14.01.2013 Views

Topics in Two-Dimensional Field Theory and Heterotic String Theory

Topics in Two-Dimensional Field Theory and Heterotic String Theory

Topics in Two-Dimensional Field Theory and Heterotic String Theory

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Topics</strong> <strong>in</strong> <strong>Two</strong>-<strong>Dimensional</strong> <strong>Field</strong> <strong>Theory</strong> <strong>and</strong><br />

<strong>Heterotic</strong> Str<strong>in</strong>g <strong>Theory</strong><br />

A dissertation presented<br />

by<br />

Joshua Michael Lapan<br />

to<br />

The Department of Physics<br />

<strong>in</strong> partial fulfillment of the requirements<br />

for the degree of<br />

Doctor of Philosophy<br />

<strong>in</strong> the subject of<br />

Physics<br />

Harvard University<br />

Cambridge, Massachusetts<br />

May 2008


c○2008 - Joshua Michael Lapan<br />

All rights reserved.


Thesis advisor Author<br />

Andrew Strom<strong>in</strong>ger Joshua Michael Lapan<br />

<strong>Topics</strong> <strong>in</strong> <strong>Two</strong>-<strong>Dimensional</strong> <strong>Field</strong> <strong>Theory</strong> <strong>and</strong> <strong>Heterotic</strong> Str<strong>in</strong>g<br />

<strong>Theory</strong><br />

Abstract<br />

We study a myriad of topics related to str<strong>in</strong>g theories <strong>in</strong> two dimensions <strong>and</strong>/or<br />

to heterotic str<strong>in</strong>g theories. In chapter 2, we use the duality of two-dimensional str<strong>in</strong>g<br />

theory with matrix models to study arbitrary time-dependent backgrounds. As an<br />

example, we study the case of a Fermi droplet cosmology <strong>and</strong> analyze properties of<br />

the coord<strong>in</strong>ates <strong>in</strong> which the metric is trivial; we also comment on the form of the<br />

<strong>in</strong>teraction terms <strong>in</strong> these coord<strong>in</strong>ates.<br />

Next, <strong>in</strong> chapter 3, we study dynamical D0-branes <strong>in</strong> N = 1, two-dimensional<br />

str<strong>in</strong>g theory as boundary states <strong>in</strong> the closed str<strong>in</strong>g sector. In particular, we f<strong>in</strong>d<br />

that there are four stable “fall<strong>in</strong>g” D0-branes (two branes <strong>and</strong> two anti-branes) <strong>in</strong> the<br />

type 0A projection <strong>and</strong> two unstable ones <strong>in</strong> the type 0B projection.<br />

In chapter 4, we switch gears to study the heterotic str<strong>in</strong>g. We beg<strong>in</strong> study<strong>in</strong>g<br />

the massless spectrum of the non-Kähler, supersymmetric Fu-Yau compactification<br />

by count<strong>in</strong>g zero modes of the l<strong>in</strong>earized equations of motion for the gaug<strong>in</strong>o. This<br />

can be rephrased as a cohomology problem which for a trivial gauge bundle reduces<br />

to the Dolbeault cohomology of the manifold, which we then compute.<br />

We cont<strong>in</strong>ue the study of Fu-Yau compactifications (<strong>and</strong> generalizations) <strong>in</strong> chap-<br />

iii


Abstract iv<br />

ter 5, where we implicitly construct a worldsheet CFT as the IR limit of an N = 2<br />

gauge theory. Spacetime torsion (non-Kählerity) is <strong>in</strong>corporated via a two-dimensional<br />

Green-Schwarz mechanism <strong>in</strong> which a doublet of axions cancels the gauge anomaly.<br />

We also argue that these models are smoothly extendable to solutions of the exact<br />

beta-function equations. By str<strong>in</strong>g dualities, these solutions provide a microscopic<br />

description of certa<strong>in</strong> type IIB RR-flux vacua.<br />

F<strong>in</strong>ally, <strong>in</strong> chapter 6 we use recent developments to argue that there exists a<br />

holographic dual for the CFT liv<strong>in</strong>g on a stack of N heterotic str<strong>in</strong>gs <strong>in</strong> R 4,1 × T 5 ;<br />

this should also be describable by an exact worldsheet CFT. We use supergravity<br />

to show that the global supergroup of the background is Osp(4 ∗ |4), with an aff<strong>in</strong>e<br />

extension given, surpris<strong>in</strong>gly, by a nonl<strong>in</strong>ear, N = 8 superconformal algebra. We<br />

also suggest a correspondence between supergroups with 16 supercharges <strong>and</strong> T n<br />

compactification with 0 ≤ n ≤ 7.


Contents<br />

Title Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i<br />

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii<br />

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v<br />

Citations to Previously Published Work . . . . . . . . . . . . . . . . . . . viii<br />

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix<br />

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii<br />

1 Introduction <strong>and</strong> Summary 1<br />

1.1 The Worldsheet Action . . . . . . . . . . . . . . . . . . . . . . . . . . 5<br />

1.2 Str<strong>in</strong>g <strong>Theory</strong> <strong>in</strong> <strong>Two</strong> Dimensions . . . . . . . . . . . . . . . . . . . . 8<br />

1.2.1 The Matrix Model . . . . . . . . . . . . . . . . . . . . . . . . 10<br />

1.2.2 Free Fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . 13<br />

1.3 Gauged L<strong>in</strong>ear Sigma Models . . . . . . . . . . . . . . . . . . . . . . 16<br />

2 Collective <strong>Field</strong> Description of Matrix Cosmologies 20<br />

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20<br />

2.2 Notation <strong>and</strong> Alex<strong>and</strong>rov Coord<strong>in</strong>ates . . . . . . . . . . . . . . . . . 22<br />

2.3 Alex<strong>and</strong>rov Coord<strong>in</strong>ates – Existence . . . . . . . . . . . . . . . . . . 25<br />

2.4 Alex<strong>and</strong>rov Coord<strong>in</strong>ates – Special Case . . . . . . . . . . . . . . . . . 28<br />

2.5 Fermi Droplet Cosmology . . . . . . . . . . . . . . . . . . . . . . . . 32<br />

3 Fall<strong>in</strong>g D0-Branes <strong>in</strong> 2D Superstr<strong>in</strong>g <strong>Theory</strong> 37<br />

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37<br />

3.2 N = 1, 2D Superstr<strong>in</strong>g <strong>Theory</strong> <strong>and</strong> its Boundary States . . . . . . . . 40<br />

3.2.1 ĉm = 1 N = 1 SLFT . . . . . . . . . . . . . . . . . . . . . . . 40<br />

3.2.2 Open/Closed Duality: Boundary States . . . . . . . . . . . . . 42<br />

3.2.3 Ishibashi <strong>and</strong> Cardy States: The Modular Bootstrap . . . . . 44<br />

3.2.4 ZZ <strong>and</strong> FZZT Boundary States . . . . . . . . . . . . . . . . . 46<br />

3.2.5 An Argument for Additional Symmetry . . . . . . . . . . . . . 48<br />

3.3 N = 2 SLFT <strong>and</strong> its Boundary States . . . . . . . . . . . . . . . . . . 50<br />

3.3.1 N = 2 SLFT . . . . . . . . . . . . . . . . . . . . . . . . . . . 50<br />

v


Contents vi<br />

3.3.2 N = 2 Ishibashi States <strong>and</strong> Cardy States . . . . . . . . . . . . 53<br />

3.3.3 Fall<strong>in</strong>g Euclidean D0-Brane <strong>in</strong> N = 2 SLFT . . . . . . . . . . 55<br />

3.3.4 Fall<strong>in</strong>g D0-brane <strong>in</strong> N = 2 SLFT . . . . . . . . . . . . . . . . 57<br />

3.4 Fall<strong>in</strong>g D0-brane <strong>in</strong> N = 1, 2D Superstr<strong>in</strong>g <strong>Theory</strong> . . . . . . . . . . 58<br />

3.4.1 Us<strong>in</strong>g N = 2 SLFT to Study Boundary States <strong>in</strong> 2D Superstr<strong>in</strong>g<br />

<strong>Theory</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . 58<br />

3.4.2 Number of D0-branes after GSO projection . . . . . . . . . . . 59<br />

3.5 Discussion <strong>and</strong> Summary . . . . . . . . . . . . . . . . . . . . . . . . . 61<br />

4 Towards the Massless Spectrum of Non-Kähler <strong>Heterotic</strong> Compactifications<br />

63<br />

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63<br />

4.2 Superstr<strong>in</strong>gs with Torsion . . . . . . . . . . . . . . . . . . . . . . . . 66<br />

4.3 The GP Manifold <strong>and</strong> FSY Geometry . . . . . . . . . . . . . . . . . . 69<br />

4.3.1 A Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69<br />

4.3.2 The Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73<br />

4.4 <strong>Heterotic</strong> Supergravity . . . . . . . . . . . . . . . . . . . . . . . . . . 75<br />

4.4.1 L<strong>in</strong>earized EOM’s . . . . . . . . . . . . . . . . . . . . . . . . . 76<br />

4.4.2 Count<strong>in</strong>g the Massless Gaug<strong>in</strong>os . . . . . . . . . . . . . . . . . 78<br />

4.4.3 A Quick Check . . . . . . . . . . . . . . . . . . . . . . . . . . 81<br />

4.5 Comput<strong>in</strong>g the Hodge Diamond . . . . . . . . . . . . . . . . . . . . . 82<br />

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86<br />

5 L<strong>in</strong>ear Models for Flux Vacua 89<br />

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89<br />

5.2 Torsion <strong>in</strong> (2, 2) GLSMs . . . . . . . . . . . . . . . . . . . . . . . . . 93<br />

5.3 Non-Compact (0, 2) Models <strong>and</strong> the Bianchi Identity . . . . . . . . . 98<br />

5.4 Compact (0, 2) Models <strong>and</strong> the Torsion Multiplet . . . . . . . . . . . 103<br />

5.4.1 Decoupl<strong>in</strong>g of Radial <strong>Field</strong>s . . . . . . . . . . . . . . . . . . . 104<br />

5.4.2 The IR Geometry . . . . . . . . . . . . . . . . . . . . . . . . . 108<br />

5.4.3 The Bianchi Identity . . . . . . . . . . . . . . . . . . . . . . . 113<br />

5.4.4 Rul<strong>in</strong>g Out T 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 115<br />

5.4.5 Global Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . 116<br />

5.4.6 Caveat Emptor: Spacetime vs. Worldsheet Constra<strong>in</strong>ts . . . . 117<br />

5.5 The Conformal Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . 118<br />

5.6 Conclusions <strong>and</strong> Speculations . . . . . . . . . . . . . . . . . . . . . . 121<br />

6 Near<strong>in</strong>g the Horizon of a <strong>Heterotic</strong> Str<strong>in</strong>g 123<br />

6.1 Introduction <strong>and</strong> summary . . . . . . . . . . . . . . . . . . . . . . . . 123<br />

6.1.1 The Lead<strong>in</strong>g-Order Solution . . . . . . . . . . . . . . . . . . . 124<br />

6.1.2 Small 4d Black Holes <strong>and</strong> Small 5d Black Str<strong>in</strong>gs . . . . . . . 125<br />

6.1.3 Small black str<strong>in</strong>gs . . . . . . . . . . . . . . . . . . . . . . . . 126


Contents vii<br />

6.1.4 The near-horizon nonl<strong>in</strong>ear superconformal group . . . . . . . 127<br />

6.1.5 D �= 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128<br />

6.1.6 A worldsheet CFT? . . . . . . . . . . . . . . . . . . . . . . . . 130<br />

6.2 Near-Horizon Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 131<br />

6.2.1 Supergravity <strong>in</strong> 5d . . . . . . . . . . . . . . . . . . . . . . . . 131<br />

6.2.2 Kill<strong>in</strong>g sp<strong>in</strong>ors . . . . . . . . . . . . . . . . . . . . . . . . . . . 133<br />

6.2.3 Kill<strong>in</strong>g Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . 134<br />

6.2.4 Supercharge commutators . . . . . . . . . . . . . . . . . . . . 136<br />

6.3 Towards an Exact Worldsheet CFT . . . . . . . . . . . . . . . . . . . 138<br />

6.3.1 4d heterotic black monopoles . . . . . . . . . . . . . . . . . . 138<br />

6.3.2 5d monopole-heterotic str<strong>in</strong>gs . . . . . . . . . . . . . . . . . . 139<br />

6.3.3 Q=0: the heterotic str<strong>in</strong>g near-horizon . . . . . . . . . . . . . 140<br />

A Collective <strong>Field</strong> Description of Matrix Cosmologies 142<br />

B Towards the Massless Spectrum of Non-Kähler <strong>Heterotic</strong> Compactifications<br />

145<br />

B.1 E<strong>in</strong>ste<strong>in</strong>/Str<strong>in</strong>g Frame Actions <strong>and</strong> EOM’s . . . . . . . . . . . . . . . 146<br />

B.2 Useful Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148<br />

B.2.1 SUSY Implications . . . . . . . . . . . . . . . . . . . . . . . . 148<br />

B.2.2 A Note about Non-Kähler Manifolds . . . . . . . . . . . . . . 148<br />

B.3 Derivation of (4.30) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149<br />

C L<strong>in</strong>ear Models for Flux Vacua 153<br />

C.1 Review of (0, 2) <strong>and</strong> (2, 2) GLSMs . . . . . . . . . . . . . . . . . . . . 153<br />

C.1.1 Our Canonical Example: V → K3 . . . . . . . . . . . . . . . . 155<br />

C.1.2 GLSMs with (2, 2) Supersymmetry . . . . . . . . . . . . . . . 157<br />

C.2 The Fu-Yau Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 158<br />

C.2.1 Supersymmetry Constra<strong>in</strong>ts . . . . . . . . . . . . . . . . . . . 158<br />

C.2.2 GP Manifolds <strong>and</strong> the FY Compactification . . . . . . . . . . 160<br />

D Near<strong>in</strong>g the Horizon of a <strong>Heterotic</strong> Str<strong>in</strong>g: Sp(4) 165<br />

Bibliography 166


Citations to Previously Published Work<br />

Most of the material <strong>in</strong> this thesis is derived entirely from articles published with<br />

various collaborators. Chapter 2 is from work with Morten Ernebjerg <strong>and</strong> Joanna<br />

Karczmarek which has appeared <strong>in</strong><br />

M. Ernebjerg, J. L. Karczmarek <strong>and</strong> J. M. Lapan, “Collective <strong>Field</strong> Description<br />

of Matrix Cosmologies,” JHEP 0409, 065 (2004) [arXiv:hepth/0405187].<br />

Chapter 3 is from work with Wei Li which has appeared <strong>in</strong><br />

J. M. Lapan <strong>and</strong> W. W. Li, “Fall<strong>in</strong>g D0-branes <strong>in</strong> 2D Superstr<strong>in</strong>g <strong>Theory</strong>,”<br />

arXiv:hep-th/0501054.<br />

Chapter 4 is from work done with Michelle Cyrier which has appeared <strong>in</strong><br />

M. Cyrier <strong>and</strong> J. M. Lapan, “Towards the Massless Spectrum of Non-<br />

Kähler <strong>Heterotic</strong> Compactifications,” Adv. Theor. Math. Phys. 10, 853<br />

(2007) [arXiv:hep-th/0605131].<br />

Chapter 5 is from work done with Allan Adams <strong>and</strong> Morten Ernebjerg which has<br />

appeared <strong>in</strong><br />

A. Adams, M. Ernebjerg <strong>and</strong> J. M. Lapan, “L<strong>in</strong>ear Models for Flux<br />

Vacua,” Adv. Theor. Math. Phys. 12, 821 (2008) [arXiv:hep-th/0611084].<br />

F<strong>in</strong>ally, chapter 6 is from work done with Aaron Simons <strong>and</strong> Andy Strom<strong>in</strong>ger which<br />

has appeared <strong>in</strong><br />

J. M. Lapan, A. Simons <strong>and</strong> A. Strom<strong>in</strong>ger, “Near<strong>in</strong>g the Horizon of a<br />

<strong>Heterotic</strong> Str<strong>in</strong>g,” arXiv:0708.0016 [hep-th].<br />

viii


Acknowledgments<br />

My entrance <strong>in</strong>to the graduate program at Harvard was not without <strong>in</strong>itial chal-<br />

lenges. In particular, be<strong>in</strong>g thrust <strong>in</strong>to a cohort of such immense <strong>and</strong> impressive<br />

knowledge <strong>and</strong> <strong>in</strong>tellect was quite <strong>in</strong>timidat<strong>in</strong>g. Fortunately, the group at Harvard<br />

has been full of friendly, unassum<strong>in</strong>g personalities. First <strong>and</strong> foremost, I want to<br />

thank my advisor, Andy Strom<strong>in</strong>ger, who has undoubtedly played a huge role <strong>in</strong> set-<br />

t<strong>in</strong>g the friendly atmosphere at Harvard. I would also like to thank him for shar<strong>in</strong>g<br />

his penetrat<strong>in</strong>g <strong>in</strong>sight <strong>in</strong>to both physics <strong>and</strong> the art of develop<strong>in</strong>g coherent problems,<br />

<strong>and</strong> for his tutelage <strong>and</strong> friendship.<br />

Allan Adams has also played a huge role <strong>in</strong> my academic development, almost as a<br />

second advisor. His will<strong>in</strong>gness <strong>and</strong> ability to answer any silly (or <strong>in</strong>terest<strong>in</strong>g) question<br />

I have had has set a sh<strong>in</strong><strong>in</strong>g example for me of the fact that physics is immensely<br />

collaborative even as it is competitive—I hope that his boundless curiosity sets an<br />

example for everyone whose life he touches.<br />

Joanna Karczmarek was my first mentor <strong>in</strong> my <strong>in</strong>troduction to the Harvard group,<br />

<strong>and</strong> I could not have asked for a better one; she helped me to develop my assertiveness<br />

<strong>in</strong> academic discussion, which is an <strong>in</strong>tegral component of any scientific endeavor. I<br />

would also like to thank my many collaborators: Morten Ernebjerg, whose frequent<br />

bursts of exuberance made physics even more excit<strong>in</strong>g; Wei Li, whose friendship as<br />

an officemate <strong>in</strong> addition to collaborator has been enlighten<strong>in</strong>g <strong>and</strong> also a welcome<br />

respite from the solitude of my scratch notebooks; <strong>and</strong> Aaron Simons, whose pen-<br />

chant for <strong>in</strong>terspers<strong>in</strong>g personal discussions with physics mirrors my own <strong>and</strong> has, on<br />

multiple occasions, helped to blur the l<strong>in</strong>e between our collaboration <strong>and</strong> friendship.<br />

I have not had the pleasure of collaborat<strong>in</strong>g with Li-Sheng Tseng, but we have had<br />

ix


Acknowledgments x<br />

a great many enlighten<strong>in</strong>g discussions <strong>and</strong> his contributions to my knowledge have<br />

been irreplaceable.<br />

I would also like to thank many friends <strong>and</strong> colleagues from the high-energy group<br />

for shap<strong>in</strong>g the open atmosphere of Harvard. In particular, Nima Arkani-Hamed,<br />

Luboˇs Motl, Melanie Becker, Shiraz M<strong>in</strong>walla, Melissa Frankl<strong>in</strong>, Cumrun Vafa, <strong>and</strong><br />

Frederik Denef, all were <strong>in</strong>valuable resources <strong>in</strong> my time here, as was Sh<strong>in</strong>g-Tung<br />

Yau <strong>in</strong> the math department. The post-doctoral fellows have been <strong>in</strong>dispensible for<br />

most of the graduate students, <strong>in</strong>clud<strong>in</strong>g myself, so I would like to thank <strong>in</strong> par-<br />

ticular Tadashi Takayanagi, Davide Gaiotto, Chris Beasley, Aless<strong>and</strong>ro Tomasiello,<br />

Simone Giombi, <strong>and</strong> Mboyo Esole, for fruitful discussions. All the graduate stu-<br />

dents will<strong>in</strong>gly provided friendship <strong>and</strong> support, <strong>in</strong>clud<strong>in</strong>g Dev<strong>in</strong> Walker, Kyriakos<br />

Papadodimas, Lisa Huang, Joe Marsano, Xi Y<strong>in</strong>, Greg Jones, Dan Jafferis, Michelle<br />

Cyrier, Kirill Saraik<strong>in</strong>, Mir<strong>and</strong>a Cheng, Subhaneil Lahiri, Jon Heckman, Megha Padi,<br />

Tom Hartman, Liam Fitzpatrick, <strong>and</strong> Dionysios Ann<strong>in</strong>os. Also, thanks to my many<br />

officemates over the years who have helped pass the time: Andy Neitzke, Wei Li,<br />

Jihye Seo, Monica Guică, Suvrat Raju, Lars Grant, <strong>and</strong> Matt Baumgart.<br />

The physicists are not the only ones <strong>in</strong> the department: the secretaries have<br />

been an <strong>in</strong>dispensible component <strong>and</strong> we have been fortunate to have many who<br />

are simultaneously friendly <strong>and</strong> immensely helpful. In particular, Nancy Partridge<br />

<strong>and</strong> Sheila Ferguson have been like mothers to me, always happy to lend an ear<br />

while keep<strong>in</strong>g a watchful eye to be sure no deadl<strong>in</strong>e or opportunity was missed. In<br />

addition, Adriana Gallegos jo<strong>in</strong>ed the group <strong>in</strong> my latter years with the awesome<br />

task of be<strong>in</strong>g responsible for Nima! I will never know how she managed that, but


Acknowledgments xi<br />

somehow Adriana <strong>and</strong> Nancy managed to keep together this b<strong>and</strong> of absent-m<strong>in</strong>ded,<br />

high-energy physicists, <strong>and</strong> (almost) always with smiles on their faces.<br />

I would also like to thank my good friend Chris Chou, with whom I’ve been friends<br />

s<strong>in</strong>ce 1998 US Physics Camp, for the many late-night/early-morn<strong>in</strong>g conversations<br />

we’ve had over the years. And f<strong>in</strong>ally, last but certa<strong>in</strong>ly not least, I would like to<br />

thank my family who has played no less than a def<strong>in</strong><strong>in</strong>g role <strong>in</strong> my life, last<strong>in</strong>g from<br />

conception through the present. My extended family is sufficiently compact that<br />

my relationship with them has been quite close: my aunt <strong>and</strong> uncle, Evel<strong>in</strong>e <strong>and</strong><br />

Elliot, have been role models <strong>in</strong> my life <strong>in</strong> more ways than I can recount, <strong>and</strong> my two<br />

cous<strong>in</strong>s, Pierre <strong>and</strong> Sylva<strong>in</strong>, have been like brothers to me. My gr<strong>and</strong>mother, Simone,<br />

has always been supportive <strong>in</strong> every way. And my sister, Sara, while five years my<br />

junior, has always had an unusual maturity for her age <strong>and</strong> with it has made it easy<br />

to develop a lov<strong>in</strong>g relationship with her—<strong>in</strong> fact, as she cont<strong>in</strong>ues <strong>in</strong> graduate school<br />

<strong>in</strong> math, it can’t be long before she <strong>and</strong> I can collaborate!<br />

My parents’ (Harvey <strong>and</strong> Sally) philosophy has always been to encourage bound-<br />

less questions—they taught me about conception when I was three, no less—<strong>and</strong> to<br />

provide me support when those questions began to creep outside of their knowledge.<br />

They have always let me choose my way <strong>in</strong> life while unobtrusively offer<strong>in</strong>g guidance;<br />

I can hardly imag<strong>in</strong>e better parents <strong>and</strong> am eternally grateful that they are m<strong>in</strong>e.<br />

And f<strong>in</strong>ally, while my wife Ariya has not been with me s<strong>in</strong>ce birth, she will be until<br />

death <strong>and</strong> already her contributions to my life have been pivotal: by example, she has<br />

taught me the work ethic necessary to succeed <strong>in</strong> graduate school; she has sculpted<br />

my rough personality; <strong>and</strong> she has provided me the security <strong>and</strong> warmth of her love.


xii<br />

Dedicated to my Parents<br />

For teach<strong>in</strong>g their Children<br />

That our two most precious Gifts<br />

Are Love <strong>and</strong> Curiosity.


Chapter 1<br />

Introduction <strong>and</strong> Summary<br />

The first question that nonexperts are entitled to ask of a str<strong>in</strong>g theorist—<strong>and</strong><br />

believe me, they do—is, why should we be <strong>in</strong>terested <strong>in</strong> str<strong>in</strong>g theory? A slightly more<br />

ref<strong>in</strong>ed version of the question would be, why should we be <strong>in</strong>terested <strong>in</strong> str<strong>in</strong>g theory<br />

when general relativity <strong>and</strong> the st<strong>and</strong>ard model of particle physics have expla<strong>in</strong>ed<br />

experiment after experiment to an unprecedented degree of accuracy?<br />

The first po<strong>in</strong>t is that they haven’t quite expla<strong>in</strong>ed every experiment; we already<br />

know from observational data that the st<strong>and</strong>ard model is <strong>in</strong>complete because it does<br />

not expla<strong>in</strong> dark matter or dark energy. For example, galactic rotation curves, which<br />

plot the angular velocity of matter <strong>in</strong> a galaxy as a function of distance from the<br />

center, do not exhibit the behavior predicted from general relativity when we assume<br />

that the only matter <strong>in</strong> the galaxies is that which we observe.<br />

This first po<strong>in</strong>t, however, is not enough to warrant the <strong>in</strong>vention of a whole new<br />

theoretical framework of physics; one can simply posit the existence of new matter<br />

that has small <strong>in</strong>teractions with exist<strong>in</strong>g matter <strong>and</strong> add this to the st<strong>and</strong>ard model<br />

1


Chapter 1: Introduction <strong>and</strong> Summary 2<br />

us<strong>in</strong>g the same language (quantum field theory). The second po<strong>in</strong>t is much deeper:<br />

we need a quantum theory of gravity or else quantum mechanics would be violated.<br />

To see why general relativity <strong>and</strong> quantum mechanics are <strong>in</strong>compatible, we need<br />

only consider an application of the Heisenberg uncerta<strong>in</strong>ty pr<strong>in</strong>ciple. This pr<strong>in</strong>ciple<br />

tells us that particles do not simultaneously have an exact position <strong>and</strong> momentum.<br />

Note that while this implies that we cannot measure the position <strong>and</strong> momentum to<br />

arbitrary accuracy, the statement is that there does not exist a simultaneous position<br />

<strong>and</strong> momentum.<br />

If classical general relativity were correct, an arbitrarily advanced civilization could<br />

conceivably <strong>in</strong>vent devices that could “shoot” gravitational waves, the way a laser<br />

“shoots” light. We know that light is quantized, which means that for a given wave-<br />

length λ there is a m<strong>in</strong>imal quanta that we can shoot, a photon, which carries energy<br />

hc<br />

λ<br />

<strong>and</strong> momentum h<br />

λ<br />

(h is Planck’s constant <strong>and</strong> c is the speed of light <strong>in</strong> vacuum).<br />

If we want to sh<strong>in</strong>e light on a particle to discover its location accurately, we must use<br />

short wavelength light; but, if we do that then the m<strong>in</strong>imal amount of momentum <strong>in</strong>-<br />

cident upon the particle will be very large, even for a s<strong>in</strong>gle photon. Thus, with light<br />

we cannot measure the momentum <strong>and</strong> position of a particle to arbitrary accuracy.<br />

The same would not be true for a classical gravitational wave, which is not quan-<br />

tized, because there would be no lower bound to the energy the wave could carry,<br />

regardless of wavelength. Thus, we would be able to measure the momentum <strong>and</strong><br />

position of a particle to arbitrary accuracy, violat<strong>in</strong>g the underp<strong>in</strong>n<strong>in</strong>g of quantum<br />

mechanics. It is for this reason that we know our beloved theories to be mutually<br />

<strong>in</strong>compatible, <strong>and</strong> so we know that there must be a new theory that at least comb<strong>in</strong>es


Chapter 1: Introduction <strong>and</strong> Summary 3<br />

the two, which we lov<strong>in</strong>gly (or “hat<strong>in</strong>gly”) call quantum gravity.<br />

Great, so we need a quantum theory of gravity. What, you ask, is so hard about<br />

this? Well, classical gravity is described by an action pr<strong>in</strong>ciple, mean<strong>in</strong>g that by<br />

extremiz<strong>in</strong>g the action S, we obta<strong>in</strong> differential equations (the “equations of motion”)<br />

that determ<strong>in</strong>e the trajectories of objects <strong>in</strong> a curved spacetime. Quantum field<br />

theory <strong>in</strong>volves a more glorified use of the action S where, <strong>in</strong>stead of dem<strong>and</strong><strong>in</strong>g that<br />

particles follow the trajectories determ<strong>in</strong>ed by equations of motion, we imag<strong>in</strong>e that<br />

particles can follow any path; but, to each path we assign the phase e iS/� <strong>and</strong> we sum<br />

over all paths. In other words, the action determ<strong>in</strong>es a sort of “complex” probability<br />

distribution over the space of possible paths for a particle (actually, because of the i<br />

<strong>in</strong> the exponent, the sum over paths is more ak<strong>in</strong> to calculat<strong>in</strong>g <strong>in</strong>terference patterns<br />

for light). When we add up all the paths, we see that the exponent iS/� varies most<br />

slowly around paths where the action is extremized so that, if we let � → 0, the paths<br />

that dom<strong>in</strong>ate the sum are those that extremize the action, namely those that satisfy<br />

the equations of motion. Thus, <strong>in</strong> the limit that � → 0 quantum field theory returns<br />

us to classical field theory, which is the language of general relativity.<br />

Why not add the action of general relativity to the action used <strong>in</strong> the st<strong>and</strong>ard<br />

model <strong>and</strong> treat the comb<strong>in</strong>ation us<strong>in</strong>g quantum field theory? In fact, this can be<br />

done. The problem arises when we try to ask whether our theory could be “funda-<br />

mental”, which roughly means that the functional description is accurate at all length<br />

scales. We could ask a similar sort of question about the use of fluid dynamics to<br />

describe the flow of water down a river; the differential equations of fluid dynamics<br />

work well to describe this flow, but if we look closely at the river we see a furor of


Chapter 1: Introduction <strong>and</strong> Summary 4<br />

water molecules whose <strong>in</strong>ner work<strong>in</strong>gs are not described by the equations of fluid<br />

mechanics. This attempt to quantize gravity is not so different; what we f<strong>in</strong>d out<br />

is that the “effective” description of quantum gravity breaks down at short distance<br />

scales because the coupl<strong>in</strong>g constant becomes <strong>in</strong>f<strong>in</strong>ite. 1 This leaves us with a vacuum<br />

for what the fundamental theory of nature is at all length scales.<br />

Str<strong>in</strong>g theory is an ambitious attempt to unify known physics <strong>in</strong>to a more funda-<br />

mental framework. It has met with multiple successes <strong>in</strong> resolv<strong>in</strong>g or shedd<strong>in</strong>g light<br />

on difficult questions from both general relativity <strong>and</strong> the st<strong>and</strong>ard model, such as<br />

giv<strong>in</strong>g a microscopic description of black hole entropy or a weakly coupled description<br />

of strongly coupled QCD. There are, however, many challenges to overcome before<br />

the contribution of str<strong>in</strong>g theory to science will peak. Chief among them is uncover<strong>in</strong>g<br />

a set of underly<strong>in</strong>g pr<strong>in</strong>ciples.<br />

Str<strong>in</strong>g theory is <strong>in</strong> a state similar to that of electromagnetism <strong>in</strong> the middle of<br />

the n<strong>in</strong>eteenth century; we have amassed a great many facts about the theory, but<br />

we have not yet been able to fit them <strong>in</strong>to a fundamental set of pr<strong>in</strong>ciples, such as<br />

those encapsulated by Maxwell’s equations (which themselves follow from an action<br />

pr<strong>in</strong>ciple). There are many tools that have been developed to answer questions <strong>in</strong><br />

various regimes of the, as yet “unknown”, theory. For now, we must content ourselves<br />

with study<strong>in</strong>g questions <strong>in</strong> or near these regimes until we amass enough puzzle pieces<br />

to see what the picture on the puzzle is! 2<br />

This thesis <strong>in</strong>cludes work that touches on some of the methods used to study str<strong>in</strong>g<br />

1 In fact, this is worse than fluid dynamics: while physically wrong at small length scales, the<br />

theoretical framework of fluid dynamics does not break down <strong>and</strong> so it could have been correct.<br />

2 It’s really unfortunate that someone lost the puzzle box.


Chapter 1: Introduction <strong>and</strong> Summary 5<br />

theory <strong>in</strong> different regimes. As such, we feel it best to leave detailed <strong>in</strong>troductions<br />

to the <strong>in</strong>dividual chapters. However, chapter 2 utilizes a relationship between two-<br />

dimensional str<strong>in</strong>g theory <strong>and</strong> fermi fluids, chapters 2 <strong>and</strong> 3 are based on Liouville<br />

field theory, <strong>and</strong> chapter 5 <strong>in</strong>vokes gauged l<strong>in</strong>ear sigma models, so we have <strong>in</strong>cluded<br />

some background here. The other chapters are more self-explanatory.<br />

1.1 The Worldsheet Action<br />

One of the def<strong>in</strong>itions of str<strong>in</strong>g theory <strong>in</strong>volves 1+1-dimensional, modular <strong>in</strong>variant<br />

conformal field theories (CFTs)—these CFTs describe the dynamics of a str<strong>in</strong>g <strong>in</strong> a<br />

first-quantized formalism. Their connection with reality is most evident when there<br />

is a direct geometric <strong>in</strong>terpretation of the CFT. CFT methods have a somewhat<br />

limited range of usefulness <strong>in</strong> type II theories, where Ramond-Ramond (RR) fluxes<br />

are difficult to <strong>in</strong>corporate; however, <strong>in</strong> heterotic theories there are no RR fluxes,<br />

so it is possible to apply CFT techniques to a wide variety of circumstances. In a<br />

background <strong>in</strong>volv<strong>in</strong>g nonzero vacuum-expectation-values (VEVs) of the lowest str<strong>in</strong>g<br />

excitations, namely the metric GMN(X), the B-field BMN(X), the vector potential<br />

AM(X), <strong>and</strong> the dilaton Φ(X), we can write the worldsheet action as<br />

SΣ = 1<br />

�<br />

4π<br />

d 2 σ � �<br />

1<br />

−g(σ)<br />

α ′<br />

�<br />

GMN(X)g αβ (σ) + BMN(X)ɛ αβ �<br />

(σ)<br />

Σ<br />

∂αX M ∂βX N<br />

+R(g)Φ(X) + η ˆM ˆN ¯ ψ ˆ M /Dψ + ˆ N<br />

+ + δIJ ¯γ I − /Dγ J − + 1 IJ<br />

F 2 ˆM ˆ N (X) ¯ ψ ˆ M<br />

+ ψ ˆ N<br />

+ ¯γ−Iγ−J<br />

where the covariant derivatives D are def<strong>in</strong>ed by<br />

Dαψ ˆ M +<br />

=<br />

Dαγ I − =<br />

�<br />

δ ˆ M<br />

ˆN ∇α + ∂αX M� ω ˆ M<br />

M ˆ 1 (X) − N<br />

�<br />

δ I ˆJ ∇α − i∂αX M A I<br />

�<br />

M J(X) γ J −<br />

2H ˆ M<br />

M<br />

ˆ N (X)��ψ<br />

ˆ N<br />

+<br />

�<br />

(1.1)<br />

(1.2)<br />

(1.3)


Chapter 1: Introduction <strong>and</strong> Summary 6<br />

α, β, . . . = 0, 1 Worldsheet coord<strong>in</strong>ate <strong>in</strong>dices<br />

M, N, . . . = 0, 1, . . . , 9 Spacetime coord<strong>in</strong>ate <strong>in</strong>dices<br />

ˆM, ˆ N, . . . = 0, 1, . . . , 9 Tangent space coord<strong>in</strong>ate <strong>in</strong>dices<br />

I, J, . . . = 1, 2, . . . , 32 Spacetime vector bundle <strong>in</strong>dices<br />

σ α , gαβ, ∇α, . . . Worldsheet coord<strong>in</strong>ates, metric, covariant derivative, etc.<br />

X M (σ) Worldsheet scalar fields describ<strong>in</strong>g spacetime embedd<strong>in</strong>g<br />

(i.e. they are spacetime coord<strong>in</strong>ates): � X: Σ → M10<br />

, . . . Spacetime metric, sp<strong>in</strong> connection, etc.<br />

Spacetime gauge field with field-strength F = dA<br />

correspond<strong>in</strong>g to an SO(32) or E8 × E8 gauge group<br />

BMN “B-field”: 2-form field with field-strength H = dB<br />

Φ “Dilaton”: spacetime scalar field<br />

ψ ˆM<br />

+ (σ) Worldsheet +-chirality Majorana-Weyl fermion<br />

transform<strong>in</strong>g as sections of the pullback to the worldsheet<br />

of the spacetime tangent bundle3 —superpartner of X M<br />

γI −(σ) Worldsheet −-chirality Majorana-Weyl fermion<br />

transform<strong>in</strong>g as sections of the pullback of a vector<br />

bundle associated with the spacetime gauge symmetry<br />

GMN, ω ˆ M<br />

M ˆ N<br />

A I<br />

M J<br />

Table 1.1: Notation <strong>and</strong> def<strong>in</strong>itions relevant to the action SΣ <strong>in</strong> (1.1).<br />

<strong>and</strong> table 1.1 expla<strong>in</strong>s the rest.<br />

The action SΣ is <strong>in</strong>variant under worldsheet conformal transformations, which are<br />

composed of worldsheet diffeomorphisms as well as Weyl transformations<br />

gαβ → e 2ω(σ) gαβ , (1.4)<br />

but the quantum theory, where we <strong>in</strong>tegrate over worldsheet fields, need not be con-<br />

formally <strong>in</strong>variant. The functions of the X M , namely GMN, BMN, AM, <strong>and</strong> Φ, can be<br />

exp<strong>and</strong>ed around some constant X M <strong>and</strong> can thus be thought of as an <strong>in</strong>f<strong>in</strong>ite set of<br />

worldsheet coupl<strong>in</strong>g constants. As such, these constants may run under renormaliza-<br />

tion group (RG) flow, <strong>in</strong> which case the quantum theory would not be conformal. The<br />

3 This is correct when H = 0, but when H �= 0 the connection is actually the pullback of the<br />

spacetime sp<strong>in</strong> connection m<strong>in</strong>us the H-field.


Chapter 1: Introduction <strong>and</strong> Summary 7<br />

condition that the theory be conformally <strong>in</strong>variant is that the beta functions vanish<br />

(see e.g. [23]) <strong>and</strong> these lead to constra<strong>in</strong>ts on G, B, A, <strong>and</strong> Φ, that can be recast as<br />

equations of motion that derive from a low-energy, effective spacetime action for the<br />

fields.<br />

The action SΣ is also <strong>in</strong>variant under a spacetime gauge transformation Ω(X)<br />

γ I − → (1 + iΩ) I Jγ J − , A I<br />

M J → (AM − ∂MΩ + i[Ω, AM]) I<br />

J<br />

as well as a spacetime Lorentz transformation Λ(X)<br />

(1.5)<br />

ψ ˆ M + → (1 + iΛ) ˆ M ˆN ψ ˆ N + , ω ˆ M<br />

M ˆ N → (ωM − i∂MΛ + i[Λ, ωM]) ˆ M ˆN , etc. (1.6)<br />

However, s<strong>in</strong>ce we have chiral fermions, the quantum action need not be <strong>in</strong>variant<br />

under these classical symmetries. As a result, we have a potential anomaly (see e.g.<br />

[84]) proportional to<br />

�<br />

∝<br />

Σ<br />

X ∗<br />

�<br />

Tr � Ω dA � − Tr � Λ d(ω − H) ��<br />

(1.7)<br />

where R(ω − H) is the Ricci two-form derived from the “m<strong>in</strong>us” connection ω − H<br />

<strong>and</strong> X ∗ refers to the pullback to the worldsheet of the spacetime quantities. In a<br />

sem<strong>in</strong>al paper by Green <strong>and</strong> Schwarz [72], it was realized that this anomaly can be<br />

consistently canceled by allow<strong>in</strong>g B to shift<br />

B → B + α′<br />

4 Tr� Λ d(ω − H) � − α′<br />

4 Tr� Ω dA � , (1.8)<br />

which means that we have a globally def<strong>in</strong>ed, <strong>in</strong>variant 3-form<br />

H ′ ≡ dB + α′<br />

4 Tr<br />

�<br />

(ω − H) ∧ R(ω − H) + 1<br />

3<br />

�<br />

(ω − H)3 − α′<br />

4 Tr<br />

�<br />

A ∧ F + i<br />

3A3 �<br />

. (1.9)


Chapter 1: Introduction <strong>and</strong> Summary 8<br />

Consistency of the theory can thus be phrased <strong>in</strong> terms of the modified Bianchi<br />

identity<br />

dH ′ = α′<br />

�<br />

Tr<br />

4<br />

� R(ω − H) 2� − Tr � F 2��<br />

. (1.10)<br />

This will be important <strong>in</strong> non-Kähler compactifications, which we study <strong>in</strong> chapters<br />

4 <strong>and</strong> 5.<br />

The difference for type II theories is that the −-chirality fermions γI − , I = 1, . . . , 32,<br />

are replaced by ψ ˆM − , ˆ M = 0, . . . , 9, which are superpartners of the X M under a left-<br />

mov<strong>in</strong>g worldsheet supersymmetry. Additionally, there is no gauge field AM; <strong>in</strong>stead,<br />

the connection to which the ψ ˆ M − couple is almost the same as for the ψ ˆ M + (1.2) except<br />

that the opposite sign appears <strong>in</strong> front of H. This means that <strong>in</strong> the four fermion<br />

term <strong>in</strong> (1.1), F is replaced by the Riemann tensor. This seem<strong>in</strong>gly “simple” change<br />

leads to a world of difference <strong>in</strong> the spacetime theory; <strong>in</strong> particular, <strong>in</strong> flat space<br />

the massless spectrum of the worldsheet theory <strong>in</strong>cludes various p-form fields (RR-<br />

fields) <strong>in</strong>stead of the gauge field. In the heterotic theory, it is explicit <strong>in</strong> (1.1) how to<br />

<strong>in</strong>clude VEVs for the spacetime fields <strong>in</strong> the worldsheet CFT; unfortunately, <strong>in</strong> type<br />

II theories it is <strong>in</strong>credibly difficult to <strong>in</strong>corporate VEVs for the RR-fields. It is for<br />

this reason that CFT methods are more useful <strong>in</strong> heterotic theories than <strong>in</strong> type II<br />

theories.<br />

1.2 Str<strong>in</strong>g <strong>Theory</strong> <strong>in</strong> <strong>Two</strong> Dimensions<br />

In chapters 2 <strong>and</strong> 3, we concern ourselves with problems <strong>in</strong> 1 + 1 spacetime di-<br />

mensions. The reason we are <strong>in</strong>terested <strong>in</strong> 1 + 1-dimensional physics is because there<br />

are powerful tools that can be brought to bear there, as we will see. The hope is that


Chapter 1: Introduction <strong>and</strong> Summary 9<br />

problems with solutions <strong>in</strong> two dimensions may provide analogies useful to solv<strong>in</strong>g<br />

problems <strong>in</strong> higher dimensions.<br />

In chapter 2, we will be <strong>in</strong>terested <strong>in</strong> the bosonic str<strong>in</strong>g <strong>and</strong> can forget the fermionic<br />

terms <strong>in</strong> (1.1) (<strong>in</strong> chapter 3, we will describe the appropriate modifications to the case<br />

of the superstr<strong>in</strong>g, but the ideas will be the same). Consider a background<br />

GMN(X) = ηMN , BMN(X) = 0 , Φ(X) = 2<br />

√ α ′ X1 , (1.11)<br />

where now M, N, . . . = 0, 1. Under a Weyl transformation (1.4), the action SΣ is<br />

variant as is the path-<strong>in</strong>tegral measure; however, both can be canceled by lett<strong>in</strong>g<br />

X 1 → X 1 − √ α ′ ω . (1.12)<br />

(Said another way, if we started with just the free X 0 action, the Weyl transformation<br />

would fail to be a quantum symmetry of the theory, so the conformal mode of the<br />

metric would rema<strong>in</strong> a dynamical variable <strong>and</strong> become X 1 with the l<strong>in</strong>ear dilaton<br />

background—see [65], for example.)<br />

The str<strong>in</strong>g coupl<strong>in</strong>g is gs = e Φ , so we see here that the str<strong>in</strong>g coupl<strong>in</strong>g diverges<br />

as X 1 becomes large, but this means that the path-<strong>in</strong>tegral appears to be badly<br />

divergent. There is a resolution, though, which is to note that the transformation of<br />

X 1 under a Weyl transformation allows us to <strong>in</strong>clude a “tachyon” 4 vertex operator<br />

<strong>in</strong> the action<br />

�<br />

∆SΣ ∝ µ<br />

so that we have the Liouville action<br />

SΣ = 1<br />

�<br />

d<br />

4π<br />

2 σ √ �<br />

1<br />

−g<br />

Σ<br />

d 2 σ √ −g e 2X1 / √ α ′<br />

α ′ ηMNg αβ ∂αX M ∂βX N + 2<br />

√<br />

α ′ R(g)X1 + 4µ e 2X1 / √ α ′<br />

�<br />

(1.13)<br />

. (1.14)<br />

4 In two dimensions, the lowest excitation of the str<strong>in</strong>g—the would-be tachyon—is massless.


Chapter 1: Introduction <strong>and</strong> Summary 10<br />

For the appropriate sign of µ, this potential term ensures that the action goes to<br />

+∞ when X 1 → ±∞, so the Euclidean path <strong>in</strong>tegral (with <strong>in</strong>tegr<strong>and</strong> e −SΣ ) can<br />

be convergent. Physically, this term provides a potential that shields str<strong>in</strong>gs from<br />

the strongly coupled region X 1 → +∞, so a str<strong>in</strong>g com<strong>in</strong>g from X 1 = −∞ will be<br />

reflected <strong>and</strong> never encounter <strong>in</strong>f<strong>in</strong>ite str<strong>in</strong>g coupl<strong>in</strong>g.<br />

1.2.1 The Matrix Model<br />

In chapter 2, we will use the “matrix model” to describe time-dependent back-<br />

grounds <strong>in</strong> 1 + 1-dimensional, bosonic str<strong>in</strong>g theory. To see the connection between<br />

Liouville theory <strong>and</strong> matrix quantum mechanics, we first discretize the worldsheet<br />

by triangulariz<strong>in</strong>g it <strong>in</strong>to equilateral triangles with side a, vertices labeled by i, j, . . . ,<br />

<strong>and</strong> total number of vertices given by V (see [92, 65] for a more complete review). We<br />

work with the non-critical theory of a s<strong>in</strong>gle free boson with cosmological constant,<br />

which we have seen is equivalent to the Liouville theory s<strong>in</strong>ce the conformal mode of<br />

the metric is dynamical. Then, we make the substitutions<br />

1<br />

4πα ′<br />

�<br />

�<br />

�<br />

Dg � � h −→ lim<br />

DX −→<br />

�<br />

a→0<br />

Triangularizations Λ<br />

Λ Embedd<strong>in</strong>gs <strong>in</strong> R2 d 2 σ √ gg αβ ∂αX∂βX −→ 1<br />

2α ′<br />

�<br />

〈ij〉<br />

�<br />

d 2 σ √ g −→<br />

�<br />

� Xi − Xj) 2<br />

√ 3<br />

4 a2 V (1.15)


Chapter 1: Introduction <strong>and</strong> Summary 11<br />

where h refers to the number of h<strong>and</strong>les of the closed str<strong>in</strong>g worldsheet <strong>and</strong> 〈ij〉 refers<br />

to nearest neighbors. Us<strong>in</strong>g the action (1.14), we can recast the partition function as<br />

�<br />

�<br />

�<br />

ln Z = ln D[g, X]e −SΣ<br />

�<br />

−→ �<br />

where κ = e− √<br />

3<br />

4π µa2.<br />

h<br />

h,Λ<br />

g 2h−2<br />

�<br />

V<br />

s κ<br />

i<br />

�<br />

�<br />

dXi<br />

〈ij〉<br />

1<br />

−<br />

e 2α ′ (Xi−Xj) 2<br />

(1.16)<br />

Figure 1.1: Triangularization of a surface (dotted l<strong>in</strong>es) with dual lattice (solid double<br />

l<strong>in</strong>es).<br />

The dual lattice � Λ conta<strong>in</strong>s only vertices that jo<strong>in</strong> three edges s<strong>in</strong>ce the lattice Λ<br />

only conta<strong>in</strong>s triangular faces (see figure 1.1). As such, it is superficially similar to a<br />

Feynman diagram for a theory with only cubic <strong>in</strong>teractions. In fact, we are about to<br />

see that the similarity is more than superficial.<br />

Consider a matrix quantum mechanics of N × N Hermitian matrices M(t) de-


Chapter 1: Introduction <strong>and</strong> Summary 12<br />

scribed by<br />

�<br />

ZMQM =<br />

DMe −N R T/2<br />

−T/2 dtTr<br />

h<br />

1<br />

2 ˙ M 2 + 1<br />

2α ′ M 2− κ′<br />

6<br />

i<br />

M 3<br />

. (1.17)<br />

The matrix <strong>in</strong>dices can be <strong>in</strong>corporated <strong>in</strong>to Feynman diagrams by us<strong>in</strong>g ’t Hooft’s<br />

double-l<strong>in</strong>e propagators [121]. We see that propagators contribute a 1<br />

N<br />

to a diagram,<br />

vertices contribute Nκ ′ , <strong>and</strong> loops contribute an N from the trace over each <strong>in</strong>ternal<br />

propagator (see figure 1.1). Thus, a diagram has dependence<br />

N ˜ F + ˜ V − ˜ E κ ′ ˜ V , (1.18)<br />

where ˜ F is the number of <strong>in</strong>ternal momentum <strong>in</strong>tegrals (loops), ˜ V is the number of<br />

vertices, <strong>and</strong> ˜ E is the number of <strong>in</strong>ternal propagators. Diagrammatically, ˜ F is the<br />

number of “faces”, ˜ V the number of “vertices”, <strong>and</strong> ˜ E the number of “edges”, which<br />

exactly gives us the Euler characteristic χ( � Λ). For an oriented Riemann surface,<br />

χ = 2 − 2h, thus the generic behavior is<br />

� �2h−2 1<br />

κ<br />

N<br />

′ ˜ V<br />

. (1.19)<br />

In fact, we can say a bit more. Because there is a mass term for M, the two-po<strong>in</strong>t<br />

〈M(t)M(t ′ )〉 dies off exponentially as e−|t−t′ |/ √ α ′<br />

, giv<strong>in</strong>g us<br />

lim<br />

T →∞ ln ZMQM ∝ �<br />

h, e Λ<br />

� �2h−2 1<br />

N<br />

κ ′ ˜ V �<br />

�<br />

�<br />

dti e −|ti−tj|/ √ α ′<br />

. (1.20)<br />

This is clearly similar to (1.16), for example gs ∼ 1/N, but the <strong>in</strong>tegr<strong>and</strong>s (e −|t| versus<br />

e−X2) are different. This need not be a problem because <strong>in</strong> the cont<strong>in</strong>uum limit we<br />

will w<strong>in</strong>d up with a conformal theory (if necessary, after an RG flow); thus, as long<br />

as the two <strong>in</strong>tegr<strong>and</strong>s are <strong>in</strong> the same “universality class” they will give us the same<br />

i<br />

〈ij〉


Chapter 1: Introduction <strong>and</strong> Summary 13<br />

theory <strong>in</strong> the cont<strong>in</strong>uum limit. The evidence <strong>in</strong>dicates that the two l<strong>in</strong>k factors are<br />

<strong>in</strong>deed <strong>in</strong> the same universality class [92, 65].<br />

There are plenty of subtleties, but let us just exp<strong>and</strong> on one, namely the rela-<br />

tionship between κ <strong>and</strong> κ ′ . Large values of κ ′ mean that graphs with large numbers<br />

of vertices dom<strong>in</strong>ate the partition function, while small values of κ ′ mean that small<br />

numbers of vertices dom<strong>in</strong>ate; thus, there must be some critical value κc separat<strong>in</strong>g<br />

these phases. In order to obta<strong>in</strong> the cont<strong>in</strong>uum limit, we must take the double-scal<strong>in</strong>g<br />

limit <strong>in</strong> which we simultaneously send κ ′ → κc <strong>and</strong> take a → 0. In this limit, we f<strong>in</strong>d<br />

that<br />

µ ∼ κ2 c<br />

where the limits are taken <strong>in</strong> such a way as to leave µ f<strong>in</strong>ite.<br />

1.2.2 Free Fermions<br />

− κ′2<br />

a 2 , (1.21)<br />

Now that we have seen a relationship between Liouville theory <strong>and</strong> matrix quan-<br />

tum mechanics, we next describe a relationship with free fermions (see the reviews<br />

�<br />

β<br />

[92, 65] for more details). After a slight rescal<strong>in</strong>g of the matrices M → M, the<br />

N<br />

action becomes<br />

SMQM = β<br />

where we see that κ ′ = � N/β.<br />

� T/2<br />

−T/2<br />

�<br />

1<br />

dtTr<br />

2 ˙ M 2 + 1<br />

2α ′ M 2 − 1<br />

6<br />

�<br />

3<br />

M<br />

(1.22)<br />

We will be <strong>in</strong>terested <strong>in</strong> the large T limit, which essentially means that we will<br />

be <strong>in</strong>terested <strong>in</strong> properties of the ground state of the Hamiltonian. Us<strong>in</strong>g a unitary<br />

transformation U to diagonalize M, two th<strong>in</strong>gs will happen: first, the action will


