects of Ioniz<strong>in</strong>g Radiation on<br />

the <strong>Bone</strong> Induction Pr<strong>in</strong>ciple <strong>in</strong> Matrix of <strong>Bone</strong> Implants.<br />

Cl<strong>in</strong>. Orthop. 55:225-234 (1967).<br />

Burwell, R.: The Function of <strong>Bone</strong> Marrow <strong>in</strong> the Incorporation<br />

of a <strong>Bone</strong> Graft. Cl<strong>in</strong>. Orthop. 200:125-141<br />

(1985).<br />

Caffesse, R. G., B. Smith, B. Duff, E. Morrison, D. Merrill,<br />

<strong>and</strong> W. Becker: Class II Furcations Treated by Guided<br />

Tissue Regeneration <strong>in</strong> Humans: Case Reports. J. Periodontol.<br />

61:510-514 (1990).<br />

Carranza, F., E. Kenney, V. Lekovic, E. Talamante, J.<br />

Valencia, <strong>and</strong> B. Dimitrijecic: Histologic Study of Heal<strong>in</strong>g<br />

of Human <strong>Periodontal</strong> Defects After Placement of<br />

Porous Hydroxyapatite Implants. J. Periodontol. 58:682-<br />

688 (1987).<br />

Carraro, J. J., N. Sznajder, <strong>and</strong> C. A. Alonso: Intraoral<br />

Cancellous <strong>Bone</strong> Autografts <strong>in</strong> the Treatment of Intrabony<br />

Pockets. J. Cl<strong>in</strong>. Periodontol. 3:104-113 (1976).<br />

Caton, J., S. Nyman, <strong>and</strong> H. Z<strong>and</strong>er: Histometric Evaluation<br />

of <strong>Periodontal</strong> Surgery. II. Connective Tissue Attachment<br />

Levels After Four Regenerative Procedures. J.<br />

Cl<strong>in</strong>. Periodontol. 7:224-231 (1980).<br />

Caton, J. <strong>and</strong> H. Z<strong>and</strong>er: Osseous Repair of an Intrabony<br />

Pocket Without New Attachment of Connective Tissue.<br />

J. Cl<strong>in</strong>. Periodontol. 3:54-58 (1976).<br />

Chalmers, J., D. Gray, <strong>and</strong> J. Rush: Observations on the<br />

Induction of <strong>Bone</strong> <strong>in</strong> Soft Tissue. J. <strong>Bone</strong> Jt. Surg.<br />

57B:36-41 (1975).<br />

Cole, R., M. Crigger, G. Bogle, J. Elgelberg, <strong>and</strong> K. Selvig:<br />

A Connective Tissue Regeneration to <strong>Periodontal</strong>ly<br />

Diseased Teeth. J. Periodont. Res. 15:1-9 (1980).<br />

Conway, B., W. Tomford, M. Hirsch, R. Schoolwy, <strong>and</strong><br />

H. Mank<strong>in</strong>: Effects of Gamma Irradiation on HIV-1 <strong>in</strong><br />

a <strong>Bone</strong> Allograft Model. 36th Annual Meet<strong>in</strong>g, Orthopaedic<br />

Research Society, February 5-8, New Orleans,<br />

Lousiana (1990).<br />

Cush<strong>in</strong>g, M.: <strong>Autogenous</strong> Red Marrow <strong>Grafts</strong>: Potential for<br />

Induction of Osteogenesis. J. Periodontol. 40:492-497<br />

(1969).<br />

Diaz-Arnold, A. <strong>and</strong> G. A. Zach: Dem<strong>in</strong>eralized Freeze-<br />

Dried <strong>Bone</strong> Allografts. Gen. Dent. 33:446-447 (1985).<br />

Diem, C. R., G. M. Bowers, <strong>and</strong> W. C. Moffitt: <strong>Bone</strong><br />

Blend<strong>in</strong>g: A Technique for <strong>Bone</strong> Implantation. J. Periodontol.<br />

43:295-297 (1972).<br />

Dragoo, M. <strong>and</strong> H. Sullivan: A Cl<strong>in</strong>ical <strong>and</strong> Histologic<br />

Evaluation of <strong>Autogenous</strong> Iliac <strong>Bone</strong> <strong>Grafts</strong> <strong>in</strong> Humans.<br />

Part I. <strong>Periodontal</strong> <strong>Bone</strong> Graft<strong>in</strong>g Materials. J. Periodontol.<br />

55:406; Wound Heal<strong>in</strong>g 2 to 8 Months. J. Periodontol.<br />

44:599-613 (1973a).<br />

Dragoo, M. <strong>and</strong> H. Sullivan: A Cl<strong>in</strong>ical <strong>and</strong> Histologic<br />

Evaluation of <strong>Autogenous</strong> Iliac <strong>Bone</strong> <strong>Grafts</strong> <strong>in</strong> Humans.<br />

II. External Root Resorption. J. Periodontol. 44:614-<br />

625 (1973b).<br />

Dragoo, M. R.: Cl<strong>in</strong>ical <strong>and</strong> Histologic Evaluation of <strong>Autogenous</strong><br />

<strong>Bone</strong> <strong>Grafts</strong>. J. Periodontol. 44:123 (1972).<br />

Dragoo, M. R. <strong>and</strong> R. K. Irw<strong>in</strong>: A Method of Procur<strong>in</strong>g<br />

Cancellous Iliac <strong>Bone</strong> Utiliz<strong>in</strong>g a Treph<strong>in</strong>e Needle. J.<br />

Periodontol. 43:82-87 (1972).<br />

Dragoo, M. R. <strong>and</strong> W. B. Kaldahl: Cl<strong>in</strong>ical <strong>and</strong> Histological<br />

Evaluation of Alloplasts <strong>and</strong> Allografts <strong>in</strong> Regenerative<br />

<strong>Periodontal</strong> Surgery <strong>in</strong> Humans. Int. J. PeriodonticsRestorative<br />

Dent. 3(2):9-29 (1983).<br />

Eastlund, T., B. Jackson, G. Havrilla, <strong>and</strong> K. Sonnerud:<br />

Prelim<strong>in</strong>ary Study Results Us<strong>in</strong>g Ethylene Oxide (ETO)<br />

or Heat to Inactivate HIV <strong>in</strong> Cortical <strong>Bone</strong>. 13th Annual<br />

Meet<strong>in</strong>g, American Association of Tissue Banks. Oct<br />

1-4, 1989. Baltimore, Maryl<strong>and</strong> (1989).<br />

Egelberg, J.: Regeneration <strong>and</strong> Repair of <strong>Periodontal</strong> Tissues.<br />

J. Periodont. Res. 22:233-242 (1987).<br />

Ellegaard, B.: <strong>Bone</strong> <strong>Grafts</strong> <strong>in</strong> <strong>Periodontal</strong> Attachment Procedures.<br />

J. Cl<strong>in</strong>. Periodontol. 3:1-54 (1976).<br />

Ellegaard, B., T. Karr<strong>in</strong>g, R. Davies, <strong>and</strong> H. Loe: New<br />

