11.01.2013 Views

Annual report 2005 - Eindhoven University of Technology

Annual report 2005 - Eindhoven University of Technology

Annual report 2005 - Eindhoven University of Technology

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

center for NanoMaterials<br />

&<br />

TU/e Research Priority<br />

Nano-engineering <strong>of</strong> Functional Materials and Devices<br />

Report <strong>2005</strong>


Nano-engineering <strong>of</strong> Functional Materials and Devices / cNM<br />

Table <strong>of</strong> Contents<br />

Preface 5<br />

Facts and figures 7<br />

Scope 9<br />

Actual 10<br />

Available facilities 11<br />

Future 12<br />

CNM seminars 13<br />

Description <strong>of</strong> Research groups:<br />

Physics <strong>of</strong> nanostructures 15<br />

Physics <strong>of</strong> semiconductor nanostructures 21<br />

Molecular materials and nanosystems 29<br />

Theory <strong>of</strong> polymer physics 35<br />

Macromolecular chemistry and nanoscience 41<br />

Nanophotonic devices 47<br />

Direct write atom lithography 53<br />

Micron and submicron mechanics 59<br />

Plasma based synthesis 65<br />

Micro- and Nano-scale engineering 71<br />

2


Nano-engineering <strong>of</strong> Functional Materials and Devices / cNM<br />

3


Nano-engineering <strong>of</strong> Functional Materials and Devices / cNM<br />

Preface<br />

Dear colleagues and friends <strong>of</strong> cNM,<br />

It is now almost five years ago that the center for NanoMaterials (cNM), the <strong>Eindhoven</strong> platform for<br />

research and education in the field <strong>of</strong> NanoScience and <strong>Technology</strong>, has been founded. Since<br />

then, we have been intensively involved with many developments. On the national scale, e.g., we<br />

are strongly embedded within the Dutch Nano<strong>Technology</strong> initiative, NanoNed. New opportunities<br />

are provided by the new open innovation centers, The Holst Center and the Center for Molecular<br />

Medicine, at the Philips High-Tech campus at <strong>Eindhoven</strong>. Moreover, by the end <strong>of</strong> the year <strong>2005</strong>,<br />

a decision for the foundation <strong>of</strong> five new Centers <strong>of</strong> Excellence aiming at guiding new, coherent<br />

research programs at the three Dutch Universities <strong>of</strong> <strong>Technology</strong> (<strong>Eindhoven</strong>, Delft and Twente)<br />

has been made. The Center <strong>of</strong> Excellence on Nanosensing and bio-nanoapplications will be one <strong>of</strong><br />

them. Also allied to this the 3TU-initiative, extending our master program on NanoScience &<br />

<strong>Technology</strong> with the Radboud <strong>University</strong> at <strong>Eindhoven</strong> to a national Masters with input from the<br />

three Universities <strong>of</strong> <strong>Technology</strong> and their partner institutes is being planned.<br />

Within the university, the research priority “Nano-engineering <strong>of</strong> Functional Materials and<br />

Devices” has become one <strong>of</strong> the ten main research priorities, as defined in 2004. Since then,<br />

activities <strong>of</strong> cNM and the research priority have merged. As the most recent strategic<br />

interdisciplinary initiative, within <strong>2005</strong> a new group on Biosensors for Molecular Diagnostics has<br />

been founded, with its roots in the Department <strong>of</strong> Applied Physics, but certainlty aiming at (and<br />

already successful in) nucleating new cross-disciplinary research over different departments.<br />

The present <strong>report</strong> provides an overview over (research) activities and pr<strong>of</strong>iles <strong>of</strong> groups<br />

participating in <strong>2005</strong>. As you will recognize, we can look back to a rich series <strong>of</strong> interdisciplinary<br />

cNM seminars, as well as a very successful Research Day. Around that day, we received highly<br />

appreciated feedback on our performance by two members <strong>of</strong> our international advisory board,<br />

Pr<strong>of</strong>. Kirschner (Halle) and Pr<strong>of</strong>. Fuchs (Münster). This year, among the main activities will be<br />

the “SuperTU/esday” on Nanotechnology, an event celebrating the fiftieth anniversary <strong>of</strong> the<br />

university, and aiming to make a wide audience, ranging from children at primary schools to<br />

adults, enthusiastic for science and technology.<br />

Taking the freedom to close this preface by citing the last words <strong>of</strong> Pr<strong>of</strong>. Kirschner’s evaluation<br />

<strong>report</strong>, written at the occasion <strong>of</strong> his visit to our center: “I congratulate the members <strong>of</strong> the cNM<br />

for their outstanding achievements, the research-oriented atmosphere, their attention to future<br />

developments, and their excellent organization. The cNM is on a very good way!”<br />

On behalf <strong>of</strong> the cNM members,<br />

Bert Koopmans<br />

4


Nano-engineering <strong>of</strong> Functional Materials and Devices / cNM<br />

5


Nano-engineering <strong>of</strong> Functional Materials and Devices / cNM<br />

Facts and Figures<br />

Organization<br />

With the foundation <strong>of</strong> the Center for NanoMaterials (cNM), October 12, 2001, the TU/e strives to<br />

give a strong impulse to the fundamental and technological research <strong>of</strong> materials and devices with<br />

critical dimensions in the (sub)nanometer region. The center should foster a further integration<br />

<strong>of</strong> the existing excellent research activities on nanotechnology by facilitating multidisciplinary<br />

research, promoting exchange <strong>of</strong> expertise and the expansion <strong>of</strong> the available infrastructure.<br />

The Research Priority “Nano-engineering <strong>of</strong> Functional Materials and Devices” is one <strong>of</strong> the ten<br />

research themes defined in 2004 after a self-assessment <strong>of</strong> the <strong>Eindhoven</strong> <strong>University</strong> <strong>of</strong><br />

<strong>Technology</strong>. The Research Priorities, facilitate a well recognizable research pr<strong>of</strong>ile <strong>of</strong> the<br />

university.<br />

Scope<br />

Bottom-up nano-engineering <strong>of</strong> functional materials and structures and top-down reduction <strong>of</strong><br />

devices and micro-systems into the nano-range.<br />

Participating departments<br />

Applied Physics (TN)<br />

Chemical Engineering and Chemistry (ST)<br />

Mechanical Engineering (W)<br />

Electrical Engineering (E)<br />

Biomedical Engineering (BMT)<br />

Coordination and chairs<br />

cNM: chair: W.J.M. de Jonge, Applied Physics<br />

coordinator: B. Koopmans, Applied Physics<br />

Research Priority:<br />

coordinator: W.J.M. de Jonge, Applied Physics<br />

Participating full chairs<br />

B. Koopmans / H.J.M. Swagten / W.J.M. de Jonge TN<br />

P.M. Koenraad / H.W.M. Salemink TN<br />

R.A.J. Janssen ST / TN<br />

M.A.J. Michels TN<br />

U.S. Schubert ST<br />

M.W.J. Prins TN<br />

M.K. Smit E<br />

H.C.M. Beijerinck / K.A.H. van Leeuwen TN<br />

M.G.D. Geers W<br />

M.C.M. van de Sanden / D.C. Schram TN<br />

A.H. Dietzel W<br />

Participation in (top)institutes and research schools<br />

DPI, PTN, EPL, Cobra, EM, NIMR and cNM.<br />

6


Nano-engineering <strong>of</strong> Functional Materials and Devices / cNM<br />

Total research fte involved<br />

Physics <strong>of</strong> nanostructures 13.1<br />

Physics <strong>of</strong> semiconductor nanostructures 12.3<br />

Molecular materials and nanosystems 10.0<br />

Theory <strong>of</strong> Polymer Physics 5.1<br />

Macromolecular chemistry and nanoscience 10.1<br />

Nanophotonic devices 3.6<br />

Direct write atom lithography 2.6<br />

Micron and Submicron mechanics 3.8<br />

Plasma based synthesis 6.0<br />

Total research fte involved in pr<strong>of</strong>ile Nano-engineering: 66.6<br />

(amounts to approx. 80 fte in total)<br />

International Advisory Board <strong>of</strong> the cNM<br />

Pr<strong>of</strong>.dr. J. Kirschner - Max-Planck-Institut fuer Mikrostrukturphysik, Halle<br />

Pr<strong>of</strong>.dr. J. Feldmann - Ludwig-Maximilians-Universität, München<br />

Pr<strong>of</strong>.dr. H. Fuchs - Westfalische Wilhelms-Universität, Münster<br />

Pr<strong>of</strong>.dr. J.K. Gimzewski - <strong>University</strong> <strong>of</strong> California<br />

Pr<strong>of</strong>.dr. H.G. Craighead - Cornell <strong>University</strong><br />

7


Nano-engineering <strong>of</strong> Functional Materials and Devices / cNM<br />

Scope<br />

Worldwide efforts and investments are creating the foundations for realistic contributions from<br />

nanotechnology, in such diverse fields as electronics, photonics, organic devices, drug delivery,<br />

molecular screening and biotechnology.<br />

The center for NanoMaterials and the pr<strong>of</strong>ile “Nano-engineering: functional materials and devices”<br />

at the TU/e deliver a strong impulse for science and technology <strong>of</strong> materials, devices and their<br />

design, with critical dimensions in the nanometer range. This pr<strong>of</strong>ile is driven by the notion that<br />

manipulation at the nanometer scale, bottom-up design <strong>of</strong> molecular structures <strong>of</strong> increasing<br />

complexity and functionality, and an integration <strong>of</strong> physics, chemistry and life sciences, will be<br />

key elements in science and technology for the forthcoming decades, e.g. see RAND <strong>report</strong> (1).<br />

Over the past years, a large number <strong>of</strong> activities related to nanoscience and nanotechnology have<br />

already been initiated at the TU/e, as outlined in memo (2). With the presence <strong>of</strong> three top<br />

research schools and technological top institutes at TU/e: the Dutch Polymer Institute (DPI) /<br />

Polymers PTN, COBRA / Photonics and NRSC-Catalysis / NIOK, an enormous potential for<br />

leading contributions in this explosively growing field <strong>of</strong> nano-research is available. The new<br />

department for Biomedical Engineering has become a strong catalytic center for life sciences at<br />

TU/e. A coordination <strong>of</strong> multidisciplinary activities, mutual sharing <strong>of</strong> expertise and enabling<br />

technologies, and the gathering <strong>of</strong> renowned scientists will facilitate the optimal boundary<br />

conditions and atmosphere for forefront scientific contributions, education, and training <strong>of</strong> young<br />

researchers at a high level.<br />

Combining the existing strength in the contributing departments at the TU/e allows to acquire an<br />

internationally recognized position in:<br />

• Exploitation <strong>of</strong> the knowledge from nanoscience and nanotechnology and its utilization in<br />

addressing and manipulation <strong>of</strong> individual objects (molecules) to design and construct<br />

more complex, functional entities / devices (bottom-up approach).<br />

• Advancing (top-down) technologies - with proven capabilities- into the regime with critical<br />

dimensions in nanometers.<br />

• Development <strong>of</strong> engineered functional materials, via modeling and nanotechnologic<br />

synthesis, based on the (self)assembly <strong>of</strong> atomic/molecular/organic building blocks.<br />

The approach, as also summarized in the mission <strong>of</strong> the “center for NanoMaterials” (cNM):<br />

• Stimulation <strong>of</strong> research on nanotechnology that is relevant for our three top research<br />

schools/institutes, and exploit synergy.<br />

• Investments in two directions: first, acquiring specific skills and persons to work in this<br />

pr<strong>of</strong>ile at various positions; second, upgrading <strong>of</strong> our nanoscale toolset and equipment to<br />

enable cross-fertilization in an effective way.<br />

• A strong emphasis on the education and training <strong>of</strong> young researchers in the multidisciplinary<br />

environment (<strong>of</strong>fering a masters degree in nanotechnology).<br />

We will exploit in a symbiotic way our strong and extended network with related universities (TU<br />

Delft, <strong>University</strong> Twente, KU Nijmegen), with national industrial partners (Philips, ASML, DSM,<br />

Océ) and internationally renowned centers for fundamental research. As such it will stimulate the<br />

participation in existing networks and the foundation <strong>of</strong> new networks.<br />

1 RAND <strong>report</strong> 2001 for National Intelligence Council US, The global technology revolution:<br />

bio/nano/materials trends and their synergies with information technology by 2015. (Philip<br />

S. Anton, Richard Silberglitt, James Schneider).<br />

2 Internal TU/e memo “Nano-Science and <strong>Technology</strong> @ TU/e”, January 2001.<br />

8


Nano-engineering <strong>of</strong> Functional Materials and Devices / cNM<br />

Actual<br />

The center for nanoMaterials and the research-theme Nano-engineering are based on the fields <strong>of</strong><br />

nanoscience and nanotechnology and have a particular focus on the topics that <strong>of</strong>fer<br />

“engineering” aspects on a nanometer-scale. It concentrates on materials and device aspects with<br />

an ultimate aim at well-designed applications. For these directions we master the complete<br />

knowledge chain from concepts, via materials to devices/prototypes. This focus area combines the<br />

recognized expertise at the TU/e in the research fields <strong>of</strong>:<br />

• polymer-physics and theory,<br />

• (magneto)-engineering and spintronics,<br />

• (macro)molecular chemistry and self-assembly <strong>of</strong> materials,<br />

• (semiconductor) nanostructures,<br />

• nanophotonic devices<br />

• atom-lithography<br />

• mechanics<br />

The nano-scale aspects are visible in the theory, in the materials-synthesis, in materials-analysis<br />

and in the fabrication technology. The chain in nanotechnology encompasses bottom-up as well<br />

as top-down approaches. Fields with a clear view on applications are emphasized: in this sense we<br />

create a research and training environment that positions the TU/e uniquely in several ways, both<br />

nationally and internationally:<br />

• it complements to general nanoscience efforts,<br />

• it selects particular nanotechnology directions,<br />

• it reinforces overlapping interests with industrial efforts in which we already cooperate –<br />

and will deliver new insights in these cooperations,<br />

• it will be attractive to students with an interest in choosing careers in applied<br />

nanotechnology, <strong>of</strong>fering a multidisciplinary activity,<br />

• it positions this focus area in a concentrated portfolio in view <strong>of</strong> future research and<br />

funding opportunities.<br />

The pr<strong>of</strong>ile as outlined above, with the emphasis on nano-engineering <strong>of</strong> functional materials and<br />

device structures, is complementary with the related nano-programs at the TUD and UT (see<br />

discussion between the 3 TUs and in NanoNed) and strongly interconnects with the nanoscience<br />

research fields <strong>of</strong> the KUN, as also can be monitored from the current and forthcoming national<br />

programs orchestrated in NanoNed and NanoImpuls. This explains the current formation <strong>of</strong> a<br />

combined TU/e-KUN Master course in the field <strong>of</strong> nano-engineering.<br />

In realization <strong>of</strong> the multidisciplinary character <strong>of</strong> nanotechnology and recognizing the widely<br />

diverse impact <strong>of</strong> this field, the faculties TN ST and BMT have formed in 2001 a Center <strong>of</strong><br />

NanoMaterials (CNM) with the intention to reinforce their research and education activities<br />

related to nanotechnology; see memo (3). This effort has resulted in increased mutual activity,<br />

notably between the departments TN and ST, in a common seminar series and in joint proposals<br />

in new opportunities for funding <strong>of</strong> nanotechnology.<br />

3 Memo on TU/e Center <strong>of</strong> Expertise, “center for NanoMaterials cNM ”, Platform for research<br />

and education, April 27, 2001and revision October 3, 2001.<br />

9


Nano-engineering <strong>of</strong> Functional Materials and Devices / cNM<br />

Available facilities<br />

The available facilities for this pr<strong>of</strong>ile range from design/theory, materials synthesis/fabrication,<br />

and materials analysis to functionals prototypes (first-<strong>of</strong>-a-kind) and include:<br />

• Since early 2003 a newly constructed technology building (“Spectrum”) with technical<br />

laboratories, low-vibration laboratories and clean-room facilities is realized.<br />

• Materials synthesis and thin film growth: self-assembly and (epitaxial) growth <strong>of</strong> a wide<br />

range <strong>of</strong> materials (oxides, organic, metals, semiconductors).<br />

• Wide range <strong>of</strong> state-<strong>of</strong>-the-art, ultra-fast laser spectroscopy-techniques over large<br />

wavelength range (UV to NIR).<br />

• Suite <strong>of</strong> scanning probe tools for nanometer scale analysis (also automated units):<br />

tunneling, force and friction microscopies under a range <strong>of</strong> relevant conditions: ambient<br />

atmosphere, with optical access, ultra-high vacuum, low temperature; nano-indenters.<br />

These tools are used for analysis, lithography and manipulation.<br />

• Inkjet printing facility for the defined delivery <strong>of</strong> polymer droplets.<br />

• Suite <strong>of</strong> electron and ion beam tools for fabrication and analysis: electron beam<br />

lithography, high-resolution scanning and transmission electron microscopes, Cryo/TEM<br />

(in 2004).<br />

• Ion-based plasma etching, plasma deposition and sputtering machines.<br />

• Laser based lithography.<br />

• Theory based on physical first principles: electronic structure and micromechanics; multi<br />

variance finite element theory.<br />

10


Nano-engineering <strong>of</strong> Functional Materials and Devices / cNM<br />

Future<br />

Based on the available expertise within the constituting departments, it is expected that the<br />

research theme Nano-engineering adds value and provides new, internationally interesting<br />

pathways in the design and fabrication <strong>of</strong> composite materials (inorganic and organic), in the use<br />

<strong>of</strong> nanotechnology to demonstrate new concepts and devices (polymeric, photonic, magnetic) and<br />

(industrially) interesting utilizations (catalytic activity, optical emitters and optical sensors,<br />

photon-convertors, nanoscale fluidic devices, molecular recognition and sorting). A large fraction<br />

<strong>of</strong> the new research themes under Nano-engineering is formulated in the programs NanoImpuls<br />

(approved December 2002 and currently executed via STW) and NanoNed (under evaluation in<br />

Bsik –ICES/KIS-3). Similar to the international activities in nanotechnology, a major thrust into<br />

the field <strong>of</strong> life-science technology is expected to develop. The unique opportunity for Nanoengineering<br />

at TU/e is in the utilization <strong>of</strong> science and technology for devices/sensors with<br />

realistic (industrial) applications, given our contacts with the technological base in the<br />

Netherlands.<br />

The following strategically chosen research areas will be covered:<br />

1. Materials design, self assembly and self organization,<br />

2. Functional materials and nanoscopic devices,<br />

3. Integrated catalysis and nanochemistry,<br />

4. Bionanotechnology and medical applications,<br />

5. Long-term research with generic applications.<br />

The research and education activities are embedded in the participating schools and institutes<br />

(DPI, PTN, EPL, Cobra, cNM) and relates to the portfolio pr<strong>of</strong>ile Polymers.<br />

11


Nano-engineering / cNM Physics <strong>of</strong> Nanostructures<br />

The cNM seminars <strong>2005</strong><br />

Pr<strong>of</strong>. Andreas Dietzel (Dept. Mechanical Engineering)<br />

"Ion Projection Direct Structuring for Nano-Patterning <strong>of</strong> Magnetic Media"<br />

April 13, <strong>2005</strong><br />

Alfons van Blaaderen (Debye Institute, Utrecht <strong>University</strong>)<br />

"Colloids under External Control"<br />

April 27, <strong>2005</strong><br />

Dirk Burdinski (Philips Research, <strong>Eindhoven</strong>)<br />

"Microcontact Wave Printing for Electronic Devices"<br />

Wednesday, May 25, <strong>2005</strong><br />

Sergei Magonov (Veeco Instruments, Santa Barbara, CA)<br />

"Atomic Force Microscopy in its Application to S<strong>of</strong>t Condensed Matter”<br />

Wednesday, June 8, <strong>2005</strong><br />

Hans-Jürgen Butt (Max-Planck-Institute for Polymer Research, Mainz, Germany)<br />

"Atomic force microscopy: A routine tool or emerging technique?"<br />

Wednesday, June 15, <strong>2005</strong><br />

Harald Fuchs (Physikalisches Institut, Universitaet Muenster)<br />

“Self organized organic systems and their characterization by dynamic scanning probes"<br />

Wednesday, June 15, <strong>2005</strong><br />

Henning Sirringhaus (Cavendish Laboratory, <strong>University</strong> <strong>of</strong> Cambridge - UK)<br />

"Electron and hole transport at polymer heterointerfaces"<br />

Wednesday, September 21, <strong>2005</strong><br />

Ulrich Koert (Philipps-Universität Marburg)<br />

"Synthetic ion channels and conformational switches"<br />

Wednesday, October 26, <strong>2005</strong><br />

Miquel Salmeron (Lawrence Berkeley Natl. Laboratory, Univ. California, Berkeley)<br />

"Nanometer scale mechanical and electronic properties <strong>of</strong> molecular films"<br />

Monday, November 7, <strong>2005</strong><br />

The cNM Research day <strong>2005</strong><br />

June 6, Auditorium, TU/e<br />

12


Nano-engineering / cNM Physics <strong>of</strong> Nanostructures<br />

The cNM Research day <strong>2005</strong><br />

June 6, Auditorium, TU/e<br />

Guest Lecture: Jürgen Kirschner (MPI für Microstrukturphysik, Halle)<br />

"Physics and technology <strong>of</strong> magnetic nanostructures"<br />

Michael Meier (Macrmolecular Chemistry and Nanoscience)<br />

“Tailor-made unimolecular micelles for drug delivery, sensor applications or catalysis”<br />

Erik Bogaart (Semiconductor Physics)<br />

“Carrier relaxation in quantum dots”<br />

Vici-Lecture: Ulrich Schubert (Macrmolecular Chemistry and Nanoscience)<br />

“(Macro)molecular engineering on the nanoscale”<br />

Francesco Dalla Longa (Physics <strong>of</strong> Nanostructures)<br />

“Femtosecond dynamics in magnetic nanostructures”<br />

Chris Meisel (Polymer Physics)<br />

“Polarons and charge transport in polymers”<br />

Ton van Leeuwen (Atom Physics and Quantum <strong>Technology</strong>)<br />

“Atom lithography”<br />

Rik van Laarhoven (Molecular Materials and Nanosystems)<br />

“Electron and hole vibrational coupling in oligoacene single crystals”<br />

13


Nano-engineering / cNM Physics <strong>of</strong> Nanostructures<br />

Physics <strong>of</strong> Nanostructures B. Koopmans / H.J.M. Swagten / W.J.M. de Jonge<br />

Research in the group aims at the exploration and exploitation <strong>of</strong> novel physical phenomena at the<br />

nanometer scale by engineering the (magnetic) properties and structure <strong>of</strong> nanosystems. The<br />

program is inspired by the challenges <strong>of</strong> nanoscience and nanotechnology. At present, the main<br />

emphasis is on processes and systems that are relevant for the future development <strong>of</strong> (magnetic)<br />

data storage and spinelectronics. While this approach is strongly curiosity driven, it is the aim to<br />

select in particular those issues that potentially have a high technological impact.<br />

Research themes<br />

1. Nanomagnetism. Deposition <strong>of</strong> and engineering <strong>of</strong> layered and nanostructured systems.<br />

In-situ and ex-situ characterization <strong>of</strong> structural and magnetic properties. Implementation<br />

and development <strong>of</strong> novel SPM methods for analysis and manipulation at nanometer to<br />

atomic scale.<br />

2. Spintronics. Tailoring spin-polarized transport in ferromagnetic and hybrid<br />

nanostructures. Specific emphasis on magnetic tunnel-junctions, spin-injection /<br />

manipulation in(to) semiconductors, and molecular spintronics.<br />

3. Ultrafast spin dynamics. Investigation <strong>of</strong> ultimate limits <strong>of</strong> spin dynamics in ferromagnetic<br />

nanostructures. Development <strong>of</strong> novel concepts for high-data rate recording. Development<br />

<strong>of</strong> near-field femtosecond magneto-optical microscopy.<br />

4. Molecular systems. Engineering <strong>of</strong> single-molecule and self-assembled molecular systems,<br />

including UHV deposition <strong>of</strong> molecular films, molecular spintronic devices, scanning<br />

probe manipulation and biosensors.<br />

Keywords<br />

Spintronics, magnetism, magnetic nanostructures, spin polarized transport, magnetic<br />

tunneljunctions, ultrafast spindynamics, scanning probe microscopy, molecular electronics,<br />

molecular manipulation, biosensors<br />

Staff involved<br />

Total Research<br />

Senior staff 4.2 2.1<br />

PhD 10.0 8.0<br />

Post doc 3.0 3.0<br />

Total (fte) 13.1<br />

Key publications<br />

A.T. Filip, P. LeClair, C.J.P. Smits, J.T. Kohlhepp, H.J.M. Swagten, B. Koopmans and W.J.M. de<br />

Jonge, Spin injection device based on EuS magnetic tunnel barriers, Appl. Phys. Lett. 81, 1815<br />

(2002)<br />

O. Kurnosikov, J.T. Kohlhepp and W.J.M. de Jonge, Can surface embedded atoms be moved with<br />

an STM tip? Europhys. Lett., 64, 73 (2003)<br />

14


Nano-engineering / cNM Physics <strong>of</strong> Nanostructures<br />

C.H. Kant, J.T. Kohlhepp, H.J.M. Swagten, and W.J.M. de Jonge, Intrinsic thermal robustness <strong>of</strong><br />

tunneling spin polarization in Al/Al2O3/Co junctions, Appl. Phys. Lett. 84, 1141 (2004)<br />

H. Wieldraaijer, W.J.M. de Jonge, and J.T. Kohlhepp, Monolayer resolved oscillating hyperfine<br />

fields in epitaxial fct-Co(001) films, Phys. Rev. Lett. 93, 177205 - 177208 (2004)<br />

B. Koopmans, J.J.M. Ruigrok, F. Dalla Longa, and W.J.M. de Jonge, Unifying ultrafast<br />

magnetization dynamics, Phys. Rev. Lett. 95, 267207 (<strong>2005</strong>)<br />

Research highlight<br />

The understanding <strong>of</strong> the influence <strong>of</strong> nanometer or even<br />

atomic scale roughness on the magnetic and transport<br />

properties <strong>of</strong> magnetic heterostructures is a crucial step for<br />

a controlled design <strong>of</strong> modern nanostructured spintronic<br />

devices with well defined functionalities. One <strong>of</strong> the key<br />

components in GMR devices, magnetic tunnel junctions or<br />

other spintronic devices in general, are i.e. very <strong>of</strong>ten<br />

antiferromagnetic (AFM) layers which are exchange-<br />

120 X 120 nm<br />

coupled to ferromagnetic (FM) layers. Here the function <strong>of</strong><br />

the AFM layer is to pin the magnetization direction <strong>of</strong> the<br />

adjacent FM layer to a certain direction. The AFM/FM<br />

30<br />

25<br />

interface quality on an atomic scale plays here a crucial 20<br />

role for the determination <strong>of</strong> the magnetic switching 15<br />

behavior. We have demonstrated this with our recently<br />

developed single-crystalline Co/Mn(001) FM/AFM model<br />

system. The growth <strong>of</strong> Co(001) on a single crystal<br />

Cu(001) is characterized by the expansion and coalescence<br />

10<br />

5<br />

40<br />

<strong>of</strong> islands <strong>of</strong> single-atom height with a Co-monolayer<br />

(ML) periodicity (layer-by-layer growth), which<br />

30<br />

consequently forms the template for the Mn growth (see<br />

STM pictures). This opens up the possibility to investigate<br />

20<br />

the influence <strong>of</strong> a well-defined atomic-scale roughness at<br />

the AFM/FM interface on the exchange interaction in<br />

10<br />

detail. We have shown that both the magnetization loop<br />

8 9 10 11 12 13 14<br />

shift (HE) and the coercive force (HC) oscillate with a Co-<br />

ML periodicity showing maxima (minima) for half-filled<br />

Co Layer Thickness (ML)<br />

(filled) Co template layer surfaces, respectively. The significance <strong>of</strong> these results lie in the<br />

unambiguous demonstration that atomic scale interface roughness can dramatically influence<br />

exchange interactions as demonstrated by our experiments which could only be achieved by the<br />

exceptional level <strong>of</strong> control that can be achieved in single-crystal heterostructures.<br />

2<br />

Senior scientific staff<br />

Pr<strong>of</strong>.dr. B. Koopmans<br />

Bert Koopmans is a full pr<strong>of</strong>essor, and group leader since 2003. His research interests encompass<br />

spintronics (including hybrid semiconductor and molecular devices – the latter being<br />

implemented within his NWO-Vici grant 2004), nanomagnetism and ultrafast spin dynamics. At<br />

present, he is coordinator <strong>of</strong> the center for NanoMaterials (cNM) and captain <strong>of</strong> the flagship<br />