Chapter 1: Introduction <strong>and</strong> Summary 14<br />

split <strong>in</strong>to terms <strong>in</strong>dependent of U <strong>and</strong> terms dependent on U; second, the change<br />

of variables will generate a Jacobian <strong>in</strong> the path-<strong>in</strong>tegral measure. That Jacobian is<br />

called the V<strong>and</strong>ermonde determ<strong>in</strong>ant ∆(λ) 2 = �<br />

i,j,i


Chapter 1: Introduction <strong>and</strong> Summary 15<br />

In the double-scal<strong>in</strong>g limit, we keep µ ′ <strong>and</strong> µ fixed to recover the cont<strong>in</strong>uum limit.<br />

We see now that this corresponds to keep<strong>in</strong>g the number of energy levels between the<br />

peak <strong>and</strong> the fermi sea constant.<br />

μ ’<br />

β<br />

1<br />

β<br />

Figure 1.2: Free fermion potential <strong>and</strong> energy spac<strong>in</strong>gs of fermi sea.<br />

The double scal<strong>in</strong>g limit also <strong>in</strong>volves tak<strong>in</strong>g N → ∞, which corresponds to weakly<br />

coupled str<strong>in</strong>g theory s<strong>in</strong>ce gs ∼ 1/N. In the free fermion picture, this corresponds<br />

to tak<strong>in</strong>g the number of fermions to <strong>in</strong>f<strong>in</strong>ity, giv<strong>in</strong>g us a classically <strong>in</strong>compressible<br />

fluid that corresponds, through this long cha<strong>in</strong> of relationships, to str<strong>in</strong>g theory back-<br />

grounds. Thus, we can study complicated backgrounds of 1 + 1-dimensional str<strong>in</strong>g<br />

theory by study<strong>in</strong>g configurations of classical, <strong>in</strong>compressible fluids, which is what we<br />

do <strong>in</strong> chapter 2.<br />

λ


Chapter 1: Introduction <strong>and</strong> Summary 16<br />

1.3 Gauged L<strong>in</strong>ear Sigma Models<br />

In chapter 5, we will use a different set of tools to study str<strong>in</strong>g theory from a<br />

worldsheet perspective. In particular, we will use the technology of gauged l<strong>in</strong>ear<br />

sigma models (GLSMs) to construct a nonl<strong>in</strong>ear sigma model (NLSM) on a non-<br />

Kähler manifold. Gauged l<strong>in</strong>ear sigma models were first <strong>in</strong>troduced <strong>in</strong> [124] as a way of<br />

study<strong>in</strong>g properties of conformal field theories. The basic idea is that study<strong>in</strong>g CFTs<br />

can be hard, especially when we don’t have explicit expressions for the fields appear<strong>in</strong>g<br />

<strong>in</strong> the action (1.1) as is typically the case with Calabi-Yau compactifications; on the<br />

other h<strong>and</strong>, supersymmetric gauge theories <strong>in</strong> 1 + 1-dimensions are relatively simple.<br />

In particular, if the gauge theory only has gauge <strong>in</strong>teractions, then the theory becomes<br />

free <strong>in</strong> the UV s<strong>in</strong>ce the gauge parameter has dimensions of mass. What this means<br />

is any calculation that is protected by supersymmetry from RG flow can be done <strong>in</strong><br />

the free UV theory <strong>and</strong> applied to the <strong>in</strong>teract<strong>in</strong>g IR theory (<strong>in</strong> fact, we can broaden<br />

the models by <strong>in</strong>clud<strong>in</strong>g a superpotential, which modifies the story <strong>in</strong> a calculable<br />

way). Thus, the game is to f<strong>in</strong>d a GLSM that flows <strong>in</strong> the IR to a conformal fixed<br />

po<strong>in</strong>t that is the CFT we wish to study.<br />

Us<strong>in</strong>g the conventions <strong>in</strong> appendix C.1, we start with the action<br />

S0 = − 1<br />

�<br />

4π<br />

+ ita<br />

4<br />

�<br />

d 2 y d 2 �<br />

θ iΦ i<br />

0e Qa i Va �<br />

D− e Qa i Va Φ i �<br />

0 + 1<br />

2 Γm0<br />

e 2qa mVa Γ m 0 + 1<br />

8e2 �<br />

ΥaΥa<br />

a<br />

d 2 y dθ + Υa|¯ θ + =0 + h.c. (1.26)<br />

where t a = r a + iθ a is the complexified Fayet-Iliopoulos (FI) parameter, i = 1, . . . , N,<br />

m = 1, . . . , r, <strong>and</strong> a = 1, . . . , s. S0 has a symmetry under Φ i 0 → e−iQa i Λa Φ i 0 , Γm 0 →<br />

e −iqa mΛa Γ m 0 , <strong>and</strong> the gauge field transforms as <strong>in</strong> appendix C.1. Λa are a set of chiral


Chapter 1: Introduction <strong>and</strong> Summary 17<br />

superfields, whose lowest components are complex scalars, call them i ln(za). Then<br />

the gauge transformation acts on the lowest components of Φ i 0 by<br />

φ i → z Qa i<br />

a φ i<br />

(no sum), (1.27)<br />

which for s = 1 is exactly the identification one makes to obta<strong>in</strong> a weighted projective<br />

space from C N \{0}. So the complex scalars φ i become homogeneous coord<strong>in</strong>ates on a<br />

weighted projective space when s = 1, or more generally for some toric variety when<br />

s > 1.<br />

This can be made more precise by analyz<strong>in</strong>g the component expression of the<br />

action <strong>in</strong> Wess-Zum<strong>in</strong>o (WZ) gauge where the full gauge parameter is reduced to the<br />

real part of the lowest component of Λa, thus leav<strong>in</strong>g us with a U(1) s gauge symmetry.<br />

The gauge multiplet conta<strong>in</strong>s a real auxiliary field Da that can be <strong>in</strong>tegrated out to<br />

yield a potential for the scalar fields<br />

Ua(φ) ∝ e2 a<br />

2<br />

� �<br />

i<br />

Q a i |φ i | 2 − r a<br />

�2 . (1.28)<br />

The supersymmetric vacua must have a vanish<strong>in</strong>g scalar potential, which for s = 1,<br />

Q a i > 0, <strong>and</strong> r1 > 0, implies that the φ i parameterize a 2N − 1-dimensional ellipsoid.<br />

When we gauge fix the U(1) symmetry, we take a U(1) quotient of this ellipsoid which<br />

yields a weighted projective space W P N−1<br />

�Q<br />

, as expected. Another way to look at this<br />

is that �<br />

a Ua(φ) provides a mass term for s comb<strong>in</strong>ations of the φi , leav<strong>in</strong>g us with<br />

N − s massless scalars which survive to the IR theory. From now on, let us analyze<br />

the s = 1 case <strong>in</strong> order to simplify the exposition.<br />

The analysis of the scalar components was more <strong>in</strong>volved <strong>in</strong> WZ gauge than before,<br />

but the analysis for the fermions ψ i + <strong>and</strong> γm −<br />

is beautiful <strong>in</strong> this picture: we need only


Chapter 1: Introduction <strong>and</strong> Summary 18<br />

look at the Yukawa coupl<strong>in</strong>gs<br />

LYuk ∝ iQ a i φ i ¯ ψ i + ¯ λ−a + h.c. (1.29)<br />

Because the scalars φ i get a VEV (1.28), we see that the comb<strong>in</strong>ation of fermions<br />

given by ψ+, where<br />

ψ i + = φi ψ+ , (1.30)<br />

gets a mass term aga<strong>in</strong>st the gaug<strong>in</strong>o λ−a so that only N − 1 right-mov<strong>in</strong>g fermions<br />

rema<strong>in</strong> massless, the same number as massless scalars. In particular, we can encode<br />

this <strong>in</strong>formation <strong>in</strong> an exact sequence<br />

ψ+ ↦−→ � φ1ψ+, . . . , φN �<br />

ψ+<br />

0 −→ O −→ �<br />

O(Qi) −→ T −→ 0<br />

i<br />

�<br />

1 ψ+ , . . . , ψN �<br />

+<br />

where O(n) are l<strong>in</strong>e bundles over W P N−1<br />

�Q<br />

↦−→ �<br />

i Qi ¯ φ i ψ i +<br />

(1.31)<br />

with c1(O(n)) ∝ n <strong>and</strong> T is the sheaf of<br />

which the massless right-mov<strong>in</strong>g fermions are (pullbacks of) sections. In fact, this<br />

exact sequence makes clear that<br />

T = T W P N−1<br />

�Q<br />

. (1.32)<br />

The left-mov<strong>in</strong>g fermions γ m − have no Yukawa coupl<strong>in</strong>gs <strong>in</strong> S0 (when E m (Φ) = 0),<br />

so they simply transform as (pullbacks of) sections of ⊕mO(qm). F<strong>in</strong>ally, we note<br />

that the gauge coupl<strong>in</strong>g ea has dimensions of mass, mean<strong>in</strong>g that it blows up <strong>in</strong> the<br />

IR. This freezes out the dynamics of the gauge multiplet, allow<strong>in</strong>g us to <strong>in</strong>tegrate it<br />

out. Thus, there is no gauge field <strong>in</strong> the IR theory <strong>and</strong> we are left with a theory where<br />

the φi are homogeneous coord<strong>in</strong>ates on W P N−1<br />

�Q<br />

, their superpartners are pullbacks of


Chapter 1: Introduction <strong>and</strong> Summary 19<br />

sections of the tangent bundle T W P N−1<br />

, <strong>and</strong> the left-mov<strong>in</strong>g fermions transform as<br />

�Q<br />

pullbacks of sections of the vector bundle ⊕mO(qm). This is precisely the structure<br />

of the nonl<strong>in</strong>ear sigma model on W P N−1<br />

. In fact, if we <strong>in</strong>tegrate out the gauge field<br />

�Q<br />

at tree level we will generate an effective spacetime metric that is the analog of the<br />

Fub<strong>in</strong>i-Study metric for W P N−1<br />

. Of course, <strong>in</strong> this case there will be no conformal<br />

�Q<br />

fixed po<strong>in</strong>t because the NLSM on a weighted projective space is not conformal.<br />

We can modify the construction by add<strong>in</strong>g a superpotential as <strong>in</strong> appendix C.1.<br />

Geometrically, the superpotential will <strong>in</strong>volve a quasi-homogeneous polynomial of the<br />

Φ i which will be set to zero for supersymmetric vacua, cutt<strong>in</strong>g out a hypersurface of<br />

the W P N−1<br />

�Q<br />

(more generally, we can cut out an <strong>in</strong>tersection of hypersurfaces from<br />

a toric variety). As before, the right-mov<strong>in</strong>g fermions will transform as pullbacks<br />

of sections of the tangent bundle to the hypersurface (<strong>in</strong>tersection). Similarly, we<br />

can use a superpotential to create more complicated gauge bundles, of which the<br />

left-mov<strong>in</strong>g fermions will be pullbacks of sections. These modifications are expla<strong>in</strong>ed<br />

briefly <strong>in</strong> appendix C.1.1.<br />

There is a limitation to these models, however, which is that they do not yield<br />

nonzero H-flux. In chapter 5, we will <strong>in</strong>troduce a class of “torsion l<strong>in</strong>ear sigma mod-<br />

els” that <strong>in</strong>clude nonzero H-flux, thus yield<strong>in</strong>g backgrounds with nontrivial anomaly<br />

cancelation (1.10).


Chapter 2<br />

Collective <strong>Field</strong> Description of<br />

Matrix Cosmologies<br />

2.1 Introduction<br />

The soluble str<strong>in</strong>g theory <strong>in</strong> 1+1 dimensions is a rich toy model for the study<br />

of nonperturbative phenomena often not accessible to analysis <strong>in</strong> higher dimensional<br />

theories. Of such phenomena, one class are the processes with a nontrivial time<br />

evolution. Examples <strong>in</strong>clude tachyon condensation, creation <strong>and</strong> evaporation of black<br />

holes, <strong>and</strong> cosmological evolution.<br />

An important step towards the study of time-dependent phenomena <strong>in</strong> the c = 1<br />

matrix model for the 2d str<strong>in</strong>g was the description of D0-brane decay, or open str<strong>in</strong>g<br />

tachyon condensation [93, 104]. The matrix model provides an exact picture of the<br />

time evolution as the classical motion of a s<strong>in</strong>gle matrix eigenvalue; its predictions<br />

were compared to worldsheet str<strong>in</strong>g analysis <strong>and</strong> found to agree.<br />

20


Chapter 2: Collective <strong>Field</strong> Description of Matrix Cosmologies 21<br />

Classical collective motions of the entire Fermi sea, as opposed to a motion of a<br />

s<strong>in</strong>gle eigenvalue, were described for example <strong>in</strong> [106, 9]. These describe nontrivial<br />

time dependent backgrounds for the 2d str<strong>in</strong>g theory <strong>and</strong> were <strong>in</strong>terpreted as closed<br />

str<strong>in</strong>g tachyon condensation <strong>in</strong> [91]. Another class of time-dependent solutions—<br />

droplets of large but f<strong>in</strong>ite number of eigenvalues, correspond<strong>in</strong>g to closed universe<br />

cosmologies—was proposed <strong>in</strong> [91]. S<strong>in</strong>ce these classical time-dependent solutions of<br />

the matrix model correspond to large motions of the Fermi surface, small fluctuations<br />

about the Fermi surface carry important <strong>in</strong>formation about propagation of str<strong>in</strong>gy<br />

spacetime fields. As we will review below, these small fluctuations can be described<br />

<strong>in</strong> the Das-Jevicki collective field approach by a 2d effective field theory, whose action<br />

generically conta<strong>in</strong>s a nontrivial, time-vary<strong>in</strong>g metric.<br />

A step toward underst<strong>and</strong><strong>in</strong>g these time-dependent solutions was taken by Alexan-<br />

drov <strong>in</strong> [7], where coord<strong>in</strong>ates were found <strong>in</strong> which the metric was made trivial. How-<br />

ever, the method presented there does not extend to compact Fermi droplets. The<br />

ma<strong>in</strong> purpose of this note is to extend the construction of Alex<strong>and</strong>rov coord<strong>in</strong>ates to<br />

arbitrary Fermi surfaces, <strong>in</strong>clud<strong>in</strong>g compact cases.<br />

To this end, we study the Alex<strong>and</strong>rov coord<strong>in</strong>ates <strong>in</strong> some detail. In section<br />

2.2, we briefly review the collective field description of small fluctuations about a<br />

time-dependent Fermi surface. In section 2.3, we explicitly construct the Alex<strong>and</strong>rov<br />

coord<strong>in</strong>ates for an arbitrary solution. In section 2.4, we analyze a special class of<br />

backgrounds (<strong>in</strong>clud<strong>in</strong>g some compact cases) for which the entire, <strong>in</strong>teract<strong>in</strong>g action<br />

is static. The collective field action for these solutions is shown to take a stan-<br />

dard form with a time-<strong>in</strong>dependent coupl<strong>in</strong>g constant. In section 2.5, we construct


Chapter 2: Collective <strong>Field</strong> Description of Matrix Cosmologies 22<br />

the Alex<strong>and</strong>rov coord<strong>in</strong>ates for a f<strong>in</strong>ite collection of fermion eigenvalues: a compact<br />

droplet cosmology. We briefly discuss the possibility of formulat<strong>in</strong>g a spacetime str<strong>in</strong>g<br />

theory <strong>in</strong>terpretation of such a configuration. F<strong>in</strong>ally, <strong>in</strong> appendix A, we analyze the<br />

<strong>in</strong>teraction term <strong>in</strong> the effective action <strong>and</strong> show by an explicit example that it is not<br />

always possible to make it static.<br />

2.2 Notation <strong>and</strong> Alex<strong>and</strong>rov Coord<strong>in</strong>ates<br />

In the double scal<strong>in</strong>g limit, matrix quantum mechanics is def<strong>in</strong>ed by the action<br />

S = 1<br />

�<br />

2<br />

� �<br />

dt Tr M(t) ˙ 2 2<br />

+ M(t)<br />

, (2.1)<br />

where M is a Hermitian matrix whose size <strong>in</strong> this limit is taken to <strong>in</strong>f<strong>in</strong>ity. As is<br />

well known (for reviews, see for example [113, 92]), upon quantization the s<strong>in</strong>glet<br />

sector of the matrix quantum mechanics is described by an <strong>in</strong>f<strong>in</strong>ite number of free<br />

(non<strong>in</strong>teract<strong>in</strong>g), nonrelativistic fermions represent<strong>in</strong>g the eigenvalues of M. The<br />

fermions <strong>in</strong>herit the same potential as the matrix M, <strong>and</strong> hence the s<strong>in</strong>gle variable<br />

Hamiltonian is<br />

H = 1<br />

2 (p2 − x 2 ) . (2.2)<br />

S<strong>in</strong>ce the number of fermions is large, the classical limit of the theory is that of<br />

an <strong>in</strong>compressible Fermi liquid mov<strong>in</strong>g <strong>in</strong> phase space (x, p) under the equations of<br />

motion given by the Hamiltonian (2.2). We will restrict our analysis <strong>in</strong> this note to<br />

situations where the Fermi surface (the boundary of the Fermi sea) can be given by<br />

its upper <strong>and</strong> lower branch, which we will denote with p±(x, t), see figure 2.1. It is


Chapter 2: Collective <strong>Field</strong> Description of Matrix Cosmologies 23<br />

p<br />

p (x,t)<br />

+<br />

p (x,t)<br />

−<br />

Figure 2.1: A compact Fermi surface <strong>in</strong> phase space. The upper <strong>and</strong> lower branches<br />

of the surface are labelled, <strong>and</strong> vertical po<strong>in</strong>ts where they meet (<strong>and</strong> the collective<br />

theory becomes strongly coupled) are marked.<br />

easy to show that p±(x, t) satisfy<br />

∂tp± + p±∂xp± = x . (2.3)<br />

One way to directly connect the classical limit of the matrix quantum mechanics<br />

with the collective description of fermion motion is via a procedure developed by Das<br />

<strong>and</strong> Jevicki [38]. Def<strong>in</strong>e a field ϕ(x, t) by<br />

ϕ(x, t) = 1<br />

Tr[δ(x − M(t))] (2.4)<br />

π<br />

x


Chapter 2: Collective <strong>Field</strong> Description of Matrix Cosmologies 24<br />

so that ϕ(x, t) is the density of eigenvalues at po<strong>in</strong>t x <strong>and</strong> time t. In the fermion<br />

description, we have the relation<br />

The action for the collective field is [38]<br />

S =<br />

� dt dx<br />

2π<br />

ϕ = p+ − p−<br />

2<br />

� Z 2<br />

where Z = � dx∂tϕ, so the equation of motion is<br />

∂t<br />

ϕ<br />

� �<br />

Z<br />

−<br />

ϕ<br />

Z<br />

ϕ ∂x<br />

Furthermore, we have the relation [8]<br />

. (2.5)<br />

1<br />

−<br />

3 ϕ3 + (x 2 �<br />

− 2µ)ϕ<br />

, (2.6)<br />

� �<br />

Z<br />

= ϕ∂xϕ − x . (2.7)<br />

ϕ<br />

Z<br />

ϕ = −p+ + p−<br />

2<br />

which allows us to verify that (2.7) is consistent with (2.3).<br />

, (2.8)<br />

We want to consider a fixed solution ϕ0(x, t) of (2.7) <strong>and</strong> study the effective action<br />

for small fluctuations about this solution. In the str<strong>in</strong>g theory dual to the matrix<br />

model, this corresponds to study<strong>in</strong>g the small fluctuations about a str<strong>in</strong>g background<br />

given by the solution ϕ0(x, t). Let ∂xη(x, t) denote the small fluctuations<br />

<strong>and</strong> let Z0 = � dx∂tϕ0.<br />

ϕ = ϕ0 + √ π∂xη (2.9)<br />

Rewrit<strong>in</strong>g the action <strong>and</strong> group<strong>in</strong>g terms <strong>in</strong> powers of η we f<strong>in</strong>d (notic<strong>in</strong>g that<br />

terms l<strong>in</strong>ear <strong>in</strong> η vanish by the equations of motion)<br />

S =<br />

� �<br />

dt dx (Z0 +<br />

2π<br />

√ π∂tη) 2<br />

ϕ0 + √ π∂xη<br />

1<br />

−<br />

3 (ϕ0 + √ π∂xη) 3 + (x 2 − 2µ)(ϕ0 + √ �<br />

π∂xη)<br />

= S(0) + S(2) + S<strong>in</strong>t (2.10)


Chapter 2: Collective <strong>Field</strong> Description of Matrix Cosmologies 25<br />

where S(0) has no η-dependence,<br />

S(2) = 1<br />

� �� dt dx<br />

∂tη −<br />

2 ϕ0<br />

Z0<br />

�2 ∂xη − ϕ<br />

ϕ0<br />

2 �<br />

2<br />

0 (∂xη)<br />

<strong>and</strong><br />

ϕ0<br />

n=1<br />

ϕ0<br />

, (2.11)<br />

S<strong>in</strong>t = 1<br />

� � √<br />

dt dx π<br />

3<br />

− ϕ0(∂xη)<br />

2 ϕ0 3<br />

�<br />

+ ∂tη − Z0<br />

�2 ∞�<br />

∂xη (− √ π) n<br />

� � �<br />

n<br />

∂xη<br />

. (2.12)<br />

In [7], it is proposed that coord<strong>in</strong>ates (τ, σ) exist <strong>in</strong> which S(2) takes a st<strong>and</strong>ard form<br />

of a k<strong>in</strong>etic term for a field <strong>in</strong> a flat metric<br />

�<br />

S(2) = dτ + dτ − ∂τ −η ∂τ +η , (2.13)<br />

where τ ± (x, t) = τ ±σ are the lightcone coord<strong>in</strong>ates. We shall refer to the coord<strong>in</strong>ates<br />

(τ, σ) as the Alex<strong>and</strong>rov coord<strong>in</strong>ates. In [7], these coord<strong>in</strong>ates were constructed from<br />

a specific form of the solution ϕ0. In the next section, we prove (at least locally) their<br />

existence for all ϕ0.<br />

2.3 Alex<strong>and</strong>rov Coord<strong>in</strong>ates – Existence<br />

It is quite simple to show, us<strong>in</strong>g the equations of motion for the two branches of<br />

the solution (2.3), that the action (2.11) takes on the form <strong>in</strong> (2.13) as long as the<br />

coord<strong>in</strong>ates τ ± satisfy<br />

(∂t + p±∂x)τ ± = 0 . (2.14)<br />

Equation (2.14) can easily be solved (at least locally). The exact form of the solution<br />

depends on whether the slope of the solution p± is steeper or shallower than 1. The


Chapter 2: Collective <strong>Field</strong> Description of Matrix Cosmologies 26<br />

regions where α(x, t) ≡ ∂xp± satisfies |α| > 1 will be referred to as the steep regions,<br />

<strong>and</strong> those were |α| < 1 will be referred to as the shallow regions. In the steep regions,<br />

we have that<br />

<strong>and</strong> <strong>in</strong> the shallow regions we get<br />

τ ± = t − coth −1 (∂xp±) , (2.15)<br />

τ ± = t − tanh −1 (∂xp±) . (2.16)<br />

The solution above is not unique—a conformal change of coord<strong>in</strong>ates does not change<br />

the form of the quadratic part of the action (2.13), so any change of coord<strong>in</strong>ates of<br />

the form<br />

τ ′± = τ ′± (τ ± ) (2.17)<br />

will provide another solution to equation (2.14). For example, the follow<strong>in</strong>g is also a<br />

good solution<br />

as is<br />

τ ± =<br />

τ ± =<br />

tanh t − ∂xp±<br />

1 − ∂xp± tanh t<br />

coth t − ∂xp±<br />

1 − ∂xp± coth t<br />

(2.18)<br />

. (2.19)<br />

Note that if p+ <strong>and</strong> p− are flat on some overlapp<strong>in</strong>g region (∂xp± = 0), then these<br />

coord<strong>in</strong>ates will be degenerate. However, we can easily parameterize these flat regions<br />

<strong>in</strong> a nondegenerate way so that the metric is still flat.<br />

The solutions (2.15) <strong>and</strong> (2.16) are valid locally on steep <strong>and</strong> shallow coord<strong>in</strong>ate<br />

patches respectively (modulus the degenerate case mentioned above). To create a<br />

s<strong>in</strong>gle coord<strong>in</strong>ate system, we can ‘glue together’ the various steep, shallow, <strong>and</strong> flat<br />

patches by us<strong>in</strong>g the freedom of conformal coord<strong>in</strong>ate changes. While our expressions


Chapter 2: Collective <strong>Field</strong> Description of Matrix Cosmologies 27<br />

guarantee the existence of Alex<strong>and</strong>rov coord<strong>in</strong>ates on each patch <strong>and</strong> while there<br />

are no obvious obstacles to the ‘glu<strong>in</strong>g’ procedure, construct<strong>in</strong>g the coord<strong>in</strong>ates <strong>in</strong><br />

this way would be very cumbersome, even <strong>in</strong> cases where the result<strong>in</strong>g coord<strong>in</strong>ate<br />

systems are simple. Instead, <strong>in</strong> all the examples given <strong>in</strong> this chapter, the Alex<strong>and</strong>rov<br />

coord<strong>in</strong>ates are constructed by the procedure given <strong>in</strong> [7] (but see the comment at<br />

the end of section 2.5).<br />

Another issue is that, as was shown <strong>in</strong> [7], the result<strong>in</strong>g coord<strong>in</strong>ates often have<br />

boundaries (this will also be seen <strong>in</strong> section 2.5). The boundaries come <strong>in</strong> two cat-<br />

egories. The first are timelike boundaries correspond<strong>in</strong>g to the end(s) of the Fermi<br />

sea; the boundary conditions on those can be determ<strong>in</strong>ed from the conservation of<br />

fermion number [38]. The second class of boundaries conta<strong>in</strong>s boundaries which are<br />

either spacelike or timelike, do not have a clear <strong>in</strong>terpretation, <strong>and</strong> for which appro-<br />

priate boundary conditions are not known. We will return to the issues of boundaries<br />

<strong>in</strong> the discussion <strong>in</strong> section 2.5.<br />

We will close this section with a simple example as an illustration. Consider a<br />

mov<strong>in</strong>g hyperbolic Fermi surface given parametrically by [91]<br />

x = � 2µ cosh σ + λe t<br />

p = � 2µ s<strong>in</strong>h σ + λe t . (2.20)<br />

In this case, we have ϕ0 = � (x − λe t ) 2 − 2µ = √ 2µ s<strong>in</strong>h σ. The Alex<strong>and</strong>rov coordi-<br />

nates are given simply by σ <strong>in</strong> the parametrization above <strong>and</strong> by τ = t. It is a simple


Chapter 2: Collective <strong>Field</strong> Description of Matrix Cosmologies 28<br />

matter to check that the action takes the form<br />

S =<br />

�<br />

�<br />

1<br />

dτdσ<br />

+ (∂τ η) 2<br />

2<br />

√ π<br />

2 ((∂τη) 2 − (∂ση) 2 ) −<br />

6ϕ2 (3(∂τη)<br />

0<br />

2 (∂ση) + (∂ση) 3 )<br />

∞�<br />

� √ � �<br />

n<br />

π(∂ση)<br />

−<br />

. (2.21)<br />

n=2<br />

ϕ 2 0<br />

Note that the coupl<strong>in</strong>g diverges at the po<strong>in</strong>t σ = 0 which corresponds to the edge of<br />

the Fermi sea, <strong>and</strong> that it does not depend on τ.<br />

2.4 Alex<strong>and</strong>rov Coord<strong>in</strong>ates – Special Case<br />

In this section, we study a class of solutions (of which an example appeared at the<br />

end of the previous section) for which the Alex<strong>and</strong>rov coord<strong>in</strong>ates can be written as<br />

σ = σ(x, t) , τ = τ(t) . (2.22)<br />

We shall see that this leads to a very restricted class of solutions, but a class which<br />

<strong>in</strong>cludes both <strong>in</strong>f<strong>in</strong>ite <strong>and</strong> f<strong>in</strong>ite (compact) Fermi seas. Thus, it encompasses the two<br />

generic types of dynamic solutions.<br />

With the coord<strong>in</strong>ate ansatz above, we have<br />

dt dx =<br />

dτ dσ<br />

|∂xσ ∂tτ|<br />

∂x = ∂xσ ∂σ<br />

∂t = ∂tτ ∂τ + ∂tσ ∂σ . (2.23)<br />

Dem<strong>and</strong><strong>in</strong>g that the k<strong>in</strong>etic term take the st<strong>and</strong>ard flat form<br />

�<br />

S(2) =<br />

�<br />

1<br />

dτ dσ<br />

2 (∂τ η) 2 − 1<br />

�<br />

2<br />

(∂ση)<br />

2<br />

(2.24)


Chapter 2: Collective <strong>Field</strong> Description of Matrix Cosmologies 29<br />

leads to the requirements that<br />

∂tσ = Z0<br />

∂xσ <strong>and</strong><br />

ϕ0<br />

� �<br />

�<br />

�<br />

∂tτ �<br />

�<br />

�∂xσ<br />

� = ϕ0 . (2.25)<br />

These constra<strong>in</strong>ts can be solved explicitly, provided that the solution is only ver-<br />

tical at endpo<strong>in</strong>ts (ϕ0 = 0). S<strong>in</strong>ce τ depends only on t, we f<strong>in</strong>d that ∂tτ = (∂τt) −1 ,<br />

∂xσ = (∂σx) −1 , ∂xτ = ∂σt = 0,<br />

∂tσ<br />

∂τx = −<br />

(∂xσ)(∂tτ) , <strong>and</strong> ∂tσ = − ∂τ x<br />

. (2.26)<br />

(∂σx)(∂τ t)<br />

Us<strong>in</strong>g the first equation <strong>in</strong> (2.25) we f<strong>in</strong>d<br />

which is equal to<br />

∂xZ0 = − 1<br />

∂τ t<br />

�<br />

ϕ0∂τ ln(∂σx) + ∂τ x<br />

∂σx ∂σϕ0<br />

�<br />

∂xZ0 = ∂tϕ0 = 1<br />

�<br />

∂τϕ0 −<br />

∂τt<br />

∂τ x<br />

∂σx ∂σϕ0<br />

�<br />

, (2.27)<br />

. (2.28)<br />

Compar<strong>in</strong>g these two expressions, we obta<strong>in</strong> a differential equation for ϕ0<br />

∂τ ln(ϕ0) = −∂τ ln(∂σx) (2.29)<br />

whose solution is clearly of the form ϕ0 = f(σ) 2 (∂σx) −1 . This we can rewrite, us<strong>in</strong>g<br />

the second equation <strong>in</strong> (2.25), as<br />

ϕ0(σ, τ) = f(σ) � g(τ) , (2.30)<br />

where g(τ) = (∂τt) −1 <strong>and</strong> we assume f(σ) > 0. We also have ∂xσ = √ g/f.<br />

Now we can use the equation of motion (2.7) to f<strong>in</strong>d the forms of f <strong>and</strong> g. Us<strong>in</strong>g<br />

(2.25), notice that<br />

�<br />

∂τ = (∂τ t)∂t + (∂τ x)∂x = (∂τt)<br />

∂t − Z0<br />

∂x<br />

ϕ0<br />

�<br />

, (2.31)


Chapter 2: Collective <strong>Field</strong> Description of Matrix Cosmologies 30<br />

so the equation of motion (2.7) implies<br />

∂σ∂τ<br />

� �<br />

Z<br />

= ∂σ(ϕ∂xϕ) −<br />

ϕ<br />

1<br />

∂xσ<br />

. (2.32)<br />

Substitut<strong>in</strong>g the explicit form of ϕ0 <strong>in</strong> terms of f <strong>and</strong> g <strong>in</strong>to this equation, we obta<strong>in</strong><br />

2g∂ 2 τ g − (∂τg) 2 + 4 − 4g 2 ∂2 σf<br />

f<br />

= 0 . (2.33)<br />

S<strong>in</strong>ce g only depends on τ, <strong>and</strong> f only on σ, we see that ∂ 2 σf = −αf where α is a<br />

constant.<br />

Consider first the situation when α is positive. Then<br />

f(σ) = f1 s<strong>in</strong>( √ α(σ − σ1)) , (2.34)<br />

where f1 <strong>and</strong> σ1 are real numbers. To ensure that ϕ0 ≥ 0, we must restrict f1 > 0<br />

<strong>and</strong> σ1 ≤ σ ≤ σ1 + π<br />

√ α . Requir<strong>in</strong>g g to be real yields<br />

g(τ) = 1<br />

�√ √ �<br />

√ c2 + 1 cos(2 α(τ − τ1)) + c<br />

α<br />

, (2.35)<br />

where c <strong>and</strong> τ1 are real constants of <strong>in</strong>tegration. If α is negative <strong>and</strong> |c| ≥ 1, we have<br />

while for |c| < 1<br />

f(σ) = f1 s<strong>in</strong>h( � |α|σ) + f2 cosh( � |α|σ) <strong>and</strong><br />

g(τ) =<br />

1<br />

�√ � �<br />

� c2 − 1 cosh(2 |α|(τ − τ1)) + c ,<br />

|α|<br />

(2.36)<br />

g(τ) = 1<br />

�√ � �<br />

� 1 − c2 s<strong>in</strong>h(2 |α|(τ − τ1)) + c<br />

|α|<br />

. (2.37)<br />

Notice that positivity of f(σ) restricts the choice of f1 <strong>and</strong> f2 while positivity of g(τ)<br />

<strong>in</strong> some of these cases restricts the range of τ to a f<strong>in</strong>ite or semi-<strong>in</strong>f<strong>in</strong>ite <strong>in</strong>terval.


Chapter 2: Collective <strong>Field</strong> Description of Matrix Cosmologies 31<br />

Let F (σ) = � dσf(σ) so that x(σ, τ) = (F (σ) + k(τ))/ � g(τ) for some function<br />

k(τ). We can also show that Z0/ϕ0 is of the form<br />

Z0<br />

ϕ0<br />

= h(τ) − ∂τg<br />

2 √ F . (2.38)<br />

g<br />

The functions h(τ) <strong>and</strong> k(τ) can be computed us<strong>in</strong>g the equation of motion. Com-<br />

put<strong>in</strong>g p± from (2.5) <strong>and</strong> (2.8), we get the follow<strong>in</strong>g relationship<br />

αg 2<br />

�<br />

x − k(τ)<br />

� g(τ)<br />

� 2<br />

+<br />

�<br />

p + x ∂τ<br />

�2 g(τ)<br />

+ h(τ) = f<br />

2 2 1 g(τ) (2.39)<br />

which we recognize as an ellipse (a hyperbola) if α is positive (negative). Notice that,<br />

from equation (2.35), the compact (elliptical) solutions correspond to a f<strong>in</strong>ite range<br />

of τ.<br />

The <strong>in</strong>teraction terms (2.12) simplify under our assumption to<br />

�<br />

S<strong>in</strong>t =<br />

�<br />

1<br />

dτ dσ<br />

6 Λ(∂ση) 3 + 1<br />

2 (∂τ η) 2<br />

∞�<br />

Λ n (∂ση) n<br />

�<br />

, (2.40)<br />

where the effective coupl<strong>in</strong>g constant is<br />

ϕ0<br />

n=1<br />

√ √<br />

π<br />

π<br />

Λ = − ∂xσ = − . (2.41)<br />

f(σ) 2<br />

So we f<strong>in</strong>d that the coupl<strong>in</strong>g constant is time-<strong>in</strong>dependent for this class of solutions.<br />

We note that the mov<strong>in</strong>g-hyperbola solution (2.21) falls <strong>in</strong>to this class.<br />

As long as |Λ ∂ση| < 1, we can sum the series to get<br />

�<br />

S<strong>in</strong>t =<br />

�<br />

1<br />

dτ dσ<br />

6 Λ (∂ση) 3 + 1<br />

� ��<br />

2 Λ∂ση<br />

(∂τη)<br />

2 1 − Λ∂ση<br />

. (2.42)<br />

The first <strong>in</strong>teraction term diverges as ϕ0 → 0, which occurs when the width of the<br />

Fermi sea goes to zero. This corresponds to strong coupl<strong>in</strong>g at the tip of the static


Chapter 2: Collective <strong>Field</strong> Description of Matrix Cosmologies 32<br />

hyperbolic Fermi surface. The second <strong>in</strong>teraction term diverges as |Λ ∂ση| → 1. We<br />

have<br />

√<br />

π<br />

Λ ∂ση = − ∂xη = ϕ0 − ϕ<br />

, (2.43)<br />

ϕ0<br />

so the breakdown happens when the excitations become comparable to the width of<br />

the Fermi sea (as can also been seen directly from (2.10)). In this case, the Fermi<br />

sea may p<strong>in</strong>ch <strong>and</strong> split <strong>in</strong>to two, so we would not expect to be able to neglect<br />

<strong>in</strong>teractions between the upper <strong>and</strong> lower Fermi surface. Thus, the collective theory<br />

becomes strongly coupled exactly <strong>in</strong> the places one would expect it to from general<br />

considerations.<br />

We have demonstrated that, under the restriction (2.22), the action takes a uni-<br />

versal, static form (2.40). The natural question to ask is whether such a universal<br />

form of the action might exist for all solutions. As a partial answer to this question,<br />

<strong>in</strong> appendix A we analyze explicitly an example which does not fall <strong>in</strong>to the class of<br />

solutions studied <strong>in</strong> this section. We show that, even with the freedom of conformal<br />

change of coord<strong>in</strong>ates, it is not always possible to make the <strong>in</strong>teraction term static <strong>in</strong><br />

Alex<strong>and</strong>rov coord<strong>in</strong>ates.<br />

2.5 Fermi Droplet Cosmology<br />

In this last section, we construct an explicit example of the class of solutions<br />

discussed above—a droplet solution <strong>in</strong> which only a f<strong>in</strong>ite region of phase space is<br />

filled (so that the Fermi surface is a closed curve). Such solutions are believed to give<br />

rise to time dependent backgrounds <strong>in</strong> the spacetime picture [91], although no precise<br />

correspondence has been found so far.<br />

ϕ0


Chapter 2: Collective <strong>Field</strong> Description of Matrix Cosmologies 33<br />

In the simplest case, the Fermi surface is a circle <strong>in</strong> phase space with radius R<br />

<strong>and</strong> center (p, x) = (0, x0) at time t = 0. Notice that we must dem<strong>and</strong> x0 > √ 2R<br />

<strong>in</strong> order for the surface not to cross the diagonals p = ±x (otherwise, some of the<br />

fermions will spill over the potential barrier as the droplet bounces off it).<br />

It is not difficult to write down the evolution of this Fermi surface<br />

Solv<strong>in</strong>g for p we f<strong>in</strong>d<br />

e −2t (x + p − x0e t ) 2 + e 2t (x − p − x0e −t ) 2 = 2R 2 . (2.44)<br />

ϕ0 =<br />

� R 2 cosh 2t − (x − x0 cosh t) 2<br />

cosh 2t<br />

. (2.45)<br />

A sensible σ-coord<strong>in</strong>ate is an angle parameteriz<strong>in</strong>g the upper surface, runn<strong>in</strong>g from 0<br />

to π between the po<strong>in</strong>ts where ϕ0 = 0. These are given by<br />

x = x0 cosh t ± R √ cosh 2t , (2.46)<br />

so the simplest guess for an Alex<strong>and</strong>rov coord<strong>in</strong>ate (which we call θ to stress its<br />

angular nature) is such that<br />

Us<strong>in</strong>g the second condition <strong>in</strong> (2.25), we f<strong>in</strong>d<br />

which gives<br />

x = x0 cosh t − R cos θ √ cosh 2t . (2.47)<br />

∂tτ =<br />

1<br />

cosh 2t<br />

, (2.48)<br />

τ = tan −1 (tanh t) . (2.49)<br />

Thus, τ runs over the f<strong>in</strong>ite range −π/4 ≤ τ ≤ π/4. In these new coord<strong>in</strong>ates, we<br />

f<strong>in</strong>d<br />

x =<br />

1<br />

√ cos 2τ (x0 cos τ − R cos θ) , ϕ0 = R √ cos 2τ s<strong>in</strong> θ . (2.50)


Chapter 2: Collective <strong>Field</strong> Description of Matrix Cosmologies 34<br />

It can be checked that these coord<strong>in</strong>ates do fulfill the first condition <strong>in</strong> (2.25) as well.<br />

<strong>and</strong><br />

We see that<br />

<strong>and</strong> the action (2.10) simplifies to<br />

S =<br />

�<br />

√<br />

π<br />

Λ = − ∂xθ = −<br />

ϕ0<br />

√ π<br />

R 2 s<strong>in</strong> 2 θ<br />

, (2.51)<br />

g(τ) = cos 2τ , f(θ) = R s<strong>in</strong> θ , (2.52)<br />

dτ dθ<br />

+ 1 2<br />

(∂τη)<br />

2<br />

� 1<br />

√ π<br />

2 [(∂τη) 2 − (∂θη) 2 ] −<br />

6R2 s<strong>in</strong> 2 θ<br />

∞�<br />

�<br />

−<br />

n=1<br />

√ π<br />

R 2 s<strong>in</strong> 2 θ ∂θη<br />

� n �<br />

(∂θη) 3<br />

. (2.53)<br />

As anticipated, the theory is strongly coupled at the endpo<strong>in</strong>ts of the droplet where<br />

ϕ0 → 0. Note that the coord<strong>in</strong>ates are smooth across the steep/shallow divide 1 .<br />

As an aside, consider a modification to the droplet discussed above. At time t = 0,<br />

replace the regions π/4 < θ < 3π/4 <strong>and</strong> 5π/4 < θ < 7π/4 by straight l<strong>in</strong>es so that<br />

the droplet takes the form of a rectangle with semi-circular ends. A straightforward<br />

computation leads to the conclusion that one can f<strong>in</strong>d global coord<strong>in</strong>ates which yield<br />

a flat k<strong>in</strong>etic term <strong>in</strong> the action. As one might expect, time is still compact as it<br />

was <strong>in</strong> the elliptical case, <strong>in</strong>dicat<strong>in</strong>g that the compactness is not merely an accident<br />

occurr<strong>in</strong>g only for this particular shape.<br />

While the droplets are amus<strong>in</strong>g objects <strong>in</strong> matrix theory, it would be more <strong>in</strong>ter-<br />

est<strong>in</strong>g <strong>and</strong> satisfy<strong>in</strong>g if they had a clear spacetime <strong>in</strong>terpretation <strong>in</strong> str<strong>in</strong>g theory. The<br />

collective field description, which we have constructed here, suggests that they have<br />

1 It is possible to explicitly reach the θ-coord<strong>in</strong>ate from the generally applicable forms (2.15), (2.16)<br />

by us<strong>in</strong>g appropriate conformal transformations on each patch, but the computation is complicated.


Chapter 2: Collective <strong>Field</strong> Description of Matrix Cosmologies 35<br />

an <strong>in</strong>terpretation as some closed str<strong>in</strong>g backgrounds. The massless scalar fluctuations<br />

should correspond to some str<strong>in</strong>g field, the analog of the tachyon <strong>in</strong> c = 1 Liouville<br />

str<strong>in</strong>g. The strongly coupled regions at each end of the droplet should correspond<br />

to ‘tachyon walls’—strongly coupled regions of large tachyon VEV. If such a closed<br />

str<strong>in</strong>g, worldsheet description could be found, it would provide an example of an<br />

open-closed str<strong>in</strong>g, f<strong>in</strong>ite N duality between a time-dependent f<strong>in</strong>ite universe <strong>and</strong> the<br />

matrix quantum mechanics of the D0 branes mak<strong>in</strong>g up the droplet.<br />

Unfortunately, it is not clear how to construct such a spacetime <strong>in</strong>terpretation.<br />

The natural time τ is compact, correspond<strong>in</strong>g to the fact that <strong>in</strong> the fermion time,<br />

t, fluctuations of a compact Fermi surface become frozen <strong>in</strong> the past <strong>and</strong> future.<br />

Also, exam<strong>in</strong><strong>in</strong>g the <strong>in</strong>teraction term, we notice that the coupl<strong>in</strong>g Λ is bounded from<br />

below so that the theory does not approach a free theory <strong>in</strong> any region (though the<br />

coupl<strong>in</strong>g can be made arbitrarily small by tak<strong>in</strong>g R large). This makes it unlikely<br />

that it will be possible to def<strong>in</strong>e an S-matrix. In addition, <strong>in</strong> the st<strong>and</strong>ard c = 1<br />

story, the matrix-to-spacetime dictionary is complicated by the presence of leg pole<br />

factors, additional phases needed to match the matrix model S-matrix to its str<strong>in</strong>g<br />

worldsheet counterpart. Supposedly such a complication would appear for the droplet<br />

cosmologies as well, but there is no obvious c<strong>and</strong>idate for what it might be. Therefore,<br />

it seems unlikely that a spacetime analysis of tachyon scatter<strong>in</strong>g can be carried out<br />

as has been done <strong>in</strong> the case of the st<strong>and</strong>ard, static Fermi sea as well as the mov<strong>in</strong>g<br />

hyperbola solution (2.20) [90, 37].<br />

Another way to view the complication <strong>in</strong>troduced by the f<strong>in</strong>ite extent of the time<br />

τ is that <strong>in</strong> Alex<strong>and</strong>rov coord<strong>in</strong>ates there appear boundaries (<strong>in</strong> this case, spacelike


Chapter 2: Collective <strong>Field</strong> Description of Matrix Cosmologies 36<br />

boundaries at τ = ±π/4). What the boundary condition on these should be is<br />

not clear. The appearance of boundaries is not unique to compact Fermi surfaces;<br />

boundaries of this type, both timelike <strong>and</strong> spacelike, have appeared <strong>in</strong> the analysis of<br />

noncompact Fermi surfaces <strong>in</strong> [7].<br />

Perhaps it is possible to f<strong>in</strong>d a solution to the effective spacetime theory which<br />

would mimic the properties of the droplet cosmology outl<strong>in</strong>ed above. This <strong>in</strong>trigu<strong>in</strong>g<br />

question is left for future research.


Chapter 3<br />

Fall<strong>in</strong>g D0-Branes <strong>in</strong> 2D<br />

Superstr<strong>in</strong>g <strong>Theory</strong><br />

3.1 Introduction<br />

In both bosonic <strong>and</strong> supersymmetric Liouville <strong>Field</strong> <strong>Theory</strong> (LFT), there ex-<br />

ist static D0 <strong>and</strong> D1-branes. In particular, the static D0-branes—the so-called ZZ<br />

branes—sit <strong>in</strong> the strong coupl<strong>in</strong>g region φ → +∞ [50]. In the bosonic system with<br />

Euclidean time, Lukyanov, Vitchev, <strong>and</strong> Zamolodchikov, showed the existence of a<br />

time-dependent boundary state, the paperclip brane, that breaks <strong>in</strong>to two hairp<strong>in</strong>-<br />

shaped branes <strong>in</strong> the UV region [101]. They derived the wave function of the boundary<br />

state from the classical shape of the brane <strong>in</strong> the spacetime. Under the Wick-rotation<br />

from Euclidean time <strong>in</strong>to M<strong>in</strong>kowski time, the hairp<strong>in</strong> brane is re<strong>in</strong>terpreted as the<br />

fall<strong>in</strong>g D0-brane.<br />

The fall<strong>in</strong>g D0-brane <strong>in</strong> the supersymmetric system was first considered by Ku-<br />

37


Chapter 3: Fall<strong>in</strong>g D0-Branes <strong>in</strong> 2D Superstr<strong>in</strong>g <strong>Theory</strong> 38<br />

tasov [95]. He studied the classical dynamics of the fall<strong>in</strong>g D0-brane <strong>in</strong> the vic<strong>in</strong>ity<br />

of a stack of NS5-branes that produce a l<strong>in</strong>ear dilaton background. In his treatment,<br />

the radial position (along the Liouville direction) of the D0-brane is a dynamical field<br />

liv<strong>in</strong>g on its worldvolume, <strong>and</strong> so the correspond<strong>in</strong>g DBI action gives the classical<br />

trajectory of the D-brane <strong>in</strong> this background:<br />

Qφ<br />

−<br />

e 2 = τp Qt<br />

cosh<br />

E 2<br />

, (3.1)<br />

where Q is the background charge of the l<strong>in</strong>ear dilaton, <strong>and</strong> τp <strong>and</strong> E are the tension<br />

<strong>and</strong> energy of the D0-brane, respectively.<br />

In [101], they considered free bosonic str<strong>in</strong>g theory with a l<strong>in</strong>ear dilaton <strong>and</strong><br />

boundary conditions on the bosonic fields. As was noted <strong>in</strong> [109], although [101]<br />

considered no Liouville potential, they required their boundary state to carry the W-<br />

symmetry, which is def<strong>in</strong>ed as the operators commut<strong>in</strong>g with two screen<strong>in</strong>g charges.<br />

These screen<strong>in</strong>g charges are essentially just Liouville potentials. In fact, <strong>in</strong> [102] it<br />

was shown that the l<strong>in</strong>ear dilaton theory with the particular boundary conditions<br />

considered <strong>in</strong> [101] is dual to a l<strong>in</strong>ear dilaton theory with a boundary Liouville poten-<br />

tial. In N = 2 SLFT, which has Euclidean time, a type of time-dependent boundary<br />

state solution was derived <strong>in</strong> [49]; the Wick-rotation was then carried out <strong>in</strong> [109] to<br />

study the wave function of the fall<strong>in</strong>g D0-brane <strong>in</strong> the N = 2 SLFT system <strong>and</strong> was<br />

found to reproduce the trajectory (3.1) <strong>in</strong> the classical limit.<br />

In the N = 2 case, the W-algebra is then replaced by the N = 2 SCA, lead<strong>in</strong>g<br />

to the suggestion that this is the supersymmeterized version of the hairp<strong>in</strong> brane<br />

[109]. While the hairp<strong>in</strong> construction was shown to live <strong>in</strong> a theory with a boundary<br />

Liouville potential [102], their theory conta<strong>in</strong>ed no bulk Liouville potential. S<strong>in</strong>ce


Chapter 3: Fall<strong>in</strong>g D0-Branes <strong>in</strong> 2D Superstr<strong>in</strong>g <strong>Theory</strong> 39<br />

the N = 1 <strong>and</strong> N = 2 theories typically conta<strong>in</strong> both bulk <strong>and</strong> boundary Liouville<br />

potentials, to claim a supersymmeterized version of the hairp<strong>in</strong> brane we will make<br />

a comparison (at the end of section 3.3.3) <strong>in</strong> the limit that the bulk cosmological<br />

constant is turned off.<br />

We show that <strong>in</strong> N = 1, 2D superstr<strong>in</strong>g theory with a l<strong>in</strong>ear dilaton background—<br />

which we will use <strong>in</strong>terchangeably with ĉm = 1 N = 1 SLFT—there exists a similar,<br />

time-dependent boundary state correspond<strong>in</strong>g to the fall<strong>in</strong>g D0-brane. The naive<br />

argument for the existence of the fall<strong>in</strong>g D0-brane is as follows. As is well known, the<br />

mass of the D0-brane is <strong>in</strong>versely related to the str<strong>in</strong>g coupl<strong>in</strong>g as<br />

m = 1<br />

gs<br />

= e −φ , (3.2)<br />

so the mass of the D0-brane decreases as it runs along the Liouville direction from<br />

the weak coupl<strong>in</strong>g region (φ → −∞) to the strong coupl<strong>in</strong>g region (φ → +∞). Thus,<br />

if we set a D0-brane free at the weak coupl<strong>in</strong>g region, it will roll along the Liouville<br />

direction towards the strong coupl<strong>in</strong>g region until it is reflected back by the boundary<br />

Liouville potential (this po<strong>in</strong>t will be exp<strong>and</strong>ed upon at the end of section 3.3.3). This<br />

is the fall<strong>in</strong>g D0-brane solution which can be described by a time-dependent closed<br />

str<strong>in</strong>g boundary state of the N = 1, 2D superstr<strong>in</strong>g.<br />

In the bosonic case, the hairp<strong>in</strong> brane satisfies symmetries <strong>in</strong> addition to those<br />

of the action (conformal symmetry). The additional symmetry is known as the W-<br />

symmetry <strong>and</strong> is generated by higher sp<strong>in</strong> currents [101]. The hairp<strong>in</strong> brane is then<br />

constructed from the <strong>in</strong>tegral equations that are def<strong>in</strong>ed by the W-symmetry. In the<br />

N = 1, 2D superstr<strong>in</strong>g, it should be possible to use the supersymmeterized version<br />

of the W-symmetry to go through a similar construction <strong>and</strong> f<strong>in</strong>d a fall<strong>in</strong>g D0-brane.