Attachment After Treatment of Intrabony Defects <strong>in</strong><br />

Monkeys. J. Periodontol. 45:368-376 (1974).<br />

Ellegaard, B., T. Karr<strong>in</strong>g, M. Listgarten, <strong>and</strong> H. Loe: New<br />

Attachment After Treatment of Interradicular Lesions.<br />

J. Periodontol. 44:209-217 (1973).<br />

Ellegaard, B., T. Karr<strong>in</strong>g, <strong>and</strong> H. Loe: The Fate of Vital<br />

<strong>and</strong> Devitalized <strong>Bone</strong> <strong>Grafts</strong> <strong>in</strong> the Heal<strong>in</strong>g of Interradicular<br />

Lesions. J. Periodont. Res. 10:88-97 (1975).<br />

Ellegaard, B. <strong>and</strong> H. Low: New Attachment of <strong>Periodontal</strong><br />

Tissues after Treatment of Intrabony Lesions. J. Periodontol.<br />

42:648-652 (1971).<br />

Downloaded from<br />

cro.sagepub.com by guest on January 10, 2013 For personal use only. No other uses without permission.<br />

347


Ellegaard, B., I. M. Nielsen, <strong>and</strong> T. Karr<strong>in</strong>g: Composite<br />

Jaw <strong>and</strong> Iliac Cancellous <strong>Bone</strong> <strong>Grafts</strong> <strong>in</strong> Intrabony Defects<br />

<strong>in</strong> Monkeys. J. Periodont. Res. 11:299-310 (1976).<br />

Evans, G. H., R. A. Yukna, W. W. Sepe, T. W. Mabry,<br />

<strong>and</strong> E. T. Mayer: Effect of Various Graft Materials with<br />

Tetracycl<strong>in</strong>e <strong>in</strong> Localized Juvenile Periodontitis. J. Periodontoi<br />

60:491-497 (1989).<br />

Evans, R.: Histologic Evaluation of an <strong>Autogenous</strong> <strong>Bone</strong><br />

Graft. J. Periodont. Restorative Dent. 2(2):66-79 (1981).<br />

Forsberg, H.: Transplantation of Os Purum <strong>and</strong> <strong>Bone</strong> Chips<br />

<strong>in</strong> the Surgical Treatment of <strong>Periodontal</strong> Disease (Prelim<strong>in</strong>ary<br />

Report). Acta Odontol. Sc<strong>and</strong>. 13:235-238<br />

(1956).<br />

Friedlaender, G., M. Strong, <strong>and</strong> K. Sell: Studies on the<br />

Antigenicity of <strong>Bone</strong>. I. Freeze-Dried <strong>and</strong> Deep Frozen<br />

Allografts <strong>in</strong> Rabbits. J. <strong>Bone</strong> Jt. Surg. 58A:854-858<br />

(1976).<br />

Friedlaender, G.: <strong>Bone</strong> Bank<strong>in</strong>g. Cl<strong>in</strong>. Orthop. 225:17-21<br />

(1987).<br />

Froum, S., L. Kushner, I. Scopp, <strong>and</strong> S. Stahl: Human<br />

Cl<strong>in</strong>ical <strong>and</strong> Histologic Responses to Durapatite Implants<br />

<strong>in</strong> Intraosseous Lesions. Case Reports. J. Periodontol.<br />

53:719-725 (1982).<br />

Froum, S., L. Kushner, <strong>and</strong> S. Stahl: Heal<strong>in</strong>g Responses<br />

of Human Intraosseous Lesions Follow<strong>in</strong>g the Use of<br />

Debridement, graft<strong>in</strong>g <strong>and</strong> citric acid root treatment. I.<br />

Cl<strong>in</strong>ical <strong>and</strong> Histologic Observations Six Months Postsurgery.<br />

J. Periodontol. 54:67-76 (1983).<br />

Froum, S. J., M. Oritiz, R. T. Witk<strong>in</strong>s, R. Thaler, I. W.<br />

Scopp, <strong>and</strong> S. S. Stahl: Osseous Autografts. III. Comparison<br />

of Osseous Coagulum-<strong>Bone</strong> Blend Implants with<br />

Open Curettage. J. Periodontol. 47:287-294 (1976).<br />

Froum, S. J., R. Thaler, I. W. Scopp, <strong>and</strong> S. S. Stahl:<br />

Osseous Autografts. I. Cl<strong>in</strong>ical Responses to <strong>Bone</strong> Blend<br />

or Hip Marrow <strong>Grafts</strong>. J. Periodontol. 46:516-521<br />

(1975).<br />

Gager, A. H. <strong>and</strong> A. J. Schultz: Treatment of <strong>Periodontal</strong><br />

Defects with an Adsorbable Membrane (Polyglact<strong>in</strong> 910)<br />

with <strong>and</strong> without Osseous Graft<strong>in</strong>g: Case Reports. J.<br />

Periodontol. 62:276-283 (1991).<br />

Gantes, B., M. Mart<strong>in</strong>, S. Garrett, <strong>and</strong> J. Egelberg: Treatment<br />

of <strong>Periodontal</strong> Furcation Defects (II) <strong>Bone</strong> Regeneration<br />

<strong>in</strong> M<strong>and</strong>ibular Class II Defects. J. Cl<strong>in</strong>. Periodontol.<br />

15:232-239 (1988).<br />

Gara, G. G. <strong>and</strong> D. F. Adams: Implant <strong>Therapy</strong> <strong>in</strong> Human<br />

Intrabony Pockets: A Review of the Literature. J. West<br />

Soc. Periodont. Abstr. 29:32-47 (1981).<br />

Garrett, S., B. Loos, D. Chamberla<strong>in</strong>, <strong>and</strong> J. Egelberg:<br />

Treatment of Intraosseous <strong>Periodontal</strong> Defects with a<br />

Comb<strong>in</strong>ed Adjunctive <strong>Therapy</strong> of Citric Acid Condition<strong>in</strong>g,<br />

<strong>Bone</strong> Graft<strong>in</strong>g, <strong>and</strong> Placement of Collagenous<br />

Membranes. J. Cl<strong>in</strong>. Periodontol. 15:383-389 (1988).<br />

Goldberg, V. M. <strong>and</strong> S. Stevenson: Natural History of Autografts<br />

<strong>and</strong> Allografts. Cl<strong>in</strong>. Orthop. 225:7-16 (1987).<br />

Gonzales, J. G.: Osseous Graft<strong>in</strong>g Procedures <strong>in</strong> <strong>Periodontal</strong><br />

<strong>Therapy</strong>. Rev. Odontol. P R 23:18-22 (1986).<br />

Gottlow, J., S. Nyman, J. L<strong>in</strong>dhe, T. Karr<strong>in</strong>g, <strong>and</strong> J. Wennstrom:<br />

New Attachment Formation <strong>in</strong> the Human Per-<br />

348<br />

iodontium by Guided Tissue Regeneration. J. Cl<strong>in</strong>. Periodontol.<br />

