15.01.2013 Views

SSantos - Hg Presentation (MEC7) - ieaghg

SSantos - Hg Presentation (MEC7) - ieaghg

SSantos - Hg Presentation (MEC7) - ieaghg

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Challenges in Understanding the<br />

Fate of Mercury during Oxyfuel Combustion<br />

Stanley Santos<br />

IEA Greenhouse Gas R&D Programme<br />

Cheltenham, UK<br />

Email: stanley.santos@<strong>ieaghg</strong>.org<br />

<strong>MEC7</strong> Workshop<br />

DLCS, Strathclyde University<br />

18 th June 2010


IEA Greenhouse Gas R&D<br />

Programme<br />

• A collaborative research programme founded in 1991<br />

• We are the sister organisation of IEA Clean Coal Centre<br />

• Aim: Provide members with definitive information on<br />

the role that technology can play in reducing<br />

greenhouse gas emissions.<br />

• Producing information that is:<br />

� Objective, trustworthy, independent<br />

� Policy relevant but NOT policy prescriptive<br />

� Reviewed by external Expert Reviewers<br />

� Subject to review of policy implications by Members<br />

• Funding approx 3 million €/year<br />

2


Contracting Parties and Sponsors<br />

3


Acknowledgement<br />

• IEA Clean Coal Centre<br />

• Lesley Sloss<br />

• Robert Davidson<br />

• Vattenfall R&D AB<br />

• Marie Anheden<br />

• Jinying Yan<br />

• E.On Engineering UK<br />

• Robin Iron<br />

• Utah University<br />

• Prof. Jost Wendt<br />

• Leeds University<br />

• IHI<br />

• Maryam Gharebaghi<br />

• Richard Porter<br />

• Toshihiko Yamada<br />

• Doosan Babcock<br />

• Jacqueline Gibson<br />

• Connie Ellul<br />

• Bhupesh Dungel<br />

• Stuttgart University<br />

• Jorge Maier<br />

• Air Products<br />

• Vince White<br />

• Air Liquide<br />

• Jean Pierre Tranier<br />

• Praxair<br />

• Minish Shah<br />

4


Special Workshop on Oxyfuel Combustion<br />

SO2/SO3/<strong>Hg</strong>/Corossion Issues in<br />

Oxyfuel Combustion Boiler<br />

London, UK<br />

25 th – 26 th January 2011<br />

Email: stanley.santos@<strong>ieaghg</strong>.org<br />

Area of Discussions:<br />

1) Fundamental Experimental work on SO2/SO3/<strong>Hg</strong> emission<br />

from oxyfuel combustion boiler<br />

2) SO2/SO3/<strong>Hg</strong>/Cl measurement techniques under oxyfuel<br />

combustion conditions<br />

3) Impact of Sulphur species to the Flue Gas Processing Units<br />

(ESP/FF, FGD, Direct Contact Cooler, Wet Scrubbers)<br />

4) Boiler Corrosion issue – under oxyfuel combustion conditions<br />

5) Modelling work on SO2/SO3/<strong>Hg</strong> from oxyfuel boilers<br />

6) Experience from large scale demonstration/pilot plant projects<br />

5


<strong>Presentation</strong> Outline<br />

• Objective of this <strong>Presentation</strong><br />

• Brief Introduction<br />

• Oxyfuel combustion of power plant with CO2<br />

capture<br />

• Why we need to understand the fate of <strong>Hg</strong><br />

during combustion?<br />

• Review of Literature – Where are we in our<br />

understanding of fate of <strong>Hg</strong> during oxyfuel<br />

combustion.<br />

• Where are the challenges.<br />

6


Objectives of this <strong>Presentation</strong><br />

• To provide awareness the impact / risk of<br />

ignoring <strong>Hg</strong> in any Oxy-Coal Combustion Power<br />

Plant with CO2 Capture Power Plant<br />

• To initiate discussion on the issue of Mercury in<br />

Oxy-Coal Combustion Power Plant with CO2<br />

Capture<br />