Chapter 3: Fall<strong>in</strong>g D0-Branes <strong>in</strong> 2D Superstr<strong>in</strong>g <strong>Theory</strong> 40<br />

However, we will argue that it can also be obta<strong>in</strong>ed by adapt<strong>in</strong>g the fall<strong>in</strong>g D0-brane<br />

solution <strong>in</strong> N = 2 SLFT [109], [49], to the N = 1, 2D superstr<strong>in</strong>g.<br />

In section 3.2, we briefly review properties of N = 1 SLFT, <strong>in</strong>clud<strong>in</strong>g the con-<br />

struction of boundary states correspond<strong>in</strong>g to ZZ-branes <strong>and</strong> FZZT-branes us<strong>in</strong>g the<br />

modular bootstrap approach. In section 3.3, we review properties of N = 2 SLFT as<br />

well as the construction of the boundary state correspond<strong>in</strong>g to the fall<strong>in</strong>g D0-brane.<br />

F<strong>in</strong>ally, <strong>in</strong> section 3.4 we argue that we may slightly modify the N = 2 SLFT fall<strong>in</strong>g<br />

D0-brane boundary state to obta<strong>in</strong> the solution <strong>in</strong> N = 1, 2D superstr<strong>in</strong>g theory, <strong>and</strong><br />

we discuss the number of fall<strong>in</strong>g D0-branes <strong>in</strong> the Type 0A <strong>and</strong> 0B projections. It<br />

would be <strong>in</strong>terest<strong>in</strong>g to underst<strong>and</strong> these fall<strong>in</strong>g D0-branes <strong>in</strong> the context of matrix<br />

models, but this is beyond the scope of this chapter.<br />

3.2 N = 1, 2D Superstr<strong>in</strong>g <strong>Theory</strong> <strong>and</strong> its Bound-<br />

ary States<br />

3.2.1 ĉm = 1 N = 1 SLFT<br />

The N = 1 super Liouville theory can be obta<strong>in</strong>ed by the quantization of a two<br />

dimensional supergravity theory [114]. After elim<strong>in</strong>at<strong>in</strong>g the auxiliary field by its<br />

equation of motion, add<strong>in</strong>g ĉm = 1 matter, <strong>and</strong> sett<strong>in</strong>g α ′ = 2, the free part of the<br />

action is<br />

S0 = 1<br />

�<br />

2π<br />

d 2 �<br />

z<br />

δµν<br />

�<br />

∂X µ �<br />

∂X ¯ ν µ<br />

+ ψ ∂ψ ¯ ν<br />

+ ψ ˜µ ∂ψ˜ ν<br />

+ Q<br />

4 RX1<br />

�<br />

, (3.3)


Chapter 3: Fall<strong>in</strong>g D0-Branes <strong>in</strong> 2D Superstr<strong>in</strong>g <strong>Theory</strong> 41<br />

where µ, ν = 1, 2. S<strong>in</strong>ce we are consider<strong>in</strong>g 2D superstr<strong>in</strong>g theory below, we will<br />

write φ = X 1 <strong>and</strong> Y = X 2 as is common <strong>in</strong> the literature. The N = 1 SLFT also<br />

<strong>in</strong>cludes a potential term<br />

�<br />

N =1<br />

S<strong>in</strong>t = 2iµb2<br />

d 2 z : e bφ ::<br />

�<br />

ψ 1 �<br />

ψ˜ 1 bφ<br />

+ 2πµe : , (3.4)<br />

where we must have Q = b+ 1 for conformal <strong>in</strong>variance (note that the normal order<strong>in</strong>g<br />

b<br />

is crucial for this result <strong>and</strong> comes from the elim<strong>in</strong>ation of the auxiliary field). In the<br />

case of Neumann boundary conditions (FZZT brane) we can also have a boundary<br />

term preserv<strong>in</strong>g the superconformal <strong>in</strong>variance<br />

�<br />

SB =<br />

∂Σ<br />

�<br />

QK<br />

4π φ + µBbγψ 1 e bφ/2<br />

�<br />

, (3.5)<br />

where K is the boundary curvature scalar, µB is the boundary cosmological constant,<br />

<strong>and</strong> γ is a “boundary fermion” normalized so that γ 2 = 1 [108].<br />

The stress energy tensor <strong>and</strong> superconformal current are<br />

T = − 1<br />

2<br />

1 Q<br />

∂Y ∂Y − ∂φ∂φ +<br />

2 2 ∂2φ − 1<br />

2 δµνψ µ ∂ψ ν<br />

G = i(ψ 1 ∂φ + ψ 2 ∂Y − Q∂ψ 1 ) , (3.6)<br />

which produce the N = 1 superconformal algebra (SCA)<br />

[Lm, Ln] = (m − n)Lm+n + c<br />

12 (m3 − m)δm,−n<br />

{Gr, Gs} = 2Lr+s + c<br />

[Lm, Gr] =<br />

12 (4r2 − 1)δr,−s<br />

m − 2r<br />

2 Gm+r , (3.7)<br />

where c = 3 3<br />

ĉ = 2 2 (1 + 2Q2 + 1), <strong>and</strong> r <strong>and</strong> s take <strong>in</strong>teger (half-<strong>in</strong>teger) values <strong>in</strong> the R<br />

(NS) sector. For a critical str<strong>in</strong>g theory, we must set Q = 2, correspond<strong>in</strong>g to b = 1.


Chapter 3: Fall<strong>in</strong>g D0-Branes <strong>in</strong> 2D Superstr<strong>in</strong>g <strong>Theory</strong> 42<br />

Q<br />

( The primary fields <strong>in</strong> the NS sector are Np,ω =: e 2 +ip)φ+iωY : with weights hNS p,ω =<br />

1 Q2<br />

( 2 4 + p2 + ω2 ), while <strong>in</strong> the R sector they are R ± p,ω = σ± Np,ω with weights hR p,ω =<br />

hNS 1<br />

p,ω + 16 . (If we bosonize the complex fermion ψ± = 1 √ (ψ<br />

2 2 ± iψ1 ) =: e ±iH :, then σ ±<br />

is given by σ ± =: e ±iH/2 :.) The open str<strong>in</strong>g character is<br />

χ σ,±<br />

p,ω (τ) = TrH σ p,ω [qL0−c/24 (±1) F ] , (3.8)<br />

where q ≡ e 2πiτ <strong>and</strong> we trace over the descendants of Np,ω or Rp,ω for σ = NS, R,<br />

respectively. For non-degenerate representations, the open str<strong>in</strong>g characters (which<br />

result from a trace over a correspond<strong>in</strong>g primary state <strong>and</strong> its descendants) are [4],<br />

[108],<br />

χ NS,+<br />

1<br />

p,ω (τ) = q 2 (p2 +ω2 ) θ00(τ, 0)<br />

η(τ) 3<br />

χ NS,−<br />

1<br />

p,ω (τ) = q 2 (p2 +ω2 ) θ01(τ, 0)<br />

η(τ) 3<br />

χ R,+<br />

1<br />

p,ω (τ) = q 2 (p2 +ω2 ) θ10(τ, 0)<br />

η(τ) 3<br />

χ R,−<br />

p,ω (τ) = 0 . (3.9)<br />

3.2.2 Open/Closed Duality: Boundary States<br />

As is well known, we can realize boundary conditions for an open str<strong>in</strong>g as con-<br />

stra<strong>in</strong>ts on states <strong>in</strong> the closed str<strong>in</strong>g spectrum [42], [41], [60], <strong>and</strong> [111]. For example,<br />

Neumann <strong>and</strong> Dirichlet boundary conditions <strong>in</strong> the open str<strong>in</strong>g are realized classically<br />

as ∂X(y) ∓ ¯ ∂X(y) = 0 <strong>and</strong> ψ(y) ∓ η ˜ ψ(y) = 0, where η = ±1, y ∈ R, <strong>and</strong> we have<br />

taken the boundary to lie along the real axis (the upper sign is for Neumann boundary<br />

conditions <strong>and</strong> the lower for Dirichlet). To tranform from the open channel to the<br />

closed channel, we must perform the coord<strong>in</strong>ate transformation z → z <strong>and</strong> ¯z → ¯z −1 ,


Chapter 3: Fall<strong>in</strong>g D0-Branes <strong>in</strong> 2D Superstr<strong>in</strong>g <strong>Theory</strong> 43<br />

result<strong>in</strong>g <strong>in</strong> the conditions ∂X(y) ± y −2 ¯ ∂X(y −1 ) = 0 <strong>and</strong> ψ(y) ± iηy −1 ˜ ψ(y −1 ) = 0.<br />

When we quantize the theory, these become constra<strong>in</strong>ts on closed str<strong>in</strong>g boundary<br />

states:<br />

Neumann: (αm + ˜α−m)|B, η〉 = (ψr + iη ˜ ψ−r)|B, η〉 = 0<br />

Dirichlet: (αm − ˜α−m)|B, η〉 = (ψr − iη ˜ ψ−r)|B, η〉 = 0 . (3.10)<br />

In general, for a state <strong>in</strong> the closed str<strong>in</strong>g Hilbert space to be a boundary state,<br />

it must satisfy two conditions. First, the state must satisfy contra<strong>in</strong>ts com<strong>in</strong>g from<br />

the requirement that the correspond<strong>in</strong>g boundary vertex operator preserve the sym-<br />

metries of the orig<strong>in</strong>al theory. In the case of a simple bosonic theory, this amounts to<br />

requir<strong>in</strong>g conformal <strong>in</strong>variance which, <strong>in</strong> the language of boundary states, translates<br />

to the constra<strong>in</strong>ts<br />

(Lm − ˜ L−m)|B〉 = 0 . (3.11)<br />

Second, the state must satisfy constra<strong>in</strong>ts com<strong>in</strong>g from the open/closed duality of a<br />

cyl<strong>in</strong>der diagram. If an open str<strong>in</strong>g satisfies some boundary conditions α <strong>and</strong> β on<br />

its left <strong>and</strong> right ends, respectively, then the correspond<strong>in</strong>g closed str<strong>in</strong>g boundary<br />

states must satisfy:<br />

〈B, α|q 1<br />

2 Hc<br />

c |B, β〉 = TrHαβ [qHo o ] , (3.12)<br />

where Hc <strong>and</strong> Ho are the closed <strong>and</strong> open str<strong>in</strong>g Hamiltonians, qc = e 2πiτc <strong>and</strong> qo =<br />

e 2πiτo , <strong>and</strong> the trace on the right is taken over the open str<strong>in</strong>g spectrum that satisfies<br />

the specified boundary conditions, Hαβ. The open <strong>and</strong> closed str<strong>in</strong>g moduli are related<br />

through worldsheet duality by a modular transformation, τc = − 1<br />

τo .


Chapter 3: Fall<strong>in</strong>g D0-Branes <strong>in</strong> 2D Superstr<strong>in</strong>g <strong>Theory</strong> 44<br />

3.2.3 Ishibashi <strong>and</strong> Cardy States: The Modular Bootstrap<br />

In ĉm = 1 N = 1 SLFT, a closed str<strong>in</strong>g boundary state must satisfy [4], [108],<br />

(Lm − ˜ L−m)|B, α; η, σ〉 = 0<br />

(Gr − iη ˜ G−r)|B, α; η, σ〉 = 0 , (3.13)<br />

where α labels an open str<strong>in</strong>g conformal family, σ = NS, R (really NS-NS <strong>and</strong> R-R,<br />

but we will commonly use this short-h<strong>and</strong>), <strong>and</strong> η = ± gives the sp<strong>in</strong> structure of<br />

the boundary states. Additionally, the boundary states must satisfy the open/closed<br />

duality requirement (3.12). These states are commonly referred to as the Cardy<br />

states.<br />

To f<strong>in</strong>d the Cardy states, it is convenient to use an orthonormal basis of states<br />

satisfy<strong>in</strong>g (3.13). The so-called Ishibashi states |i; η, σ〉〉 of the theory form such a<br />

basis [86] <strong>and</strong> are def<strong>in</strong>ed to satisfy the additional constra<strong>in</strong>ts<br />

〈〈i; η, σ|q 1<br />

2 Hc<br />

c |j; η ′ , σ ′ 〉〉 = δijδσσ ′χσ,ηη′<br />

i (τc) ≡ δijδσσ ′TrH σ i [qHo c (ηη′ ) F ] , (3.14)<br />

where H σ i is spanned by the conformal family correspond<strong>in</strong>g to the ‘i’ representation<br />

of the constra<strong>in</strong>t algebra, <strong>and</strong> the χi are the characters. As a po<strong>in</strong>t of clarification,<br />

note that <strong>in</strong> an Ishibashi state i, η, <strong>and</strong> σ, denote the representation of a closed<br />

str<strong>in</strong>g conformal family, the boundary condition on a closed str<strong>in</strong>g state, <strong>and</strong> the<br />

closed str<strong>in</strong>g sector (NS-NS or R-R), respectively. In a Cardy state, η <strong>and</strong> σ have the<br />

same mean<strong>in</strong>g while α labels an open str<strong>in</strong>g conformal family. This statement will<br />

become more clear <strong>in</strong> section 3.2.4.


Chapter 3: Fall<strong>in</strong>g D0-Branes <strong>in</strong> 2D Superstr<strong>in</strong>g <strong>Theory</strong> 45<br />

These constra<strong>in</strong>ts imply that the Ishibashi states are constructed as [108], [59],<br />

|i; η, NS〉〉 = |i; NS〉L|i; NS〉R + descendants<br />

|i; η, R〉〉 = a|i; R + 〉L|i; R + 〉R − iηa|i; R − 〉L|i; R − 〉R<br />

+b|i; R − 〉L|i; R + 〉R − iηb|i; R + 〉L|i; R − 〉R + descendants , (3.15)<br />

where the coefficients a <strong>and</strong> b are determ<strong>in</strong>ed by the constra<strong>in</strong>t equations (note that<br />

this implies the coefficients of descendants <strong>in</strong> both sectors will have some η depen-<br />

dence). In fact, when we take the Type 0A projection we will have a = 0 <strong>and</strong> when<br />

we take the Type 0B projection we will have b = 0. Now we may use these Ishibashi<br />

states to represent the Cardy states schematically as<br />

|B, α; η, σ〉 = �<br />

Ψα(i; η, σ)|i; η, σ〉〉 , (3.16)<br />

i<br />

where α <strong>and</strong> i may range over some comb<strong>in</strong>ation of a cont<strong>in</strong>uous <strong>and</strong> discrete spec-<br />

trum. Cardy showed [25] that the trace <strong>in</strong> (3.12) may also be represented as<br />

TrH σ αβ [qHo<br />

o (±1) F ] = �<br />

i<br />

n i,σ<br />

αβ χσ,±<br />

i (qo) , (3.17)<br />

where the n i,σ<br />

αβ are non-negative <strong>in</strong>tegers represent<strong>in</strong>g the multiplicty of Hσ i <strong>in</strong> H σ αβ<br />

(Cardy’s condition). Us<strong>in</strong>g (3.12), (3.16), (3.17), <strong>and</strong> the modular transformations<br />

of the open str<strong>in</strong>g characters, we may determ<strong>in</strong>e the ‘wave functions’ Ψα(i; η, σ) (ac-<br />

tually, there is an extra freedom that is fixed by not<strong>in</strong>g that these wave functions<br />

are one-po<strong>in</strong>t functions on the disk <strong>and</strong> have specific transformation properties under<br />

reflection [59]). This is what is known as the modular bootstrap construction.


Chapter 3: Fall<strong>in</strong>g D0-Branes <strong>in</strong> 2D Superstr<strong>in</strong>g <strong>Theory</strong> 46<br />

3.2.4 ZZ <strong>and</strong> FZZT Boundary States<br />

As an example, let us demonstrate how the modular bootstrap is applied to deter-<br />

m<strong>in</strong>e the boundary states correspond<strong>in</strong>g to the ZZ brane <strong>and</strong> the FZZT brane. S<strong>in</strong>ce<br />

the stress tensor <strong>and</strong> the superconformal current of the ĉm = 1 N = 1 SLFT are sim-<br />

ply a sum of the correspond<strong>in</strong>g currents of the ĉm = 1 theory <strong>and</strong> the N = 1 SLFT,<br />

the tensor product of an Ishibashi state from each theory will be an Ishibashi state<br />

of the comb<strong>in</strong>ed theory. The ZZ <strong>and</strong> FZZT boundary states have been constructed<br />

for the N = 1 SLFT [4], [59], <strong>and</strong> so a trivial modifaction allows us to write them <strong>in</strong><br />

our theory.<br />

The open str<strong>in</strong>g spectrum correspond<strong>in</strong>g to the descendants of the vacuum state<br />

is given by an open str<strong>in</strong>g stretch<strong>in</strong>g between two vacuum Cardy states, while the<br />

spectrum correspond<strong>in</strong>g to an excited state is given by an open str<strong>in</strong>g stretch<strong>in</strong>g<br />

between the correspond<strong>in</strong>g excited Cardy state <strong>and</strong> a vacuum Cardy state:<br />

χ ˜σ, f ηη ′<br />

vac (τo) = 〈vac; η, σ|q 1<br />

c<br />

χ ˜σ, f ηη ′<br />

p,ω (τo) = 〈vac; η, σ|q 1<br />

2 Hc<br />

|vac; η ′ , σ〉<br />

2 Hc<br />

c |p, ω; η ′ , σ〉 , (3.18)<br />

where ν(˜σ) = 1<br />

2 |η − η′ |; ν(σ) = 0, 1, corresponds to NS <strong>and</strong> R, respectively; <strong>and</strong><br />

�ηη ′ = e iπν(σ) .<br />

Our goal is to determ<strong>in</strong>e the wave function of the Cardy states expressed as a<br />

l<strong>in</strong>ear comb<strong>in</strong>ation of the Ishibashi states, which we denote by<br />

|B, p, ω; η, σ〉 =<br />

� ∞<br />

dp<br />

−∞<br />

′ dω ′ Ψp,ω(p ′ , ω ′ ; η, σ)|p ′ , ω ′ ; η, σ〉〉 . (3.19)<br />

To apply this to the vacuum, note that the vacuum state has zero weight <strong>and</strong> so, <strong>in</strong><br />

the NS sector, has momentum p = − i 1 ( + b), ω = 0. Recall that this corresponds to<br />

2 b


Chapter 3: Fall<strong>in</strong>g D0-Branes <strong>in</strong> 2D Superstr<strong>in</strong>g <strong>Theory</strong> 47<br />

a (1,1) degenerate representation s<strong>in</strong>ce every conformal family built from a primary<br />

of momentum p = − i m ( + nb) is degenerate at level mn. This means that the open<br />

2 b<br />

str<strong>in</strong>g character correspond<strong>in</strong>g to the vacuum representation is<br />

χ NS,+<br />

1<br />

−(<br />

vac (τ) = [q b +b)2 /8 −(<br />

− q 1<br />

b −b)2 /8 θ00(τ, 0)<br />

]<br />

η(τ) 3 , (3.20)<br />

<strong>and</strong> the others are obta<strong>in</strong>ed similarly. Then by <strong>in</strong>sert<strong>in</strong>g the expansion of the Cardy<br />

states <strong>in</strong>to (3.18) <strong>and</strong> us<strong>in</strong>g the normalization of the Ishibashi states (3.14), the above<br />

open/closed duality equations are rewritten as<br />

χ ˜σ, f ηη ′<br />

vac (τo) =<br />

χ ˜σ, f ηη ′<br />

p,ω (τo) =<br />

� ∞<br />

−∞<br />

� ∞<br />

−∞<br />

dp ′ dω ′ Ψ (σ)∗<br />

vac (p ′ , ω ′ ; η)Ψ (σ)<br />

vac(p ′ ω ′ ; η ′ )χ σ,ηη′<br />

p ′ ,ω ′ (τc)<br />

dp ′ dω ′ Ψ (σ)∗<br />

vac (p′ , ω ′ ; η)Ψ (σ)<br />

p,ω (p′ ω ′ ; η ′ )χ σ,ηη′<br />

p ′ ,ω ′ (τc) . (3.21)<br />

The wave functions of the vacuum boundary states are simply one-po<strong>in</strong>t functions<br />

on the disk which must transform <strong>in</strong> specific ways under reflection [59]. The trans-<br />

formation properties under reflection, comb<strong>in</strong>ed with the modular transformations<br />

of the open str<strong>in</strong>g characters (given by the S-transformation matrix) determ<strong>in</strong>e the<br />

wave functions of the vacuum boundary states to be<br />

where Ψ (σ),ĉm=1<br />

ω ′<br />

Ψ (NS)<br />

vac (p, ω; η) =<br />

Ψ (R)<br />

vac(p, ω; +) =<br />

bQ<br />

π(µπγ( 2 ))−ip/b<br />

ipΓ(−ipb)Γ(−i p<br />

b )Ψ(NS),ĉm=1<br />

ω ′ =0 (ω; η)<br />

Γ( 1<br />

2<br />

π(µπγ( bQ<br />

2 ))−ip/b<br />

− ipb)Γ( 1<br />

2<br />

ω ′ =0 (ω; +) , (3.22)<br />

− i p<br />

b )Ψ(R),ĉm=1<br />

denotes the wave function for the ĉm = 1 matter boundary state whose<br />

properties do not concern us here. (Note that there is no R-sector (1, 1) boundary<br />

state with η = − for the same reason that the open str<strong>in</strong>g character <strong>in</strong> this sector is<br />

zero [59], [47].) These vacuum boundary states, the ZZ branes, correspond to static<br />

Euclidean D0-branes that sit <strong>in</strong> the strong coupl<strong>in</strong>g region, φ → +∞.


Chapter 3: Fall<strong>in</strong>g D0-Branes <strong>in</strong> 2D Superstr<strong>in</strong>g <strong>Theory</strong> 48<br />

The behavior of the fourier transform of (3.22) is most transparent by utiliz<strong>in</strong>g<br />

the product representation of the gamma functions. If this product is cutoff after N<br />

terms, one will be tak<strong>in</strong>g the fourier transform of a function of the form PN(p)e iaN (p) ,<br />

where PN(p) is a polynomial <strong>in</strong> p <strong>and</strong> aN tends to <strong>in</strong>f<strong>in</strong>ity as N tends to <strong>in</strong>f<strong>in</strong>ity.<br />

Such a fourier transform will give a sum of delta functions <strong>and</strong> derivatives of delta<br />

functions located at aN. Thus, the fourier transform of the wave functions <strong>in</strong> (21)<br />

will be localized at <strong>in</strong>f<strong>in</strong>ity as claimed.<br />

All the excited states are non-degenerate representations with cont<strong>in</strong>uous momen-<br />

tum p ′ . The modular transformation of the open str<strong>in</strong>g character of the cont<strong>in</strong>uous<br />

representation together with the solution of the ZZ boundary state gives the excited<br />

boundary state (FZZT brane)<br />

Ψ (NS)<br />

p ′ ,ω ′(p, ω; η) = − cos(2πpp′ ) � � �� bQ −ip/b � � p (NS),ĉm=1<br />

µπγ ipΓ(ipb)Γ i Ψ 2<br />

b ω<br />

2π<br />

′ (ω; η)<br />

Ψ (R)<br />

p ′ ,ω ′(p, ω; +) = cos(2πpp′ ) � � �� bQ −ip/b �<br />

1<br />

µπγ Γ + ipb�<br />

2<br />

2<br />

�2π �<br />

1<br />

×Γ + ip Ψ<br />

2 b<br />

(R),ĉm=1<br />

ω ′ (ω; +) . (3.23)<br />

Their pole structures show that they are Euclidean D1-branes, extended <strong>in</strong> the Liou-<br />

ville direction.<br />

3.2.5 An Argument for Additional Symmetry<br />

As we saw above, the characters for ĉm = 1 N = 1 SLFT are simply a product of<br />

the <strong>in</strong>dividual characters for ĉm = 1 matter <strong>and</strong> N = 1 SLFT. This led us to a trivial<br />

modification of the ZZ <strong>and</strong> FZZT boundary states of N = 1 SLFT that resulted <strong>in</strong><br />

static branes, as we saw <strong>in</strong> section 3.2.4. In fact, we were dest<strong>in</strong>ed to realize this<br />

result because we restricted ourselves to the subset of ĉm = 1 N = 1 Ishibashi states


Chapter 3: Fall<strong>in</strong>g D0-Branes <strong>in</strong> 2D Superstr<strong>in</strong>g <strong>Theory</strong> 49<br />

that were simply a tensor product of the Ishibashi states of the separate theories.<br />

We thus implicitly required our boundary states to satisfy an additional symmetry<br />

(namely, that they separately satisfy N = 1 boundary conditions for each direction).<br />

It was because of this additional symmetry we imposed, comb<strong>in</strong>ed with the fact the<br />

characters decouple, that the wave functions did not mix the two directions.<br />

If we want to f<strong>in</strong>d a fall<strong>in</strong>g D0-brane, we clearly cannot impose the restrictions<br />

mentioned above. Naturally, the time direction should satisfy ‘Neumann-like’ bound-<br />

ary conditions while the Liouville direction should satisfy ‘Dirichlet-like’ conditions.<br />

However, what conditions to impose are not obvious. In the bosonic case of the<br />

hairp<strong>in</strong> brane [101], the authors had to impose the W-symmetry to get the time<br />

dependence necessary to obta<strong>in</strong> a fall<strong>in</strong>g D0-brane with the desired trajectory.<br />

It turns out that <strong>in</strong> the N = 2 SLFT, which has the same matter content as<br />

ĉm = 1 N = 1 SLFT, there are additional symmetries that naturally follow from the<br />

action. Apply<strong>in</strong>g these additional constra<strong>in</strong>ts to N = 1 Ishibashi states, one f<strong>in</strong>ds<br />

boundary states with trajectories that match that of the fall<strong>in</strong>g D0-brane (3.1). We<br />

will show that <strong>in</strong> N = 1, 2D superstr<strong>in</strong>g theory with l<strong>in</strong>ear dilaton background (which<br />

is equivalent to ĉm = 1 N = 1 SLFT), there exists a type of fall<strong>in</strong>g D0-brane that has<br />

the additional N = 2 SCA symmetry <strong>and</strong> can be obta<strong>in</strong>ed by a slight modification<br />

of the fall<strong>in</strong>g D0-brane solution of the N = 2 SLFT.


Chapter 3: Fall<strong>in</strong>g D0-Branes <strong>in</strong> 2D Superstr<strong>in</strong>g <strong>Theory</strong> 50<br />

3.3 N = 2 SLFT <strong>and</strong> its Boundary States<br />

3.3.1 N = 2 SLFT<br />

The N = 2 SLFT theory has the same free action as ĉm = 1 N = 1 SLFT<br />

given by (3.3), but has different <strong>in</strong>teraction terms. In fact, there are two types of<br />

<strong>in</strong>teraction terms that are consistent with the N = 2 superconformal symmetry. The<br />

chiral <strong>in</strong>teraction terms are<br />

N =2<br />

Sc = 2µb 2<br />

�<br />

d 2 �<br />

π<br />

z<br />

2 µ : eb(φ+iY ) :: e b(φ−iY ) : +(ψ 1 ˜ ψ 1 − ψ 2 ˜ ψ 2 )e bφ cos bY<br />

−(ψ 2 ˜ ψ 1 + ψ 1 ˜ ψ 2 )e bφ s<strong>in</strong> bY<br />

while the non-chiral <strong>in</strong>teraction terms are<br />

N =2<br />

Snc = µ′<br />

�<br />

d 2 z<br />

�<br />

, (3.24)<br />

�<br />

∂φ − i∂Y + i<br />

b ψ1ψ 2<br />

� �<br />

¯∂φ + i¯ ∂Y + i<br />

b ˜ ψ 1 �<br />

ψ˜ 2<br />

e 1<br />

b φ . (3.25)<br />

In this theory, the background charge does not get renormalized, so we have Q = 1<br />

b<br />

<strong>in</strong>stead of Q = 1 + b as we had <strong>in</strong> the N = 1 SLFT <strong>and</strong> the bosonic LFT. Only the<br />

b<br />

non-chiral <strong>in</strong>teraction preserves the N = 2 supersymmetry after a Wick rotation of<br />

the Euclidean time, Y . Additionally, there is a boundary action (as <strong>in</strong> the N = 1)<br />

case with Liouville potentials multiplied by a boundary cosmological constant µB (the<br />

exact form is not particularly illum<strong>in</strong>at<strong>in</strong>g, the <strong>in</strong>terested reader is referred to [3]).<br />

S<strong>in</strong>ce the free part of the action is the same as for ĉm = 1 N = 1 SLFT, T<br />

<strong>and</strong> G—which we will call G 1 for this section—are the same as before. However,<br />

s<strong>in</strong>ce this is an N = 2 theory, we have a current G 2 correspond<strong>in</strong>g to the second<br />

supercharge. Both the chiral <strong>and</strong> non-chiral <strong>in</strong>teraction terms are <strong>in</strong>variant under a<br />

comb<strong>in</strong>ed shift <strong>in</strong> Euclidean time <strong>and</strong> rotation between the two fermions, leav<strong>in</strong>g us


Chapter 3: Fall<strong>in</strong>g D0-Branes <strong>in</strong> 2D Superstr<strong>in</strong>g <strong>Theory</strong> 51<br />

with an additional U(1) current, J:<br />

T = − 1<br />

2<br />

1 1<br />

∂φ∂φ − ∂Y ∂Y −<br />

2 2 δµνψ µ ∂ψ ν + Q<br />

2 ∂2φ G 1 = i � ψ 1 ∂φ + ψ 2 ∂Y − Q∂ψ 1�<br />

G 2 = −i � ψ 2 ∂φ − ψ 1 ∂Y − Q∂ψ 2�<br />

J = i � ψ 1 ψ 2 + Q∂Y � . (3.26)<br />

It will be convenient to def<strong>in</strong>e G ± ≡ 1<br />

√ 2 (G 1 ±iG 2 ), which allows us to write the N = 2<br />

SCA as<br />

[Lm, Ln] = (m − n)Lm+n + c<br />

12 (m3 − m)δm,−n ,<br />

�<br />

m<br />

�<br />

] = − r G<br />

2 ± m+r , [Jm, G ± r ] = ±G± m+r ,<br />

[Lm, G ± r<br />

{G + r , G−s } = 2Lr+s + (r − s)Jr+s + c<br />

12 (4r2 − 1)δr,−s , {G ± r , G± s } = 0 ,<br />

[Lm, Jn] = −nJm+n , [Jm, Jn] = c<br />

3 mδm,−n , (3.27)<br />

with central charge c = 3ĉ = 3(1 + Q 2 ), so aga<strong>in</strong> Q = 2 corresponds to a critical<br />

str<strong>in</strong>g theory, but <strong>in</strong> this case we must have b = 1.<br />

The primary fields are the same<br />

2<br />

as <strong>in</strong> section 3.2.1, with correspond<strong>in</strong>g U(1) charges<br />

The open str<strong>in</strong>g character is<br />

j NS<br />

p,ω<br />

j R,±<br />

p,ω<br />

= Qω<br />

1<br />

= jNS p,ω ±<br />

2<br />

. (3.28)<br />

χ σ,±<br />

ξ (τ, ν) = TrH σ ξ [qL0−c/24 y J0 (±1) F ] , (3.29)<br />

where q = e 2πiτ , y = e 2πiν , <strong>and</strong> ξ denotes the ‘ξ’ representation of the constra<strong>in</strong>t<br />

algebra. The characters of N = 2 SCA representations split <strong>in</strong>to three classes us<strong>in</strong>g<br />

the fermionic operator G ±<br />

− 1<br />

2<br />

[49], [108]:


Chapter 3: Fall<strong>in</strong>g D0-Branes <strong>in</strong> 2D Superstr<strong>in</strong>g <strong>Theory</strong> 52<br />

• Class 1 (Graviton): The graviton representation is def<strong>in</strong>ed by the open str<strong>in</strong>g<br />

primaries satisfy<strong>in</strong>g G ±<br />

− 1<br />

2<br />

|graviton〉 = 0, which implies that L−1|graviton〉 = 0.<br />

This constra<strong>in</strong>s the momentum to p = − i , ω = 0, which implies h = 0.<br />

2b<br />

Thus, the graviton representation corresponds to the unique vacuum state (the<br />

identity operator). After elim<strong>in</strong>at<strong>in</strong>g this state, the character becomes<br />

χ NS,+<br />

1<br />

−<br />

vac (τ, ν) = q 8b2 1 − q<br />

(1 + y √ q)(1 + y−1√ θ00(τ, ν)<br />

q) η(τ) 3 . (3.30)<br />

(Note that <strong>in</strong> all three classes, χ NS,−<br />

ξ<br />

is obta<strong>in</strong>ed by replac<strong>in</strong>g θ00 with θ01, χ R,+<br />

ξ<br />

by replac<strong>in</strong>g both θ00 with θ10 <strong>and</strong> j = Qω with j = Qω ± 1<br />

2 (chiral/anti-chiral),<br />

<strong>and</strong> χ R,−<br />

ξ<br />

= 0.)<br />

• Class 2 (Massive): The massive representation is def<strong>in</strong>ed by G ±<br />

− 1<br />

2<br />

|massive〉 �=<br />

0. For generic p <strong>and</strong> ω, this representation is non-degenerate. The NS character<br />

is obta<strong>in</strong>ed by summ<strong>in</strong>g over all the descendants while us<strong>in</strong>g j = Qω:<br />

χ NS,+<br />

1<br />

[p,ω] (τ, ν) = q 2 (p2 +ω2 ) Qω<br />

y θ00(τ, ν)<br />

η(τ) 3 . (3.31)<br />

• Class 3 (Massless): The massless representation is def<strong>in</strong>ed by G +<br />

or G −<br />

− 1<br />

2<br />

− 1<br />

2<br />

|chiral〉 = 0<br />

|anti-chiral〉 = 0 for the chiral or anti-chiral representations, respectively.<br />

This implies that the momentum must satisfy Q<br />

2<br />

+ ip = ±ω, respectively. The<br />

character for the chiral representation is obta<strong>in</strong>ed by elim<strong>in</strong>at<strong>in</strong>g the contribu-<br />

tion from the G +<br />

− 1<br />

2<br />

mode:<br />

χ NS,+<br />

1<br />

−<br />

ω (τ, ν) = q 8b2 (y√q) Qω<br />

1 + y √ θ00(τ, ν)<br />

q η(τ) 3<br />

. (3.32)


Chapter 3: Fall<strong>in</strong>g D0-Branes <strong>in</strong> 2D Superstr<strong>in</strong>g <strong>Theory</strong> 53<br />

3.3.2 N = 2 Ishibashi States <strong>and</strong> Cardy States<br />

An N = 2 boundary state is constructed as <strong>in</strong> the N = 1 system. Naturally, an<br />

N = 2 boundary state must satisfy the N = 1 conditions<br />

(Lm − ˜ L−m)|B; η, σ〉 = (G 1 r − iη ˜ G 1 −r )|B; η, σ〉 = 0 . (3.33)<br />

Additionally, an N = 2 boundary state will satisfy one of two different conditions.<br />

An A-Type boundary state will satisfy<br />

while a B-Type state will satisfy<br />

(Jm − ˜ J−m)|B; η, σ〉 = (G ± r − iη ˜ G ∓ −r)|B; η, σ〉 = 0 , (3.34)<br />

(Jm + ˜ J−m)|B; η, σ〉 = (G ± r − iη ˜ G ± −r )|B; η, σ〉 = 0 . (3.35)<br />

B-Type conditions correspond to ‘Neumann-like’ boundary conditions on Euclidean<br />

time while A-Type conditions correspond to ‘Dirichlet-like’ boundary conditions.<br />

S<strong>in</strong>ce we are <strong>in</strong>terested <strong>in</strong> study<strong>in</strong>g D0-branes, we will focus on the B-Type states for<br />

the rest of this chapter.<br />

If we denote the R-sector primary states as |h, j; R ± 〉L, where j = Qω as <strong>in</strong> (3.28)<br />

<strong>and</strong> ± denotes the sp<strong>in</strong> structure, then J0|h, j; R ± 〉L = (j± 1<br />

2 )|h, j; R± 〉L (<strong>and</strong> similarly<br />

<strong>in</strong> the right-mov<strong>in</strong>g sector). We can check from (3.15) that the B-Type, R-R sector<br />

Ishibashi states can be constructed schematically as<br />

|h, j; η, R〉〉 ∝ |h, j; R − 〉L|h, −j; R + 〉R − iη|h, j; R + 〉L|h, −j; R − 〉R + descendants ,<br />

(3.36)<br />

S<strong>in</strong>ce ψ + 0 |h, j; R − 〉L = |h, j; R + 〉L, it is clear that (−1) F + ˜F = −1 on the primary states<br />

<strong>in</strong> (3.36). Furthermore, from the commutation relations {J0, G ± 0 } = ±G± 0<br />

, we can


Chapter 3: Fall<strong>in</strong>g D0-Branes <strong>in</strong> 2D Superstr<strong>in</strong>g <strong>Theory</strong> 54<br />

see that the constra<strong>in</strong>t (J0 + ˜ J0) = 0 implies that all descendants <strong>in</strong> (3.36) must have<br />

an equal number of fermionic rais<strong>in</strong>g operators on the left-mov<strong>in</strong>g <strong>and</strong> right-mov<strong>in</strong>g<br />

sides, modulo 2. Therefore, B-Type, R-R sector Ishibashi states will be projected out<br />

by the Type 0B GSO projection <strong>and</strong> so are only present <strong>in</strong> Type 0A—note that a<br />

similar argument implies that A-Type, R-R sector Ishibashi states are only present <strong>in</strong><br />

Type 0B. Thus, B-Type states will yield stable D0-branes <strong>in</strong> Type 0A <strong>and</strong> unstable<br />

D0-branes <strong>in</strong> Type 0B.<br />

B-Type Ishibashi states are constructed to form an orthonormal basis for states<br />

satisfy<strong>in</strong>g (3.33) <strong>and</strong> (3.35), <strong>and</strong> must also satisfy<br />

Class 1 〈〈vac; η, σ|q 1<br />

Class 2 〈〈p, ω; η, σ|q 1<br />

Class 3 〈〈ω; η, σ|q 1<br />

2 Hc<br />

c<br />

2 Hc<br />

c<br />

2 Hc<br />

c<br />

y 1<br />

y 1<br />

2 (J0− ˜ J0)<br />

c |vac; η, σ〉〉 = χ σ,ηη′<br />

vac (τc, νc)<br />

y 1<br />

2 (J0− ˜ J0)<br />

c |p ′ , ω ′ ; η, σ〉〉 = δ(p − p ′ )δ(ω − ω ′ )χ σ,ηη′<br />

[p,ω] (τc, νc)<br />

2 (J0− ˜ J0)<br />

c |ω ′ ; η, σ〉〉 = δ(ω − ω ′ )χ σ,ηη′<br />

ω (τc, νc) , (3.37)<br />

while all other correlators between Ishibashi states vanish. The open <strong>and</strong> closed<br />

parameters are related by the modular transformation τo = − 1<br />

τc <strong>and</strong> νo = νc<br />

τc<br />

. The<br />

B-Type Cardy states are then constructed as a l<strong>in</strong>ear comb<strong>in</strong>ation of the B-Type<br />

Ishibashi states such that the Cardy states satisfy<br />

〈B, O; η, σ|q 1<br />

〈B, O; η, σ|q 1<br />

2 Hc<br />

c y 1<br />

2 (J0− ˜ J0)<br />

c |B, ξ; η ′ , σ〉 = e iπ˜c ν2 o<br />

2 Hc<br />

c<br />

τo χ ˜σ, f ηη ′<br />

(τo, νo)<br />

y 1<br />

2 (J0− ˜J0)<br />

c |B, O; η ′ , σ〉 = e iπ˜c ν2 o<br />

τo χ ˜σ, f ηη ′<br />

vac (τo, νo) , (3.38)<br />

where χ σ,±<br />

ξ (τ, ν) is the open str<strong>in</strong>g character of the ξ representation of the constra<strong>in</strong>t<br />

algebra, O represents the graviton state, <strong>and</strong> ˜σ <strong>and</strong> �ηη ′ are def<strong>in</strong>ed as <strong>in</strong> equation<br />

(3.18).<br />

ξ


Chapter 3: Fall<strong>in</strong>g D0-Branes <strong>in</strong> 2D Superstr<strong>in</strong>g <strong>Theory</strong> 55<br />

3.3.3 Fall<strong>in</strong>g Euclidean D0-Brane <strong>in</strong> N = 2 SLFT<br />

As <strong>in</strong> ĉm = 1 N = 1 SLFT, the modular transformation of the Class 1 (Graviton)<br />

representation (identity operator) gives the wave function of the vacuum boundary<br />

state. Then the modular transformation of the Class 2 (Massive) non-degenerate<br />

representation of the open str<strong>in</strong>g produces the wave function of the excited boundary<br />

state which corresponds to the FZZT brane (Fall<strong>in</strong>g Euclidean D0-brane) solution<br />

[49], [109], [5], [6]:<br />

Ψ[p ′ ,ω ′ ](p, ω; η, σ) = √ 2Q˜µ −ipQ e −2πiωω′<br />

×<br />

cos(2πpp ′ )<br />

�<br />

Γ(−iQp)Γ 1 − i 2p<br />

�<br />

Q<br />

� � � � , (3.39)<br />

1 p ω ν(σ) 1 p ω ν(σ)<br />

Γ − i + − Γ − i − + 2 Q Q 2 2 Q Q 2<br />

where ˜µ is the renormalized bulk cosmological constant (it is, <strong>in</strong> fact, proportional<br />

to µ [108] <strong>and</strong> we will henceforth drop the dist<strong>in</strong>ction between the two as it just<br />

corresponds to a f<strong>in</strong>ite, constant shift of the dilaton <strong>in</strong> the position space picture).<br />

Note also that this wave function has no dependence on η.<br />

The Fourier transform of the momentum space wave function <strong>in</strong>to the position<br />

space wave function is<br />

˜Ψ (NS)<br />

[p ′ ,ω ′ � ∞<br />

dpdω<br />

] (φ, Y ) ≡<br />

−∞ (2π) 2 e−ip(φ+Q ln µ) e −iωY Ψ (NS)<br />

[p ′ ,ω ′ ] (p, ω) . (3.40)<br />

We can construct solutions where p ′ <strong>and</strong> ω ′ are nonzero from the solution <strong>in</strong> which<br />

they are both zero [109]<br />

˜Ψ (NS)<br />

[0,0] (φ, Y ) =<br />

√ 2<br />

µπQ(2 cos QY<br />

2<br />

Then it is simple to see that<br />

2 · exp<br />

) Q2 +1<br />

�<br />

− φ<br />

Q −<br />

φ<br />

−<br />

e Q<br />

µ(2 cos QY<br />

2<br />

) 2<br />

Q 2<br />

�<br />

. (3.41)<br />

˜Ψ (NS)<br />

[p ′ ,ω ′ 1<br />

] (φ, Y ) =<br />

2 ˜ Ψ (NS)<br />

[0,0] (φ − 2πp′ , Y + 2πω ′ ) + 1<br />

2 ˜ Ψ (NS)<br />

[0,0] (φ + 2πp′ , Y + 2πω ′ ) . (3.42)


Chapter 3: Fall<strong>in</strong>g D0-Branes <strong>in</strong> 2D Superstr<strong>in</strong>g <strong>Theory</strong> 56<br />

Actually, p ′ is not an <strong>in</strong>dependent variable but is <strong>in</strong>stead related to the bulk <strong>and</strong><br />

boundary cosmological constants through [5]<br />

�<br />

µ 2 µ2<br />

B +<br />

4Q4 µ 2 �<br />

=<br />

B<br />

µ<br />

32πQ cosh (2πp′ /Q) (3.43)<br />

(at least for ω ′ = 0). S<strong>in</strong>ce [101] <strong>and</strong> [102] conta<strong>in</strong> a theory with no bulk cosmological<br />

constant, we should take the limit µ → 0 to make a comparison with the hairp<strong>in</strong><br />

brane. In this limit, p ′ → ±∞, which is irrelevant s<strong>in</strong>ce (3.42) conta<strong>in</strong>s a sum of both<br />

signs of p ′ , so let us take p ′ → +∞ <strong>in</strong> which case<br />

One then f<strong>in</strong>ds<br />

lim ˜Ψ[p<br />

µ→0<br />

′ ,0](φ, Y ) =<br />

e 2πp′ /Q 64πQµ<br />

−→<br />

µ→0<br />

2 B<br />

µ<br />

√ 2<br />

64π2Q2 µ 2 QY<br />

B (2 cos 2<br />

2 · exp<br />

) Q2 +1<br />

�<br />

. (3.44)<br />

− φ<br />

Q −<br />

φ<br />

−<br />

e Q<br />

64πQµ 2 QY<br />

B (2 cos 2<br />

) 2<br />

Q 2<br />

�<br />

.<br />

(3.45)<br />

The classical shape of this fall<strong>in</strong>g Euclidean D0-brane is given by the peak of its wave<br />

function<br />

Qφ<br />

−<br />

e 2 = 128πQµ 2 QY<br />

B cos<br />

2<br />

, (3.46)<br />

reproduc<strong>in</strong>g the trajectory of the hairp<strong>in</strong> brane [101] for appropriate shift of the<br />

Liouville direction. This supports the suggestion ([95] <strong>and</strong> [109]) that this is the<br />

supersymmetric extension of the hairp<strong>in</strong> brane. Note that if we had <strong>in</strong>stead considered<br />

the limit µB → 0, we would have found that the wave function vanishes. Thus, the<br />

boundary Liouville potential is necessary for the existence of these boundary states.<br />

The wave function ˜ Ψ[0,0](φ, Y ) is also peaked along the trajectory<br />

Qφ<br />

−<br />

e 2 = 2 cos QY<br />

2<br />

(3.47)


Chapter 3: Fall<strong>in</strong>g D0-Branes <strong>in</strong> 2D Superstr<strong>in</strong>g <strong>Theory</strong> 57<br />

<strong>and</strong> we will simply refer to this wave function for the rest of our discussions. S<strong>in</strong>ce<br />

we are only <strong>in</strong>terested <strong>in</strong> bulk one-po<strong>in</strong>t functions, limits can always be taken if one<br />

wishes to look at the case with vanish<strong>in</strong>g bulk cosmological constant.<br />

3.3.4 Fall<strong>in</strong>g D0-brane <strong>in</strong> N = 2 SLFT<br />

For the wave function ˜ Ψ[0,0](φ, Y ), the Wick-rotation from the Euclidean time<br />

Y <strong>in</strong>to the M<strong>in</strong>kowski time t, together with a shift <strong>in</strong> the Liouville direction φ →<br />

φ − 2 ln ˜r − Q ln µ, produces the classical trajectory of the fall<strong>in</strong>g D0-brane <strong>in</strong> N = 2<br />

Q<br />

SLFT [109]:<br />

Qφ<br />

−<br />

˜re 2 = 2 cosh Qt<br />

2<br />

which matches with (3.1) once we set ˜r = 2E<br />

τp .<br />

, (3.48)<br />

Therefore, the fall<strong>in</strong>g D0-brane wave function <strong>in</strong> position space is [109]<br />

˜Ψ (NS)<br />

[0,0] (φ, t) =<br />

√ 2<br />

µπQ(2 cosh Qt<br />

2<br />

2 · exp<br />

) Q2 +1<br />

⎡<br />

⎣−<br />

2<br />

φ − ln ˜r Q<br />

Q<br />

Then the Fourier transform to momentum space yields<br />

[0,0] (p, q) = −i√2Qµ −ipQ 2p<br />

i<br />

e Q ln ˜r s<strong>in</strong>h( 2πp<br />

cosh( 2πp<br />

2πq<br />

) + cosh( Q Q )<br />

Ψ (NS)<br />

Q )<br />

·<br />

− e− φ− 2 ln ˜r<br />

Q<br />

Q<br />

µ(2 cosh Qt<br />

2<br />

Γ(−iQp)Γ(1 − i 2p<br />

Q )<br />

Γ( 1 p q 1<br />

− i + i )Γ( 2 Q Q 2<br />

<strong>and</strong> a half spectral flow gives the R-sector wave function<br />

[0,0] (p, q) = −i√2Qµ −ipQ 2p<br />

i<br />

e Q ln ˜r s<strong>in</strong>h( 2πp<br />

cosh( 2πp<br />

2πq<br />

) − cosh( Q Q )<br />

Ψ (R)<br />

Q )<br />

·<br />

− i p<br />

Q<br />

Γ(−iQp)Γ(1 − i 2p<br />

Q )<br />

Γ(1 − i p q<br />

+ i Q Q<br />

)Γ(−i p<br />

Q<br />

) 2<br />

Q 2<br />

⎤<br />

⎦ . (3.49)<br />

q , (3.50)<br />

− i ) Q<br />

− i q<br />

Q<br />

) . (3.51)


Chapter 3: Fall<strong>in</strong>g D0-Branes <strong>in</strong> 2D Superstr<strong>in</strong>g <strong>Theory</strong> 58<br />

3.4 Fall<strong>in</strong>g D0-brane <strong>in</strong> N = 1, 2D Superstr<strong>in</strong>g<br />

<strong>Theory</strong><br />

3.4.1 Us<strong>in</strong>g N = 2 SLFT to Study Boundary States <strong>in</strong> 2D<br />

Superstr<strong>in</strong>g <strong>Theory</strong><br />

We propose that the N = 2 SLFT boundary states may be used to study fall<strong>in</strong>g<br />

D0-branes <strong>in</strong> the N = 1, 2D superstr<strong>in</strong>g with l<strong>in</strong>ear dilaton background (which is<br />

equivalent to ĉm = 1 N = 1 SLFT theory). Notice that the field content of both<br />

theories is the same, as are the stress tensor <strong>and</strong> the first supercharge. Additionally,<br />

as is apparent from the constra<strong>in</strong>ts on an N = 2 boundary state, any N = 2 boundary<br />

state also satisfies the N = 1 constra<strong>in</strong>ts (3.13). So an N = 2 SLFT boundary state<br />

is also a boundary state of the N = 1, 2D superstr<strong>in</strong>g, with the N = 2 boundary<br />

<strong>in</strong>teraction term.<br />

However, this alone is not enough; if we want to use the N = 2 Ishibashi states,<br />

we must also be able to construct a Cardy state from them that will generate the<br />

ĉm = 1 N = 1 open str<strong>in</strong>g character. In fact, we can do this. In (3.31), ν is the<br />

‘modulus’ of the U(1) charge <strong>and</strong> appears nontrivially <strong>in</strong> the functional form of the<br />

character. But if we set ν = 0 (y = 1), the U(1) charge acts trivially on the N = 2<br />

states <strong>and</strong> we can see that the character of the N = 2 Class 2 (Massive) representation<br />

(3.31) is equivalent to the ĉm = 1 N = 1 character (3.8). Such a state was found <strong>in</strong><br />

[49], [109], [5], [6], <strong>and</strong> presented <strong>in</strong> sections 3.3.3 <strong>and</strong> 3.3.4. The momentum space


Chapter 3: Fall<strong>in</strong>g D0-Branes <strong>in</strong> 2D Superstr<strong>in</strong>g <strong>Theory</strong> 59<br />

wave functions are the same as <strong>in</strong> (3.50) <strong>and</strong> (3.51):<br />

[0,0] (p, q) = −i√2Qµ −ipQ 2p<br />

i<br />

e Q ln ˜r s<strong>in</strong>h( 2πp<br />

cosh( 2πp<br />

2πq<br />

) + cosh( Q Q )<br />

Ψ (NS)<br />

Ψ (R)<br />

Q )<br />

·<br />

[0,0] (p, q) = −i√2Qµ −ipQ 2p<br />

i<br />

e Q ln ˜r s<strong>in</strong>h( 2πp<br />

cosh( 2πp<br />

2πq<br />

) − cosh( Q Q )<br />

Q )<br />

·<br />

Γ(−iQp)Γ(1 − i 2p<br />

Q )<br />

Γ( 1 p q 1<br />

− i + i )Γ( 2 Q Q 2<br />

− i p<br />

Q<br />

Γ(−iQp)Γ(1 − i 2p<br />

Q )<br />

Γ(1 − i p q<br />

+ i Q Q<br />

)Γ(−i p<br />

Q<br />

− i q<br />

Q )<br />

− i q<br />

Q<br />

.<br />

) (3.52)<br />

This is not a surpris<strong>in</strong>g result. Recall that <strong>in</strong> section 3.2.5, we argued that <strong>in</strong><br />

ĉm = 1 N = 1 SLFT we could f<strong>in</strong>d a fall<strong>in</strong>g boundary state with the Liouville <strong>and</strong> time<br />

directions coupled nontrivially by assum<strong>in</strong>g additional symmetries that coupled the<br />

two directions. This additional symmetry is a symmetry only of the boundary state<br />

<strong>and</strong> not of the theory as a whole. The coupl<strong>in</strong>g of the Liouville <strong>and</strong> time directions<br />

is then achieved by impos<strong>in</strong>g this additional symmetry on the Hilbert space of the<br />

orig<strong>in</strong>al ĉm = 1 N = 1 SLFT boundary states.<br />

Note that it is also possible to derive this fall<strong>in</strong>g D0-brane <strong>in</strong> the N = 1, 2D<br />

superstr<strong>in</strong>g by directly solv<strong>in</strong>g the constra<strong>in</strong>t equations satisfied by the boundary<br />

states, similar to the derivation of the bosonic hairp<strong>in</strong> brane [101]. The equations are<br />

constra<strong>in</strong>ed by the W-symmetry <strong>in</strong> the bosonic case, while by the N = 2 SCA <strong>in</strong> the<br />

N = 1, 2D superstr<strong>in</strong>g.<br />

3.4.2 Number of D0-branes after GSO projection<br />

In N = 1, 2D superstr<strong>in</strong>g theory, there are two dist<strong>in</strong>ct types of boundary states<br />

<strong>in</strong> each of the NS-NS <strong>and</strong> R-R sectors, correspond<strong>in</strong>g to the different boundary con-<br />

ditions for world sheet fermions (η = ±). Therefore, the Type 0, non-chiral GSO<br />

projection produces four types of stable D0-branes (two branes <strong>and</strong> two anti-branes)<br />

<strong>in</strong> the Type 0A theory, <strong>and</strong> two unstable D0-branes <strong>in</strong> the Type 0B theory. In the


Chapter 3: Fall<strong>in</strong>g D0-Branes <strong>in</strong> 2D Superstr<strong>in</strong>g <strong>Theory</strong> 60<br />

Type 0A theory, the D0 ± -branes are sourced by two different R-R gauge fields, C (±)<br />

1<br />

[122].<br />

The D-brane boundary states <strong>in</strong> the Type 0A theories are given by the non-chiral<br />

GSO projection 1±(−1)F + ˜ F<br />

2<br />

, with the upper sign for the NS-NS sector <strong>and</strong> the lower<br />

sign for the R-R sector. As expla<strong>in</strong>ed <strong>in</strong> section 3.3.2, the D0-branes of our theory<br />

correspond to the B-Type boundary states. S<strong>in</strong>ce the B-Type, R-R Ishibashi states<br />

survive the Type 0A GSO projection, the D0-branes <strong>in</strong> Type 0A will be stable. We<br />

can represent them schematically as [60], [122],<br />

|D0; +〉 = |B0; +, NS〉 + |B0; +, R〉<br />

|D0; −〉 = |B0; −, NS〉 + |B0; −, R〉<br />

|D0; +〉 = |B0; +, NS〉 − |B0; +, R〉<br />

|D0; −〉 = |B0; −, NS〉 − |B0; −, R〉 . (3.53)<br />

On the other h<strong>and</strong>, the D-brane boundary states <strong>in</strong> the Type 0B theories are given<br />

by the non-chiral GSO projection 1+(−1)F + ˜ F<br />

2<br />

for both the NS-NS <strong>and</strong> R-R sectors.<br />

In this case, the B-Type, R-R Ishibashi states are projected out by the Type 0B<br />

projection. This leaves us with two unstable D0-branes represented schematically as<br />

| � D0; +〉 = |B0; +, NS〉<br />

| � D0; −〉 = |B0; −, NS〉 . (3.54)<br />

Note that the sign, η = ±, really does denote different D0-branes s<strong>in</strong>ce, by Cardy’s<br />

condition (3.12) <strong>and</strong> (3.18), these states yield different spectra. It would be <strong>in</strong>terest<strong>in</strong>g<br />

to see how states with different values of η dist<strong>in</strong>guish themselves from each other <strong>in</strong><br />

the context of matrix models.