13:604-616 (1986).<br />

Graves, D. <strong>and</strong> D. Cochran: Mesenchymal Cell Growth<br />

Factors. Crit. Rev. Oral BioL 1:17-36 (1990).<br />

Groff, G. B.: Treatment of Intrabony Osseous Defects by<br />

Graft<strong>in</strong>g: A Review of the Literature. I: Early Research<br />

<strong>and</strong> Experimentation. US Navy Med. 67(10):9-23<br />

(1976a).<br />

Groff, G. B.: Treatment of Infrabony Osseous Defects by<br />

Graft<strong>in</strong>g: A Review of the Literature. II: Recent Success<br />

with Autografts <strong>and</strong> Homografts. US Navy Med.<br />

67(ll):8-24 (1976b).<br />

Haggerty, P. C. <strong>and</strong> I. Maeda: <strong>Autogenous</strong> <strong>Bone</strong> <strong>Grafts</strong>: A<br />

Revolution <strong>in</strong> the Treatment of Vertical <strong>Bone</strong> Defects.<br />

J. Periodontol. 42:626-641 (1971).<br />

Halliday, D. G.: The graft<strong>in</strong>g of Newly Formed <strong>Autogenous</strong><br />

<strong>Bone</strong> <strong>in</strong> the Treatment of Osseous Defects. J. Periodontol.<br />

40:511-514(1969).<br />

Hancock, E. B.: Regeneration Procedures. Section VI. In<br />

Proceed<strong>in</strong>gs of the World Workshop <strong>in</strong> Cl<strong>in</strong>ical Periodontics.<br />

The American Academy of Periodontology, pp.<br />

1-19(1989).<br />

Harakas, N.: Dem<strong>in</strong>eralized <strong>Bone</strong>-Matrix-Induced Osteogenesis.<br />

Cl<strong>in</strong>. Orthop. 188:239-251 (1984).<br />

Hawley, C. <strong>and</strong> J. Miller: A Histologic Exam<strong>in</strong>ation of a<br />

Free Osseous Autograft. J. Periodontol. 46:289-293<br />

(1975).<br />

Hegedus, Z.: The Rebuild<strong>in</strong>g of the Alveolar Process by<br />

<strong>Bone</strong> Transplantation. Dent. Cosmos. 65:736-742 (1923).<br />

Hiatt, R. G. <strong>and</strong> R. G. Schallhorn: Intraoral Transplants of<br />

Cancellous <strong>Bone</strong> <strong>and</strong> Marrow <strong>in</strong> <strong>Periodontal</strong> Lesions. J.<br />

Periodontol. 44:194-208 (1973).<br />

Hiatt, W., R. Schallhorn, <strong>and</strong> A. Aaronian: The Induction<br />

of New <strong>Bone</strong> <strong>and</strong> Cementum Formation. IV. Microscopic<br />

Exam<strong>in</strong>ation of the Peridontium Follow<strong>in</strong>g Human<br />

<strong>Bone</strong> <strong>and</strong> Marrow Autograft, Allograft, <strong>and</strong> Nongraft<br />

<strong>Periodontal</strong> Regenerative Procedures. J.<br />

Periodontol. 49:495-512 (1978).<br />

Hiatt, W. H.: The Induction of New <strong>Bone</strong> <strong>and</strong> Cementum<br />

Formation. III. Utiliz<strong>in</strong>g <strong>Bone</strong> <strong>and</strong> Marrow Allografts<br />

<strong>in</strong> Dogs. J. Periodontol. 41:596-600 (1970).<br />

Hiatt, W. H., D. Larato, W. R. Hiatt, <strong>and</strong> K. L<strong>in</strong>dfors:<br />

The Induction of New <strong>Bone</strong> <strong>and</strong> Cementum Formation.<br />

V. A Comparison of Graft <strong>and</strong> Control <strong>in</strong> Sites <strong>in</strong> Deep<br />

Intrabony <strong>Periodontal</strong> Lesions. Int. J. Periodontics Restorative<br />

Dent. 6(5):9-22 (1986).<br />

Hoffman, I. D. <strong>and</strong> P. Flanagan: Exophytic granulation<br />

reactions associated with autogenous iliac marrow transplantation<br />

<strong>in</strong>to periodontal defects. J. Periodontol.<br />

45:586-594(1974).<br />

Hujoel, P. P., W. J. Loesche, <strong>and</strong> T. A. Derouen: Assessment<br />

of Relationship between Site-Specific Variables.<br />

J. Periodontol. 61:368-372 (1990).<br />

Hurt, W. C: Freeze-Dried <strong>Bone</strong> Homografts <strong>in</strong> <strong>Periodontal</strong><br />

Lesions <strong>in</strong> Dogs. J. Periodontol. 39:89-92 (1968).<br />

Jacobs, J. E. <strong>and</strong> E. S. Rosenberg: Management of an<br />

Intrabony Defect Us<strong>in</strong>g Osseous Coagulum from a L<strong>in</strong>gual<br />

Torus. Compend. Cont<strong>in</strong>. Educ. Dent. 5:57-61<br />

(1984).<br />

Downloaded from<br />

cro.sagepub.com by guest on January 10, 2013 For personal use only. No other uses without permission.


Karr<strong>in</strong>g, T., S. Nyman, <strong>and</strong> J. L<strong>in</strong>dhe: Heal<strong>in</strong>g Follow<strong>in</strong>g<br />

Implantation of Periodontitis Affected Roots <strong>in</strong>to <strong>Bone</strong><br />

Tissue. J. Cl<strong>in</strong>. Periodontol. 7:96-105 (1980).<br />

Karr<strong>in</strong>g, T., S. Nyman, <strong>and</strong> J. L<strong>in</strong>dhe, <strong>and</strong> M. Sirirat:<br />

Potentials for Root Resorption Dur<strong>in</strong>g <strong>Periodontal</strong> Wound<br />

Heal<strong>in</strong>g. J. Cl<strong>in</strong>. Periodontol. 11:41-52 (1984).<br />

Kenney, E., V. Lekovic, C. Ferreira, T. Han, B. Dimitrijevic,<br />

<strong>and</strong> F. Carranca: <strong>Bone</strong> Formation with<strong>in</strong> Porous<br />

Hydroxyapatite Implants <strong>in</strong> Human <strong>Periodontal</strong> Defects.<br />

J. Periodontol. 57:76-83 (1986).<br />

Kl<strong>in</strong>ge, B., R. Nilveus, G. Bogle, A. Badersten, <strong>and</strong> J.<br />

Egelberg: Effect of Implants on Heal<strong>in</strong>g of Experimental<br />

Furcation Defects <strong>in</strong> Dogs. J. Cl<strong>in</strong>. Periodontol. 12:321—<br />

326 (1985).<br />

Kosk<strong>in</strong>en, E., S. Ryoppy, <strong>and</strong>T. L<strong>in</strong>kholm: Osteo<strong>in</strong>duction<br />

<strong>and</strong> Osteogenesis <strong>in</strong> Implants of <strong>Allogeneic</strong> <strong>Bone</strong> Matrix.<br />

Cl<strong>in</strong>. Orthop. 87:116-131 (1972).<br />

Krejci, C. B. <strong>and</strong> C. F. Farah: Osseous Graft<strong>in</strong>g <strong>in</strong> <strong>Periodontal</strong><br />

<strong>Therapy</strong>, Part I: Osseous Graft Materials. Compendium<br />

8:722-728 (1987).<br />

Kudryk, V.: Toxic Effect of Ethylene Oxide Sterilized Freeze-<br />

Dried <strong>Bone</strong> Allograft on Human G<strong>in</strong>gival Fibroblasts.<br />