Nanospintronics, one <strong>of</strong> programs within the Dutch Nano<strong>Technology</strong> Initiative<br />

NanoNed/NanoImpuls. He is in the general representative <strong>of</strong> TU/e within NanoNed.<br />

15<br />

|H E | (kA/m)<br />

H C (kA/m)<br />

10.5 ML Co(001) 11.0 ML Co(001)


Nano-engineering / cNM Physics <strong>of</strong> Nanostructures<br />

Pr<strong>of</strong>.Dr.Ir. H.J.M. Swagten<br />

Henk Swagten is associate pr<strong>of</strong>essor in the group Physics <strong>of</strong> Nanostructures. His current<br />

activities are focusing on new phenomena in the area <strong>of</strong> spintronics, such as spin-polarized<br />

tunnelling across nano-oxide layers, spin filtering and spin injection in nano-layered magnetic<br />

devices, and the imaging <strong>of</strong> spin phenomena on a nanometer scale using scanning probe<br />

techniques. These subjects are fully incorporated in the recently granted NWO-VICI program on<br />

spintronics.<br />

Pr<strong>of</strong>.dr.ir. W.J.M. de Jonge<br />

Wim de Jonge is a full pr<strong>of</strong>essor, group leader until 2003, and dean <strong>of</strong> the department <strong>of</strong> applied<br />

physics. Over the past decades his research interest has been in diluted magnetic semiconductors,<br />

high Tc superconductors, as well as magnetic thin films, magnetic multilayers, artificial<br />

nanostructures and their applications. In 2000 he received the KNAW Holst prize for his work,<br />

together with Philips Research, on giant-magnetoresistance and tunnel magnetoresistance.<br />

Dr. J.T. Kohlhepp<br />

Jürgen Kohlhepp is an assistant pr<strong>of</strong>essor. He has more than fifteen years <strong>of</strong> experience with the<br />

preparation (Molecular Beam Epitaxy, UHV-Sputter Deposition) and the characterization <strong>of</strong> the<br />

structural, the magnetic and the electronic properties <strong>of</strong> (ultra)thin films, multilayered systems,<br />

surfaces and interfaces, and magnetic devices.<br />

Dr. O. Kurnosikov<br />

Oleg Kurnosikov is a senior researcher, in charge <strong>of</strong> several projects related to applications and<br />

development <strong>of</strong> scanning probe microscopies. Activities encompass low-temperature STM<br />

(including atomic manipulation), hot-electron microscopy, MFM and near-field magneto-optics.<br />

Selected publications 2001-<strong>2005</strong><br />

2001<br />

P. LeClair, J.T. Kohlhepp, H.J.M. Swagten, W.J.M. de Jonge, Interfacial density <strong>of</strong> states in magnetic tunnel<br />

junctions, Phys. Rev. Lett. 86, 1066 (2001)<br />

H. Kepa, J. Kutner-Pielaszek, J. Blinowski, A. Tardowski, C.F. Majkrzak, T. Story, P. Kacman, R.R. Galazka,<br />

K. Ha, H.J.M. Swagten, W.J.M. de Jonge, A. Yu. Sipatov, V. Volobuev, T.M. Giebultowicz, Antiferromagnetic<br />

interlayer coupling in ferromagnetic semiconductor EuS/PbS(001) superlattices, Europhysics Lett. 56, 54<br />

(2001)<br />

D. Alders, R. Coehoorn, W.J.M. de Jonge, Single-ion anisotropy <strong>of</strong> localized-electron compounds, Phys. Rev.<br />

B 63, 054407 (2001)<br />

P.J. van Hall, Ultrafast processes in Ag and Au: A Monte Carlo study, Phys. Rev. B 63, 104301 (2001)<br />

O. Kurnosikov, F.C. de Nooij, P. LeClair, J.T. Kohlhepp, B. Koopmans, H.J.M. Swagten, W.J.M. de Jonge,<br />

STM-induced reversible switching <strong>of</strong> local current transport in thin Al2O3 films, Phys. Rev. B 64, 153407<br />

(2001)<br />

W. Oepts, M.F. Gillies, R. Coehoorn, R. van de Veerdonk, W.J.M. de Jonge, Asymmetric bias voltage<br />

dependence <strong>of</strong> the magnetoresistance <strong>of</strong> Co/Al2O3/Co magnetic tunnel junctions: variation with the barrier<br />

oxidation time, J. Appl. Phys. 89, 8038 (2001)<br />

K. Knechten, P. LeClair, J.T. Kohlhepp, H.J.M. Swagten, B. Koopmans, W.J.M. de Jonge, In situ timeresolved<br />

optical studies <strong>of</strong> Al oxidation for magnetic tunnel junctions, J. Appl. Phys. 90,1675 (2001)<br />

P. LeClair, B. Hoex, H. Wieldraaijer, J.T. Kohlhepp, H.J.M. Swagten, W.J.M. de Jonge, Sign reversal <strong>of</strong> spin<br />

polarization in Co/Ru/Al2O3/Co magnetic tunnel junctions, Phys. Rev. B Rapid Communications 64,<br />

100406 (2001)<br />

B. Koopmans, M. van Kampen, J.T. Kohlhepp, W.J.M. de Jonge, Femtosecond magneto-optics: Spin<br />

16


Nano-engineering / cNM Physics <strong>of</strong> Nanostructures<br />

dynamics in ferromagnetic layered systems, Material Science Forum Vols. 373-376, 69 (2001)<br />

W. Oepts – Magnetic tunnel junction device having an intermediate layer, Patent No.: US 6,295,225 B1,<br />

Date <strong>of</strong> Patent: Sep. 25, 2001.<br />

2002<br />

P. LeClair, J.T. Kohlhepp, C.H. van de Vin, H. Wieldraaijer, H.J.M. Swagten, W.J.M. de Jonge, H. Davis, J.M.<br />

MacLaren, J.S. Moodera and R. Jansen, Band structure and density <strong>of</strong> states effects in Co-based magnetic<br />

tunnel junctions, Phys. Rev. Lett. 88, 107201 (2002)<br />

M. van Kampen, C. Josza, J.T. Kohlhepp, P. LeClair, W.J.M. de Jonge, and B. Koopmans, All-optical probe <strong>of</strong><br />

coherent spin waves, Phys.Rev. Lett. 88, 227201 (2002)<br />

P. LeClair, J.K. Ha, H.J.M. Swagten, C.H. van de Vin, J.T. Kohlhepp, and W.J.M. de Jonge, Large<br />

magnetoresistance using hybrid spin filter devices, Appl. Phys.Lett. 80, 625 (2002)<br />

A.T. Filip, P. LeClair, C.J.P. Smits, J.T. Kohlhepp, H.J.M. Swagten, B. Koopmans and W.J.M. de Jonge, Spin<br />

injection device based on EuS magnetic tunnel barriers, Appl. Phys. Lett. 81, 1815 (2002)<br />

O. Kurnosikov, J.E.A. de Jong, H.J.M. Swagten, and W.J.M. de Jonge, Direct observation <strong>of</strong> local hot electron<br />

transport through an Al2O3 tunnel junctions, Appl. Phys. Lett. 80, 1076 (2002)<br />

A.J.M. van Erven, T.H. Kim, M. Muenzenberg and J.S. Moodera, Highly crystallized as-grown smooth and<br />

superconducting MgB2 films by molecular-beam epitaxy, Appl. Phys. Lett. 81, 25 (2002)<br />

R.W.E. van de Kruijs, M.Th. Rekveldt, H. Fredrikze, J.T. Kohlhepp, J.K. Ha, and W.J.M. de Jonge, Magnetic<br />

interlayer exchange coupling in epitaxial Fe/Si/Fe(100) studied by polarized neutron reflectiometry, Phys.<br />

Rev. B 65, 064440 (2002)<br />

M.V. Tiba, O. Kurnosikov, C.F.J. Flipse, B. Koopmans, H.J.M. Swagten, J.T. Kohlhepp, and W.J.M. de Jonge,<br />

Ordering <strong>of</strong> organic molecules on passivated reactive substrates: PTCDA on O p(2x2) – Ni(111), Surf. Sci.<br />

498, 161 (2002)<br />

C.H. Kant, O. Kurnosikov, A.T. Filip, P. LeClair, H.J.M. Swagten and W.J.M. de Jonge, Origin <strong>of</strong> spin<br />

polarization decay in point contact Andreev reflection, Phys.Rev.B. 66, 212403 (2002)<br />

J.T. Kohlhepp, P. LeClair, H.J.M. Swagten, and W.J.M. de Jonge, Interfacial sensitivity and zero-bias<br />

anomalies in magnetic tunnel junctions, Phys. Stat. Sol. 189, 261 (2002) Editor’s Choice<br />

2003<br />

O. Kurnosikov, J.T. Kohlhepp and W.J.M. de Jonge, Can surface embedded atoms be moved with an STM<br />

tip? Europhysics Letters, 64, 73 – 83 (2003)<br />

P.H.P. Koller, F.W.M. Vanhelmont, H. Boeve, R. Coehoorn and W.J.M. de Jonge, The oxidation process <strong>of</strong><br />

AIOx-based magnetic tunnel junctions studied by photoconductance, Journal <strong>of</strong> Applied Physics 93, 8549<br />

(2003)<br />

H. Wieldraaijer, J.T. Kohlhepp, P. LeClair, K.Ha and W.J.M. de Jonge, Growth <strong>of</strong> epitaxial bcc Co(001)<br />

electrocodes for magnetoresistive devices, Physical Review B, vol. 67 (22), 224430 (2003)<br />

B. Koopmans, M. van Kampen and W.J.M. de Jonge, Experimental access to femtosecond spin dynamics, J.<br />

Phys.: Condens. Matter 15, S723-S736 (2003)<br />

G. Tanasa, O. Kurnosikov, C.F.J. Flipse, J.G. Buijnsters and W.J.P. van Enckevort, Diamond deposition on<br />

modified silicon substrates: Making diamond atomic force microscopy tips for nan<strong>of</strong>riction experiments,<br />

Journal <strong>of</strong> Applied Physics, 94, 1699 – 1704 (2003)<br />

F. Walz, V.A.M. Brabers, J.H.V.J. Brabers, and H. Kronmueller, Stress-induced relaxation mechanisms in<br />

single-crystalline titanomagnetic, J.Phys.: Condens.Matter 15, 7029 (2003)<br />

G. Zoriniants, D. Englund, O. Kurnosikov, C.F.J. Flipse, E. Rido, H. Brune, W.J.M. de Jonge and B.<br />

17


Nano-engineering / cNM Physics <strong>of</strong> Nanostructures<br />

Koopmans, Development <strong>of</strong> a near-field magneto-optical microscopy for studying ultrafast magnetization<br />

dynamics, AIP conference proceeding 696, 204 (2003)<br />

M.V. Tiba, O. Kurnosikov, C.F.J. Flipse, H.J.M. Swagten, J.T. Kohlhepp, R.A.J. Janssen, P.M. Koenraad,<br />

W.J.M. de Jonge and B. Koopmans, Growth <strong>of</strong> organic molecules on ferromagnetic metallic substrates – a<br />

combined STM/AFM study, AIP conference proceeding 696, 521 (2003)<br />

M. Chernyshova, L. Kowalczyk, A. Szczerbakow, T. Story, C.J.P. Smits, H.J.M. Swagten, C.H.W. Swuste, J.K.<br />

Ha, W.J.M. de Jonge, A.Y. Sipatov and V.V. Volobuev, Magnetization <strong>of</strong> EuS-PbS Multilayers with<br />

Antiferromagnetic Interlayer Coupling, J. Supercond. 16, 213 (2003)<br />

C.H. Kant, O. Kurnosikov, A.T. Filip, H.J.M. Swagten and W.J.M. de Jonge, Interface spin-flip scattering<br />

model for point contact Andreev reflection, Journal <strong>of</strong> Applied Physics, 93, 7528 - 7530 (2003).<br />

C.H. Kant, J.T. Kohlhepp, H.J.M. Swagten, W.J.M. de Jonge, Intrinsic thermal robustness <strong>of</strong> tunneling spin<br />

polarization in Al/Al2O3/Co junctions, Applied Physics Letters 84, 1141 (2004)<br />

2004<br />

H. Wieldraaijer, W.J.M. de Jonge, J.T. Kohlhepp, Monolayer resolved oscillating hyperfine fields in epitaxial<br />

fct-Co(001) films, Phys. Rev. Lett. 93, 177205 (2004).<br />

G. Ju, J. Hohlfeld, B. Bergman, R.J.M. van de Veerdonk, O.N. Mryasov, J.-Y. Kim, X. Wu, D. Weller, B.<br />

Koopmans, Ultrafast generation <strong>of</strong> ferromagnetic order via laser-induced phase transformation in FeRh<br />

thin films, Phys. Rev. Lett. 93, 197403 (2004).<br />

C.H. Kant, A.T. Filip, H.J.M. Swagten, W.J.M. de Jonge, Comment on “Direct measurement <strong>of</strong> the spin<br />

polarization <strong>of</strong> the magnetic semiconductor (Ga,Mn)As”, Phys. Rev. Lett. 93, 169703 (2004)<br />

P. H. P. Koller, H. J. M. Swagten, and W. J. M. de Jonge, H. Boeve, R. Coehoorn, Direct observation <strong>of</strong> the<br />

barrier asymmetry in magnetic tunnel junctions, Applied Physics Letters 84, 4929 (2004).<br />

C.H. Kant, J.T. Kohlhepp, H.J.M. Swagten, B. Koopmans, W.J.M. de Jonge, Role <strong>of</strong> the barrier in spindependent<br />

tunneling addressed with superconductor spectroscopy, Phys. Rev. B 69, 172408 (2004).<br />

C. Jozsa, J.H.H. Rietjens, M. van Kampen, E. Smalbrugge, M.K. Smit, W.J.M. de Jonge, B. Koopmans,<br />

Retrieving pulse pr<strong>of</strong>iles from pump-probe measurements on magnetization dynamics, J. Appl. Phys. 95,<br />

7447 (2004)<br />

J.T. Kohlhepp, W.J.M. de Jonge, Influence <strong>of</strong> the FM/AFM interface morphology on the exchange coupling<br />

in epitaxial Co(001)/fct-Mn(001), J. Appl. Phys. 95, 6840 (2004)<br />

C.J.P. Smits, S.C.A. van Driel, M. van Kampen, W.J.M. de Jonge, B. Koopmans, G. Karczewski, Exciton<br />

enhancement <strong>of</strong> spin relaxation in diluted magnetic semiconductor quantum wells, Physical Review B 70,<br />

115307 (2004)<br />

O. Kurnosikov, J.T. Kohlhepp, W.J.M. de Jonge, STM-tip induced displacement <strong>of</strong> Co atoms embedded in a<br />

Cu(001) surface, Surf. Science 566, 175 - 180 (2004)<br />

K. Knechten, B.J. Kniknie, R. Engeln, H.J.M. Swagten, B. Koopmans, M.C.M. van de Sanden, W.J.M. de<br />

Jonge, TALIF on ozone in a DC plasma for oxidation <strong>of</strong> aluminum, J. Vac. Sc. Tech. A 22, 11 - 14 (2004)<br />

<strong>2005</strong><br />

B. Koopmans, J.J.M. Ruigrok, F. Dalla Longa, and W.J.M. de Jonge, Unifying ultrafast magnetization<br />

dynamics, Phys. Rev. Lett. 95, 267207 (<strong>2005</strong>)<br />

J.H.H. Rietjens, C. Józsa, H. Boeve, W.J.M. de Jonge, and B. Koopmans, Effect <strong>of</strong> stray field on local spin<br />

modes in exchange-biased magnetic tunnel junction elements, Appl. Phys. Lett. 87, 172508 - 3 (<strong>2005</strong>)<br />

P.H.P. Koller, H.J.M. Swagten, W.J.M. de Jonge, and R. Coehoorn, Change <strong>of</strong> the barrier potential shape in<br />

magnetic tunnel junctions due to an anneal treatment, Appl. Phys. Lett. 86, 102508 - 3 (<strong>2005</strong>)<br />

18


Nano-engineering / cNM Physics <strong>of</strong> Nanostructures<br />

W.P.E.M. Op 't Root, H.J.M. Swagten, F.J. Jedema, and A.E.T. Kuiper, Magnetic read-only memory with<br />

removable medium, Appl. Phys. Lett. 87, 203501 - 3 (<strong>2005</strong>)<br />

H. Wieldraaijer, W.J.M. de Jonge, and J.T. Kohlhepp, Electrical-field gradients in thin face-centeredtetragonal<br />

Co films observed by nuclear magnetic resonance, Phys. Rev. B 72, 155409 - 10 (<strong>2005</strong>)<br />

J.T. Kohlhepp, O. Kurnosikov, and W.J.M. de Jonge, Oscillatory biquadratic antiferromagnet/ferromagnet<br />

interface exchange coupling, J. Magn. Magn. Mater. 286, 220 - 224 (<strong>2005</strong>)<br />

M. van Kampen, I. Sorroka, R. Brucas, B. Hjorvarsson, R. Wieser, K.D. Usadel, M. Hansson, O. Kazakova,<br />

H. Zabel, J. Grabis, C. Józsa, and B. Koopmans, On the realisation <strong>of</strong> artificial XY spin-chains, J. Phys.<br />

Cond. Mat. 17, 27 - 33 (<strong>2005</strong>)<br />

H. Wieldraaijer, W.J.M. de Jonge, and J.T. Kohlhepp, 59Co NMR observation <strong>of</strong> monolayer resolved<br />

hyperfine fields in ultrathin epitaxial fct-Co(001) films, J. Magn. Magn. Mater. 286, 390 - 393 (<strong>2005</strong>)<br />

P.V. Paluskar, C.H. Kant, J.T. Kohlhepp, A.T. Filip, H.J.M. Swagten, B. Koopmans, and W.J.M. de Jonge, Mn<br />

diffusion and the thermal stability <strong>of</strong> tunneling spin polarization, J. Appl. Phys. 97, 925 (<strong>2005</strong>)<br />

A.T. Filip, J.J.H.M. Schoonus, H.J.M. Swagten, B. Koopmans, W.J.M. de Jonge, F. Karouta, E.J. van Geluk,<br />

W. van Roy, and J, Towards All Electrical Spin Injection and Detection in GaAs in a Lateral Geometry, J.<br />

Supercond. (<strong>2005</strong>)<br />

19


Nano-engineering / cNM Physics <strong>of</strong> Semiconductor Nanostructures<br />

Physics <strong>of</strong> Semiconductor Nanostructures<br />

P.M. Koenraad / J.H. Wolter / H.W.M. Salemink<br />

The central research issue is the study <strong>of</strong> self-assembled growth and investigation <strong>of</strong> structural,<br />

electrical and optical properties <strong>of</strong> semiconductor nanostructures. The structures are engineered<br />

and controlled on a nano-meter scale. The scope <strong>of</strong> the activity ranges from physics to<br />

engineering, from materials to devices.<br />

Research themes<br />

1. Quantum confinement structures. Controlled growth <strong>of</strong> quantum confined semiconductor<br />

III/V semiconductor structures by molecular beam epitaxy (MBE), chemical beam epitaxy<br />

(CBE) and metal-organic vapor phase epitaxy (MOVPE), in particular formation <strong>of</strong><br />

quantum wires and quantum dots on naturally corrugated and patterned high-and lowindex<br />

substrates to the InP based material system.<br />

2. Nanoprobing techniques. Nano-probe assembly and analysis <strong>of</strong> structural and optical<br />

properties via laser and scanning probe techniques (structures mentioned in 1). Crosssectional<br />

Scanning Tunneling Microscopy (X-STM) under UHV conditions, Atomic Force<br />

Microscopy (AFM) at ambient conditions and STM induced luminescence (STL) in the<br />

temperature range from 4K to 300K.<br />

3. Ultrafast laser techniques. Optical investigation <strong>of</strong> 0D, 1D and 2D quantum structures,<br />

using a variety <strong>of</strong> advanced laser techniques from visible to near IR, including ultrafast<br />

laser spectroscopy. Femtosecond carrier dynamics and multi-exciton dynamics in<br />

quantum dot structures.<br />

4. Nano-photonic crystal structures. The investigation <strong>of</strong> novel optical structures based on<br />

fabrication <strong>of</strong> 2D diffractive dielectric structures with a precision <strong>of</strong> a few nanometers.<br />

The relation between modeling, fabrication on nanometer scale and the resulting control<br />

over optical properties like diffraction and photonic bandgap in InP based material.<br />

Investigations into other materials and hybrid combinations (semiconductor/polymers).<br />

Keywords<br />

Quantum dots, III-V compound semiconductor, epitaxy, scanning probes, fast laser spectroscopy,<br />

nanophotonics, photonic crystal structures.<br />

Staff involved<br />

Total Research<br />

Senior staff 7.0 3.5<br />

PhD 6.0 4.8<br />

Post doc 4.0 4.0<br />

Total (fte) 12.3<br />

20


Nano-engineering / cNM Physics <strong>of</strong> Semiconductor Nanostructures<br />

Key publications<br />

T. Mano, R. Nötzel, G.J. Hamhuis, T.J. Eijkemans, and J.H. Wolter, “Formation <strong>of</strong> InAs quantum<br />

dot arrays on GaAs (100) by self-organized anisotropic strain engineering <strong>of</strong> a (In,Ga)As superlattice<br />

template”, Appl. Phys. Lett. 81, p. 1705 – 1707 (2002).<br />

A. Yakunin, A.Yu. Silov, P.M. Koenraad, W. van Roy, J. De Boeck, J.H. Wolter “Spatial structure <strong>of</strong><br />

an individual acceptor in GaAs”, Phys. Rev. Lett. 92, 216806 (2004)<br />

D.M. Bruls, J.W.A.M. Vugs, P.M. Koenraad, H.W.M. Salemink, M. Hopkinson, M.S. Skolnick,<br />

Fei Long, S.P.A. Gill, and J.H. Wolter, “Conclusive determination <strong>of</strong> the shape and Indium<br />

distribution <strong>of</strong> Self-assembled InAs quantum dots”, Appl. Phys. Lett. 81, 1708-10 (2002)<br />

R. Prasanth, J.E.M. Haverkort, A. Deepthy, E.W. Bogaart, J.J.G.M. van der Tol, E.A. Patent, G.<br />

Zhao, Q. Gong, P.J. van Veldhoven, R. Nötzel, and J.H. Wolter, “All-optical switching due to statefilling<br />

in quantum dots”, Appl. Phys. Lett. 84, 4059 (2004).<br />

Q. Gong, R. Nötzel, P.J. van Veldhoven, T.J. Eijkemans, and J.H. Wolter, “Wavelength tuning <strong>of</strong><br />

InAs quantum dots grown on InP (100) by chemical-beam epitaxy”, Appl. Phys. Lett. 84, p. 275 – 277<br />

(2004).<br />

Research highlights<br />

30 nm<br />

1 µm<br />

[0-11]<br />

[011]<br />

Well-ordered (In,Ga)As QDs formed by selforganized<br />

anisotropic strain engineering on a<br />

GaAs (100) substrate.<br />

Lateral ordering <strong>of</strong> semiconductor quantum dots<br />

(QDs) <strong>of</strong> high quality in well-defined arrays and<br />

networks is one <strong>of</strong> the most challenging tasks for<br />

today’s nanomaterials science to be fulfilled for the<br />

realization <strong>of</strong> future quantum functional devices.<br />

We have solved the problem <strong>of</strong> creating ordered<br />

arrays <strong>of</strong> (In,Ga)As QDs on GaAs (100) by selforganization.<br />

In this pioneering work we have<br />

established a new concept based on self-organized<br />

anisotropic strain engineering <strong>of</strong> (In,Ga)As/GaAs<br />

superlattice templates, which maintains high<br />

structural and optical quality <strong>of</strong> the ordered QD<br />

arrays. During the molecular beam epitaxial growth<br />

<strong>of</strong> a (In,Ga)As/GaAs superlattice at elevated<br />

temperatures, elongated (In,Ga)As QDs develop into very uniform and long quantum wire arrays<br />

along the [0-11] direction with well-defined lateral periodicity. The accumulation <strong>of</strong> the anisotropic<br />

strain field in this superlattice provides a uniform template<br />

for the ordering <strong>of</strong> (In,Ga)As QDs grown on top in welldefined<br />

arrays along [01-1] (Fig. 1). Excellent optical quality<br />

up to room temperature is established for these QD arrays.<br />

This breakthrough, thus, allows for novel fundamental<br />

studies and device operation principles based on single<br />

and multiple carrier- and photon-, and coherent quantum<br />

interference effects.<br />

We have used cross-sectional Scanning Tunneling<br />

Microscopy to investigate the shape and composition <strong>of</strong><br />

InAs self-assembled quantum dots under various growth<br />

conditions and in a range <strong>of</strong> host crystals. In low growth<br />

rate dots we were the first to prove that a gradient in the<br />

Indium concentration in InAs quantum dots exists and is<br />

responsible for the observed exciton polarization. The<br />

influence <strong>of</strong> an Indium gradient was also successfully<br />

related to the shape <strong>of</strong> the confined electron wavefunction,<br />

21<br />

Cross-sectional STM image <strong>of</strong> a stack <strong>of</strong> 5<br />

InAs quantum dots in a GaAs matrix.<br />

Image size is 55 nm by 55 nm.