• To initiate a review on the different factors to<br />

reconsider on the design of coal power plant in<br />

the perspective of <strong>Hg</strong>.<br />

7<br />

7


Oxy-PC Combustion Fired Power Plants<br />

with CO2 Capture<br />

8


Oxy-Coal Combustion Power Plant with CCS…<br />

9


Where Can You Extract the Recycled Flue Gas (RFG)<br />

(For Practical application using low S coal)<br />

10


Alstom Schwarze Pumpe 2008 30MWth Lignite<br />

Hitachi Babcock Schwarze Pumpe 2010 30MWth Lignite<br />

IHI Callide 2011 30MWe Coal<br />

Alstom / AL Lacq 2009 30MWth Gas/Oil?<br />

CIUDEN El Bierzo CFB Facility 2011 30MWth Coal<br />

CIUDEN El Bierzo PC Facility 2010 20MWth Coal<br />

ENEL HP Oxyfuel Brindisi Test Facility 2012 48MWth Coal<br />

1980’s<br />

1990 - 1995<br />

ANL/Battelle/EERC completed the first<br />

industrial scale pilot plant<br />

2003 - 2005<br />

Vattenfall (ENCAP ++)<br />

1998 – 2001<br />

CS Energy / IHI Callide Project<br />

CANMET<br />

US DOE Project / B&W / Air Liquide<br />

EC Joule Thermie Project<br />

- IFRF / Doosan Babcock / Int’l Combustion<br />

NEDO / IHI / JCoal Project<br />

Updated by S. Santos (17/06/2010)<br />

2007<br />

2008<br />

Vattenfall - Janschwalde (PC -250MWe)<br />

KEPCO/KOSEP - Yongdong (PC - 100MWe)<br />

Endesa/CIUDEN - El Bierzo (CFB - 300MWe)<br />

2009 – Lacq – World’s<br />

first 30MWt<br />

retrofitted Oxy-NG<br />

boiler<br />

World’s FIRST 30 MWt<br />

full chain demonstration<br />

at Schwarze Pumpe Pilot Plant<br />

B&W CEDF (30MWt)<br />

large scale burner testing started<br />

First large scale 35MWt<br />

Oxy-Coal Burner Retrofit<br />

Test done by<br />

International Combustion<br />

2011 – Callide –<br />

World’s first 30MWe<br />

retrofitted Oxy-coal<br />

power plant<br />

2011 – CIUDEN –<br />

World’s first 30MWt<br />

Oxy-CFB Pilot Plant<br />

By 2014-2018<br />

Demonstration of<br />

50– 300MWe full<br />

scale power plant.<br />

Target :<br />

“Commercialised by 2020”<br />

By the end of 2010/2011,<br />

Users (i.e. Power Plant Operators)<br />

will have 6 burner manufacturers<br />

fully demonstrating “Utility Size<br />

Large Scale Burners” which should<br />

give a high level of confidence<br />

toward demonstration<br />

B&W CEDF 2008 30MWth Coal<br />

Alstom Alstom CE 2010 15MWth Coal<br />

Doosan Babcock DBEL - MBTF 2009 40MWth Coal


Today... There are 3 Major Full Scale<br />

PC Burner Testing Facilities Worldwide Retrofitted for Oxyfuel<br />

• Babcock and Wilcox (B&W)<br />

30MWth CEDF<br />

• Barberton, Ohio, USA<br />

• Start of Operation: Oct. 2008<br />

• Wall Fired Burner<br />

Development<br />

• Doosan Babcock –<br />

40MWth in 90MWth MBTF<br />

• Renfrew, Scotland, UK<br />

• Start of Operation: Jun. 2009<br />

• Wall Fired Burner<br />

Development<br />

• Alstom Power Plant Lab. –<br />

15MWth in 30MWth BSF<br />

• Windsor, Connecticut, USA<br />

• Start of Operation: Nov. 2009<br />

• T-Fired Burner Development<br />

Courtesy of Alstom, B&W and Doosan Babcock<br />

12<br />

12


© Vattenfall AB<br />

Jänschwalde demonstration plant – view from south east<br />

Fuel feeding<br />

Lignite<br />

dryer<br />

Oxyfuel<br />

boiler<br />

ASU<br />

Flue gas cleaning<br />

14<br />

Cooling water<br />

pump<br />

CO 2-compression<br />

PCC<br />

Preparation and cleaning of<br />

Lignite condensate<br />

NH 3-storage<br />

CO CO2-compression 2-compression<br />

CO 2-transport


