13.01.2013 Views

Bifeng Pan

Bifeng Pan

Bifeng Pan

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Nanomaterials-Mediated Transfer of<br />

siRNA Induced Apoptosis and<br />

Attenuated Tumor Cell Growth in Vitro<br />

Dr. <strong>Bifeng</strong> <strong>Pan</strong> & Prof. Daxiang Cui<br />

Department of Bio-Nano Science and Engineering Institute<br />

of Micro/nano Science and Technology Shanghai Jiao Tong<br />

University, P. R. China


Outline<br />

1. Nanomaterials Preparation:<br />

Dendrimer, Magnetic nanoparticles, Carbon nanotubes<br />

2. SiRNA –conjugated Nanoparticles Preparation<br />

3. Effects of SiRNA-conjugated Nanoparticles on Cancer<br />

cells<br />

4. Conclusion


Introduction<br />

Nanotechnology has tremendous potential in creating nanoparticle systems for<br />

targeted drug delivery.<br />

Nanoscale drug delivery system can deliver drugs to specific tissues in the body, and<br />

enhance drug penetration into cells, and improve drug activity.<br />

Cellular surface machinery and intracellular organelles operate at the nanolevel:<br />

regulate the actions of messenger molecules, maintain ionic stability, and<br />

manufacture a wide variety of crucial building blocks. Biochemical molecules ‘dock’<br />

into larger nanoscale structures (10-100 nm) to mediate specific functions, or are<br />

processed further through the active sites of receptors and enzymes.<br />

Nanoparticles are ideal for interacting on the nanoscale and enabling effective and<br />

selective therapeutics.<br />

We will focus on nanoparticle systems for Si RNA delivery with the goal of<br />

achieving ‘multi-targeted’ therapeutics.


Dendrimer<br />

Preparation procedure


Three dimensional<br />

structure<br />

Molecular Structure


Polyamidoamine<br />

(PAMAM)<br />

Dendrimer<br />

Chemical Structure


Dendrimer Coated Magnetite Nanoparticles<br />

Synthesis Procedure. (<strong>Bifeng</strong> <strong>Pan</strong> et al, J Colloid Interface Sci, 2005, 284:<br />

1-6)


TEM Characterization<br />

Magnetite nanoparticles without dendrimer coating<br />

(<strong>Bifeng</strong> <strong>Pan</strong> et al, J Colloid Interface Sci, 2005, 284: 1-6)


TEM photos<br />

G3.0 PAMAM dendrimer coated<br />

magnetite nanoparticles(<strong>Bifeng</strong> <strong>Pan</strong> et al, J<br />

Colloid Interface Sci, 2005, 284: 1-6)


TEM photos<br />

G5.0 PAMAM dendrimer coated<br />

magnetite nanoparticles(<strong>Bifeng</strong> <strong>Pan</strong> et al, J<br />

Colloid Interface Sci, 2005, 284: 1-6)


Size Distribution<br />

Diameter<br />

distribution of<br />

magnetite<br />

nanoparticles (<strong>Bifeng</strong><br />

<strong>Pan</strong> et al, J Colloid Interface<br />

Sci, 2005, 284: 1-6)


TGA analysis<br />

TGA curves of<br />

magnetite<br />

nanoparticles<br />

modified with<br />

aminosilane<br />

(G0) and with<br />

PAMAM<br />

dendrimers<br />

(G1–G5).<br />

(<strong>Bifeng</strong> <strong>Pan</strong> et al, J<br />

Colloid Interface Sci,<br />

2005, 284: 1-6)


FTIR analysis<br />

FT-IR spectra of (a) magnetite nanoparticles modified with APTS<br />

(G0), (b) G5 PAMAM dendrimer-modified magnetite nanoparticles, and<br />

(c) G5 PAMAM dendrimers. (<strong>Bifeng</strong> <strong>Pan</strong> et al, J Colloid Interface Sci, 2005,<br />

284: 1-6)