Nano-engineering / cNM Physics <strong>of</strong> Semiconductor Nanostructures<br />

which was measured directly by us using STM. Other matters concerning nanostructured<br />

materials which were addressed by the same technique concern the formation InAs quantum<br />

rings, the incorporation <strong>of</strong> nitrogen in InGaNAs layers, the interface quality and lateral<br />

composition modulation in digital InGaAs/InAlAs/InP quantum well structures and quantum<br />

cascade laser structures.<br />

Senior scientific staff<br />

Pr<strong>of</strong>.dr. J.H. Wolter<br />

Joachim Wolter’s research interests are in the area <strong>of</strong> materials, components and systems for<br />

semiconductors and optical communication technology.<br />

Pr<strong>of</strong>.dr. H.W.M. Salemink<br />

Huub Salemink is in active in the area <strong>of</strong> photonic crystals in III/V semiconductors. Photonic<br />

crystal (PhC) structures for implementation in planar semiconductor waveguides, comprising:<br />

design, fabrication and analysis <strong>of</strong> such nanostructures. A novel class <strong>of</strong> switchable/tunable<br />

photonic elements via organic/polymer hybrid structures will be investigated by infiltrating the<br />

holes with an electro-optic active polymer or liquid crystal.<br />

Dr. R. Nötzel<br />

Richard Nötzel is involved with epitaxial growth: Lateral ordering <strong>of</strong> quantum dots and recently<br />

established a new concept for creating ordered QD-arrays by self-organized epitaxy. The concept is<br />

based on self-organized anisotropic strain engineering during superlattice growth to produce wellordered<br />

one-dimensional QD-arrays <strong>of</strong> excellent optical quality. These materials <strong>of</strong>fer great<br />

potential for discovering new physical effects based on the controlled quantum mechanical<br />

interactions in complex fully confined many particle systems.<br />

Dr. P.M. Koenraad<br />

Paul Koenraad focuses on Atomic scale assessment <strong>of</strong> self-assembled nanostructures and<br />

magnetic impurities. Scanning probes STM, XTM and AFM are used to probe or manipulate<br />

single charges, photons, excitons and spins. We recently started to study the electronic structure<br />

<strong>of</strong> single magnetic impurities as a first step towards the spin manipulation on the atomic scale.<br />

Dr. J.E.M. Haverkort<br />

Jos Haverkort is active in the area <strong>of</strong> Photonic switching: Study <strong>of</strong> enhanced nonlinear optical<br />

properties <strong>of</strong> quantum dots resulting in optical transparency <strong>of</strong> the ground state transition. Such a<br />

large absorption change due to state filling with single electron-hole pairs results in a large<br />

refractive index nonlinearity.<br />

Dr. A. Silov<br />

Andrei Silov works on a polarized single photon emitter and Spin-polarization: Realization <strong>of</strong><br />

nano-photonic devices that generate photons one-by-one in a controllable polarization state will be<br />

a major advancement in quantum optics. Conversion <strong>of</strong> the electron spin into polarization <strong>of</strong> the<br />

single photon can be accomplished in a self-assembled quantum dot. It is our ultimate goal to<br />

realize a novel opto-spintronic device that generates polarized single photons.<br />

Dr. R.W. van der Heijden<br />

Rob van der Heijden works on photonic crystal (PhC) structures for implementation in planar<br />

semiconductor waveguides, comprising: design, fabrication and analysis <strong>of</strong> such nanostructures.<br />

A novel class <strong>of</strong> switchable/tunable photonic elements via organic/polymer hybrid structures will<br />

be investigated by infiltrating the holes with an electro-optic active polymer or liquid crystal.<br />

22


Nano-engineering / cNM Physics <strong>of</strong> Semiconductor Nanostructures<br />

Selected publications 2001-<strong>2005</strong><br />

2001<br />

D.M. Bruls, J.W.A.M. Vugs, P.M. Koenraad, M.S. Skolnick, M. Hopkinson, and J.H. Wolter<br />

Cracking self-assembled InAs quantum dots Appl. Phys. A 72 (2001) S205 - S207<br />

B.H.P. Dorren, J.E.M. Haverkort, R. Prasanth, F.H. Groen, and J.H. Wolter Low crosstalk penalty MZI<br />

Space switch with a 0.64 mm phase shifter using quantum well electrorefraction IEEE Photon. Tech. Lett.,<br />

13 (2001) 37 – 39<br />

M. Kemerink, J.W. Gerritsen, J.G.H. Hermsen, P.M. Koenraad, H. van Kempen, and<br />

J.H. Wolter Low-temperature scanning tunneling microscope for luminescence measurements in high<br />

magnetic fields Rev.Sci. Instrum. 72 (2001) 132 - 135<br />

M. Kemerink, K. Sauth<strong>of</strong>f, P.M. Koenraad, J.W. Gerritsen, H. van Kempen,<br />

V.M. Fomin, J.H. Wolter and J.T. Devreese Optical properties <strong>of</strong> a tip-induced quantum dot Appl. Phys. A.<br />

72 (2001) S239 - S242<br />

A.W.E. Minnaert, A.Yu. Silov, W. van der Vleuten, J.E.M. Haverkort, and J.H. Wolter<br />

Fröhlich interaction in InAs/GaAs self assembled- quantum dots Phys. Rev. B 63 (2001) 075303, 1 - 4<br />

R. Nötzel and K.H. Ploog MBE <strong>of</strong> quantum wires and quantum dots J. Cryst. Growth, 227-228 (2001) 8 – 12<br />

G.J. de Raad, D.M. Bruls, P.M. Koenraad, and J.H. Wolter STM observations <strong>of</strong> GaAs (110) showing the top<br />

and bottom zig-zag rows <strong>of</strong> the surface Phys. Rev. B 64 (2001) 075314, 1 - 7<br />

L.J.M. Selen, F.J.J. Janssen, L.J. van IJzendoorn, M.J.J. Theunissen, P.J.M. Smulers, T.J. Eijkemans, and<br />

M.J.A. de Voigt Ion-channeling analysis <strong>of</strong> boron clusters in silicon J. Appl. Phys. 90 (2001) 4741<br />

H. van Zalinge, B. Özyilmaz, A. Böhm, R.W. van der Heijden, J.H. Wolter, and<br />

P. Wyder Observation <strong>of</strong> the screening signature in the lateral photovoltage <strong>of</strong> electrons in the quantum<br />

Hall regime Phys. Rev. B 64 (2001) 235303, 1 - 4<br />

H. van Zalinge, B. Özyilmaz, A. Böhm, R.W. van der Heijden, J.H. Wolter, and<br />

P. Wyder Charge screening in the quantum Hall regime probed by the lateral photoelectric effect Physica B<br />

298 (2001) 60 - 64<br />

2002<br />

F. Alsina, P. V. Santos, H. P. Schönherr, W. Seidel, R. Nötzel, and K. H. Ploog<br />

Surface-acoustic-wave-induced carrier transport in quantum wires Phys. Rev. B, 66 (2002) 165330<br />

D.M. Bruls, J.W.A.M. Vugs, P.M. Koenraad, H.W.M. Salemink, M. Hopkinson, M.S. Skolnick, Fei Long,<br />

S.PA. Gill, and J.H. Wolter Determination <strong>of</strong> the shape and Indium distribution <strong>of</strong> low-growth-rate InAs<br />

quantum dots by cross-sectional scanning tunneling microscopy Appl. Phys.Lett. 81 (2002) 1708 - 1710<br />

X.Y. Chen and P.M. Koenraad Effects <strong>of</strong> quantum confinement on low frequency noise in delta-doped GaAs<br />

structures grown by MBE Fluctuations and Noise Letters 2 (2002) L37 - L45<br />

J.H. Davies, D.M. Bruls, J.W.A.M. Vugs, and P.M. Koenraad Relaxation <strong>of</strong> a strained quantum well at a<br />

cleaved surface J. <strong>of</strong> Appl. Phys. 91 (2002) 4171 - 4176<br />

Q. Gong, R. Nötzel, J.H. Wolter, H.-P. Schönherr, and K.H. Ploog Distinct growth behaviours in molecularbeam<br />

epitaxy <strong>of</strong> (in, Ga)As on GaAs (3 1 1)A substrate<br />

J. <strong>of</strong> Crys. Growth 242 (2002)104 – 108<br />

Q. Gong, R. Nötzel, G.J. Hamhuis, T. J. Eijkemans, and J. H. Wolter Leveling and rebuilding: an approach<br />

to improve the uniformity <strong>of</strong> (In,Ga)As quantum dots Appl. Phys. Lett. 81 (2002) 1887 - 1889<br />

23


Nano-engineering / cNM Physics <strong>of</strong> Semiconductor Nanostructures<br />

Q. Gong, R. Nötzel, G. J. Hamhuis, T. J. Eijkemans, and J.H. Wolter Self-organized strain engineering on<br />

GaAs (311)B: Template formation for quantum dot nucleation control Appl. Phys. Lett. 81 (2002) 3254 -<br />

3256<br />

M. Kemerink, P. Offermans, P.M. Koenraad, J.K.J. van Duren, R.A.J. Janssen, H.W.M. Salemink, and J.H.<br />

Wolter Real-space measurement <strong>of</strong> the potential distribution inside organic semiconductors Phys. Rev. Lett.<br />

88 (2002) 096803<br />

R.A. Lewis, P.M. Koenraad, I.V. Bradley, and W. Xu Effect <strong>of</strong> strong terahertz radiation on<br />

magnetoconductivity in two dimensions Int. J. Mod. Phys B 16 (2002) 2964 – 2967<br />

T. v. Lippen, H. Boudinov, H.H. Tan, and C. Jagadish Electrical isolation <strong>of</strong> AlxGa1-xAs by ion irradiation<br />

Appl. Phys. Lett. 80 (2002) 264 - 266<br />

T. Mano, R. Nötzel, G.J. Hamhuis, T.J. Eijkemans, and J.H. Wolter Formation <strong>of</strong> InAs quantum dot arrays<br />

on GaAs (100) by self-organized anisotropic strain engineering <strong>of</strong> a (In,Ga)As superlattice template Appl.<br />

Phys. Lett. 81 (2002) 1705 – 1707<br />

G.J. de Raad, D.M. Bruls, P.M. Koenraad, and J.H. Wolter Interplay between tip-induced band bending and<br />

voltage-dependent surface-corrugation on GaAs-(110) surfaces Phys. Rev. B 64 (2002) 075314/1-7<br />

2003<br />

D.M. Bruls, P.M. Koenraad, H.W.M. Salemink, J.H. Wolter, M. Hopkinson, and<br />

M.S. Skolnick Stacked low-growth-rate InAs quantum dots studied at the atomic level by cross-sectional<br />

Scanning Tunneling Microscopy Appl. Phys. Letts. 82 (2003) 3758 – 3760<br />

Q. Gong, R. Nötzel, and J.H. Wolter Strain-driven (In,Ga)As growth instability on GaAs (311)A and (311)B:<br />

Self-organization <strong>of</strong> template for InAs quantum dot nucleation control J. <strong>of</strong> Crys. Growth 251 (2003) 150 -<br />

154<br />

S.E.J. Jacobs, M. Kemerink, P.M. Koenraad, M. Hopkinson, H.W.M. Salemink, and J.H. Wolter Spatially<br />

resolved scanning tunneling luminescence on self-assembled InGaAs/GaAs quantum dots Appl. Phys. Lett.<br />

83 (2003) 290 – 292<br />

G. Janssen, E. Goovaerts, A. Bouwen, B. Partoens, B. Van Daele, N. Zurauskiene, P. M. Koenraad, and J.<br />

H. Wolter Observation <strong>of</strong> cyclotron resonance in an InAs/GaAs wetting layer with shallowly formed<br />

quantum dots Phys. Rev. B 68, 045329-6 (2003)<br />

M. Kemerink, J.K.J. van Duren, P. Jonkheijm, P.M. Koenraad, R.A.J. Janssen, H.W.M. Salemink, en J.H.<br />

Wolter Relating substitution to single-chain conformation and aggregation in poly (p-phenylene vinylene)<br />

films Nanoletters 3 (2003) 1191 - 1196<br />

P. Offermans, P.M. Koenraad, and J.H. Wolter, J.D. Song, Jong Min Kim, Seong Ju Bae, and Yong Tak Lee<br />

Annealing <strong>of</strong> InGaAlAs digital alloy studied with scanning-tunneling microscopy and filled-states<br />

topography Appl. Phys. Letts. 82 (2003) 1191 – 1193<br />

P. Offermans, P.M. Koenraad, and J.H. Wolter Digital alloy interface grading <strong>of</strong> an InAlAs/InGaAs<br />

quantum cascade laser structure studied by cross sectional scanning tunneling microscopy Appl. Phys<br />

Letts. 83 (2003) 4131 - 4133<br />

H. van Zalinge, R.W. van der Heijden, and J.H. Wolter Anisotropic Corbino magnetothermopower in a<br />

quantum Hall system Phys. Rev. B 67 (2003) 165311 1-5<br />

H.H. Zhan, R. Nötzel, G.J. Hamhuis, T.J. Eijkemans, and J.H. Wolter Low-temperature growth <strong>of</strong> selfassembled<br />

InAs dotson GaAs by molecular beam epitaxy J. <strong>of</strong> Crys. Growth 251 (2003) 135 – 139<br />

H.H. Zhan, R. Nötzel, G.J. Hamhuis, T.J. Eijkemans, and J.H. Wolter Self-assembled InAs quantum dots<br />

formed by molecular beam epitaxy at low temperature and post-growth annealing J. <strong>of</strong> Applied Physics 93<br />

(2003) 5953 – 5958<br />

24


Nano-engineering / cNM Physics <strong>of</strong> Semiconductor Nanostructures<br />

2004<br />

Q. Gong, R. Nötzel, P.J. van Veldhoven, T.J. Eijkemans, and J.H. Wolter Wavelength tuning <strong>of</strong> InAs<br />

quantum dots grown on InP (100) by chemical-beam epitaxy Appl. Phys. Letts. 84 (2004) 275 – 277<br />

Q. Gong, R. Nötzel, P.J. van Veldhoven, T.J. Eijkemans, and J.H. Wolter InAs/InP quantum dots emitting<br />

in the 1.55 m wavelength region by inserting submonolayer GaP interlayers Appl. Phys. Letts. 85 (2004)<br />

1404 – 1406<br />

Q. Gong, P. Offermans, R. Nötzel, P.M. Koenraad, and J.H. Wolter Capping process <strong>of</strong> InAs/GaAs<br />

quantum dots studied by cross-sectional scanning tunneling microscopy Appl. Phys. Letts. 85 (2004) 5697 -<br />

5699<br />

J. He, R. Nötzel, P. Offermans, P.M. Koenraad, Q. Gong, G.J. Hamhuis, T.J. Eijkemans, and J.H. Wolter<br />

Formation <strong>of</strong> columnar (In,Ga)As quantum dots on GaAs (100) Appl. Phys. Letts. 85 (2004) 2771 - 2773<br />

M. Kemerink, S.F. Alvarado, P. Müller, P.M. Koenraad, H.W.M. Salemink, J.H. Wolter, and R.A.J. Janssen<br />

Scanning tunneling spectroscopy on organic semiconductors: Experiment and model Phys. Rev. B 70<br />

(2004) 045202<br />

T. van Lippen, R. Nötzel, G.J. Hamhuis, and J.H. Wolter Self-organized lattice <strong>of</strong> ordered quantum dot<br />

molecules Appl. Phys. Letts. 85 (2004) 118-120<br />

K.T. Mazon, G.-Q. Hai, M.T. Lee, P.M. Koenraad, and A.F.W. van de Stadt Low-temperature electron<br />

mobilities due to ionized impurity scattering in multisubband two-dimensional semiconductor systems<br />

Phys. Rev. B 70 (2004) 193312<br />

R. Prasanth, J.E.M. Haverkort, A. Deepthy, E.W. Bogaart, J.J.G.M. van der Tol, E.A. Patent, G. Zhao, Q.<br />

Gong, P.J. van Veldhoven, R. Nötzel, and J.H. Wolter All-optical switching due to state-filling in quantum<br />

dots Appl. Phys. Letts. 84 (2004) 4059 – 4061<br />

A.Yu. Silov, P.A. Blajnov, J.H. Wolter, R. Hey, K.H. Ploog, and N.S. Averkiev, Current-induced spin<br />

polarization at a single heterojunction Appl. Phys. Letts. 85 (2004) 5929<br />

A.M. Yakunin, A.Yu. Silov, P.M. Koenraad, J.H. Wolter, W. van Roy, J. De Boeck, J.-M. Tang, and M.E.<br />

Flatté Spatial structure <strong>of</strong> an individual Mn acceptor in GaAs Phys. Rev. Lett. 92 (2004) 216806 1-4<br />

H. van Zalinge, R.W. van der Heijden, J.H. Wolter, B. Özyilmaz, A. Böhm, and P. Wyder, Lateral<br />

photoelectric effect studies <strong>of</strong> a two-dimensional electron gas under quantum Hall conditions Semicon. Sci.<br />

Technol. 19 (2004) 1153 - 1160<br />

R. van der Heijden, M.S.P. Andriesse, C-F Carlstrom, E. van der Drift, E-J Geluk, R.W. van der Heijden, F.<br />

Karouta, P. Nouwens, Y.S. Oei, T. de Vries, H.W.M. Salemink, Deep dry etching process development for<br />

photonic crystals in InP-based planar waveguides, Photonic Crystal Materials and Nanostructures, edited by<br />

R.M. De La Rue, P. Viktorovich, C.M. Sotomayor Torres, M. Midrio, Proceedings <strong>of</strong> SPIE Vol. 5450 (SPIE,<br />

Bellingham, WA, 2004) pp 523-532<br />

<strong>2005</strong><br />

25


Nano-engineering / cNM Molecular Materials and Nanosystems<br />

26


Nano-engineering / cNM Molecular Materials and Nanosystems<br />

27


Nano-engineering / cNM Molecular Materials and Nanosystems<br />

Molecular Materials and Nanosystems R.A.J. Janssen<br />

Functional properties <strong>of</strong> organic molecules and polymer materials and nanostructures attract<br />

enormous international attention in contemporary chemistry and physics. This interest is in part<br />

motivated by a continuing interest for miniaturization and by the numerous opportunities that<br />

arise for employing molecular electronics and photonics in new and technologically advanced<br />

applications. In our view fascinating opportunities arise at the crossroads <strong>of</strong> molecular and bulk<br />

dimensions, when recent trends in synthetic organic and supramolecular chemistry, polymer<br />

science, and solid-state physics are combined to create functional nanostructures and<br />

nanoassemblies. We aim at exploring this emerging field <strong>of</strong> research, by designing and<br />

investigating novel molecular, polymer and hybrid materials and structures in which nanoscopic<br />

dimensions become crucial for macroscopic electrical or optical properties. The prospect that<br />

nanoscopic functional polymers can be employed in new and technologically advanced<br />

applications remains one <strong>of</strong> the long-term goals <strong>of</strong> our research.<br />

Research themes<br />

1. Physics <strong>of</strong> Nanostructures. We focus on the use <strong>of</strong> scanning tunneling microscopy for<br />

studying nanocontacts, in elucidating the mechanism <strong>of</strong> friction on a nanoscale, and in<br />

inelastic tunneling spectroscopy to observe vibration spectra <strong>of</strong> single molecules<br />

2. PhotoPhysics <strong>of</strong> Molecular Materials. The temporal evolution <strong>of</strong> primary photoexcitations in<br />

molecules, mutichromophoric arrays, nanoaggregates, and composite semiconductors is<br />

studied with transient (100 fs to 10 ms) optical. Nanostructured photoactive materials are<br />

developed and utilized to prepare, investigate, and advance the performance <strong>of</strong> polymer<br />

solar cells and light-emitting diodes.<br />

3. Molecular and Polymer Electronics. Focus on spectroscopic characteristics <strong>of</strong> charge carriers<br />

and on studying charge transport in single molecules, thin (semi)conducting polymer<br />

films, and nanostructured composite semiconductor blends. Optimization <strong>of</strong> chargecarrier<br />

mobility in semiconducting polymers and establishing the relation with<br />

morphology is one <strong>of</strong> the goals.<br />

Keywords<br />

Functional molecules and polymers, scanning probe microscopy, ultrafast spectroscopy, charge<br />

transport, molecular electronics, nan<strong>of</strong>riction, nanostructured materials, polymer opto-electronic<br />

devices.<br />

Staff involved<br />

Total Research<br />

Senior staff 4 2<br />

PhD 11.3 9.0<br />

Post doc 4.1 4.1<br />

Total (fte) 15.1<br />

The group Molecular Materials and Nanostructures participates 60/40 in the TU/e focus areas<br />

Nano-Engineering and Polymers, and the research contribution to Nano-engineering is 10 fte.<br />

28


Nano-engineering / cNM Molecular Materials and Nanosystems<br />

Key publications<br />

A. Marcos Ramos, M.T. Rispens, J.K.J. van Duren, J.C. Hummelen, and R.A.J. Janssen,<br />

Photoinduced electron transfer and photovoltaic devices <strong>of</strong> a conjugated polymer with pendant<br />

fullerenes, J. Am. Chem. Soc. 123, 6714-6715, (2001)<br />

M. Kemerink, P. Offermans, J.K.J. van Duren, P.M. Koenraad, R.A.J. Janssen, H.W.M. Salemink,<br />

J.H. Wolter, Real-space measurement <strong>of</strong> the potential distribution inside organic semiconductors,<br />

Phys. Rev. Lett., 88, 096830/1-096830/4, (2002)<br />

M.M. Wienk, J.M. Kroon, W.J.H. Verhees, J. Knol, J.C. Hummelen, P.A. van Hal, R.A.J. Janssen,<br />

Efficient methano[70]fullerene / MDMO-PPV bulk heterojunction photovoltaic cells, Angew.<br />

Chem. Int. Ed., 42, 3371 (2003)<br />

J. K. J. van Duren , X. Yang , J. Loos, C.W.T. Bulle-Lieuwma, A.B. Sieval, J.C. Hummelen, R.A.J.<br />

Janssen, Relating the Morphology <strong>of</strong> Poly(p-phenylene vinylene)/Methan<strong>of</strong>ullerene Blends to<br />

Solar-Cell Performance, Adv. Funct. Mater., 14, 425-435 (2004)<br />

E.H.A. Beckers, S.C.J. Meskers, A.P.H.J. Schenning, Z. Chen, F. Würthner, P. Marsal, D.<br />

Beljonne, J. Cornil, and R.A.J. Janssen, The influence <strong>of</strong> intermolecular orientation on the<br />

photoinduced charge transfer kinetics in self-assembled aggregates <strong>of</strong> donor-acceptor arrays, J.<br />

Am. Chem. Soc. 128, 649-657 (2006).<br />

Research highlight<br />

The kinetics <strong>of</strong> photoinduced charge<br />

transfer reactions in covalently linked<br />

donor-acceptor molecules <strong>of</strong>ten undergo<br />

dramatic changes when these molecules<br />

self assemble from a molecular dissolved<br />

state into a nanoaggregate. Frequently,<br />

the origin <strong>of</strong> these changes is only<br />

partially understood. We have studied the<br />

intermolecular spatial organization <strong>of</strong><br />

three homologous arrays, consisting <strong>of</strong> a<br />

central perylene bisimide (PERY)<br />

acceptor moiety and two oligo(pphenylene<br />

vinylene) (OPV) donor units,<br />

Cartoon <strong>of</strong> the two limiting situations for the one-dimensional<br />

packing <strong>of</strong> OPV-PERY-OPV arrays to give J-type (left) and Htype<br />

(right) aggregates<br />

in nanoaggregates and identify both face-to-face (H-type) and slipped (J-type) stacking <strong>of</strong> the OPV<br />

and PERY chromophores. For the J-type aggregates, short intermolecular OPV-PERY distances<br />

are created that give rise to a charge-transfer absorption band. The proximity <strong>of</strong> the donor and<br />

acceptor groups in the J-type aggregates enables a highly efficient photoinduced charge separation<br />

with a rate (kcs > 1012 s-1) that significantly exceeds the rate <strong>of</strong> the intramolecular charge transfer<br />

<strong>of</strong> the same compounds when molecularly dissolved, even in the most polar media. In the H-type<br />

aggregates, on the other hand, the intermolecular OPV-PERY distance is not reduced compared to<br />

the intramolecular separation and, hence, the rates <strong>of</strong> the electron transfer reactions are not<br />

significantly affected compared to the molecular dissolved state. Similar to the forward electron<br />

transfer, the kinetics <strong>of</strong> the charge recombination in the aggregated state can be understood by<br />

considering the different inter-chromophoric distances that occur in the H and J-type aggregates.<br />

These results provide a first consistent rationalization <strong>of</strong> the remarkable differences that are<br />

observed for photoinduced charge transfer reactions <strong>of</strong> donor-acceptor compounds in<br />

molecularly-dissolved versus aggregated states.<br />

29


Nano-engineering / cNM Molecular Materials and Nanosystems<br />

Senior scientific staff<br />

Pr<strong>of</strong>.dr.ir. R.A.J. Janssen<br />

René Janssen focuses on functional π-conjugated molecules, macromolecules, nanostructures,<br />

and materials that may find application in advanced technological applications. Synthetic organic<br />

and polymer chemistry are combined with advanced optical spectroscopy, electrochemistry,<br />

morphological characterization and the preparation <strong>of</strong> prototype devices to accomplish these<br />

goals.<br />

Dr. C. F. J. Flipse<br />

Kees Flipse has obtained experience over several years in the following research areas:<br />

Nan<strong>of</strong>riction, electronic structure <strong>of</strong> surfaces and nanostructures by using several experimental<br />

techniques like scanning probe techniques, photoemission, HREELS in combination with<br />

theoretical modeling.<br />

Dr.ir. M. Kemerink<br />

Martijn Kemerink has experience in the area <strong>of</strong> low-temperature STM on semiconductor<br />

quantum dots and wells. More recently he is involved charge transport in organic materials, with<br />

an emphasis on nano-scale probing <strong>of</strong> electrical properties using AFM, STM and related<br />

techniques. Also investigation and visualization <strong>of</strong> the morphology <strong>of</strong> conjugated polymers and,<br />

recently, time-dependent charge transport in organic materials<br />

Dr. S.C.J. Meskers<br />

Stefan Meskers studies photo-physical process in molecular materials. Spectroscopic techniques<br />

used include various types <strong>of</strong> time-resolved laser methods and circular polarization sensitive<br />

spectroscopy. Nanostructured functional organic materials comprising conjugated polymers and<br />

oligomers are investigated with the aim <strong>of</strong> constructing opto-electronic devices.<br />

Selected publications 2001-<strong>2005</strong><br />

2001<br />

A.T.M. van. Gogh, C.F.J. Flipse, D.G. Nagengast, E.S. Kooij, N.J. Koeman, J.H. Rector, R.J.J.G.A.M. Smeets,<br />

R. Griessen, Structural, electrical and optical properties <strong>of</strong> La 1-zY z H x switchable mirrors. Phys. Rev. B, 63,<br />

195105-195126,(2001)<br />

D.T. Balogh, A. Dhanabalan, P. Dynarowicz-Latka, A.P.H.J. Schenning, O.N. Oliveira, E.W. Meijer , R.A.J.<br />

Janssen, Langmuir films from an oligo(p-phenylene vinylene) functionalized with a diamiontriazine head<br />

group., Langmuir, 17, 3281-3285, (2001)<br />

A. Dhanabalan, J.K.J. van Duren, P.A. van Hal, J.L.J. van Dongen, R.A.J. Janssen, Synthesis and<br />

characterization <strong>of</strong> a low band gap conjugated polymer for bulk heterojunction photovoltaic cells, Adv.<br />

Funct. Mater., 11, 255-262, (2001)<br />

M. Jayakannan, J.L.J. van Dongen, R.A.J. Janssen, Mechanistic aspects <strong>of</strong> the Suzuki polycondensation <strong>of</strong><br />

thiophenebisboronic derivatives and diiodobenzenes analyzed by MALDI-TOF mass spectrometry,<br />

Macromolecules, 34, 5386-5393, (2001)<br />

A. Marcos Ramos, M.T. Rispens, J.L.J. van Duren, J.C. Hummelen, R.A.J. Janssen, Photoinduced electron<br />

transfer and photovoltaic devices <strong>of</strong> a conjugated polymer with pendant fullerenes, J. Am. Chem. Soc., 123,<br />

6714-6715, (2001)<br />

J.J. Apperloo, R.A.J. Janssen, P.R.L. Malenfant, J.M.J. Fréchet, Interchain delocalization <strong>of</strong> photoinduced<br />

neutral and charged states in nanoaggregates <strong>of</strong> lengthy oligothiophenes, J. Am. Chem. Soc., 123, 6916-<br />

6924, (2001)<br />

30


Nano-engineering / cNM Molecular Materials and Nanosystems<br />

P.A. van Hal, R.A.J. Janssen, G. Lanzani, G. Cerullo, M. Zavelani-Rossi, S. De Silvestri, A two-step<br />

mechanism for photoinduced electron transfer in an oligo(phenylene vinylene) fullerene dyad, Phys. Rev. B.<br />

64, 075206/1-075206/7, (2001)<br />

P.A. van Hal, R.A.J. Janssen, G. Lanzani, G. Cerullo, M. Zavelani-Rossi, S. De Silvestri, Full temporal<br />

resolution <strong>of</strong> the two-step photoinduced energy-electron transfer in a fullerene-oligothiophene-fullerene<br />

triad using sub-10 fs spectroscopy, Chem. Phys. Lett., 345, 33-38, (2001)<br />

A. El-ghayoury, A.P.J.H. Schenning, P.A. van Hal, J.K.J. van Duren, R.A.J. Janssen, E.W. Meijer,<br />

Supramolecular hydrogen bonded oligo(p-phenylene vinylene) polymers, Angew. Chem. Int. Ed., 40, 3660-<br />

3663. (2001); Angew. Chem. 113, 3772-3775, (2001)<br />

O.J. Korovyanko, R. Österbacka, X.M. Jiang Z.V. Vardeny, R.A.J. Janssen, Photoexcitation dynamics in<br />

regioregular and regiorandom polythiophene films, Phys. Rev. B., 64, 235122/1-235122/6, (2001)<br />

2002<br />

M.V. Tiba, O. Kurnosikov, C.F.J. Flipse, B. Koopmans, H.J.M. Swagten, J.T. Kohlhepp, W.J.M. De Jonge,<br />

Ordering <strong>of</strong> organic molecules on passivated reactive substrates: PTCDA on O-p(2 x2)-Ni(1 1 1), Surface<br />

Science, 498, 161-167, (2002)<br />

J.J. Apperloo, C. Martineau, P.A. van Hal, J. Roncali, R.A.J. Janssen, Intra- and intermolecular<br />

photoinduced energy and electron transfer between oligothienylenevinylenes and Nmethylfulleropyrrolidine,<br />

J. Phys. Chem. A. 106, 21-31, (2002)<br />

M. Kemerink, P. Offermans, J.K.J. van Duren, P.M. Koenraad, R.A.J. Janssen, H.W.M. Salemink, J.H.<br />

Wolter, Real-space measurement <strong>of</strong> the potential distribution inside organic semiconductors, Phys. Rev.<br />

Lett., 88, 096830/1-096830/4, (2002)<br />

J.J. Apperloo, B. Groenendaal, H. Verheyen, M. Jayakannan, R.A.J. Janssen, A. Dkhissi, D. Beljonne, R.<br />

Lazzaroni, J.-L. Brédas, Optical and redox properties <strong>of</strong> a series <strong>of</strong> 3,4-ethylenedioxythiophene oligomers,<br />

Chem. Eur. J., 8, 2384-2396, (2002)<br />

M. Wohlgennannt, X.M. Jiang, Z.V. Vardeny, R.A.J. Janssen, Conjugation-length dependence <strong>of</strong> spindependent<br />

exciton formation rates in π-conjugated oligomers and polymers., Phys. Rev. Lett., 88, 197401/1-<br />