J. Periodontol. 61:309 (1990).<br />

Langer, B., D. Gelb, <strong>and</strong> D. Krutchkoff: Early reentry<br />

procedure. Part II. A five year histologic evaluation. J.<br />

Periodontol. 52:135-139 (1981).<br />

Langer, B., B. Wagengerg, <strong>and</strong> L. Langer: The use of<br />

frozen autogenous bone <strong>in</strong> graft<strong>in</strong>g procedures. Int. J.<br />

Periodontics Restorative Dent. 6(2):68-77 (1986).<br />

Lekovic, V., E. Kenney, K. Kovacevic, <strong>and</strong> R. Carranza:<br />

Evaluation of Guided Tissue Regeneration <strong>in</strong> Class II<br />

Furcation Defects. J. Periodontol. 60:694-698 (1989).<br />

Lib<strong>in</strong>, B. M., H. Ward, <strong>and</strong> L. Fishman: Decalcified Lyophilized<br />

<strong>Bone</strong> Allografts for Use <strong>in</strong> Human <strong>Periodontal</strong><br />

Defects. J. Periodontol. 45:51-56 (1975).<br />

Listgarten, M. <strong>and</strong> M. Rosenberg: Histological Study of<br />

Repair Follow<strong>in</strong>g New Attachment Procedures <strong>in</strong> Human<br />

<strong>Periodontal</strong> Lesions. J. Periodontol. 50:333-344 (1979).<br />

Lynch, S., R. Williams, A. Poison, T. Howell, M. Reddy,<br />

<strong>and</strong> U. Zappa: A Comb<strong>in</strong>ation of Platelet-Derived <strong>and</strong><br />

Insul<strong>in</strong>-Like Growth Factors Enhances <strong>Periodontal</strong> Regeneration.<br />

J. Cl<strong>in</strong>. Periodontol. 16:545-548 (1989).<br />

Mabry, T., R. Yukna, <strong>and</strong> W. Sepe: Freeze-Dried <strong>Bone</strong><br />

Allografts Comb<strong>in</strong>ed with Tetracycl<strong>in</strong>e <strong>in</strong> the Treatment<br />

of Juvenile Periodontitis. /. Periodontol. 56:74-81<br />

(1985).<br />

Mart<strong>in</strong>, L., J. McDougal, <strong>and</strong> S. Loskoski: Dis<strong>in</strong>fection<br />

<strong>and</strong> <strong>in</strong>activation of the human T lymphocyte virus type<br />

III/lymphadenopathy-associated virus. J. Infec. Dis.<br />

152:400-403 (1985).<br />

Mattout, P. <strong>and</strong> M. Roche: Juvenile Periodontitis: Heal<strong>in</strong>g<br />

Follow<strong>in</strong>g <strong>Autogenous</strong> Iliac Marrow Graft, Long-Term<br />

Evaluation. J. Cl<strong>in</strong>. Periodontol. 11:274-279 (1984).<br />

Melcher, A., T. Cheong, <strong>and</strong> J. Cox: Synthesis of Cementumlike<br />

Tissue In Vitro by Cells Cultured from <strong>Bone</strong>: A<br />

Light <strong>and</strong> Electron Microscopic Study. J. Periodont.<br />

Res. 21:592-612 (1986).<br />

Melcher, A. H.: The Use of Heterogenous Anorganic <strong>Bone</strong><br />

as an Implant Material <strong>in</strong> Oral Procedures. Oral Surg.<br />

15:996-1000 (1962).<br />

Mellonig, J., G. Bowers, <strong>and</strong> R. Baily: Comparison of <strong>Bone</strong><br />

Graft Materials. I. New <strong>Bone</strong> Formation with Autografts<br />

<strong>and</strong> Allografts Determ<strong>in</strong>ed by Strontium-85. J. Periodontol.<br />

52:291-296 (1981a).<br />

Mellonig, J., G. Bowers, R. Bright, <strong>and</strong> J. Lawrence: Cl<strong>in</strong>ical<br />

Evaluation of Freeze-Dried <strong>Bone</strong> Allograft <strong>in</strong> <strong>Periodontal</strong><br />

Osseous Defects. J. Periodontol. 47:125-129<br />

(1976).<br />

Mellonig, J., G. Bowers, <strong>and</strong> W. Cotton: Comparison of<br />

<strong>Bone</strong> Graft Materials. Part II. New <strong>Bone</strong> Formation with<br />

Autografts <strong>and</strong> Allografts: A Histological Evaluation. J.<br />

Periodontol. 52:297-302 (1981b).<br />

Mellonig, J. T.: Alveolar <strong>Bone</strong> Induction: Autografts <strong>and</strong><br />

Allografts. Dent. Cl<strong>in</strong>. North Am. 24:719-737 (1980).<br />

Mellonig, J. T.: Histologic Evaluation of Freeze-Dried <strong>Bone</strong><br />

Allografts <strong>in</strong> <strong>Periodontal</strong> Osseous Defects. J. Dent. Res.<br />

60:388 (1981).<br />

Mellonig, J. T.: Decalcified Freeze-Dried <strong>Bone</strong> Allograft<br />

as an Implant Material <strong>in</strong> Human <strong>Periodontal</strong> Defects.<br />

Int. J. Periodontics Restorative Dent. 4(6):41-55 (1984).<br />

Mellonig, J. T.: <strong>Bone</strong> <strong>Grafts</strong> <strong>in</strong> <strong>Periodontal</strong> <strong>Therapy</strong>. NY<br />

State Dent. J. 52:27-29 (1986).<br />

Mellonig, J. T.: Freeze-Dried <strong>Bone</strong> Allografts <strong>in</strong> <strong>Periodontal</strong><br />

Reconstructive Surgery. Dent. Cl<strong>in</strong>. North Am.<br />

35:505-520 (1991).<br />

Mellonig, J. T. <strong>and</strong> G. M. Bowers: Regenerat<strong>in</strong>g <strong>Bone</strong> <strong>in</strong><br />

Cl<strong>in</strong>ical Periodontics. J. Am. Dent. Assoc. 121:497-502<br />

(1990).<br />

Mellonig, J. T. <strong>and</strong> R. Levey: The Effect of Different Particle<br />

Sizes of Freeze-Dried <strong>Bone</strong> Allograft on <strong>Bone</strong><br />

Growth. J. Dent. Res. 63:222 (1984).<br />

Moomaw, R.: Histological Evaluation of Freeze-Dried <strong>Bone</strong><br />

Allografts <strong>in</strong> Humans. Graduate thesis, University of<br />

North Carol<strong>in</strong>a, School of Dentistry (1978).<br />

Moscow, B., F. Karsh, S. Ste<strong>in</strong>: Histological Assessment<br />

of <strong>Autogenous</strong> <strong>Bone</strong> Graft: A Case Report <strong>and</strong> Critical<br />

Evaluation. J. Periodontol. 50:291-300 (1979).<br />

Mov<strong>in</strong>, S. <strong>and</strong> G. Borr<strong>in</strong>g-Moller: Regeneration of Infrabony<br />