Chapter 3: Fall<strong>in</strong>g D0-Branes <strong>in</strong> 2D Superstr<strong>in</strong>g <strong>Theory</strong> 61<br />

3.5 Discussion <strong>and</strong> Summary<br />

Recall that <strong>in</strong> the static case, the D0-brane (ZZ brane) <strong>and</strong> the D1-brane (FZZT<br />

brane) boundary states were derived from the degenerate <strong>and</strong> the non-degenerate<br />

representation of the open str<strong>in</strong>g character, respectively. So it may seem a little puz-<br />

zl<strong>in</strong>g that the fall<strong>in</strong>g D0-brane is constructed from the non-degenerate representation<br />

<strong>in</strong>stead of the degenerate one.<br />

In the static case, the difference between the D0-brane <strong>and</strong> the D1-brane is that<br />

the D0-brane is localized at the same po<strong>in</strong>t <strong>in</strong> the Liouville direction for all time, while<br />

the D1-brane is extended. The open str<strong>in</strong>gs end<strong>in</strong>g on this D0-brane can only take<br />

on a fixed (imag<strong>in</strong>ary) value of Liouville momentum, while the open str<strong>in</strong>gs end<strong>in</strong>g<br />

on the D1-brane can take on any value of Liouville momentum.<br />

In the case of the fall<strong>in</strong>g D0-brane, if we partition the two-dimensional spacetime<br />

<strong>in</strong>to spacelike hypersurfaces, the fall<strong>in</strong>g D0-brane is aga<strong>in</strong> localized <strong>in</strong> the Liouville<br />

direction along each hypersurface. However, the Liouville position from one hyper-<br />

surface to the next is not the same (the fall<strong>in</strong>g D0-brane is, not surpris<strong>in</strong>gly, mov<strong>in</strong>g),<br />

<strong>and</strong> so open str<strong>in</strong>gs end<strong>in</strong>g on the fall<strong>in</strong>g D0-brane can take on any value of Liouville<br />

momentum. This is the reason that we must use the non-degenerate representation<br />

of the open str<strong>in</strong>g characters to def<strong>in</strong>e the fall<strong>in</strong>g D0-brane boundary state.<br />

To summarize, we have shown that a fall<strong>in</strong>g D0-brane boundary state <strong>in</strong> N = 1,<br />

2D superstr<strong>in</strong>g theory can be obta<strong>in</strong>ed by adapt<strong>in</strong>g the fall<strong>in</strong>g D0-brane boundary<br />

state solution <strong>in</strong> N = 2 SLFT [109]. In particular, there exist four types of stable,<br />

fall<strong>in</strong>g D0-branes (two branes <strong>and</strong> two anti-branes) <strong>in</strong> Type 0A theory <strong>and</strong> two types<br />

of unstable, fall<strong>in</strong>g D0-branes <strong>in</strong> Type 0B theory. As is well known, Type 0, N = 1,


Chapter 3: Fall<strong>in</strong>g D0-Branes <strong>in</strong> 2D Superstr<strong>in</strong>g <strong>Theory</strong> 62<br />

2D superstr<strong>in</strong>g theory has a dual description <strong>in</strong> the language of matrix models. An<br />

<strong>in</strong>terest<strong>in</strong>g question would be to underst<strong>and</strong> these fall<strong>in</strong>g D0-branes <strong>in</strong> the context of<br />

the dual matrix model.


Chapter 4<br />

Towards the Massless Spectrum of<br />

Non-Kähler <strong>Heterotic</strong><br />

Compactifications<br />

4.1 Introduction<br />

<strong>Heterotic</strong> str<strong>in</strong>g theory has long been known to have great promise for reproduc<strong>in</strong>g<br />

the st<strong>and</strong>ard model; unfortunately, amidst the excitement of branes, str<strong>in</strong>g dualities,<br />

<strong>and</strong> flux compactifications of type II <strong>and</strong> M-theory, it has been partially forgotten.<br />

Compactifications of heterotic str<strong>in</strong>g theory that preserve N = 1 supersymmetry <strong>in</strong><br />

four dimensions <strong>and</strong> with vanish<strong>in</strong>g background flux were first studied <strong>in</strong> [24]; this<br />

was exp<strong>and</strong>ed to an analysis <strong>in</strong>clud<strong>in</strong>g nonzero H-flux by Strom<strong>in</strong>ger <strong>in</strong> [118].<br />

In recent years, studies of compactifications of type II theories with various nonzero<br />

flux backgrounds have become common. One of the most compell<strong>in</strong>g reasons to study<br />

63


Chapter 4: Towards the Massless Spectrum of Non-Kähler <strong>Heterotic</strong><br />

Compactifications 64<br />

flux compactifications is that flux-free compactifications on Calabi-Yau manifolds lead<br />

to large moduli spaces correspond<strong>in</strong>g to unconstra<strong>in</strong>ed scalar fields <strong>in</strong> the low-energy,<br />

four-dimensional description. This is phenomenologically unsatisfy<strong>in</strong>g s<strong>in</strong>ce it leaves<br />

us with a cont<strong>in</strong>uously <strong>in</strong>f<strong>in</strong>ite number of vacua. On the other h<strong>and</strong>, it is well known<br />

that flux compactifications typically lift this degeneracy. In fact, fluxes could con-<br />

ceivably be used to break supersymmetry or lift the cosmological constant to some<br />

positive value à la KKLT [88].<br />

How flux compactifications of heterotic str<strong>in</strong>g theory achieve such noble goals is<br />

not yet well-understood from the spacetime/geometric perspective. The difference<br />

between heterotic <strong>and</strong> type II theories is twofold: for one, we have the freedom to<br />

choose a gauge bundle which need not be the tangent bundle; second, there are no R-<br />

R fluxes to turn on, just the NS-NS 3-form flux H. The ma<strong>in</strong> difficulty <strong>in</strong> <strong>in</strong>clud<strong>in</strong>g<br />

H-flux is that it is encoded <strong>in</strong> the geometry of the <strong>in</strong>ternal manifold as torsion, 1<br />

mean<strong>in</strong>g we have to deal with non-Kähler, though still complex, compactifications<br />

[118], [85].<br />

Giv<strong>in</strong>g up the Kähler condition destroys many nice results on Kähler geometry<br />

that we are accustomed to us<strong>in</strong>g. For example, it is no longer generically true that<br />

de Rham cohomology is related to Dolbeault cohomology<br />

We also have that<br />

H m dR(K; R) C ≇ �<br />

H p,q<br />

¯∂<br />

p+q=m<br />

H p,q<br />

¯∂ (K; C). (4.1)<br />

(K; C) ≇ Hq,p(K;<br />

C). (4.2)<br />

Another loss is that the Levi-Civita connection no longer annihilates the complex<br />

1 See [100] for a nice discussion on torsion.<br />

¯∂


Chapter 4: Towards the Massless Spectrum of Non-Kähler <strong>Heterotic</strong><br />

Compactifications 65<br />

structure; <strong>in</strong>stead, any connection annihilat<strong>in</strong>g the complex structure must conta<strong>in</strong><br />

torsion. The Levi-Civita connection is the one commonly found <strong>in</strong> supergravity ac-<br />

tions, <strong>and</strong> so one must be more careful when work<strong>in</strong>g with a non-Kähler compact-<br />

ification (see appendix B.2.2, for example). Other important properties of Kähler<br />

manifolds <strong>in</strong>clude the Lefschetz decomposition <strong>and</strong> the Hodge-Riemann bil<strong>in</strong>ear rela-<br />

tions [73].<br />

There are many other nice properties <strong>and</strong> theorems special to Kähler manifolds,<br />

<strong>and</strong> these play no small role <strong>in</strong> the dearth of studies of supersymmetric heterotic<br />

compactifications with H-flux. Nevertheless, <strong>in</strong> recent years various groups have<br />

taken up this challenge for many reasons [39, 16, 18, 12, 13, 15, 17, 77, 40, 53, 103],<br />

one of the most compell<strong>in</strong>g reasons be<strong>in</strong>g the potential to lift moduli of the flux-free<br />

compactifications.<br />

One might th<strong>in</strong>k that study<strong>in</strong>g heterotic theory is moot s<strong>in</strong>ce we expect any such<br />

study would be dual to some flux compactification of the better-understood type<br />

II or M-theory, but we should not forget that the use of duality is often that a<br />

difficult problem <strong>in</strong> one theory can be a simple one <strong>in</strong> the dual theory. Even more<br />

compell<strong>in</strong>g is that heterotic theory actually has a microscopic description <strong>in</strong> terms of<br />

(0, 2) conformal field theories, while <strong>in</strong> type II compactifications such a description<br />

does not yet exist. If we fail to study flux compactifications of the heterotic theory we<br />

could be miss<strong>in</strong>g a wonderful opportunity, especially consider<strong>in</strong>g how natural heterotic<br />

theories seem when we are <strong>in</strong>terested <strong>in</strong> reproduc<strong>in</strong>g properties of the st<strong>and</strong>ard model.<br />

This chapter considers properties of the massless spectrum of compactifications of<br />

heterotic supergravity us<strong>in</strong>g the construction recently developed by Fu <strong>and</strong> Yau [55].


Chapter 4: Towards the Massless Spectrum of Non-Kähler <strong>Heterotic</strong><br />

Compactifications 66<br />

In their paper, Fu <strong>and</strong> Yau constructed gauge bundles over a sub-class of non-Kähler<br />

3-folds studied by Goldste<strong>in</strong> <strong>and</strong> Prokushk<strong>in</strong> [70] <strong>and</strong> proved the existence of solutions<br />

to Strom<strong>in</strong>ger’s system. We will refer to this construction as the FSY geometry <strong>and</strong><br />

to the underly<strong>in</strong>g 3-fold as a GP manifold. For a physical discussion <strong>and</strong> explicit<br />

examples of FSY geometries, see [14].<br />

In section 4.2, we review the constra<strong>in</strong>ts that Strom<strong>in</strong>ger derived on compactifica-<br />

tions of heterotic supergravity preserv<strong>in</strong>g N = 1 supersymmetry <strong>in</strong> four dimensions<br />

[118]. In section 4.3, we review the constructions of Goldste<strong>in</strong> <strong>and</strong> Prokushk<strong>in</strong> <strong>and</strong> of<br />

Fu <strong>and</strong> Yau. We then analyze the volume of the GP manifold <strong>in</strong> the FSY geometry as<br />

well as the volume of the fibers. In section 4.4, we discuss the applicability of the su-<br />

pergravity approximation, compute the massless fields aris<strong>in</strong>g from the gaug<strong>in</strong>o upon<br />

compactification, <strong>and</strong> f<strong>in</strong>d an explicit result for the choice of a trivial gauge bundle<br />

<strong>in</strong> terms of Hodge numbers of the GP manifold. We compute the Hodge diamond of<br />

the GP manifold <strong>in</strong> section 4.5 <strong>and</strong> then discuss our results <strong>and</strong> future directions <strong>in</strong><br />

section 4.6.<br />

4.2 Superstr<strong>in</strong>gs with Torsion<br />

In [118], Strom<strong>in</strong>ger exam<strong>in</strong>ed heterotic compactifications on warped product<br />

manifolds. His compactification assumed a maximally symmetric four-dimensional<br />

spacetime M4 <strong>and</strong> <strong>in</strong>ternal six-dimensional manifold K with metric<br />

g 0 ⎛<br />

⎜<br />

MN (x, y) = e−D(y)/2 ⎝ gµν(x)<br />

⎞<br />

0 ⎟<br />

⎠ , (4.3)<br />

0 gmn(y)


Chapter 4: Towards the Massless Spectrum of Non-Kähler <strong>Heterotic</strong><br />

Compactifications 67<br />

where x µ are coord<strong>in</strong>ates on a patch of M4, y m are coord<strong>in</strong>ates on a patch of K (as we<br />

will soon see, K must be complex <strong>and</strong> we will refer to the coord<strong>in</strong>ates on a patch of K<br />

as {z a , ¯z ā }), <strong>and</strong> capital Roman <strong>in</strong>dices M, N, . . ., are used for the full ten-dimensional<br />

spacetime. To ensure a supersymmetric configuration, the supersymmetry variations<br />

of the fields must vanish. This is trivially true for variations of the bosonic fields if<br />

we assume no fermionic condensates (see [103] for an example with condensates), so<br />

to preserve supersymmetry the variations of the fermionic fields must vanish.<br />

After convert<strong>in</strong>g to str<strong>in</strong>g frame <strong>and</strong> apply<strong>in</strong>g some other simplifications, these<br />

variations yield the constra<strong>in</strong>ts 2<br />

∇Mɛ − 3<br />

8 HMɛ = 0,<br />

( /∇φ)ɛ − 1<br />

Hɛ = 0,<br />

4<br />

FMNΓ MN ɛ = 0, (4.4)<br />

where H ≡ HMNP Γ MNP <strong>and</strong> HM ≡ HMNP Γ NP . Additionally, as required by anomaly<br />

cancellation, there is a modified Bianchi identity for the 3-form field strength H<br />

�<br />

3 α′<br />

dH = trR ∧ R −<br />

2 2<br />

1<br />

�<br />

TrF ∧ F , (4.5)<br />

30<br />

where tr is a trace over the vector representation of O(1, 9) <strong>and</strong> Tr is a trace over the<br />

adjo<strong>in</strong>t represention of either SO(32) or E8 × E8 (if we choose SO(32), we can write<br />

this as simply a trace over the vector representation without the factor of 1<br />

30 [24]).<br />

Also, R refers to the Ricci 2-form of the Hermitian connection. 3 F<strong>in</strong>ally, the warp<br />

factor is forced to be equal to the dilaton D(y) = φ(y).<br />

2 AS 3<br />

Throughout this note, we use the conventions: H = 2Hus , φAS = − 1<br />

4φus , where AS refers<br />

to the conventions <strong>in</strong> [118].<br />

3 This connection has nonzero connection coefficients Γ a bc = g aā gāb,c <strong>and</strong> Γ ā ¯ b¯c = g āa g a ¯ b,¯c.


Chapter 4: Towards the Massless Spectrum of Non-Kähler <strong>Heterotic</strong><br />

Compactifications 68<br />

The sp<strong>in</strong>or ɛ is a ten-dimensional, Majorana-Weyl sp<strong>in</strong>or, so we can decompose<br />

it as the sum of tensor products of four <strong>and</strong> six dimensional Weyl sp<strong>in</strong>ors, say ɛ =<br />

ɛ4 ⊗ η + c.c.. Furthermore, the assumption of maximal symmetry <strong>in</strong> M4 requires that<br />

F <strong>and</strong> H have no components tangent to M4 <strong>and</strong> that they, as well as the dilaton φ,<br />

only depend on the <strong>in</strong>ternal manifold K. These facts simplify the constra<strong>in</strong>ts to<br />

∇µɛ4 = 0, ∇mη − 3<br />

8 Hmη = 0,<br />

(∇mφ)γ m η − 1<br />

4 Hη = 0, Fmnγ mn η = 0.<br />

(4.6)<br />

Thus, η is covariantly constant with respect to a metric-compatible connection with<br />

torsion 3<br />

2 H, the Strom<strong>in</strong>ger connection.4 There is an ambiguity <strong>in</strong> the Bianchi identity<br />

(4.5) <strong>in</strong> the choice of connection appear<strong>in</strong>g <strong>in</strong> R. In [55] <strong>and</strong> [14], the Hermitian<br />

connection is used <strong>and</strong> hence it is the one we mention below (4.5). However, the<br />

connection with torsion − 3H,<br />

referred to as the “m<strong>in</strong>us” connection, is sometimes<br />

2<br />

used [85], [17]. The ambiguity arises from a field redef<strong>in</strong>ition <strong>in</strong> the effective action<br />

picture or from a choice of regularization scheme <strong>in</strong> the sigma model picture [115].<br />

Strom<strong>in</strong>ger showed <strong>in</strong> [118] that η could be used to construct an almost complex<br />

structure for K (J n<br />

m ≡ iη † γ n<br />

m η) that is H-covariantly constant<br />

∇mJ p<br />

n<br />

3<br />

+<br />

2 Hp s 3<br />

msJn −<br />

2 Hs p<br />

mnJs = 0 (4.7)<br />

<strong>and</strong> has vanish<strong>in</strong>g Nijenhuis tensor. Thus, J is <strong>in</strong>tegrable <strong>and</strong> is a complex structure<br />

for K; <strong>in</strong> fact, the metric gmn (4.3) is Hermitian with respect to J. The supersym-<br />

metry constra<strong>in</strong>ts (4.4) also imply the existence of a nowhere-vanish<strong>in</strong>g, holomorphic<br />

4 This is sometimes called the “H-connection” or the “plus” connection.


Chapter 4: Towards the Massless Spectrum of Non-Kähler <strong>Heterotic</strong><br />

Compactifications 69<br />

(3, 0)-form Ωabc = e −2φ η † γabcη ∗ , thus imply<strong>in</strong>g the vanish<strong>in</strong>g of the first Chern class.<br />

These conditions are equivalent to the existence of an SU(3)-structure.<br />

In sum, Strom<strong>in</strong>ger recast (4.4) <strong>in</strong>to the geometrical form:<br />

1. (K, g) must be a complex Hermitian manifold with vanish<strong>in</strong>g first Chern class.<br />

2. Us<strong>in</strong>g J to denote the fundamental form <strong>in</strong> addition to the complex structure,<br />

we have<br />

3. d † J = i( ¯ ∂ − ∂) ln ||Ω||; 5<br />

4. F is a (1, 1)-form <strong>and</strong> must satisfy J a¯ b Fa ¯ b = 0;<br />

3 i<br />

H =<br />

2 2 (¯ ∂ − ∂)J; (4.8)<br />

5. f<strong>in</strong>ally, the modified Bianchi identity (4.5) must be satisfied. 6<br />

These we refer to as “Strom<strong>in</strong>ger’s system”, which is the system of constra<strong>in</strong>ts that<br />

the FSY geometry was designed to solve.<br />

4.3 The GP Manifold <strong>and</strong> FSY Geometry<br />

4.3.1 A Review<br />

In their paper [70], Goldste<strong>in</strong> <strong>and</strong> Prokushk<strong>in</strong> gave an explicit construction of all<br />

complex (n + 1)-folds that can be realized as pr<strong>in</strong>cipal holomorphic T 2 bundles over<br />

a complex n-fold. In particular, they showed that if the base 2-fold was Calabi-Yau,<br />

5 Note that there was a sign error <strong>in</strong> [118] that was corrected <strong>in</strong> [119].<br />

6 For the rest of the chapter, we will work <strong>in</strong> units where α ′ = 1.


Chapter 4: Towards the Massless Spectrum of Non-Kähler <strong>Heterotic</strong><br />

Compactifications 70<br />

one could use this to construct a complex Hermitian 3-fold satisfy<strong>in</strong>g constra<strong>in</strong>ts 1-3<br />

of Strom<strong>in</strong>ger’s system. The rema<strong>in</strong><strong>in</strong>g task for a heterotic solution was to construct<br />

a gauge bundle satisfy<strong>in</strong>g constra<strong>in</strong>ts 4-5.<br />

Unlike the Calabi-Yau case, <strong>in</strong> non-Kähler compactifications one cannot embed the<br />

Strom<strong>in</strong>ger-connection <strong>in</strong> the gauge connection because the curvature form will have<br />

(0, 2) <strong>and</strong> (2, 0) components, so the choice of gauge bundle satisfy<strong>in</strong>g Strom<strong>in</strong>ger’s<br />

system becomes much more complicated. Fu <strong>and</strong> Yau undertook the difficult task<br />

of construct<strong>in</strong>g just such a gauge bundle <strong>and</strong> were able to prove the existence of<br />

solutions to Strom<strong>in</strong>ger’s system [55]. 7 We briefly review these constructions here.<br />

Let M be a complex Hermitian 2-fold <strong>and</strong> choose<br />

ωP ωQ<br />

,<br />

2π 2π ∈ H2 (M; Z) ∩ Λ 1,1 T ∗ M (4.9)<br />

(actually, Goldste<strong>in</strong> <strong>and</strong> Prokushk<strong>in</strong> only required that ωP + iωQ have no (0, 2)-<br />

component, but Fu <strong>and</strong> Yau used the restriction that we have stated). Be<strong>in</strong>g elements<br />

of <strong>in</strong>teger cohomology, there are two unit-circle bundles over M, say S 1 P <strong>and</strong> S1 Q , whose<br />

curvature 2-forms are ωP <strong>and</strong> ωQ, respectively. Together, these form a T 2 bundle over<br />

M which we will refer to as K, K π → M.<br />

Given this setup, Goldste<strong>in</strong> <strong>and</strong> Prokushk<strong>in</strong> showed that if M admits a non-<br />

vanish<strong>in</strong>g, holomorphic (2, 0)-form, then K admits a non-vanish<strong>in</strong>g, holomorphic<br />

(3, 0)-form. Furthermore, they showed that if ωP or ωQ are nontrivial <strong>in</strong> cohomology<br />

on M, then K admits no Kähler metric. They were able to construct the non-<br />

7 In their orig<strong>in</strong>al paper [54], Fu <strong>and</strong> Yau proved the existence of a solution to the system of<br />

equations considered <strong>in</strong> section 4.2 but with opposite sign for (4.5). In [55], they have solved the<br />

system of equations from section 4.2, which are the solutions relevant to heterotic compactifications.<br />

The sign difference dates to a sign error <strong>in</strong> [118]. Fu <strong>and</strong> Yau have also considered a wider class of<br />

gauge bundles <strong>in</strong> the more recent paper.


Chapter 4: Towards the Massless Spectrum of Non-Kähler <strong>Heterotic</strong><br />

Compactifications 71<br />

vanish<strong>in</strong>g holomorphic (3, 0)-form <strong>and</strong> a Hermitian metric on K simply from data<br />

on M. In particular, for the choice M = K3, they were able to compute the Betti<br />

numbers of K, as well as h 0,1 <strong>and</strong> h 1,0 .<br />

The curvature 2-form ωP determ<strong>in</strong>es a non-unique connection ∇ on S 1 P<br />

(<strong>and</strong> sim-<br />

ilarly for ωQ <strong>and</strong> S1 Q ). A connection determ<strong>in</strong>es a split of T K <strong>in</strong>to a vertical <strong>and</strong><br />

horizontal subbundle—the horizontal subbundle is composed of the elements of T K<br />

that are annihilated by the connection 1-form, the vertical subbundle is then, roughly<br />

speak<strong>in</strong>g, the elements of T K tangent to the fibers. Over an open subset U ⊂ M, we<br />

have a local trivialization of K <strong>and</strong> we can use unit-norm sections, ξ of S 1 P<br />

S 1 Q , to def<strong>in</strong>e local coord<strong>in</strong>ates for z ∈ U × T 2 by<br />

<strong>and</strong> ζ of<br />

z = (p, e ix ξ(p), e iy ζ(p)), (4.10)<br />

where p = π(z) ∈ U. The sections ξ <strong>and</strong> ζ also def<strong>in</strong>e connection 1-forms via<br />

∇ξ = iα ⊗ ξ <strong>and</strong> ∇ζ = iβ ⊗ ζ, (4.11)<br />

where ωP = dα <strong>and</strong> ωQ = dβ on U, <strong>and</strong> α <strong>and</strong> β are necessarily real to preserve the<br />

unit-norms of ξ <strong>and</strong> ζ.<br />

The complex structure is given on the fibers by ∂x → ∂y <strong>and</strong> ∂y → −∂x while<br />

on the horizontal distribution it is <strong>in</strong>duced by projection onto M (actually, this just<br />

gives an almost complex structure, but Goldste<strong>in</strong> <strong>and</strong> Prokushk<strong>in</strong> proved that it is<br />

<strong>in</strong>tegrable [70]). Given a Hermitian 2-form ωM on M, the 2-form<br />

ωu = π ∗ (e u ωM) + (dx + π ∗ α) ∧ (dy + π ∗ β), (4.12)<br />

where u is some smooth function on M, is a Hermitian 2-form on K with respect to


Chapter 4: Towards the Massless Spectrum of Non-Kähler <strong>Heterotic</strong><br />

Compactifications 72<br />

this complex structure. The connection 1-form<br />

ρ = (dx + π ∗ α) + i(dy + π ∗ β) (4.13)<br />

annihilates elements of the horizontal distribution of T K while reduc<strong>in</strong>g to dx + idy<br />

along the fibers. These data def<strong>in</strong>e the complex Hermitian 3-fold (K, ωu), which we<br />

call the GP manifold [70].<br />

Fu <strong>and</strong> Yau undertook the more difficult problem of prov<strong>in</strong>g the existence of<br />

gauge bundles over the GP manifold with Hermitian-Yang-Mills connections satisfy<strong>in</strong>g<br />

the Bianchi identity (4.5). They took the Hermitian form (4.12) <strong>and</strong> converted the<br />

Bianchi identity <strong>in</strong>to a differential equation for the function u. Under the assumption<br />

��<br />

e<br />

K3<br />

−4u ω2 �1/4 K3<br />

2<br />

�<br />

≪ 1 =<br />

K3<br />

ω2 K3<br />

, (4.14)<br />

2<br />

they then specialized to a K3 base <strong>and</strong> showed that there exists a solution u to the<br />

Bianchi identity for any compatible choice of gauge bundle V <strong>and</strong> curvatures ωP <strong>and</strong><br />

ωQ 8 such that the gauge bundle V over K is the pullback of a stable, degree 0 bundle<br />

E over K3, V = π ∗ E [55]; this is what we call the FSY geometry. In [55] <strong>and</strong> [14],<br />

it was shown that no such solution exists for a T 4 base. This is <strong>in</strong> agreement with<br />

arguments from str<strong>in</strong>g duality rul<strong>in</strong>g out the Iwasawa manifold as a solution to the<br />

heterotic supersymmetry constra<strong>in</strong>ts [63].<br />

8 See equation (4.21) for an explanation.


Chapter 4: Towards the Massless Spectrum of Non-Kähler <strong>Heterotic</strong><br />

Compactifications 73<br />

4.3.2 The Volume<br />

Of the Total Space<br />

From here on, we will take the base M to be K3. In this chapter, we will be<br />

concern<strong>in</strong>g ourselves with questions relat<strong>in</strong>g to supergravity compactifications on the<br />

FSY geometry. We must therefore underst<strong>and</strong> the curvature scales <strong>in</strong>volved <strong>in</strong> the<br />

construction. One issue that we can address is the overall volume of K<br />

�<br />

Vol(K) ∝<br />

K<br />

ω 3 u . (4.15)<br />

Let {Uα} be a good open cover of M with subord<strong>in</strong>ate partition of unity {ρα}. Then<br />

{Vα := π −1 (Uα)} is a good open cover of K with <strong>in</strong>duced subord<strong>in</strong>ate partition of<br />

unity ˜ρα that is constant along the fibers, so ˜ραπ ∗ = π ∗ ρα. Furthermore, we have the<br />

local trivialization Vα<br />

φ −1<br />

α<br />

∼ = Uα × T 2 , so we have<br />

�<br />

ω<br />

K<br />

3 u<br />

�<br />

�<br />

=<br />

α<br />

Uα×T 2<br />

φ ∗ α (˜ραω 3 u ). (4.16)<br />

In fact, we may choose the φα so that the vertical subbundle of T Vα ∼ = T Uα ×T T 2<br />

is mapped isomorphically to Uα × T T 2 <strong>and</strong> similarly for the horizontal subbundle of<br />

T Vα to T Uα × T 2 . We also have the <strong>in</strong>clusion ια : T 2 ↩→ Uα × T 2 which <strong>in</strong>duces the<br />

trivial projection ι ∗ α : Ω∗ (Uα × T 2 ) → Ω ∗ (T 2 ). Now, ω 3 u<br />

is a sum of terms of the form<br />

π ∗ γ ∧ λ, where γ ∈ Ω ∗ (Uα) <strong>and</strong> λ annihilates elements of the horizontal subbundle of<br />

T Vα. Then we f<strong>in</strong>d<br />

�<br />

We f<strong>in</strong>d for the volume of K<br />

�<br />

�<br />

��<br />

=<br />

ω<br />

K<br />

3 u<br />

Uα×T 2<br />

φ ∗ α (π∗γ ∧ λ) =<br />

α<br />

Uα<br />

ραe 2u ω 2 M<br />

� ��<br />

��<br />

T 2<br />

Uα<br />

� ��<br />

γ<br />

T 2<br />

ι ∗ (φ ∗ α (λ))<br />

�<br />

. (4.17)<br />

� �<br />

dx ∧ dy ∝ e<br />

M<br />

2u ω 2 M<br />

≫ 1, (4.18)


Chapter 4: Towards the Massless Spectrum of Non-Kähler <strong>Heterotic</strong><br />

Compactifications 74<br />

which follows from (4.14), so K is large enough for the supergravity approximation<br />

to be valid. However, we should also check the volume of the T 2 fibers.<br />

Of the Fibers<br />

In the GP manifold, the T 2 fibers are taken to have size 4π 2 . This is simply because<br />

the coord<strong>in</strong>ates x <strong>and</strong> y were def<strong>in</strong>ed such that they have periodicity 2π (4.10). If we<br />

rescale both by an <strong>in</strong>teger N, the form def<strong>in</strong><strong>in</strong>g the horizontal distribution becomes<br />

�<br />

ρN = dx + π∗ � �<br />

α<br />

+ i dy +<br />

N<br />

π∗ �<br />

β<br />

. (4.19)<br />

N<br />

This normalization of ρN preserves the property that i<br />

2 ρN ∧ ¯ρN restricted to the fibers<br />

is just dx ∧ dy, so the Hermitian form (4.12) keeps the same form with ρ replaced by<br />

ρN.<br />

In the Bianchi identity (4.5), the only place <strong>in</strong> which ωP <strong>and</strong> ωQ enter is through<br />

the Hermitian form <strong>and</strong> so rescal<strong>in</strong>g the T 2 is, as far as the Bianchi identity is con-<br />

cerned, equivalent to keep<strong>in</strong>g the volume of the T 2 fixed <strong>and</strong> <strong>in</strong>stead rescal<strong>in</strong>g ωP<br />

<strong>and</strong> ωQ each by N. More generally, we f<strong>in</strong>d that these two setups produce the same<br />

solution for the function u:<br />

where N, M ∈ Z + .<br />

Vol(T 2 ) = 4π 2<br />

Curvatures: NωP , MωQ<br />

←→ Vol(T 2 ) = 4π 2 NM<br />

Curvatures: ωP , ωQ<br />

(4.20)<br />

It would seem, then, that we are free to rescale the T 2 to be arbitrarily large.<br />

However, there is a constra<strong>in</strong>t po<strong>in</strong>ted out <strong>in</strong> [55] <strong>and</strong> [14] which restricts ωP <strong>and</strong> ωQ<br />

quite heavily. The constra<strong>in</strong>t comes from <strong>in</strong>tegrat<strong>in</strong>g the Bianchi identity <strong>and</strong> is<br />

�<br />

24 − Ch2(E) =<br />

���� �<br />

�<br />

� ωP<br />

��<br />

��<br />

��<br />

2π<br />

2 ��<br />

��<br />

+ ��<br />

ωQ<br />

��<br />

��<br />

��<br />

2π<br />

2� ω2 M<br />

,<br />

2<br />

(4.21)<br />

K3


Chapter 4: Towards the Massless Spectrum of Non-Kähler <strong>Heterotic</strong><br />

Compactifications 75<br />

where Ch2(E) is the <strong>in</strong>tegral of the second Chern character (trF 2 ) over K3, <strong>and</strong><br />

similarly 24 comes from <strong>in</strong>tegrat<strong>in</strong>g trR 2 K3<br />

K3.<br />

Furthermore, �<br />

K3<br />

�<br />

� � � ωP<br />

2π<br />

�<br />

� � � 2 ω2 M<br />

2<br />

which yields the Euler characteristic of<br />

can be computed us<strong>in</strong>g the <strong>in</strong>tersection form on K3<br />

<strong>and</strong> is known to be a positive, even <strong>in</strong>teger. It therefore seems we cannot make the<br />

volume of the T 2 significantly larger than the str<strong>in</strong>g scale. However, this statement<br />

is not quite right; as Goldste<strong>in</strong> <strong>and</strong> Prokushk<strong>in</strong> note [70], even if ωP or ωQ (but not<br />

both) is trivial <strong>in</strong> cohomology, the 3-fold is still non-Kähler. There is noth<strong>in</strong>g to<br />

prevent us from consider<strong>in</strong>g models <strong>in</strong> which one of the circle bundles, say S 1 P<br />

trivial. In these cases, s<strong>in</strong>ce �<br />

K3<br />

�<br />

� � � ωP<br />

�<br />

2π<br />

� � � 2 ω2 M<br />

2<br />

, is<br />

= 0, we are free to rescale that circle to<br />

our heart’s content. We are then left with just one circle that cannot be made much<br />

larger than the str<strong>in</strong>g scale. The correct statement, then, is that we cannot make<br />

both circles arbitrarily large.<br />

4.4 <strong>Heterotic</strong> Supergravity<br />

We see that the volume of the K3 is large but the volume of the T 2 fibers is<br />

generically of order the str<strong>in</strong>g scale. This is a problem for a simple KK reduction<br />

of the ten-dimensional supergravity, but not because of curvature scales; rather, it is<br />

because we know that nonzero w<strong>in</strong>d<strong>in</strong>g <strong>and</strong> momentum modes of the str<strong>in</strong>g become<br />

light when the T 2 is of order α ′ . This can be simply remedied by <strong>in</strong>clud<strong>in</strong>g these new<br />

light degrees of freedom <strong>in</strong> the dimensionally-reduced action. We will leave this for<br />

future work <strong>and</strong> just work with the compactification of the ten-dimensional effective<br />

action below. Note also that large curvatures associated with the gauge bundle can


Chapter 4: Towards the Massless Spectrum of Non-Kähler <strong>Heterotic</strong><br />

Compactifications 76<br />

become problematic for a supergravity approximation, but we see from (4.21) that the<br />

curvature is bounded above s<strong>in</strong>ce the right-h<strong>and</strong> side of the equation is non-negative.<br />

4.4.1 L<strong>in</strong>earized EOM’s<br />

The str<strong>in</strong>g-frame action is (see appendix B.1):<br />

L (S)<br />

Het<br />

1 = − 2e−2φ√ �<br />

1 −G κ2 R − 4<br />

κ2 DMφDMφ + 1<br />

2κ2 Tr(F 2 ) + 3<br />

4κ2 H2 + ¯ ψMΓ MNP DNψP + ¯ ψMΓ MP Γ N ψP DNφ + ¯ λΓ M DMλ<br />

− ¯ λΓ M λDMφ + Tr � ¯χΓ MDMχ − ¯χΓMχDMφ �<br />

+ 1<br />

2 Tr� ¯χΓ M Γ NP √<br />

2<br />

(ψM +<br />

12 ΓMλ)FNP<br />

�<br />

1 + √2<br />

− 1<br />

8 Tr� ¯χΓ MNP χ � HMNP − 1<br />

�<br />

¯ψMΓ<br />

8<br />

MNP QR ψR + 6 ¯ ψN ΓP ψQ �<br />

− √ 2 ¯ ψMΓ NP Q Γ M λ<br />

¯ψMΓ N Γ M λDNφ<br />

HNP Q + (Fermions) 4 . (4.22)<br />

Decompos<strong>in</strong>g χ = χ I T I <strong>and</strong> FMN = F I MN T I , where T I are generators of the gauge<br />

group satisfy<strong>in</strong>g Tr(T I T J ) = δ IJ , we f<strong>in</strong>d the l<strong>in</strong>earized equations of motion for the<br />

fermions:<br />

Gaug<strong>in</strong>o:<br />

0 = 2Γ M DMχ I − 2Γ M χ I DMφ + 1<br />

2 ΓMΓ NP ψMF I NP +<br />

√<br />

2<br />

3 ΓNP λF I NP<br />

− 1<br />

4 ΓMNP χ I HMNP<br />

Dilat<strong>in</strong>o:<br />

0 = 2Γ M DMλ − 2Γ M λDMφ −<br />

√<br />

2<br />

−<br />

8 ΓMΓ NP Q ψMHNP Q<br />

√ 2<br />

3 ΓNP χ I F I NP + 1 √ 2 Γ M Γ N ψMDNφ<br />

(4.23)<br />

(4.24)


Chapter 4: Towards the Massless Spectrum of Non-Kähler <strong>Heterotic</strong><br />

Compactifications 77<br />

Gravit<strong>in</strong>o:<br />

0 = 2Γ MNP DNψP + 2Γ MP Γ N ψP DNφ + 1<br />

2 ΓNP Γ M χ I F I NP<br />

+ 1 √ Γ<br />

2 N Γ M λDNφ − 1<br />

4 ΓMNP QR ψRHNP Q − 3<br />

2 ΓNψP H MNP<br />

√<br />

2<br />

+<br />

8 ΓNP Q Γ M λHNP Q. (4.25)<br />

Strom<strong>in</strong>ger’s solution [118], <strong>and</strong> also the solution <strong>in</strong> the preced<strong>in</strong>g paper [24],<br />

trivially satisfied these equations of motion by assum<strong>in</strong>g no fermionic condensates.<br />

We are <strong>in</strong>terested <strong>in</strong> the four-dimensional effective theory, <strong>in</strong> particular the massless<br />

spectrum, aris<strong>in</strong>g from compactifications on the FSY geometry. S<strong>in</strong>ce we know we will<br />

have supersymmetry <strong>in</strong> the four-dimensional theory, we can just look for variations of<br />

the fermionic fields satisfy<strong>in</strong>g the equations of motion while hold<strong>in</strong>g the bosonic fields<br />

fixed; the massless bosonic fields will then simply be superpartners of the massless<br />

fermionic fields.<br />

There is, of course, a limitation <strong>in</strong> our methodology. We have ignored higher<br />

order α ′ corrections <strong>and</strong> a superpotential that is expected to be generated (see [18],<br />

for example)—these should lift some of the massless fields. We expect that this<br />

method will ultimately provide an upper bound to the number of massless fields, so<br />

let us proceed with it.<br />

In ten dimensions, N = 1 supersymmetry implies that we have one Majorana-<br />

Weyl sp<strong>in</strong>or supercharge. We can decompose a ten-dimensional Majorana-Weyl<br />

sp<strong>in</strong>or as<br />

ɛ (10)<br />

−<br />

= ɛ (4)<br />

− ⊗ ɛ (6)<br />

+ + ɛ (4)<br />

+ ⊗ ɛ (6)<br />

−<br />

(4.26)<br />

where ɛ (4)<br />

± are four-dimensional, charge conjugate Weyl sp<strong>in</strong>ors, while ɛ (6)<br />

± are six-


Chapter 4: Towards the Massless Spectrum of Non-Kähler <strong>Heterotic</strong><br />

Compactifications 78<br />

dimensional, charge conjugate Weyl sp<strong>in</strong>ors. We take as our convection for the ten-<br />

dimensional gamma matrices:<br />

Γ µ = γ µ ⊗ 1 <strong>and</strong> Γ m = γ5 ⊗ γ m , (4.27)<br />

where γ µ are the four-dimensional gamma matrices, γ m the six-dimensional ones,<br />

<strong>and</strong> γ5 is the four-dimensional chirality operator. The six-dimensional, H-covariantly<br />

constant sp<strong>in</strong>or η (4.6) <strong>and</strong> its charge conjugate η ∗ then satisfy γ ā η = 0 = γ a η ∗ , which<br />

<strong>in</strong> fact implies that η has positive chirality <strong>and</strong> η ∗ has negative chirality.<br />

Note that the set {η, γ a η, γ ab η, γ abc η} spans the space of six-dimensional sp<strong>in</strong>ors.<br />

The last one, γ abc η, is the only one annihilated by all the γ a ’s, so it should be pro-<br />

portional to η ∗ . In particular,<br />

η ∗ = 1<br />

√ 48 e 2φ Ωabcγ abc η (4.28)<br />

up to an overall phase. It is also true that η ∗ is H-covariantly constant, which follows<br />

by not<strong>in</strong>g that e 2φ Ωabc is H-covariantly constant.<br />

4.4.2 Count<strong>in</strong>g the Massless Gaug<strong>in</strong>os<br />

We can use (4.28) <strong>and</strong> the basis {η, γ a η, γ ab η, γ abc η} to write the most general<br />

Ansatz for the variation of the gaug<strong>in</strong>o as<br />

δχ = ɛ− ⊗ � Cη + Cabγ ab η � − ɛ+ ⊗<br />

�<br />

¯Cη ∗<br />

+ Cā ¯ ¯bγ ā¯ �<br />

b ∗<br />

η , (4.29)<br />

where C, Cab ∈ Ω ∗ (K; V ) are forms valued <strong>in</strong> some representation V of the gauge<br />

group. This is the most general form s<strong>in</strong>ce χ must be a ten-dimensional Majorana-<br />

Weyl sp<strong>in</strong>or. See appendix A of [103] for details on this.


Chapter 4: Towards the Massless Spectrum of Non-Kähler <strong>Heterotic</strong><br />

Compactifications 79<br />

When we choose a gauge bundle with structure group G <strong>and</strong> embed it <strong>in</strong> E8 × E8<br />

or SO(32), the adjo<strong>in</strong>t will decompose <strong>in</strong>to a sum of products of representations of the<br />

smaller groups. One of these terms will transform as an adjo<strong>in</strong>t of G <strong>and</strong> we will ignore<br />

variations of this term s<strong>in</strong>ce it is the one that couples to the other fermions. This<br />

simplifies our lives by allow<strong>in</strong>g us to consider the variation of the other portions of<br />

the gaug<strong>in</strong>o <strong>in</strong>dependent from the other fermions. This implies the gaug<strong>in</strong>o equation<br />

of motion takes the form<br />

0 = 2 � DaC + 4D b Cba − 4∂ b � a<br />

φCba γ η + 2(DaCbc)γ abc η, (4.30)<br />

where we recall that D is the Levi-Civita connection plus the gauge connection—see<br />

appendix B.3 for the derivation of (4.30).<br />

By rescal<strong>in</strong>g the C’s by e φ/2 , the equations take the form<br />

0 = DaC + 1<br />

2 ∂aφC + 4D b Cba − 2∂ b φCba<br />

0 = D[aCbc] + 1<br />

2 ∂[aφCbc], (4.31)<br />

or by writ<strong>in</strong>g C(0) = C <strong>and</strong> C(2) = 1<br />

2 Cabdz a ∧ dz b we can recast these equations as<br />

0 = DC(0) + 4D † C(2) <strong>and</strong> 0 = DC(2). (4.32)<br />

This def<strong>in</strong>es the differential operator D : Ω p,q (K; V ) → Ω p+1,q (K; V ), while the<br />

adjo<strong>in</strong>t is def<strong>in</strong>ed via the <strong>in</strong>ner product<br />

�<br />

(α, β) :=<br />

where α † = ¯α T takes values <strong>in</strong> the dual vector bundle to V .<br />

K<br />

α † ∧ β, (4.33)<br />

D 2 is just the (2, 0) part the curvature 2-form of the gauge bundle, which is<br />

required to be a (1, 1)-form by supersymmetry, so D 2 = 0 <strong>and</strong> similarly D †2 = 0. We


Chapter 4: Towards the Massless Spectrum of Non-Kähler <strong>Heterotic</strong><br />

Compactifications 80<br />

then f<strong>in</strong>d that<br />

0 = ∆DC(0) <strong>and</strong> 0 = ∆DC(2) (4.34)<br />

so that the C’s are D-harmonic forms. The space of solutions to (4.31) is then<br />

spanned by these forms, reduc<strong>in</strong>g the question of count<strong>in</strong>g massless gaug<strong>in</strong>o modes<br />

to the question of comput<strong>in</strong>g the dimensions of the D-cohomology groups H 0,0<br />

D (K; V )<br />

<strong>and</strong> H 2,0<br />

D (K; V ). Furthermore, s<strong>in</strong>ce the dilaton φ is cont<strong>in</strong>ous over the compact<br />

manifold K, the cohomology of e −aφ De aφ (for constant a) is the same as that of D,<br />

mean<strong>in</strong>g we can rescale the C’s to consider equations of the form DC +a(dφ)∧C = 0<br />

for any a. In particular, we can choose a to elim<strong>in</strong>ate the above φ dependence so that<br />

D will become a st<strong>and</strong>ard twisted Dolbeault operator.<br />

These cohomologies are rather abstract <strong>and</strong> we cannot simplify th<strong>in</strong>gs as <strong>in</strong> the<br />

Calabi-Yau case by embedd<strong>in</strong>g the Strom<strong>in</strong>ger connection <strong>in</strong> the gauge connection.<br />

The reason for this is that the field strength must be a (1, 1)-form by the supersym-<br />

metry constra<strong>in</strong>ts, but the Ricci 2-form will not be purely (1, 1) for the Strom<strong>in</strong>ger<br />

connection. However, we do have the simpler option of choos<strong>in</strong>g the bundle to be<br />

trivial, as expla<strong>in</strong>ed <strong>in</strong> [14]. 9 A trivial l<strong>in</strong>e bundle is semi-stable, not stable; however,<br />

this is not a problem s<strong>in</strong>ce the ma<strong>in</strong> usage of stability appears <strong>in</strong> the Donaldson-<br />

Uhlenbeck-Yau theorem, which proves the existence of a connection that yields a<br />

(1, 1) curvature form satisfy<strong>in</strong>g F a ¯ bg a¯ b = 0. In the case of a trivial bundle, these<br />

conditions are obviously met <strong>and</strong> so semi-stable will suffice.<br />

For the choice of trivial l<strong>in</strong>e bundle, the twisted cohomology problem reduces to<br />

9 There is also an example of a nontrivial gauge bundle presented <strong>in</strong> [14], along with a proof that<br />

all stable bundles over the GP manifold, K, satisfy<strong>in</strong>g Strom<strong>in</strong>ger’s system must be a bundle pulled<br />

back from the K3 tensored with a l<strong>in</strong>e bundle over K.


Chapter 4: Towards the Massless Spectrum of Non-Kähler <strong>Heterotic</strong><br />

Compactifications 81<br />

that of the ∂ operator, or if we consider the complex conjugate equations, the solutions<br />

are given by the usual Dolbeault cohomology groups H 0,0<br />

¯∂<br />

(K; C) <strong>and</strong> H0,2(K;<br />

C). As<br />

we will see <strong>in</strong> the next section, h 0,0 = 1 = h 0,2 , so for this choice of gauge group we<br />

get two massless fermions transform<strong>in</strong>g <strong>in</strong> the adjo<strong>in</strong>t of E8 × E8 or SO(32).<br />

4.4.3 A Quick Check<br />

As a check on this method, let us consider what happens <strong>in</strong> the Calabi-Yau<br />

case us<strong>in</strong>g st<strong>and</strong>ard embedd<strong>in</strong>g. Under E8 × E8 → SU(3) × E6 × E8, the adjo<strong>in</strong>t<br />

(248, 1) + (1, 248) decomposes as<br />

(1, 78, 1) + (1, 1, 248) + (8, 1, 1) + (3, 27, 1) + (¯3, 27, 1). (4.35)<br />

As mentioned earlier, we will focus on the variations of the gaug<strong>in</strong>o other than the<br />

adjo<strong>in</strong>t of SU(3), (8, 1, 1). First, the adjo<strong>in</strong>t of E6 × E8, (1, 78, 1) + (1, 1, 248), are<br />

scalars as far as the SU(3) connection is concerned, so we get h 0,0 (CY3)+h 0,2 (CY3) = 1<br />

fermion transform<strong>in</strong>g <strong>in</strong> the adjo<strong>in</strong>t of E6 × E8.<br />

For the (3, 27, 1), the equations take the form<br />

0 = DaC d + 4D b C d<br />

ba , 0 = D[aC d<br />

bc] , (4.36)<br />

where we have suppressed <strong>in</strong>dices for E6 × E8. We can use the metric to lower the<br />

holomorphic <strong>in</strong>dex d to an antiholomorphic <strong>in</strong>dex, thus leav<strong>in</strong>g us with<br />

h 1,2 (CY3) = h 1,0 (CY3) + h 1,2 (CY3) (4.37)<br />

fermions transform<strong>in</strong>g <strong>in</strong> the 27 of E6. F<strong>in</strong>ally for the (¯3, 27, 1), we have an equation<br />

similar to (4.36) except with an antiholomorphic <strong>in</strong>dex ā <strong>in</strong> place of d. Lower<strong>in</strong>g ā<br />

¯∂


Chapter 4: Towards the Massless Spectrum of Non-Kähler <strong>Heterotic</strong><br />

Compactifications 82<br />

to a holomorphic <strong>in</strong>dex us<strong>in</strong>g the metric is not useful s<strong>in</strong>ce it will not be antisymme-<br />

terized with the other <strong>in</strong>dices. However, we can contract ā with one <strong>in</strong>dex from the<br />

covariantly-constant, antiholomorphic (0, 3)-form ¯ Ω, yield<strong>in</strong>g h 2,0 (CY3) + h 2,2 (CY3) =<br />

h 1,1 (CY3) fermions transform<strong>in</strong>g <strong>in</strong> the 27 of E6. These results are <strong>in</strong> agreement with<br />

the well-known count<strong>in</strong>g of massless modes aris<strong>in</strong>g from the connection 1-form, AM.<br />

See, for example, [112].<br />

4.5 Comput<strong>in</strong>g the Hodge Diamond<br />

Goldste<strong>in</strong> <strong>and</strong> Prokushk<strong>in</strong> [70] expla<strong>in</strong>ed a method for comput<strong>in</strong>g the Hodge num-<br />

bers <strong>and</strong> used it to compute h 0,1 <strong>and</strong> h 1,0 . They showed that the Dolbeault coho-<br />

mology groups H p,q<br />

¯∂ (K) are left <strong>in</strong>variant by the actions of ∂x <strong>and</strong> ∂y, which literally<br />

means that if we move an element of H p,q<br />

¯∂ (K) around a fiber π−1 (p), p ∈ K3, the<br />

form should rema<strong>in</strong> constant. This means we can express all forms as a sum of wedge<br />

products of ρ, ¯ρ, <strong>and</strong> forms pulled back from the K3.<br />

We should note, before proceed<strong>in</strong>g, that we will restrict attention to the case<br />

where ωP <strong>and</strong> ωQ are anti-selfdual (1, 1)-forms. The construction <strong>in</strong> [70] only requires<br />

that ωP + iωQ have no (0, 2)-component <strong>and</strong> that they each have anti-selfdual (1, 1)-<br />

components. Fu <strong>and</strong> Yau restrict to GP manifolds where ωP <strong>and</strong> ωQ are (1, 1)-forms<br />

[55], so the computations that follow hold for the case considered by Fu <strong>and</strong> Yau but<br />

do not encompass all manifolds constructed by Goldste<strong>in</strong> <strong>and</strong> Prokushk<strong>in</strong>.<br />

then<br />

Let us review the computation of h 1,0 from [70] for illustration first. If ξ ∈ H 1,0<br />

¯∂ (K),<br />

ξ = (π ∗ s)ρ + π ∗ s 1,0 , (4.38)


Chapter 4: Towards the Massless Spectrum of Non-Kähler <strong>Heterotic</strong><br />

Compactifications 83<br />

where s is a function on K3 <strong>and</strong> s 1,0 is a (1, 0)-form on K3. Recall that ¯ ∂ρ =<br />

π ∗ (ωP + iωQ) <strong>and</strong> ¯ ∂ ¯ρ = 0. Thus, 0 = ¯ ∂ξ = π ∗ ( ¯ ∂s) ∧ ρ + π ∗ � s(ωP + iωQ) + ¯ ∂s 1,0� . The<br />

first term tells us ¯ ∂s = 0, which means that s must be a constant. The term pulled<br />

back from K3 tells us that s(ωP + iωQ) = − ¯ ∂s 1,0 , but s<strong>in</strong>ce ωP + iωQ is assumed to<br />

be nontrivial <strong>in</strong> the Dolbeault cohomology of K3, then the only solution to this is<br />

s = 0 <strong>and</strong> ¯ ∂s 1,0 = 0. Thus, we have the result h 1,0 (K) = h 1,0 (K3) = 0. Similarly,<br />

Goldste<strong>in</strong> <strong>and</strong> Prokushk<strong>in</strong> found h 0,1 (K) = h 0,1 (K3) + 1 = 1.<br />

Note that the Hodge theorem implies that even for non-Kähler manifolds [73]<br />

however H p,q<br />

¯∂<br />

H p,q<br />

¯∂ (K) = Hn−p,n−q ¯∂ (K) , (4.39)<br />

(K) �= Hq,p ¯∂ (K). In any event, we only have to compute some of the<br />

Hodge numbers. If ξ ∈ H 1,1<br />

¯∂ (K), then<br />

Requir<strong>in</strong>g ¯ ∂ξ = 0 implies<br />

ξ = (π ∗ s)ρ ∧ ¯ρ + ρ ∧ π ∗ s 0,1 + ¯ρ ∧ π ∗ s 1,0 + π ∗ s 1,1 . (4.40)<br />

¯∂s = 0, s(ωP + iωQ) − ¯ ∂s 1,0 = 0, ¯ ∂s 0,1 = 0,<br />

<strong>and</strong> (ωP + iωQ) ∧ s 0,1 + ¯ ∂s 1,1 = 0. (4.41)<br />

As above, we f<strong>in</strong>d: s = 0; ¯ ∂s 1,0 = 0, which then implies s 1,0 = 0 (h 1,0 (K3) = 0);<br />

<strong>and</strong> s 0,1 = ¯ ∂t (h 0,1 (K3) = 0), where t is a function on K3, which then implies<br />

s 1,1 = t 1,1 − t(ωP + iωQ), where ¯ ∂t 1,1 = 0. So we have<br />

ξ = ρ ∧ ¯ ∂π ∗ t + π ∗ � t 1,1 − t(ωP + iωQ) � = π ∗ t 1,1 − ¯ ∂ ((π ∗ t)ρ) . (4.42)<br />

This last term is exact, <strong>and</strong> π ∗ (t 1,1 + ¯ ∂u 1,0 ) = π ∗ t 1,1 + ¯ ∂π ∗ u 1,0 , so we f<strong>in</strong>d h 1,1 (K) =<br />

h 1,1 (K3) = 20.