197401/4, (2002)<br />

W.J.E. Beek, R.A.J. Janssen, Photoinduced electron transfer in heterosupramolecular assemblies <strong>of</strong> TiO2<br />

nanoparticles and terthiophene carboxylic acid in apolar solvents, Adv. Funct. Mater., 12, 519-525, (2002)<br />

E. Peeters, P.A. van Hal, S.C.J. Meskers, R.A.J. Janssen, E.W. Meijer, Photoinduced electron transfer in a<br />

liquid crystalline donor-acceptor-donor system, Chem. Eur. J., 8, 4470-4475, (2002)<br />

J.K.J. van Duren, J. Loos, F. Morrissey, C.M. Leewis, K.P.H. Kivits, L.J. van IJzendoorn, M.T. Rispens, J.C.<br />

Hummelen, R.A.J. Janssen, In situ compositional and structural analysis <strong>of</strong> plastic solar cells, Adv. Funct.<br />

Mater., 12, 665-669, (2002)<br />

P.A. van Hal, E.H.A. Beckers, S.C.J. Meskers, R.A.J. Janssen, B. Jousselme, P. Blanchard, J. Roncali,<br />

Orientational effect on the photophysical properties <strong>of</strong> quaterthiophene-C60 dyads, Chem. Eur. J., 8, 5415-<br />

5429, (2002)<br />

S.C.J. Meskers, J.K.J. van Duren, R.A.J. Janssen, Stimulation <strong>of</strong> electrical conductivity in π-conjugated<br />

polymeric conductors with infrared light, J. Appl. Phys., 92, 7041, (2002)<br />

2003<br />

F. Pedreschi, J. M. Sturm, J. D. O'Mahony, C J. F. Flipse, Magnetic force microscopy and simulations <strong>of</strong><br />

colloidal iron nanoparticles, J. Appl. Phys., 94, 3446-3450, (2003)<br />

31


Nano-engineering / cNM Molecular Materials and Nanosystems<br />

G. Tanasa, O. Kurnosikov, C.J.F. Flipse, J.G. Buijnsters, W.J.P. van Enckevort, Diamond deposition on<br />

modified silicon substrates: Making diamond atomic force microscopy tips for nan<strong>of</strong>riction experiments, J.<br />

Appl. Phys., 94, 1699-1704, (2003)<br />

M.W.G. Ponjee, C.J.F. Flipse, A.W. Denier van der Gon, H. H. Brongersma, Experimental observation <strong>of</strong><br />

vibrational modes on Ag(111) along ΓM and ΓK. Phys. Rev. B 67, 174301/1-174301/5, (2003)<br />

P.A. van Hal, M.M. Wienk, J.M. Kroon, W.J.H. Verhees, L.H. Slo<strong>of</strong>f, W.J.H. van Gennip, P. Jonkheijm,<br />

R.A.J. Janssen, Photoinduced electron transfer and photovoltaic response <strong>of</strong> a MDMO-PPV:TiO2 bulkheterojunction,<br />

Adv. Mater., 15, 118-121, (2003)<br />

E.E. Neuteboom, S.C.J. Meskers, P.A. van Hal, J.K.J. van Duren, E.W. Meijer, R.A.J. Janssen, H. Dupin, G.<br />

Pourtois, J. Cornil, R. Lazzaroni, J.-L. Brédas, D. Beljonne, Alternating oligo(p-phenylene vinylene) -<br />

perylene bisimide copolymers: Synthesis, photophysics, and photovoltaic properties <strong>of</strong> a new class <strong>of</strong> donoracceptor<br />

materials, J. Am. Chem. Soc., 125, 8625-8638, (2003)<br />

M. Kemerink, J.K.J. van Duren, P. Jonkheijm, W.F. Pasveer, P.M. Koenraad, R.A.J. Janssen, H.W.M.<br />

Salemink, J.H. Wolter, Relating substitution to single-chain conformation and aggregation in poly(pphenylene<br />

vinylene) films, Nano. Lett, 3, 1191-1196, (2003)<br />

V.D. Mihailetchi, J.K.J. van Duren, P.W.M. Blom, J.C. Hummelen, R.A.J. Janssen, J.M. Kroon, M.T.<br />

Rispens, W.J.H. Verhees, M.M. Wienk, Electron transport in a methan<strong>of</strong>ullerene, Adv. Funct. Mater. 13, 43-<br />

46, (2003)<br />

S.C.J. Meskers, J.K.J. van Duren, R.A.J. Janssen, F. Louwet, L. Groenendaal, Infrared detectors with<br />

poly(3,4-ethylenedioxy thiophene)/poly(styrene sulfonic acid) (PEDOT/PSS) as the active material, Adv.<br />

Mater., 15, 613-616, (2003)<br />

M.M. Wienk, J.M. Kroon, W.J.H. Verhees, J. Knol, J.C. Hummelen, P.A. van Hal, R.A.J. Janssen, Efficient<br />

methano[70]fullerene / MDMO-PPV bulk heterojunction photovoltaic cells, Angew. Chem. Int. Ed., 42,<br />

3371-3375., Angew. Chem., 115, 3493-3497, (2003)<br />

T. Offermans, S.C.J. Meskers, R.A.J. Janssen, Charge recombinbation in a poly(para-phenylene vinylene)fullerene<br />

derivative composite film studied by transient, non-resonant hole-burning spectroscopy, J. Chem.<br />

Phys., 119, 10924-10929, (2003)<br />

2004<br />

E.H.A. Beckers, S.C.J. Meskers, A.P.H.J. Schenning, Z. Chen, F. Würthner, R.A.J. Janssen, Charge<br />

separation and recombination in photoexcited oligo(p-phenylene vinylene) - perylene bisimide - arrays close<br />

to the Marcus inverted region, J. Phys. Chem. A 108, 6933 (2004).<br />

W.J.E. Beek, M.M. Wienk, R.A.J. Janssen, Efficient hybrid solar cells from ZnO nanoparticles and a<br />

conjugated polymer, Adv. Mater. 16, 1009 (2004).<br />

J.K.J. van Duren, X. Yang, J. Loos, C.W.T. Bulle-Lieuwma, A.B. Sieval, J.C. Hummelen, R.A.J. Janssen,<br />

Relating the morphology <strong>of</strong> a poly(p-phenylene vinylene): methan<strong>of</strong>ullerene blend to solar cell performance,<br />

Adv. Funct. Mater. 14, 425 (2004).<br />

H.H.P. Gommans, M. Kemerink, G.G. Andersson, R.M.T. Pijper, Charge transport and trapping in Csdoped<br />

poly(diakoxy -p-phenylene vinylene) light-emitting diodes, Phys. Rev. B 69, 155216 (2004).<br />

M. Kemerink, S.F. Alvarado, F. Muller, P.M. Koenraad, H.W.M. Salemink, J.H. Wolter, R.A.J. Janssen,<br />

Scanning-tunneling spectoscopy on organic semiconductors: experiment and model, Phys. Rev. B 70,<br />

045202(2004).<br />

M. Kemerink, S. Timpanaro, M. de Kok, E.A. Meulenkamp, F.J. Touwslager, Tree-dimensional<br />

inhomogeneities in PEDOT:PSS Films, J. Phys. Chem. B, 108, 18820 (2004).<br />

A. Marcos Ramos, S.C.J. Meskers, E.H.A.. Beckers, R.B. Prince, L. Brunsveld, R.A.J. Janssen,<br />

Supramolecular control over donor-acceptor photoinduced charge separation, J. Am. Chem. Soc. 126, 9630<br />

(2004).<br />

32


Nano-engineering / cNM Molecular Materials and Nanosystems<br />

A. Marcos Ramos, E.H.A. Beckers, T. Offermans, S.C.J. Meskers, R.A.J. Janssen, Photoinduced multistep<br />

electron transfer in an oligoaniline-oligo(p-phenylene vinylene) - perylene diimide molecular - arrays, J.<br />

Phys. Chem. A 108, 8201 (2004).<br />

E.E. Neuteboom, P.A. van Hal, R.A.J. Janssen, Donor-acceptor polymers: A conjugated oligo (p-phenylene<br />

vinylene) main chain with dangling perylene bisimides, Chem. Eur. J., 10, 3907 (2004).<br />

F. Würthner, Z. Chen, F.J.M. Hoeben, P. Osswald, C.C. You, P. Jonkheijm, J. van Herrikhuyzen, A.P.H.J.<br />

Schenning, P.P.A.M. van der Schoot, E.W. Meijer, E.H.A. Beckers, S.C.J. Meskers, R.A.J. Janssen,<br />

Supramolecular p-n-heterojunctions by co-self-organization <strong>of</strong> oligo(phenylene vinylene) and perylene<br />

bisimide dyes, J. Am. Chem. Soc., 126, 10611 (2004)<br />

<strong>2005</strong><br />

C. P. Radano, O.A. Scherman, N. Stingelin-Stutzmann, C. Müller, D. W. Breiby, P. Smith, R. A. J. Janssen,<br />

and E. W. Meijer, Crystalline-crystalline block copolymers <strong>of</strong> regioregular poly(3-hexylthiophene) and<br />

polyethylene by ring-opening metathesis polymerization, J. Am. Chem. Soc., 127, 12502-12503, (<strong>2005</strong>).<br />

D. Wasserberg, P. Marsal, S. C. J. Meskers, R. A. J. Janssen, and D. Beljonne, Phosphorescence and triplet<br />

state energies <strong>of</strong> oligothiophenes, J. Phys. Chem. B., 109, 4410-4415, (<strong>2005</strong>).<br />

J. H. A. Smits, S. C. J. Meskers, R. A. J. Janssen, A. W. Marsman, and D. M. de Leeuw, Two-terminal,<br />

rewritable memory cells from poly(3-hexylthiophene), Adv. Mater., 17, 1169-1173, (<strong>2005</strong>).<br />

M. Kemerink, J. K. J. van Duren, A. J. J. M. van Breemen, J. Wildeman, H. F. M. Schoo, M. M. Wienk, P.<br />

W. M. Blom, H. F. M. Schoo, and R. A. J. Janssen, Substitution and preparation effects on the molecularscale<br />

morphology <strong>of</strong> PPV films, Macromolecules, 38, 7784-7792, (<strong>2005</strong>).<br />

X. Yang, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, R. A. J. Janssen, J. M. Kroon, M. A. J. Michels, and<br />

J. Loos, Nanoscale morphology <strong>of</strong> high-performance polymer solar cells, Nano Lett., 5, 579-583, (<strong>2005</strong>).<br />

T. Offermans, P. A. van Hal, S. C. J. Meskers, M. M. Koetse, and R. A. J. Janssen, Exciplex dynamics in a<br />

blend <strong>of</strong> π-conjugated polymers with electron donating and accepting properties (MDMO-PPV and<br />

PCNEPV), Phys Rev. B <strong>2005</strong>, 72, 045213/1-045213/11, (<strong>2005</strong>).<br />

W. J. E. Beek, M. M. Wienk, M. Kemerink, X. Yang, and R. A. J. Janssen, Hybrid zinc oxide - conjugated<br />

polymer bulk heterojunction solar cells,J. Phys. Chem B., 109, 9505-9516, (<strong>2005</strong>).<br />

E. H. A. Beckers, P. Jonkheijm, A. P. H. J. Schenning, S. C. J. Meskers, and R. A. J. Janssen,<br />

Charge transfer in supramolecular co-aggregates <strong>of</strong> oligo(p-phenylene vinylene) and perylene bisimide in<br />

water, ChemPhysChem, 6, 2029-2031, (<strong>2005</strong>).<br />

H. H. P. Gommans, M. Kemerink, J. M. Kramer, and R. A. J. Janssen, Field and temperature dependence<br />

<strong>of</strong> the photocurrent in polymer:fullerene bulk heterojunction solar cells, Appl. Phys. Lett., 87, 122104/1-<br />

122104/3, (<strong>2005</strong>).<br />

H.H.P. Gommans, M. Kemerink, and R.A.J. Janssen, Negative capacitances in low-mobility solids<br />

Phys. Rev. B., 72, 235204/1-235204/6 (<strong>2005</strong>).<br />

33


Nano-engineering / cNM Theoretical and Polymer Physics<br />

Theoretical and Polymer Physics M.A.J. Michels<br />

The leading scientific theme for the research group on theoretical and polymer physics is the<br />

understanding and prediction, on the basis <strong>of</strong> the underlying fundamental physics, <strong>of</strong> the triangle<br />

relation that exists for polymers between (i) the molecular and mesoscopic structure, (ii) the<br />

dynamics <strong>of</strong> microstructure development, and (iii) the material properties. Specific subprogrammes<br />

have been chosen: (1) electronic and electro-optical properties <strong>of</strong> functional<br />

polymers, (2) self-organisation and large-scale structure development, and (3) the physics <strong>of</strong><br />

polymer dynamics and micromechanics. Many <strong>of</strong> the methods and physical phenomena in these<br />

areas are not limited to polymers, but have their analogies in wider classes <strong>of</strong> organic materials<br />

that are <strong>of</strong> importance to nanotechnology (e.g. oligomers, colloids, liquid crystals). Where this will<br />

lead to synergy such other materials may be included in the programme as well.<br />

Research themes<br />

1. Electronics and electro-optics. Band gaps and excitons in conjugated polymers. Electronphonon<br />

coupling in polymers and oligomer crystals. Band conduction vs. hopping<br />

conduction. Microscopic disorder vs. charge mobility. Development <strong>of</strong> ab-initio tools.<br />

2. Self-organisation and structure development. Self-assembly <strong>of</strong> discotic and chiral molecules.<br />

Local dynamics <strong>of</strong> hydrogen-bonded polymers. Polymer crystallization in external fields.<br />

Mesoscale dynamics and phase separation. Dendrimers and hyperbranched polymers.<br />

3. Dynamics and micromechanics. Polymer dynamics and deformation at the nanoscale.<br />

Multiscale modeling. Statistical physics <strong>of</strong> fracture.<br />

Keywords<br />

Conjugated polymers and crystals, band structure, excitations, mobility, ab-initio calculation. Selforganisation,<br />

discotics, liquid crystals. Polymer dynamics and micromechanics, scale jumping.<br />

Staff involved<br />

Total Research<br />

Senior staff 4.0 2.0<br />

PhD 6.5 5.2<br />

Post doc 3.0 3.0<br />

Total (fte) 10.2<br />

The group Polymer Physics participates 50/50 in the TU/e focus areas Nano-Engineering and<br />

Polymers, and the research contribution to Nano-engineering is 5.1 fte.<br />

Key publications<br />

J.-W. van der Horst, P.A. Bobbert, M.A.J. Michels, G. Brocks, P.J. Kelly, Ab-initio calculation <strong>of</strong> the<br />

electronic and optical excitations in polythiophene: effects <strong>of</strong> intra- and interchain screening, Physical<br />

Review Letters 83, 4413-4416, (1999)<br />

W.A. Schoonveld, J. Wildeman, D. Fichou, P.A. Bobbert, B.J. van Wees, T.M. Klapwijk,<br />

Coulomb blockade transport in single-crystal organic thin-film transistors, Nature 404, 977 (2000)<br />

34


Nano-engineering / cNM Theoretical and Polymer Physics<br />

K. Hannewald, P.A. Bobbert, Theory <strong>of</strong> small-polaron band conduction in ultrapure organic crystals,<br />

Applied Physics Letters 85, 1535-1537 (2004)<br />

W.F. Pasveer, J. Cottaar, C. Tanase, R. Coehoorn, P.A. Bobbert, P.W.M. Blom, D.M. de Leeuw,<br />

M.A.J.Michels, Unified description <strong>of</strong> charge-carrier mobilities in disordered semiconducting polymers,<br />

Physical Review Letters, 94, 206601 (<strong>2005</strong>)<br />

P. van der Schoot, R. Bruinsma, Electrostatics and the assembly <strong>of</strong> an RNA virus, Physical Review E,<br />

71, 061928 1-12 (<strong>2005</strong>)<br />

Research highlight<br />

Charge-carrier mobilities in disordered<br />

semiconducting polymers: Fundamental<br />

understanding <strong>of</strong> charge-carrier mobilities in<br />

disordered semiconducting polymers is <strong>of</strong><br />

crucial importance for the further<br />

development <strong>of</strong> various devices based on<br />

these materials, such as light-emitting diodes,<br />

photovoltaic cells, and transistors. Because <strong>of</strong><br />

the disorder, the transport states in these<br />

materials are localized at specific sites and<br />

charge transport takes place by hopping <strong>of</strong><br />

charge carriers (electrons/holes) from site to<br />

site. In polymer light-emitting diodes, where<br />

the number <strong>of</strong> carriers per site is typically<br />

very low (10 -5 -10 -4 ), the mobilities have always<br />

assumed to have a strong dependence on the<br />

temperature and the electric field. The<br />

concept <strong>of</strong> correlated disorder was put<br />

forward to explain the strong dependence on<br />

35<br />

Fig. 1 Experimental and calculated current-voltage<br />

characteristics <strong>of</strong> a hole-only diode <strong>of</strong> NRS-PPV<br />

(thickness L). The effects <strong>of</strong> the taking into account the<br />

dependences <strong>of</strong> the mobility µ on temperature T,<br />

density p and electric field E is demonstrated.<br />

the electric field. However, in these devices it is experimentally very difficult to distinguish a<br />

dependence <strong>of</strong> the mobility on the electric field from a possible dependence on the charge-carrier<br />

density, since at higher voltages (electric fields) more charge carriers are injected in the device.<br />

Recently, we demonstrated that the current-voltage characteristics <strong>of</strong> polymer diodes can be very<br />

well described assuming an uncorrelated Gaussian energy disorder <strong>of</strong> the hopping sites and a,<br />

numerically or analytically determined, dependence <strong>of</strong> the mobility on the charge-carrier density.<br />

The reason for the unexpected dependence on the carrier density at such low densities is the fact<br />

that at the relevant temperatures the carriers are energetically located in the low-energy tail <strong>of</strong> the<br />

Gaussian density <strong>of</strong> states, such that state-filling effects are still important. Only at very high<br />

voltages the dependence <strong>of</strong> the mobility on the electric field becomes relevant. In line with recent<br />

experimental observations we come to the conclusion that the previously assumed dependence <strong>of</strong><br />

the mobility on electric field in diodes is, for a large part, actually a density-dependence. The work<br />

has led to two DPI thesis awards (Tanase, Pasveer) and an editorial citation in Nature Materials<br />

(W.F. Pasveer, J. Cottaar, C. Tanase, R. Coehoorn, P.A. Bobbert, P.W.M. Blom, D.M. de Leeuw,<br />

and M.A.J. Michels, Phys. Rev. Lett. 94, 206601 (<strong>2005</strong>)).<br />

Senior scientific staff<br />

Pr<strong>of</strong>.dr. M.A.J. Michels<br />

Theoretical physicist with background in statistical physics and experience in application inspired<br />

and industry-related research. Main current interests: physics <strong>of</strong> disorder and percolation,<br />

hopping transport, pattern formation and fractality, gel formation and glassy dynamics. Active in<br />

the TU/e priority areas <strong>of</strong> Nano-engineering and Polymer Science and <strong>Technology</strong>.


Nano-engineering / cNM Theoretical and Polymer Physics<br />

Dr. P.A. Bobbert<br />

Theoretical solid-state physicist, with experience both in the development and application <strong>of</strong><br />

physics-based ab-initio computational tools. Main current interests: the energetics <strong>of</strong> charged and<br />

optical excitations in conjugated materials, dynamics <strong>of</strong> their coupling to phonons and orderdisorder<br />

transitions, and their mobility in disordered, supramolecular and crystalline materials.<br />

Mainly active in the TU/e priority area <strong>of</strong> Nano-engineering.<br />

Dr. A.V. Lyulin<br />

Theoretical polymer physicist with experience in large-scale molecular-dynamics and browniandynamics<br />

simulations. Mainly active in the TU/e priority area <strong>of</strong> Polymer Science and<br />

<strong>Technology</strong>, but contributing ad-hoc with his simulation expertise to studies within Nanoengineering.<br />

Dr.ir. P.P.A.M. van der Schoot<br />

Theoretical chemist with background in s<strong>of</strong>t-matter physics and experienced in applying analytical<br />

theories to colloids, liquid crystals and polymers. Main current interests: ordering and growth<br />

phenomena in chiral supramolecular aggregates, pattern formation in colloid and liquid-crystal<br />

mixtures, also in the biological world. Mainly active in the TU/e priority area <strong>of</strong> Polymer Science<br />

and <strong>Technology</strong>, with occasional contributions to Nano-engineering.<br />

Selected publications 2001-<strong>2005</strong><br />

2001<br />

H.J. Tromp, P. van Gelderen, P.J. Kelly, G. Brocks, P.A. Bobbert, CaB6: a new semiconducting material for<br />

spin electronics, Physical Review Letters 87, 16401-16405, (2001)<br />

J. van Gestel, P. van der Schoot, M.A.J. Michels, Helical transition <strong>of</strong> polymer-like assemblies in solution,<br />

Journal <strong>of</strong> Physical Chemistry B 105, 10691-10699, (2001)<br />

J.-W. van der Horst, P.A. Bobbert, P.H.L. de Jong, M.A.J. Michels, G. Brocks, L.D.A. Siebbeles, J.M.<br />

Warman, G. Gelinck, Predicting polarizabilities and lifetimes <strong>of</strong> excitons on conjugated polymer chains, Chemical<br />

Physics Letters 334, 303-308, (2001)<br />

J.-W. van der Horst, P.A. Bobbert, M.A.J. Michels, H. Baessler, Calculation <strong>of</strong> excitonic properties <strong>of</strong><br />

conjugated polymers using the Bethe-Salpeter equation, Journal <strong>of</strong> Chemical Physics 114, 6950-6959, (2001)<br />

H.B. Brom, M.A.J. Michels, Percolation and high-frequency hopping in cluster compounds and polymers,<br />

Philosophical Magazine B 81, 941-954, (2001)<br />

2002<br />

P. van Gelderen, P.A. Bobbert, P.J. Kelly, G. Brocks, R. Tolboom, Parameter-free calculation <strong>of</strong> single-particle<br />

electronic excitations in YH3, Physical Review B 66, 075104-1-075104-13, (2002)<br />

J.-W. van der Horst, P.A. Bobbert, M.A.J. Michels, Electronic and optical excitations in crystalline conjugated<br />

polymers, Physical Review B 66, 035206, (2002)<br />

J.-W. van der Horst, P.A. Bobbert, W.F. Pasveer, M.A.J. Michels, G. Brocks, P.J. Kelly, Excitons in conjugated<br />

polymers from first principles, Computer Physics Communications 147, 331-334, (2002)<br />

S.F. Alvarado, S. Barth, H. Baessler, U. Scherf, J.-W. van der Horst, P.A. Bobbert, M.A.J. Michels, Spatially<br />

resolved STM spectroscopy <strong>of</strong> charge injection at the ladder-type poly (paraphenylene) /Au (111) interface,<br />

Advanced Functional Materials 12, 117-122, (2002)<br />

P. van der Schoot, Self-assembly <strong>of</strong> globular particles in a nematic dispersion, Journal <strong>of</strong> Chemical Physics 117,<br />

3537-3540, (2002)<br />

36


Nano-engineering / cNM Theoretical and Polymer Physics<br />

2003<br />

N.C. Greenham, P.A. Bobbert, Two-dimensional electron-hole capture in organic heterojunction light-emitting<br />

diodes, Physical Review B 68, 245301-245309, (2003)<br />

J. van Gestel, P. van der Schoot, M.A.J. Michels, Amplification <strong>of</strong> chirality in helical supramolecular polymers,<br />

Macromolecules 36, 6668-6673, (2003)<br />

K. Hannewald, V.M. Stojanovic, J.M.T. Schellekens, P.A. Bobbert, Theory <strong>of</strong> bandwidth narrowing in oligoacene<br />

crystals, Synthetic Metals 137, 891-892, (2003)<br />

W.F. Pasveer, P.A. Bobbert, M.A.J. Michels, B.M.W. Langeveld-Voss, H.F.M. Schoo, J.J.A.M. Bastiaansen,<br />

Ab-initio study <strong>of</strong> energy level alignments in polymer-dye blends, Chemical Physics Letters 381-382, (2003)<br />

H.C.F. Martens, N. Hulea, I. Romijn, H.B. Brom, W.F. Pasveer, M.A.J. Michels, Understanding the doping<br />

dependence <strong>of</strong> the conductivity <strong>of</strong> conjugated polymers: Dominant role <strong>of</strong> the increasing density <strong>of</strong> states and<br />

growing delocalization, Physical Review B 67, 121203-1-121203-4, (2003)<br />

2004<br />

K. Hannewald, V.M. Stojanovic, J.M.T. Schellekens, P.A. Bobbert, G. Kresse, and J. Hafner, Theory <strong>of</strong><br />

polaron bandwidth narrowing in organic molecular crystals, Phys. Rev. B. 69, 075211-1-075211-7, (2004)<br />

K. Hannewald, P.A. Bobbert, Anisotropy effects in phonon-assisted charge-carrier transport in organic molecular<br />

crystals, Physical Review B 69, 075212-1-075212-12, (2004)<br />

K. Hannewald, P.A. Bobbert, Ab-initio theory <strong>of</strong> charge-carrier conduction in ultrapure organic crystals,<br />

Applied Physics Letters 85, 1535-1537, (2004)<br />

V.M. Stojanovic, P.A. Bobbert, M.A.J. Michels, Nonlocal electron-phonon coupling: Consequences for the nature<br />

<strong>of</strong> polaron states, Physical Review B 69, 144302-1-144302-13, (2004)<br />

W.F. Pasveer, P.A. Bobbert, M.A.J. Michels, Temperature and field dependence <strong>of</strong> the mobility in 1D for a<br />

gaussian density <strong>of</strong> states, Physica Status Solidi c 1, 164-167, (2004)<br />

S.V. Lyulin, L.J. Evers, P. van der Schoot, A.A. Darinskii, A.V. Lyulin, M.A.J. Michels, Effect <strong>of</strong> solvent quality<br />

and electrostatic interactions on size and structure <strong>of</strong> dendrimers. Brownian dynamics simulation and mean-field<br />

theory, Macromolecules 37, 3049-3063, (2004)<br />

J. van Gestel, P. van der Schoot, M.A.J. Michels, Amplification <strong>of</strong> chirality in helical supra-molecular polymers<br />

beyond the long-chain limit, Journal <strong>of</strong> Chemical Physics 120, 8253-8261, (2004). Also selected for the Virtual<br />

Journal <strong>of</strong> Nanoscale Science and <strong>Technology</strong> 9, April 26, (2004), and for the Virtual Journal <strong>of</strong> Biological<br />

Physics Research 7, April 15, (2004)<br />

S.V. Lyulin, A.A. Darinskii, A.V. Lyulin, M.A.J. Michels, Brownian dynamics <strong>of</strong> neutral and charged<br />

dendrimers, Macromolecules 37, 4676-4685, (2004)<br />

F. Wuerther, Z. Chen, F.J.M. Hoeben, P. Osswald, C.-C. You, P. Jonkheijm, J. van Herrikhuyzen, A.P.H.J.<br />

Schenning, P.P.A.M. van der Schoot, E.W. Meijer, E.H.A. Beckers, S.C.J. Meskers, R.A.J. Janssen,<br />

Supramolecular p-n heterojunctions by co-selforganization <strong>of</strong> oligo(p-phenylene vinylene) and perylene bisimide<br />

dyes, Journal <strong>of</strong> the American Chemical Society 126, 10611-10618, (2004)<br />

X. Yang, J.K.J. van Duren, R.A.J. Janssen, M.A.J. Michels, J. Loos, Morphology and thermal stability <strong>of</strong> the<br />

active layer in a poly(p-phenylenevinylene)/methan<strong>of</strong>ullerene plastic photovoltaic devices, Macromolecules 37,<br />

2151-2158, (2004)<br />

<strong>2005</strong><br />

K. Hannewald, P.A. Bobbert, Nonperturbative theory <strong>of</strong> exciton-phonon resonances in semiconductor<br />

absorption, Physical Review B, 72, 113202 (<strong>2005</strong>)<br />

S.V. Lyulin, A.A. Darinskii, A.V. Lyulin, M.A.J. Michels, Computer simulation <strong>of</strong> complexes <strong>of</strong> dendrimers<br />

with linear polyelectrolytes, Macromolecules, 38, 3990 (<strong>2005</strong>)<br />

37


Nano-engineering / cNM Theoretical and Polymer Physics<br />

K.D. Meisel, H. Vocks, P.A. Bobbert, Polarons in semiconducting polymers: study within an extended<br />