<strong>Periodontal</strong> Defects <strong>in</strong> Humans After Implantation<br />

of <strong>Allogeneic</strong> Dem<strong>in</strong>eralized Dent<strong>in</strong>. J. Cl<strong>in</strong>. Periodontol.<br />

9:141-146(1982).<br />

Munt<strong>in</strong>g, E., J. Wilmart, A. Wijne, P. Hennebert, <strong>and</strong> C.<br />

Delloye: Effect of Sterilization on Osteo<strong>in</strong>duction. Acta<br />

Orthop. Sc<strong>and</strong>. 59:34-38 (1988).<br />

Nabers, C, O. Reed, <strong>and</strong> J. Hammer: Gross <strong>and</strong> Histologic<br />

Evaluation of an <strong>Autogenous</strong> <strong>Bone</strong> Graft 57 Months<br />

Postoperatively. J. Periodontol. 43:702-704 (1972).<br />

Nabers, C. L.: Long-Term Results of <strong>Autogenous</strong> <strong>Bone</strong><br />

<strong>Grafts</strong>. Int. J. Periodontics Restorative Dent. 4(3): 50-<br />

57 (1984).<br />

Nabers, C. L. <strong>and</strong> T. J. O'Leary: <strong>Autogenous</strong> <strong>Bone</strong> Transplants<br />

<strong>in</strong> the Treatment of Osseous Defects. J. Periodontol.<br />

36:5-14 (1965).<br />

Narang, R. <strong>and</strong> H. Wells: <strong>Bone</strong> Induction <strong>in</strong> Experimental<br />

<strong>Periodontal</strong> <strong>Bone</strong> Defects <strong>in</strong> Dogs with Decalcified Al-<br />

Downloaded from<br />

cro.sagepub.com by guest on January 10, 2013 For personal use only. No other uses without permission.<br />

349


logeneic <strong>Bone</strong> Matrix <strong>Grafts</strong>. Oral Surg. 33:306-313<br />

(1972).<br />

Niveus, R., D. Johansson, <strong>and</strong> J. Egelberg: The Effect of<br />

<strong>Autogenous</strong> Cancellous <strong>Bone</strong> <strong>Grafts</strong> on Heal<strong>in</strong>g of Experimental<br />

Furcation Defects <strong>in</strong> Dogs. J. Periodont. Res.<br />

13:532-537 (1978).<br />

Nyman, S., J. Gottlow, J. L<strong>in</strong>dhe, T. Karr<strong>in</strong>g, <strong>and</strong> J.<br />

W<strong>in</strong>nstrom: New Attachment Formation by Guided Tissue<br />

Regeneration. J. Periodont. Res. 22:252-254 (1987).<br />

Nyman, S., T. Karr<strong>in</strong>g, J. L<strong>in</strong>dhe, <strong>and</strong> S. Planten: Heal<strong>in</strong>g<br />

Follow<strong>in</strong>g Implantation of Periodontitis Affected Roots<br />

<strong>in</strong>to G<strong>in</strong>gival Connective Tissue. J. Cl<strong>in</strong>. Periodontol.<br />

7:394-401 (1980).<br />

Nyman, S., J. L<strong>in</strong>dhe, T. Karr<strong>in</strong>g, <strong>and</strong> H. Ryl<strong>and</strong>er: New<br />

Attachment Follow<strong>in</strong>g Surgical Treatment of Human<br />

<strong>Periodontal</strong> Disease. J. Cl<strong>in</strong>. Periodontol. 9:290-297<br />

(1982).<br />

Oikarien, J. <strong>and</strong> L. Korhonen: The <strong>Bone</strong> Inductive Capacity<br />

of Various <strong>Bone</strong> Transplant<strong>in</strong>g Materials Used for the<br />

Treatment of Experimental <strong>Bone</strong> Defects. Cl<strong>in</strong>. Orthop.<br />

140:208-215 (1979).<br />

Older, L. B.: The Use of Heterogenous Bov<strong>in</strong>e <strong>Bone</strong> Implants<br />

<strong>in</strong> the Treatment of <strong>Periodontal</strong> Pockets. J. Periodontol.<br />

38:359-549 (1967).<br />

Oreamuno, S., V. Lekovic, B. Kenney, F. Carranza, H.<br />

Takei, <strong>and</strong> B. Prokic: Comparative Cl<strong>in</strong>ical Study of<br />

Porous Hydroxyapatite <strong>and</strong> Decalcified Freeze-Dried<br />

<strong>Bone</strong> <strong>in</strong> Human <strong>Periodontal</strong> Defects. J. Periodontol.<br />

61:399-404 (1989).<br />

Passanezzi, E., W. A. Janson, D. Nahas, <strong>and</strong> J. Campos:<br />

Newly Form<strong>in</strong>g <strong>Bone</strong> Autografts to Treat <strong>Periodontal</strong><br />

Infrabony Pockets: Cl<strong>in</strong>ical <strong>and</strong> Histological Events. Int.<br />

J. Periodontics Restorative Dent. 9:140-153 (1989).<br />

Patterson, R. L., C. Coll<strong>in</strong>gs, <strong>and</strong> E. Zimmermann: <strong>Autogenous</strong><br />

Implants <strong>in</strong> the Alveolar Process of the Dog<br />

with Induced Periodontitis. Periodontics 5:19-25 (1967).<br />

Patur, B.: Osseous Defects: Evaluation of Diagnostic <strong>and</strong><br />

Treatment Methods. J. Periodontol. 45:523-541 (1974).<br />

Patur, B. <strong>and</strong> I. Glickman: Cl<strong>in</strong>ical <strong>and</strong> Roentgenographic<br />

Evaluation of the Post-Treatment Heal<strong>in</strong>g of Infrabony<br />

Pockets. J. Periodontol. 33:164-171 (1962).<br />

Pearson, G. <strong>and</strong> E. Freeman: The Composite Graft: <strong>Autogenous</strong><br />

Cancellous <strong>Bone</strong> <strong>and</strong> Marrow Comb<strong>in</strong>ed with<br />

Freeze-Dried <strong>Bone</strong> Allograft <strong>in</strong> the Treatment of <strong>Periodontal</strong><br />

Osseous Defects. Ont. Dent. 57:3-10 (1980).<br />

Pearson, G., S. Rosen, <strong>and</strong> D. Deporter: Prelim<strong>in</strong>ary Observations<br />

on the Usefulness of a Decalcified Freeze-<br />

Dried Cancellous <strong>Bone</strong> Allograft Material <strong>in</strong> <strong>Periodontal</strong><br />

Surgery. J. Periodontol. 52:55-59 (1901).<br />

Peffier, J. E.: The Present Status of <strong>Bone</strong> <strong>Grafts</strong> <strong>in</strong> <strong>Periodontal</strong><br />

<strong>Therapy</strong>. Dent. Cl<strong>in</strong>. North Am. 13:193-202<br />

(1969).<br />

Pierce, P. L.: <strong>Bone</strong> Induction <strong>in</strong> <strong>Periodontal</strong> <strong>Therapy</strong>: A<br />