Why it is important to understand the fate of<br />

mercury during Oxyfuel Combustion?<br />

Why Mercury is an operational issue to<br />

Oxyfuel Combustion Power Plant?<br />

Case 1: Moomba Gas Plant<br />

Case 2: Skikda Gas Processing Plant<br />

15


Case 1: Moomba Gas Plant<br />

Accident caused by Mercury<br />

• Moomba Gas Processing Plant, owned by Santos, is the<br />

main supplier of natural gas to South Australia and New<br />

South Wales<br />

• Liquids separated from raw natural gas via 2 trains of LRP (Liquids<br />

Recovery Plant)<br />

• Liquids (condensate and LPG) sent to Port Bonython for export (about<br />

650Km south of Moomba)<br />

• A New Year BANG! About 02.43 in the morning, 1st<br />

January 2004 – an explosion & fire occurred at Train A of<br />

the LRP section.<br />

• The fire incident also damaged Train B.<br />

• Effect: liquids production interrupted for 8 months<br />

16


Failure Location<br />

• Failure occurred at the base (6 o’clock) of the gas nozzle<br />

• Evidence of de-lamination consistent with Liquid Metal<br />

Embrittlement (LME) caused by mercury in contact with<br />

aluminium<br />

17


Case 2: Skikda Gas<br />

Processing Plant Accident<br />

• Skikda Gas Processing Plant is owned by Sonatrach in<br />

Algeria.<br />

• About 18.40 on 19 th January 2004 (just about 3 weeks<br />

after Moomba Gas Processing incident), an explosion<br />

occurred in Train “40”.<br />

• Consequence:<br />

• 3 out of the 6 NG liquefaction trains were destroyed and 2, which<br />

were not operating at the time, were damaged. The administration<br />

building and the maintenance workshop, and other buildings, were<br />

completely destroyed.<br />

• Sadly, 27 person killed and 80 people injured.<br />

• Adjacent oil refinery and power plant were shut down due to the blast<br />

for at least a month.<br />

18


Skikda Gas Processing<br />

Accident<br />

19


Incident Report<br />

• The Report concludes that the explosion was the<br />

consequence of a catastrophic failure in one of the cold<br />

boxes of Unit “40”, which led to a vapour cloud explosion of<br />

either LNG or refrigerant. The most probable source of<br />

ignition was the boiler at the north end of Unit “40”.<br />

• Although (unlike the Moomba Gas Plant incident) – the report<br />

noted that it is not absolutely proven if Liquid Metal<br />

Embrittlement is the main cause of the failure – nonetheless,<br />

it was accepted that this was the most likely probable cause<br />

of the failure.<br />

• Train “40” is the only NG Liquefaction train that doesn’t have<br />

mercury removal system!<br />

20


Discussion Points<br />

21


Flue Gas<br />

Vent<br />

1.1 bar<br />

20°C<br />

25% CO 2<br />

75%<br />

inerts<br />

22<br />

Driers<br />

CO 2 Compression and Purification System –<br />

Inerts removal and compression to 110 bar<br />

Flue Gas<br />

Expander<br />

30 bar Raw CO 2<br />

Saturated 30°C<br />

76% CO 2 24% Inerts<br />

Flue Gas<br />

Heater<br />

Aluminium plate/fin exchanger<br />

-55°C<br />

CO 2 product<br />

110 bar<br />

96% CO 2<br />

4% Inerts<br />

-60°C dp


Statement of Fact:<br />

• For oxyfuel combustion – Mercury is not<br />

an environmental issue alone but also an<br />

operational issue particularly to the CO2<br />

processing unit.<br />

• The issue of Mercury to oxyfuel<br />

combustion is not about concentration –<br />

but it is about where Mercury could<br />