Holstein model, Physical Review B, 71, 205206 (<strong>2005</strong>)<br />

T. Mulder, A.V. Lyulin, P. van der Schoot, M.A.J. Michels, Architecture and conformation <strong>of</strong> uncharged and<br />

charged hyperbranched polymers: computer simulation and mean-field theory, Macromolecules, 38, 996-<br />

1006 (<strong>2005</strong>)<br />

W.F. Pasveer, P.A. Bobbert, H.P. Huinink, M.A.J. Michels, Scaling <strong>of</strong> current distributions in variablerange<br />

hopping transport on two- and three-dimensional lattices, Physical Review B, 72, 174204 (<strong>2005</strong>)<br />

W.F. Pasveer, J. Cottaar, C. Tanase, R. Coehoorn, P.A. Bobbert, P.W.M. Blom, D.M. de Leeuw,<br />

M.A.J.Michels, Unified description <strong>of</strong> charge-carrier mobilities in disordered semiconducting polymers,<br />

Physical Review Letters, 94, 206601 (<strong>2005</strong>)<br />

R. Coehoorn, W.F. Pasveer, P.A. Bobbert, M.A.J. Michels, Charge-carrier concentration dependence <strong>of</strong> the<br />

hopping mobility in organic materials with Gaussian disorder, Physical Review B, 72, 155206 (<strong>2005</strong>)<br />

P. van der Schoot, R. Bruinsma, Electrostatics and the assembly <strong>of</strong> an RNA virus, Physical Review E, 71,<br />

061928 1-12 (<strong>2005</strong>)<br />

X.N. Yang, A. Alexeev, M.A.J. Michels, J. Loos, Effect <strong>of</strong> spatial confinement on the morphology evolution<br />

<strong>of</strong> thin poly(p-phenylenevinylene)/methan<strong>of</strong>ullerene composite films, Macromolecules, 38, 4289-4295<br />

(<strong>2005</strong>)<br />

X. Yang, J. Loos, S.C. Veenstra, W.J.H. Verhees, M.M.Wienk, J.M. Kroon, M.A.J. Michels, R.A.J. Janssen,<br />

Nanoscale morphology <strong>of</strong> high-performance polymer solar cells, Nano Letters, 5, 579-583 (<strong>2005</strong>)<br />

38


Nano-engineering / cNM Macromolecular Chemistry and Nanoscience<br />

39


Nano-engineering / cNM Macromolecular Chemistry and Nanoscience<br />

Macromolecular Chemistry and Nanoscience U.S. Schubert<br />

The program focuses on the design and preparation <strong>of</strong> (macro)molecules, assemblies, micelles,<br />

nanoparticles and nano-structured objects utilizing well-defined building blocks in combination<br />

with covalent and non-covalent (supramolecular) bonds and interactions. For this purpose, living<br />

and controlled polymerization methods are utilized in order to prepare suitable functionalized<br />

telechelics and (block) copolymers. The introduction <strong>of</strong> non-covalent binding motifs is either<br />

performed on the level <strong>of</strong> the initiators and monomers or by end-group modification <strong>of</strong> the<br />

telechelics and (block) copolymers. Besides synthetic polymers also defined biopolymers, such as<br />

proteins or DNA, and nanoparticles are utilized. The fabrication <strong>of</strong> suitable nano- and microstructured<br />

surfaces is performed utilizing a combination <strong>of</strong> chemical self-assembly processes,<br />

nano-lithography (based on scanning probe techniques) and inkjet printing techniques. The<br />

selective and controlled build-up <strong>of</strong> functional nanostructures is characterized by a combination<br />

<strong>of</strong> optical pr<strong>of</strong>iling methods, AFM, STM and TEM with spectroscopic methods. In addition,<br />

scanning probe methods are also used for the investigation <strong>of</strong> selected properties <strong>of</strong> the obtained<br />

systems (e.g. force spectroscopy, local conductivity measurements, etc.) and for manipulation on<br />

the nanoscale.<br />

Research themes<br />

1. Engineering with macromolecules utilizing covalent and non-covalent interactions. The design<br />

and synthesis <strong>of</strong> complex functional macromolecular architectures represents one <strong>of</strong> the<br />

main challenges in present research. In particular the introduction <strong>of</strong> “non-covalent”<br />

interactions into tailor-made macromolecules seems to be highly promising. By this<br />

approach, novel “smart” or “intelligent” materials can be designed utilizing the<br />

reversibility <strong>of</strong> the non-covalent interactions.<br />

2. Self-assembled architectures, nanolithography & nanochemistry. Scanning probe microscopy<br />

tools are being utilized in order to characterize and manipulate objects and structures on a<br />

nanometer scale. Using scanning probe oxidation well-defined functionalised nanopatterned<br />

substrates can be prepared that can be subsequently used as templates in a large<br />

number <strong>of</strong> chemical (covalent and non-covalent) surface modification routines. A<br />

combination <strong>of</strong> automated scanning probe microscopy and oxidation by means <strong>of</strong><br />

patterned electrodes is employed to functionalize surfaces with larger dimensions.<br />

3. Combinatorial material research and high-throughput experimentation (CMR&HTE). The<br />

utilization <strong>of</strong> combinatorial methods, high-throughput screening tools, data evaluation<br />

and modelling approaches allow a new detailed inside into structure-property as well as<br />

structure-function relationships. As a result, the selective design <strong>of</strong> new materials and a<br />

dramatically improved understanding <strong>of</strong> the underlying chemical and physical processes<br />

can be obtained.<br />

4. Inkjet printing <strong>of</strong> functional materials. Inkjet printing is used to deposit a large variety <strong>of</strong><br />

materials can be deposited. The technique is used in combination with the CMR&HTE<br />

program for the preparation <strong>of</strong> surface libraries as well as for the preparation for devices<br />

with micrometer precision. Applications are currently found in LED-preparation, printing<br />

<strong>of</strong> conductive 2D-tracks as well as three dimensional structures by multi-layers printing.<br />

Keywords<br />

Non-covalent assemblies, tailor-made macromolecules, nano-lithography, nano-manipulation,<br />

nanochemistry, supramolecular chemistry, inkjet printing<br />

Staff involved<br />

Total Research<br />

Senior staff 1.0 0.5<br />

PhD 12.0 9.0<br />

40


Nano-engineering / cNM Macromolecular Chemistry and Nanoscience<br />

Post doc 8.0 7.2<br />

Total (fte) 16.7<br />

The group Macromolecular Chemistry and Nanoscience participates 50/50 in the TU/e focus<br />

areas Nano-Engineering and Polymers.<br />

Key publications<br />

B.G.G. Lohmeijer, U.S. Schubert, Supramolecular engineering with macromolecules: A novel approach to<br />

block copolymers, Angew. Chem. Int. Ed., 41, 3825-3829, (2002)<br />

M. Kudera, C. Eschbaumer, H.E. Gaub, U.S. Schubert, Analysis <strong>of</strong> metallo-supramolecular systems<br />

utilizing single-molecule force spectroscopy. Adv. Funct. Materials., 13, 615-620, (2003)<br />

B.G.G. Lohmeijer, D. Wouters, Z. Yin, U.S. Schubert, Metallo-Supramolecular Block Copolymer Libraries:<br />

Modular Versatility <strong>of</strong> the LEGO-System, Chem. Commun. 2886 (2004)<br />

S. Hoeppener, U.S. Schubert, Magnetic nanostructures – fabrication via the electrochemical oxidation <strong>of</strong><br />

self-assembled monolayers and site-selective derivatization <strong>of</strong> these surface templates. Small 1, 628 (<strong>2005</strong>)<br />

D. Wouters, R. Willems, S. Hoeppener, C.F.J. Flipse, U.S. Schubert, Oxidation conditions for octadecyl<br />

trichlorosilane monolayers on silicon: a detailed AFM-study <strong>of</strong> the effects <strong>of</strong> pulse-height and duration on<br />

the oxidation <strong>of</strong> the monolayer and the underlying Si-substrate. Adv. Funct. Mater. 15, 938 (<strong>2005</strong>)<br />

Research highlight<br />

Nanolithography and nanochemistry:<br />

The obtainable size <strong>of</strong> devices<br />

produced by photolithography<br />

techniques is limited. Therefore,<br />

other patterning techniques are<br />

intensively studied in order to create<br />

smaller structures. Dip-pen,<br />

dynamic plow and oxidative probe<br />

lithography are examples <strong>of</strong><br />

scanning probe based patterning<br />

techniques. The last <strong>of</strong> which is<br />

especially interesting because it is<br />

allows for both high resolution<br />

patterning (up to 10 nm) as well as<br />

chemical and physical modification<br />

<strong>of</strong> these structures due to<br />

differences in local properties<br />

between the oxidized and unaffected<br />

areas (e.g. surface charge, solubility,<br />

reactivity). Our group demonstrated<br />

the use <strong>of</strong> octadecyltrichloro silane<br />

(OTS) monolayers on silicon<br />

Example <strong>of</strong> surface modification electrooxidative defined<br />

templates. Starting from the top in a clockwise direction the<br />

images demostrate the selective assembly <strong>of</strong>: carbon nanotubes, exsitu<br />

formed nanoparticels, molecular bilayers, multicomponent<br />

structures, in-situ formed metal particles and large scale oxidation<br />

b d<br />

substrates as a versatile starting platform for a number <strong>of</strong> modification routes. The local oxidation<br />

<strong>of</strong> OTS converts the terminal methyl groups <strong>of</strong> the monolayer into carboxylic acid groups,<br />

introducing functionality that can be later decorated by, but is not limited to, quaternary<br />

ammonium salts and positively charged particles (see example images). The modification <strong>of</strong> the<br />

templates with for example amines, or their conversion to acid anhydrides and the coupling <strong>of</strong><br />

initiators as well as dyes or bio-material allows for the designed production <strong>of</strong> nanometer-sized<br />

electronic devices but also the formation <strong>of</strong> devices involving (bio)molecular recognition and<br />

sensor devices. Moreover the oxidation and local functionalization procedure can be repeated in a<br />

sequential fashion, enabling the build-up <strong>of</strong> complex multi-component devices. Due to the<br />

41


Nano-engineering / cNM Macromolecular Chemistry and Nanoscience<br />

increasing progress in the development <strong>of</strong> automated and multi-tip scanning probe systems the<br />

fast modification <strong>of</strong> large-scale samples (square centimeters) becomes feasible.<br />

Senior scientific staff<br />

Pr<strong>of</strong>. Dr. U.S. Schubert<br />

Ulrich Schubert focuses on self-organizing supramolecular architectures and materials.<br />

Synthetic organic chemistry is combined with macromolecular and supramolecular chemistry in<br />

order to design and synthesize new molecules, polymers and materials. Utilizing advanced<br />

characterization methods in solution, in bulk and on surfaces the nanoscopic and mesoscopic<br />

properties are investigated in detail.<br />

Selected publications 2001-<strong>2005</strong><br />

2001<br />

U.S. Schubert, C. Eschbaumer, Functionalized oligomers and copolymers with metal complexing<br />

segments based on 2,2':6',2''-terpyridines. Macromol. Symp. 163, 177 (2001)<br />

R. Kröll, C. Eschbaumer, U.S. Schubert, M.R. Buchmeiser, K. Wurst, Access to heterogeneous atomtransfer<br />

radical polymerization (ATRP) catalysts based on dipyridylamine and terpyridine via ring-opening<br />

metathesis polymerization (ROMP). Macromol. Chem. Phys. 202, 645 (2001)<br />

U.S. Schubert, Towards the design <strong>of</strong> novel macromolecules. Chem. Engineer. News 79, 221 (2001)<br />

U.S. Schubert, C. Eschbaumer, P.R. Andres, H. H<strong>of</strong>meier, C.H. Weidl, E. Herdtweck, E. Dulkeith, A.<br />

Morteani, N. Hecker, J. Feldmann, 2,2':6',2''-Terpyridine metal complexes as building blocks for extended<br />

functional metallo-supramolecular assemblies and polymers. Synth. Metals 121, 1249 (2001)<br />

U.S. Schubert, G. Hochwimmer, Biodegradable polymers with specific metal binding sites based on<br />

bipyridine containing poly(lactid acid) and poly(ε-caprolactone): Towards high molecular weight<br />

polyesters. Macromol. Rapid Commun. 22, 274 (2001)<br />

M.R. Buchmeiser, R. Kröll, K. Wurst, T. Schareina, R. Kempe, C. Eschbaumer, U.S. Schubert, Polymersupported<br />

polymerization catalysts via ROMP. Macromol. Symp. 164, 187 (2001)<br />

U.S. Schubert, C. Eschbaumer, O. Hien, P.R. Andres, 4'-Functionalized 2,2':6',2''-terpyridines as building<br />

blocks for supramolecular chemistry and nanoscience. Tetrahedron Lett. 42, 4705 (2001)<br />

G. Billancia, D. Wouters, A.A. Precup, U.S. Schubert, Towards functionalized nanoparticles. Polymeric<br />

Materials: Science & Engineering 85, 508 (2001)<br />

M. Heller, U.S. Schubert, Optically active supramolecular terpyridine end-capped poly(L-lactide)s.<br />

Macromol. Rapid Commun. 22, 1362 (2001)<br />

U.S. Schubert, M. Heller, Metallo-supramolecular initiators for the preparation <strong>of</strong> novel functional<br />

architectures. Chem. Eur. J. 7, 5252 (2001)<br />

2002<br />

U.S. Schubert, C. Eschbaumer, Macromolecules containing bipyridine and terpyridine metal complexes:<br />

Towards metallo-supramolecular polymers. Angew. Chem. Int. Ed. 41, 2892 (2002)<br />

T. Salditt, U.S. Schubert, Layer-by-layer self-assembly <strong>of</strong> supramolecular and biomolecular films. Reviews<br />

Mol. Biotech. 90, 55 (2002)<br />

M. Heller, U.S. Schubert, Poly(styrene) with pendant mixed functional ruthenium(II)-terpyridine<br />

complexes. Macromol. Rapid Commun. 23, 411 (2002)<br />

42


Nano-engineering / cNM Macromolecular Chemistry and Nanoscience<br />

H. H<strong>of</strong>meier, U.S. Schubert, Metallo-supramolecular graft copolymers: A novel approach for<br />

polymeranalogous reactions. Macromol. Rapid Commun. 23, 561 (2002)<br />

M. Heller, U.S. Schubert, Multi-functionalized 2,2':6',2''-terpyridines. Synlett. 751 (2002)<br />

J.-F. Gohy, B.G.G. Lohmeijer, U.S. Schubert, Metallo-supramolecular block copolymer aqueous micelles<br />

containing a s<strong>of</strong>t core. Macromol. Rapid Commun. 23, 555 (2002)<br />

J.-F. Gohy, B.G.G. Lohmeijer, U.S. Schubert, Metallo-supramolecular block copolymer micelles.<br />

Macromolecules 35, 4650 (2002)<br />

B.G.G. Lohmeijer, U.S. Schubert, Supramolecular engineering with macromolecules: A novel approach to<br />

block copolymers. Angew. Chem. Int. Ed. 41, 3825 (2002)<br />

M. Heller, U.S. Schubert, Functionalized 2,2'-bipyridines and 2,2':6',2''-terpyridines via Stille-tpye crosscoupling<br />

procedures. J. Org. Chem. 67, 8269 (2002)<br />

J.-F. Gohy, B.G.G. Lohmeijer, S.K. Varshney, B. Decamps, E. Leroy, S. Boileau, U.S. Schubert, Stimuliresponsive<br />

aqueous micelles made from an ABC metallo-supramolecular triblock copolymer.<br />

Macromolecules 35, 9748 (2002)<br />

2003<br />

D. Wouters, S. Höppener, L. Chi, H. Fuchs, U.S. Schubert, Highly ordered self-assembled architectures <strong>of</strong><br />

modified terpyridines on HOPG imaged by STM. Adv. Funct. Mater. 13, 277 (2003)<br />

A. El-ghayoury, H. H<strong>of</strong>meier, B. de Ruiter, U.S. Schubert, Combining covalent and non-covalent crosslinking:<br />

A novel terpolymer for two-step curing applications. Macromolecules 36, 3955 (2003)<br />

R. Hoogenboom, D. Wouters, U.S. Schubert, L-Lactide polymerization utilizing a hydroxy-functionalized<br />

3,6-bis(2-pyridyl)-pyridazine as supramolecular (co)initiator: The construction <strong>of</strong> polymeric [2×2] grids.<br />

Macromolecules 36, 4743 (2003)<br />

J.-F. Gohy, B.G.G. Lohmeijer, U.S. Schubert, From supramolecular block copolymers to advanced nanoobjects.<br />

Chem. Eur. J. 9, 3472 (2003)<br />

M. Kudera, C. Eschbaumer, H.E. Gaub, U.S. Schubert, Analysis <strong>of</strong> metallo-supramolecular systems<br />

utilizing single-molecule force spectroscopy. Adv. Funct. Materials. 13, 615 (2003)<br />

D. Wouters, U.S. Schubert, Constructive nanolithography and nanochemistry: Local probe oxidation and<br />

chemical modification. Langmuir 19, 9033 (2003)<br />

P.R. Andres, R. Lunkwitz, G.R. Pabst, K. Böhn, D. Wouters, S. Schmatloch, U.S. Schubert, New 4'functionalized<br />

2,2':6',2''-terpyridines for applications in macromolecular chemistry and nanoscience. Eur.<br />

J. Org. Chem. 3769 (2003)<br />

M. Al-Hussein, B.G.G. Lohmeijer, U.S. Schubert, W.H. de Jeu, The melt morphology <strong>of</strong> polystyrene<br />

polyethylene oxide metallo-supramolecular diblock copolymer. Macromolecules 18, 9281 (2003)<br />

S. Schmatloch, A.M.J. van den Berg, A.S. Alexeev, H. H<strong>of</strong>meier, U.S. Schubert, Soluble high molecular<br />

mass poly(ethylene oxide)s via self-organization, Macromolecules 36, 9943 (2003)<br />

R. Hoogenboom, G. Kickelbick, U.S. Schubert, Synthesis and characterization <strong>of</strong> novel substituted<br />

3,6-bis(2-pyridyl)-pyridazine metal coordinating ligands. Eur. J. Org. Chem. 4887 (2003)<br />

2004<br />

H. H<strong>of</strong>meier, A. El-ghayoury, A.P.H.J. Schenning, U.S. Schubert, New Supramolecular Polymers<br />

Containing both Terpyridine Metal Complexes and Quadruple Hydrogen Bonding Units, Chem.<br />

Commun. 318 (2004)<br />

D. Wouters, U.S. Schubert, Nanolithography and Nanochemistry: Probe Related Patterning Techniques<br />

and Chemical Modification for Nanometer-sized Devices, Angew. Chem. Int. Ed. 43, 2480 (2004)<br />

43


Nano-engineering / cNM Macromolecular Chemistry and Nanoscience<br />

P.R. Andres, U.S. Schubert, Formation <strong>of</strong> Metallo-Polymers and –Macrocycles by Complexation <strong>of</strong> Alkyl-<br />

Linked Di-Terpyridines with Iron(II) Ions, Synthesis 1229 (2004)<br />

P.R. Andres, U.S. Schubert, New Functional Polymers and Materials based on 2,2':6',2'' Terpyridine<br />

Metal Complexes, Adv. Mater. 16, 1043 (2004)<br />

J.-F. Gohy, B.G.G. Lohmeijer, A. Alexeev, X.-S. Wang, I. Manners, M.A. Winnik, U.S. Schubert,<br />

Cylindrical Micelles from the Aqueous Self-Assembly <strong>of</strong> an Amphiphilic Poly­(ethylene oxide)-b-<br />

Poly(ferrocenylsilane) (PEO-b-PFS) Block Copolymer with a Metallo-supramolecular Linker at the Block<br />

Junction, Chem. Eur. J. 10, 4315 (2004)<br />

G. Mayer, V. Vogel, B.G.G. Lohmeijer, J.-F. Gohy, J.A. van den Broek, W. Haase, U.S. Schubert, D.<br />

Schubert, Metallo-supramolecular Block Copolymer Micelles: Improved Preparation and Characterization,<br />

J. Polym. Sci.: Part A: Polym. Chem. 42, 4458 (2004)<br />

H. H<strong>of</strong>meier, J. Pahnke, C.H. Weidl, U.S. Schubert, Combined biotin-terpyridine systems: A new versatile<br />

bridge between biology, polymer science and metallo-supramolechular chemistry, Biomacromolecules 5,<br />

2055 (2004)<br />

B.-J. de Gans, U.S. Schubert, Ink-jet Printing Well Defined Polymer Dots and Arrays, Langmuir 20, 7789<br />

(2004)<br />

B.G.G. Lohmeijer, D. Wouters, Z. Yin, U.S. Schubert, Metallo-Supramolecular Block Copolymer Libraries:<br />

Modular Versatility <strong>of</strong> the LEGO-System, Chem. Commun. 2886 (2004)<br />

MA.R. Meier, J.-F. Gohy, C.-A. Fustin, U.S. Schubert, Combinatorial Synthesis <strong>of</strong> Star Shaped Block<br />

Copolymers: Host-Guest Chemistry <strong>of</strong> Unimolecular Reversed Micelles, J. Am. Chem. Soc. 126, 11517<br />

(2004)<br />

<strong>2005</strong><br />

D. Wouters, R. Willems, S. Hoeppener, C.F.J. Flipse, U.S. Schubert, Oxidation conditions for octadecyl<br />

trichlorosilane monolayers on silicon: a detailed afm-study <strong>of</strong> the effects <strong>of</strong> pulse-height and duration on<br />

the oxidation <strong>of</strong> the monolayer and the underlying si-substrate. Adv. Funct. Mater. 15, 938 (<strong>2005</strong>)<br />

E. Tekin, E. Holder, V.N. Marin, B.-J. de Gans, U.S. Schubert, Inkjet printing <strong>of</strong> luminescent ruthenium-<br />

and iridium-containing polymers for applications in light-emitting devices. Macromol. Rapid Commun.<br />

26, 293 (<strong>2005</strong>)<br />

S. Hoeppener, U.S. Schubert, Magnetic nanostructures – fabrication via the electrochemical oxidation <strong>of</strong><br />

self-assembled monolayers and site-selective derivatization <strong>of</strong> these surface templates. Small 1, 628 (<strong>2005</strong>)<br />

M.A.R. Meier, U.S. Schubert, Combinatorial evaluation <strong>of</strong> the host-guest chemistry <strong>of</strong> star-shaped block<br />

copolymers. J. Comb. Chem. 7, 356 (<strong>2005</strong>)<br />

D. Wouters, U.S. Schubert, Sequential oxidation and functionalization <strong>of</strong> nanostructures: the site-specific<br />

controlled assembly <strong>of</strong> different sized particles on a surface. J. Mater. Chem. 15, 2353 (<strong>2005</strong>)<br />

B.G.G. Lohmeijer, U.S. Schubert, The lego toolbox: supramolecular building blocks by nitroxide mediated<br />

controlled radical polymerization. J. Polym. Sci.: Part A: Polym. Chem. 43, 6331 (<strong>2005</strong>)<br />

V.N. Marin, Elisabeth Holder, M.M. Wienk, E. Tekin, D. Kozodaev, U.S. Schubert, Inkjet printing <strong>of</strong><br />

electron donor/ acceptor blends: towards bulk heterojunction solar cells. Macromol. Rapid Commun. 26,<br />

319 (<strong>2005</strong>)<br />

H. H<strong>of</strong>meier, U.S. Schubert, Combination <strong>of</strong> different orthogonal supramolecular interactions in<br />

polymeric architectures. Chem. Commun. 2423 (<strong>2005</strong>)<br />

M.W.M. Fijten, R.M. Paulus, U.S. Schubert, Systematic parallel investigation <strong>of</strong> raft polymerizations for<br />

eight different (meth)acrylates: a basis for the designed synthesis <strong>of</strong> block and random copolymers. J.<br />

Polym. Sci.: Part A: Polym. Chem. 43, 3831 (<strong>2005</strong>)<br />

44


Nano-engineering / cNM Macromolecular Chemistry and Nanoscience<br />

C. Guerrero-Sanchez, D. Wouters, C.-A. Fustin, J.-F. Gohy, B.G.G. Lohmeijer, U.S. Schubert, Structure<br />

property study <strong>of</strong> diblock copolymer micelles: core and corona radius with varying composition and degree<br />

<strong>of</strong> polymerization. Macromolecules 38, 10185 (<strong>2005</strong>)<br />

45


Nano-engineering / cNM Macromolecular Chemistry and Nanoscience<br />

46


Nano-engineering / cNM Nanophotonic Devices<br />

Nanophotonic Devices M.K. Smit<br />

Nanotechnology, combined with photonics, is a field that will lead to radically new concepts in<br />

optical information processing, providing the next generation optical communication technology.<br />

The emerging <strong>of</strong> nanotechnology enables a spectacular reduction in size <strong>of</strong> photonic integrated<br />

circuits (PICs) through the increased control <strong>of</strong> size and shape <strong>of</strong> optical and opto-electronic<br />

structures. Also it enables new functionalities in these circuits. In particular it allows for the<br />

development <strong>of</strong> photonic crystals, structures in which mixing <strong>of</strong> optical modes and optical<br />

resonances plays a dominant role, and quantum dot or quantum wire devices, semiconductor<br />

devices in which the properties <strong>of</strong> opto-electronic materials can be manipulated by controlling the<br />

dimensions and positions <strong>of</strong> embedded quantum dots or wires on an atomic scale. The program<br />

focuses on extending existing expertise on ultracompact photonic devices towards nanophotonic<br />

devices in which the ultimate confinement <strong>of</strong> light in Photonic crystal structures will be combined<br />

with the ultimate confinement <strong>of</strong> electrons in Quantum Dots, in order to shift fundamental<br />

barriers in electro-optic interactions that exist in classical device structures. The research is done<br />

in cooperation with Physics <strong>of</strong> Semiconductor Nanostructures group.<br />

Research themes<br />

1. Photonic integrated circuits in III-V material. Integration <strong>of</strong> passive devices with<br />

semiconductor optical amplifiers, optical switches and modulators. Emphasis on<br />

reduction <strong>of</strong> device dimensions and operation speed. Requirements on control <strong>of</strong> device<br />

dimensions in nanometer range.<br />

2. Photonic crystal devices. Extremely compact wavelength selective devices like filters and<br />

demultiplexers. Microcavity lasers.<br />

3. Quantum-dot based electro-optical devices. Use <strong>of</strong> QD-layers in non-linear devices (photonic<br />

logic) and in lasers and optical amplifiers.<br />

Keywords<br />

Photonic integrated circuits, photonic integration, quantum dots, quantum wires, photonic<br />

crystals, photonic band gap, III-V-Semiconductors<br />

Staff involved<br />

Total Research<br />

Senior staff 4.0 2<br />

PhD 2.0 1.6<br />

Post doc<br />

Total (fte) 3.6<br />

Key publications<br />

Prasanth, R.; Notzel, R.; Wolter, J.H.; Haverkort, J.E.M.; Deepthy, A.; Bogaart, E.W.; Tol, J.J.G.M. van der;<br />

Patent, E.; Zhao, G.; Gong, Q; Veldhoven, P.J.: All-optical switching due to state-filling in quantum dots.<br />

Appl. Phys. Lett., Vol 84, Nr 20, pp. 4059-4061, 2004.<br />

Hill, M.T.; Leijtens, X.J.M.; Khoe, G.D.; Smit, M.K.: Optimizing imbalance and loss in 2 x 2 3-dB<br />

multimode interference couplers via access waveguide width. J. Lightwave Technol. 21, nr. 10, 2003,<br />

47


Nano-engineering / cNM Nanophotonic Devices<br />

pp. 2305-2313.<br />

Broeke, R G , Binsma, J.J.M. , Geemert, M. van , Heinrichsdorff, F , Dongen, T. van , Zantvoort, J.H.C. van,<br />

Leijtens, X.J.M. , Oei, Y.S. & Smit, M.K. All-optical wavelength converter with a monolithically integrated<br />

digitally tunable laser. proc. ECOC 2002 conference, Copenhagen, 8-12 September 2002, paper nr PD 3.2<br />

Besten, J.H. den , Broeke, R G , Geemert, M. van , Binsma, J.J.M. , Heinrichsdorff, F , Dongen, T. van ,<br />

Vries, T.J. de , Bente, E.A.J.M. , Leijtens, X.J.M. & Smit, M.K. ;A compact digitally tunable seven-channel ring<br />

laser.IEEE Photonics <strong>Technology</strong> Letters, 14(6), 753-755, 2002<br />

C.G.P. Herben, D.H.P. Maat, X.J.M. Leijtens, M.R. Leys, Y.S. Oei and M.K. Smit Polarization Independent<br />

Dilated WDM Optical Cross–Connect on InP IEEE Photon.Technol.Lett., Vol. 11, No. 12, Dec. 1999, pp.<br />