Review. J. N. Z. Soc. Periodontol. 53:7-11 (1982).<br />

Poison, A. M. <strong>and</strong> L. D. Heijle: Osseous Repair <strong>in</strong> Infrabony<br />

<strong>Periodontal</strong> Defects. J. Cl<strong>in</strong>. Periodontol. 5:13-<br />

23 (1978).<br />

Pontoriero, R., J. L<strong>in</strong>dhe, S. Nyman, T. Karr<strong>in</strong>g, E. Rosenberg,<br />

<strong>and</strong> R. Sanavi: Guided Tissue Regeneration <strong>in</strong><br />

350<br />

Degree II Furcation Involved M<strong>and</strong>ibular Molars. J. Cl<strong>in</strong>.<br />

Periodontol. 15:247-254 (1988).<br />

Pontoriero, R., J. L<strong>in</strong>dhe, S. Nyman, T. Karr<strong>in</strong>g, E. Rosenberg,<br />

<strong>and</strong> R. Sanavi: Guided Tissue Regeneration <strong>in</strong><br />

the Treatment of Furcation Defects <strong>in</strong> M<strong>and</strong>ibular Molars.<br />

A Cl<strong>in</strong>ical Study of Degree III Involvements. J.<br />

Cl<strong>in</strong>. Periodontol. 16:170-178 (1989).<br />

Poulsom, R. C, A. Rub<strong>in</strong>ste<strong>in</strong>, <strong>and</strong> A. W. Gargiulo: <strong>Allogeneic</strong><br />

Iliac Transplants <strong>in</strong> Rhesus Monkeys: A Sequential<br />

Histologic Study. J. Periodontol. 47:187-195<br />

(1976).<br />

Prewett, A., C. Damien, M. Te-Hua Chu, <strong>and</strong> R. O'Leary:<br />

Investigation of the Effect of Low-Dose Gamma Irradiation<br />

on the Collagenous <strong>and</strong> Non-Collagenous Prote<strong>in</strong>s<br />

of <strong>Bone</strong> Matrix. 14th Annual Meet<strong>in</strong>g, American<br />

Association of Tissue Banks. 21-26 September, Denver,<br />

Colorado.<br />

Prolo, D., P. Pedrotti, <strong>and</strong> D. White: Ethylene Oxide Sterilization<br />

of <strong>Bone</strong>, Dura Mater, <strong>and</strong> Fascia Lata for Human<br />

Transplantation. Neurosurgery. 6:529-539 (1980).<br />

Quattlebaum, J., J. Mellonig, <strong>and</strong> N. Hansel: Antigenicity<br />

of Freeze-Dried Cortical <strong>Bone</strong> Allograft <strong>in</strong> Human <strong>Periodontal</strong><br />

Osseous Defects. J. Periodontol 59:394-397<br />

(1988).<br />

Qu<strong>in</strong>nan, G., J. Wlees, <strong>and</strong> M. Wittek: Inactivation of<br />

Human T-Cell Lymphotropic Virus, Type III by Heat<br />

Chemicals <strong>and</strong> Irradiation. Transfusion 26:481-483<br />

(1986).<br />

Qu<strong>in</strong>tero, G., J. Mellonig, <strong>and</strong> V. Gambill: A Six Month<br />

Cl<strong>in</strong>ical Evaluation of Decalcified Freeze-Dried <strong>Bone</strong><br />

Allograft <strong>in</strong> Human <strong>Periodontal</strong> Defects. J. Periodontol.<br />

53:726-730 (1982).<br />

Ramfjord, S. P.: Chang<strong>in</strong>g Concepts <strong>in</strong> Periodontics. J.<br />

Pros. Dent. 52:781-786 (1984).<br />

Reddi, A. H., S. Wientroub, <strong>and</strong> N. Muthukmuaran: Biologic<br />

Pr<strong>in</strong>ciples of <strong>Bone</strong> Induction. Orthop. Cl<strong>in</strong>. North<br />

Am. 18:207-212 (1987).<br />

Renvert, S. T., S. Garrett, R. G. Schallhorn, <strong>and</strong> J. Egelberg:<br />

Heal<strong>in</strong>g After Treatment of <strong>Periodontal</strong> Intraosseous<br />

Defects. III. Effect of Osseous Graft<strong>in</strong>g <strong>and</strong> Citric<br />

Acid Condition<strong>in</strong>g. J. Cl<strong>in</strong>. Periodontol. 6:441-445<br />

(1985).<br />

Resnick, L., K. Veren, S. Salahudd<strong>in</strong>, S. Tondreau, <strong>and</strong><br />

P. Markham: Stability <strong>and</strong> Inactivation of HTLV-III/<br />

LAV Under Cl<strong>in</strong>ical <strong>and</strong> Laboratory Environments. JAMA<br />

255:1987-1991 (1986).<br />

Rivault, A. T., P. D. Toto, S. Levy, <strong>and</strong> A. W. Gargiulo:<br />

<strong>Autogenous</strong> <strong>Bone</strong> <strong>Grafts</strong>: Osseous Coagulum <strong>and</strong> Osseous<br />

Retrograd Procedures <strong>in</strong> Primates. J. Periodontol.<br />

42:787-796 (1971).<br />

Rob<strong>in</strong>son, R. E.: Osseous Coagulum for <strong>Bone</strong> Induction.<br />

J. Periodontol. 40:503-510 (1969).<br />

Rosenberg, M. M.: Free Osseous Tissue Autografts as a<br />

Predictable Procedure. J. Periodontol. 42:195-209<br />

(1971).<br />

Rosl<strong>in</strong>g, B., S. Nyman, J. L<strong>in</strong>dhe, <strong>and</strong>B. Jern: The Heal<strong>in</strong>g<br />

Potential of the <strong>Periodontal</strong> Tissues Follow<strong>in</strong>g Different<br />

Techniques of <strong>Periodontal</strong> Surgery. J. Cl<strong>in</strong>. Periodontol.<br />

3:233-250 (1976).<br />

Downloaded from<br />

cro.sagepub.com by guest on January 10, 2013 For personal use only. No other uses without permission.


Ross, S. E. <strong>and</strong> D. W. Cohen: The Fate of a Free Osseous<br />

Tissue Autograft. A Cl<strong>in</strong>ical <strong>and</strong> Histologic Case Report.<br />

Periodontics 6:145-151 (1968).<br />

Rummelhardt, J., J. T. Mellonig, J. Gray, <strong>and</strong> H. Towle:<br />

Comparison of Freeze-Dried <strong>Bone</strong> Allograft <strong>in</strong> Human<br />

<strong>Periodontal</strong> Osseous Defects. J. Periodontol. 60:655-<br />

663 (1989).<br />

Sampath, T., M. Nathanson, <strong>and</strong> A. Reddi: In Vitro Transformation<br />

of Mesenchymal Cells Derived from Embryonic<br />

Muscle <strong>in</strong>to Cartilage <strong>in</strong> Response to Extracellular<br />

Matrix Components of <strong>Bone</strong>. Proc. Natl. Acad. Sci.<br />

U.S.A. 81:3419-3423 (1984).<br />

Sampath, T. <strong>and</strong> A. Reddi: Homology of <strong>Bone</strong> Inductive<br />