Chapter 4: Towards the Massless Spectrum of Non-Kähler <strong>Heterotic</strong><br />

Compactifications 84<br />

Now take ξ ∈ H 2,0<br />

¯∂ (K), so we have<br />

ξ = ρ ∧ π ∗ s 1,0 + π ∗ s 2,0 . (4.43)<br />

¯∂ξ = 0 implies ¯ ∂s 1,0 = 0, so s 1,0 = 0, which <strong>in</strong> turn implies that ¯ ∂s 2,0 = 0, so<br />

s2,0 = cΩ 2,0<br />

K3 , where c is a constant <strong>and</strong> Ω2,0<br />

K3<br />

(2, 0)-form on K3. Thus, h 2,0 (K) = 1.<br />

If ξ ∈ H 0,2<br />

¯∂ (K), then<br />

is the nowhere-vanish<strong>in</strong>g, holomorphic<br />

ξ = ¯ρ ∧ π ∗ s 0,1 + π ∗ s 0,2 . (4.44)<br />

Then ¯ ∂ξ = 0 implies that ¯ ∂s 0,1 = ¯ ∂s 0,2 = 0. Shift<strong>in</strong>g s 0,1 or s 0,2 by a ¯ ∂-exact form<br />

just shifts ξ by a ¯ ∂-exact form, so h 0,2 (K) = h 0,1 (K3) + h 0,2 (K3) = 1.<br />

F<strong>in</strong>ally, suppose ξ ∈ H 1,2<br />

¯∂ (K), then<br />

Requir<strong>in</strong>g ¯ ∂ξ = 0 implies<br />

ξ = ρ ∧ ¯ρ ∧ π ∗ s 0,1 + ¯ρ ∧ π ∗ s 1,1 + ρ ∧ π ∗ s 0,2 + π ∗ s 1,2 . (4.45)<br />

¯∂s 0,1 = 0, (ωP + iωQ) ∧ s 0,1 − ¯ ∂s 1,1 = 0, ¯ ∂s 0,2 = 0,<br />

<strong>and</strong> (ωP + iωQ) ∧ s 0,2 + ¯ ∂s 1,2 = 0; (4.46)<br />

however, these last two equations are trivially true s<strong>in</strong>ce K3 is a complex 2-fold.<br />

These translate <strong>in</strong>to: s 0,1 = ¯ ∂t; s 1,1 = t 1,1 + t(ωP + iωQ), where ¯ ∂t 1,1 = 0; s 1,2 = ¯ ∂u 1,1<br />

(h 1,2 (K3) = 0); <strong>and</strong> s 0,2 = c ¯ Ω 0,2<br />

K3 + ¯ ∂t 0,1 , where ¯ Ω 0,2<br />

K3<br />

is the complex conjugate of the


Chapter 4: Towards the Massless Spectrum of Non-Kähler <strong>Heterotic</strong><br />

Compactifications 85<br />

holomorphic (2, 0)-form on K3 <strong>and</strong> c is a constant. So we have now<br />

ξ = ρ ∧ ¯ρ ∧ ¯ ∂π ∗ t + ¯ρ ∧ π ∗ t 1,1 + π ∗ (ωP + iωQ) ∧ ¯ρ(π ∗ t)<br />

+cρ ∧ π ∗ ¯ Ω 0,2<br />

K3 + ρ ∧ ¯ ∂π ∗ t 0,1 + ¯ ∂π ∗ u 1,1<br />

= ¯ ∂ ((π ∗ t)ρ ∧ ¯ρ) + ¯ρ ∧ π ∗ t 1,1 + cρ ∧ π ∗ ¯ Ω 0,2<br />

K3 − ¯ ∂ � ρ ∧ π ∗ t 0,1�<br />

+π ∗ � (ωP + iωQ) ∧ t 0,1� + ¯ ∂π ∗ u 1,1<br />

∼= ¯ρ ∧ π ∗ t 1,1 + cρ ∧ π ∗ ¯ Ω 0,2<br />

K3 + π∗ � (ωP + iωQ) ∧ t 0,1� , (4.47)<br />

where c is constant, ¯ ∂t 1,1 = 0, <strong>and</strong> ‘ ∼ =’ means equal up to ¯ ∂-exact terms (which also<br />

identifies ξ under t 1,1 → t 1,1 + ¯ ∂u 1,0 ). Notice that this last term is necessarily ¯ ∂-closed,<br />

but s<strong>in</strong>ce h 1,2 (K3) = 0, it is also ¯ ∂-exact <strong>and</strong> thus we have<br />

which implies h 1,2 (K) = h 1,1 (K3) + h 0,2 (K3) = 21.<br />

ξ ∼ = ¯ρ ∧ π ∗ t 1,1 + cρ ∧ π ∗ Ω¯ 0,2<br />

K3 , (4.48)<br />

F<strong>in</strong>ally, we know from [118] that h 3,0 (K) = 1 <strong>and</strong> we can use this to fill out the<br />

Hodge diamond:<br />

1<br />

0 1<br />

1 20 1<br />

1 21 21 1<br />

1 20 1<br />

1 0<br />

1<br />

(4.49)


Chapter 4: Towards the Massless Spectrum of Non-Kähler <strong>Heterotic</strong><br />

Compactifications 86<br />

We do not expect that for a non-Kähler manifold the Hodge numbers will add up<br />

to the Betti numbers, <strong>and</strong> <strong>in</strong>deed they do not. The Betti numbers were computed <strong>in</strong><br />

[70] us<strong>in</strong>g the Gys<strong>in</strong> sequence. For the sake of comparison they are<br />

ωQ �= nωP ωQ = nωP<br />

b0(K) 1 1<br />

b1(K) 0 1<br />

b2(K) 20 21<br />

b3(K) 42 42<br />

(4.50)<br />

for any n ∈ Z. We hope that this cohomology calculation will be useful when an <strong>in</strong>dex<br />

is found to count the number of moduli fields, but we leave this for future work.<br />

4.6 Discussion<br />

In [24] <strong>and</strong> [118], the supersymmetry constra<strong>in</strong>ts were satisfied <strong>in</strong> part by assum<strong>in</strong>g<br />

no fermionic condensates. In order to get the first image of the massless spectrum<br />

from compactification on the FSY geometry, we have counted the solutions of the<br />

variations of the gaug<strong>in</strong>o that satisfy the l<strong>in</strong>earized equations of motion from heterotic<br />

supergravity. We found they are given by the cohomology of forms valued <strong>in</strong> a vector<br />

bundle us<strong>in</strong>g the gauge connection. The ability to choose a trivial bundle relies on<br />

c2(T K) = 0, which is true for the GP manifold. Tak<strong>in</strong>g the gauge bundle to be trivial<br />

allowed us to relate the twisted Dolbeault cohomology to the ord<strong>in</strong>ary Dolbeault<br />

cohomology of the GP manifold, which we then computed.<br />

This count<strong>in</strong>g is far from a full treatment of the effective action or even the<br />

massless spectrum result<strong>in</strong>g from compactification on the FSY geometry. First of


Chapter 4: Towards the Massless Spectrum of Non-Kähler <strong>Heterotic</strong><br />

Compactifications 87<br />

all, one must <strong>in</strong>clude the new light modes aris<strong>in</strong>g from toroidal compactifications.<br />

After <strong>in</strong>clud<strong>in</strong>g these new fields, one way to get an upper bound on the number of<br />

massless fields would be to count the solutions of the variations of all the fermions<br />

that satisfy the l<strong>in</strong>earized equations of motion. Unfortunately, these are complicated,<br />

coupled differential equations <strong>and</strong> perhaps no simpler to solve than other potential<br />

methods for address<strong>in</strong>g aspects of the effective action, such as try<strong>in</strong>g to underst<strong>and</strong><br />

the moduli space of FSY geometries. 10 The reason we expect this to give only an<br />

upper bound is because we have ignored quartic fermionic terms <strong>in</strong> the action, higher<br />

order α ′ corrections, <strong>and</strong> a conjectured superpotential (see [18], for example), all of<br />

which we expect to impose additional constra<strong>in</strong>ts <strong>and</strong> decrease the number of true<br />

massless fields.<br />

There are many excit<strong>in</strong>g topics yet to be explored <strong>in</strong> the realm of torsional com-<br />

pactifications of the heterotic str<strong>in</strong>g, the four-dimensional effective action be<strong>in</strong>g one<br />

of the ultimate goals. The moduli space would also be <strong>in</strong>terest<strong>in</strong>g s<strong>in</strong>ce we expect<br />

that the <strong>in</strong>clusion of flux <strong>in</strong> the heterotic theory will lift most of the moduli that we<br />

have <strong>in</strong> Calabi-Yau compactifications. Underst<strong>and</strong><strong>in</strong>g the moduli space could then<br />

help <strong>in</strong> underst<strong>and</strong><strong>in</strong>g the four-dimensional effective action. It would also be <strong>in</strong>ter-<br />

est<strong>in</strong>g to be able to compare the effective action for these heterotic compactifications<br />

to the type IIB dual that was studied <strong>in</strong> [52]. S<strong>in</strong>ce the FSY geometry is the first<br />

smooth construction satisfy<strong>in</strong>g the N = 1 supersymmetry constra<strong>in</strong>ts derived from<br />

the supergravity approximation, 11 the time is ripe for study<strong>in</strong>g flux compactifications<br />

10 For example, <strong>in</strong> [17] the authors explored variations of the supersymmetry constra<strong>in</strong>ts under a<br />

set of simplify<strong>in</strong>g assumptions.<br />

11 An orbifold limit of a torsional T 2 bundle over K3 was considered <strong>in</strong> [39] by duality chas<strong>in</strong>g.


Chapter 4: Towards the Massless Spectrum of Non-Kähler <strong>Heterotic</strong><br />

Compactifications 88<br />

of the heterotic str<strong>in</strong>g; we hope the reader has ga<strong>in</strong>ed some <strong>in</strong>terest <strong>in</strong> study<strong>in</strong>g these<br />

partially-forgotten topics!


Chapter 5<br />

L<strong>in</strong>ear Models for Flux Vacua<br />

5.1 Introduction<br />

It is a beautiful <strong>and</strong> frustrat<strong>in</strong>g fact of life that Calabi-Yaus have <strong>in</strong>terest<strong>in</strong>g mod-<br />

uli spaces. On the one h<strong>and</strong>, the topology <strong>and</strong> geometry of their moduli spaces govern<br />

the low-energy physics of str<strong>in</strong>g theory compactified on a Calabi-Yau, so underst<strong>and</strong>-<br />

<strong>in</strong>g their structure teaches us about four-dimensional str<strong>in</strong>gy physics. On the other,<br />

the result<strong>in</strong>g massless scalars are a phenomenological disaster.<br />

Dodg<strong>in</strong>g this bullet has proven surpris<strong>in</strong>gly difficult. At the level of type II su-<br />

pergravity, beautiful work of KKLT <strong>and</strong> others 1 demonstrates that a judicious choice<br />

of fluxes <strong>and</strong> branes wrapp<strong>in</strong>g suitable cycles <strong>in</strong> a fiducial Calabi-Yau can generate a<br />

scalar potential which fixes all moduli of the underly<strong>in</strong>g CY. However, s<strong>in</strong>ce these type<br />

II flux vacua necessarily <strong>in</strong>volve RR fluxes <strong>and</strong> other effects which are not amenable<br />

1 See <strong>in</strong> particular [105, 76, 89, 88] for foundational work, <strong>and</strong> [48] for a complete review <strong>and</strong><br />

further references.<br />

89


Chapter 5: L<strong>in</strong>ear Models for Flux Vacua 90<br />

to worldsheet analysis, it is difficult to construct a microscopic description for them,<br />

<strong>and</strong> a sufficiently hard-nosed physicist could rationally wonder whether these vacua,<br />

<strong>in</strong> fact, exist.<br />

Duality provides a powerful h<strong>in</strong>t. For a large class of flux vacua, such as the<br />

KST models of [89], there exists [16] a duality frame <strong>in</strong>volv<strong>in</strong>g a heterotic compact-<br />

ification on a non-Kähler manifold of SU(3)-structure with non-trivial gauge <strong>and</strong><br />

NS-NS 3-form flux, H�=0, all of which is <strong>in</strong> pr<strong>in</strong>ciple amenable to worldsheet analysis.<br />

A microscopic description of heterotic flux vacua would thus provide a microscopic<br />

description of the dual KST vacua.<br />

Of course, there are excellent reasons that most work has focused on Kähler com-<br />

pactifications, which necessarily have H = 0. In particular, only for Kähler manifolds<br />

does Yau’s Theorem ensure the existence of solutions to the tree-level supergravity<br />

equations; the beautiful results of Gross & Witten [74] <strong>and</strong> Nemachamsky & Sen [110]<br />

then ensure that these classical solutions extend smoothly to solutions of the exact<br />

str<strong>in</strong>g-corrected equations. When H �= 0, the story is much more complicated, due<br />

<strong>in</strong> part to the absence of effective computational tools analogous to Hodge theory or<br />

special geometry for non-Kähler manifolds, <strong>and</strong> <strong>in</strong> part to the tremendous analytic<br />

complexity of the Bianchi identity,<br />

dH = α ′ (trR ∧ R − TrF ∧ F ) . (5.1)<br />

Indeed, twenty years passed between Strom<strong>in</strong>ger’s geometric statement of the super-<br />

symmetry constra<strong>in</strong>ts [118] <strong>and</strong> the proof by Fu <strong>and</strong> Yau of the existence of a class<br />

of solutions to these lead<strong>in</strong>g-order equations [55]. Moreover, s<strong>in</strong>ce the Bianchi iden-<br />

tity scales <strong>in</strong>homogeneously with the global conformal mode, any solution has total


Chapter 5: L<strong>in</strong>ear Models for Flux Vacua 91<br />

volume-modulus fixed near the str<strong>in</strong>g scale, so such compactifications can not be de-<br />

scribed by conventional, weakly-coupled NLSMs. Whether these Fu-Yau solutions,<br />

like Calabi-Yaus, can be smoothly extended to solutions of the exact str<strong>in</strong>g equations<br />

has thus rema<strong>in</strong>ed very much unclear.<br />

The purpose of this chapter is to develop tools with which to study heterotic<br />

compactifications with non-vanish<strong>in</strong>g H, i.e. holomorphic vector bundles over non-<br />

Kähler manifolds with <strong>in</strong>tr<strong>in</strong>sic torsion satisfy<strong>in</strong>g (5.1). Motivated by Fu <strong>and</strong> Yau,<br />

we focus on torus bundles over Kähler bases, T m → X → S, with gauge bundle VX<br />

<strong>and</strong> NS-NS flux H turned on over the total space X. When m = 2 <strong>and</strong> S = K3, this<br />

is precisely the Fu-Yau compactification. 2<br />

Our strategy closely parallels the familiar gauged l<strong>in</strong>ear sigma model (GLSM)<br />

approach to Calabi-Yau compactifications [124]: we build a massive 2d gauge theory<br />

which flows <strong>in</strong> the IR to an <strong>in</strong>teract<strong>in</strong>g CFT with all the properties that we expect<br />

of a Fu-Yau compactification. In the Calabi-Yau case, the GLSM flows to a NLSM<br />

whose large-radius limit is the chosen Calabi-Yau. This is not possible <strong>in</strong> the Fu-Yau<br />

case as no large-radius limit exists; however, the classical moduli space of the one-loop<br />

effective potential of our GLSM will precisely reproduce the Fu-Yau geometry. We<br />

thus take the CFT to which our torsion l<strong>in</strong>ear sigma model (TLSM) flows to provide<br />

a microscopic def<strong>in</strong>ition of the Fu-Yau compactification.<br />

A central <strong>in</strong>gredient <strong>in</strong> these models is a two-dimensional implementation of the<br />

Green-Schwarz mechanism. The ch2(TS) − ch2(VS) anomaly of a (0, 2) nonl<strong>in</strong>ear<br />

2 While we refer to these geometries as Fu-Yau geometries, it should be emphasized that Strom<strong>in</strong>ger’s<br />

elaboration of the precise equations to be solved was crucial to the eventual construction<br />

of solutions by Fu <strong>and</strong> Yau, as well as to earlier studies of the underly<strong>in</strong>g manifolds by Goldste<strong>in</strong><br />

<strong>and</strong> Prokushk<strong>in</strong> [70].


Chapter 5: L<strong>in</strong>ear Models for Flux Vacua 92<br />

sigma model on VS → S is conta<strong>in</strong>ed 3 <strong>in</strong> the gauge anomaly of (0, 2) GLSMs for S. In<br />

compactifications with <strong>in</strong>tr<strong>in</strong>sic torsion, this sum does not vanish even <strong>in</strong> cohomology.<br />

To restore gauge <strong>in</strong>variance, we <strong>in</strong>troduce a novel (0, 2) multiplet conta<strong>in</strong><strong>in</strong>g a doublet<br />

of axions whose gauge variation precisely cancels the gauge anomaly. The one-loop<br />

geometry of the result<strong>in</strong>g model is easily seen to be a T 2 fibration X over the Calabi-<br />

Yau S – a Fu-Yau geometry – with the anomaly cancellation conditions of the TLSM<br />

reproduc<strong>in</strong>g the conditions for the existence of a solution to the Bianchi identity.<br />

Crucial to our construction is a manifest (0, 2) supersymmetry with non-anomalous<br />

R-current <strong>and</strong> a non-anomalous left-mov<strong>in</strong>g U(1). These ensure the perturbative non-<br />

renormalization of the superpotential <strong>and</strong> are necessary for the existence of a chiral<br />

GSO projection. The worry, as usual <strong>in</strong> a (0, 2) theory, is that worldsheet <strong>in</strong>stantons<br />

may generate a non-perturbative superpotential [43, 44]. The power of a gauged l<strong>in</strong>-<br />

ear description is that the moduli space of worldsheet <strong>in</strong>stantons is embedded with<strong>in</strong><br />

the moduli space of gauge theory <strong>in</strong>stantons, which is manifestly compact; without<br />

a direction along which to get an IR divergence, it is thus impossible to generate<br />

the poles required for the generation of a spacetime superpotential[117, 11]. Such<br />

arguments have been used to rigorously forbid the existence of non-perturbative su-<br />

perpotentials for (0, 2) gauged l<strong>in</strong>ear sigma models of Calabi-Yau geometries; while<br />

some technical details differ so that we cannot present a direct proof, these results<br />

appear to extend unproblematically to our torsion l<strong>in</strong>ear models.<br />

Along the way we will construct a number of (2, 2) TLSMs for generalized Kähler<br />

geometries, <strong>in</strong>clud<strong>in</strong>g non-compact models built out of chiral <strong>and</strong> twisted chiral mul-<br />

3 In fact, this is a somewhat subtle story, as we shall elaborate below.


Chapter 5: L<strong>in</strong>ear Models for Flux Vacua 93<br />

tiplets <strong>and</strong> more <strong>in</strong>tricate models <strong>in</strong> which we gauge chiral currents built out of<br />

semi-chiral multiplets. While not our ma<strong>in</strong> <strong>in</strong>terest <strong>in</strong> this chapter, these models pro-<br />

vide useful guidance <strong>in</strong> our construction of (0, 2) models with torsion <strong>and</strong> are worth<br />

study<strong>in</strong>g on their own merits.<br />

This chapter is a brief <strong>in</strong>troduction to the structure of torsion l<strong>in</strong>ear sigma models,<br />

focus<strong>in</strong>g on a few basic results <strong>and</strong> proofs-of-pr<strong>in</strong>ciple. A self-conta<strong>in</strong>ed follow-up<br />

<strong>in</strong>clud<strong>in</strong>g examples <strong>and</strong> details omitted below is <strong>in</strong> preparation.<br />

5.2 Torsion <strong>in</strong> (2, 2) GLSMs<br />

While a number of (2, 2) gauged l<strong>in</strong>ear sigma models with non-trivial NS-NS flux<br />

have been studied <strong>in</strong> the literature – most notably the (4,4) H-monopole GLSM<br />

[123] – the structure of general models has received relatively little attention. In this<br />

section, we will review the <strong>in</strong>corporation of NS-NS flux <strong>in</strong>to (2, 2) models, emphasiz<strong>in</strong>g<br />

features which will generalize to the more complicated (0, 2) examples studied below.<br />

A more complete discussion of the rich structure of general (2, 2) torsion will be<br />

addressed elsewhere.<br />

Let us start with a st<strong>and</strong>ard (2, 2) GLSM for some toric variety V built out of chiral<br />

<strong>and</strong> vector supermultiplets. The IR geometry of such models is necessarily Kähler.<br />

What we seek is a way to <strong>in</strong>troduce non-trivial H = dB �= 0 <strong>in</strong>to a st<strong>and</strong>ard (2, 2)<br />

GLSM. S<strong>in</strong>ce H is an obstruction to Kählerity, we are also look<strong>in</strong>g for a construction<br />

of non-Kähler geometries via (2, 2) GLSMs. It has long been known that sigma models<br />

built entirely out of chiral multiplets are necessarily Kähler [62], so we would seem to<br />

need to <strong>in</strong>troduce non-chiral multiplets. However, s<strong>in</strong>ce a (2, 2) gauge field m<strong>in</strong>imally


Chapter 5: L<strong>in</strong>ear Models for Flux Vacua 94<br />

coupled to chiral multiplets cannot be m<strong>in</strong>imally coupled to twisted chirals while<br />

preserv<strong>in</strong>g (2, 2), there would seem to be a no-go argument forbidd<strong>in</strong>g m<strong>in</strong>imally-<br />

coupled GLSMs for non-Kähler geometries with non-vanish<strong>in</strong>g H.<br />

As is often the case, this no-go statement tells us exactly where to go. Recall<br />

that B appears <strong>in</strong> the GLSM through the imag<strong>in</strong>ary parts of the complexified FI<br />

parameters t a = r a + iθ a appear<strong>in</strong>g <strong>in</strong> the twisted chiral superpotential,<br />

− 1<br />

2 √ �<br />

2<br />

d 2˜ θ t a Σa + h.c. = − r a Da + 2θ a v+−a.<br />

More precisely, t a are the restriction of the complexified Kahler class J = J+iB to the<br />

hyperplane classes Ha ∈ H 2 (V ) correspond<strong>in</strong>g to the gauge fields Σa, i.e. B = θ a Ha.<br />

To get H �= 0 we must promote some of the θ a , say m of them, to dynamical fields.<br />

Note that this adds dimensions to the geometry, so we are no longer work<strong>in</strong>g with a<br />

sigma model on V , but with a geometry with local product structure V × (S 1 ) m .<br />

For the moment, consider promot<strong>in</strong>g a s<strong>in</strong>gle FI parameter to a dynamical field.<br />

S<strong>in</strong>ce the FI parameter appears <strong>in</strong> the twisted chiral superpotential, (2, 2) supersym-<br />

metry requires that it be promoted to a twisted chiral multiplet Y with action<br />

a N<br />

−<br />

2 √ �<br />

2<br />

d 2˜ θ Y Σa + h.c. − 1<br />

�<br />

8<br />

d 4 θ k 2 (Y + Y ) 2<br />

= −k 2 [(∂r) 2 + (∂θ) 2 ] − N a [rDa − 2θ v+−a] + ... (5.2)<br />

where k ∈ R <strong>and</strong> y = r + iθ ∈ C ∗ is the scalar component of Y . The geometry is thus<br />

a complex manifold with local product structure, W ∼ V × C ∗ , <strong>and</strong> NS-NS potential<br />

B = θN a Ha on the total space W that is no longer closed,<br />

H = dθ ∧ N a Ha �= 0.


Chapter 5: L<strong>in</strong>ear Models for Flux Vacua 95<br />

The result<strong>in</strong>g IR geometry is non-Kähler, evad<strong>in</strong>g the no-go statement above by cou-<br />

pl<strong>in</strong>g the gauge supermultiplet m<strong>in</strong>imally to chirals <strong>and</strong> axially to twisted chirals.<br />

Note that the resultant H-flux has two legs along V <strong>and</strong> one along the S 1 coord<strong>in</strong>a-<br />

tized by θ. Note, too, that this is precisely the form of the relevant coupl<strong>in</strong>gs <strong>in</strong> the<br />

(4,4) H-monopole GLSM.<br />

In some sense, what we have done by promot<strong>in</strong>g the FI parameter/Kähler modulus<br />

t to a dynamical field Y is to take the variety V <strong>and</strong> construct a new variety W as a<br />

fibration of V over a complex l<strong>in</strong>e <strong>in</strong> the Kähler moduli space of V . This should give<br />

us pause; the moduli space <strong>in</strong>cludes po<strong>in</strong>ts where the orig<strong>in</strong>al variety V goes s<strong>in</strong>gular,<br />

so this fibration is degenerate. How do we know that the total space of the fibration<br />

is, <strong>in</strong> fact, smooth?<br />

Consider, for example, the resolved conifold F = xy − wz − r = 0 <strong>in</strong> C 4 , <strong>and</strong> let<br />

W be the fibration of the conifold over the complex l<strong>in</strong>e r. The po<strong>in</strong>t r = 0 is a very<br />

s<strong>in</strong>gular po<strong>in</strong>t – even the CFT is s<strong>in</strong>gular – <strong>and</strong> it is natural to wonder if W is s<strong>in</strong>gular<br />

at r = 0. In fact, it is straightforward to see that W is completely well behaved at<br />

r = 0. Like V , W is the vanish<strong>in</strong>g locus of F , now viewed as a function on C 5 .<br />

However, s<strong>in</strong>ce ∂rF = −1, F is strictly transverse, so the hypersurface W = F −1 (0)<br />

is everywhere smooth. By virtue of the l<strong>in</strong>ear nature of the axial coupl<strong>in</strong>g, a similar<br />

result can be argued to obta<strong>in</strong> for all (2, 2) models <strong>in</strong> which the FI parameter is<br />

promoted to a dynamical field.<br />

T-dualiz<strong>in</strong>g the dynamical FI parameter is reveal<strong>in</strong>g. Consider a GLSM with<br />

gauge group U(1) s , (N + s) chirals ΦI, <strong>and</strong> m axially coupled twisted chirals, Yl, with


Chapter 5: L<strong>in</strong>ear Models for Flux Vacua 96<br />

Lagrangian,<br />

�<br />

L = d 4 �<br />

θ − 1<br />

4e2 ΣaΣa +<br />

a<br />

1<br />

4 ΦIe 2Qa I Va ΦI − 1<br />

8 k2 l (Y l + Yl) 2<br />

�<br />

− 1<br />

2 √ �<br />

d<br />

2<br />

2˜ a<br />

θ Ml YlΣa + h.c.<br />

Dualiz<strong>in</strong>g all the twisted chirals Yl <strong>in</strong>to chiral multiplets Pl results <strong>in</strong> a simple model,<br />

�<br />

˜L =<br />

d 4 θ<br />

�<br />

− 1<br />

4e2 ΣaΣa +<br />

a<br />

1<br />

4 ΦIe 2Qa I Va ΦI + 1<br />

8k2 (P l + Pl + 2M<br />

l<br />

a l Va) 2<br />

�<br />

.<br />

All matter fields are now chiral, so the classical moduli space is automatically Kähler.<br />

But with which Kähler metric, on which space? We can clearly eat the imag<strong>in</strong>ary<br />

component of all m fields Pl to make m of the gauge fields massive (provided s ≥ m),<br />

<strong>and</strong> use their real components to solve m of the D-terms. However, <strong>in</strong>tegrat<strong>in</strong>g out<br />

the massive vectors <strong>and</strong> scalars deforms the Kähler potential for the (N +s) ΦIs. The<br />

surviv<strong>in</strong>g (s−m) gauge fields then effect a Kähler quotient of C N+s , but now start<strong>in</strong>g<br />

with a deformed Kähler structure. The IR geometry is thus an N + m dimensional<br />

variety whose topology is controlled by the charges Q a I of the ΦI under the surviv<strong>in</strong>g<br />

gauge fields but with deformed Kähler structure[82]. This can be used to construct<br />

GLSMs for, say, squashed spheres. T-dualiz<strong>in</strong>g with this squashed metric then gives<br />

non-trivial B, which was what we found above.<br />

It is fun to note <strong>in</strong> pass<strong>in</strong>g that we could just as well have dualized the chiral<br />

multiplets <strong>in</strong> our torsion model to get a theory of only twisted chiral multiplets, all<br />

axially coupled to an otherwise free gauge multiplet. As emphasized by Morrison &<br />

Plesser [107] <strong>and</strong> by Hori & Vafa [83], the result<strong>in</strong>g theory has a non-perturbative<br />

superpotential of the form W = e −ZI , where ZI are the twisted chirals dual to the<br />

orig<strong>in</strong>al ΦI. The result<strong>in</strong>g theories end up look<strong>in</strong>g like complicated generalizations of<br />

Liouville theories coupled to a host of scalars.


Chapter 5: L<strong>in</strong>ear Models for Flux Vacua 97<br />

Go<strong>in</strong>g back to our strategy of axially coupl<strong>in</strong>g twisted chirals to the gauge mul-<br />

tiplets of a chiral GLSM, <strong>and</strong> vice versa, a little play leads us to the very general<br />

form,<br />

�<br />

L = LV (Φ, Σ) + LW (Y, S) +<br />

d 2˜<br />

�<br />

θ ΣG(Y ) +<br />

d 2 θ SF (Φ) + h.c.,<br />

where LV,W are the Lagrangians for st<strong>and</strong>ard chiral (twisted chiral) GLSMs on V<br />

(W ), F <strong>and</strong> G are gauge <strong>in</strong>variant analytic functions of the chiral <strong>and</strong> twisted chiral<br />

fields, repectively, <strong>and</strong> S is the chiral field-strength of the gauge field <strong>in</strong> LW . The<br />

result<strong>in</strong>g geometry has an obvious local product structure, M ∼ V ×W , but is globally<br />

non-trivial – this is a simple extension of the fibration structure discussed above. One<br />

annoy<strong>in</strong>g feature of all such models is that any model of this form, which has trivial<br />

one-loop runn<strong>in</strong>g of the D-term (i.e. all the Ricci-flat manifolds), appears to be, at<br />

first blush, non-compact: it is simply impossible to build a non-trivial coupl<strong>in</strong>g of this<br />

form when V <strong>and</strong> W are both compact Calabi-Yaus. Someth<strong>in</strong>g rema<strong>in</strong>s miss<strong>in</strong>g.<br />

Note that the models described above evaded the “no-go” statement by coupl<strong>in</strong>g<br />

a (2, 2) vector m<strong>in</strong>imally to chiral matter <strong>and</strong> axially to twisted chirals or vice vera.<br />

While these models have a particularly simple presentation, they are by no means<br />

the most general (2, 2) models one can construct – <strong>in</strong> particular, there are many<br />

more representations than simply chiral <strong>and</strong> twisted chiral. In fact, as has only<br />

recently been proven[99], the most general off-shell (2, 2) NLSM can only be written<br />

by <strong>in</strong>clud<strong>in</strong>g semi-chiral multiplets anihilated by a s<strong>in</strong>gle supercharge. It is reasonable<br />

to ask if the same is true of GLSMs.<br />

As it turns out, a large class of generalized geometries [80, 75] only admit gauged<br />

l<strong>in</strong>ear descriptions us<strong>in</strong>g semi-chiral superfields. Suppose we want to couple a (2, 2)


Chapter 5: L<strong>in</strong>ear Models for Flux Vacua 98<br />

gauge field to a conserved current; of necessity, that current must be either a chiral or<br />

a twisted chiral current. However, the matter fields which appear <strong>in</strong> the current do<br />

not have to be chiral or twisted chiral, only the total current is so constra<strong>in</strong>ed. This<br />

suggests a simple strategy for construct<strong>in</strong>g a (2, 2) GLSM out of semi-chiral fields:<br />

beg<strong>in</strong> with a theory of free semi-chiral fields <strong>and</strong> identify a chiral isometry of this<br />

free theory under which the semi-chiral matter fields rotate by a chiral phase. Then,<br />

couple the associated current to a canonical (2, 2) gauge supermultiplet. The result<br />

is a manifestly (2, 2) GLSM which, <strong>in</strong> general, does not reduce to a theory of chirals.<br />

There are many fun (2, 2) torsion l<strong>in</strong>ear sigma models one can build, with <strong>in</strong>ter-<br />

est<strong>in</strong>g geometric <strong>and</strong> algebraic properties, but our <strong>in</strong>terests <strong>in</strong> this note lie with the<br />

heterotic str<strong>in</strong>g, so we now turn to (0, 2) models, leav<strong>in</strong>g a thorough discussion of the<br />

(2, 2) case (<strong>and</strong> the <strong>in</strong>trigu<strong>in</strong>g lim<strong>in</strong>al (1, 2) case) to another publication.<br />

5.3 Non-Compact (0, 2) Models <strong>and</strong> the Bianchi<br />

Identity<br />

Suppose we are h<strong>and</strong>ed a well-behaved (0, 2) GLSM for a vector bundle VS over<br />

some happy Kähler manifold S. The FI parameters of the GLSM, t a , parameterize<br />

some of the complexified Kähler moduli of S. As <strong>in</strong> the (2, 2) cases discussed above,<br />

<strong>in</strong>troduc<strong>in</strong>g non-trivial H <strong>in</strong>to this (0, 2) GLSM is a simple matter of promot<strong>in</strong>g<br />

some subset of the FI parameters t a to dynamical fields Yl=1...m <strong>in</strong> the GLSM. The<br />

FI coupl<strong>in</strong>g <strong>in</strong> a (0, 2) model is aga<strong>in</strong> a superpotential <strong>in</strong>teraction, so the requisite


Chapter 5: L<strong>in</strong>ear Models for Flux Vacua 99<br />

promotion is<br />

�<br />

i<br />

4<br />

dθ + t a Υa + h.c. → i<br />

�<br />

4<br />

where yl = rl + iθl ∈ C ∗ , <strong>and</strong> with N a l<br />

This results <strong>in</strong> non-trivial NS-NS 3-form flux,<br />

dθ + N a �<br />

l YlΥa + h.c. − i<br />

d 2 θ Y l∂−Yl<br />

∈ Z to ensure s<strong>in</strong>gle-valuedness of the action.<br />

B = N a l θlHa ⇒ H = N a l dθl ∧ Ha,<br />

not on S, but on a non-compact fibration (C ∗ ) m → � X → S, with H hav<strong>in</strong>g two legs<br />

along S <strong>and</strong> one along the fibre. (Here, Ha is the a th hyperplane class on S.)<br />

This model has two major limitations. First <strong>and</strong> foremost is the fact that the<br />

Bianchi identity is solved rather trivially: dH = 0 by construction, s<strong>in</strong>ce both dθl<br />

<strong>and</strong> Ha lift trivially to closed forms on the total space of the (C ∗ ) m -fibration, � X.<br />

What we are after is an <strong>in</strong>terest<strong>in</strong>g solution to the Bianchi identity. Secondly, the<br />

classical moduli space, � X, is non-compact. S<strong>in</strong>ce the non-compactness is due to the<br />

unconstra<strong>in</strong>ed real part of the dynamical FI parameters, we might try to simply<br />

lift them, leav<strong>in</strong>g the imag<strong>in</strong>ary part dynamical as required for non-trivial H-flux. 4<br />

Unfortunately, this explicitly breaks (0, 2) supersymmetry. In the rema<strong>in</strong>der of this<br />

section we will focus on correct<strong>in</strong>g the triviality of the Bianchi identity – the thorny<br />

problem of compactification we defer to the next section.<br />

To beg<strong>in</strong>, note a curious difference from the (2, 2) case above. In a (0, 2) gauge<br />

theory, the FI parameter does not appear <strong>in</strong> a twisted chiral superpotential – <strong>in</strong>deed,<br />

there is no twisted chiral representation of (0, 2) – but <strong>in</strong> a chiral superpotential,<br />

4 Indeed, this is what happens <strong>in</strong> the Goldste<strong>in</strong>-Prokushk<strong>in</strong> construction [70], whose compact<br />

non-Kähler manifolds arise as the unit-circle sub-bundles of two C ∗ -bundles over a base Calabi-Yau,<br />

as described further <strong>in</strong> appendix C.2.


Chapter 5: L<strong>in</strong>ear Models for Flux Vacua 100<br />

so the dynamical FI parameters <strong>in</strong> a (0, 2) theory are chiral, just like the m<strong>in</strong>imally<br />

coupled scalars. This raises an <strong>in</strong>terest<strong>in</strong>g possibility: s<strong>in</strong>ce supersymmetry no longer<br />

forbids the m<strong>in</strong>imal coupl<strong>in</strong>g of the gauge fields to the Yl, we can couple Yl both<br />

axially <strong>and</strong> m<strong>in</strong>imally <strong>in</strong> a completely supersymmetric fashion:<br />

L = − 1<br />

�<br />

2<br />

where the M a l<br />

d 2 θ (Y l + Yl + 2M a l V+a)(i∂−[Yl − Y l] − M a l V−a) + i<br />

�<br />

4<br />

dθ + N a l YlΥa + h.c.,<br />

are <strong>in</strong>tegers (we will discuss their quantization later). Unfortunately,<br />

under a gauge transformation Yl → Yl − iM b l Λb, the superpotential transforms as<br />

δΛL = 1<br />

�<br />

4<br />

dθ + M b l N a l ΛbΥa + h.c.,<br />

which is not a total derivative, so this Lagrangian does not appear to be terribly<br />

useful.<br />

However, this gauge variation has the familiar form of the gauge anomaly of a<br />

(0, 2) GLSM. Consider a GLSM for a holomorphic vector bundle VS over a Calabi-<br />

Yau base, S, built out of chiral superfields ΦI <strong>and</strong> fermi superfields Γm (see appendix<br />

C.1 for conventions). While the classical Lagrangian is manifestly gauge <strong>in</strong>variant,<br />

the measure generically suffers from a set of one-loop exact chiral gauge anomalies 5<br />

of the form<br />

D[Φ, Γ]<br />

�<br />

δΛ<br />

−→ D[Φ, Γ] exp − iAab<br />

�<br />

8π<br />

d 2 ��<br />

y<br />

dθ + ��<br />

ΛbΥa + h.c. ,<br />

where A ab is a quadratic form built out of the gauge charges Q a I <strong>and</strong> qa m<br />

of the right-<br />

5 Such gauge anomalies are strictly absent <strong>in</strong> (2, 2) models, where left- <strong>and</strong> right-h<strong>and</strong>ed fermions<br />

are paired up <strong>in</strong> (2, 2) chiral multiplets to give an overall non-chiral theory; <strong>in</strong> a (0, 2) model, by<br />

contrast, left- <strong>and</strong> right-mov<strong>in</strong>g fermions transform <strong>in</strong> different supersymmetry multiplets <strong>and</strong> may<br />

thus transform differently under the gauge symmetry, lead<strong>in</strong>g to the gauge anomaly advertised above.


Chapter 5: L<strong>in</strong>ear Models for Flux Vacua 101<br />

<strong>and</strong> left-mov<strong>in</strong>g fermions,<br />

A ab = �<br />

I<br />

Q a I Qb I<br />

− �<br />

m<br />

q a mqb m . (5.3)<br />

This can be easily derived by exam<strong>in</strong><strong>in</strong>g the loop diagram with two external gauge<br />

bosons. This anomaly, a familiar feature of (0, 2) GLSM build<strong>in</strong>g, has a natural<br />

geometric <strong>in</strong>terpretation. Recall that the right-h<strong>and</strong>ed fermions transform as sections<br />

of a sheaf FV over the ambient toric variety V which restricts over S to the tangent<br />

bundle, TS. Meanwhile, the left-h<strong>and</strong>ed fermions transform as sections of a sheaf VV<br />

which restricts to the gauge bundle, VS. The gauge anomaly measures<br />

A ∝ ch2(FV ) − ch2(VV ).<br />

S<strong>in</strong>ce the Bianchi identity is just the restriction of A to S, the vanish<strong>in</strong>g of the gauge<br />

anomaly 6 ensures that the IR NLSM satisfies the heterotic Bianchi identity with<br />

dH = 0. This connection will be better explored <strong>in</strong> section 5.4.3.<br />

These two effects – the gauge variance of the classical action <strong>and</strong> the one-loop<br />

gauge anomaly – dovetail beautifully. Consider a GLSM for VS → S with ch2(TS) �=<br />

ch2(VS). On its own, this model is anomalous. Now promote some subset of FI<br />

parameters to dynamical fields Yl with axial coupl<strong>in</strong>gs N a l <strong>and</strong> charges M a l<br />

a gauge variation, the effective action (Seff = 1<br />

4π<br />

. Under<br />

� d 2 y Leff ) picks up classical terms<br />

6 Note that the gauge anomaly may fail to vanish even when the classical moduli space of the<br />

GLSM has vanish<strong>in</strong>g ch2 anomaly. For example, consider a (0, 2) model for an elliptic curve <strong>in</strong><br />

P 2 with trivial left-mov<strong>in</strong>g bundle. A NLSM on an elliptic curve cannot have a ch2 anomaly –<br />

nonetheless, the GLSM has a gauge anomaly. What is go<strong>in</strong>g on? The po<strong>in</strong>t is that the gauge<br />

anomaly computes the non-vanish<strong>in</strong>g self-<strong>in</strong>tersection number of the hyperplane class <strong>in</strong> P 2 , an<br />

<strong>in</strong>tersection which does not restrict to the hypersurface (<strong>in</strong>deed, there is no four-cohomology on<br />

T 2 ). This is a somewhat familiar fact <strong>in</strong> (0, 2) model build<strong>in</strong>g: many geometries for which a NLSM<br />

analysis is perfectly consistent do not seem to admit GLSM descriptions due to uncanceled gauge<br />

anomalies.


Chapter 5: L<strong>in</strong>ear Models for Flux Vacua 102<br />

from the axions <strong>and</strong> one-loop terms from the anomaly,<br />

δΛLeff = 1<br />

�<br />

2<br />

dθ +<br />

�<br />

1<br />

2 M b l N a l − QaI QbI + qa mqb �<br />

m ΛbΥa + h.c. .<br />

Thus, for every solution of the Diophant<strong>in</strong>e equation<br />

1<br />

2<br />

�<br />

l<br />

M b l N a l<br />

= �<br />

I<br />

Q a I Qb I<br />

− �<br />

m<br />

q a m qb m<br />

(5.4)<br />

we have a non-anomalous (0, 2) quantum field theory. S<strong>in</strong>ce the superpotential of<br />

this (0, 2) theory is not renormalized beyond one loop <strong>in</strong> perturbation theory, <strong>and</strong><br />

s<strong>in</strong>ce the anomaly is one-loop exact, the path <strong>in</strong>tegral rema<strong>in</strong>s gauge <strong>in</strong>variant to all<br />

orders <strong>in</strong> perturbation theory. 7 Note that the ch2 anomaly <strong>in</strong> the NLSM is also one-<br />

loop exact. We shall refer to a (0, 2) GLSM which implements the above cancellation<br />

mechanism as a torsion l<strong>in</strong>ear sigma model (TLSM).<br />

Notice what has happened. First, we have replaced the Kähler geometry S with<br />

a non-Kähler (C ∗ ) m -fibration � X over S such that the curvature 2-forms of the (C ∗ ) m -<br />

fibration are trivial <strong>in</strong> H 2 ( � X, Z), the cohomology of the total space. It is important<br />

to dist<strong>in</strong>guish ch2(TS) − ch2(VS), the anomaly on S, from the very different quantity<br />

ch2(T e X ) − ch2(V e X ), the anomaly on the (C ∗ ) m -fibration � X over S. At the end of the<br />

day, the physical Bianchi identity lives on � X <strong>and</strong> says that dH = ch2(T eX )−ch2(V eX ), so<br />

<strong>in</strong> cohomology on � X, ch2(T eX ) = ch2(V eX ). However, s<strong>in</strong>ce � X is a non-trivial fibration<br />

over S, cohomology classes do not trivially lift, or descend (th<strong>in</strong>k about the Hopf<br />

map). The upshot it that Bianchi identity does not imply that ch2(TS) = ch2(VS),<br />

even <strong>in</strong> cohomology. However, the 3-form flux H = N a l dθl ∧Ha on the the total space,<br />

�X, was constructed precisely so as to solve the Bianchi identity when pushed down<br />

7 We will discuss non-perturbative effects below.


Chapter 5: L<strong>in</strong>ear Models for Flux Vacua 103<br />

the fibres – this is what led us to <strong>in</strong>troduce the gauge-variant axial coupl<strong>in</strong>g <strong>in</strong> the<br />

first place.<br />

This graceful mechanism of anomaly cancellation, a one-loop gauge anomaly can-<br />

cel<strong>in</strong>g the gauge variation of an axionic coupl<strong>in</strong>g <strong>in</strong> the classical Lagrangian, is simply<br />

a 2d avatar of the Green-Schwarz anomaly <strong>in</strong> the target space.<br />

5.4 Compact (0, 2) Models <strong>and</strong> the Torsion Multi-<br />

plet<br />

Let us summarize the story so far. We beg<strong>in</strong> with a conventional (0, 2) GLSM for a<br />

Calabi-Yau S equipped with a generic holomorphic bundle VS. The ch2(TS) �= ch2(VS)<br />

anomaly of the associated NLSM is realized <strong>in</strong> the GLSM as a gauge anomaly. To<br />

cancel the gauge anomaly, we promote some of the FI parameters to dynamical axions<br />

carry<strong>in</strong>g charges chosen such that the gauge variation of the classical action cancels<br />

the one-loop gauge anomaly <strong>in</strong> a 2d version of the Green-Schwarz mechanism. The<br />

IR geometry of the result<strong>in</strong>g non-anomalous (0, 2) GLSM is a non-compact (C ∗ ) m -<br />

fibration � X over S,<br />

(C ∗ ) m → � X<br />

↓<br />

S ,<br />

where the curvature two-forms of the C ∗ -bundles are M a l Ha|S ∈ H 2 (S, Z). Thread<strong>in</strong>g<br />

this geometry is a non-trivial NS-NS 3-form flux, H = N a l dθl ∧ Ha, which satisfies


Chapter 5: L<strong>in</strong>ear Models for Flux Vacua 104<br />

the Bianchi identity non-trivially. For simplicity of presentation, we will focus on the<br />

special cases S = K3 or T 4 with m=2; the generalization to higher dimension <strong>and</strong><br />

other geometries is straightforward.<br />

Not co<strong>in</strong>cidentally, this is entic<strong>in</strong>gly close to the compact Fu-Yau geometry 8 – all<br />

we need to do is restrict to the T 2 sub-bundle of the (C ∗ ) 2 bundle by lift<strong>in</strong>g the real<br />

direction along each C ∗ fibre. What could be easier?<br />

5.4.1 Decoupl<strong>in</strong>g of Radial <strong>Field</strong>s<br />

In fact, this turns out to be rather non-trivial. The issue is supersymmetry. The<br />

target space of any sigma model with a l<strong>in</strong>early realized N = 2 is a complex manifold,<br />

<strong>and</strong> the specific presentation of the N = 2 corresponds to a specific choice of complex<br />

structure. Under the particular N = 2 respected by our GLSM, the real directions<br />

along the C ∗ fibre, rl, are paired with the S 1 angles, θl, so remov<strong>in</strong>g only the radial<br />

coord<strong>in</strong>ates would explicitly break our (0, 2) supersymmetry to an all-but-useless<br />

(0, 1) subgroup (which we are not allowed to lose s<strong>in</strong>ce this (0, 1) will be gauged when<br />

we couple our matter theory to heterotic worldsheet supergravity). The situation<br />

appears to be grim.<br />

To reassure ourselves that there should be a (0, 2) on the T 2 sub-bundle, note that<br />

(C ∗ ) 2 = C × T 2<br />

if the coord<strong>in</strong>ates yl = rl + iθl on (C ∗ ) 2 are reorganized <strong>in</strong>to the coord<strong>in</strong>ates r =<br />

r1 + ir2 on C <strong>and</strong> θ = θ1 + iθ2 on T 2 . The IR geometry thus must admit an N = 2<br />

correspond<strong>in</strong>g to this choice of complex structure, pair<strong>in</strong>g the two angles <strong>in</strong>to one<br />

8 A review of the Fu-Yau geometry is given <strong>in</strong> appendix C.2.


Chapter 5: L<strong>in</strong>ear Models for Flux Vacua 105<br />

supermultiplet <strong>and</strong> the two l<strong>in</strong>es <strong>in</strong>to another. Unfortunately, an extensive search for<br />

such an N = 2 <strong>in</strong> our UV gauge theory quashes our high expectations.<br />

Let’s explore this apparent failure more explicitly. The relevant terms <strong>in</strong> the action<br />

are, <strong>in</strong> components,<br />

L = LK3 − k 2 l (∂rl) 2 − k 2 l (∂θl + M a l va) 2 + 2ik 2 l ¯χl∂−χl + 2N a l θlv+−a<br />

+ � 2k 2 l M a l − N a� l<br />

�<br />

rlDa + i<br />

�<br />

√ χlλa + . . . .<br />

2<br />

Meanwhile, under the l<strong>in</strong>early realized (0, 2) supersymmetry<br />

δɛλa = iɛ(Da + 2iv+−a) (5.5)<br />

Now, suppose we attempt reorganize the Yl superfields <strong>in</strong>to superfields that respect<br />

the C × T 2 complex structure: R ∼ r1 + ir2 + . . ., Θ ∼ θ1 + iθ2 + . . .. The problem<br />

is that the variation of λa yields terms of the form ɛχlDa <strong>and</strong> ɛχlv+−a. The only<br />

way to cancel these terms is for the variation of both rl <strong>and</strong> θl to <strong>in</strong>clude terms of<br />

the form ɛχl. This makes it appear impossible to split rl <strong>and</strong> θl <strong>in</strong>to two separate<br />

supermultiplets for generic charges.<br />

The key word here is “generic”. Note that our troublesome terms are both pro-<br />

portional to (2k 2 l M a l − N a l ), where M a l , N a l ∈ Z <strong>and</strong> kl ∈ R. If we fix kl <strong>and</strong> N a l so<br />

that N a l = 2k2 l M a l<br />

, these terms disappear from the action! Repeat<strong>in</strong>g our analysis,<br />

we f<strong>in</strong>d that there is a (0, 2) supersymmetry with exactly the desired properties:<br />

R = (r1 − ir2) + i √ 2θ + (χ I 1 + iχI 2 ) + ... Θ = (θ1 + iθ2) + √ 2θ + (χ R 1 − iχR 2<br />

) + ...<br />

where R <strong>and</strong> I superscripts refer to the real <strong>and</strong> imag<strong>in</strong>ary parts of the fermions,<br />

respectively. In fact, the R-multiplet is free <strong>and</strong> entirely decouples! What’s more,


Chapter 5: L<strong>in</strong>ear Models for Flux Vacua 106<br />

s<strong>in</strong>ce kl, which measures the radius of the T 2 <strong>in</strong> str<strong>in</strong>g units, is fixed <strong>in</strong> terms of two<br />

<strong>in</strong>tegers, the volume of the fibre is quantized <strong>in</strong> terms of the torsion flux, just as it is<br />

<strong>in</strong> Fu-Yau. 9<br />

Life is now sweet <strong>and</strong> easy. Based on the above, we def<strong>in</strong>e<br />

θ = θ1 + iθ2 χ = χ R 1 − iχR 2 N a = 2k 2 M a = 2k 2 (M a 1 + iM a 2 )<br />

r = r1 − ir2 ˜χ = iχ I 1 − χ I 2 ∇±θ = ∂±θ + M a v±a,<br />

which transform under N = 2 supersymmetry as<br />

δɛθ = − √ 2ɛχ δɛχ = 2 √ 2i¯ɛ ∇+θ<br />

δɛr = − √ 2ɛ˜χ δɛ ˜χ = 2 √ 2i¯ɛ ∂+r.<br />

In these coord<strong>in</strong>ates, the action reduces to<br />

L = LK3 + 2∇+ ¯ θ∇−θ + 2∇+θ∇− ¯ θ + 2i¯χ∂−χ + 2(N a ¯ θ + N a θ)v+−a<br />

(5.6)<br />

(5.7)<br />

−2|∂r| 2 + 2i¯˜χ∂− ˜χ. (5.8)<br />

We may now drop the radial supermultiplet R = r + √ 2θ + ˜χ − 2iθ +¯ θ + ∂+r, as it is<br />

entirely decoupled.<br />

It is important to verify that the truncated Lagrangian is <strong>in</strong>variant under the (0, 2)<br />

supersymmetry def<strong>in</strong>ed above. However, δ 2 susy = δgauge <strong>in</strong> WZ gauge, so the gauge<br />

variance of the classical action rears its stupefy<strong>in</strong>g head <strong>and</strong> some care is required.<br />

Under a supersymmetry transformation, the classical action transforms non-trivially,<br />

δɛL = 2(M a ¯ M b + ¯ M a M b )v+b(iɛ ¯ λa + i¯ɛλa).<br />

9 S<strong>in</strong>ce � d 2 y v+−a ∈ πZ, θl is automatically periodic, θl ∼ θl + 2πLl, such that N a l Ll ∈ 2Z.<br />

Fix<strong>in</strong>g N a l = 2k2 l M a l then implies that k2 l M a l Ll = na ∈ Z, so M a l is quantized <strong>in</strong> terms of kl <strong>and</strong> Ll.<br />

Meanwhile, the anomaly cancellation condition implies that that n2 a<br />

k 2 l L2 l<br />

should be an <strong>in</strong>teger, s<strong>in</strong>ce<br />

the QI <strong>and</strong> qm are <strong>in</strong>tegers. S<strong>in</strong>ce the physical radius of the S 1 is klLl, this means that the radius<br />

is quantized as claimed. For the rest of this chapter, we will work with kl = Ll = 1 for simplicity.