1599–1601.<br />

Research highlight<br />

The optical self-switching combiner, an application <strong>of</strong> nanophotonic material<br />

Quantum dots are the nanophotonic material par excellence. Having dimensions in the order <strong>of</strong> a<br />

few nanometers they provide a means to manipulate the electronic and optical properties <strong>of</strong><br />

semiconductors. E.g., they show exciting non-linear behavior. A non-linear optical device has<br />

been realized recently with these QDs. The combining <strong>of</strong> optical signals is a basic function in<br />

optical fiber communication, which is usually performed with passive devices, so called 3dBcouplers,<br />

which have the fundamental property <strong>of</strong> radiating out half <strong>of</strong> the light power. This<br />

unwanted loss <strong>of</strong> 3dB can be avoided with optical switches, but this is not convenient, since then a<br />

complicated control and management system is required. A better solution is a self-switching<br />

device, in which the optical signals themselves set the transmission path, thus avoiding both the 3<br />

dB loss and the control system. This can be done with a non-linear optical effect. Together with<br />

the Semiconductor Physics group (HGF) we have developed such a combiner. It uses nanostructured<br />

optical material: quantum dots. The device and the optical switching curve are shown<br />

in figure 1.<br />

x/(1-x) coupler splitter<br />

QD<br />

QD<br />

Non<br />

Fig.1: Left: Self-switching combiner circuit. Right: Switching curve, Pin (horizontal axis) is the optical input<br />

power, the vertical axis shows the ratio between the transmission <strong>of</strong> a self-switching combiner and a passive<br />

3dB-coupler<br />

The combiner is an interferometer with an unequal power distribution over the branches. This<br />

results in unequal power dependent phase shifts between these branches, and hence in a<br />

switching effect. With respect to a 3dB coupler an improvement <strong>of</strong> 1.76 dB is found, reducing the<br />

loss to 1.24 dB. To put this in perspective: in a typical optical tree network up to 16 splitting stages<br />

can be required, so the improvement found results in a reduction <strong>of</strong> power budgets by 28 dB,<br />

implying a huge relaxation <strong>of</strong> transmitter and receiver requirements (and costs).<br />

48


Nano-engineering / cNM Nanophotonic Devices<br />

Senior scientific staff<br />

Pr<strong>of</strong>.dr.ir. M.K. Smit<br />

Meint Smit is the leader <strong>of</strong> the Opto-Electronic Devices group. He is the inventor <strong>of</strong> the Arrayed<br />

Waveguide Grating demultiplexers, which has found worldwide application. He has a broad<br />

experience with Photonic Integration <strong>of</strong> Semiconductor based devices, with emphasis on compact<br />

and fabrication-tolerant design and technology. He is author/co-author <strong>of</strong> more than 250 papers<br />

and 2 patents.<br />

Dr. J.J.G.M. van der Tol<br />

Jos van der Tol is associated pr<strong>of</strong>essor in the OED group. His field <strong>of</strong> interest include photonic<br />

crystals, optical polarization manipulation and interferometric devices.He has a broad experience<br />

in the design and realization <strong>of</strong> integrated optical components on lithium niobate and indium<br />

phosphide. He has 26 patents to his name.<br />

Dr. F. Karouta<br />

Fouad Karouta is associated pr<strong>of</strong>essor in the OED group. His field <strong>of</strong> interest includes the<br />

technology <strong>of</strong> III-V semiconductors including dry etching, PECVD <strong>of</strong> dielectrics. He has 1 patent<br />

to his name.<br />

Dr. Y.S. Oei<br />

Siang Oei is associated pr<strong>of</strong>essor in the OED group. His field <strong>of</strong> interest includes all aspects <strong>of</strong> the<br />

technology <strong>of</strong> III-V semiconductors. He has developed the so-called descum-process for the<br />

etching <strong>of</strong> high quality waveguides on InP, which is the basis <strong>of</strong> all OED realizations. A recent<br />

activity is the development <strong>of</strong> a technology for photonic crystals.<br />

Selected publications 1999-2003<br />

1999<br />

C.G.P. Herben, X.J.M. Leijtens, P. Maat, H. Blok and M.K. Smit Crosstalk Performance <strong>of</strong> Integrated<br />

Optical Cross–Connects Journal <strong>of</strong> Lightwave <strong>Technology</strong>, Vol. 17, No. 7, July 1999, pp. 1126–1134.<br />

J. Stulemeijer, F.E. van Vliet, K.W. Benoist, D.H.P. Maat and M.K. Smit Compact Photonic Integrated<br />

Phase and Amplitude Controller for Phased–Array Antennas IEEE Photonics <strong>Technology</strong> Letters, Vol. 11,<br />

No. 1, Jan. 1999, pp. 122–124.<br />

J. Stulemeijer, A.F. Bakker, I. Moerman, F.H. Groen and M.K. Smit InP–Based Spotsize Converter for<br />

Integration with Switching Devices IEEE Photonics <strong>Technology</strong> Letters, Vol. 11, No. 1, Jan. 1999, pp. 81–83.<br />

H.G. Bukkems, C.G.P. Herben, M.K. Smit, F.H. Groen and I. Moerman Minimisation <strong>of</strong> the Loss <strong>of</strong><br />

Intersecting Waveguides in InP Based Photonic Integrated Circuits IEEE Photon.Technol.Lett., Vol. 11, No.<br />

11, Nov. 1999, pp. 1420–1422.<br />

C.G.P. Herben, D.H.P. Maat, X.J.M. Leijtens, M.R. Leys, Y.S. Oei and M.K. Smit Polarization Independent<br />

Dilated WDM Optical Cross–Connect on InP IEEE Photon.Technol.Lett., Vol. 11, No. 12, Dec. 1999, pp.<br />

1599–1601.<br />

P.J. Harmsma, M.K. Smit, Y.S. Oei, M.R. Leys, C.A. Verschuren and H. Vonk Multi Wavelength Lasers<br />

Fabricated Using Selective Area Chemical Beam Epitaxy Proc. IPR, Santa Barbara, California, 1999, pp. 17–<br />

19.<br />

Y.C. Zhu, F.H. Groen, D.H.P. Maat, Y.S. Oei, J. Romijn and I. Moerman A Compact Phasar with Low<br />

Central Channel Loss Proc. ECIO’99, Torino, Italy, 13–16 April 1999, pp. 219–222.<br />

C.A. Verschuren, M.R. Leys, H. Vonk, J.H. Wolter, P.J. Harmsma and Y.S. Oei Butt–Coupling Loss <strong>of</strong> 0.1<br />

dB/Interface in InP/InGaAs Multi–Quantum–Well Waveguide–Waveguide Structures grown by Selective<br />

Area Chemical Beam Epitaxy Turkish Journal <strong>of</strong> Physics, Vol. 23, No. 24, 1999, pp. 657–664.<br />

49


Nano-engineering / cNM Nanophotonic Devices<br />

H.G. Bukkems, J.E.M. Haverkort, M.R. Leys, N. Futakuchi, Y. Nakano, Y.S. Oei and M.K. Smit An<br />

InGaAsP/InGaAs Quantum Well Suitable for a Self Electro–Optic Effect Device Proc. IEEE/LEOS Benelux<br />

Chapter, Mons, Belgium, Nov. 1999, pp. 243–246.<br />

Buda, M.; Karouta, F.; Iordache, G.; Tan, H.H.; Jagadish, C.; Smalbrugge, E.; Roy, B.H. van; Vleuten, W.C.<br />

van der; Silov, A.Yu.: Quantum well intermixing in 980 nm laser structures using PECVD SiOxNy/SiOx<br />

layers. Proc. 4th <strong>Annual</strong> Symposium <strong>of</strong> the IEEE/LEOS Benelux Chapter, 1999, pp. 219-222.<br />

2000<br />

Thourhout, D. van; Hove, A. van; Caenegem, T. van; Moerman, I.; Daele, P. van; Baets, R.; Leijtens, X.J.M.;<br />

Smit, M.K.: Packaged hybrid integrated phased-array multi-wavelength laser. Electron. Lett. 36, nr. 5,<br />

2000, pp. 434-436.<br />

Verschaffelt, G.; Ryvkin, B.; Thienpont, H.; Acket, G.A.; Vleuten, W.C. van der; Creusen, M.P.; Smalbrugge,<br />

E.; Roer, T.G. van de; Karouta, F.; Strijbos, R.C.; Danckaert, J.; Veretennic<strong>of</strong>f, I.: Polarization stabilization<br />

in vertical-cavity surface-emitting lasers through asymmetric current injection. IEEE Photonics Technol.<br />

Lett. 12, 2000, pp. 945-947.<br />

Bukkems, H.G.; Oei, Y.S.; Richter, U.; Gruska, B.: Analysis <strong>of</strong> III-V layer stacks on InP substrates using<br />

spectroscopic ellipsometry in the NIR spectral range. Thin Solid Films 364, 2000, pp. 165-170.<br />

Harmsma, P.J. Integration <strong>of</strong> semiconductor optical amplifiers in wavelength division multiplexing<br />

photonic integrated circuits PhD Thesis, Delft <strong>University</strong> <strong>of</strong> <strong>Technology</strong>, ISBN 90-9014315-7, December<br />

2000<br />

Extremely compact WDM cross connect on InP. Proc. 5th <strong>Annual</strong> Symposium <strong>of</strong> the IEEE/LEOS Benelux<br />

Chapter, 30 October 2000, ISBN 90-9014260-6, ed. X.J.M. Leijtens; J.H. den Besten; Delft Univ. <strong>of</strong><br />

<strong>Technology</strong>, 2000, pp. 17-20.<br />

Smit, M.K.; Herben, C.G.P.: Photonic integrated circuits for WDM applications. Proc. Optoelectronics and<br />

Communications Conference, 11-14 July 2000, pp. 150-151.<br />

Herben, C.G.P. Compact integrated cross connects for wavelength-division multiplexing networks PhD<br />

Thesis, Delft <strong>University</strong> <strong>of</strong> <strong>Technology</strong>, ISBN 90-9014303-3, December 2000<br />

Thourhout, D. van; Hove, A. van; Caenegem, T. van; Vandeputte, K.; Vandaele, P.; Moerman, I.; Leijtens,<br />

X.J.M.; Smit, M.K.; Baets, R.: Phased-array multiwavelength laser using hybridly integrated PICs. Proc.<br />

ECTC 2000, 21-24 May 2000, pp. 1266-1271.<br />

Harmsma, P.J.; Vonk, H.; Leys, M.R.; Oei, Y.S.: Effect <strong>of</strong> butt joint reflections on the performance <strong>of</strong><br />

extended cavity lasers and phased array multi-wavelength lasers. Proc. 5th Ann. Symp. IEEE/LEOS Benelux<br />

Chapter, 30 Oct. 2000, ISBN 90-9014260-6, 2000, pp. 123-126.<br />

Stulemeijer, J.; Dijk, R. van; Vliet, F.E. van; Maat, D.H.P.; Smit, M.K.: Photonic Chip for Steering a Four<br />

Element Phased Array Antenna. Proceedings <strong>of</strong> Microwave Photonics Conference, 11-13 September 2000,<br />

pp. 20-22.<br />

2001<br />

Smit, M.K.; Koonen, A.M.J.; Herrmann, H.; Sohler, W.: PHASAR-based devices and Integrated acoustooptical<br />

devices in LiNbO3. Fibre Optic Communication Devices, ISBN 3-540-66977-9, ed. N. Grote; H.<br />

Venghaus; Springer Verlag, 2001, pp. 281-312.<br />

Augustin, L.M.; Strijbos, R.C.; Smalbrugge, E.; Choquette, K.; Verschaffelt, G.; Geluk, E.J.; Karouta, F.;<br />

Roer, T.G. van de: Processing <strong>of</strong> intra-cavity VCSELs in structures with doped DBRs. Proc. IEEE/LEOS<br />

<strong>Annual</strong> Symposium, 3 December 2001, ISBN 90-5487247-0, ed. H. Thienpont; F. Berghmans; J.<br />

Danckaert; L. Desmet; VUB, Brussel, 2001, pp. 113-117.<br />

Besten, J.H. den; Broeke, R G; Geemert, M. van; Binsma, J.J.M.; Vries, T.J. de; Leijtens, X.J.M.; Smit, M.K.:<br />

A compact 4-channel multi-wavelength ringlaser. proc. 6th <strong>Annual</strong> Symposium <strong>of</strong> the IEEE/LEOS Benelux<br />

Chapter, 3-3 December 2001, ISBN 90-5487247-0, ed. Hugo Thienpont; Francis Berghmans; Jan<br />

Danckaert; Lieven Desmet; Vrije univ. Brussel en IEEE/LEOS, Brussels, Belgium, 2001, pp. 33-36.<br />

50


Nano-engineering / cNM Nanophotonic Devices<br />

Besten, J.H. den; Broeke, R G; Geemert, M. van; Binsma, J.J.M.; Vries, T.J. de; Leijtens, X.J.M.; Smit, M.K.:<br />

A dual-phasar multi-wavelength ringlaser. Proc. IEEE/LEOS <strong>Annual</strong> Symposium, 3 December 2001, ISBN<br />

90-5487247-0, ed. H. Thienpont; F. Berghmans; J. Danckaert; L. Desmet; VUB, Brussel, 2001, pp. 189-103.<br />

Binsma, J.J.M.; Geemert, M. van; Broeke, R G; Bente, E.A.J.M.; Smit, M.K.: MOVPE waveguide regrowth<br />

in InGaAs/InP with extremely low butt-joint loss. Proc. IEEE/LEOS <strong>Annual</strong> Symposium, 3 December<br />

2001, ISBN 90-5487247-0, ed. H. Thienpont; F. Berghmans; J. Danckaert; L. Desmet; VUB, Brussel, 2001,<br />

pp. 245-249.<br />

Broeke, R G; Binsma, J.J.M.; Geemert, M. van; Leijtens, X.J.M.; Vries, T.J. de; Smit, M.K.: A MOVPE<br />

grown phaser-based multi-wavelength laser with suppression <strong>of</strong> unwanted orders. proc. 6th <strong>Annual</strong><br />

Symposium <strong>of</strong> the IEEE/LEOS Benelux Chapter, 3-3 December 2001, ISBN 90-5487247-0, Brussels,<br />

Belgium, 2001, pp. 201-204.<br />

Broeke, R G; Binsma, J.J.M.; Geemert, M. van; Smit, M.K.: Monolithical integration <strong>of</strong> semiconductor<br />

optical amplifiers and passive modefilters for low facet reflectivity. Proc. IEEE/LEOS <strong>Annual</strong> Symposium, 3<br />

December 2001, ISBN 90-5487247-0, ed. H. Thienpont; F. Berghmans; J. Danckaert; L. Desmet; VUB,<br />

Brussel, 2001, pp. 57-61.<br />

Karouta, F.; Jacobs, B.; Kramer, M.C.J.C.M.: Role <strong>of</strong> Fluorine in a Chlorine-Based Reactive Ion Etching <strong>of</strong><br />

Semiconductors. Proc. Conference on Semiconductors and Integrated Opto-Electronics, 9-11 April 2001;<br />

<strong>University</strong> <strong>of</strong> Wales, Cardiff, 2001.<br />

Zhu, Y.; Groen, F.H.; Leijtens, X.J.M.; Tol, J.J.G.M. van der: Single-section polarisation converter on<br />

InP/InGaAsP using asymmetrical waveguides. Proc. IEEE/LEOS <strong>Annual</strong> Symposium, 3 December 2001,<br />

ISBN 90-5487247-0, ed. H. Thienpont; F. Berghmans; J. Danckaert; L. Desmet; VUB, Brussel, 2001,<br />

pp. 209-213.<br />

2002<br />

Besten, J.H. den , Broeke, R G , Geemert, M. van , Binsma, J.J.M. , Heinrichsdorff, F , Dongen, T. van ,<br />

Vries, T.J. de , Bente, E.A.J.M. , Leijtens, X.J.M. & Smit, M.K. A compact digitally tunable seven-channel<br />

ring laser. IEEE Photonics <strong>Technology</strong> Letters, 14(6), 753-755.<br />

Besten, J.H. den , Dessens, M.P. , Herben, C.G.P. , Leijtens, X.J.M. , Groen, F.H. , Leys, M.R. & Smit, M.K.<br />

Low-loss, compact and polarization independent PHASAR demultiplexer fabricated by using a double-etch<br />

process. IEEE Photonics <strong>Technology</strong> Letters, 14, 62-64.<br />

Stulemeijer, J. Integrated optics for microwave phased-array antennas. TU Delft (11-02-2002). 149 pp.<br />

promot.: pr<strong>of</strong>.dr.ir. M. K. Smit & pr<strong>of</strong>.dr.ir. H. Blok.<br />

Besten, J.H., Broeke, R.G., Geemert, M. van, Binsma, J.J.M., Heinrichsdorff, F., Dongen, T. van, Bente,<br />

E.A.J.M., Leijtens, X.J.M., Smit, M.K An Integrated Coupled-Cavity 16-Wavelength Digitally Tunable Laser<br />

IEEE Photon. Technol. Lett., vol 14, no. 12 December 2002, pp. 1653-1655<br />

Besten, J.H. den , Broeke, R G , Vries, A. de , Leijtens, X.J.M. , Smit, M.K. , Geemert, M. van & Binsma,<br />

J.J.M. (2002). A dual-phasar multi-wavelength ringlaser. Proceedings OFC 2002 Anaheim, pp. 203-205.<br />

Broeke, R G , Binsma, J.J.M. , Geemert, M. van , Heinrichsdorff, F , Dongen, T. van , Zantvoort, J.H.C. van,<br />

Leijtens, X.J.M. , Oei, Y.S. & Smit, M.K. All-optical wavelength converter with a monolithically integrated<br />

digitally tunable laser. proc. ECOC 2002 conference, Copenhagen, 8-12 September 2002, paper nr PD 3.2<br />

Broeke, R G , Binsma, J.J.M. , Geemert, M. van , Heinrichsdorff, F , Dongen, T. van , Zantvoort, J.H.C. van,<br />

Tangdiongga, , Waardt, H. de , Leijtens, X.J.M. , Oei, Y.S. & Smit, M.K. An all-optical wavelength converter<br />

in a layer-stack suitable for compact photonic integration. proc. IPR'02 Conference, Vancouver, Canada.<br />

pp. 1-3<br />

I.M. Augustin, E. Smalbrugge, F. Karouta, K. D. Choquette, G. Verschaffelt, R. C. Strijbos, E.-J. Geluk, T.<br />

G. v.d. Roer, H. Thienpont Controlled Polarization Switching in VCSELs by means <strong>of</strong> Asymmetric Current<br />

Injection 7 th IEEE/LEOS Benelux <strong>Annual</strong> Meeting, Amsterdam, NL, December 2002, pp. 63-66<br />

51


Nano-engineering / cNM Nanophotonic Devices<br />

U.Khalique , Y.C. Zhu , J.J.G.M. van der Tol , F.Karouta , E.J. Geluk , T. J. Eijkemans , J.E.M. Haverkort ,<br />

H.H. Tan , C. Jagadish . Realization <strong>of</strong> POLIS components: Waveguides, LEDs and Detectors 7 th<br />

IEEE/LEOS Benelux <strong>Annual</strong> Meeting, Amsterdam, NL, December 2002, pp. 20-23<br />

E.A. Patent , J.J.G.M. van der Tol , R.G. Broeke ,J.J.M. Binsma . Semiconductor Optical Amplifiers in a<br />

non-linear Mach-Zehnder Interferometer. 7 th IEEE/LEOS Benelux <strong>Annual</strong> Meeting, Amsterdam, NL,<br />

December 2002, pp. 222-225<br />

2003<br />

Besten, J.H. den; Broeke, R.G.; Geemert, M. van; Binsma, J.J.M.; Heinrichsdorff, F.; Dongen, T. van; Bente,<br />

E.A.J.M.; Leijtens, X.J.M.; Smit, M.K.: An integrated 4x4-channel multi-wavelength laser on InP. IEEE<br />

Photonics Technol. Lett. 15, nr. 3, 2003, pp. 368-370.<br />

Prasanth, R.; Notzel, R.; Wolter, J.H.; Haverkort, J.E.M.; Deepthy, A.; Bogaart, E.W.; Tol, J.J.G.M. van der;<br />

Patent, E.; Zhao, G.; Gong, Q; Veldhoven, P.J.: All-optical switching due to state-filling in quantum dots.<br />

Appl. Phys. Lett., Vol 84, Nr 20, pp. 4059-4061, 2004.<br />

Hill, M.T.; Leijtens, X.J.M.; Khoe, G.D.; Smit, M.K.: Optimizing imbalance and loss in 2 x 2 3-dB<br />

multimode interference couplers via access waveguide width. J. Lightwave Technol. 21, nr. 10, 2003,<br />

pp. 2305-2313.<br />

Zhao, G.; Patent, E.; Tol, J.J.G.M. van der: Modeling <strong>of</strong> optical nonlinearities based on engineering the<br />

semiconductor band. Materials Science in Semiconductor Processing 6, 2003, pp. 153-158.<br />

Pascher, W.; Besten, J.H. den; Caprioli, D.; Leijtens, X.J.M.; Smit, M.K.; Dijk, R. van: Modelling and design<br />

<strong>of</strong> a travelling-wave electro-optic modulator on InP. Opt. Quantum Electron. 35, 2003, pp. 453-464.<br />

Groen, F.H.; Zhu, Y.; Tol, J.J.G.M. van der: Compact polarization converter on InP/InPGaAs using an<br />

asymmetrical waveguide. Proc. ECIO'03. 1, 2-4 April 2003, ISBN 80-01-02729-5, pp. 141-144.<br />

Smit, M.K.: Integrated devices employing SOAs. Technical Digest <strong>of</strong> the OAA 2003, 6-9 July 2003; OSA,<br />

Otaru, Japan, 2003, pp. 34-36.<br />

Hanfoug, R; Tol, J.J.G.M. van der; Augustin, L M; Smit, M.K.: Wavelength conversion with polarisation<br />

labelling for rejection and isolation <strong>of</strong> signals (POLARIS). Proc. 11th European Conference on Integrated<br />

Optics, ECIO'03. 1, 2-4 April 2003, ISBN 80-01-02729-5, ed. Jiri Ctyroky, Prague, Czech Republic, 2003,<br />

pp. 105-108.<br />

Barbarin, Y; Leijtens, X.J.M.; Bente, E.A.J.M.; Kooiman, J.; Smit, M.K.: Extremely small AWG demultiplexer<br />

fabricated on InP by using a double-etch process. proc. IEEE/LEOS Benelux <strong>Annual</strong> Symposium 2003,<br />

Enschede, The Netherlands, 20-21 November 2003; IEEE, Enschede, The Netherlands, 2003, pp. 61-64.<br />

Haverkort, J.E.M.; Notzel, R.; Wolter, J.H.; Prasanth, R.; Deepthy, A.; Bogaart, E.W.; Tol, J.J.G.M. van der;<br />

Patent, E.; Zhao, G.; Gong, Q; Veldhoven, P.J. van: Wavelength insensitive all-optical switching in quantum<br />

dots. proc. IEEE/LEOS Benelux <strong>Annual</strong> Symposium 2003, Enschede, The Netherlands, 20-21 November<br />

2003; IEEE, Enschede, The Netherlands, 2003, pp. 193-196.<br />

52


Nano-engineering / cNM Direct-Write Atom Lithography<br />

Direct-Write Atom Lithography H.C.W. Beijerinck / K.A.H. van Leeuwen<br />

Direct-write atom lithography is a technique in which nano-structures are directly deposited from<br />

an atomic beam that is structured by light fields. In the simplest version, a one-dimensional<br />

standing light wave induces a spatially modulated dipole potential that acts as a lens array for the<br />

atoms, resulting in narrow structures. This has proven to be a powerful tool for the production <strong>of</strong><br />

periodic nano-structures. It has been applied to Na, Cr and Al, and very recently to Fe by our<br />

group and by the group <strong>of</strong> Rasing in Nijmegen, thereby adding the first ferromagnetic element to<br />

the list. The simple, additive character <strong>of</strong> the technique is an advantage. The idea <strong>of</strong> an MBE setup<br />

that directly produces devices is very appealing. In addition to the production and study <strong>of</strong><br />

periodic ferromagnetic nano-structures with Fe, we are pursuing novel approaches to lift the<br />

current restriction <strong>of</strong> the technique to simple periodic structures and only a few materials, and to<br />

increase the writing speed drastically. Furthermore, we are working on the production <strong>of</strong> fully<br />

novel structures by structured doping, i.e., achieving materials with their composition varied on the<br />

nanometer scale by simultaneous deposition <strong>of</strong> different species.<br />

Research themes<br />

1. Periodic nano-structures <strong>of</strong> ferromagnetic materials (Fe).<br />

2. Complicated, non-periodic nano-structures by applying holographically produced light fields<br />

for beam structuring which replace the usual simple geometry <strong>of</strong> a standing light wave.<br />

3. Direct-write <strong>of</strong> structures/connects with a 'nano-beam' or 'nano-pencil’ obtained by<br />

compression <strong>of</strong> an atomic beam in a single focused sub-100 nm size beam, which can be<br />

used in the same way as focused ion beam writer. Due to the absence <strong>of</strong> space charge<br />

problems, writing speed can be at least three orders <strong>of</strong> magnitude higher.<br />

4. Development <strong>of</strong> high-intensity metal beam sources. This will allow atom lithography to be<br />

applied to a much larger variety <strong>of</strong> deposition materials.<br />

5. Structured doping, i.e., the production <strong>of</strong> materials like Fe-Ni with nanostructured Fe<br />

concentration.<br />

Keywords<br />

Direct-write lithography, nanostructures, interference, holography.<br />

53


Nano-engineering / cNM Direct-Write Atom Lithography<br />

Staff involved<br />

Total Research<br />

Senior staff 2.0 1.0<br />

PhD 2.0 1.6<br />

Post doc<br />

Total (fte) 2.6<br />

o<br />

Key publications<br />

A.E.A. Koolen, G.T. Jansen, K.F.E.M. Domen, H.C.W. Beijerinck, K.A.H. van Leeuwen, Large<br />

angle, adjustable coherent atomic beam splitter, Phys. Rev. A 65, R041601, (2002)<br />

R.C.M. Bosch, H.C.W. Beijerinck, P. van der Straten, K.A.H. van Leeuwen, Supersonic Fe beam<br />

source for chromatic abberation-free laser focusing <strong>of</strong> atoms, Eur. Phys. J. Appl. Phys. 18, 221-227,<br />

(2002)<br />

E. te Sligte, R.C.M. Bosch, B. Smeets, P. van der Straten, H.C.W. Beijerinck, K.A.H. van Leeuwen,<br />

Magnetic nanodots from atomic Fe: can it be done?, Proc. Nat. Acad. Sci. 99, 6509-6513, (2002)<br />

E. te Sligte, K.M.R. van der Stam, B. Smeets, P. van der Straten, R.E. Scholten, H.C.W. Beijerinck,<br />

K.A.H. van Leeuwen, Barrier-limited surface diffusion in atom lithography, J. Appl. Phys. 95, 1749-<br />

1755 (2004)<br />

E. te Sligte, B. Smeets, K.M.R. van der Stam, R.W. Herfst, P. van der Straten, H.C.W. Beijerinck,<br />

K.A.H. Van Leeuwen, Atom lithography <strong>of</strong> Fe, Appl. Phys. Lett. 85, 4493-4495 (2004)<br />

o<br />

54


Nano-engineering / cNM Direct-Write Atom Lithography<br />

Research highlight<br />

Figure 1: Basic principle <strong>of</strong><br />

direct-write atom<br />

lithography<br />

We have succeeded in producing the first Fe nanostructures using the directwrite<br />

atom lithography technique. In the first attempts, using a onedimensional<br />

standing light wave <strong>of</strong> 372 nm wave length to focus Fe atoms in<br />

a collimated beam, an array <strong>of</strong> lines with 186 nm spacing and a width <strong>of</strong> 55<br />

nm and a height <strong>of</strong> 0.5 nm has been produced in a 1 by 1 mm area. These<br />

results have been published in Applied Physics Letters and have received<br />

attention in, e.g., Physics Today. Since then, we have drastically increased the<br />

height <strong>of</strong> the observed structures and reduced the width.<br />

Most importantly, we have achieved this while eliminating the complicated,<br />

bottle-neck step <strong>of</strong> atomic beam collimation by laser cooling, which has thus<br />

far been used in every atom lithography experiment. As a result, the<br />

technique can now be extended to virtually any atomic species, while<br />

previously having been restricted to just a very few elements. This can be<br />

considered as a true breakthrough in the atom lithography field.<br />

Presently, we are working to exploit our “no-laser-cooling” lithography<br />

technique to the production <strong>of</strong> nanostructured Fe-Ni alloy samples using<br />

simultaneous deposition <strong>of</strong> Fe (structured) and Ni (unstructured). This application <strong>of</strong> structured doping<br />

should result in a superlattice <strong>of</strong> alternating hard- and s<strong>of</strong>t ferromagnetic nanolines. The effort is<br />

undertaken in close collaboration with the FNA group.<br />

Senior scientific staff<br />

Pr<strong>of</strong>. dr. H.C.W. Beijerinck<br />

AQT group leader: Thermal and supersonic beam sources, surface reactions, atomic collisions,<br />

ultracold atoms<br />

Pr<strong>of</strong>. dr. K.A.H. van Leeuwen<br />

AQT nanostructure research leader: Atom optics, atom lithography, (quantum) optics,<br />

nanostructures<br />

Dr. ir. E.J.D. Vredenbregt<br />

AQT senior scientist: Bright atomic beams, ultracold gases, atom-light interactions<br />