Prote<strong>in</strong>s from Human, Monkey, Bov<strong>in</strong>e, <strong>and</strong> Rat Extracellular<br />

Matrix. Proc. Natl. Acad. Sci. U.S.A. 80:6591-<br />

6595 (1987).<br />

S<strong>and</strong>ers, J., W. Sepe, G. Bowers, R. Koch, J. Williams,<br />

J. Lekas, J. Mellonig, G. Pelleu, <strong>and</strong> B. Gambill: Cl<strong>in</strong>ical<br />

Evaluation of Freeze-Dried <strong>Bone</strong> Allograft <strong>in</strong> <strong>Periodontal</strong><br />

Osseous Defects. III. Composite Freeze-Dried<br />

<strong>Bone</strong> Allografts with <strong>and</strong> Without <strong>Autogenous</strong> <strong>Bone</strong><br />

<strong>Grafts</strong>. J. Periodontol. 1983:54:1-11 (1983).<br />

Schallhorn, R.: Postoperative Problems Associated with Iliac<br />

Transplants. J. Periodontol. 43:3-9 (1972).<br />

Schallhorn, R. <strong>and</strong> W. Hiatt: Human Allografts of Iliac<br />

Cancellous <strong>Bone</strong> <strong>and</strong> Marrow <strong>in</strong> <strong>Periodontal</strong> Osseous<br />

Defects, II. Cl<strong>in</strong>ical Observations. J. Periodontol. 43:67-<br />

81 (1972).<br />

Schallhorn, R. <strong>and</strong> P. McCla<strong>in</strong>: Comb<strong>in</strong>ed Osseous Composite<br />

Graft<strong>in</strong>g, Root Condition<strong>in</strong>g, <strong>and</strong> Guided Tissue<br />

Regeneration. Int. J. Periodontics Restorative Dent.<br />

8(4): 13-32 (1988).<br />

Schallhorn, R. G.: Eradication of Bifurcation Defects Utiliz<strong>in</strong>g<br />

Frozen <strong>Autogenous</strong> Hip Marrow Implants. J. West.<br />

Soc. Periodont. Abstr. 15:101-105 (1967).<br />

Schallhorn, R. G.: The Use of <strong>Autogenous</strong> Hip Marrow<br />

Biopsy Implants for Bony Crater Defects. J. Periodontol.<br />

39:145-147 (1968).<br />

Schallhorn, R. G.: Present Status of Osseous Graft<strong>in</strong>g Procedures.<br />

J. Periodontol. 48:570-576 (1977).<br />

Schallhorn, R. G.: Long-Term Evaluation of Osseous <strong>Grafts</strong><br />

<strong>in</strong> <strong>Periodontal</strong> <strong>Therapy</strong>. Int. Dent. J. 30:101-116 (1980).<br />

Schallhorn, R. G., W. Hiatt, <strong>and</strong> W. Boyce: Iliac Transplants<br />

<strong>in</strong> <strong>Periodontal</strong> <strong>Therapy</strong>. J. Periodontol. 41:566-<br />

580(1970).<br />

Schrad, S. <strong>and</strong> G. Tuss<strong>in</strong>g: Human Allografts of Iliac <strong>Bone</strong><br />

<strong>and</strong> Marrow <strong>in</strong> <strong>Periodontal</strong> Osseous Defects. J. Periodontol.<br />

57:205-210 (1986).<br />

Scopp, I. W., F. H. Morgan, J. J. Dooner, H. J. Fredrics,<br />

<strong>and</strong> R. A. Heyman: Bov<strong>in</strong>e <strong>Bone</strong> (Boplant) Implants for<br />

Infrabony Oral Lesions. Periodontics 4:169-176 (1966).<br />

Seibert, J. S.: Reconstructive <strong>Periodontal</strong> Surgery: Case<br />

Report. J. Periodontol. 41:113-118 (1970).<br />

Sepe, W., G. Bowers, J. Lawrence, G. Friedlaender, <strong>and</strong><br />

R. Koch: Cl<strong>in</strong>ical Evaluation of Freeze-Dried <strong>Bone</strong> Allografts<br />

<strong>in</strong> <strong>Periodontal</strong> Osseous Defects. J. Periodontol.<br />

49:9-14 (1978).<br />

Soehren, S. E. <strong>and</strong> R. L. Van Swol: The Heal<strong>in</strong>g Extraction<br />

Site: A Donor Area for <strong>Periodontal</strong> Graft<strong>in</strong>g Material.<br />

J. Periodontol. 50:128-133 (1979).<br />

Sonis, S. T., R. C. Williams, M. K. Jeffcoat, R. Black,<br />

<strong>and</strong> G. Schlar: Heal<strong>in</strong>g of Spontaneous <strong>Periodontal</strong> Defects<br />

<strong>in</strong> Dogs Treated with Xenogeneic Dem<strong>in</strong>eralized<br />

<strong>Bone</strong>. J. Periodontol. 56:470-479 (1985).<br />

Sottosanti, J. S. <strong>and</strong> J. A. Bierly: The Storage of Marrow<br />

<strong>and</strong> its Relation to <strong>Periodontal</strong> Graft<strong>in</strong>g Procedures. J.<br />

Periodontol. 46:162-170 (1975).<br />

Stahl, S. S. <strong>and</strong> S. Froum: Histological Evaluation of Human<br />

Intraosseous Heal<strong>in</strong>g Responses to the Placement<br />

of Tricalcium Phosphate Ceramic Implants. I. Three to<br />

Eight Months. J. Periodontol. 57:211-217 (1986).<br />

Stahl, S. S. <strong>and</strong> S. Froum: Histologic Heal<strong>in</strong>g Responses<br />

<strong>in</strong> Human Vertical Lesions Follow<strong>in</strong>g the Use of Osseous<br />

Allografts <strong>and</strong> Barrier Membranes. J. Cl<strong>in</strong>. Periodontol.<br />

18:149-152(1991).<br />

Strub, J. R., T. W. Gaberthuel, <strong>and</strong> A. R. Firestone: Comparison<br />

of Tricalcium Phosphate <strong>and</strong> Frozen <strong>Allogeneic</strong><br />

<strong>Bone</strong> Implants <strong>in</strong> Man. J. Periodontol. 50:624-629<br />

(1979).<br />

Towle, H., P. Auclair, <strong>and</strong> B. Ragsdale: Sterilization <strong>and</strong><br />

<strong>Bone</strong> Induction by Dem<strong>in</strong>eralized <strong>Bone</strong> Matrix. J. Periodontol.<br />

58:129 (1987).<br />

Turner, D. <strong>and</strong> J. T. Mellonig: Antigenicity of Freeze-Dried<br />

<strong>Bone</strong> Allograft <strong>in</strong> <strong>Periodontal</strong> Osseous Defects. J. Periodont.<br />

Res. 16:89-99 (1981).<br />

Urist, M., R. Delange, <strong>and</strong> G. F<strong>in</strong>erman: <strong>Bone</strong> Cell Differentiation<br />

<strong>and</strong> Growth Factors. Science 220:680-686<br />

(1983a).<br />

Urist, M. R.: <strong>Bone</strong> Formation by Auto<strong>in</strong>duction. Science<br />