Chapter 5: L<strong>in</strong>ear Models for Flux Vacua 107<br />

This is not a disaster because the gauge transformation needed to return us to WZ<br />

gauge (which we have been us<strong>in</strong>g throughout), αa = −4iθ + ¯ɛv+a, <strong>in</strong>duces a shift <strong>in</strong><br />

the effective action from the anomalous measure:<br />

� ab �<br />

A<br />

δW ZD[Φ, Γ] = D[Φ, Γ] exp<br />

π<br />

d 2 y v+a(ɛ¯ �<br />

λb + i¯ɛλb) .<br />

Anomaly cancellation ensures that this cancels the supersymmetry variation of the<br />

action.<br />

At this po<strong>in</strong>t, we can play various games to simplify the presentation of the theory.<br />

For example, we can build a superfield out of the T 2 multiplet,<br />

Θ = θ + √ 2θ + χ − 2iθ +¯ θ + ∇+θ.<br />

This looks a lot more convenient than it actually is. While it has the usual field<br />

content, this is not a st<strong>and</strong>ard chiral multiplet: the gaug<strong>in</strong>g is complex, with both<br />

real <strong>and</strong> imag<strong>in</strong>ary components of θ shift<strong>in</strong>g under gauge transformations. S<strong>in</strong>ce<br />

no other superfield transforms <strong>in</strong> the same strange way, gauge multiplet <strong>in</strong>cluded,<br />

it is extremely hard to build gauge covariant or <strong>in</strong>variant operators out of Θ. In<br />

fact, the only gauge-<strong>in</strong>variant dressed field is (∂−Θ + 1<br />

2 M a V−a). Meanwhile, the only<br />

chiral operator we can build out of Θ is (Θ + iM a V+a), which we cannot add to<br />

the superpotential <strong>in</strong> a gauge <strong>in</strong>variant fashion. Indeed, it is impossible to build a<br />

supersymmetric <strong>and</strong> gauge <strong>in</strong>variant action for this multiplet s<strong>in</strong>ce the supersymmetry<br />

variation of the k<strong>in</strong>etic terms cancels aga<strong>in</strong>st the variation of the axial superpotential.<br />

To emphasize its peculiar role, we call Θ a torsion multiplet.


Chapter 5: L<strong>in</strong>ear Models for Flux Vacua 108<br />

5.4.2 The IR Geometry<br />

Sett<strong>in</strong>g N a l = 2k2 M a l<br />

has decoupled the R multiplet, leav<strong>in</strong>g us with a non-<br />

Kähler T 2 sub-bundle X ⊂ � X with torsionful SU(3)-structure <strong>in</strong>duced from � X. In<br />

other words, the semi-classical IR geometry of our TLSM is a compact holomorphic<br />

T 2 fibration X over a Calabi-Yau S, endowed with a Hermitian metric, a stable<br />

holomorphic sheaf VX = π ∗ VS pulled back from S, <strong>and</strong> an NS-NS 3-form H satisfy<strong>in</strong>g<br />

the Bianchi identity on VX → X. Moreover, the radii of the T 2 fibres are fixed to<br />

discrete values <strong>in</strong> terms of the <strong>in</strong>tegral curvatures of the T 2 -bundles, given as <strong>in</strong>teger<br />

classes on the base K3. Up to un<strong>in</strong>terest<strong>in</strong>g changes of coord<strong>in</strong>ates, this is the Fu-Yau<br />

construction.<br />

It is reveal<strong>in</strong>g to derive this IR geometry explicitly from the f<strong>in</strong>al TLSM. Let’s<br />

beg<strong>in</strong> by writ<strong>in</strong>g out the component Lagrangian <strong>in</strong> all its majesty. To simplify our<br />

lives, we will call all the chiral multiplets φI whether their charges are positive, neg-<br />

ative, or zero, <strong>and</strong> leave all obvious sums implicit. This is easy to unpack when we<br />

focus on specific models. After <strong>in</strong>tegrat<strong>in</strong>g out the auxillary fields, the k<strong>in</strong>etic terms<br />

are,<br />

Lk<strong>in</strong> = −|(∂ + iQ a Iva)φI| 2 + 2i ¯ ψI(∂− + iQ a Iv−a)ψI<br />

<strong>and</strong> the scalar potential is<br />

+4(∂+θl + M a l v+a)(∂−θl + M a l v−a) + 4M a l θlv+−a + 2i¯χl∂−χl<br />

+2i¯γm(∂+ + iq a mv+a)γm + 2<br />

e2 �<br />

(v+−a)<br />

a<br />

2 + i¯ �<br />

λa∂+λa ,<br />

U = � �<br />

|Em| 2 + |J m | 2� + �<br />

m<br />

a<br />

e 2 a<br />

2<br />

�<br />

�<br />

Q a I|φI| 2 − r a<br />

I<br />

� 2<br />

(5.9)


Chapter 5: L<strong>in</strong>ear Models for Flux Vacua 109<br />

where D+Γm = √ 2Em(Φ) <strong>and</strong> J m (Φ) is a (0, 2) superpotential satisfy<strong>in</strong>g �<br />

m EmJ m =<br />

0. For completeness, the Yukawa terms are<br />

LY uk = − √ 2iQ a IλaψI ¯ ∂Em ∂J<br />

φI − ¯γmψI − γmψI<br />

∂φI<br />

m<br />

∂φI<br />

+ h.c. . (5.10)<br />

As <strong>in</strong> the case of (2, 2) GLSMs on Kähler geometries, the Hermitian geometry<br />

of the Higgs branch of our TLSM may be computed by <strong>in</strong>tegrat<strong>in</strong>g out the massive<br />

vectors <strong>and</strong> scalars <strong>in</strong> the gauge theory to derive a Born-Oppenheimer effective action<br />

on the classical moduli space. However, s<strong>in</strong>ce the classical action of our TLSM is not<br />

gauge <strong>in</strong>variant, the story is slightly more subtle than usual.<br />

Suppose, for example, that we simply <strong>in</strong>tegrate out the massive vector as usual –<br />

let us work <strong>in</strong> polar variables where φI = ρIe iϕI . This replaces the gauge connection vµ<br />

with a non-trivial implicit connection vµ(ρI, ϕI, θl, . . .) on the classical moduli space.<br />

The chiral fermion content then leads to an anomaly <strong>in</strong> the result<strong>in</strong>g non-l<strong>in</strong>ear sigma<br />

model – an anomaly which cancels aga<strong>in</strong>st the classical variation of the action due<br />

to the torsion multiplet. This presentation has the advantage of mak<strong>in</strong>g the role of<br />

the anomalous gauge transformation <strong>in</strong> the NLSM manifest, but it complicates the<br />

computation of the effective metric.<br />

Alternatively, we can take a lesson from Fujikawa <strong>and</strong> change coord<strong>in</strong>ates <strong>in</strong> field<br />

space to work with uncharged fermions before <strong>in</strong>tegrat<strong>in</strong>g out the massive vector[56,<br />

57]. The Jacobian of this field redef<strong>in</strong>ition <strong>in</strong>troduces a gauge variant operator to<br />

the action whose gauge variation cancels aga<strong>in</strong>st that of the classical torsion terms,<br />

leav<strong>in</strong>g the action gauge <strong>in</strong>variant. We can then <strong>in</strong>tegrate out the massive vector <strong>and</strong><br />

massive scalars to compute the effective metric on moduli space.<br />

Let’s take the second approach <strong>and</strong> change variables to gauge <strong>in</strong>variant fermions.


Chapter 5: L<strong>in</strong>ear Models for Flux Vacua 110<br />

For each right-mov<strong>in</strong>g fermion ψI, there is a natural choice of uncharged dressed<br />

fermion ˜ ψI = e −iϕI ψI; for the left-movers, there is generically no model-<strong>in</strong>dependent<br />

choice, so we choose an arbitrary l<strong>in</strong>ear comb<strong>in</strong>ation ˆϕm = l I m ϕI of phases with the<br />

correct charges to make the dressed fermion ˜γm = e −i ˆϕm γm gauge neutral, i.e. such<br />

that δα ˆϕm = −q a mαa. The Jacobian for this change of variables shifts the action by a<br />

simple term<br />

LJac = −4ω a v+−a, ω a ≡ Q a I ϕI − q a m ˆϕm ≡ T a I ϕI,<br />

whose gauge variation is just the familiar anomaly,<br />

The total axial coupl<strong>in</strong>g is thus<br />

δαLJac = 4 � Q a IQbI − qa mqb �<br />

m αav+−b.<br />

Laxial = 4 (M a l θl − ω a ) v+−a,<br />

which is gauge <strong>in</strong>variant by construction. The typical next step is to fix a gauge.<br />

However, s<strong>in</strong>ce the Faddeev-Popov measure for the simplest gauge choice, θl = 0,<br />

is trivial, it is just as easy to work <strong>in</strong> gauge unfixed presentation; the decoupled<br />

longitud<strong>in</strong>al mode will simply cancel the volume of the gauge group <strong>in</strong> the path<br />

<strong>in</strong>tegral.<br />

With the action <strong>and</strong> measure now both <strong>in</strong>dependently gauge <strong>in</strong>variant, we can<br />

consistently <strong>in</strong>tegrate out the massive vector. S<strong>in</strong>ce the action is quadratic <strong>in</strong> the<br />

vector, this is straightforward. Solv<strong>in</strong>g the classical EOM for the two components of<br />

our massive vector, <strong>and</strong> splitt<strong>in</strong>g them <strong>in</strong>to fermionic <strong>and</strong> bosonic components, yields<br />

v−a = (∆ −1 ) ab<br />

�<br />

1<br />

2 ¯˜γ m˜γmq b m − ρ 2 I∂−ϕIQ b I + ∂−ω b − 2M b �<br />

l ∂−θl = v F −a + v B v+a =<br />

−a<br />

(∆ −1 ) ab<br />

�<br />

1 ¯˜ψ IψIQ ˜<br />

2<br />

b I − ρ2I ∂+ϕIQ b �<br />

b<br />

I − ∂+ω = v F +a + vB +a


Chapter 5: L<strong>in</strong>ear Models for Flux Vacua 111<br />

where we def<strong>in</strong>e<br />

∆ ab ≡ ρ 2 IQ a IQ b I + M a l M b l ≡ ∆Q + ∆M,<br />

which is naturally symmetric <strong>in</strong> the gauge <strong>in</strong>dices. It is easy to check that both<br />

components of v transform covariantly under gauge transformations.<br />

Thus prepared, we are f<strong>in</strong>ally ready to compute the effective metric on the Higgs<br />

branch. After a tedious but miserable calculation, the bosonic effective action reduces<br />

to<br />

L B k<strong>in</strong> = 4∂+ρI∂−ρI<br />

� 2<br />

+ 4∂+ϕI∂−ϕJ ρIδIJ − ρ 2 Iρ2 J (∆−1 )abQ a IQbJ +4(∆ −1 )ab∂+ω a ∂−ω b + 4∂+θl∂−θl − 8(∆ −1 )ab<br />

−8(∆ −1 )abρ 2 I Qa I ∂[+ω b ∂−]ϕI ,<br />

<strong>and</strong> the fermionic effective action to<br />

�<br />

� ρ 2 I∂+ϕIQ a I + ∂+ω a� ∂−θlM b l<br />

L F k<strong>in</strong> = 2i ¯˜ ψI(∂− + iQ a I vB −a + i∂−ϕI) ˜ ψI + 2i¯χl∂−χl + 2i¯˜γ m(∂+ + iq a m vB +a + i∂+ ˆϕm)˜γm<br />

−(∆ −1 )ab ¯˜ ψI ˜ ψI ¯˜γ m˜γmQ a Iq b m ,<br />

where A[+B−] ≡ 1<br />

2 (A+B− − A−B+), A(+B−) = 1<br />

2 (A+B− + A−B+). We will also<br />

f<strong>in</strong>d it useful to def<strong>in</strong>e ∆ −1<br />

2 ≡ ∆ −1 − ∆ −1<br />

Q<br />

= −∆−1<br />

Q ∆M∆ −1 , <strong>and</strong> to make a habit of<br />

suppress<strong>in</strong>g gauge <strong>in</strong>dices, represent<strong>in</strong>g them <strong>in</strong>stead by matrix multiplication.<br />

S<strong>in</strong>ce one of the features we would like to make manifest is the natural complex<br />

structure on the total space X, it is natural to return to complex variables φI <strong>and</strong><br />

θ, as well as M a ≡ M a 1 + iM a 2 . It is also natural to split the Lagrangian <strong>in</strong>to terms<br />

symmetric <strong>and</strong> anti-symmetric <strong>in</strong> the derivatives, correspond<strong>in</strong>g to the pullback to<br />

the worldsheet of the metric <strong>and</strong> B-field, respectively. The symmetric terms we will


Chapter 5: L<strong>in</strong>ear Models for Flux Vacua 112<br />

refer to as ds 2 , where we will also use the shorth<strong>and</strong><br />

dAdB ≡ ∂(+A∂−)B dA ∧ dB ≡ ∂[+A∂−]B,<br />

remember<strong>in</strong>g that the “differentials” dA <strong>and</strong> dB are symmeterized without the ∧.<br />

Us<strong>in</strong>g these conventions <strong>and</strong> the def<strong>in</strong>ition of ∆ −1<br />

2 , we can easily factor out the<br />

usual k<strong>in</strong>etic terms for the ambient variety V :<br />

The metric can then be written as<br />

ds 2 V = 4|dφI| 2 − 4( ¯ φIdφI)(φJd ¯ φJ)Q T I ∆−1<br />

Q QJ.<br />

ds 2 = ds 2 V − 4|φI| 2 |φJ| 2 (d ln ¯ φId ln φJ)Q T I ∆−1 2 QJ<br />

�<br />

−<br />

+4|dθ| 2 + 2i<br />

�<br />

d ln φI<br />

¯φI<br />

� �|φI| 2 Q T I + T T I<br />

d ln φI<br />

¯φI<br />

� ∆ −1 � Md ¯ θ + ¯ Mdθ �<br />

� �<br />

d ln φJ<br />

�<br />

T<br />

¯φJ<br />

T I ∆−1TJ (5.11)<br />

where we have used dr a = �<br />

I Qa I (φId ¯ φI + ¯ φIdφI) = 0 to simplify the expression.<br />

Work<strong>in</strong>g patchwise on V makes the geometry somewhat more transparent. We can<br />

cover V by patches on which s of the homogeneous coord<strong>in</strong>ates, say φσ=N+1,...,N+s,<br />

are nonzero <strong>and</strong> for which Q a σ<br />

<strong>in</strong>variant coord<strong>in</strong>ates on each patch,<br />

zA ≡ φA<br />

where A = 1, . . . , N.<br />

N+s �<br />

σ=N+1<br />

is an <strong>in</strong>vertible s × s matrix. We can then def<strong>in</strong>e gauge<br />

φ −(Q−1 ) σ a Qa A<br />

σ , ζ ≡ θ + i(Q −1 ) σ a M a ln φσ,<br />

All of these coord<strong>in</strong>ates transform holomorphically as we move from one patch of<br />

V to another. Furthermore, from the gauge variant coord<strong>in</strong>ates it is clear that there<br />

are no fixed po<strong>in</strong>ts of the T 2 action (complex shifts of θ). Thus, as long as S ⊂ V<br />

is smooth, our construction will yield a pr<strong>in</strong>cipal holomorphic T 2 bundle over S à


Chapter 5: L<strong>in</strong>ear Models for Flux Vacua 113<br />

la Goldste<strong>in</strong> <strong>and</strong> Prokushk<strong>in</strong> (see appendix C.2). In these manifestly holomorphic<br />

coord<strong>in</strong>ates, the metric can be written <strong>in</strong> Hermitian form,<br />

ds 2 H = ds2 V<br />

�<br />

�<br />

T<br />

+ 4 �<br />

iM<br />

�dζ −<br />

2<br />

+ � ∂P T ∆M + d ln zA T T A<br />

where Pa ≡ �<br />

σ (Q−1 ) σ a ln |φσ| 2 <strong>and</strong><br />

�<br />

−1<br />

∂P − ∆ (QA|φA| 2 �<br />

+ TA)d ln zA<br />

�2 �<br />

��<br />

� � −1 −1<br />

2∆ − ∆ MM¯ T −1<br />

∆ � � ∆M ¯ �<br />

∂P + TB d ln ¯zB<br />

ds 2 V = 4|φA| 2 |d ln zA| 2 − 4 � |φA| 2 Q T A ∆−1<br />

Q QB|φB| 2� [d ln zA] [d ln ¯zB]<br />

is the analog of the Fub<strong>in</strong>i-Study metric for V (<strong>and</strong> reduces to it <strong>in</strong> the case of P N ).<br />

A similarly tedious but straightforward computation gives the result<strong>in</strong>g B-field,<br />

�<br />

B = 2i d ln zA<br />

�<br />

¯zA<br />

−2(|φA| 2 Q T A ∆−1 TB)<br />

∧ (|φA| 2 Q T A + T T A )∆ −1 � Md ¯ ζ + ¯ Mdζ �<br />

�<br />

d ln zA<br />

� �<br />

∧ d ln<br />

¯zA<br />

zB<br />

�<br />

¯zB<br />

�<br />

d ln zA<br />

�<br />

∧ dPa.<br />

¯zA<br />

−( ¯ M a M T − M a ¯ M T )∆ −1 (QA|φA| 2 + TA)<br />

We thus have a manifestly Hermitian metric on a smooth pr<strong>in</strong>cipal holomorphic T 2 -<br />

bundle over S, with non-vanish<strong>in</strong>g H thread<strong>in</strong>g the total space. This is precisely the<br />

geometry we were expect<strong>in</strong>g to f<strong>in</strong>d.<br />

5.4.3 The Bianchi Identity<br />

As we sketched <strong>in</strong> section 5.3, the one-loop exact spacetime Bianchi identity is<br />

realized <strong>in</strong> the TLSM by the one-loop exact gauge anomaly. However, the gauge<br />

anomaly is <strong>in</strong>dependent of the superpotential <strong>and</strong> thus naturally lives on the ambient<br />

toric variety V , while the Bianchi identity lives on the space X, so the connection<br />

between the Bianchi identity <strong>and</strong> the gauge anomaly requires some work to explicate.


Chapter 5: L<strong>in</strong>ear Models for Flux Vacua 114<br />

Their relationship is most transparent when the Bianchi identity is pushed down<br />

to the base, S. In the Fu-Yau case, it has been shown on purely geometric grounds<br />

that [55, 14]<br />

dH = π ∗ (ω ∧ ∗Sω) + . . . , ch(TX) = π ∗ (ch(TS)) + . . . ,<br />

where ω = ω1 + iω2 is the anti-self-dual 10 (1,1) curvature form of the T 2 bundle,<br />

<strong>and</strong> the omitted terms are all exact forms on S <strong>and</strong> thus vanish <strong>in</strong> cohomology on<br />

the base. Meanwhile, by construction, ch(VX) = π ∗ (ch(VS)), so the Bianchi identity<br />

reduces to a simple equation <strong>in</strong> the cohomology of S:<br />

ω ∧ ∗Sω = −ω 2 1 − ω2 2 = 2ch2(VS) − 2ch2(TS). (5.12)<br />

All the quantities <strong>in</strong> this equation can now be written <strong>in</strong> terms of the def<strong>in</strong><strong>in</strong>g charges<br />

of the TLSM. The second Chern characters can be calculated from the short exact<br />

sequences (C.10) <strong>and</strong> (C.11) to be<br />

ch2(TS) = 1<br />

2<br />

ch2(VS) = 1<br />

2<br />

�<br />

� �<br />

a,b<br />

i<br />

�<br />

� �<br />

a,b<br />

m<br />

Q a i Qb i − da d b<br />

�<br />

q a m qb m − ma m b<br />

�<br />

(Ha ∧ Hb)| S ,<br />

(Ha ∧ Hb)| S ,<br />

Meanwhile, the curvature ω of the T 2 fibration can be expressed as ω = (M a 1 +iM a 2 )Ha,<br />

so the Bianchi identity pushes down to S to give<br />

�<br />

�<br />

M (a �<br />

M¯ b)<br />

− Q a i Qbi + dad b + �<br />

a,b<br />

i<br />

m<br />

q a m qb m − ma m b<br />

�<br />

(Ha ∧ Hb)| S = 0. (5.13)<br />

This is precisely the condition for the cancelation of the gauge anomaly of the TLSM.<br />

10 Strictly speak<strong>in</strong>g, there can also be a self-dual (2, 0) ω-form, but it is automatically absent <strong>in</strong><br />

the TLSM construction.


Chapter 5: L<strong>in</strong>ear Models for Flux Vacua 115<br />

5.4.4 Rul<strong>in</strong>g Out T 4<br />

The case S = T 4 provides a reveal<strong>in</strong>g test case for our construction. S<strong>in</strong>ce T T 4 is<br />

(utterly) trivial, the Bianchi identity takes a particularly simple form – <strong>in</strong> fact, it is<br />

so simple that there are no non-trivial solutions [14]. This can be seen by <strong>in</strong>tegrat<strong>in</strong>g<br />

(5.1) over the base us<strong>in</strong>g the restricted forms of dH <strong>and</strong> [ch(VX)−ch(TX)] given <strong>in</strong> the<br />

previous section. S<strong>in</strong>ce FS – the curvature of the bundle VS – is anti-Hermitian <strong>and</strong><br />

anti-self-dual, <strong>and</strong> s<strong>in</strong>ce ch2(T T 4) = 0, the right-h<strong>and</strong> side of (5.12) is non-positive for<br />

S = T 4 while the left-h<strong>and</strong> side is manifestly non-negative for anti-self-dual ω (<strong>and</strong><br />

only 0 when ω is exact). We would like to see this directly <strong>in</strong> the TLSM, or at least<br />

<strong>in</strong> a specific example.<br />

To this end, we build the base S = T 4 as the product of two T 2 ⊂ P 2 , but<br />

with H-flux lac<strong>in</strong>g both factors. This ensures that any 4-form on the base must be<br />

proportional to H1 ∧ H2| S , where H1 <strong>and</strong> H2 are the hyperplane classes of the two<br />

P 2 s (the restrictions of H 2 i vanish trivially). S<strong>in</strong>ce the Hodge star on T 4 acts as<br />

∗SH1 = H2<br />

∗S H2 = H1,<br />

(H1 −H2) is the only anti-self-dual 2-form on T 4 constructed from hyperplane classes.<br />

S<strong>in</strong>ce the Fu-Yau construction requires ω be anti-self-dual, we must have ω = M(H1−<br />

H2). <strong>Two</strong> further conditions apply: (1) for our embedd<strong>in</strong>g of T 4 , none of the coor-<br />

d<strong>in</strong>ate fields are charged under both U(1)s, <strong>and</strong> so d1d2 = Q1 i Q2 i = 0; <strong>and</strong> (2) the<br />

condition that c1(VS) = 0 translates <strong>in</strong>to ma = �<br />

m qa m. Plugg<strong>in</strong>g this <strong>in</strong>to (5.13),<br />

only the H1 ∧ H2 cross-term does not vanish upon restriction to S <strong>and</strong> we f<strong>in</strong>d<br />

�<br />

m�=n<br />

q 1 m q2 n = −|M|2 . (5.14)


Chapter 5: L<strong>in</strong>ear Models for Flux Vacua 116<br />

But for the gauge bundle to be stable, all charges must satisfy q a m ≥ 0 [46], <strong>in</strong> which<br />

case the equation has no solution unless M = 0. We conclude that our TLSM does<br />

not allow us to build a non-trivial T 2 -bundle over this T 4 -base, <strong>in</strong> agreement with the<br />

the supergravity result.<br />

5.4.5 Global Anomalies<br />

Of course, vanish<strong>in</strong>g of the gauge anomaly <strong>and</strong> satisfaction of the Bianchi identity<br />

are not sufficient to ensure that the TLSM flows to a consistent vacuum of the het-<br />

erotic str<strong>in</strong>g. In order to couple to worldsheet supergravity, our theory must flow to<br />

a superconformal fixed po<strong>in</strong>t which admits a chiral GSO projection. This <strong>in</strong> turn re-<br />

quires [46, 45] the existence of a non-anomalous right-mov<strong>in</strong>g U(1) R-current, JR, <strong>and</strong><br />

a non-anomalous left-mov<strong>in</strong>g flavor symmetry, JL, lead<strong>in</strong>g to additional constra<strong>in</strong>ts<br />

on allowed charges beyond quantum gauge <strong>in</strong>variance. The relevant anomalies are<br />

thus the various mixed gauge-global <strong>and</strong> global-global anomalies; consistency of the<br />

gauge theory requires that they cancel.<br />

Let’s start with the R-current. R-<strong>in</strong>variance of the ΥΘ terms <strong>in</strong> the superpotential<br />

require Θ to be an R-scalar, though it may carry a shift-charge under R-symmetry.<br />

This implies that the fermion χ <strong>in</strong> Θ carries R-charge +1. However, s<strong>in</strong>ce χ is gauge<br />

neutral, it does not contribute to the mixed gauge-R anomaly. S<strong>in</strong>ce the chiral su-<br />

perfields Φi typically appear <strong>in</strong> quasi-homogeneous polynomials <strong>in</strong> the superpotential<br />

Γ0G(Φi) (see appendix C.1), it is most natural to assign them R-charges proportional<br />

to their gauge charges rQi – this also fixes the R-charge of Γ0 to −rd − 1. Then one<br />

has the fermi supermultiplets Γm appear<strong>in</strong>g <strong>in</strong> the superpotential via Φ0ΓmJ m (Φi),


Chapter 5: L<strong>in</strong>ear Models for Flux Vacua 117<br />

restrict<strong>in</strong>g charge assignments for Φ0 <strong>and</strong> Γm to be p−rm <strong>and</strong> rqm−p−1, respectively.<br />

This additional shift of p is a freedom not available to us <strong>in</strong> (2, 2) models.<br />

The anomaly <strong>in</strong> the left-mov<strong>in</strong>g flavor symmetry can be treated similarly. For<br />

example, by sett<strong>in</strong>g the flavor charge of each field proportional to its gauge charge,<br />

<strong>and</strong> assign<strong>in</strong>g to Θ an anomalous shift-charge under the flavor U(1), vanish<strong>in</strong>g of the<br />

gauge anomaly ensures the non-anomaly of the left-mov<strong>in</strong>g flavor symmetry. Note<br />

that the contribution of the torsion multiplet to the currents JL, JR, <strong>and</strong> Jgauge,<br />

is of the form JΘ ∼ ∂θ, so its contributions to the anomalies actually come from<br />

tree-diagrams rather than loops.<br />

<strong>Two</strong> f<strong>in</strong>al anomaly relations are important. First, for JR <strong>and</strong> JL to be purely right-<br />

<strong>and</strong> left-mov<strong>in</strong>g, their mixed anomaly must also vanish, giv<strong>in</strong>g one <strong>in</strong>teger constra<strong>in</strong>t.<br />

F<strong>in</strong>ally, the JRJR OPE measures the conformal anomaly, which must be equal to 9,<br />

giv<strong>in</strong>g one last <strong>in</strong>teger equation on the charges. In the typical model of <strong>in</strong>terest, there<br />

are many more fields than equations, mak<strong>in</strong>g it easy to satisfy these constra<strong>in</strong>ts.<br />

5.4.6 Caveat Emptor: Spacetime vs. Worldsheet Constra<strong>in</strong>ts<br />

One very important elision <strong>in</strong> the above is dist<strong>in</strong>guish<strong>in</strong>g which conditions on<br />

the charges are required on a priori 2d grounds, <strong>and</strong> which derive from spacetime<br />

arguments. For example, <strong>in</strong> a (2, 2) model the runn<strong>in</strong>g of the D-term is equivalent to<br />

the R-anomaly, which <strong>in</strong> turn is equivalent to the vanish<strong>in</strong>g first Chern class of the<br />

IR geometry, c1(TS). However, <strong>in</strong> a (0, 2) model these three effects are decoupled.<br />

The runn<strong>in</strong>g of t is decoupled because we can always add a pair of massive spec-<br />

tators to the theory – a chiral <strong>and</strong> a fermi superfield – whose contributions to all


Chapter 5: L<strong>in</strong>ear Models for Flux Vacua 118<br />

gauge <strong>and</strong> global anomalies vanish, but whose gauge charges can be chosen to limit<br />

the runn<strong>in</strong>g of t to a f<strong>in</strong>ite shift [46, 45], someth<strong>in</strong>g not possible <strong>in</strong> more familiar<br />

(2, 2) models. Meanwhile, the chiral content of the theory yields enough freedom <strong>in</strong><br />

assign<strong>in</strong>g R-charges that the R-anomaly is decoupled from c1(TS) = 0. Similarly,<br />

the conditions that c1(VS)=0, that ω be anti-self-dual, <strong>and</strong> that VS be stable, are all<br />

required to ensure spacetime supersymmetry <strong>in</strong> the supergravity construction of the<br />

Fu-Yau compactification but do not appear as necessary constra<strong>in</strong>ts for the consis-<br />

tency of our 2d gauge theories.<br />

A natural guess is that ensur<strong>in</strong>g spacetime supersymmetry of the massless modes<br />

of our theory requires the imposition of these constra<strong>in</strong>ts on the charges <strong>and</strong> fields <strong>in</strong><br />

the TLSM. Check<strong>in</strong>g this requires a more detailed discussion of the exact spectrum<br />

of our models than we have presented <strong>in</strong> this note; for now we will simply impose<br />

these conditions, as is often done <strong>in</strong> (0, 2) models, because we can <strong>and</strong> because do<strong>in</strong>g<br />

so matches us precisely onto the Fu-Yau construction. We will return to this question<br />

<strong>in</strong> a sequel.<br />

5.5 The Conformal Limit<br />

So far, we have shown that our compact (0, 2) TLSMs exist as non-anomalous, 2d<br />

N = 2 quantum field theories which have Fu-Yau-type geometries as their one-loop<br />

classical moduli spaces. These are pr<strong>in</strong>cipal holomorphic T 2 -bundles over Calabi-Yaus<br />

with torsionful G-structures which non-trivially satisfy the Green-Schwarz anomaly<br />

constra<strong>in</strong>ts. However, s<strong>in</strong>ce Fu-Yau geometries are necessarily f<strong>in</strong>ite radius <strong>and</strong> gener-<br />

ally conta<strong>in</strong> small-volume cycles, the semi-classical geometric analysis is not obviously


Chapter 5: L<strong>in</strong>ear Models for Flux Vacua 119<br />

reliable. What we would like to argue is that the IR conformal fixed po<strong>in</strong>ts to which<br />

these massive TLSMs flow should be taken to def<strong>in</strong>e the Fu-Yau CFT. For this to make<br />

sense, however, we must demonstrate that these TLSMs <strong>in</strong> fact flow to non-trivial<br />

CFTs <strong>in</strong> the IR.<br />

This will take some work. The first step is to observe that the superpotential<br />

<strong>in</strong> a (0, 2) model is one-loop exact, so the vacuum is not destabilized at any order<br />

<strong>in</strong> perturbation theory; the concern is thus worldsheet <strong>in</strong>stantons. It has long been<br />

understood that the perturbative moduli spaces of generic (0, 2) models are lifted by<br />

<strong>in</strong>stanton effects [43, 44]. It has more recently been understood that (0, 2) GLSMs on<br />

Kähler targets with arbitrary (not necessarily l<strong>in</strong>ear) stable vector bundles are not<br />

lifted by <strong>in</strong>stanton effects. This has been demonstrated <strong>in</strong> the class of “half-l<strong>in</strong>ear”<br />

models via an analysis of the analytic structure of the spacetime superpotential <strong>in</strong> a<br />

paper by Beasley & Witten [11] <strong>and</strong>, <strong>in</strong> the more limited case of GLSMs, via a general-<br />

ized Konishi anomaly argument by Basu & Sethi[10]. Due to the gauge anomaly <strong>and</strong><br />

gauge variance of the classical Lagrangian, neither of these analyses directly apply<br />

to our torsion models; however, the basic structure of the Beasley-Witten argument<br />

obta<strong>in</strong>s, which suggests that the vacuum is <strong>in</strong>deed stable to worldsheet <strong>in</strong>stanton<br />

corrections.<br />

The basic <strong>in</strong>gredients <strong>in</strong> [11] were that the spacetime superpotential is a holo-<br />

morphic section of a simple l<strong>in</strong>e bundle; that poles can appear only if the <strong>in</strong>stanton<br />

moduli space has a non-compact dimension along which worldsheet correlators can<br />

diverge; that a simple residue theorem ensures that the sum over all poles is zero; <strong>and</strong><br />

that the worldsheet theory respect a l<strong>in</strong>early realized (0, 2) with non-anomalous U(1)


Chapter 5: L<strong>in</strong>ear Models for Flux Vacua 120<br />

R-symmetry. In the case of our TLSMs, the crucial step is verify<strong>in</strong>g that the <strong>in</strong>stanton<br />

moduli space is <strong>in</strong> fact compact; the rest appears to follow rather straightforwardly.<br />

The <strong>in</strong>stantons <strong>in</strong> our TLSM fall <strong>in</strong>to two classes: those <strong>in</strong>volv<strong>in</strong>g gauge fields<br />

coupled to torsion multiplets <strong>and</strong> those <strong>in</strong>volv<strong>in</strong>g gauge fields coupled only to chiral<br />

multiplets. The latter class is identical to those studied <strong>in</strong> [11, 117] <strong>and</strong> have compact<br />

moduli spaces for the same reasons; these correspond to the homologically non-trivial<br />

lifts of holomorphic curves on the base Calabi-Yau. The former is more subtle. Re-<br />

call that all that matters for the lift<strong>in</strong>g of the massless vacuum are contributions to<br />

the chiral superpotential from BPS <strong>in</strong>stantons. Significantly, BPS <strong>in</strong>stantons <strong>in</strong> the<br />

torsion sector must satisfy an unusual BPS equation<br />

δψ = ∂+θ + M a v+a = 0.<br />

S<strong>in</strong>ce v+a is s<strong>in</strong>gular for an <strong>in</strong>stanton background, <strong>in</strong>stantons aligned along M a <strong>in</strong><br />

G do not have f<strong>in</strong>ite action, so we appear to have no <strong>in</strong>stantons along the curve<br />

associated to M a . Actually, this makes a great deal of sense. The one-form on K3<br />

associated to M a v+a is αM (see appendix C.2); s<strong>in</strong>ce αM is not a globally-def<strong>in</strong>ed form,<br />

ωM = dαM – the 2-form curvature of the T 2 -bundle – is non-trivial <strong>in</strong> H 2 (K3, Z).<br />

However, the connection 1-form on X, dθ + π ∗ αM, is a globally def<strong>in</strong>ed 1-form on X,<br />

so d(dθ + π ∗ αM) is trivial <strong>in</strong> H 2 (X, Z). Thus, there is no 2-cycle <strong>in</strong> X associated with<br />

this gauge field.<br />

Thus the BPS <strong>in</strong>stantons of the TLSM are a ref<strong>in</strong>ement of the <strong>in</strong>stantons of the<br />

base Calabi-Yau, <strong>and</strong> the moduli space is consequently compact. Elevat<strong>in</strong>g these<br />

heuristic arguments to a rigorous proof of the stability of the vacuum to <strong>in</strong>stanton<br />

corrections does not appear impossible. We leave a more thorough discussion of


Chapter 5: L<strong>in</strong>ear Models for Flux Vacua 121<br />

<strong>in</strong>stantons <strong>in</strong> torsion sigma models, <strong>and</strong> a formal proof of the stability of the vacuum,<br />

to future work.<br />

5.6 Conclusions <strong>and</strong> Speculations<br />

In this note, we have constructed gauged l<strong>in</strong>ear sigma models for non-Kähler<br />

compactifications of the heterotic str<strong>in</strong>g with non-trivial background NS-NS 3-form<br />

H satisfy<strong>in</strong>g the modified Bianchi identity, <strong>and</strong> we argued for the exact stability of<br />

their vacua to all orders <strong>and</strong> non-perturbatively <strong>in</strong> α ′ . This construction provides<br />

a microscopic def<strong>in</strong>ition of the Fu-Yau CFT <strong>and</strong>, via duality, for a related class of<br />

KST-like flux-vacua [89] <strong>in</strong>volv<strong>in</strong>g non-trivial NS-NS <strong>and</strong> RR fluxes which stabilize<br />

various moduli <strong>in</strong> a fiducial Calabi-Yau orientifold compactification.<br />

While motivated by the remarkable Fu-Yau construction, this construction is con-<br />

siderably more general, suggest<strong>in</strong>g applications much richer than we have been able<br />

to cover explicitly. For example, while we have focused on K3 bases for simplic-<br />

ity, it is completely straightforward to construct more general compactifications over<br />

higher-dimensional Calabi-Yau bases, lead<strong>in</strong>g to 7 <strong>and</strong> 8 dimensional non-Kähler com-<br />

pactifications correspond<strong>in</strong>g to torsionful G2 <strong>and</strong> Sp<strong>in</strong>(7) structure manifolds. It is<br />

also natural to try to apply the technology of the torsion multiplet to non-CY bases –<br />

say, dP8 – by suitably adjust<strong>in</strong>g the fibration structure. Perhaps the easiest cases to<br />

be studied are the type II examples <strong>in</strong> section 5.2; there is a rich story to be told there,<br />

<strong>in</strong>clud<strong>in</strong>g non-perturbative existence <strong>and</strong> a thorough study of the <strong>in</strong>stanton structure<br />

of the theory. We will return to all of these po<strong>in</strong>ts <strong>in</strong> upcom<strong>in</strong>g publications.<br />

One area where our construction should be of particular use is <strong>in</strong> the study of


Chapter 5: L<strong>in</strong>ear Models for Flux Vacua 122<br />

the moduli spaces – <strong>and</strong> hence low-energy phenomenology – of non-Kähler compact-<br />

ifications [17, 29]. The necessary tools for analyz<strong>in</strong>g the spectra of (0, 2) GLSMs<br />

have long been know [46] <strong>and</strong> can presumably be applied with m<strong>in</strong>or modifications.<br />

Relatedly, TLSMs should also provide a computationally effective tool to study the<br />

topological r<strong>in</strong>g which was recently proved to exist for generic (0, 2)-models [1, 2],<br />

as well as the action of mirror symmetry on these str<strong>in</strong>gy geometries. In fact, the<br />

action of T-duality <strong>and</strong> mirror symmetry on these geometries is remarkably subtle –<br />

for example, it is easy to check that the T 2 fibre on the Fu-Yau geometry is, <strong>in</strong> fact,<br />

self-dual, correspond<strong>in</strong>g to a pair of SU(2) WZW models at level one. What is the<br />

relation between the self-dual circles <strong>and</strong> the NS-NS flux? Are these WZW models<br />

play<strong>in</strong>g the anomaly-cancell<strong>in</strong>g role of the WZW models <strong>in</strong> the (0, 2) Gepner model<br />

constructions of Berglund et al [19]? Clearly, a great deal rema<strong>in</strong>s to be learned form<br />

these torsion l<strong>in</strong>ear sigma models, <strong>and</strong> from the CFTs to which they flow.


Chapter 6<br />

Near<strong>in</strong>g the Horizon of a <strong>Heterotic</strong><br />

Str<strong>in</strong>g<br />

6.1 Introduction <strong>and</strong> summary<br />

The worldsheet of N stretched, co<strong>in</strong>cident heterotic str<strong>in</strong>gs is described by a<br />

(cL, cR) = (24N, 12N) 2d CFT. General considerations as well as recent <strong>in</strong>vestiga-<br />

tions, both described below, raise the <strong>in</strong>trigu<strong>in</strong>g possibility that this CFT has an<br />

AdS3 × M holographic spacetime dual. If so, the first-quantized Hilbert space of the<br />

N stretched heterotic str<strong>in</strong>gs would be identified with the second-quantized Hilbert<br />

space of <strong>in</strong>teract<strong>in</strong>g closed heterotic str<strong>in</strong>gs on AdS3 ×M. In this chapter, as reported<br />

<strong>in</strong> [98], we cont<strong>in</strong>ue these <strong>in</strong>vestigations <strong>and</strong> <strong>in</strong> particular f<strong>in</strong>d some surpris<strong>in</strong>g results<br />

about the structure of the supersymmetry group.<br />

Why should we expect such a holographic dual? At strong coupl<strong>in</strong>g, the heterotic<br />

str<strong>in</strong>g becomes a D1-brane of the type I theory. General low-energy scal<strong>in</strong>g arguments<br />

123


Chapter 6: Near<strong>in</strong>g the Horizon of a <strong>Heterotic</strong> Str<strong>in</strong>g 124<br />

coupled with open-closed duality then suggest the existence of a holographic dual.<br />

Because the low-energy limit of the worldvolume theory is conformally <strong>in</strong>variant, the<br />

dual should conta<strong>in</strong> an AdS3 factor. In addition, N stretched heterotic str<strong>in</strong>gs have<br />

an exponentially grow<strong>in</strong>g spectrum of left-mov<strong>in</strong>g BPS excitations. Although the<br />

growth is not enough to make a black str<strong>in</strong>g with a horizon large compared to the<br />

str<strong>in</strong>g scale, it is still the case that <strong>in</strong> the classical limit, 1 the second law of thermo-<br />

dynamics forbids energy from leak<strong>in</strong>g off of the N str<strong>in</strong>gs, just as it does for a large<br />

black hole. One expects this behavior to be expla<strong>in</strong>ed <strong>in</strong> the macroscopic spacetime<br />

picture by the appearance of a str<strong>in</strong>gy horizon <strong>and</strong> associated near-horizon scal<strong>in</strong>g so-<br />

lution. However, the real situation is likely more subtle than these general comments<br />

<strong>in</strong>dicate. As we shall see below, simple group theory implies that the situation is<br />

highly dimension-dependent. In particular, concrete <strong>in</strong>dicators of a holographic dual<br />

<strong>in</strong> the special case of compactification to D = 5, on which we largely concentrate,<br />

will be reviewed below.<br />

6.1.1 The Lead<strong>in</strong>g-Order Solution<br />

The str<strong>in</strong>g frame classical geometry sourced by the N stretched heterotic str<strong>in</strong>gs<br />

<strong>in</strong> the lead<strong>in</strong>g α ′ approximation for a compactification to D ≥ 5 dimensions was found<br />

some time ago [34] us<strong>in</strong>g the supergravity equations:<br />

ds 2 =<br />

dx + dx− 1 + N( rh<br />

r )D−4 − d�x · d�x − ds210−D , (6.1)<br />

1 With the spacetime momentum density along the str<strong>in</strong>g, <strong>and</strong> all spacetime fields fixed while<br />

� → 0.


Chapter 6: Near<strong>in</strong>g the Horizon of a <strong>Heterotic</strong> Str<strong>in</strong>g 125<br />

where r D−4<br />

h<br />

=<br />

coupl<strong>in</strong>g behaves as<br />

g 2 10<br />

8π 5 V10−D , �x is a transverse D − 2 vector <strong>and</strong> r2 = �x · �x. The str<strong>in</strong>g<br />

e 2Φ =<br />

<strong>and</strong> there is also a Kalb-Ramond field<br />

e 2Φ0<br />

1 + N( rh , (6.2)<br />

)D−4<br />

r<br />

H = dx + dx − de 2(Φ−Φ0) . (6.3)<br />

This spacetime is s<strong>in</strong>gular at the core of the str<strong>in</strong>g r = 0. Interest<strong>in</strong>gly the str<strong>in</strong>g<br />

coupl<strong>in</strong>g goes to zero while the curvature diverges. This suggests the possibility that<br />

the s<strong>in</strong>gularity might be resolved with<strong>in</strong> classical str<strong>in</strong>g theory by α ′ corrections.<br />

6.1.2 Small 4d Black Holes <strong>and</strong> Small 5d Black Str<strong>in</strong>gs<br />

Recently there have been compell<strong>in</strong>g <strong>in</strong>dicators [31, 33, 32, 116, 35, 27, 26, 28]<br />

that such a str<strong>in</strong>gy resolution <strong>in</strong> fact occurs for the case D = 5. The story began<br />

with an S 1 compactification from 5 to 4 dimensions, <strong>in</strong> which the stretched str<strong>in</strong>gs<br />

are wrapped around the S 1 <strong>and</strong> become a po<strong>in</strong>tlike object <strong>in</strong> D = 4. This “small<br />

black hole” has BPS excitations with momentum-w<strong>in</strong>d<strong>in</strong>g (N, k) <strong>and</strong> a degeneracy<br />

that grows at large charges as e 4π√ Nk . As above, this growth is not rapid enough to<br />

make a large black hole visible <strong>in</strong> supergravity, for which it is easily seen that the<br />

entropy must scale as the square of the charges. Nevertheless, the charges of the small<br />

black hole were plugged <strong>in</strong>to the entropy formula derived <strong>in</strong> an α ′ expansion for large<br />

black holes <strong>and</strong> found to reproduce – to all orders! – the known BPS degeneracies<br />

[31, 33, 32].<br />

This impressive agreement was surpris<strong>in</strong>g because the macroscopic derivation of<br />

the entropy as a function of the charges employs the known spacetime black hole


Chapter 6: Near<strong>in</strong>g the Horizon of a <strong>Heterotic</strong> Str<strong>in</strong>g 126<br />

attractor geometry [120] as an <strong>in</strong>termediate step. For small black holes, no such<br />

solutions were known. Subsequently, it was found that when str<strong>in</strong>gy R 2 corrections<br />

to the supergravity equations are <strong>in</strong>cluded, solutions with str<strong>in</strong>g-scale horizon do<br />

exist, <strong>and</strong> furthermore the horizon area scales <strong>in</strong> the right way with the charges [116].<br />

Of course such solutions can only be regarded as suggestive, due to the ambiguities<br />

aris<strong>in</strong>g from field redef<strong>in</strong>itions <strong>and</strong> uncontrolled effects of R 4 <strong>and</strong> higher corrections.<br />

Nevertheless, the remarkable coherence of the small black hole picture suggests that<br />

we take them seriously. Ultimately the existence or not of these solutions should be<br />

addressed us<strong>in</strong>g worldsheet CFT methods, which can control all the α ′ corrections.<br />

6.1.3 Small black str<strong>in</strong>gs<br />

The near-horizon geometry of the small black holes conta<strong>in</strong>s an AdS2 factor with<br />

an electric field associated to the Kaluza-Kle<strong>in</strong> U(1). Hence we have an S 1 fibered<br />

over the AdS2. The total space of such a bundle is a quotient of AdS3. Tak<strong>in</strong>g<br />

the cover of this quotient, we obta<strong>in</strong> the AdS3 factor of the near horizon geometry<br />

of N stretched heterotic str<strong>in</strong>gs <strong>in</strong> 5 dimensions. Indeed the full 5d solutions were<br />

seen directly <strong>in</strong> T 5 compactification to 5 dimensions <strong>in</strong> a recent elegant paper CDKL<br />

(Castro, Davis, Kraus <strong>and</strong> Larsen) [27]. CDKL beg<strong>in</strong> with the R 2 -corrected D = 5<br />

N = 2 supersymmetry transformation laws <strong>and</strong> f<strong>in</strong>d half BPS solutions with a near-<br />

horizon AdS3 × S 2 factor <strong>and</strong> charges correspond<strong>in</strong>g to N heterotic str<strong>in</strong>gs. In the<br />

heterotic frame, these solutions have a str<strong>in</strong>g coupl<strong>in</strong>g proportional to 1<br />

√ N .


Chapter 6: Near<strong>in</strong>g the Horizon of a <strong>Heterotic</strong> Str<strong>in</strong>g 127<br />

6.1.4 The near-horizon nonl<strong>in</strong>ear superconformal group<br />

The symmetries of the near-horizon region of this solution are of special <strong>in</strong>terest.<br />

One expects the number of supersymmetries <strong>in</strong> the near horizon region to double<br />

from 8 to 16. But there are only four Lie superalgebras of classical type with 16<br />

supercharges <strong>and</strong> an SL(2, R) factor: Osp(4 ∗ |4), SU(1, 1|4), F (4), <strong>and</strong> Osp(8|2),<br />

with bosonic R-symmetry factors SU(2) × Sp(4), SU(4) × U(1), SO(7), <strong>and</strong> SO(8),<br />

respectively. 2 This is puzzl<strong>in</strong>g for two reasons. Firstly, R-symmetries usually arise<br />

geometrically as spacetime isometries – e.g. the SO(6) R-symmetry correspond<strong>in</strong>g to<br />

S 5 rotations of the near horizon D3 geometry. But <strong>in</strong> the current context that gives<br />

at most the SU(2) rotations of the S 2 <strong>and</strong> so cannot account for the R-symmetry<br />

of any of the above supergroups. Secondly, as shown by Brown <strong>and</strong> Henneaux [22],<br />

when there is an AdS3 factor the superisometry group must have an aff<strong>in</strong>e extension<br />

conta<strong>in</strong><strong>in</strong>g a Virasoro algebra. However there are no l<strong>in</strong>ear “N = 8” superconformal<br />

algebras conta<strong>in</strong><strong>in</strong>g any of the above superalgebras as global subalgebras.<br />

We show here<strong>in</strong> by direct computation that the global superisometry group is<br />

<strong>in</strong> fact Osp(4 ∗ |4). As usual, the SU(2) factor of the R-symmetry arises from the<br />

geometric rotational isometries of the S 2 R-symmetry. From the 5d po<strong>in</strong>t of view,<br />

the Sp(4) ∼ SO(5) arises unusually from the global Sp(4) R-symmetry of 5d N = 4<br />

supergravity. From the 10d po<strong>in</strong>t of view, these are the SO(5) rotations of the sp<strong>in</strong><br />

frame for the T 5 . This SO(5) acts only on fermions <strong>and</strong> is not to be confused with<br />

spacetime rotations.<br />

While this expla<strong>in</strong>s how the large global R-symmetry arises, it does not expla<strong>in</strong> the<br />

2 See for example [51]. One may also consider the product group D(2, 1; α) × D(2, 1; α).


Chapter 6: Near<strong>in</strong>g the Horizon of a <strong>Heterotic</strong> Str<strong>in</strong>g 128<br />

puzzle with the aff<strong>in</strong>e extension. While there are no l<strong>in</strong>ear superconformal algebras<br />

with more than 4 supercurrents (which means 8 global supercharges <strong>in</strong> the NS sector),<br />

there are a few nonl<strong>in</strong>ear algebras with 8 supercurrents. These were classified some<br />

time ago by [94, 20, 21], <strong>and</strong> one of these algebras, let us denote it<br />

ˆ<br />

Osp(4 ∗ |4), <strong>in</strong>deed<br />

conta<strong>in</strong>s Osp(4 ∗ |4) <strong>in</strong> the k → ∞ limit. The nonl<strong>in</strong>earity <strong>in</strong> the commutation relation<br />

is conf<strong>in</strong>ed to the commutator of the supercurrents, which takes the schematic form<br />

{G I r, G J s } ∼ 2δ IJ Lr+s + (r − s)(R IJ )r+s + �<br />

p<br />

(R I K)r+s−p(R KJ )p + · · · , (6.4)<br />

where the current R IJ generates the bosonic R-symmetry group. The nonl<strong>in</strong>ear su-<br />

perconformal algebras are a special type of W algebra with only one sp<strong>in</strong> two current<br />

<strong>and</strong> no higher currents. Though known for some time [125], these algebras have not<br />

seen many applications <strong>in</strong> str<strong>in</strong>g theory or elsewhere. We note that it is not fully<br />

understood when these algebras have unitary representations.<br />

Fortuitously, consistent boundary conditions on AdS3 with more than eight global<br />

supersymmetries <strong>and</strong> their associated asymptotic symmetry algebras were studied <strong>in</strong><br />

[79]. The short list conta<strong>in</strong>s<br />

ˆ<br />

Osp(4 ∗ |4). We conclude that the near-horizon symme-<br />

try algebra of the R 2 -corrected supergravity solutions correspond<strong>in</strong>g to N stretched<br />

heterotic str<strong>in</strong>gs is<br />

6.1.5 D �= 5<br />

ˆ<br />

Osp(4 ∗ |4).<br />

It is <strong>in</strong>terest<strong>in</strong>g to see how or if a picture could emerge <strong>in</strong> dimensions other than<br />

5 consistent with the the known supergroups. Near-horizon symmetry enhancement


Chapter 6: Near<strong>in</strong>g the Horizon of a <strong>Heterotic</strong> Str<strong>in</strong>g 129<br />

suggests that there should always be 16 near-horizon supersymmetries. 3 In D = 10,<br />

it is natural to speculate that there is a stretched-str<strong>in</strong>g solution with an AdS3 × S 7<br />

near-horizon region with the Osp(8|2) superisometry group <strong>and</strong> a geometrically real-<br />

ized SO(8) R-symmetry. In D = 9, F (4) could arise with a geometrical SO(7). It<br />

could also arise <strong>in</strong> D = 3, but with a nongeometrical SO(7) from sp<strong>in</strong> frame rota-<br />

tions of the T 7 . In D = 8, the horizon is an S 5 , so we could have SU(1, 1|4) with<br />

the SU(4) ∼ SO(6) geometrically realized <strong>and</strong> the U(1) nongeometrical. SU(1, 1|4)<br />

is also a c<strong>and</strong>idate for D = 4 with a nongeometrical SO(6) <strong>and</strong> the U(1) realized<br />

geometrically as rotations of the S 1 horizon. In D = 7, the horizon is an S 4 so one<br />

could aga<strong>in</strong> have Osp(4 ∗ |4), but with a geometrical Sp(4) ∼ SO(5) <strong>and</strong> a nonge-<br />

ometrical SU(2). In D = 6, which is the self-dual dimension for str<strong>in</strong>gs, the near<br />

horizon geometry would be AdS3 × S 3 × T 4 . This has both a geometrical <strong>and</strong> a non-<br />

geometrical SO(4), both of which have SU(2) subgroups. This could correspond to<br />

two copies of D(2, 1; α) with left <strong>and</strong> right actions, each conta<strong>in</strong><strong>in</strong>g an SU(2)×SU(2)<br />

R-symmetry. So for all 3 ≤ D ≤ 10, there are c<strong>and</strong>idate near-horizon supergroups<br />

with 16 supercharges. 4 Whether or not the solutions actually exist rema<strong>in</strong>s to be<br />

seen.<br />

3 14 is another possibility, correspond<strong>in</strong>g to the supergroups G(3) with R-symmetry group G2 or<br />

Osp(7|2) with SO(7).<br />

4 C<strong>and</strong>idates for near-horizon supergroups of type II str<strong>in</strong>gs can be obta<strong>in</strong>ed by tak<strong>in</strong>g left <strong>and</strong><br />

right copies of the above, except for the case D = 6.