Dr. S.J.J.M.F. Kokkelmans<br />

VIDI fellow: Theory <strong>of</strong> ultracold gases<br />

Figure 2: AFM scan <strong>of</strong> Fe nanostructure<br />

55


Nano-engineering / cNM Direct-Write Atom Lithography<br />

Selected publications 2001-<strong>2005</strong><br />

2001<br />

J. Schuster, A. Marte, S. Amtage, B. Sang, G. Rempe, H.C.W. Beijerinck, Avalanches in a Bose-Einstein<br />

condensate, Phys. Rev. Lett. 87, 170404, (2001)<br />

2002<br />

S.J.M. Kuppens, J.G.C. Tempelaars, V.P. Mogendorff, B.J. Claessens, H.C.W. Beijerinck, E.J.D.<br />

Vredenbregt, Approaching Bose-Einstein condensation <strong>of</strong> metastable neon: over 10 9 trapped atoms, Phys. Rev. A<br />

65, 023410, (2002)<br />

J.G.C. Tempelaars, R.J.W. Stas, P.G.M. Sebel, H.C.W. Beijerinck, E.J.D. Vredenbregt, An intense and cold<br />

beam <strong>of</strong> metastable Ne(3s) 3 P2 atoms, Eur. Phys. J. D 18, 113-121, (2002)<br />

A.E.A. Koolen, G.T. Jansen, K.F.E.M. Domen, H.C.W. Beijerinck, K.A.H. van Leeuwen, Large angle,<br />

adjustable coherent atomic beam splitter, Phys. Rev. A 65, R041601, (2002)<br />

R.C.M. Bosch, H.C.W. Beijerinck, P. van der Straten, K.A.H. van Leeuwen, Supersonic Fe beam source for<br />

chromatic abberation-free laser focusing <strong>of</strong> atoms, Eur. Phys. J. Appl. Phys. 18, 221-227, (2002)<br />

E. te Sligte, R.C.M. Bosch, B. Smeets, P. van der Straten, H.C.W. Beijerinck, K.A.H. van Leeuwen, Magnetic<br />

nanodots from atomic Fe: can it be done?, Proc. Nat. Acad. Sci. 99, 6509-6513, (2002)<br />

J. Ye, S.T. Cundiff, S. Foreman, T.M. Fortier, J.L. Hall, K.W. Holman, D.J. Jones, J.D. Jost, H.C. Kapteyn,<br />

K.A.H. van Leeuwen, L.S. Ma, M.M. Murnane, J.L. Peng, R.K. Shelton, Phase-coherent synthesis <strong>of</strong> optical<br />

frequencies and waveforms, Appl. Phys. B 74: S27-S34 (2002)<br />

2003<br />

E.J.D. Vredenbregt, K.A.H. van Leeuwen, Laser cooling and trapping visualized, Am. J. Phys. 71, 760-765,<br />

(2003)<br />

E. te Sligte, B. Smeets, K.M.R. van der Stam, L.P. Maguire, R.E. Scholten, K.A.H. van Leeuwen, Progress<br />

towards atom lithography on iron, Microelectronic Engineering 67-68, 664-669, (2003)<br />

B. Smeets, R.C.M. Bosch, P. van der Straten, E. te Sligte, R.E. Scholten, H.C.W. Beijerinck, K.A.H. van<br />

Leeuwen, Laser frequency stabilization using an Fe-Ar hollow cathode discharge cell, Appl. Phys. B 6, 815-819,<br />

(2003)<br />

S.J.H. Petra, K.A.H. van Leeuwen, L. Feenstra, W. Hogervorst, W. Vassen, Numerical simulations on the<br />

motion <strong>of</strong> atoms travelling through a standing-wave light field, Eur. Phys. J.D. 27, 83-91, (2003)<br />

2004<br />

S.J.H. Petra, K.A.H. Van Leeuwen, L. Feenstra, W. Hogervorst, W. Vassen, Atom lithography with twodimensional<br />

light masks, Appl. Phys. B 79, 279-283 (2004)<br />

M.H.L. Van der Velden, H. Batelaan, E. te Sligte, H.C.W. Beijerinck, E.J.D. Vredenbregt, Low-pressure source<br />

<strong>of</strong> slow metastable rare gas atoms, Rev. Sci. Instr. 75, 1073-1077 (2004)<br />

E. te Sligte, K.M.R. van der Stam, B. Smeets, P. van der Straten, R.E. Scholten, H.C.W. Beijerinck, K.A.H.<br />

van Leeuwen, Barrier-limited surface diffusion in atom lithography, J. Appl. Phys. 95, 1749-1755 (2004)<br />

E. te Sligte, B. Smeets, K.M.R. van der Stam, R.W. Herfst, P. van der Straten, H.C.W. Beijerinck, K.A.H.<br />

Van Leeuwen, Atom lithography <strong>of</strong> Fe, Appl. Phys. Lett. 85, 4493-4495 (2004)<br />

<strong>2005</strong><br />

B. Smeets, R.W. Herfst, E. te Sligte, P. van der Straten, H.C.W. Beijerinck, K.A.H. van Leeuwen,<br />

Laser-cooling simulation based on the semiclassical approach, J. Opt. Soc. Am. B 22, 2372-2377 (<strong>2005</strong>)<br />

B. Smeets, R.W. Herfst, L.P. Maguire, E. te Sligte, P. van der Straten, H.C.W. Beijerinck, K.A.H. van<br />

Leeuwen, Laser collimation <strong>of</strong> an Fe atomic beam on a leaky transition, Appl. Phys. B 80, 833-839 (<strong>2005</strong>)<br />

56


Nano-engineering / cNM Direct-Write Atom Lithography<br />

R. Stützle, M.C. Goebel, T. Hörner, E. Kierig, I. Mourachko, M.K., Oberthaler, M.A. Efremov, M.A.,<br />

Fedorov, V.P. Yakovlev, K.A.H. van Leeuwen, Schleich, W.P., Observation <strong>of</strong> nonspreading wave packets in an<br />

imaginary potential, Phys. Rev. Lett. 95, 110405 (<strong>2005</strong>)<br />

A.A.E. Stevens, H.C.W.Beijerinck, Surface roughness in XeF2 etching <strong>of</strong> a-Si/c-Si(100), J. Vac. Sci. Techn. A<br />

23, 126-136 (<strong>2005</strong>)<br />

57


Nano-engineering / cNM Micron and Submicron Mechanics<br />

58


Nano-engineering / cNM Micron and Submicron Mechanics<br />

Micron and Submicron Mechanics M.G.D. Geers<br />

The mechanics at the scale <strong>of</strong> micro-systems is substantially different from the one that is<br />

commonly observed on a macroscopic engineering scale. Differences between standard<br />

continuum mechanics predictions and reality may be as large as a factor <strong>of</strong> 4x, clearly illustrating<br />

the need for a fundamental micromechanical and theoretical basis if a proper understanding <strong>of</strong><br />

the mechanical behavior <strong>of</strong> micro-systems down to the nano-scale is to be developed. Apart from<br />

this intrinsic difference in the mechanics at the macro and the (sub-)micron scale, care has to be<br />

taken to incorporate the heterogeneous (multi-phase, anisotropic) character <strong>of</strong> the material. The<br />

size <strong>of</strong> the individual phases is in general no longer negligible with respect to the geometrical<br />

dimensions <strong>of</strong> the micro-systems. Advanced micromechanical and multi-scale theories need to be<br />

used to address this, e.g. crystal plasticity, continuum dislocation theories, computational<br />

homogenization frameworks. Furthermore, interactions with small-scale deformation<br />

mechanisms are expected, possibly influencing various microstructural effects.<br />

Research themes<br />

1. Size effects. Fundamentals <strong>of</strong> size effects in micro-systems and experimental assessment <strong>of</strong><br />

size effects triggered by gradients (use <strong>of</strong> ESEM, SEM, OIM, nano-indentation, microtensile<br />

stages, deformation imaging techniques).<br />

2. Mechanics <strong>of</strong> micro-components. Experimental assessment <strong>of</strong> the mechanics <strong>of</strong> microcomponents<br />

and MEMS through surface effects triggered by thin films (oxide layers, hard<br />

coatings).<br />

3. Higher-order theories. Higher-order theories, incorporating gradients <strong>of</strong> field variables and<br />

strongly nonlocal continuum mechanics for the analysis <strong>of</strong> micro-systems: modeling<br />

surface and interface effects in micro-devices with enhanced continua and/or small-scale<br />

deformation theories.<br />

4. Small metallic devices. Micro-mechanics <strong>of</strong> small metallic devices on the basis <strong>of</strong> enhanced<br />

crystal plasticity modeling, i.e. where the grain size is intrinsically large with respect to the<br />

micro-system, supported experimentally.<br />

5. Multi-scale mechanics. Multi-scale computational homogenization modeling <strong>of</strong> small-scale<br />

deformation mechanisms towards the mechanical behavior <strong>of</strong> micro-systems.<br />

6. Damage mechanics. Damage mechanics <strong>of</strong> microsystems emerging from the submicron<br />

dimensions through microstructure evolution, self-organisation and degradation.<br />

Keywords<br />

Micromechanics, size effects, higher-order continua, multi-scale mechanics, crystal plasticity,<br />

dislocation mechanics, constrained micro-systems, damage mechanics<br />

Staff involved<br />

Total Research<br />

Senior staff 5.0 2.5<br />

PhD 12.0 9.6<br />

Post doc 3 3<br />

Total (fte) 15.1<br />

This research group participates for 25% in the TU/e focus area Nano-engineering, i.e. the<br />

research contribution to Nano-engineering is 3.8 fte.<br />

59


Nano-engineering / cNM Micron and Submicron Mechanics<br />

Key publications<br />

R.A.B. Engelen, N.A. Fleck, R.H.J. Peerlings, M.G.D. Geers, An evaluation <strong>of</strong> higher-order<br />

plasticity theories for predicting size effects and localisation, Int. J. Solids Structures, 43(7-8),<br />

1857-1877, (2006)<br />

L.P. Evers, W.A.M. Brekelmans, M.G.D. Geers, Non-local crystal plasticity model with intrinsic<br />

SSD and GND effects, Journal <strong>of</strong> the Mechanics and Physics <strong>of</strong> Solids, 52(10), 2379-2401, (2004)<br />

R.L.J.M. Ubachs, P.J.G. Schreurs, M.G.D. Geers, A nonlocal diffuse interface model for<br />

microstructure evolution <strong>of</strong> tin-lead solder, Journal <strong>of</strong> the Mechanics and Physics <strong>of</strong> Solids, 52(8),<br />

1763-1792, (2004)<br />

J.A.W. van Dommelen, D.M. Parks, M.C. Boyce, W.A.M. Brekelmans, F.P.T. Baaijens,<br />

Micromechanical modeling <strong>of</strong> the elasto-viscoplastic behavior <strong>of</strong> semi-crystalline polymers,<br />

Journal <strong>of</strong> the Mechanics and Physics <strong>of</strong> Solids, 51, 519-541, (2003)<br />

V.G. Kouznetsova, M.G.D. Geers, W.A.M. Brekelmans, Multi-scale constitutive modelling <strong>of</strong><br />

heterogeneous materials with a gradient-enhanced computational homogenization scheme,<br />

International Journal for Numerical Methods in Engineering, 54, 1235-1260, (2002)<br />

Research highlights<br />

Strain gradient crystal<br />

plasticity: A strain<br />

gradient crystal plasticity<br />

model has been<br />

developed recently,<br />

based on a physical and<br />

geometrical description<br />

<strong>of</strong> continuum dislocation<br />

fields in the crystal<br />

lattice. Geometrically<br />

necessary dislocations,<br />

which accommodate lattice curvature, that are typically relevant upon miniaturization, are<br />

explicitly accounted for. It is shown that this approach captures intrinsic scale size effects, as they<br />

occur upon changing specimen dimensions and or<br />

grain size. The illustration in figure 1 show the<br />

developed geometrically necessary dislocation (GND)<br />

fields in the grains as a function <strong>of</strong> the sample size.<br />

Clearly, larger gradients lead to large GND densities and<br />

hence to a increase in strength <strong>of</strong> the microstructure.<br />

Multi-scale computational homogenization: A multi-scale<br />

computational homogenization scheme has been<br />

developed that is capable <strong>of</strong> upscaling small-scale<br />

mechanics at the level <strong>of</strong> a microstructure or below to<br />

the engineering level. The proposed methodology allows<br />

to account for the (possibly evolving) size, shape,<br />

physical properties and spatial distribution <strong>of</strong> the<br />

microstructural constituents. An extended novel secondorder<br />

scheme has been proposed, based on a proper<br />

incorporation <strong>of</strong> the macroscopic gradient <strong>of</strong> the<br />

deformation gradient tensor and the associated higherorder<br />

stress measure into a multi-scale framework. This<br />

(a) L = 1.0 mm (b) L = 10 mm<br />

Distribution <strong>of</strong> the GND density measure for two sample lengths at an equivalent strain<br />

<strong>of</strong> ε = 0.01.<br />

60<br />

Shear patterning in a constrained elasto-plastic<br />

thin layer under shear, illustrating the<br />

boundary layer effects and the influence <strong>of</strong> the<br />

size <strong>of</strong> the representative volume element <strong>of</strong><br />

the voided underlying microstructure.


Nano-engineering / cNM Micron and Submicron Mechanics<br />

allows describing certain phenomena that cannot be addressed by the classical (first-order)<br />

computational homogenization scheme, such as (geometrical) size effects, macroscopic<br />

localization and surface or boundary layer effects.<br />

Senior scientific staff<br />

Pr<strong>of</strong>.dr.ir. M.G.D. Geers<br />

Full pr<strong>of</strong>essor, heading the chair mechanics <strong>of</strong> materials in the Mechanical Engineering<br />

Department, with a particular emphasis on the mechanics at and across different length scales.<br />

Research emphasis: damage mechanics, micromechanics (scale size effects), multi-scale<br />

mechanics, generalized continua, crystal plasticity, phase transformations, dislocation<br />

substructuring, mechanics in micro-electronics (e.g. solder interconnects, flexible displays), metal<br />

forming (polymer coated steel).<br />

Dr.ir. W.A.M. Brekelmans<br />

Associate pr<strong>of</strong>essor in the Department <strong>of</strong> Mechanical Engineering. Is involved in the area <strong>of</strong> the<br />

analytical description <strong>of</strong> the mechanical behavior <strong>of</strong> solids (constitutive formulation) (1) according<br />

to the classical phenomenological approach (elasticity, elastoplasticity, visco-elastoplasticity) and<br />

(2) more sophisticated, based on the micro-structure <strong>of</strong> materials (crystal plasticity), and the<br />

incorporation <strong>of</strong> the material models in numerical (finite element method) codes. Special<br />

attention is given to the relation between microscopical features and macroscopical response<br />

(homogenization).<br />

Dr.ir. R.H.J. Peerlings<br />

Assistant Pr<strong>of</strong>essor in the Department <strong>of</strong> Mechanical Engineering. His research interests include<br />

the computational modelling <strong>of</strong> material damage and failure at spatial scales ranging from<br />

nanometres to millimetres. In particular, theories and numerical methods are developed which<br />

link these different scales and which thus allow to predict macroscopic failure based on<br />

understanding <strong>of</strong> the underlying, small-scale physical phenomena.<br />

Dr.ir. P.J.G. Schreurs<br />

Associate pr<strong>of</strong>essor in the Department <strong>of</strong> Mechanical Engineering. Research emphasis:<br />

micromechanics, mechanics in micro-electronics (solder interconnects), mechanics <strong>of</strong> polymermetal<br />

laminates.<br />

Dr.ir. J.P.M. Hoefnagels<br />

Assistant pr<strong>of</strong>essor in the Department <strong>of</strong> Mechanical Engineering, with an education in the<br />

physics department <strong>of</strong> the TU/e. Research emphasis: experimental multi-scale mechanics,<br />

including microscopy (ESEM, HR-SEM/OIM, optical, AFM), small scale experimental mechanics,<br />

thin film mechanics, nano-indentation, etc.<br />

Selected publications 2001-<strong>2005</strong><br />

2001<br />

L.P. Evers, D.M. Parks, W.A.M. Brekelmans, M.G.D. Geers, Enhanced modeling <strong>of</strong> hardening in crystal<br />

plasticity for FCC metals, Journal de Physique IV, 11, 179-186, (2001)<br />

M.G.D. Geers, V.G. Kouznetsova, W.A.M. Brekelmans, Gradient-enhanced computational homogenization<br />

for the micro-macro scale transition, Journal de Physique IV, 11, 145-152, (2001)<br />

V.G. Kouznetsova, W.A.M. Brekelmans, F.P.T. Baaijens, An approach to micro-macro modeling <strong>of</strong><br />

heterogeneous materials, Comp. Mech., 27, 37-48, (2001)<br />

D.A. Taminiau, J.H. Dautzenberg, How to Understand Friction and Wear in Mechanical Working<br />

Processes, IJFP, 4(1-2), 9-23, (2001)<br />

61


Nano-engineering / cNM Micron and Submicron Mechanics<br />

W.P. Vellinga, C.P. Hendriks, Sliding friction dynamics <strong>of</strong> hard single asperities on s<strong>of</strong>t substrates, Phys.<br />

Rev. E, 63, 066121-1 - 066121-14, (2001)<br />

M.G.D. Geers, R.A.B. Engelen, R.L.J.M. Ubachs, On the numerical modelling <strong>of</strong> ductile damage with an<br />

implicit gradient-enahced formulation, Revue Europ. des El. Finis, 10(2-3-4), 173-192, (2001)<br />

R.H.J. Peerlings, W.A.M. Brekelmans, R. de Borst, M.G.D. Geers, Mathematical and numerical aspects <strong>of</strong><br />

an elasticity-based local approach to fracture, Revue Europ. des El. Finis, 10, 209-226, (2001)<br />

R.H.J. Peerlings, M.G.D. Geers, R. de Borst, W.A.M. Brekelmans, A critical comparison <strong>of</strong> nonlocal and<br />

gradient-enhanced s<strong>of</strong>tening continua, Int. J. Solids Structures, 38, 7723-7746, (2001)<br />

R.H.J. Peerlings, N.A. Fleck, Numerical analysis <strong>of</strong> strain gradient effects in periodic media, Journal de<br />

Physique IV, 11, 153-160, (2001)<br />

M.G.D. Geers, V.G. Kouznetsova, W.A.M. Brekelmans, Micro-macro scale transitions for engineering materials<br />

in the presence <strong>of</strong> size effects., Proceedings <strong>of</strong> the International Conference on Trends in Computational<br />

Structural Mechanics, Lake Constance, Austria, 118-127 (2001)<br />

2002<br />

L.P. Evers, D.M. Parks, W.A.M. Brekelmans, M.G.D. Geers, Crystal plasticity model with enhanced<br />

hardening by geometrically necessary dislocation accumulation, J. Mech. Phys. Solids, 50(II), 2403-2424,<br />

(2002)<br />

V.G. Kouznetsova, M.G.D. Geers, W.A.M. Brekelmans, Multi-scale constitutive modelling <strong>of</strong> heterogeneous<br />

materials with a gradient-enhanced computational homogenization scheme, Int. J. Numer. Meth. Engng,<br />

54, 1235-1260, (2002)<br />

K.M. Mussert, W.P. Vellinga, A Bakker, van der Zwaag, A Nano-indentation Study on the Mechanical<br />

Behaviour <strong>of</strong> the Matrix material in an AA6061-Al2O3 MMC, J. Mat. Sci., 37(4), 789-794, (2002)<br />

W.P. Vellinga, R. Rastogi, H.E.H. Meijer, Microscopic phenomenology <strong>of</strong> plastic deformation in polymermetal<br />

laminates., Mat. Res. Soc. Symp. Proc., 695, 21-26, (2002)<br />

D.W.A. Brands, P.H.M. Bovendeerd, J.S.H.M. Wismans, On the potential importance <strong>of</strong> non-linear<br />

viscoelastic material modelling for numerical prediction <strong>of</strong> brain tissue response: test and application,<br />

Stapp Car Crash Journal, 46(1), 103-121, (2002)<br />

R.H.J. Peerlings, R. de Borst, W.A.M. Brekelmans, M.G.D. Geers, Localisation issues in local and nonlocal<br />

continuum approaches to fracture, Eur. J. Mech. A/Solids, 21, 175-189, (2002)<br />

B.J.E. van Rens, W.A.M. Brekelmans, F.P.T. Baaijens, Modeling friction near sharp edges using a Eulerian<br />

reference frame: appliction to aluminium extrusion, Int. J. Numer. Meth. Engng, 54, 453-471, (2002)<br />

J.Z. Zhang, D.H. van Campen, G.Q. Zhang, V.P. Bouwman, Stability and bifurcation <strong>of</strong> doubly curved<br />

shallow panels under quasi-static uniform load, Int. J. Non-Linear Mech., 38(4), pp, (2002)<br />

L.P. Evers, W.A.M. Brekelmans, M.G.D. Geers, Different types <strong>of</strong> dislocation densities in a crystal plasticity<br />

model for FCC models, Proceedings <strong>of</strong> WCCM5, online available, Austria (2002)<br />

R.L.J.M. Ubachs, P.J.G. Schreurs, M.G.D. Geers, Microstructural evolution <strong>of</strong> solder joints subjected to<br />

thermomechanical loading, Proceedings <strong>of</strong> WCCM5, online available, Austria (2002)<br />

2003<br />

J.A.W. van Dommelen, D.M. Parks, M.C. Boyce, W.A.M. Brekelmans, F.P.T. Baaijens, Micromechanical<br />

modeling <strong>of</strong> the elasto-viscoplastic bahavior <strong>of</strong> semi-crystalline polymers, J. Mech. Phys. Solids, 51, 519-541,<br />

(2003)<br />

62


Nano-engineering / cNM Micron and Submicron Mechanics<br />

J.A.W. van Dommelen, W.A.M. Brekelmans, F.P.T. Baaijens, Micromechanical modeling <strong>of</strong> particletoughening<br />

<strong>of</strong> polymers by locally induced anisotropy, Mech. Mat., 35(9), 845-863, (2003)<br />

J.A.W. van Dommelen, W.A.M. Brekelmans, F.P.T. Baaijens, A numerical investigation <strong>of</strong> the potential <strong>of</strong><br />

rubber and mineral particles for toughening <strong>of</strong> semicrystalline polymers, Comp. Mat. Sci., 27, 480-492,<br />

(2003)<br />

J.A.W. van Dommelen, D.M. Parks, M.C. Boyce, W.A.M. Brekelmans, F.P.T. Baaijens, Micromechanical<br />

modeling <strong>of</strong> intraspherulitic deformation <strong>of</strong> semicrystalline polymers, Polymer, 44, 6089-6101, (2003)<br />

J.A.W. van Dommelen, W.A.M. Brekelmans, F.P.T. Baaijens, Multiscale modeling <strong>of</strong> particle-modified<br />

polyethylene, J. Mat. Sci., 38, 4393-4405, (2003)<br />

W.D. van Driel, G.Q. Zhang, J.H.J. Janssen, Response surface modeling for nonlinear packaging stresses,<br />

ASME Journal <strong>of</strong> Electronic Packaging, 125(4), 490-497, (2003)<br />

W.D. van Driel, G.Q. Zhang, J.H.J. Janssen, Prediction and verification <strong>of</strong> process induced warpage <strong>of</strong><br />

electronic packages, Journal <strong>of</strong> Microelectronics Reliability, 43(5), 765-774, (2003)<br />

R.A.B. Engelen, M.G.D. Geers, F.P.T. Baaijens, Nonlocal implicit gradient-enhanced elasto-plasticity for the<br />

modelling <strong>of</strong> s<strong>of</strong>tening behaviour, Int. J. Plasticity, 19(4), 403-433, (2003)<br />

M.G.D. Geers, R.L.J.M. Ubachs, R.A.B. Engelen, Strongly nonlocal gradient-enhanced finite strain<br />

elastoplasticity, Int. J. Numer. Meth. Engng, 56(14), 2039-2068, (2003)<br />

E.M. Viatkina, W.A.M. Brekelmans, M.G.D. Geers, Strain path dependency in metal plasticity, Journal de<br />

Physique IV, 105, 355-362, (2003)<br />

2004<br />

M.E. Erinc, P.J.G. Schreurs, G.Q. Zhang, M.G.D. Geers, Characterization and fatigue damage simulation in<br />

SAC solder joints, Microelectronics Reliability, 44(9), 1287-1292, (2004).<br />

L.P. Evers, W.A.M. Brekelmans, M.G.D. Geers, Non-local crystal plasticity model with intrinsic SSD and<br />

GND effects, J. Mech. Phys. Solids, 52(10), 2379-2401, (2004).<br />

L.P. Evers, W.A.M. Brekelmans, M.G.D. Geers, Scale dependent crystal plasticity framework with<br />

dislocation density and grain boundary effects, Int. J. Solids Structures, 41(18-19), 5209-5230, (2004).<br />

M.G.D. Geers, Preface to Special Issue on Multiscale Computational Homogenization: From<br />

Microstructure to Properties, Int. Jnl. Multiscale Comp. Eng., 2(4), 507-510, (2004).<br />

V.G. Kouznetsova, M.G.D. Geers, W.A.M. Brekelmans, Multi-scale second-order computational<br />

homogenization <strong>of</strong> multi-phase materials: a nested finite element solution strategy, Comput. Methods.<br />

Appl. Mech. Engrg., 193(48-51), 5525-5550, (2004).<br />

V.G. Kouznetsova, M.G.D. Geers, W.A.M. Brekelmans, Size <strong>of</strong> a representative volume element in a<br />

second-order computational homogenization framework, Int. Jnl. Multiscale Comp. Eng., 2(4), 575-598,<br />

(2004).<br />

A. Matin, W.P. Vellinga, M.G.D. Geers, Aspects <strong>of</strong> coarsening in eutectic Sn-Pb, Acta Mat., 52(12), 3475-<br />

3482, (2004).<br />

R.H.J. Peerlings, N.A. Fleck, Computational evaluation <strong>of</strong> strain gradient elasticity constants, Int. Jnl.<br />

Multiscale Comp. Eng., 2(4), 599-620, (2004).<br />

R.L.J.M. Ubachs, P.J.G. Schreurs, M.G.D. Geers, A nonlocal diffuse interface model for microstructure<br />

evolution <strong>of</strong> tin-lead solder, J. Mech. Phys. Solids, 52(8), 1763-1792, (2004).<br />

R.L.J.M. Ubachs, P.J.G. Schreurs, M.G.D. Geers, Microstructure Evolution <strong>of</strong> Tin-Lead Solder, IEEE Trans.<br />

on Components and Pack. Tech., 27(4), 635-642, (2004).<br />

63


Nano-engineering / cNM Micron and Submicron Mechanics<br />

<strong>2005</strong><br />

A.J.J. Abdul-Baqi, P.J.G. Schreurs, M.G.D. Geers, Fatigue damage modeling in solder interconnects using a<br />

cohesive zone approach, Int. J. Solids Structures, 42, 927-942, (<strong>2005</strong>)<br />

A. Aydemir, J.H.P. de Vree, W.A.M. Brekelmans, M.G.D. Geers, W.H. Sillekens, R.J. Werkhoven, An<br />

adaptive simulation approach designed for tube hydr<strong>of</strong>orming processes , J. Mat. Proc. Techn., 159, 303-310,<br />

(<strong>2005</strong>)<br />

S.H.A. Boers, P.J.G. Schreurs, M.G.D. Geers, Operator-split damage-plasticity applied to groove forming in<br />

food can lids, Int. J. Solids Structures, 42(14), 4154-4178, (<strong>2005</strong>)<br />