Zeta potential characterization<br />

Zeta-potential curves of magnetite nanoparticles modified with<br />

APTS (G0) and PAMAM dendrimers (G1–G5).<br />

(<strong>Bifeng</strong> <strong>Pan</strong> et al, J Colloid Interface Sci, 2005, 284: 1-6)


Preparation of dendrimer coated carbon nanotubes<br />

Growth of PAMAM dendrimer on the surface of carbon nanotubes<br />

<strong>Bifeng</strong> <strong>Pan</strong>, Daxiang Cui, et al. Nanotechnology 17 (2006) 2483–2489


TEM Characterization<br />

CNT without dendrimer modification


TEM photos<br />

Dendrimer coated CNT


TEM photos<br />

Dendrimer modified CNT


Dendrimer<br />

coated CNT<br />

TEM photos


UV-vis spectroscopy<br />

UV–vis spectra of (a) MWNT-NH2 and (b) dendrimer-modified CNT.


Raman spectroscopy<br />

Raman spectra (780 nm excitation) of (A) CNT-COOH and (B) dendrimercoated<br />

CNT


FT-IR spectroscopy<br />

FTIR spectrum of dendrimer-modified and uncoated CNT.


TGA analysis<br />

TGA thermograms of dendrimer coated CNTs


1 H NMR spectroscopy<br />

1 H NMR spectrum of dendrimer-modified CNT


Gene silence by small interference RNA<br />

Design Principle of siRNA


Principle of<br />

RNA silence<br />

by siRNA<br />

Schematic<br />

illustration of<br />

RNA silence


Survivin gene silence by siRNA<br />

5 steps of survivin gene RNA silence


Animal experiment<br />

Gene silence in vivo of siRNA by delivery vectors.


