13.01.2013 Views

Section 5: Thin Film Deposition Jaeger Chapter 6 Chemical Vapor ...

Section 5: Thin Film Deposition Jaeger Chapter 6 Chemical Vapor ...

Section 5: Thin Film Deposition Jaeger Chapter 6 Chemical Vapor ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Section</strong> 5: <strong>Thin</strong> <strong>Film</strong> <strong>Deposition</strong><br />

Part 2: <strong>Chemical</strong> Methods<br />

<strong>Jaeger</strong> <strong>Chapter</strong> 6<br />

EE143 – Ali Javey<br />

<strong>Chemical</strong> <strong>Vapor</strong> <strong>Deposition</strong> (CVD)<br />

substrate<br />

EE143 – Ali Javey<br />

source<br />

More conformal deposition vs. PVD<br />

Shown here<br />

is 100%<br />

conformal<br />

deposition<br />

t<br />

t<br />

chemical reaction<br />

film<br />

step


( a)<br />

SiO<br />

SiH<br />

+ O →SiO<br />

( b)<br />

PSG : phospho<br />

4PH3<br />

+ 5O<br />

→2P<br />

O<br />

SiH<br />

Si<br />

4<br />

4<br />

2<br />

+ O →SiO<br />

+ 2H<br />

+ 2H<br />

( OC H ) → SiO + C H O ↑<br />

EE143 – Ali Javey<br />

↑<br />

silicate<br />

+ 6H<br />

( c)<br />

TEOS : tetraethylene<br />

orthosilicate.<br />

2<br />

gas<br />

gas 350 o C-500 o C<br />

2<br />

2<br />

LPCVD Examples<br />

5<br />

2<br />

4<br />

( d ) Si<br />

3SiH<br />

( e)<br />

Poly<br />

(<br />

SiH<br />

f<br />

WF<br />

) W<br />

+<br />

N<br />

+<br />

solid<br />

2<br />

2<br />

2<br />

5<br />

2<br />

2<br />

2<br />

350 o C-500 o C<br />

−<br />

→<br />

EE143 – Ali Javey<br />

↑<br />

600 C<br />

⎯ ⎯ →Si<br />

3 H<br />

NH<br />

Si<br />

X<br />

→ Si<br />

W<br />

glass.<br />

LPCVD Examples<br />

6<br />

4<br />

3<br />

4<br />

4<br />

o<br />

2<br />

3<br />

2<br />

3<br />

+<br />

+<br />

Y<br />

N<br />

4<br />

Z<br />

2 H<br />

6 HF<br />

[ PO<br />

+ SiO ]<br />

2<br />

↑<br />

5<br />

+ 12 H<br />

2<br />

2<br />

2


1<br />

2<br />

surface<br />

diffusion<br />

CVD Mechanisms<br />

reactant<br />

substrate<br />

1 = Diffusion of reactant to surface<br />

2 = Absorption of reactant to surface<br />

3 = <strong>Chemical</strong> reaction<br />

4 = Desorption of gas by-products<br />

5 = Outdiffusion of by-product gas<br />

3<br />

EE143 – Ali Javey<br />

Example Poly-Si <strong>Deposition</strong><br />

EE143 – Ali Javey<br />

5<br />

4<br />

stagnant<br />

gas layer


F 1<br />

F<br />

F<br />

CVD <strong>Deposition</strong> Rate [Grove Model]<br />

1<br />

3<br />

=<br />

=<br />

F 3<br />

δ<br />

film<br />

D [ C G -C S ] / δ<br />

k S C S<br />

Si<br />

EE143 – Ali Javey<br />

G<br />

EE143 – Ali Javey<br />

D<br />

=<br />

δ<br />

k<br />

s<br />

=<br />

h<br />

k<br />

G<br />

o<br />

e<br />

−ΔE<br />

kT<br />

δ = thickness of stagnant layer<br />

s<br />

F =<br />

Grove model of CVD (cont’d)<br />

1<br />

∴F<br />

3 = ⋅CG<br />

1 1<br />

+<br />

h k<br />

<strong>Film</strong> growth rate = F 3 / N<br />

dx F3<br />

∴ = = contant with time<br />

dt N<br />

1<br />

F<br />

3<br />

N = atomic density<br />

of deposited film<br />

Note: This result is exactly the same as the Deal-Grove model<br />

or thermal oxidation with oxide thickness =0


[log scale] Rate<br />

0<br />

<strong>Deposition</strong> Rate versus Temp<br />

high T<br />

gas transport limited<br />

EE143 – Ali Javey<br />

EE143 – Ali Javey<br />

R∝T 3 2<br />

surface-reaction<br />

limited<br />

low<br />

T<br />

1/T<br />

Growth Rate Dependence on Flow Velocity


LPCVD Features<br />

(1) More conformal deposition,<br />

if T is uniform<br />

(2) Inter-wafer and intra-wafer thickness uniformity less<br />

sensitive to gas flow patterns. (i.e. wafer placement).<br />

EE143 – Ali Javey<br />

Comments about LPCVD<br />

(1) Sensitivity to gas flow pattern<br />

(2) Mass depletion problem<br />

in<br />

more less<br />

wafers<br />

EE143 – Ali Javey<br />

Furnace tube<br />

out<br />

Wafer<br />

topography


Plasma Enhanced CVD<br />

• Ionized chemical species allows a lower process<br />

temperature to be used.<br />

• <strong>Film</strong> properties (e.g. mechanical stress) can be tailored<br />

by controllable ion bombardment with substrate bias voltage.<br />

EE143 – Ali Javey<br />

Atomic Layer <strong>Deposition</strong><br />

• The process involves two self-limiting half reactions that are repeated in cycles<br />

• Unlike CVD, in ALD pulses of precursors are introduced in each cycle<br />

• ALD is highly conformal and enables excellent thickness uniformity and control<br />

down to nm-scale<br />

EE143 – Ali Javey

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!