M.E. Erinc, P.J.G. Schreurs, G.Q. Zhang, M.G.D. Geers, Microstructural damage analysis <strong>of</strong> snagcu solder<br />

joints and an assessment on indentation procedures, J. Mat. Sci., 16, 693-700, (<strong>2005</strong>)<br />

M.G.D. Geers, V.G. Kouznetsova, W.A.M. Brekelmans, Multi-scale mechanics in micro-electronics: a<br />

paradigm in miniaturization, Journal <strong>of</strong> Electronic Packaging, 127(3), 255-261, (<strong>2005</strong>)<br />

T.J. Massart, R.H.J. Peerlings, M.G.D. Geers, A dissipation-based control method for the multi-scale<br />

modelling <strong>of</strong> quasi-brittle materials, C. R. Mecanique, 333, 521–527, (<strong>2005</strong>)<br />

A. Matin, E.W.C. Coenen, W.P. Vellinga, M.G.D. Geers, Correlation between thermal fatigue and thermal<br />

anisotropy in a Pb-free solder alloy, Scripta Materialia, 53, 927-932, (<strong>2005</strong>)<br />

R.P. Schaake, W.P. Vellinga, J.M.J. den Toonder, H.E.H. Meijer, One minute wear rate measurement,<br />

Macromolecular Rapid Communications, 26(--), 188, (<strong>2005</strong>)<br />

R.L.J.M. Ubachs, P.J.G. Schreurs, M.G.D. Geers, Phase field dependent viscoplastic behaviour <strong>of</strong> solder<br />

alloys, Int. J. Solids Structures, 42(9-10), 2533-2558, (<strong>2005</strong>)<br />

E.M. Viatkina, W.A.M. Brekelmans, M.G.D. Geers, A crystal plasticity based estimate for forming limit<br />

diagrams from textural inhomogeneitiess, J. Mat. Proc. Techn., 168(2), 211-218, (<strong>2005</strong>)<br />

64


Nano-engineering / cNM Plasma-Based Synthesis <strong>of</strong> Thin Films and Nanostructures<br />

Plasma-Based Synthesis <strong>of</strong> Thin Films and Nanostructures<br />

M.C.M. van de Sanden/D.C. Schram<br />

Plasmas, a highly nonequilibrium and excited medium, enable the design and processing <strong>of</strong> thin<br />

films and nanostructures with greater freedom than normal synthesis techniques because the<br />

reactivity is transferred from the substrate to the gas phase. Therefore the combination <strong>of</strong> plasma<br />

processing techniques with well established nanoscale bottom-up growth techniques such as<br />

atomic layer deposition and epitaxy overcomes the usual restrictions in equilibrium (surface)<br />

chemistry. This opens up new approaches and opportunities to obtain thin films and<br />

nanostructures not possible with strictly chemical or physical methods. Additional advantages <strong>of</strong><br />

the use <strong>of</strong> plasma-based synthesis techniques is the enhanced throughput and the presence <strong>of</strong><br />

charge and electrical fields which enables the controlled growth <strong>of</strong> directed nanostructures such<br />

as nanowires and nanocrystals.<br />

Research themes<br />

1. Controlled synthesis <strong>of</strong> thin films and nanostructures by plasmas. Development <strong>of</strong> plasmabased<br />

synthesis techniques. Two approaches will be investigated 1) the controlled growth<br />

<strong>of</strong> nanostructured films and nanostructures by plasmas and 2) plasma-aided atomic layer<br />

deposition for processing at the nanoscale.<br />

2. Surface atomistic reactions during plasma-based synthesis. Study <strong>of</strong> the key surface reactions<br />

during the synthesis <strong>of</strong> thin films and nanostructures that determine the final material<br />

and device properties and whose understanding allows future process and material<br />

properties manipulation. Development <strong>of</strong> novel and in situ surface and film optical<br />

diagnostics with submonolayer sensitivity and with femtosecond resolution.<br />

Keywords<br />

Plasma-based synthesis, plasma-aided atomic layer deposition, in situ surface and film diagnostics,<br />

surface atomistic reactions<br />

Staff involved<br />

Total Research<br />

Senior staff 2.0 1.0<br />

PhD 5.0 4.0<br />

Post doc 1.0 1.0<br />

Total (fte) 6.0<br />

Key publications<br />

R. Groenen, J.L. Linden, H.R.M. van Lierop, D.C. Schram, A.D. Kuypers, M.C.M. van de Sanden,<br />

An expanding thermal plasma for deposition <strong>of</strong> surface textured ZnO:Al with focus on thin film solar cell<br />

applications, Appl. Surface Sci. 173 (2001) 40-43<br />

W.M.M. Kessels, D.C. Marra, M.C.M. van de Sanden, E.S. Aydil, In situ probing <strong>of</strong> surface hydrides<br />

on hydrogenated amorphous silicon using attenuated total reflection infrared spectroscopy, J. Vac. Sci<br />

Technol. A 20 (2002) 781-789<br />

65


Nano-engineering / cNM Plasma-Based Synthesis <strong>of</strong> Thin Films and Nanostructures<br />

A.H.M. Smets, W.M.M. Kessels, M.C.M. van de Sanden, Vacancies and voids in hydrogenated<br />

amorphous silicon, Appl. Phys. Lett. 82 (2003) 1547-1549<br />

J. Hong, W.M.M. Kessels, F.J.H. van Assche, H.C. Rieffe, W.J. Soppe, A.W. Weeber,<br />

and M.C.M. van de Sanden, Bulk passivation <strong>of</strong> multicrystalline silicon solar cells induced by high-rate<br />

deposited(>1 nm/s) silicon nitride films, Progress in Photovoltaics: Research and Applications 11<br />

(2003) 125-130<br />

I.M.P. Aarts, B. Hoex, A.H.M. Smets, R. Engeln, W.M.M. Kessels, M.C.M. van de Sanden, Direct<br />

and highly sensitive measurement <strong>of</strong> defect-related absorption in amorphous silicon thin films by cavity<br />

ringdown spectroscopy, Appl. Phys. Lett. 84 (2004) 3079-3081<br />

Research highlight<br />

Thin films have been produced by plasma-assisted atomic layer<br />

deposition, which is the ultimate technique when processing at<br />

the nanoscale. With this technique, it is possible to grow ultrathin<br />

and conformal films and nanolaminates and it can be used to give<br />

functionality to high-area surfaces, etc. In a novel approach,<br />

plasmas are applied for widening and enabling new process<br />

conditions and materials (especially single-element metals) as well<br />

as to reduce processing temperature. So far, TiN films have been<br />

deposited from TiCl4 vapor and N2-H2 plasmas for applications<br />

such as diffusion barriers, metal gates, and high-density<br />

capacitors.<br />

In our effort to<br />

investigate key material<br />

Absolute Erbium Absorption (10 -5 )<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

mirror<br />

laser pulse<br />

0<br />

1450 1500 1550 1600<br />

Wavelength (nm)<br />

properties and to<br />

monitor film growth and<br />

surface reactions in real<br />

time, we have recently<br />

developed a novel and innovative optical technique to<br />

measure absolute densities <strong>of</strong> low concentration defects<br />

and dopants in thin films. With this technique, it has<br />

been possible (for the first time) to measure the<br />

absolute absorption cross-section <strong>of</strong> erbium in silica<br />

doped with silicon nanocrystals. The nanocrystals in<br />

these films, which can be synthesized by a plasma-<br />

based process, affect the optical amplification <strong>of</strong> erbium for nanophotonic waveguideapplications,<br />

etc. At the moment the extension to evanescent wave cavity ring down spectroscopy<br />

is explored using a folded cavity design. This will enable in situ study <strong>of</strong> thin film growth on the<br />

atomic scale and with ultrahigh sensitivity. Optical losses as low as 2.5 10 -8 have been detected.<br />

Senior scientific staff<br />

sample<br />

mirror<br />

Dr.ir. W.M.M. Kessels<br />

Mainly involved in the plasma-based synthesis <strong>of</strong> (new) materials and nanostructured thin films<br />

as well as in the investigation <strong>of</strong> the underlying fundamental mechanisms <strong>of</strong> the growth process<br />

and the material properties (plasma and surface reactions, surface science aspects, advanced<br />

spectroscopy).<br />

66


Nano-engineering / cNM Plasma-Based Synthesis <strong>of</strong> Thin Films and Nanostructures<br />

Pr<strong>of</strong>.dr.ir. M.C.M. van de Sanden<br />

Explores the potential <strong>of</strong> plasma processing with respect to the synthesis <strong>of</strong> new materials,<br />

nanostructures, and devices. This effort is carried out in collaboration with several university,<br />

institutional and industrial partners.<br />

Selected publications 1999-2003<br />

1999<br />

A.P. Dementjev, A. de Graaf, D.I. Dolgiy, E.D. Olshanski, Y.M. Shulga, A.A. Serov, CNx film characterization<br />

by surface sensitive methods: XPS and XAES, Diamond and Related Materials 8 (1999) 601-604<br />

R. Engeln, K.G.Y. Letourneur, M.G.H. Boogaarts, M.C.M. van de Sanden, D.C. Schram, Detection <strong>of</strong> CH in<br />

an expanding argon/acetylene plasma using cavity ringdown absorption spectroscopy, Chem. Phys. Lett. 310<br />

(1999) 405-410<br />

W.M.M. Kessels, C.M. Leewis, M.C.M. van de Sanden, D.C. Schram, Formation <strong>of</strong> cationic silicon clusters in a<br />

remote silane plasma and their contribution to hydrogenated amorphous silicon film growth, J. Appl. Phys. 86<br />

(1999) 4029-4039<br />

W.M.M. Kessels, C.M. Leewis, A. Leroux, M.C.M. van de Sanden, D.C. Schram, Formation <strong>of</strong> large positive<br />

silicon-cluster ions in a remote silane plasma, J. Vac. Sci. Technol. A 17 (1999) 1531-1535<br />

M.C.M. van de Sanden, W.M.M. Kessels, R.J. Severens, D.C. Schram, Plasma and surface chemistry effects<br />

during high rate deposition <strong>of</strong> hydrogenated amorphous silicon, Plasma Phys. Control. Fusion 41 (1999) A365-<br />

A378<br />

A.H.M. Smets, M.C.M. van de Sanden, D.C. Schram, In situ ellipsometric studies <strong>of</strong> the a-Si:H growth using an<br />

expanding thermal plasma, Thin Solid Films 343-344 (1999) 281-284<br />

2000<br />

G.J. Adriaenssens, H.-Z. Song, V.I. Arkhipov, E.V. Emelianova, W.M.M. Kessels, A.H.M. Smets, B.A.<br />

Korevaar, M.C.M. van de Sanden, Analysis <strong>of</strong> time-<strong>of</strong>-flight photocurrents in a-Si:H deposited by expanding<br />

thermal plasma, J. Optoelectronics and Advanced Materials 2 (2000) 31-42<br />

M.G.H. Boogaarts, P.J. Böcker, W.M.M. Kessels, D.C. Schram, M.C.M. van de Sanden, Cavity ringdown<br />

detection <strong>of</strong> SiH3 on the broadband A 2 A ' 1 transition in a remote Ar-H2-SiH4 plasma, Chem. Phys. Lett. 326<br />

(2000) 400-406<br />

A.P. Dementjev, A. de Graaf, M.C.M. van de Sanden, K.I. Maslakov, A.V. Naumkin, A.A. Serov, X-Ray<br />

photoelectron spectroscopy reference data for identification <strong>of</strong> the C3N4 phase in carbon-nitrogen films, Diamond<br />

and Related Materials 9 (2000) 1904-1907<br />

W.M.M. Kessels, M.C.M. van de Sanden, R.J. Severens, D.C. Schram, Surface reaction probability during fast<br />

deposition <strong>of</strong> hydrogenated amorphous silicon with a remote silane plasma, J. Appl. Phys. 87 (2000) 3313-3320<br />

W.M.M. Kessels, M.C.M. van de Sanden, D.C. Schram, Film growth precursors in a remote SiH4 plasma used<br />

for high-rate deposition <strong>of</strong> hydrogenated amorphous silicon, J. Vac. Sci. <strong>Technology</strong> A 18 (2000) 2153-2163<br />

B.A. Korevaar, G.J. Adriaenssens, A.H.M. Smets, W.M.M. Kessels, H.-Z. Song, M.C.M. van de Sanden,<br />

D.C. Schram, High hole drift mobility in a-Si:H deposited at high growth rates for solar cell application, J. Non-<br />

Crystalline Solids 266-269 (2000) 380-384<br />

A.H.M. Smets, D.C. Schram, M.C.M. van de Sanden, In situ single wavelength ellipsometry studies <strong>of</strong> high rate<br />

hydrogenated amorphous silicon growth using a remote expanding thermal plasma, J. Appl. Phys. 88 (2000)<br />

6388-6394<br />

R.A.C.M. van Swaaij, M. Zeman, B.A. Korevaar, C. Smit, J.W. Metselaar, M.C.M. van de Sanden, Challenges<br />

in amorphous silicon solar cell technology, Acta Physica Slovaca 50 (2000) 559-570<br />

67


Nano-engineering / cNM Plasma-Based Synthesis <strong>of</strong> Thin Films and Nanostructures<br />

2001<br />

R. Groenen, J.L. Linden, H.R.M. van Lierop, D.C. Schram, A.D. Kuypers, M.C.M. van de Sanden, An<br />

expanding thermal plasma for deposition <strong>of</strong> surface textured ZnO:Al with focus on thin film solar cell applications,<br />

Appl. Surface Sci. 173 (2001) 40-43<br />

R. Groenen, J. Löffler, P.M. Sommeling, J.L. Linden, E.A.G. Hamers, R.E.I. Schropp, M.C.M. van de<br />

Sanden, Surface textured ZnO films for thin film solar cell applications by expanding thermal plasma CVD, Thin<br />

Solid Films 392 (2001) 226-230<br />

E.A.G. Hamers, A.H.M. Smets, C. Smit, J.P.M. Hoefnagels, W.M.M. Kessels, M.C.M. van de Sanden,<br />

Material properties and growth process <strong>of</strong> microcrystalline silicon with growth rates in excess <strong>of</strong> 1 nm/s, Mater. Res.<br />

Soc. Symp. Proc. 664 (2001) A.4.2.1<br />

W.M.M. Kessels, R.J. Severens, A.H.M. Smets, B.A. Korevaar, G.J. Adriaenssens, D.C. Schram, M.C.M. van<br />

de Sanden, Hydrogenated amorphous silicon deposited at very high growth rates by an expanding Ar-H2-SiH4<br />

plasma, J. Appl. Phys. 89 (2001) 2404-2413<br />

W.M.M. Kessels, A.H.M. Smets, D.C. Marra, E.S. Aydil, D.C. Schram, M.C.M. van de Sanden, On the<br />

growth mechanism <strong>of</strong> a-Si:H, Thin Solid Films 383 (2001) 154-160<br />

W.M.M. Kessels, J.P.M. Hoefnagels, M.G.H. Boogaarts, D.C. Schram, M.C.M. van de Sanden, Cavity ring<br />

down study <strong>of</strong> the densities and kinetics <strong>of</strong> Si and SiH in a remote Ar-H2-SiH4 plasma, J. Appl. Phys. 89 (2001)<br />

2065-2073<br />

J. Löffler, R. Groenen, J.L. Linden, M.C.M. van de Sanden, R.E.I. Schropp, Amorphous silicon solar cells on<br />

natively textured ZnO grown by PECVD, Thin Solid Films 392 (2001) 315-319<br />

J. Löffler, R. Groenen, P.M. Sommeling, J.L. Linden, M.C.M. van de Sanden, R.E.I. Schropp, Structural,<br />

optical and electrical properties <strong>of</strong> natively textured ZnO grown by PECVD for Thin-Film Solar Cell Applications,<br />

Solid State Phenomena 80-81 (2001) 145-150<br />

2002<br />

S. Agarwal, A. Takano, M.C.M. van de Sanden, D. Maroudas, E.S. Aydil, Abstraction <strong>of</strong> atomic hydrogen by<br />

atomic deuterium from an amorphous hydrogenated silicon surface, J. Chem. Phys. 117 (2002) 10805-10816<br />

G.R. Alcott, J.L. Linden, M.C.M. van de Sanden, Gas phase deposition <strong>of</strong> hybrid coatings, Mat. Res. Soc. Symp.<br />

Proc. 726 (2002) Q9.9.1<br />

M. Brinza, G.J. Adriaenssens, K. Iakoublovskii, A. Stesmans, W.M.M. Kessels, A.H.M. Smets, M.C.M. van<br />

de Sanden, Time-<strong>of</strong>-flight photocurrents in expanding-thermal-plasma-deposited a-Si:H, J. Non-Cryst. Solids<br />

299-302 (2002) 420-424<br />

M. Creatore, M.F.A.M. van Hest, J. Benedikt, M.C.M. van de Sanden, Expanding thermal plasma deposition <strong>of</strong><br />

silicon dioxide-like films for microelectronic devices, Mat. Res. Soc. Symp. Proc. 715 (2002) A19.3.1<br />

R. Groenen, E.R. Kieft, J.L. Linden, R.E.I. Schropp, M.C.M van de Sanden, Textured zinc oxide by expanding<br />

thermal plasma CVD: the effect <strong>of</strong> aluminium doping, Mat. Res. Soc. Symp. Proc. 730 (2002) V3.9.1<br />

J.P.M. Hoefnagels, A.A.E. Stevens, M.G.H. Boogaarts, W.M.M. Kessels, M.C.M. van de Sanden, Timeresolved<br />

cavity ring-down spectroscopic study <strong>of</strong> the gas phase and surface loss rates <strong>of</strong> Si and SiH3 plasma radicals,<br />

Chem. Phys. Lett. 360 (2002) 189-193<br />

W.M.M. Kessels, D.C. Marra, M.C.M. van de Sanden, E.S. Aydil, In situ probing <strong>of</strong> surface hydrides on<br />

hydrogenated amorphous silicon using attenuated total reflection infrared spectroscopy, J. Vac. Sci Technol. A 20<br />

(2002) 781-789<br />

W.M.M. Kessels, J. Hong, F.J.H. van Assche, J.D. Moschner, T. Lauinger, W.J. Soppe, A.W. Weeber, D.C.<br />

Schram, M.C.M. van de Sanden, High-rate deposition <strong>of</strong> a-SiNx:H for photovoltaic applications by the expanding<br />

thermal plasma, J. Vac. Sci. Technol. A 20 (2002) 1704-1715<br />

68


Nano-engineering / cNM Plasma-Based Synthesis <strong>of</strong> Thin Films and Nanostructures<br />

W.M.M. Kessels, P.R. McCurdy, K.W. Williams, G.R. Barker, V.A. Ventura, and E.R.<br />

Fisher, Surface reactivity and plasma energetics <strong>of</strong> SiH radicals during deposition <strong>of</strong><br />

silicon-based materials, J. Phys. Chem. B 106 (2002) 2680-2689<br />

C. Smit, E.A.G. Hamers, B.A. Korevaar, R.A.C.M.M. van Swaaij, M.C.M. van de Sanden, Fast deposition <strong>of</strong><br />

microcrystalline silicon with an expanding thermal plasma, J. Non-Cryst. Solids 299-302 (2002) 98-102<br />

2003<br />

S. Agarwal, B. Hoex, M.C.M. van de Sanden, D. Maroudas, E.S. Aydil, Absolute densities <strong>of</strong> N and excited N2<br />

in a N2 plasma, Appl. Phys. Lett. 83 (2003) 4918-4920<br />

J. Benedikt, R.V. Woen, S.L.M. van Mensfoort, V. Perina, J. Hong, M.C.M. van de Sanden, Plasma chemistry<br />

during the deposition <strong>of</strong> a-C:H films and its influence on film properties, Diamond Rel. Mater. 12 (2003) 90-97<br />

G.J.H. Brussaard, K.G.Y. Letourneur, M. Schaepkens, M.C.M. van de Sanden, D.C. Schram,<br />

Stripping <strong>of</strong> photoresist using a remote thermal Ar/O2 and Ar/N2/O2 plasma, J. Vac. Sci. Technol. B 21 (2003)<br />

61-66<br />

M. Creatore, Y.Barrell, W.M.M. Kessels, M.C.M. van de Sanden, Expanding thermal plasma for low-k<br />

dielectrics deposition, Mat. Res. Soc. Symp. Proc. 766 (2003) E6.9.1-E.6.9.6<br />

G. Dinescu, M. Creatore, M.C.M. van de Sanden, Remote nitridation <strong>of</strong> silicon surface by Ar/N2-fed expanding<br />

thermal plasma, Surf. Coat. Technol.174-175 (2003) 370-374<br />

M.F.A.M. van Hest, A. Klaver, D.C. Schram, M.C.M. van de Sanden, Argon-oxygen plasma treatment <strong>of</strong><br />

deposited organosilicon thin films, Thin Solid Films (2003)<br />

J. Hong, W.M.M. Kessels, F.J.H. van Assche, H.C. Rieffe, W.J. Soppe, A.W. Weeber,<br />

and M.C.M. van de Sanden, Bulk passivation <strong>of</strong> multicrystalline silicon solar cells induced by high-rate<br />

deposited(>1 nm/s) silicon nitride films, Progress in Photovoltaics: Research and Applications 11 (2003) 125-<br />

130<br />

J. Hong, W.M.M. Kessels, W. J. Soppe, A.W. Weeber, W.M. Arnoldbik, and M.C.M. van de Sanden,<br />

Influence <strong>of</strong> the high-temperature “firing” step on high-rate plasma deposited silicon nitride films used as bulk<br />

passivating antireflection coatings on silicon solar cells, J. Vac. Sci. Technol. B 21 (2003) 2123-2132<br />

W.M.M. Kessels, J.P.M. Hoefnagels, P.J. van den Oever, Y. Barrell, M.C.M. van de Sanden, Temperature<br />

dependence <strong>of</strong> the surface reactivity <strong>of</strong> SiH3 radicals and the surface silicon hybride composition during amorphous<br />

silicon growth, Surf. Sci. Lett. 547 (2003) L865-L870<br />

D.C. Marra, W.M.M. Kessels, M.C.M. van de Sanden, K. Kashefizadeh, E.S. Aydil, Surface hydride<br />

composition <strong>of</strong> plasma deposited hydrogenated amorphous silicon: situ infrared study <strong>of</strong> ion flux and temperature<br />

dependence, Surf. Sci. 530 (2003) 1-16<br />

A.M.H.N. Petit, M. Zeman, R.A.C.M.M. van Swaaij, M.C.M. van de Sanden, Simulation <strong>of</strong> buffer layers in a-<br />

Si:H thin film solar cells deposited with an expanding thermal plasma, Mat. Res. Soc. Symp. Proc. 762 (2003)<br />

369-374<br />

A.H.M. Smets, W.M.M. Kessels, M.C.M. van de Sanden, Temperature dependence <strong>of</strong> the surface roughness<br />

evolution during hydrogenated amorphous silicon film growth, Appl. Phys. Lett. 82 (2003) 865-867<br />

A.H.M. Smets, W.M.M. Kessels, M.C.M. van de Sanden, Vacancies and voids in hydrogenated amorphous<br />

silicon, Appl. Phys. Lett. 82 (2003) 1547-1549<br />

C. Smit, R.A.C.M.M. van Swaaij, H. Donker, A.M.H.N. Petit, W.M.M. Kessels, M.C.M. van de Sanden,<br />

Determining the material structure <strong>of</strong> microcrystalline silicon from Raman spectra, J. Appl. Phys. 94 (2003) 3582-<br />

3588<br />

<strong>2005</strong><br />

69


Nano-engineering / cNM Plasma-Based Synthesis <strong>of</strong> Thin Films and Nanostructures<br />

I.M.P. Aarts, A.C.R. Pipino, J.P.M. Hoefnagels, W.M.M. Kessels, and M.C.M. van de Sanden, Quasi-Ice<br />

Monolayer on Atomically Smooth Amorphous SiO2 at Room Temperature Observed with a High-Finesse<br />

Optical Resonator, Phys. Rev. Lett. 95 (<strong>2005</strong>) 166104<br />

S.B.S. Heil, E. Langereis, A. Kemmeren, F. Roozeboom, M.C.M. van de Sanden, and W.M.M. Kessels,<br />

Plasma-assisted atomic layer deposition <strong>of</strong> TiN monitored by in situ spectroscopic ellipsometry, J. Vac. Sci.<br />

Technol. A 23 (<strong>2005</strong>) L5-L8<br />

H. Mertens, A. Polman, I.M.P. Aarts, W.M.M. Kessels, and M.C.M. van de Sanden, Absence <strong>of</strong> the<br />

enhanced intra-4f transition cross section at 1.5 µm <strong>of</strong> Er3+ in Si-rich SiO2, Appl. Phys. Lett. 86 (<strong>2005</strong>)<br />

241109<br />

A.H.M. Smets, W.M.M. Kessels, and M.C.M. van de Sanden, Surface-diffusion-controlled incorporation <strong>of</strong><br />

nanosized voids during hydrogenated amorphous silicon film growth, Appl. Phys. Lett. 86 (<strong>2005</strong>) 041909<br />

70


Nano-engineering / cNM Micro- and Nano-sale Engineering<br />

Micro- and Nano- scale Engineering A.H. Dietzel<br />

In the summer <strong>of</strong> 2004 Andreas Dietzel started as holder <strong>of</strong> the newly established full chair for<br />

Micro- and Nano- scale Engineering. The focus <strong>of</strong> the new research group will differ to a farreaching<br />

extent from that <strong>of</strong> the former Precision Engineering group. In view <strong>of</strong> this, the new<br />

group will be strengthened by new staff members.<br />

Research Themes<br />

The new group shall establish research activities in the following areas:<br />

Micro- and nano-scale structuring and fabrication. For example, new fabrication processes are<br />

needed for future disposable devices. Techniques and materials that allow the replication <strong>of</strong><br />

micro- and nano-structures in polymeric materials with specific properties shall be investigated.<br />

Micro- sensor and actuator systems and micro-fluidic systems. Special emphasis shall be placed<br />

on techniques that will be important for new biosensor devices. Furthermore, the behavior <strong>of</strong><br />

micro- and nano-structured solids and <strong>of</strong> fluids in micro- or nano-scaled environments shall be<br />

studied with suitable experimental set-ups. Models describing the phenomena shall be developed<br />

and shall help to design micro-mechanical or micro-fluidic devices for specific applications,<br />

Techniques for hybrid or even monolithic integration. Integration <strong>of</strong> sensors and actuators (magnetic,<br />

optical, electrical) in micro-fluidic or micro-mechanical environments shall be investigated.<br />

The research in this group shall permit looking for integrated systems. We will aim at proving<br />

new concepts by building demonstrator devices.<br />

Keywords<br />

Micro- and nano- fabrication, micro- sensors and actuators, micro- fluidics, integrated systems<br />

Research Outlook<br />

The limits <strong>of</strong> injection molding shall be investigated and suitable models for the filling <strong>of</strong> highaspect-ratio<br />

micro-cavities with the mold material shall be developed. Micro- or even nanostructured<br />

master surfaces shall be formed using photon- or electron-lithography techniques and<br />

deep-reactive ion etching (DRIE) techniques. For micro-fluidic bio-chip applications closed<br />

channels will be required. Techniques for the closure <strong>of</strong> micro-channels or micro-cavities shall be<br />

found.<br />

Micro-cavities for specific fluid treatments shall be designed and tested. Techniques have to be<br />

found allowing mixing small fluid volumes with bio-reagents. Moreover, bio-molecules which can<br />

be found in the fluids in low concentrations shall be effectively brought into contact with a bioactivated<br />

sensor surface.<br />

In the metrology sensor project named “Nanoprobe” emphasis shall be placed on developing<br />

assembly techniques for a miniaturized mechanical probe head, e.g. using micro-grippers.<br />

Surface effects like sticktion and friction play an increasing role for the assembly <strong>of</strong> objects with<br />

reduced dimensions and means to control or compensate these effects have to be found.<br />

Furthermore, we will investigate possibilities <strong>of</strong> monolithic integration <strong>of</strong> previously hybrid<br />

system components. New designs for the nanoprobe components which are compatible with<br />

planar MEMS fabrication processes shall be evaluated.<br />

71


Nano-engineering / cNM Micro- and Nano-sale Engineering<br />

Finally, we will integrate the mechanical design competencies in our research strategy. The<br />

design principles that were very successfully applied in many precision engineering systems shall<br />

be utilized in the context <strong>of</strong> new micro- and nano-engineering projects. We currently see<br />

opportunities to develop machines and processes that find applications in the micro-fabrication,<br />

e.g. for lithography techniques that accommodate specific requirements <strong>of</strong> the fabrication <strong>of</strong><br />

MEMS devices.<br />

72

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!