Survivin gene<br />

introduction (gene<br />

bank NM_001168)<br />

mRNA sequence<br />

1 cccagaaggc cgcggggggt ggaccgccta agagggcgtg cgctcccgac atgccccgcg<br />

61 gcgcgccatt aaccgccaga tttgaatcgc gggacccgtt ggcagaggtg gcggcggcgg<br />

121 catgggtgcc ccgacgttgc cccctgcctg gcagcccttt ctcaaggacc accgcatctc<br />

181 tacattcaag aactggccct tcttggaggg ctgcgcctgc accccggagc ggatggccga<br />

241 ggctggcttc atccactgcc ccactgagaa cgagccagac ttggcccagt gtttcttctg<br />

301 cttcaaggag ctggaaggct gggagccaga tgacgacccc atagaggaac ataaaaagca<br />

361 ttcgtccggt tgcgctttcc tttctgtcaa gaagcagttt gaagaattaa cccttggtga<br />

421 atttttgaaa ctggacagag aaagagccaa gaacaaaatt gcaaaggaaa ccaacaataa<br />

481 gaagaaagaa tttgaggaaa ctgcggagaa agtgcgccgt gccatcgagc agctggctgc<br />

541 catggattga ggcctctggc cggagctgcc tggtcccaga gtggctgcac cacttccagg<br />

601 gtttattccc tggtgccacc agccttcctg tgggcccctt agcaatgtct taggaaagga<br />

661 gatcaacatt ttcaaattag atgtttcaac tgtgctcttg ttttgtcttg aaagtggcac<br />

721 cagaggtgct tctgcctgtg cagcgggtgc tgctggtaac agtggctgct tctctctctc<br />

781 tctctctttt ttgggggctc atttttgctg ttttgattcc cgggcttacc aggtgagaag<br />

841 tgagggagga agaaggcagt gtcccttttg ctagagctga cagctttgtt cgcgtgggca<br />

901 gagccttcca cagtgaatgt gtctggacct catgttgttg aggctgtcac agtcctgagt<br />

961 gtggacttgg caggtgcctg ttgaatctga gctgcaggtt ccttatctgt cacacctgtg<br />

1021 cctcctcaga ggacagtttt tttgttgttg tgtttttttg tttttttttt tttggtagat<br />

1081 gcatgacttg tgtgtgatga gagaatggag acagagtccc tggctcctct actgtttaac<br />

1141 aacatggctt tcttattttg tttgaattgt taattcacag aatagcacaa actacaatta<br />

1201 aaactaagca caaagccatt ctaagtcatt ggggaaacgg ggtgaacttc aggtggatga<br />

1261 ggagacagaa tagagtgata ggaagcgtct ggcagatact ccttttgcca ctgctgtgtg<br />

1321 attagacagg cccagtgagc cgcggggcac atgctggccg ctcctccctc agaaaaaggc<br />

1381 agtggcctaa atccttttta aatgacttgg ctcgatgctg tgggggactg gctgggctgc<br />

1441 tgcaggccgt gtgtctgtca gcccaacctt cacatctgtc acgttctcca cacgggggag<br />

1501 agacgcagtc cgcccaggtc cccgctttct ttggaggcag cagctcccgc agggctgaag<br />

1561 tctggcgtaa gatgatggat ttgattcgcc ctcctccctg tcatagagct gcagggtgga<br />

1621 ttgttacagc ttcgctggaa acctctggag gtcatctcgg ctgttcctga gaaataaaaa<br />

1681 gcctgtcatt tcaaacactg ctgtggaccc tactgggttt ttaaaatatt gtcagttttt<br />

1741 catcgtcgtc cctagcctgc caacagccat ctgcccagac agccgcagtg aggatgagcg<br />

1801 tcctggcaga gacgcagttg tctctgggcg cttgccagag ccacgaaccc cagacctgtt<br />

1861 tgtatcatcc gggctccttc cgggcagaaa caactgaaaa tgcacttcag acccacttat<br />

1921 ttctgccaca tctgagtcgg cctgagatag acttttccct ctaaactggg agaatatcac<br />

1981 agtggttttt gttagcagaa aatgcactcc agcctctgta ctcatctaag ctgcttattt<br />

2041 ttgatatttg tgtcagtctg taaatggata cttcacttta ataactgttg cttagtaatt<br />

2101 ggctttgtag agaagctgga aaaaaatggt tttgtcttca actcctttgc atgccaggcg<br />

2161 gtgatgtgga tctcggcttc tgtgagcctg tgctgtgggc agggctgagc tggagccgcc<br />

2221 cctctcagcc cgcctgccac ggcctttcct taaaggccat ccttaaaacc agaccctcat<br />

2281 ggctaccagc acctgaaagc ttcctcgaca tctgttaata aagccgtagg cccttgtcta<br />

2341 agtgcaaccg cctagacttt ctttcagata catgtccaca tgtccatttt tcaggttctc<br />

2401 taagttggag tggagtctgg gaagggttgt gaatgaggct tctgggctat gggtgaggtt<br />

2461 ccaatggcag gttagagccc ctcgggccaa ctgccatcct ggaaagtaga gacagcagtg<br />

2521 cccgctgccc agaagagacc agcaagccaa actggagccc ccattgcagg ctgtcgccat<br />

2581 gtggaaagag taactcacaa ttgccaataa agtctcatgt ggttttatct aaaaaaaaaa<br />

2641 aaaaaaaaaa aaaaa


Design of shRNA plasmid express vector<br />

1. PGPU6/GFP/Neo-shNC<br />

2. PGPU6/GFP/Neo-shGAPDH<br />

3. PGPU6/GFP/Neo-shSurvivin51<br />

4. PGPU6/GFP/Neo-shSurvivin166<br />

5. PGPU6/GFP/Neo-shSurvivin261<br />

6. PGPU6/GFP/Neo-shSurvivin409


Survivin-51<br />

Target: GCAUCUCUACAUUCAAGAA<br />

Survivin-51 sense<br />

CACCGCATCTTCTACATTCAAGAATTCAAGAGATTCTTGAATGTAGAGATGCTTTTTT<br />

G<br />

Survivin-51 antisense<br />

GATCCAAAAAAGCATCTCTACATTCAAGAATCTCTTGAATTCTTGAATGTAGAGATG<br />

C<br />

5’ ACCGCATCTTCTACATTCAAGAATTCAAGAGATTCTTGAATGTAGAGATGCTTTTTTG 3’<br />

3’ CGTAGAGATGTAAGTTCTTAAGTTCTCTAAGAACTTACATCTCTACGAAAAAACCTAG 5’