150:893-899 (1965).<br />

Urist, M. R. <strong>and</strong> T. A. Dowell: Inductive Substratum for<br />

Osteogenesis <strong>in</strong> Pellets of Paniculate <strong>Bone</strong> Matrix. Cl<strong>in</strong>.<br />

Orthop. 61:61-78 (1968).<br />

Urist, M. R., T. A. Dowell, P. H. Hay, <strong>and</strong> B. S. Strates:<br />

Inductive Substrates for <strong>Bone</strong> Formation. Cl<strong>in</strong>. Orthop.<br />

59:59-96 (1968).<br />

Urist, M. R. <strong>and</strong> H. Iwata: Preservation <strong>and</strong> Biodegradation<br />

of the Morphogenetic Property of <strong>Bone</strong> Matrix. J. Theor.<br />

Biol. 38:155-167(1973).<br />

Urist, M. R., J. Jurist, F. Dubuc, <strong>and</strong> B. Strates: Quantitation<br />

of New <strong>Bone</strong> Formation <strong>in</strong> Intramuscular Implants<br />

of <strong>Bone</strong> Matrix <strong>in</strong> Rabbits. Cl<strong>in</strong>. Orthop. 68:279-293<br />

(1970).<br />

Urist, M. R., A. Mikulski, <strong>and</strong> S. D. Boyd: A Chemosterilized<br />

Antigen-Extracted Autodigested Alloimplant<br />

for <strong>Bone</strong> Banks. Arch. Surg. 110:416-428 (1975).<br />

Urist, M. R., K. Sato, A. Brownell, T. Mal<strong>in</strong><strong>in</strong>, A. Lietze,<br />

Y. Huo, D. Prolo, S. Oklund, G. F<strong>in</strong>erman, <strong>and</strong> R.<br />

Delange: Human <strong>Bone</strong> Morphogenetic Prote<strong>in</strong> (hBMP).<br />

Proc. Soc. Exp. Biol. Med. 173:194-199 (1983).<br />

Urist, M. R. <strong>and</strong> B. Strates: <strong>Bone</strong> Formation <strong>in</strong> Implants<br />

of Partially <strong>and</strong> Wholly Dem<strong>in</strong>eralized bone Matrix. Cl<strong>in</strong>.<br />

Orthop. 71:271-278 (1970).<br />

Urist, M. R. <strong>and</strong> B. Strates: <strong>Bone</strong> Morphogenetic Prote<strong>in</strong>.<br />

J. Dent. Res. 50:1392-1406 (1971).<br />

Waal, H., M. P. Ruben, G. Castellucci, <strong>and</strong> A. Bloom:<br />

Histological Evaluation of Lyophilized Dem<strong>in</strong>eralized<br />

Dent<strong>in</strong> for the Treatment of <strong>Periodontal</strong> Osseous Defects<br />

<strong>in</strong> Dogs. Int. J. Periodontics Restorative Dent. 8(1):49-<br />

63 (1988).<br />

Downloaded from<br />

cro.sagepub.com by guest on January 10, 2013 For personal use only. No other uses without permission.<br />

351


Wada, T., C. Wu, S. Hirozuki, N. Sugita, S. Katagiri, M.<br />

Shemizu, <strong>and</strong> H. Kohji: <strong>Autogenous</strong>, <strong>Allogeneic</strong>, <strong>and</strong><br />

Beta TCP <strong>Grafts</strong>: Comparative Effectiveness <strong>in</strong> Experimental<br />

<strong>Bone</strong> Furcation Defects <strong>in</strong> Dogs. J. Oral Implantol.<br />

15:231-235 (1989).<br />

We<strong>in</strong>troub, S. <strong>and</strong> A. Reddi: Influence of Irradiation on the<br />

Osteogenic Potential of Dem<strong>in</strong>eralized <strong>Bone</strong> Matrix.<br />

Calcif. Tissue Int. 42:255-260 (1988).<br />

Werbitt, M.: Decalcified Freeze-Dried <strong>Bone</strong> Allografts: A<br />

Successful Procedure <strong>in</strong> the Reduction of Intrabony Defects.<br />

Int. J. Periodontics Restorative Dent. 7(5):56-63<br />

(1987).<br />

Wirthl<strong>in</strong>, M. R.: The Current Status of New Attachment<br />

<strong>Therapy</strong>. J. Periodontol. 52:529-544 (1981).<br />

Wiseman, L. <strong>and</strong> H. C. Tenebaum: <strong>Bone</strong> Graft<strong>in</strong>g <strong>in</strong> <strong>Periodontal</strong><br />

<strong>Therapy</strong>. A Review of Selected Materials. Oral<br />

Health 78:21-23 (1988).<br />

Wozney, J., V. Rosen, A. Celeste, L. Mitsock, M. Whitters,<br />

R. Kritz, R. He wick, <strong>and</strong> E. Wang: Novel Regulators<br />

of <strong>Bone</strong> Formation: Molecular Clones <strong>and</strong> Activities.<br />

Science 242:1528-1534 (1988).<br />

352<br />

Yazdi, M. <strong>and</strong> S. E. Schonfeld: Dem<strong>in</strong>eralized <strong>Bone</strong> Matrix<br />

<strong>in</strong> Treatment of <strong>Periodontal</strong> Defects. A Review of the<br />

Literature. J. Western Soc. Periodont. 35:105-108<br />

(1987).<br />

Yukna, R. <strong>and</strong> W. Sepe: Cl<strong>in</strong>ical Evaluation of Localized<br />

Periodontosis Defects Treated with Freeze-Dried <strong>Bone</strong><br />

Allografts Comb<strong>in</strong>ed with Local <strong>and</strong> Systemic Tetracycl<strong>in</strong>es.<br />

Int. J. Periodontics Restorative Dent. 2(5): 8-<br />

21 (1982).<br />

Yuktan<strong>and</strong>ana, I.: <strong>Bone</strong> <strong>Grafts</strong> <strong>in</strong> the Treatment of Intrabony<br />

<strong>Periodontal</strong> Pockets <strong>in</strong> Dogs. A Histological Investigation.<br />

J. Periodontol. 30:17-26 (1959).<br />

Yumet, J. <strong>and</strong> A. Poison: G<strong>in</strong>gival Wound Heal<strong>in</strong>g <strong>in</strong> the<br />

Presence of Plaque Induced Inflammation. J. Periodontol.<br />

56:107-119(1985).<br />

Zayner, D. J. <strong>and</strong> R. A. Yukna: Particle Size of <strong>Periodontal</strong><br />

<strong>Bone</strong> Graft<strong>in</strong>g Materials. J. Periodontol. 55:406-409<br />

(1984).<br />

Zislis, T., S. Matt<strong>in</strong>, E. Cerbas, J. Heath, J. Mansfield,<br />

<strong>and</strong> J. Holl<strong>in</strong>ger: A Scann<strong>in</strong>g Electron Microscopic Study<br />

of In Vitro Toxicity of Ethylene-Oxide-Sterilized <strong>Bone</strong><br />

Repair Materials. J. Oral Implantol. 15:41-46 (1989).<br />

Downloaded from<br />

cro.sagepub.com by guest on January 10, 2013 For personal use only. No other uses without permission.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!