Chapter 6: Near<strong>in</strong>g the Horizon of a <strong>Heterotic</strong> Str<strong>in</strong>g 130<br />

6.1.6 A worldsheet CFT?<br />

As discussed above, the success of the small black hole/str<strong>in</strong>g story suggested that<br />

N heterotic str<strong>in</strong>gs <strong>in</strong> D = 5 have an AdS3 ×S 2 near horizon region. The value of the<br />

str<strong>in</strong>g coupl<strong>in</strong>g goes to zero as N → ∞ so that str<strong>in</strong>g loop corrections can be ignored.<br />

Such solutions were then found <strong>in</strong> the classical str<strong>in</strong>gy R 2 -corrected supergravity,<br />

but R 2 -corrected supergravity is unreliable because α ′ corrections are uncontrolled.<br />

Such corrections, however, are controllable us<strong>in</strong>g worldsheet CFT methods, so either<br />

the authors of [116, 35, 27] <strong>and</strong> we were misled by the solutions of R 2 -corrected<br />

supergravity, or an exact worldsheet CFT which describes the near-horizon geometry<br />

must exist.<br />

The sought after worldsheet CFT cannot <strong>in</strong>volve a RR background, as there are<br />

none <strong>in</strong> heterotic str<strong>in</strong>g theory. Furthermore, the large spacetime symmetry group<br />

places strong constra<strong>in</strong>ts on the worldsheet CFT [66, 97, 69, 68]. So if this CFT<br />

<strong>and</strong> the associated GSO projection exist, it should be possible to f<strong>in</strong>d them. Related<br />

<strong>and</strong> <strong>in</strong> some cases partial proposals have already appeared <strong>in</strong> [30, 67, 96] as well as<br />

[36, 87] which appeared as the present work was under submission. The closely related<br />

problem of f<strong>in</strong>d<strong>in</strong>g the CFT which describes the S 2 horizon of a heterotic monopole<br />

was solved <strong>in</strong> [64]. We will review this construction <strong>and</strong> its application to the current<br />

problem <strong>in</strong> the last section.<br />

Suppos<strong>in</strong>g the CFT does not exist for some or all cases, <strong>and</strong> we have simply been<br />

misled by the R 2 solutions, what are the possibilities? One is that there simply is no<br />

near horizon solution <strong>and</strong> that both supergravity <strong>and</strong> the exact classical str<strong>in</strong>g theory<br />

are s<strong>in</strong>gular at the core of the str<strong>in</strong>g. A second possibility, advocated <strong>in</strong> [67] (but at


Chapter 6: Near<strong>in</strong>g the Horizon of a <strong>Heterotic</strong> Str<strong>in</strong>g 131<br />

odds with the picture <strong>in</strong> CDKL), is that there is a smooth near horizon solution, but<br />

that some of the supersymmetries act trivially. Phenomena of this type are known <strong>in</strong><br />

str<strong>in</strong>g theory. For example if we look at the magnetically charged black hole solutions<br />

of [64], for magnetic charge ±1 the horizon part of the “throat” theory is trivial <strong>and</strong><br />

SO(3) spacetime rotations act trivially. Should this turn out to be the case we will<br />

need to underst<strong>and</strong> <strong>in</strong> what sense the near-horizon spacetime is the holographic dual<br />

of the heterotic str<strong>in</strong>g CFT.<br />

6.2 Near-Horizon Analysis<br />

In this section we explicitly demonstrate, by f<strong>in</strong>d<strong>in</strong>g the unbroken supersymmetries<br />

<strong>and</strong> comput<strong>in</strong>g their commutators, that the superisometry group of the near-horizon<br />

region of a fundamental heterotic str<strong>in</strong>g <strong>in</strong> R 2 -corrected supergravity is Osp(4 ∗ |4). We<br />

employ the asymptotically flat solution of the BPS conditions found <strong>in</strong> CDKL. The<br />

CDKL analysis was <strong>in</strong> turn made possible by the recent supersymmetric completion<br />

of the relevant R 2 term <strong>in</strong> five dimensions [78], which descends from terms related to<br />

anomaly cancellation <strong>in</strong> the M-theory lift.<br />

6.2.1 Supergravity <strong>in</strong> 5d<br />

Five dimensional supergravity with 8n real supercharges, conventionally referred<br />

to as N = 2n supergravity, has an Sp(2n) R-symmetry group with the supersymmetry<br />

parameter ɛ i , i = 1, . . . , 2n, transform<strong>in</strong>g <strong>in</strong> the 2n. CDKL work <strong>in</strong> an offshell<br />

N = 2 formalism (which greatly simplifies the computation), but their solution can<br />

be embedded <strong>in</strong> an N = 4 theory as follows. The N = 4 gravit<strong>in</strong>o variation has


Chapter 6: Near<strong>in</strong>g the Horizon of a <strong>Heterotic</strong> Str<strong>in</strong>g 132<br />

relevant terms of the form<br />

δψ i µ ∼ ∇µɛ i + (F ij<br />

ρσ + GρσΩ ij )(γµ ρσ − 4δµ ρ γ σ )ɛj + · · · , (6.5)<br />

where F ij <strong>and</strong> G are 2-form field strengths <strong>in</strong> the 5 <strong>and</strong> 1 of Sp(4) respectively.<br />

However, one can see upon dimensional reduction from D = 10 that the F ij come<br />

from components of the metric g <strong>and</strong> anti-symmetric 2-form B which are mixed<br />

between AdS3 × S 2 <strong>and</strong> T 5 , <strong>and</strong> these vanish <strong>in</strong> the present context. Under these<br />

circumstances, the Sp(4) R symmetry is unbroken by the background <strong>and</strong> the N = 4<br />

variation looks exactly like that of N = 2 but with i = 1, . . . , 4, <strong>in</strong>stead of i = 1, 2.<br />

In 4 + 1 dimensions there is no ord<strong>in</strong>ary Majorana condition, but one can impose<br />

a symplectic-Majorana condition via<br />

¯ξ i = ξ †<br />

i γˆ0 = ξ iT C, (6.6)<br />

where C is the charge conjugation matrix <strong>and</strong> tangent-space <strong>in</strong>dices are hatted. We<br />

will also use the symplectic matrix Ωij to raise <strong>and</strong> lower <strong>in</strong>dices by<br />

We choose a basis <strong>in</strong> which<br />

ξ i = Ω ij ξj ξi = ξ j Ωji. (6.7)<br />

Ω12 = Ω34 = −Ω21 = −Ω43 = 1. (6.8)<br />

The str<strong>in</strong>g solution <strong>in</strong> supergravity has ISO(1, 1)×SO(3) isometry. It is convenient to<br />

choose lightcone coord<strong>in</strong>ates along the str<strong>in</strong>g x ± = x 0 ± x 1 , <strong>and</strong> spherical coord<strong>in</strong>ates<br />

r, θ, φ for the transverse directions. In conformity with CDKL, we take the tangent<br />

space metric to have signature (+ − − − −).


Chapter 6: Near<strong>in</strong>g the Horizon of a <strong>Heterotic</strong> Str<strong>in</strong>g 133<br />

We work <strong>in</strong> a representation of the Clifford algebra with γ ˆ0 Hermitian, <strong>and</strong> the<br />

other γ ˆµ anti-Hermitian. Consistent with this, we can choose γ ˆ1 to be real while the<br />

others are pure imag<strong>in</strong>ary. The charge conjugation matrix C = γ ˆ0ˆ1 satisfies<br />

Cγ µ C −1 = γ µT . (6.9)<br />

As this is a non-chiral theory, we choose γ ˆ0ˆ1ˆr ˆ θ ˆ φ = 1 where the <strong>in</strong>dices are tangent<br />

space <strong>in</strong>dices, raised <strong>and</strong> lowered by −ηˆ0ˆ0 = ηˆ1ˆ1 = ηˆrˆr = ηˆ θ ˆ θ = η ˆ φ ˆ φ = −1. Note that<br />

γ µ1...µp is always the antisymmetric comb<strong>in</strong>ation divided by p!.<br />

6.2.2 Kill<strong>in</strong>g sp<strong>in</strong>ors<br />

The CDKL solution has an AdS3 × S 2 near horizon region with metric<br />

Choos<strong>in</strong>g the vielbe<strong>in</strong><br />

e ˆ+ + = e ˆ− − =<br />

ds 2 = r<br />

l dx+ dx − − l2<br />

r 2 dr2 − l 2 dΩ2. (6.10)<br />

� r<br />

l , eˆr r = l<br />

r , eˆ θ θ = l, e ˆ φ φ = l s<strong>in</strong> θ, (6.11)<br />

the only non-zero components of the sp<strong>in</strong> connection are<br />

ωφ<br />

ˆθ ˆ φ<br />

= cos θ, ω+ ˆr ˆ+<br />

= ω− ˆr �<br />

ˆ− 1 r<br />

= . (6.12)<br />

2 l3 The Weyl multiplet of 5d N = 2 conformal supergravity conta<strong>in</strong>s an auxiliary 2-form<br />

vµν (related to G <strong>in</strong> (6.5)) which is vˆ θ ˆ φ = 3<br />

4l<br />

precise version of the gravit<strong>in</strong>o variation (6.5) is<br />

<strong>in</strong> this background. In terms of v the<br />

δɛψ i µ = (∇µ + 1<br />

2 vνργ νρ µ − 1<br />

3 vνργµγ νρ )ɛ i . (6.13)


Chapter 6: Near<strong>in</strong>g the Horizon of a <strong>Heterotic</strong> Str<strong>in</strong>g 134<br />

As mentioned above, because our background preserves R-symmery the R-symmetry<br />

<strong>in</strong>dex just goes along for the ride. There is also a second fermion χ as well as gaug<strong>in</strong>os<br />

whose variations determ<strong>in</strong>e the scalar auxilliary field D <strong>and</strong> field strengths, but turn<br />

out to not further constra<strong>in</strong> the Kill<strong>in</strong>g sp<strong>in</strong>or <strong>and</strong> so shall not concern us here.<br />

Let’s first consider the δψ i r variation. There are two solutions with r-dependence<br />

(r/l) ±1/4 <strong>and</strong> satisfyng the projection γ ˆrˆ θ ˆ φ i ɛ± = ±ɛi ± . Further, the two solutions are<br />

related by ɛ i − = (� l/r)γ ˆ+ˆr ɛ i + . Denote by ɛ i the sp<strong>in</strong>or satisfy<strong>in</strong>g γ ˆrˆ θ ˆ φ ɛ i = ɛ i . From<br />

the δψ i ± variations we f<strong>in</strong>d that ɛ i is <strong>in</strong>dependent of x ± , <strong>and</strong> that there is another<br />

solution of the form 5<br />

Solv<strong>in</strong>g the angular variations for ɛ i gives<br />

λ i = − x+<br />

l ɛi �<br />

l<br />

+<br />

r γ ˆ+ˆr i<br />

ɛ . (6.14)<br />

ɛ i = ( r<br />

l )1/4e θ<br />

2 γ ˆ φ φ<br />

−<br />

e 2 γ ˆ θ ˆ φ<br />

ɛ i 0, (6.15)<br />

where ɛ0 is a constant sp<strong>in</strong>or which satisfies γ ˆrˆ θ ˆ φ ɛ i 0 = ɛ i 0 . In addition, the λi given <strong>in</strong><br />

terms of ɛ i <strong>in</strong> (6.14) rema<strong>in</strong> solutions as well s<strong>in</strong>ce these angular variations commute<br />

with γ ˆ+ˆr . So all <strong>in</strong> all we have 16 near horizon supersymmetries.<br />

6.2.3 Kill<strong>in</strong>g Vectors<br />

In order to determ<strong>in</strong>e the complete supergroup, we need to underst<strong>and</strong> the ac-<br />

tion of the (right-h<strong>and</strong>ed) SL(2, R) bosonic symmetries on the Kill<strong>in</strong>g sp<strong>in</strong>ors. The<br />

SL(2, R) Kill<strong>in</strong>g vectors are<br />

L−1 = l∂+, L0 = −x + ∂+ + r∂r, L1 = (x+ ) 2<br />

l<br />

∂+ − 2x+ r<br />

∂r +<br />

l<br />

4l2<br />

r ∂−. (6.16)<br />

5 The λ i are the enhanced supersymmetries of the near-horizon region. This equation expresses<br />

them <strong>in</strong> terms of the Lie derivative with respect to an SL(2, R) Kill<strong>in</strong>g vector act<strong>in</strong>g on ɛ i .


Chapter 6: Near<strong>in</strong>g the Horizon of a <strong>Heterotic</strong> Str<strong>in</strong>g 135<br />

Us<strong>in</strong>g these we f<strong>in</strong>d that 6<br />

L0ɛ i = 1<br />

2 ɛi , L0λ i = − 1<br />

2 λi , L1ɛ i = λ i , L−1λ i = −ɛ i , (6.17)<br />

which identifies ɛ i <strong>and</strong> λ i respectively with the − 1<br />

2<br />

[Lm, Gr] = ( m<br />

2<br />

− r)Gm+r.<br />

Similarly the SU(2) action is generated by<br />

<strong>and</strong> + 1<br />

2<br />

modes of G obey<strong>in</strong>g<br />

J 3 0 = −i∂φ, J ± 0 = e±iφ (−i∂θ ± cot θ∂φ). (6.18)<br />

S<strong>in</strong>ce γ ˆrˆ θ ˆ φ <strong>and</strong> γ ˆ θ ˆ φ commute we can def<strong>in</strong>e<br />

<strong>and</strong> it is easy to check that these satisfy<br />

γ ˆ θ ˆ φ ɛ i 0 = ∓iɛ i 0, (6.19)<br />

J 3 0 ɛi = ± 1<br />

2 ɛi . (6.20)<br />

Suppose we start with a constant sp<strong>in</strong>or obey<strong>in</strong>g γ ˆ θ ˆ φ ɛ0 = −iɛ0 as well as ɛ0 = −iγ ˆ0 ˆ θ ɛ ∗ 0,<br />

<strong>and</strong> normalized to ɛ †<br />

0ɛ0 = 1<br />

4<br />

. Then we can def<strong>in</strong>e<br />

ξ 1 − = ( r<br />

l )1/4e θ<br />

2 γ ˆ φ i<br />

−<br />

e 2 φ (γ ˆ θ<br />

ɛ0),<br />

ξ 1 + = ( r<br />

l )1/4 e θ<br />

2 γ ˆ φ<br />

e i<br />

2 φ ɛ0,<br />

ξ 2 −<br />

ξ 2 +<br />

r = ( l )1/4e θ<br />

2 γ ˆ φ i<br />

− e 2 φ (−γ ˆ θ ∗ ɛ0 ), (6.21)<br />

= ( r<br />

l )1/4e θ<br />

2 γ ˆ φ<br />

e i<br />

2 φ (−γ ˆ0 ˆ θ ∗ ɛ0), where ξ a is a 2 of SU(2), J ± 0 ξ a ± = 0 <strong>and</strong> J ± 0 ξ a ∓ = ξ a ±. We can organize these <strong>in</strong>to<br />

6 With the action def<strong>in</strong>ed via the Lie derivative LKɛ = K µ ∇µɛ + 1<br />

4 ∂µKνγ µν ɛ.


Chapter 6: Near<strong>in</strong>g the Horizon of a <strong>Heterotic</strong> Str<strong>in</strong>g 136<br />

symplectic-Majorana Kill<strong>in</strong>g sp<strong>in</strong>ors<br />

⎛ ⎞ ⎛<br />

ɛ (1) =<br />

ɛ (5) =<br />

⎜<br />

⎝<br />

⎛<br />

⎜<br />

⎝<br />

ξ 1 +<br />

−ξ 2 −<br />

0<br />

0<br />

0<br />

0<br />

ξ 1 +<br />

−ξ 2 −<br />

⎟ , ɛ<br />

⎟<br />

⎠<br />

(2) ⎜<br />

= ⎜<br />

⎝<br />

⎞<br />

⎛<br />

⎟ , ɛ<br />

⎟<br />

⎠<br />

(6) ⎜<br />

= ⎜<br />

⎝<br />

ξ 2 +<br />

−ξ 1 −<br />

0<br />

0<br />

0<br />

0<br />

ξ 2 +<br />

−ξ 1 −<br />

⎞<br />

⎛<br />

⎟ , ɛ<br />

⎟<br />

⎠<br />

(3) ⎜<br />

= ⎜<br />

⎝<br />

⎞<br />

⎛<br />

⎟ , ɛ<br />

⎟<br />

⎠<br />

(7) ⎜<br />

= ⎜<br />

⎝<br />

ξ 1 −<br />

ξ 2 +<br />

0<br />

0<br />

0<br />

0<br />

ξ 1 −<br />

ξ 2 +<br />

⎞<br />

⎛<br />

⎟ , ɛ<br />

⎟<br />

⎠<br />

(4) ⎜<br />

= ⎜<br />

⎝<br />

⎞<br />

⎛<br />

⎟ , ɛ<br />

⎟<br />

⎠<br />

(8) ⎜<br />

= ⎜<br />

⎝<br />

ξ 1 +<br />

−ξ 2 −<br />

0<br />

0<br />

0<br />

0<br />

−ξ 2 +<br />

−ξ 1 +<br />

⎞<br />

⎟<br />

⎠<br />

⎞<br />

⎟<br />

⎟(6.22)<br />

,<br />

⎟<br />

⎠<br />

where each ɛ (I) transforms as a 4 of Sp(4) by left-multiplication (see appendix D).<br />

We will identify these with G I<br />

def<strong>in</strong>e<br />

− 1<br />

2<br />

η a ±<br />

, I = 1, . . . , 8. Follow<strong>in</strong>g the same procedure we can<br />

= −x+<br />

l ξa ± +<br />

� l<br />

r γ ˆ+ˆr ξ a ±<br />

<strong>and</strong> group them <strong>in</strong>to symplectic-Majorana 4’s which will be identified with GI 1 .<br />

2<br />

6.2.4 Supercharge commutators<br />

(6.23)<br />

Commutators of supercharges can be expressed as fermion bil<strong>in</strong>ears <strong>in</strong>volv<strong>in</strong>g the<br />

correspond<strong>in</strong>g Kill<strong>in</strong>g sp<strong>in</strong>ors. In particular, [58] determ<strong>in</strong>es<br />

where ɛ (I)<br />

− 1<br />

2<br />

{G I r, G J s } ∼ Ωij<br />

= ɛ (I) <strong>and</strong> ɛ (I)<br />

1<br />

2<br />

+<br />

� (¯ɛ (I)<br />

r ) i γ µ (ɛ (J)<br />

s ) j + (¯ɛ (J)<br />

s ) i γ µ (ɛ (I)<br />

r ) j� ∂µ<br />

�<br />

(¯ɛ (I)<br />

r )iγ ˆ θ ˆ φ (ɛ (J)<br />

s )j + (¯ɛ (J)<br />

s )iγ ˆ θ ˆ φ (ɛ (I)<br />

r )j<br />

�<br />

, (6.24)<br />

= λ (I) . The first l<strong>in</strong>e of (6.24) <strong>in</strong>volves the spacetime Kill<strong>in</strong>g<br />

vectors of SL(2, R) × SU(2) <strong>and</strong> the second <strong>in</strong>volves the the generators of Sp(4).


Chapter 6: Near<strong>in</strong>g the Horizon of a <strong>Heterotic</strong> Str<strong>in</strong>g 137<br />

Us<strong>in</strong>g our previous normalizations <strong>and</strong> the notation <strong>in</strong> appendix D, we f<strong>in</strong>d<br />

for I, J = 1, . . . , 8. Also,<br />

⎛<br />

{G I1<br />

1<br />

2<br />

, G J1<br />

− 1<br />

2<br />

⎜<br />

} = ⎜<br />

⎝<br />

{G I<br />

± 1<br />

2<br />

, G J<br />

± 1 } = −2δ<br />

2<br />

IJ L±1<br />

−2L0 −2iJ 3 0 + iA3 2iJ 2 0 + iA1 2iJ 1 0<br />

+ iA2<br />

2iJ 3 0 − iA3 −2L0 2iJ 1 0 − iA2 −2iJ 2 0 + iA1<br />

−2iJ 2 0 − iA1 −2iJ 1 0 + iA2 −2L0 −2iJ 3 0<br />

−2iJ 1 0 − iA2 2iJ 2 0 − iA1 2iJ 3 0 + iA3 −2L0<br />

− iA3<br />

⎞<br />

(6.25)<br />

⎟ , (6.26)<br />

⎟<br />

⎠<br />

where I1, J1 = 1, . . . , 4. If I2, J2 = 5, . . . , 8, the same table arises with Aα replaced by<br />

Cα. If I1 = 1, . . . , 4, <strong>and</strong> J2 = 5, . . . , 8,<br />

{G I1<br />

1 , G<br />

2<br />

J2<br />

− 1<br />

⎛<br />

⎞<br />

iB4 ⎜ −iB3<br />

} = ⎜<br />

2 ⎜ −iB1<br />

⎝<br />

iB3<br />

iB4<br />

iB2<br />

iB1<br />

−iB2<br />

iB4<br />

iB2<br />

iB1<br />

−iB3<br />

⎟ .<br />

⎟<br />

⎠<br />

(6.27)<br />

−iB2 −iB1 iB3 iB4<br />

These are just the commutation relations of Osp(4 ∗ |4), written below <strong>in</strong> a more<br />

compact form (assum<strong>in</strong>g we rotate G → iG):<br />

{G I r , GJ s } = 2Lr+sδ IJ + (r − s)(tα) IJ J α 0 + (r − s)(ρA) IJ R A 0<br />

�<br />

Lm, G I � m<br />

s = (<br />

2 − s)GIm+s, � A<br />

R0 , G I� A IJ J<br />

r = (ρ ) Gr (6.28)<br />

�<br />

α<br />

J0 , G I �<br />

α IJ J<br />

r = (t ) Gr ,<br />

where t α <strong>and</strong> ρ A are the representation matrices for SU(2) <strong>and</strong> Sp(4) respectively,<br />

<strong>and</strong> R A are the generators of Sp(4). In the first two l<strong>in</strong>es of (6.28), it should be<br />

understood we have only computed the global part of the superalgebra.


Chapter 6: Near<strong>in</strong>g the Horizon of a <strong>Heterotic</strong> Str<strong>in</strong>g 138<br />

6.3 Towards an Exact Worldsheet CFT<br />

In this section, we review <strong>and</strong> po<strong>in</strong>t out that the old results of [64] may be relevant<br />

to the problem of f<strong>in</strong>d<strong>in</strong>g an exact worldsheet dual. We note that with the obvious<br />

adaptation of the GSO projection used <strong>in</strong> [64] one does not realize the needed 16<br />

supercharges, so someth<strong>in</strong>g more is needed to get a fully viable c<strong>and</strong>idate for the<br />

worldsheet CFT.<br />

6.3.1 4d heterotic black monopoles<br />

<strong>Heterotic</strong> str<strong>in</strong>g theory <strong>in</strong> four dimensions conta<strong>in</strong>s macroscopic black hole solu-<br />

tions [61] with magnetic charges ly<strong>in</strong>g <strong>in</strong> a U(1) subgroup of E8 × E8. S<strong>in</strong>ce the<br />

charges are associated with the left-mov<strong>in</strong>g sector of the worldsheet, such solutions<br />

are generically non-supersymmetric. The near horizon region is the product of 2D<br />

M<strong>in</strong>kowski space with a l<strong>in</strong>ear dilaton <strong>and</strong> an S 2 threaded with magnetic flux.<br />

For every classical solution there should be a correspond<strong>in</strong>g worldsheet CFT. In<br />

this case the CFT is rather subtle but was eventually found <strong>in</strong> [64]. While S 3 factors<br />

such as those aris<strong>in</strong>g <strong>in</strong> the near horizon for the NS5-brane are easily recognized as<br />

SU(2) WZW models (which have SU(2)L <strong>and</strong> SU(2)R current algebras correspond<strong>in</strong>g<br />

to the S 3 isometry group) it is harder to see where an S 2 horizon comes from (which<br />

has only one SU(2) isometry). It turns out that it is given by an asymmetric orbifold<br />

of level k = 2|Q 2 − 1| WZW model of the form<br />

SU(2) 2|Q 2 −1| × SU(2) 2|Q 2 −1|<br />

Z2Q+2<br />

, (6.29)<br />

where Q is the monopole charge. (6.29) can be viewed as a two sphere with a left


Chapter 6: Near<strong>in</strong>g the Horizon of a <strong>Heterotic</strong> Str<strong>in</strong>g 139<br />

<strong>and</strong> a right fiber U(1)L <strong>and</strong> U(1)R. The U(1)L fiber comes from the U(1) subgroup of<br />

E8×E8 <strong>and</strong> the Chern class of the fibration is determ<strong>in</strong>ed by the monopole charge. On<br />

the right, one has two fermions which are superpartners of the the two coord<strong>in</strong>ates<br />

of the S 2 horizon <strong>and</strong> live <strong>in</strong> the tangent bundle. These can be bosonized to a<br />

U(1)R boson which also has a nontrivial fibration. The total space of the S 2 horizon<br />

together with its bosonized right-mov<strong>in</strong>g superpartners <strong>and</strong> the left-mov<strong>in</strong>g current<br />

U(1)L boson was shown <strong>in</strong> [64] to be given by (6.29), with a specified action for the<br />

Z2Q+2 quotient.<br />

6.3.2 5d monopole-heterotic str<strong>in</strong>gs<br />

We wish to consider two modifications of the construction of [64]. First, by trad<strong>in</strong>g<br />

a compact dimension for a trivial flat dimension, we can uplift the CFT to one<br />

describ<strong>in</strong>g a monopole str<strong>in</strong>g <strong>in</strong> five dimensions. Second, we replace the 3d M 2 ×<br />

(l<strong>in</strong>ear dilaton) factor with a (0, 1) SL(2, R)k+4 WZW model 7 (represent<strong>in</strong>g an AdS3<br />

factor) with the same central charges (cL, cR) = (3 + 6 9 , k+2 2<br />

dilaton.<br />

6 + ) <strong>and</strong> constant<br />

k+2<br />

The presence of H flux on the AdS3 factor <strong>in</strong>dicates that the monopole str<strong>in</strong>g also<br />

carries fundamental str<strong>in</strong>g charge. The number N of heterotic str<strong>in</strong>gs behaves as<br />

�<br />

N ∼<br />

S 2 ×M5<br />

e −2Φ ∗ H ∼ k<br />

g2 . (6.30)<br />

5<br />

We wish to have weakly coupled str<strong>in</strong>g theory so N must be large.<br />

7 The supersymmetric right side conta<strong>in</strong>s bosonic level k + 4 SL(2, R) current j A <strong>and</strong> a supersymmetric<br />

level k + 2 SL(2, R) current J A .


Chapter 6: Near<strong>in</strong>g the Horizon of a <strong>Heterotic</strong> Str<strong>in</strong>g 140<br />

6.3.3 Q=0: the heterotic str<strong>in</strong>g near-horizon<br />

An <strong>in</strong>trigu<strong>in</strong>g feature of the construction of [64] is that it is nons<strong>in</strong>gular for the<br />

case Q = 0 which corresponds to k = 2. This case was referred to as the “neutral<br />

remnant” <strong>in</strong> [64]. k = 2 can be described by 3 left <strong>and</strong> 3 right free fermions, <strong>and</strong> the<br />

Z2 quotient <strong>in</strong> (6.29) acts purely on the left as a 2π rotation. One then expects that<br />

with the modifications of the previous subsection, the case k = 2 corresponds to the<br />

near-horizon geometry of N str<strong>in</strong>gs. However, to def<strong>in</strong>e the theory we must specify<br />

the GSO projection (with the SL(2, R) factor there seems to be more than one way<br />

to do this), <strong>and</strong> the obvious adaptation of the one given <strong>in</strong> [64] does not give the<br />

needed spacetime supersymetries. Possibly a different value of k 8 or modified GSO<br />

will give the desired theory.<br />

8 The construction of [66] naively <strong>in</strong>dicates that the value k = 0 (which gives bosonic SL(2, R)<br />

currents at level 4), gives the desired spacetime central charge, but this construction requires modifications<br />

for a nonl<strong>in</strong>ear superconformal algebra.


Chapter 6: Near<strong>in</strong>g the Horizon of a <strong>Heterotic</strong> Str<strong>in</strong>g 141


Appendix A<br />

Collective <strong>Field</strong> Description of<br />

Matrix Cosmologies<br />

In this Appendix, we will analyze an example which does not fall <strong>in</strong>to the restricted<br />

category of solutions analyzed <strong>in</strong> section 2.4. We return to the general case from<br />

section 2.3, <strong>and</strong>, us<strong>in</strong>g only the property (2.14), we write the cubic part of the action<br />

as<br />

S(3) =<br />

√ �<br />

π<br />

1<br />

dσdτ<br />

2 6ϕ0|∂xτ + ∂xτ − � �(∂xτ<br />

|<br />

− ) 3 − (∂xτ + ) 3� � (∂ση) 3 + 3∂ση(∂τη) 2�<br />

− � (∂xτ + ) 3 + (∂xτ − ) 3� � 3(∂ση) 2 �<br />

∂τ η + (∂τη)<br />

3�<br />

. (A.1)<br />

For the coupl<strong>in</strong>gs <strong>in</strong> this action to be time <strong>in</strong>dependent, as <strong>in</strong> equation (2.40), ∂xτ ± /ϕ0<br />

must be a function of σ only. We will analyze this condition <strong>in</strong> a specific example.<br />

Consider the Fermi surface given by<br />

x 2 − p 2 = 1 + (x − p) 3 e 3t . (A.2)<br />

142


Appendix A: Collective <strong>Field</strong> Description of Matrix Cosmologies 143<br />

Parametrically, this surface is given by<br />

x = cosh ω + 1<br />

2 e3t−2ω<br />

p = s<strong>in</strong>h ω + 1<br />

2 e3t−2ω .<br />

(A.3)<br />

S<strong>in</strong>ce the parametric form is similar to the one given <strong>in</strong> [7], we use the procedure<br />

given there to def<strong>in</strong>e the Alex<strong>and</strong>rov coord<strong>in</strong>ates<br />

τ + = t − ω , τ − = t − ˜ω , (A.4)<br />

where ˜ω is def<strong>in</strong>ed by x(˜ω, t) = x(ω, t) as well as p(ω, t) = p+ <strong>and</strong> p(˜ω, t) = p−. It is<br />

possible to solve for x, t <strong>and</strong> p± as functions of τ ± :<br />

x(τ ± ) = −<br />

exp(t(τ ± )) = −<br />

e 2τ + +2τ −<br />

τ + τ −<br />

− e − e<br />

2 √ eτ + +τ − − e2τ + +3τ − − e3τ + +2τ −<br />

√<br />

eτ + +τ − − e2τ + +3τ − − e3τ + +2τ −<br />

e2τ + +τ − + eτ + +2τ − p+(τ<br />

− 1<br />

± ) = e2τ + +2τ −<br />

+ 2e3τ + +τ − τ − τ +<br />

+ e − e<br />

2 √ eτ + +τ − − e2τ + +3τ − − e3τ + +2τ −<br />

p−(τ ± ) = e2τ + +2τ −<br />

+ 2e3τ − +τ + τ + τ −<br />

+ e − e<br />

2 √ eτ + +τ − − e2τ + +3τ − − e3τ + +2τ − . (A.5)<br />

The coord<strong>in</strong>ates given here have the property that the edge of the Fermi sea<br />

(p+ = p−) is at 2σ = τ + − τ − = 0. It is now possible to compute ∂xτ ± /ϕ0. Not<br />

surpris<strong>in</strong>gly, this is not a function of σ only. The question is whether, by a suitable<br />

conformal change of coord<strong>in</strong>ates to ¯τ ± , this condition could be satisfied. The change<br />

of coord<strong>in</strong>ates would have to map σ = 0 to itself to ma<strong>in</strong>ta<strong>in</strong> a static Fermi sea<br />

edge <strong>in</strong> the new coord<strong>in</strong>ates. Thus, the change of coord<strong>in</strong>ates must be of the form<br />

τ ± = f(¯τ ± ), with f(·) an arbitrary function. Def<strong>in</strong>e Q± ≡ ∂xτ ± /ϕ0. The necessary<br />

condition is then<br />

0 = ∂¯τ Q± = f ′ (¯τ + )∂τ +Q± + f ′ (¯τ − )∂τ −Q± (A.6)


Appendix A: Collective <strong>Field</strong> Description of Matrix Cosmologies 144<br />

imply<strong>in</strong>g that ∂τ −Q±/∂τ +Q± is of the form<br />

Therefore,<br />

W±(τ + , τ − ) ≡<br />

∂τ −Q±<br />

∂τ +Q±<br />

= − f ′ (¯τ + )<br />

f ′ (¯τ − ) = −F (τ + )<br />

F (τ − )<br />

. (A.7)<br />

W±(τ + , τ − )W±(τ − , τ + ) = 1 . (A.8)<br />

By explicit computation, it can be checked that this condition is not satisfied. There-<br />

fore, there does not exist a coord<strong>in</strong>ate transformation after which S(3) has no τ de-<br />

pendence.


Appendix B<br />

Towards the Massless Spectrum of<br />

Non-Kähler <strong>Heterotic</strong><br />

145


Appendix B: Towards the Massless Spectrum of Non-Kähler <strong>Heterotic</strong><br />

Compactifications 146<br />

Compactifications<br />

B.1 E<strong>in</strong>ste<strong>in</strong>/Str<strong>in</strong>g Frame Actions <strong>and</strong> EOM’s<br />

We start with the ten-dimensional action <strong>in</strong> E<strong>in</strong>ste<strong>in</strong>-frame, as is found <strong>in</strong> Chapter<br />

13 (p325) of [71], with the substitution φGSW = exp[φ/2 + 2 ln(κ/g)]:<br />

L (E)<br />

Het<br />

√ �<br />

1 1<br />

= − −G 2 κ2 R + 1<br />

2κ2 DMφDMφ + 1<br />

2κ2 e−φ/2Tr(F 2 ) + 3<br />

4κ2 e−φH 2<br />

+ ¯ ψMΓ MNP DNψP + ¯ λΓ M DMλ + Tr(¯χΓ M DMχ)<br />

+ 1 √ 2<br />

¯ψMΓ N Γ M λDNφ − 1<br />

8 e−φ/2 Tr(¯χΓ MNP χ)HMNP<br />

+ 1<br />

2 e−φ/4 Tr(¯χΓ M Γ NP (ψM +<br />

√ 2<br />

12 ΓMλ)FNP )<br />

− 1<br />

8e−φ/2�ψMΓ ¯ MNP QR ψR + 6 ¯ ψ N Γ P ψ Q − √ 2 ¯ ψMΓ NP Q Γ M λ � HNP Q<br />

+ (Fermions) 4<br />

�<br />

, (B.1)<br />

where DM is the Levi-Civita connection plus the gauge connection. We know that if<br />

we rescale the metric GMN → e pφ GMN, then √ −G → e pdφ/2√ −G <strong>and</strong><br />

R → e −pφ<br />

for GSW conventions.<br />

�<br />

R − p(d − 1)D 2 2 (d − 1)(d − 2)<br />

φ − p DMφD<br />

4<br />

M �<br />

φ<br />

(B.2)<br />

S<strong>in</strong>ce we want an overall factor of e −2φ <strong>in</strong> front <strong>in</strong> str<strong>in</strong>g frame, we must choose


Appendix B: Towards the Massless Spectrum of Non-Kähler <strong>Heterotic</strong><br />

Compactifications 147<br />

p = − 1.<br />

Under this rescal<strong>in</strong>g, we have<br />

2<br />

G (E)<br />

MN = e−φ/2 GMN, R (E) = e φ/2 (R − 9<br />

2 DMφD M φ),<br />

λ (E) = e φ/8 λ, χ (E) = e φ/8 χ,<br />

ψ (E)<br />

M = e−φ/8 ψM, Γ (E)<br />

M = e−φ/4 ΓM,<br />

ɛ (E) = e −φ/8 ɛ,<br />

(B.3)<br />

where ɛ is the sp<strong>in</strong>or appear<strong>in</strong>g <strong>in</strong> the supersymmetry variations. The Levi-Civita<br />

connection has additional terms depend<strong>in</strong>g on derivatives of φ:<br />

D (E)<br />

M VN = DMVN + 1<br />

4<br />

Γ (E)M<br />

NP = ΓM NP<br />

where VM is a spacetime 1-form.<br />

D (E)<br />

M λ = DMλ + 1<br />

8 ΓN M λDNφ,<br />

− 1<br />

4<br />

� VMDNφ + VNDMφ − GMNV P DP φ � ,<br />

� δ M N DP φ + δ M P DNφ − GNP D M φ � ,<br />

After some simplification, the str<strong>in</strong>g-frame action is<br />

L (S)<br />

Het<br />

1 = − 2e−2φ√ �<br />

1 −G κ2 R − 4<br />

κ2 DMφDMφ + 1<br />

2κ2 Tr(F 2 ) + 3<br />

4κ2 H2 + ¯ ψMΓ MNP DNψP + ¯ ψMΓ MP Γ N ψP DNφ + ¯ λΓ M DMλ<br />

− ¯ λΓ M λDMφ + Tr � ¯χΓ MDMχ − ¯χΓMχDMφ �<br />

+ 1<br />

2 Tr� ¯χΓ M Γ NP √<br />

2<br />

(ψM +<br />

12 ΓMλ)FNP<br />

�<br />

1 + √2<br />

− 1<br />

8 Tr� ¯χΓ MNP χ � HMNP − 1<br />

�<br />

¯ψMΓ<br />

8<br />

MNP QR ψR + 6 ¯ ψN ΓP ψQ �<br />

− √ 2 ¯ ψMΓ NP Q Γ M λ<br />

¯ψMΓ N Γ M λDNφ<br />

(B.4)<br />

HNP Q + (Fermions) 4 . (B.5)


Appendix B: Towards the Massless Spectrum of Non-Kähler <strong>Heterotic</strong><br />

Compactifications 148<br />

B.2 Useful Relations<br />

B.2.1 SUSY Implications<br />

A few th<strong>in</strong>gs to note. First, work<strong>in</strong>g <strong>in</strong> str<strong>in</strong>g-frame implies that<br />

Second, for DMΩ we have<br />

DµΩabc = 0,<br />

Dµη = 0. (B.6)<br />

DdΩabc = −3(Ddφ)Ωabc,<br />

DāΩabc = −(Dāφ)Ωabc, (B.7)<br />

all of which follow from the fermionic supersymmetry variations, as do<br />

See [118] for details.<br />

3<br />

2<br />

H d<br />

ād<br />

= Dāφ,<br />

3 d<br />

Had 2 = −Daφ, (B.8)<br />

4γ m Dmφη = Hmnpγ mnp η.<br />

B.2.2 A Note about Non-Kähler Manifolds<br />

One of the drawbacks to work<strong>in</strong>g with non-Kähler geometries is that, contrary to<br />

one’s naive expectation,<br />

∇m(Ωabcγ abc ) �= γ abc ∇mΩabc. (B.9)<br />

This arises from the fact that we are only summ<strong>in</strong>g over holomorphic <strong>in</strong>dices <strong>and</strong> not<br />

all real <strong>in</strong>dices; thus, the complex structure is implicitly used <strong>and</strong> we recall that, unlike


Appendix B: Towards the Massless Spectrum of Non-Kähler <strong>Heterotic</strong><br />

Compactifications 149<br />

<strong>in</strong> the Kähler case, the complex structure is not covariantly constant with respect to<br />

the Levi-Civita connection. To use the product rule, we must write everyth<strong>in</strong>g <strong>in</strong> real<br />

<strong>in</strong>dices.<br />

Def<strong>in</strong>e<br />

so that P b<br />

+a = δ b<br />

a , P ¯ b<br />

we f<strong>in</strong>d<br />

Thus,<br />

Similarly,<br />

<strong>and</strong><br />

−ā = δ<br />

n<br />

P±m<br />

≡ 1<br />

2<br />

(δ n<br />

m ∓ iJ n<br />

m ) (B.10)<br />

¯b ā , <strong>and</strong> all other components are zero. S<strong>in</strong>ce ∇ (H)<br />

m J = 0,<br />

∇mP p<br />

±n = ∓ 3i �<br />

p<br />

H<br />

4<br />

msJ s<br />

n − H s mnJ p<br />

�<br />

s . (B.11)<br />

∇m(Cabcγ abc ) = ∇m<br />

B.3 Derivation of (4.30)<br />

�<br />

Cpstγ nqr P p<br />

+n P s<br />

+q P t�<br />

+r<br />

= γ abc ∇mCabc + 3Cpbcγ nbc ∇mP p<br />

+n<br />

= γ abc ∇mCabc + 9<br />

2 Cabcγ ābc H a mā. (B.12)<br />

∇m(Cabγ ab ) = γ ab ∇mCab + 3Cabγ āb H a mā<br />

(B.13)<br />

∇m(Caγ a ) = γ a ∇mCa + 3<br />

2 Caγ ā H a mā . (B.14)<br />

When we consider a gauge bundle with structure group G <strong>and</strong> embed this <strong>in</strong>to<br />

a larger group H (E8 × E8 or SO(32)), the adjo<strong>in</strong>t of H decomposes <strong>in</strong>to a sum<br />

conta<strong>in</strong><strong>in</strong>g the adjo<strong>in</strong>t of G. S<strong>in</strong>ce we focus on variations of the gaug<strong>in</strong>o orthogonal


Appendix B: Towards the Massless Spectrum of Non-Kähler <strong>Heterotic</strong><br />

Compactifications 150<br />

to the adjo<strong>in</strong>t of G, the l<strong>in</strong>earized gaug<strong>in</strong>o equation of motion becomes<br />

0 = 2Γ M DMχ − 2Γ M χDMφ − 1<br />

4 ΓMNP χHMNP , (B.15)<br />

where we have suppressed gauge <strong>in</strong>dices.<br />

The most general Ansatz for the variation of the gaug<strong>in</strong>o is<br />

δχ = ɛ− ⊗ � Cη + Cabγ ab η � − ɛ+ ⊗<br />

�<br />

¯Cη ∗<br />

+ Cā ¯ ¯bγ ā¯ �<br />

b ∗<br />

η , (B.16)<br />

where C, Cab ∈ Ω ∗ (K; V ) <strong>and</strong> ɛ± are covariantly constant sp<strong>in</strong>ors on M4 with chiral-<br />

ities ±1 respectively. To simplify the gaug<strong>in</strong>o equation of motion, we note that<br />

∇aη = 3<br />

4 Habāγ bā η + 3<br />

8Haā¯bγ ā¯b 3 η = − 4<br />

H b<br />

ab η = 1<br />

2 (∂aφ)η (B.17)<br />

∇āη = 3<br />

4 H ā ¯ baγ ¯ ba η + 3<br />

8 Hāabγ ab η = − 1<br />

2 (∂āφ)η + 3<br />

8 Hāabγ ab η, (B.18)<br />

which follow from ∇ (H)<br />

m η = 0, γ ā η = 0, <strong>and</strong> (B.8).<br />

We will focus on the terms <strong>in</strong>volv<strong>in</strong>g ɛ− as the others are obta<strong>in</strong>ed by complex<br />

conjugation <strong>and</strong> multiplication by the ten-dimensional charge conjugation operator.<br />

Us<strong>in</strong>g the relations above, (B.13), <strong>and</strong> the fact that the product of more than three<br />

gamma matrices with all holomorphic or anti-holomorphic <strong>in</strong>dices is zero (s<strong>in</strong>ce we


Appendix B: Towards the Massless Spectrum of Non-Kähler <strong>Heterotic</strong><br />

Compactifications 151<br />

work on a complex 3-fold), we have<br />

<strong>and</strong><br />

Γ M �<br />

�<br />

DMδχ<br />

Similarly,<br />

− 1<br />

� = (γ<br />

ɛ−<br />

µ Dµɛ−) ⊗ (Cη + Cabγ ab η) − ɛ− ⊗ γ m Dm(Cη + Cabγ ab η)<br />

= −ɛ−⊗ � γ a �� Da(C + Cbcγ bc ) � η + (C + Cbcγ bc )Daη �<br />

+γ ā �� Dā(C + Cbcγ bc ) � η + (C + Cbcγ bc )Dāη ��<br />

�� �(DaC)γ = −ɛ−⊗<br />

a + (DaCbc)γ abc b c<br />

+ 3CbcH a γa� η<br />

+ � 1<br />

2 (∂aφ)Cγ a + 1<br />

2 (∂aφ)Cbcγ abc� � � �(DāCbc)γ η +<br />

ā γ bc� η<br />

+ � 3<br />

8CHāabγ ā γ ab − 1<br />

2 (∂āφ)Cbcγ ā γ bc� �<br />

η<br />

�<br />

= −ɛ−⊗ �� DaC + 3<br />

2 (∂aφ)C − 3CbcH bc<br />

a + 4DbCba − 2(∂ b �<br />

a<br />

φ)Cba γ η<br />

+ � DaCbc + 1<br />

2 (∂aφ)Cbc<br />

� �<br />

abc<br />

γ η . (B.19)<br />

−Γ M �<br />

�<br />

δχ∂M φ<br />

� ɛ−<br />

= ɛ− ⊗ � (γ a ∂aφ + γ ā ∂āφ)(Cη + Cbcγ bc η) �<br />

= ɛ−⊗ � (∂aφ)Cγ a η + (∂aφ)Cbcγ abc η + 4(∂ b φ)Cbaγ a η �<br />

�<br />

�<br />

8ΓMNP HMNP δ χ�<br />

ɛ−<br />

= 3<br />

8 ɛ−⊗<br />

= 3<br />

8 ɛ−⊗<br />

= 1<br />

2 ɛ−⊗<br />

= 1<br />

8 ɛ− ⊗ γ mnp Hmnp(Cη + Cabγ ab η)<br />

�<br />

CHabāγ abā η + CabHācdγ ācd γ ab η + CabHcā¯bγ cā¯ �<br />

b ab<br />

γ η<br />

� 4<br />

3 (∂aφ)Cγ a η − 4<br />

3 (∂aφ)Cbcγ abc η − 4<br />

3 (∂āφ)Cbcγ ā γ bc η<br />

+CabH cā ¯ bγ c γ ā¯ b γ ab η<br />

�<br />

�<br />

(∂aφ)Cγ a η − (∂aφ)Cbcγ abc η − 4(∂ b φ)Cbaγ a η<br />

−6CbcH bc<br />

a γa η<br />

(B.20)<br />

�<br />

. (B.21)


Appendix B: Towards the Massless Spectrum of Non-Kähler <strong>Heterotic</strong><br />

Compactifications 152<br />

Comb<strong>in</strong><strong>in</strong>g these, the gaug<strong>in</strong>o equation of motion reduces to<br />

as claimed.<br />

0 = −2 � DaC + 4D b Cba − 4(∂ b �<br />

a<br />

φ)Cba γ η − 2 (DaCbc) γ abc η (B.22)


Appendix C<br />

L<strong>in</strong>ear Models for Flux Vacua<br />

C.1 Review of (0, 2) <strong>and</strong> (2, 2) GLSMs<br />

The follow<strong>in</strong>g is a lightn<strong>in</strong>g review of the salient features of (0, 2) gauged l<strong>in</strong>ear<br />

sigma models; for more complete discussions see [124, 45]. Our conventions <strong>and</strong><br />

notation follow [81], with all factors of α ′ suppressed throughout the paper. We take<br />

the (0, 2) superspace coord<strong>in</strong>ates to be (y + , y − , θ + , ¯ θ + ), where y ± = (y 0 ± y 1 ). We<br />

beg<strong>in</strong> with the gauge multiplet.<br />

The right-mov<strong>in</strong>g gauge covariant superderivatives D+, D+, satisfy the algebra<br />

D 2 + = D 2<br />

+ = 0, − i<br />

4 { D+, D+} = ∇+ = ∂+ + iQv+, (C.1)<br />

where Q is the charge of the field on which they act. These imply that <strong>in</strong> a suitable<br />

basis we can identify<br />

D+ = ∂<br />

∂θ + − 2i¯ θ + ∇+, D+ = − ∂<br />

∂ ¯ θ + + 2iθ+ ∇+, D− = ∂− + i<br />

2 QV−,<br />

where V± are real vector superfields which transform under a gauge transforma-<br />

153


Appendix C: L<strong>in</strong>ear Models for Flux Vacua 154<br />

tion with (uncharged) chiral gauge parameter D+Λ = 0 as δΛV−=∂−(Λ + Λ) <strong>and</strong><br />

δΛV+= i<br />

2 (Λ − Λ); ∇± are the usual gauge covariant derivatives. This allows us to fix<br />

to Wess-Zum<strong>in</strong>o gauge <strong>in</strong> which<br />

V+ = θ +¯ θ + 2v+<br />

V− = 2v− − 2iθ +¯ λ− − 2i ¯ θ + λ− + 2θ +¯ θ + D.<br />

Note that V− conta<strong>in</strong>s a complex left-mov<strong>in</strong>g gaug<strong>in</strong>o. F<strong>in</strong>ally, the natural field<br />

strength is a fermionic chiral superfield,<br />

Υ = 2[D+, D−] = D+(2∂−V++iV−) = −2{λ−−iθ + (D+2iv+−)−2iθ + ¯<br />

θ + ∂+λ−}, (C.2)<br />

for which the natural action is<br />

SΥ = − 1<br />

8e2 �<br />

d 2 y dθ + d¯ θ + ΥΥ = 1<br />

e2 �<br />

d 2 y<br />

�<br />

2v 2 +− + 2i¯ λ−∂+λ− + 1<br />

2 D2<br />

�<br />

, (C.3)<br />

where d 2 y = dy 0 dy 1 <strong>and</strong> we use conventions where � dθ + θ + = � ¯ θ + d ¯ θ + = 1.<br />

Matter multiplets are similarly straightforward. A bosonic superfield satisfy<strong>in</strong>g<br />

D+Φ = 0 is called a chiral supermultiplet <strong>and</strong> conta<strong>in</strong>s a complex scalar <strong>and</strong> a<br />

right-mov<strong>in</strong>g complex fermion Φ = φ + √ 2θ + ψ+ − 2iθ +¯ θ + ∇+φ, <strong>and</strong> under gauge<br />

transformations Φ → e −iQ(Λ+Λ)/2 Φ. The gauge <strong>in</strong>variant Lagrangian is given by<br />

�<br />

SΦ = −i<br />

=<br />

�<br />

d 2 y d 2 θ ΦD−Φ, (C.4)<br />

d 2 �<br />

y − |∇αφ| 2 + 2i ¯ ψ+∇−ψ+ − iQ √ 2¯ φλ−ψ+ + iQ √ 2φ ¯ ψ+ ¯ λ− + QD|φ| 2<br />

�<br />

,<br />

where the metric is given by η +− = −2.<br />

Left-mov<strong>in</strong>g fermions transform <strong>in</strong> their own supermultiplet, the fermi supermul-<br />

tiplet, which satisfies the chiral constra<strong>in</strong>t<br />

D+Γ = √ 2E (C.5)


Appendix C: L<strong>in</strong>ear Models for Flux Vacua 155<br />

<strong>and</strong> has component expansion Γ = γ− − √ 2θ + G − 2iθ +¯ θ + ∇+γ− − √ 2 ¯ θ + E, where<br />

D+E = 0 is a bosonic chiral superfield with the same gauge charge as Γ. The action<br />

for Γ is given by<br />

SΓ = − 1<br />

�<br />

2<br />

�<br />

= d 2 �<br />

y<br />

d 2 y d 2 θ ΓΓ (C.6)<br />

2i¯γ−∇+γ− + |G| 2 − |E| 2 −<br />

�<br />

∂E<br />

¯γ−<br />

∂φi<br />

ψ+i + ¯ ψ+i<br />

∂E<br />

∂ ¯ φi<br />

γ−<br />

��<br />

.<br />

In general, we can add superpotential terms to our Lagrangian. S<strong>in</strong>ce these are<br />

<strong>in</strong>tegrals over a s<strong>in</strong>gle supercoord<strong>in</strong>ate, the superpotential can be written as a sum of<br />

fermi superfields Γm times holomorphic functions J m of the chiral superfields,<br />

SW = 1<br />

�<br />

√ d<br />

2<br />

2 y dθ + ΓmJ m |¯ θ + =0 + h.c., (C.7)<br />

�<br />

= − d 2 �<br />

y GmJ m ∂J<br />

(φi) + γ−mψ+i<br />

m �<br />

+ h.c..<br />

∂φi<br />

S<strong>in</strong>ce Γm is not an honest chiral superfield but satisfies (C.5), we need to impose the<br />

condition<br />

E · J = 0 (C.8)<br />

to ensure that the superpotential is chiral. F<strong>in</strong>ally, s<strong>in</strong>ce Υ is a chiral fermion, we<br />

can also add an FI term of the form<br />

SFI = it<br />

�<br />

4<br />

d 2 y dθ + �<br />

Υ|¯ θ + =0 + h.c. =<br />

where t = r + iθ is the complexified FI parameter.<br />

C.1.1 Our Canonical Example: V → K3<br />

d 2 y (−rD + 2θv+−) (C.9)<br />

Our canonical example beg<strong>in</strong>s with a vector bundle V → S over a K3 hypersurface<br />

S <strong>in</strong> a resolved weighted projective space W P 3 . The associated GLSM <strong>in</strong>cludes the


Appendix C: L<strong>in</strong>ear Models for Flux Vacua 156<br />

gauge group G = U(1) s with s gauge field-strengths Υa, (3+s) chiral scalars Φi=1,...3+s<br />

with charges Q a i , a set of c neutral scalars ΣA=1...c, a s<strong>in</strong>gle chiral scalar Φ0 with<br />

charges −d a , r fermi multiplets Γm=1,...r with charges q a m<br />

satisfy<strong>in</strong>g the constra<strong>in</strong>ts<br />

D+Γm = √ 2ΣAE A m (Φ), a s<strong>in</strong>gle chiral fermion Γ0 with charges −m a , <strong>and</strong> spectators<br />

as needed to ensure vanish<strong>in</strong>g of the one-loop tadpole for D a [46, 45], all <strong>in</strong>teract<strong>in</strong>g<br />

accord<strong>in</strong>g to the canonical Lagrangian density<br />

�<br />

L = −<br />

+ 1 √ 2<br />

d 2 θ<br />

�<br />

� 1<br />

8e2 ΥaΥa +<br />

a<br />

1<br />

2 ΓmΓm + iΣA∂−ΣA + iΦi(∂− + i<br />

2Qai V−a)Φi<br />

dθ + [Γ0G(Φi) + ΓmΦ0J m (Φi) +<br />

√ 2<br />

4 ita Υa] + h.c..<br />

Integrat<strong>in</strong>g out the auxiliary fields results <strong>in</strong> a scalar potential<br />

U = � e<br />

a<br />

2 �� a<br />

i<br />

2<br />

Qai |φi| 2 − m a |φ0| 2 − r a�2 2<br />

+ |G(φ)|<br />

+ � �<br />

|φ0| 2 |J m (φ)| 2 + � � �<br />

AσAE A m(φ) � �2� .<br />

m<br />

Non-s<strong>in</strong>gularity of the relevant geometric phase requires G(Φi) <strong>and</strong> J m (Φi) to be<br />

transverse,<br />

G = ∂G<br />

∂φ1<br />

= ∂G<br />

∂φ2<br />

= · · · = 0 ⇐⇒ ∀i : φi = 0,<br />

G = J 1 = J 2 = · · · = 0 ⇐⇒ ∀i : φi = 0.<br />

In the relevant geometric phase of the Kähler cone, the Yukawa <strong>in</strong>teractions<br />

� �<br />

LY uk = − γ−m ψ+0J m ∂J<br />

+ φ0ψ+i<br />

m �<br />

+<br />

∂φi<br />

�<br />

i<br />

�<br />

+¯γ−m η+AE A ∂E<br />

m + ψ+iσA<br />

A �<br />

�<br />

m<br />

∂G<br />

+ γ−0ψ+i + h.c.<br />

∂φi<br />

∂φi<br />

√ 2iQ a i ¯ φiλ−aψ+i<br />

give masses to various l<strong>in</strong>ear comb<strong>in</strong>ations of the right- <strong>and</strong> left-mov<strong>in</strong>g fermions. The<br />

massless right-mov<strong>in</strong>g fermions couple to a bundle which fits <strong>in</strong>to two exact sequences.<br />


Appendix C: L<strong>in</strong>ear Models for Flux Vacua 157<br />

For <strong>in</strong>stance, for a s<strong>in</strong>gle U(1) we have<br />

0 → OW P<br />

0 → TS → TW P| S<br />

Qiφi<br />

−→ ⊕iOW P(Qi) → TW P → 0 (C.10)<br />

∂φ i G<br />

−→ OS(d) → 0,<br />

so the massless right-mov<strong>in</strong>g fermions couple to TS. Similarly, the bundle VS to which<br />

the massless left-mov<strong>in</strong>g fermions couple fits <strong>in</strong>to a pair of short exact sequences,<br />

0 → ⊕AOW P<br />

0 → VS → VW P| S<br />

E A m<br />

−→ ⊕mO(qm) → VW P → 0 (C.11)<br />

J m<br />

−→ O(m) → 0.<br />

C.1.2 GLSMs with (2, 2) Supersymmetry<br />

A special class of (0, 2) theories have enhanced (2, 2) supersymmetry. To de-<br />

scribe these theories, we enlarge our superspace by add<strong>in</strong>g two fermionic coord<strong>in</strong>ates,<br />

(y + , y − , θ + , ¯ θ + , θ − , ¯ θ − ), <strong>and</strong> <strong>in</strong>troduce supercovariant derivatives<br />

D± = ∂<br />

∂θ ± − 2i¯ θ ± ∂±<br />

D± = − ∂<br />

∂ ¯ θ ± + 2iθ± ∂±. (C.12)<br />

Unlike the (0, 2) case, there are two k<strong>in</strong>ds of (2, 2) chiral multiplets, chiral multiplets<br />

satisfy<strong>in</strong>g<br />

<strong>and</strong> twisted chiral multiplets satisfy<strong>in</strong>g<br />

D+Φ2,2 = D−Φ2,2 = 0, (C.13)<br />

D+Y2,2 = D−Y2,2 = 0. (C.14)<br />

Both have the field content of one (0, 2) chiral <strong>and</strong> one (0, 2) fermi multiplet,<br />

Φ2,2 = Φ + √ 2θ − Γ− − 2iθ −¯ θ − ∂−Φ Y2,2 = Y + √ 2 ¯ θ − F + 2iθ −¯ θ − ∂−Y.