Survivin-166<br />

Target: GGACCACCGCAUCUCUACA<br />

Survivin-166 sense<br />

CACCG GACCA CCGCA TCTCT ACATT CAAGA GATGT AGAGA<br />

TGCGG TGGTC CTTTT TTG<br />

Survivin-166 antisense<br />

GATCC AAAAA AGGAC CACCG CATCT CTACA TCTCT TGAAT<br />

GTAGA GATGC GGTGGTCC<br />

5’ CACCG GACCA CCGCA TCTCT ACATT CAAGA GATGT AGAGA TGCGG TGGTC CTTTT TTG<br />

3’ CCTGG TGGCG TAGAG ATGTA AGTTC TCTAC ATCTC TACGC CACCA GGAAA AAACC TAG 5’


Survivin 261<br />

Target: CUGUCAAGAAGCAGUUUGAdTdT<br />

Survivin 261 sense<br />

CACCGCTGTCAAGAAGCAGTTTGATTCAAGAGATCAAACTGCT<br />

TCTTGACAGTTTTTTTG<br />

Survivin 261 antisense<br />

GATCCAAAAAACTGTCAAGAAGCAGTTTGATCTCTTGAATCAA<br />

ACTGCTTCTTGACAGC<br />

5’ CACCGCTGTCAAGAAGCAGTTTGATTCAAGAGATCAAACTGCTTCTTGACAGTTTTTTTG 3’<br />

3’ CCACAGTTCTTCGTCAAACTAACTTCTCTAGT TTGACGAAG AACTGTCAA AAAACCTAG 5’


Survivin 409<br />

Target: GCUGGCUGCCAUGGAUUGA<br />

Survivin-409 sense<br />

CACCGCTGGCTGCCATGGATTGATTCAAGAGATCAATCCATG<br />

GCAGCCAGCTTTTTTG<br />

Survivin-409 antisense<br />

GATCCAAAAAAGCTGGCTGCCATGGATTGATCTCTTGAATCAA<br />

TCCATGGCAGCCAGC<br />

5’ CACCGCTGGCTGCCATGGATTGATTCAAGAGATCAATCCATGGCAGCCAGCTTTTTTG 3’<br />

3’ CGTAGA GATGT AAGT TCTT AAGT TCTCTAAGAACTTACATCTCTACGAAAAAACCTAG5’


Negative Control<br />

Sense<br />

5’CACCGTTCTCCGAACGTGTCACGTCAAGAGATTACGTGACA<br />

CGTTCGGAGAATTTTTTG-3’<br />

Anti-Sense<br />

5’GATCCAAAAAATTCTCCGAACGTGTCACGTAATCTCTTGACG<br />

TGACACGTTCGGAGAAC3’<br />

5’ CACCGTTCTCCGAACGTGTCACGTCAAGAGATTACGTGACACGTTCGGAGAATTTTTTG 3’<br />

3’ CAAGAGGCTTGCA CAGTGC AGTTCTCTAATGCACTGTGCA AGCCTCTAAAAAACCTAG 5’


shGAPDH<br />

Sense<br />

5’CACCGTATGACAACAGCCTCAAGTTCAAGAGACTTGAGGCT<br />

GTTGTCATACTTTTTTG3’<br />

Antisense<br />

5’GATCCAAAAAAGTATGACAACAGCCTCAAGTCTCTTGAACTT<br />

GAGGCTGTTGTCATAC3’<br />

5’CACCGTATGACAACAGCCTCAAGTTCAAGAGACTTGAGGCTGTTGTCATACTTTTTTG3’<br />

3’CATACTGTTGTCGGAGTTCAAGTTCTCTGAACTCCGACAACAGTATGAAAAAACCTAG5’