Appendix C: L<strong>in</strong>ear Models for Flux Vacua 158<br />

The (2, 2) vector superfield, V2,2, whose field strength is a twisted chiral multiplet<br />

Σ = 1<br />

√ 2 D+D−V2,2, is built out of an uncharged (0, 2) chiral multiplet Σ0 <strong>and</strong> a (0, 2)<br />

vector multiplet V± as<br />

V2,2 = V+ + θ −¯ θ − V− + √ 2 ¯ θ + θ − Σ0 + √ 2 ¯ θ − θ + Σ0, (C.15)<br />

where Σ0 = σ − i √ 2θ +¯ λ+ − 2iθ + ¯<br />

i<br />

2<br />

� �<br />

Λ2,2 − Λ2,2 . The st<strong>and</strong>ard FI-term is<br />

where t = r + iθ.<br />

LF I = −t<br />

2 √ �<br />

2<br />

θ + ∂+σ for agreement with [124], <strong>and</strong> δgV2,2 =<br />

dθ + d ¯ θ − Σ + h.c. = −rD + 2θv+−,<br />

Lastly, we note that a (2, 2) chiral multiplet with U(1) charge Q reduces to a<br />

charged (0, 2) chiral multiplet Φ <strong>and</strong> a charged fermi multiplet Γ satisfy<strong>in</strong>g<br />

D+Γ = √ 2E<br />

<strong>in</strong> (0, 2) notation, <strong>and</strong> where E is given by<br />

E = √ 2QΣ0Φ. (C.16)<br />

We will omit the subscripts “2,2” <strong>in</strong> the ma<strong>in</strong> text, as it should always be clear from<br />

the context to which supersymmetry we refer.<br />

C.2 The Fu-Yau Geometry<br />

C.2.1 Supersymmetry Constra<strong>in</strong>ts<br />

Consider compactification of the heterotic str<strong>in</strong>g on a 6-dimensional manifold, X.<br />

Preserv<strong>in</strong>g N =1 supersymmetry <strong>in</strong> 4d requires that X admit a nowhere vanish<strong>in</strong>g


Appendix C: L<strong>in</strong>ear Models for Flux Vacua 159<br />

sp<strong>in</strong>or, η. This immediately implies that X admits an almost complex structure. The<br />

existence of a nowhere-vanish<strong>in</strong>g sp<strong>in</strong>or on an almost-complex 3-fold implies that the<br />

frame bundle admits a connection of SU(3) holonomy – i.e. that X is a special-<br />

holonomy manifold with SU(3)-structure. However, the connection of special holon-<br />

omy need not be the Levi-Civita connection, <strong>and</strong> <strong>in</strong> general the nowhere-vanish<strong>in</strong>g<br />

sp<strong>in</strong>or is not annihilated by the metric connection, ∇g, but by a (unique) torsionful<br />

connection,<br />

(∇g + H)η = 0.<br />

H is called the <strong>in</strong>tr<strong>in</strong>sic torsion of the SU(3)-structure. In the special case H = 0,<br />

when the nowhere-vanish<strong>in</strong>g sp<strong>in</strong>or is covariantly constant accord<strong>in</strong>g to the metric<br />

connection, X admits a metric of SU(3) holonomy <strong>and</strong> is thus Calabi-Yau.<br />

N = 1 supersymmetry <strong>in</strong> 4d further requires the vanish<strong>in</strong>g of the supersymmetry<br />

variations of the gravit<strong>in</strong>o, dilat<strong>in</strong>o, <strong>and</strong> gaug<strong>in</strong>o. Together with the Jacobi identity<br />

for the result<strong>in</strong>g superalgebra, these constra<strong>in</strong>ts imply that X admits an <strong>in</strong>tegrable<br />

complex structure, a nowhere-vanish<strong>in</strong>g Hermitian metric correspond<strong>in</strong>g to a globally-<br />

def<strong>in</strong>ed Hermitian (1,1)-form, J a ¯ b = η † Γ a ¯ bη, a nowhere-vanish<strong>in</strong>g holomorphic (3,0)-<br />

form, Ωabc = η † Γabcη, <strong>and</strong> comes equipped with a Hermitian-Yang-Mills gauge field,<br />

F (2,0) = F (0,2) = FmnJ mn = 0. They also imply that<br />

H = i(∂ − ∂)J,<br />

so H is the obstruction to X be<strong>in</strong>g Kähler. Instead, X is conformally balanced,<br />

d(e −2φ J ∧ J) = 0,<br />

where φ is the E<strong>in</strong>ste<strong>in</strong>-frame dilaton. While more complicated than the simple H = 0


Appendix C: L<strong>in</strong>ear Models for Flux Vacua 160<br />

Calabi-Yau case, the general X would so far appear to be on a similar foot<strong>in</strong>g.<br />

The Green-Schwarz anomaly completely changes the story. Includ<strong>in</strong>g the one-loop<br />

gravitational correction, the vanish<strong>in</strong>g of the anomaly implies<br />

dH = α ′ (trR ∧ R − TrF ∧ F ) ,<br />

where R is the curvature of the Hermitian connection on X. This changes the story<br />

<strong>in</strong> several dramatic ways. First, s<strong>in</strong>ce the left <strong>and</strong> right h<strong>and</strong> sides of this equation<br />

scale <strong>in</strong>homogenously <strong>in</strong> the global conformal mode of the metric, any solution to<br />

this equation has fixed volume modulus. Crucially, this means any solution to this<br />

equation does not have a large radius limit, so supergravity perturbation theory has<br />

a f<strong>in</strong>ite, fixed expansion parameter <strong>and</strong> must be taken with a sizeable gra<strong>in</strong> of salt.<br />

Secondly, this equation is spectacularly nonl<strong>in</strong>ear, so even prov<strong>in</strong>g the existence of<br />

solutions is a profoundly difficult problem.<br />

Happily, <strong>in</strong> at least one special case there exists an existence proof by Fu <strong>and</strong><br />

Yau for solutions to the full set of conditions outl<strong>in</strong>ed above, <strong>in</strong>clud<strong>in</strong>g the anomaly<br />

equation, analogous to Yau’s proof of the existence of a Ricci-flat Kähler metric<br />

on manifolds of SU(3)-holonomy. Unlike the Yau proof of the Calabi conjecture,<br />

however, the Fu-Yau proof beg<strong>in</strong>s with a very specific Ansatz for the metric, torsion,<br />

<strong>and</strong> holomorphic 3-form [55].<br />

C.2.2 GP Manifolds <strong>and</strong> the FY Compactification<br />

The underly<strong>in</strong>g manifold satisfy<strong>in</strong>g all of the supersymmetry constra<strong>in</strong>ts unrelated<br />

to the gauge bundle was first constructed by Goldste<strong>in</strong> <strong>and</strong> Prokushk<strong>in</strong> [70]. Their<br />

solution <strong>in</strong>volved construct<strong>in</strong>g the complex 3-fold as a T 2 bundle over a T 4 or K3


Appendix C: L<strong>in</strong>ear Models for Flux Vacua 161<br />

base. Fu <strong>and</strong> Yau [55] used this underly<strong>in</strong>g manifold <strong>and</strong> constructed a gauge bundle<br />

satisfy<strong>in</strong>g the rema<strong>in</strong><strong>in</strong>g supersymmetry constra<strong>in</strong>ts as well as the modified Bianchi<br />

identity, which was a monumental accomplishment s<strong>in</strong>ce it is a complicated differential<br />

equation. We start by expla<strong>in</strong><strong>in</strong>g the GP manifold.<br />

Let S be a complex Hermitian 2-fold <strong>and</strong> choose 1<br />

ωP ωQ<br />

,<br />

2π 2π ∈ H2 (S; Z) ∩ Λ 1,1 T ∗ S . (C.17)<br />

where ωP <strong>and</strong> ωQ are anti self-dual. Be<strong>in</strong>g elements of <strong>in</strong>teger cohomology, there<br />

are two C ∗ -bundles over S, call them P <strong>and</strong> Q, whose curvature 2-forms are ωP <strong>and</strong><br />

ωQ, respectively. We can then restrict to unit-circle bundles S 1 P <strong>and</strong> S1 Q<br />

of P <strong>and</strong> Q<br />

respectively, <strong>and</strong> take the product of the two circles over each po<strong>in</strong>t <strong>in</strong> S to form a<br />

T 2 bundle over S which we will refer to as X (T 2 → X π → S).<br />

Given this setup, Goldste<strong>in</strong> <strong>and</strong> Prokushk<strong>in</strong> showed that if S admits a non-<br />

vanish<strong>in</strong>g, holomorphic (2, 0)-form, then X admits a non-vanish<strong>in</strong>g, holomorphic<br />

(3, 0)-form. Furthermore, they showed that if ωP or ωQ are nontrivial <strong>in</strong> cohomol-<br />

ogy on S, then X admits no Kähler metric. They constructed the non-vanish<strong>in</strong>g<br />

holomorphic (3, 0)-form <strong>and</strong> a Hermitian metric on X from data on S.<br />

The curvature 2-form ωP determ<strong>in</strong>es a non-unique connection ∇ on S 1 P<br />

(<strong>and</strong> sim-<br />

ilarly for ωQ on S 1 Q ). A connection determ<strong>in</strong>es a split of TX <strong>in</strong>to a vertical <strong>and</strong><br />

horizontal subbundle – the horizontal subbundle is composed of the elements of TX<br />

that are annihilated by the connection 1-form, the vertical subbundle is then, roughly<br />

speak<strong>in</strong>g, the elements of TX tangent to the fibres. Over an open subset U ⊂ S, we<br />

1 Actually, Goldste<strong>in</strong> <strong>and</strong> Prokushk<strong>in</strong> only required that ωP + iωQ have no (0, 2)-component, but<br />

Fu <strong>and</strong> Yau used the restriction that we have stated.


Appendix C: L<strong>in</strong>ear Models for Flux Vacua 162<br />

have a local trivialization of X <strong>and</strong> we can use unit-norm sections, ξ ∈ Γ(U; S 1 P ) <strong>and</strong><br />

ζ ∈ Γ(U; S 1 Q ), to def<strong>in</strong>e local coord<strong>in</strong>ates for z ∈ U × T 2 by<br />

z = (p, e iθP ξ(p), e iθQ ζ(p)), (C.18)<br />

where p = π(z) ∈ U. The sections ξ <strong>and</strong> ζ also def<strong>in</strong>e connection 1-forms via<br />

∇ξ = iαP ⊗ ξ <strong>and</strong> ∇ζ = iαQ ⊗ ζ, (C.19)<br />

where ωP = dαP <strong>and</strong> ωQ = dαQ on U, <strong>and</strong> the αi are necessarily real to preserve the<br />

unit-norms of ξ <strong>and</strong> ζ.<br />

The complex structure is given on the fibres by ∂θP<br />

→ ∂θQ <strong>and</strong> ∂θQ → −∂θP while<br />

on the horizontal distribution it is <strong>in</strong>duced by projection onto S. 2 Given a Hermitian<br />

2-form ωS on S, the 2-form<br />

ωu = π ∗ (e u ωM) + (dθP + π ∗ αP ) ∧ (dθQ + π ∗ αQ), (C.20)<br />

where u is some smooth function on S, is a Hermitian 2-form on X with respect to<br />

this complex structure. The connection 1-form<br />

ϑ = (dθP + π ∗ αP ) + i(dθQ + π ∗ αQ) (C.21)<br />

annihilates elements of the horizontal distribution of TX while reduc<strong>in</strong>g to dθP + idθQ<br />

along the fibres. These data def<strong>in</strong>e the complex Hermitian 3-fold (X, ωu), which we<br />

2 Actually, this just gives an almost complex structure, but Goldste<strong>in</strong> <strong>and</strong> Prokushk<strong>in</strong> proved that<br />

it is <strong>in</strong>tegrable [70]


Appendix C: L<strong>in</strong>ear Models for Flux Vacua 163<br />

call the GP manifold [70]. Explicitly,<br />

ds 2 X = π ∗ � e u ds 2 �<br />

S + (dθP + π ∗ αP ) 2 + (dθQ + π ∗ αQ) 2<br />

JX = π ∗ (e u JS) + 1<br />

2 ϑ ∧ ¯ ϑ<br />

ΩX = π ∗ (ΩS) ∧ ϑ<br />

H = �<br />

i=P,Q<br />

(dθi + π ∗ αi) ∧ π ∗ ωi,<br />

where ΩS is the nowhere-vanish<strong>in</strong>g, holomorphic (2, 0)-form on S (K3 or T 4 ). It<br />

is straightforward check that all the supersymmetry constra<strong>in</strong>ts are satisfied by this<br />

Ansatz, however for a valid heterotic compactifications a gauge bundle still needed<br />

to be constructed to satisfy the Bianchi identity.<br />

Fu <strong>and</strong> Yau undertook the more difficult problem of prov<strong>in</strong>g the existence of gauge<br />

bundles over the GP manifold with Hermitian-Yang-Mills connections satisfy<strong>in</strong>g the<br />

Bianchi identity (5.1). They took the Hermitian form (C.20) <strong>and</strong> converted the<br />

Bianchi identity <strong>in</strong>to a differential equation for the function u. Under the assumption<br />

�� �1/4 �<br />

≪ 1 =<br />

e<br />

K3<br />

−4u ω2 K3<br />

2<br />

K3<br />

ω2 K3<br />

, (C.22)<br />

2<br />

they showed that there exists a solution u to the Bianchi identity for any compatible<br />

choice of gauge bundle VX <strong>and</strong> curvatures ωP <strong>and</strong> ωQ such that the gauge bundle VX<br />

over X is the pullback of a stable, degree 0 bundle VK3 over K3, VX = π ∗ VK3 [55];<br />

this is what we call the Fu-Yau geometry.<br />

Note that by a “compatible” choice of gauge bundle <strong>and</strong> ωi’s we mean the follow-<br />

<strong>in</strong>g: choose the gauge bundle VX <strong>and</strong> the curvature forms to satisfy the <strong>in</strong>tegrated<br />

Bianchi identity<br />

χ(S) − TrF 2 �<br />

=<br />

S<br />

�<br />

i<br />

ω 2 i . (C.23)


Appendix C: L<strong>in</strong>ear Models for Flux Vacua 164<br />

In particular, note that the right-h<strong>and</strong> side <strong>and</strong> TrF 2 are manifestly non-negative,<br />

s<strong>in</strong>ce ∗SF = −F <strong>and</strong> F is anti-Hermitian. Hence, the only possible solution for a T 4<br />

base is to take the gauge bundle <strong>and</strong> the T 2 bundle to be trivial, leav<strong>in</strong>g us with a<br />

Calabi-Yau solution T 2 ×T 4 [14, 55]. This is <strong>in</strong> agreement with arguments from str<strong>in</strong>g<br />

duality rul<strong>in</strong>g out the Iwasawa manifold as a solution to the heterotic supersymmetry<br />

constra<strong>in</strong>ts [63].


Appendix D<br />

Near<strong>in</strong>g the Horizon of a <strong>Heterotic</strong><br />

Str<strong>in</strong>g: Sp(4)<br />

An element g ∈ Sp(4) satisfies g † g = 1 <strong>and</strong> g T Ωg = Ω. If we parameterize g as<br />

e iM , M ∈ sp(4), then M = M † <strong>and</strong> M T Ω + ΩM = 0. This determ<strong>in</strong>es<br />

Writ<strong>in</strong>g these <strong>in</strong> 2 × 2 blocks,<br />

⎛<br />

sp(4) = span R{A1, A2, A3, B1, B2, B3, B4, C1, C2, C3}. (D.1)<br />

Aα =<br />

Bα = 1<br />

2<br />

⎜<br />

⎝ σα 0<br />

⎞<br />

⎛<br />

⎟ ⎜<br />

⎠ , Cα = ⎝<br />

0 0<br />

⎛<br />

0 iδα,2 α σ<br />

⎜<br />

⎝<br />

(i δα,2 σ α ) † 0<br />

where σα are the Pauli matrices<br />

σ 1 ⎛ ⎞<br />

⎜ 0<br />

= ⎝<br />

1 ⎟<br />

⎠ , σ<br />

1 0<br />

2 ⎛<br />

⎜<br />

= ⎝<br />

0 −i<br />

i 0<br />

165<br />

0 0<br />

0 σα ⎞<br />

⎞<br />

⎟<br />

⎠ ,<br />

⎟<br />

⎠ , B4 = 1<br />

2<br />

⎞<br />

⎛<br />

⎜<br />

⎝<br />

⎛<br />

⎟<br />

⎠ , σ 3 ⎜<br />

= ⎝<br />

0 i<br />

−i 0<br />

1 0<br />

0 −1<br />

⎞<br />

⎟<br />

⎠ , (D.2)<br />

⎞<br />

⎟<br />

⎠ . (D.3)


Bibliography<br />

[1] Allan Adams, Anirban Basu, <strong>and</strong> Savdeep Sethi. (0,2) Duality. Adv. Theor.<br />

Math. Phys., 7:865, 2004, hep-th/0309226.<br />

[2] Allan Adams, Jacques Distler, <strong>and</strong> Morten Ernebjerg. Topological <strong>Heterotic</strong><br />

R<strong>in</strong>gs. Adv. Theor. Math. Phys., 10:657, 2005, hep-th/0506263.<br />

[3] Chang-rim Ahn <strong>and</strong> Masayoshi Yamamoto. Boundary Action of N = 2 Super-<br />

Liouville <strong>Theory</strong>. Phys. Rev., D69:026007, 2004, hep-th/0310046.<br />

[4] Changrim Ahn, Chaiho Rim, <strong>and</strong> Marian Stanishkov. Exact One-Po<strong>in</strong>t Function<br />

of N = 1 Super-Liouville <strong>Theory</strong> With Boundary. Nucl. Phys., B636:497–<br />

513, 2002, hep-th/0202043.<br />

[5] Changrim Ahn, Marian Stanishkov, <strong>and</strong> Masayoshi Yamamoto. One-Po<strong>in</strong>t<br />

Functions of N = 2 Super-Liouville <strong>Theory</strong> With Boundary. Nucl. Phys.,<br />

B683:177–195, 2004, hep-th/0311169.<br />

[6] Changrim Ahn, Marian Stanishkov, <strong>and</strong> Masayoshi Yamamoto. ZZ-Branes of<br />

N = 2 Super-Liouville <strong>Theory</strong>. JHEP, 07:057, 2004, hep-th/0405274.<br />

[7] Sergei Alex<strong>and</strong>rov. Backgrounds of 2D Str<strong>in</strong>g <strong>Theory</strong> From Matrix Model.<br />

2003, hep-th/0303190.<br />

[8] Sergei Alex<strong>and</strong>rov. Matrix Quantum Mechanics <strong>and</strong> <strong>Two</strong>-<strong>Dimensional</strong> Str<strong>in</strong>g<br />

<strong>Theory</strong> <strong>in</strong> Non-trivial Backgrounds. 2003, hep-th/0311273.<br />

[9] Sergei Yu. Alex<strong>and</strong>rov, Vladimir A. Kazakov, <strong>and</strong> Ivan K. Kostov. Time-<br />

Dependent Backgrounds of 2D Str<strong>in</strong>g <strong>Theory</strong>. Nucl. Phys., B640:119–144, 2002,<br />

hep-th/0205079.<br />

[10] Anirban Basu <strong>and</strong> Savdeep Sethi. World-Sheet Stability of (0,2) L<strong>in</strong>ear Sigma<br />

Models. Phys. Rev., D68:025003, 2003, hep-th/0303066.<br />

[11] Chris Beasley <strong>and</strong> Edward Witten. Residues <strong>and</strong> World-Sheet Instantons.<br />

JHEP, 10:065, 2003, hep-th/0304115.<br />

166


Bibliography 167<br />

[12] Katr<strong>in</strong> Becker, Melanie Becker, Keshav Dasgupta, <strong>and</strong> Paul S. Green. Compactifications<br />

of <strong>Heterotic</strong> <strong>Theory</strong> on non-Kähler Complex Manifolds. I. JHEP,<br />

04:007, 2003, hep-th/0301161.<br />

[13] Katr<strong>in</strong> Becker, Melanie Becker, Keshav Dasgupta, <strong>and</strong> Sergey Prokushk<strong>in</strong>.<br />

Properties of <strong>Heterotic</strong> Vacua From Superpotentials. Nucl. Phys., B666:144–<br />

174, 2003, hep-th/0304001.<br />

[14] Katr<strong>in</strong> Becker, Melanie Becker, Ji-Xiang Fu, Li-Sheng Tseng, <strong>and</strong> Sh<strong>in</strong>g-Tung<br />

Yau. Anomaly Cancellation <strong>and</strong> Smooth Non-Kähler Solutions <strong>in</strong> <strong>Heterotic</strong><br />

Str<strong>in</strong>g <strong>Theory</strong>. 2006, hep-th/0604137.<br />

[15] Katr<strong>in</strong> Becker, Melanie Becker, Paul S. Green, Keshav Dasgupta, <strong>and</strong> Eric<br />

Sharpe. Compactifications of <strong>Heterotic</strong> Str<strong>in</strong>gs on non-Kähler Complex Manifolds.<br />

II. Nucl. Phys., B678:19–100, 2004, hep-th/0310058.<br />

[16] Katr<strong>in</strong> Becker <strong>and</strong> Keshav Dasgupta. <strong>Heterotic</strong> Str<strong>in</strong>gs With Torsion. JHEP,<br />

11:006, 2002, hep-th/0209077.<br />

[17] Katr<strong>in</strong> Becker <strong>and</strong> Li-Sheng Tseng. <strong>Heterotic</strong> Flux Compactifications <strong>and</strong> Their<br />

Moduli. Nucl. Phys., B741:162–179, 2006, hep-th/0509131.<br />

[18] Melanie Becker <strong>and</strong> Keshav Dasgupta. Kähler Versus non-Kähler Compactifications.<br />

2003, hep-th/0312221.<br />

[19] Per Berglund, Clifford V. Johnson, Shamit Kachru, <strong>and</strong> Philippe Zaugg. <strong>Heterotic</strong><br />

Coset Models <strong>and</strong> (0,2) Str<strong>in</strong>g Vacua. Nucl. Phys., B460:252–298, 1996,<br />

hep-th/9509170.<br />

[20] M. A. Bershadsky. Superconformal Algebras <strong>in</strong> <strong>Two</strong>-Dimensions With Arbitrary<br />

N. Phys. Lett., B174:285–288, 1986.<br />

[21] P. Bowcock. Exceptional Superconformal Algebras. Nucl. Phys., B381:415–430,<br />

1992, hep-th/9202061.<br />

[22] J. David Brown <strong>and</strong> M. Henneaux. Central Charges <strong>in</strong> the Canonical Realization<br />

of Asymptotic Symmetries: An Example from Three-<strong>Dimensional</strong> Gravity.<br />

Commun. Math. Phys., 104:207–226, 1986.<br />

[23] Jr. Callan, Curtis G. <strong>and</strong> Larus Thorlacius. Sigma Models <strong>and</strong> Str<strong>in</strong>g <strong>Theory</strong>.<br />

Pr<strong>in</strong>t-89-0232 (PRINCETON).<br />

[24] P. C<strong>and</strong>elas, Gary T. Horowitz, Andrew Strom<strong>in</strong>ger, <strong>and</strong> Edward Witten. Vacuum<br />

Configurations for Superstr<strong>in</strong>gs. Nucl. Phys., B258:46–74, 1985.


Bibliography 168<br />

[25] John L. Cardy. Boundary Conditions, Fusion Rules <strong>and</strong> the Verl<strong>in</strong>de Formula.<br />

Nucl. Phys., B324:581, 1989.<br />

[26] Alej<strong>and</strong>ra Castro, Joshua L. Davis, Per Kraus, <strong>and</strong> F<strong>in</strong>n Larsen. 5D Attractors<br />

With Higher Derivatives. JHEP, 04:091, 2007, hep-th/0702072.<br />

[27] Alej<strong>and</strong>ra Castro, Joshua L. Davis, Per Kraus, <strong>and</strong> F<strong>in</strong>n Larsen. 5D Black Holes<br />

<strong>and</strong> Str<strong>in</strong>gs with Higher Derivatives. JHEP, 06:007, 2007, hep-th/0703087.<br />

[28] Alej<strong>and</strong>ra Castro, Joshua L. Davis, Per Kraus, <strong>and</strong> F<strong>in</strong>n Larsen. Precision<br />

Entropy of Sp<strong>in</strong>n<strong>in</strong>g Black Holes. JHEP, 09:003, 2007, arXiv:0705.1847 [hepth].<br />

[29] Michelle Cyrier <strong>and</strong> Joshua M. Lapan. Towards the Massless Spectrum of non-<br />

Kähler <strong>Heterotic</strong> Compactifications. 2006, hep-th/0605131.<br />

[30] A. Dabholkar <strong>and</strong> A. Strom<strong>in</strong>ger. unpublished. 2005.<br />

[31] Atish Dabholkar. Exact Count<strong>in</strong>g of Black Hole Microstates. Phys. Rev. Lett.,<br />

94:241301, 2005, hep-th/0409148.<br />

[32] Atish Dabholkar, Frederik Denef, Gregory W. Moore, <strong>and</strong> Boris Piol<strong>in</strong>e. Exact<br />

<strong>and</strong> Asymptotic Degeneracies of Small Black Holes. JHEP, 08:021, 2005, hepth/0502157.<br />

[33] Atish Dabholkar, Frederik Denef, Gregory W. Moore, <strong>and</strong> Boris Piol<strong>in</strong>e. Precision<br />

Count<strong>in</strong>g of Small Black Holes. JHEP, 10:096, 2005, hep-th/0507014.<br />

[34] Atish Dabholkar, Gary W. Gibbons, Jeffrey A. Harvey, <strong>and</strong> Fern<strong>and</strong>o Ruiz Ruiz.<br />

Superstr<strong>in</strong>gs <strong>and</strong> Solitons. Nucl. Phys., B340:33–55, 1990.<br />

[35] Atish Dabholkar, Renata Kallosh, <strong>and</strong> Alex<strong>and</strong>er Maloney. A Str<strong>in</strong>gy Cloak for<br />

a Classical S<strong>in</strong>gularity. JHEP, 12:059, 2004, hep-th/0410076.<br />

[36] Atish Dabholkar <strong>and</strong> Sameer Murthy. Fundamental Superstr<strong>in</strong>gs as Holograms.<br />

JHEP, 02:034, 2008, arXiv:0707.3818 [hep-th].<br />

[37] Sumit R. Das, Joshua L. Davis, F<strong>in</strong>n Larsen, <strong>and</strong> Partha Mukhopadhyay. Particle<br />

Production <strong>in</strong> Matrix Cosmology. Phys. Rev., D70:044017, 2004, hepth/0403275.<br />

[38] Sumit R. Das <strong>and</strong> Antal Jevicki. Str<strong>in</strong>g <strong>Field</strong> <strong>Theory</strong> <strong>and</strong> Physical Interpretation<br />

of D = 1 Str<strong>in</strong>gs. Mod. Phys. Lett., A5:1639–1650, 1990.<br />

[39] Keshav Dasgupta, Gov<strong>in</strong>dan Rajesh, <strong>and</strong> Savdeep Sethi. M-<strong>Theory</strong>, Orientifolds<br />

<strong>and</strong> G-Flux. JHEP, 08:023, 1999, hep-th/9908088.


Bibliography 169<br />

[40] Beatriz de Carlos, Sebastien Gurrieri, Andre Lukas, <strong>and</strong> Andrei Micu. Moduli<br />

Stabilisation <strong>in</strong> <strong>Heterotic</strong> Str<strong>in</strong>g Compactifications. JHEP, 03:005, 2006, hepth/0507173.<br />

[41] P. Di Vecchia <strong>and</strong> Antonella Liccardo. D-Branes <strong>in</strong> Str<strong>in</strong>g <strong>Theory</strong>. II. 1999,<br />

hep-th/9912275.<br />

[42] Paolo Di Vecchia <strong>and</strong> Antonella Liccardo. D-Branes <strong>in</strong> Str<strong>in</strong>g <strong>Theory</strong>. I. NATO<br />

Adv. Study Inst. Ser. C. Math. Phys. Sci., 556:1–59, 2000, hep-th/9912161.<br />

[43] Michael D<strong>in</strong>e, N. Seiberg, X. G. Wen, <strong>and</strong> Edward Witten. Nonperturbative<br />

Effects on the Str<strong>in</strong>g World Sheet. Nucl. Phys., B278:769, 1986.<br />

[44] Michael D<strong>in</strong>e, N. Seiberg, X. G. Wen, <strong>and</strong> Edward Witten. Nonperturbative<br />

Effects on the Str<strong>in</strong>g World Sheet. 2. Nucl. Phys., B289:319, 1987.<br />

[45] Jacques Distler. Notes on (0,2) Superconformal <strong>Field</strong> Theories. 1994, hepth/9502012.<br />

Published <strong>in</strong> Trieste HEP Cosmology, 322-351.<br />

[46] Jacques Distler <strong>and</strong> Shamit Kachru. (0,2) L<strong>and</strong>au-G<strong>in</strong>zburg <strong>Theory</strong>. Nucl.<br />

Phys., B413:213, 1994, hep-th/9309110.<br />

[47] M. R. Douglas et al. A New Hat for the c = 1 Matrix Model. 2003, hepth/0307195.<br />

[48] Michael R. Douglas <strong>and</strong> Shamit Kachru. Flux Compactification. 2006, hepth/0610102.<br />

[49] Tohru Eguchi <strong>and</strong> Yuji Sugawara. Modular Bootstrap for Boundary N = 2<br />

Liouville theory. JHEP, 01:025, 2004, hep-th/0311141.<br />

[50] V. Fateev, Alex<strong>and</strong>er B. Zamolodchikov, <strong>and</strong> Alexei B. Zamolodchikov. Boundary<br />

Liouville <strong>Field</strong> <strong>Theory</strong>. I: Boundary State <strong>and</strong> Boundary <strong>Two</strong>-Po<strong>in</strong>t Function.<br />

2000, hep-th/0001012.<br />

[51] L. Frappat, P. Sorba, <strong>and</strong> A. Sciarr<strong>in</strong>o. Dictionary on Lie Superalgebras. 1996,<br />

hep-th/9607161.<br />

[52] Andrew R. Frey <strong>and</strong> Mariana Grana. Type IIB Solutions With Interpolat<strong>in</strong>g<br />

Supersymmetries. Phys. Rev., D68:106002, 2003, hep-th/0307142.<br />

[53] Andrew R. Frey <strong>and</strong> Matthew Lippert. AdS Str<strong>in</strong>gs With Torsion: non-<br />

Complex <strong>Heterotic</strong> Compactifications. Phys. Rev., D72:126001, 2005, hepth/0507202.<br />

[54] Ji-Xiang Fu <strong>and</strong> Sh<strong>in</strong>g-Tung Yau. Existence of Supersymmetric Hermitian<br />

Metrics With Torsion on non-Kähler Manifolds. 2005, hep-th/0509028.


Bibliography 170<br />

[55] Ji-Xiang Fu <strong>and</strong> Sh<strong>in</strong>g-Tung Yau. The <strong>Theory</strong> of Superstr<strong>in</strong>g With Flux on<br />

non-Kähler Manifolds <strong>and</strong> the Complex Monge-Ampere Equation. 2006, hepth/0604063.<br />

[56] Kazuo Fujikawa. Path Integral Measure for Gauge Invariant Fermion Theories.<br />

Phys. Rev. Lett., 42:1195, 1979.<br />

[57] Kazuo Fujikawa. Path Integral for Gauge Theories With Fermions. Phys. Rev.,<br />

D21:2848, 1980.<br />

[58] Tomoyuki Fujita <strong>and</strong> Keisuke Ohashi. Superconformal Tensor Calculus <strong>in</strong> Five<br />

Dimensions. Prog. Theor. Phys., 106:221–247, 2001, hep-th/0104130.<br />

[59] Takeshi Fukuda <strong>and</strong> Kazuo Hosomichi. Super Liouville <strong>Theory</strong> With Boundary.<br />

Nucl. Phys., B635:215–254, 2002, hep-th/0202032.<br />

[60] Matthias R Gaberdiel. Lectures on non-BPS Dirichlet Branes. Class. Quant.<br />

Grav., 17:3483–3520, 2000, hep-th/0005029.<br />

[61] David Garf<strong>in</strong>kle, Gary T. Horowitz, <strong>and</strong> Andrew Strom<strong>in</strong>ger. Charged Black<br />

Holes <strong>in</strong> Str<strong>in</strong>g <strong>Theory</strong>. Phys. Rev., D43:3140–3143, 1991.<br />

[62] S. J. Gates Jr., C. M. Hull, <strong>and</strong> M. Roček. Twisted Multiplets <strong>and</strong> New Supersymmetric<br />

Nonl<strong>in</strong>ear Sigma Models. Nucl. Phys., B248:157, 1984.<br />

[63] Jerome P. Gauntlett, Dario Martelli, <strong>and</strong> Daniel Waldram. Superstr<strong>in</strong>gs With<br />

Intr<strong>in</strong>sic Torsion. Phys. Rev., D69:086002, 2004, hep-th/0302158.<br />

[64] Steven B. Gidd<strong>in</strong>gs, Joseph Polch<strong>in</strong>ski, <strong>and</strong> Andrew Strom<strong>in</strong>ger. Four-<br />

<strong>Dimensional</strong> Black Holes <strong>in</strong> Str<strong>in</strong>g <strong>Theory</strong>. Phys. Rev., D48:5784–5797, 1993,<br />

hep-th/9305083.<br />

[65] Paul H. G<strong>in</strong>sparg <strong>and</strong> Gregory W. Moore. Lectures on 2-D Gravity <strong>and</strong> 2-D<br />

Str<strong>in</strong>g <strong>Theory</strong>. 1993, hep-th/9304011.<br />

[66] Amit Giveon, D. Kutasov, <strong>and</strong> Nathan Seiberg. Comments on Str<strong>in</strong>g <strong>Theory</strong><br />

on AdS(3). Adv. Theor. Math. Phys., 2:733–780, 1998, hep-th/9806194.<br />

[67] Amit Giveon <strong>and</strong> David Kutasov. Fundamental Str<strong>in</strong>gs <strong>and</strong> Black Holes. JHEP,<br />

01:071, 2007, hep-th/0611062.<br />

[68] Amit Giveon <strong>and</strong> Ari Pakman. More on Superstr<strong>in</strong>gs <strong>in</strong> AdS(3) x N. JHEP,<br />

03:056, 2003, hep-th/0302217.<br />

[69] Amit Giveon <strong>and</strong> Mart<strong>in</strong> Rocek. Supersymmetric Str<strong>in</strong>g Vacua on AdS(3) x N.<br />

JHEP, 04:019, 1999, hep-th/9904024.


Bibliography 171<br />

[70] Edward Goldste<strong>in</strong> <strong>and</strong> Sergey Prokushk<strong>in</strong>. Geometric model for complex non-<br />

Kähler manifolds with SU(3) structure. Commun. Math. Phys., 251:65–78,<br />

2004, hep-th/0212307.<br />

[71] Michael B. Green, J. H. Schwarz, <strong>and</strong> Edward Witten. Superstr<strong>in</strong>g <strong>Theory</strong>:<br />

Loop Amplitudes, Anomalies <strong>and</strong> Phenomenology, volume 2 of Cambridge<br />

Monographs On Mathematical Physics. Cambridge University Press, Cambridge,<br />

UK, 1987.<br />

[72] Michael B. Green <strong>and</strong> John H. Schwarz. Anomaly Cancellation <strong>in</strong> Supersymmetric<br />

D=10 Gauge <strong>Theory</strong> <strong>and</strong> Superstr<strong>in</strong>g <strong>Theory</strong>. Phys. Lett., B149:117–122,<br />

1984.<br />

[73] P. Griffiths <strong>and</strong> J. Harris. Pr<strong>in</strong>ciples of Algebraic Geometry. Wiley Interscience,<br />

New York, 1994.<br />

[74] David J. Gross <strong>and</strong> Edward Witten. Superstr<strong>in</strong>g Modifications of E<strong>in</strong>ste<strong>in</strong>’s<br />

Equations. Nucl. Phys., B277:1, 1986.<br />

[75] Marco Gualtieri. Generalized Complex Geometry. PhD thesis, Oxford University,<br />

November 2003.<br />

[76] Sergei Gukov, Cumrun Vafa, <strong>and</strong> Edward Witten. CFT’s From Calabi-Yau<br />

Four-Folds. Nucl. Phys., B584:69–108, 2000, hep-th/9906070.<br />

[77] Sebastien Gurrieri, Andre Lukas, <strong>and</strong> Andrei Micu. <strong>Heterotic</strong> on Half-Flat.<br />

Phys. Rev., D70:126009, 2004, hep-th/0408121.<br />

[78] Kentaro Hanaki, Keisuke Ohashi, <strong>and</strong> Yuji Tachikawa. Supersymmetric Completion<br />

of an R 2 Term <strong>in</strong> Five- <strong>Dimensional</strong> Supergravity. Prog. Theor. Phys.,<br />

117:533, 2007, hep-th/0611329.<br />

[79] Marc Henneaux, Liat Maoz, <strong>and</strong> Adam Schwimmer. Asymptotic Dynamics<br />

<strong>and</strong> Asymptotic Symmetries of Three-<strong>Dimensional</strong> Extended AdS Supergravity.<br />

Annals Phys., 282:31–66, 2000, hep-th/9910013.<br />

[80] Nigel Hitch<strong>in</strong>. Generalized Calabi-Yau Manifolds. Quart. J. Math. Oxford Ser.,<br />

54:281–308, 2003, math/0209099.<br />

[81] Kentaro Hori et al., editors. Mirror Symmetry. Clay Mathematical Monographs.<br />

American Mathematical Society, Providence, RI, 2003.<br />

[82] Kentaro Hori <strong>and</strong> Anton Kapust<strong>in</strong>. Worldsheet Descriptions of Wrapped NS<br />

Five-Branes. JHEP, 11:038, 2002, hep-th/0203147.<br />

[83] Kentaro Hori <strong>and</strong> Cumrun Vafa. Mirror Symmetry. 2000, hep-th/0002222.


Bibliography 172<br />

[84] Paul S. Howe <strong>and</strong> G. Papadopoulos. Anomalies <strong>in</strong> <strong>Two</strong>-<strong>Dimensional</strong> Supersymmetric<br />

Nonl<strong>in</strong>ear Sigma Models. Class. Quant. Grav., 4:1749–1766, 1987.<br />

[85] C. M. Hull. Compactifications of the <strong>Heterotic</strong> Superstr<strong>in</strong>g. Phys. Lett.,<br />

B178:357, 1986.<br />

[86] Nobuyuki Ishibashi. The Boundary <strong>and</strong> Crosscap States <strong>in</strong> Conformal <strong>Field</strong><br />

Theories. Mod. Phys. Lett., A4:251, 1989.<br />

[87] Clifford V. Johnson. <strong>Heterotic</strong> Coset Models of Microscopic Str<strong>in</strong>gs <strong>and</strong> Black<br />

Holes. 2007, arXiv:0707.4303 [hep-th].<br />

[88] Shamit Kachru, Renata Kallosh, Andrei L<strong>in</strong>de, <strong>and</strong> S<strong>and</strong>ip P. Trivedi. De Sitter<br />

Vacua <strong>in</strong> Str<strong>in</strong>g <strong>Theory</strong>. Phys. Rev., D68:046005, 2003, hep-th/0301240.<br />

[89] Shamit Kachru, Michael B. Schulz, <strong>and</strong> S<strong>and</strong>ip Trivedi. Moduli Stabilization<br />

From Fluxes <strong>in</strong> a Simple IIB Orientifold. JHEP, 10:007, 2003, hep-th/0201028.<br />

[90] Joanna L. Karczmarek <strong>and</strong> Andrew Strom<strong>in</strong>ger. Closed Str<strong>in</strong>g Tachyon Condensation<br />

at c = 1. JHEP, 05:062, 2004, hep-th/0403169.<br />

[91] Joanna L. Karczmarek <strong>and</strong> Andrew Strom<strong>in</strong>ger. Matrix Cosmology. JHEP,<br />

04:055, 2004, hep-th/0309138.<br />

[92] Igor R. Klebanov. Str<strong>in</strong>g <strong>Theory</strong> <strong>in</strong> <strong>Two</strong>-Dimensions. 1991, hep-th/9108019.<br />

[93] Igor R. Klebanov, Juan Mart<strong>in</strong> Maldacena, <strong>and</strong> Nathan Seiberg. D-Brane Decay<br />

<strong>in</strong> <strong>Two</strong>-<strong>Dimensional</strong> Str<strong>in</strong>g <strong>Theory</strong>. JHEP, 07:045, 2003, hep-th/0305159.<br />

[94] V. G. Knizhnik. Superconformal Algebras <strong>in</strong> <strong>Two</strong>-Dimensions. Theor. Math.<br />

Phys., 66:68–72, 1986.<br />

[95] David Kutasov. D-Brane Dynamics Near NS5-Branes. 2004, hep-th/0405058.<br />

[96] David Kutasov, F<strong>in</strong>n Larsen, <strong>and</strong> Robert G. Leigh. Str<strong>in</strong>g <strong>Theory</strong> <strong>in</strong> Magnetic<br />

Monopole Backgrounds. Nucl. Phys., B550:183–213, 1999, hep-th/9812027.<br />

[97] David Kutasov <strong>and</strong> Nathan Seiberg. More Comments on Str<strong>in</strong>g <strong>Theory</strong> on<br />

AdS(3). JHEP, 04:008, 1999, hep-th/9903219.<br />

[98] J. M. Lapan, A. Simons, <strong>and</strong> A. Strom<strong>in</strong>ger. Search for the dual of n heterotic<br />

str<strong>in</strong>gs. 2007.<br />

[99] Ulf L<strong>in</strong>dstrom, Mart<strong>in</strong> Rǒcek, Rikard von Unge, <strong>and</strong> Maxim Zabz<strong>in</strong>e. Generalized<br />

Kähler Manifolds <strong>and</strong> off-Shell Supersymmetry. 2005, hep-th/0512164.


Bibliography 173<br />

[100] Gabriel Lopes Cardoso et al. Non-Kähler Str<strong>in</strong>g Backgrounds <strong>and</strong> Their Five<br />

Torsion Classes. Nucl. Phys., B652:5–34, 2003, hep-th/0211118.<br />

[101] Sergei L. Lukyanov, E. S. Vitchev, <strong>and</strong> A. B. Zamolodchikov. Integrable Model<br />

of Boundary Interaction: the Paperclip. Nucl. Phys., B683:423–454, 2004, hepth/0312168.<br />

[102] Sergei L. Lukyanov <strong>and</strong> Alex<strong>and</strong>er B. Zamolodchikov. Dual Form of the Paperclip<br />

Model. 2005, hep-th/0510145.<br />

[103] Pantelis Manousselis, Nikolaos Prezas, <strong>and</strong> George Zoupanos. Supersymmetric<br />

Compactifications of <strong>Heterotic</strong> Str<strong>in</strong>gs With Fluxes <strong>and</strong> Condensates. Nucl.<br />

Phys., B739:85–105, 2006, hep-th/0511122.<br />

[104] John McGreevy, Joerg Teschner, <strong>and</strong> Herman L. Verl<strong>in</strong>de. Classical <strong>and</strong> Quantum<br />

D-Branes <strong>in</strong> 2D Str<strong>in</strong>g <strong>Theory</strong>. JHEP, 01:039, 2004, hep-th/0305194.<br />

[105] Jeremy Michelson. Compactifications of Type IIB Str<strong>in</strong>gs to Four Dimensions<br />

With non-Trivial Classical Potential. Nucl. Phys., B495:127–148, 1997, hepth/9610151.<br />

[106] Djordje M<strong>in</strong>ic, Joseph Polch<strong>in</strong>ski, <strong>and</strong> Zhu Yang. Translation Invariant Backgrounds<br />

<strong>in</strong> (1+1)-<strong>Dimensional</strong> Str<strong>in</strong>g <strong>Theory</strong>. Nucl. Phys., B369:324–350, 1992.<br />

[107] David R. Morrison <strong>and</strong> M. Ronen Plesser. Towards Mirror Symmetry as Duality<br />

for <strong>Two</strong>-<strong>Dimensional</strong> Abelian Gauge Theories. Nucl. Phys. Proc. Suppl., 46:177,<br />

1996, hep-th/9508107.<br />

[108] Yu Nakayama. Liouville <strong>Field</strong> <strong>Theory</strong>: a Decade After the Revolution. Int. J.<br />

Mod. Phys., A19:2771–2930, 2004, hep-th/0402009.<br />

[109] Yu Nakayama, Yuji Sugawara, <strong>and</strong> Hiromitsu Takayanagi. Boundary States for<br />

the Roll<strong>in</strong>g D-Branes <strong>in</strong> NS5 Background. JHEP, 07:020, 2004, hep-th/0406173.<br />

[110] Dennis Nemeschansky <strong>and</strong> Ashoke Sen. Conformal Invariance of Supersymmetric<br />

Sigma Models on Calabi-Yau Manifolds. Phys. Lett., B178:365, 1986.<br />

[111] Rafael I. Nepomechie. Consistent Superconformal Boundary States. J. Phys.,<br />

A34:6509–6524, 2001, hep-th/0102010.<br />

[112] J. Polch<strong>in</strong>ski. Str<strong>in</strong>g <strong>Theory</strong>: Superstr<strong>in</strong>g <strong>Theory</strong> <strong>and</strong> Beyond, volume 2 of<br />

Cambridge Monographs on Mathematical Physics. Cambridge University Press,<br />

Cambridge, UK, 1998.<br />

[113] Joseph Polch<strong>in</strong>ski. What is Str<strong>in</strong>g <strong>Theory</strong>? 1994, hep-th/9411028.


Bibliography 174<br />

[114] Alex<strong>and</strong>er M. Polyakov. Quantum Geometry of Fermionic Str<strong>in</strong>gs. Phys. Lett.,<br />

B103:211–213, 1981.<br />

[115] Ashoke Sen. (2,0) Supersymmetry <strong>and</strong> Space-Time Supersymmetry <strong>in</strong> the <strong>Heterotic</strong><br />

Str<strong>in</strong>g <strong>Theory</strong>. Nucl. Phys., B278:289, 1986.<br />

[116] Ashoke Sen. Stretch<strong>in</strong>g the Horizon of a Higher <strong>Dimensional</strong> Small Black Hole.<br />

JHEP, 07:073, 2005, hep-th/0505122.<br />

[117] Eva Silverste<strong>in</strong> <strong>and</strong> Edward Witten. Criteria for Conformal Invariance of (0,2)<br />

Models. Nucl. Phys., B444:161, 1995, hep-th/9503212.<br />

[118] Andrew Strom<strong>in</strong>ger. Superstr<strong>in</strong>gs With Torsion. Nucl. Phys., B274:253, 1986.<br />

[119] Andrew Strom<strong>in</strong>ger. <strong>Heterotic</strong> Solitons. Nucl. Phys., B343:167–184, 1990.<br />

[120] Andrew Strom<strong>in</strong>ger. Macroscopic Entropy of N = 2 Extremal Black Holes.<br />

Phys. Lett., B383:39–43, 1996, hep-th/9602111.<br />

[121] Gerard ’t Hooft. A Planar Diagram <strong>Theory</strong> for Strong Interactions. Nucl. Phys.,<br />

B72:461, 1974.<br />

[122] David Mattoon Thompson. Descent Relations <strong>in</strong> Type 0A / 0B. Phys. Rev.,<br />

D65:106005, 2002, hep-th/0105314.<br />

[123] David Tong. NS5-Branes, T-duality <strong>and</strong> Worldsheet Instantons. JHEP, 07:013,<br />

2002, hep-th/0204186.<br />

[124] Edward Witten. Phases of N = 2 Theories <strong>in</strong> <strong>Two</strong> Dimensions. Nucl. Phys.,<br />

B403:159, 1993, hep-th/9301042.<br />

[125] A. B. Zamolodchikov. Inf<strong>in</strong>ite Additional Symmetries <strong>in</strong> <strong>Two</strong>-<strong>Dimensional</strong> Conformal<br />

Quantum <strong>Field</strong> <strong>Theory</strong>. Theor. Math. Phys., 65:1205–1213, 1985.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!