shRNA plasmid vector<br />

PGPU6/GFP/Neo-shSurvivin166


Design of siRNA against survivin<br />

Survivin-51<br />

Sense: 5’-GCAUCUCUACAUUCAAGAAdTdT-3’<br />

Antisense: 5’-UUCUUGAAUGUAGAGAUGCdGdG-3’<br />

Survivin-166<br />

Sense: 5’-GGACCACCGCAUCUCUACAdTdT-3’<br />

Antisense: 5’-UGUAGAGAUGCGGUGGUCCdTdT-3’<br />

Survivin-261<br />

Sense: 5’-CUGUCAAGAAGCAGUUUGAdTdT-3’<br />

Antisense: 5’-UCAAACUGCUUCUUGACAGdAdA-3’<br />

Survivin-409<br />

Sense: 5’-GCUGGCUGCCAUGGAUUGAdTdT-3’<br />

Antisense: 5’-UCAAUCCAUGGCAGCCAGCdTdG-3’<br />

GAPDH Positive control<br />

Sense: 5’-GUAUGACAACAGCCUCAAGTT-3’<br />

Antisense: 5’-CUUGAGGCUGUUGUCAUACTT-3’<br />

Negative control<br />

Sense: 5’-UUCUCCGAACGUGUCACGUTT-3’<br />

Antisense: 5’-ACGUGACACGUUCGGAGAATT-3’<br />

Negative control FAM<br />

Sense: 5’-UUCUCCGAACGUGUCACGUTT-3’<br />

Antisense: 5’-ACGUGACACGUUCGGAGAATT-3’


Interaction between<br />

shRNA, siRNA and<br />

Nanomaterials<br />

Gel electrophoresis


Zeta potential analysis<br />

Electrostatic interaction between nanomaterials and siRNA


Schematic illustration of interaction<br />

between nanomaterials and siRNA<br />

Electrostatic interaction


Cancer cell culture<br />

1. Breast cancer cell line: MDA-MB-435-S<br />

2. Breast cancer cell line: MDA-MB-231<br />

3. Breast cancer cell line: MCF-7<br />

4. Human liver cancer cell line: HepG2<br />

5. Mouse fibroblast cell line: L-929


Optical microscopy observation<br />

Photo of MCF-7 cells


Optical microscopy observation<br />

MCF-7 Cells Apoptosis Induced by<br />

Nanomaterials-shRNA complex


Cell growth inhibition by MTT assay<br />

MCF-7 cells apaptosis anaylsis


Western Blotting<br />

MCF-7 Cells<br />

Primary antibody: anti-survivin polyclonal<br />

antibody<br />

The secondary antibody: horseradish<br />

peroxidase-conjugated goat anti-rabbit IgG<br />

GAPDH<br />

Survivin


RT-PCR analysis<br />

The survivin cDNA was amplified with the forward primer 5'-GGG GGA CTG<br />

GCT GGG CTG CT-3'(1422-1441)and reverse primer 5'-TGG GGT TCG<br />

TGG CTC TGG CAA-3'(1832-1852), resulting in a fragment of 430 bp


Confocal microscopy observation<br />

MCF-7 cell incubation in the presence of<br />

FAM labelled shRNA Without adding<br />

nanomaterials


FAM labelled shRNA With nanomaterials In<br />

MCF-7 cells by Confocal Micorscopy


CNTs inside MCF -7 cells by HRTEM


Influence of nanoparticles conjugated<br />

siRNA on cellular cycles by FCM


Conclusions<br />

� Nanotechnology-based advanced materials are<br />

rapidly expanding development of better<br />

medicines.<br />

� siRNA –conjugated Nanoparticles can enter into<br />

tumor cells and inhibit tumor cells growth .<br />

� Nanoscale delivery system creates a new<br />

generation of ‘targeted’ therapeutics which can<br />

offer multiple levels of selectivity.


Department of Bio-Nano Bio Nano Science and<br />

Technology, Shanghai Jiao Tong University


Shanghai Jiao Tong<br />

University<br />

http://www.sjtu.edu.cn<br />

http://mnri.sjtu.edu.cn/


Thanks<br />

For your attention!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!