accumulate within the CO2 processing<br />

unit!<br />

23


Discussion Points<br />

(Oxyfuel Boiler)<br />

Where we are in the understanding of:<br />

• NOx Chemistry during combustion<br />

• SO2/SO3/Dew Point<br />

• Chlorine issue (Halogen issue)<br />

• Carbon in Ash<br />

• Brief review of some results presented<br />

regarding <strong>Hg</strong> under oxyfuel condition<br />

24


Coal Combustion under CO 2 Atmosphere<br />

Item Combustion with air Combustion with oxygen<br />

Windbox O2 21% 21%<br />

21~30%<br />

21~30%<br />

N2 79% 79% (0)~10%<br />

(0)~10%<br />

CO2 0% 40~50%<br />

40~50%<br />

H2O Small 10~20%<br />

10~20%<br />

Others - NOx、SO2・・・<br />

Flue gas O2 3~4% 3~4% 3~4%<br />

3~4%<br />

3~4%<br />

N2 70~75% 70~75% (0)~10%<br />

(0)~10%<br />

CO2 12~14% 12~14% 60~70%<br />

60~70%<br />

H2O 10~15% 10~15% 20~25%<br />

20~25%<br />

Others NOx、SO2・・・ NOx、SO2・・・<br />

(Wet % base)


NOx Emissions<br />

- We have quite a good confidence in<br />

knowing the trend of these emissions<br />

26


NOx Results from IFRF study (APG4)<br />

27


SO2 Emissions<br />

- Highly dependent on how<br />

sulphur is captured in ash...<br />

- without the removal of SO2 in the secondary RFG, it should<br />

noted that about ~30% reduction could be achieved (on mass<br />

per unit energy input basis – especially for bituminous coal)<br />

28


SO2 Emissions<br />

(Results from IFRF)<br />

29<br />

29


SO3 Emissions<br />

(Results from ANL-EERC, IVD Stuttgart, Callide/IHI Aiolo)<br />

SO3 Concentration (ppm)<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

ANL - Air ANL - Oxy<br />

IVD Stuttgart - Air IVD Stuttgart - Oxy<br />

Callide IHI - Coal A - Air Callide IHI - Coal A - Oxy<br />

Callide IHI - Coal B - Air Callide IHI - Coal B - Oxy<br />

0 250 500 750 1000 1250 1500 1750 2000 2250<br />

SO2 Concentration (ppm)<br />

30


Correlation of SO 3-Moisture and Acid Dew Point<br />

(Result from Stuttgart University – IFK)<br />

Säuretaupunktstemperatur [°C] .<br />

Acid dew point temperature<br />

160<br />

150<br />

140<br />

130<br />

120<br />

110<br />

100<br />

90<br />

80<br />

Luft<br />

air<br />

Oxyfuel<br />

0,5 ppm SO3 1,0 ppm<br />

2,0 ppm 5,0 ppm<br />

10,0 ppm<br />

0 10 20 30 40<br />

Wasserdampfkonzentration im Rauchgas [Vol. %]<br />

Moisture content in flue gas<br />

31


SO 2 captured along the convective part<br />

(down to 450°C) by different inlet concentrations<br />

Coal<br />

Type<br />

Iron<br />

Content<br />

in the<br />

Ash<br />

“KK” ~2-3%<br />

“EN” ~17-18%<br />

“LA” ~22-23%<br />

“RH” ~16-17%


Chlorine / Bromine Chemistry<br />

- This could be a big challenge to Oxyfuel<br />

Combustion because we hardly know anything<br />

about it under oxyfuel combustion condition.<br />

- But ... What we currently know shows the<br />

possible impact of Chlorine and Sulphur to boiler<br />

corrosion.<br />

33


CORROSION - Low-S/Low-Cl<br />

95%ile Parabolic Rate (cm2 s-1 95%ile Parabolic Rate (cm )<br />

1.00E-09<br />

1.00E-10<br />

1.00E-11<br />

1.00E-12<br />

1.00E-13<br />

1.00E-14<br />

El Cerrejon Oxy-Fuel<br />

400 450 500 550 600 650 700<br />

Temperature ( o C)<br />

T22<br />

T91<br />

E1250<br />

TP347HFG<br />

HR3C<br />

San25<br />

IN740<br />

Thema Datum Bereich<br />

Seite 34


CORROSION - High-S/High-Cl<br />

95%ile Parabolic Rate (cm2 s-1 95%ile Parabolic Rate (cm )<br />

1.00E-09<br />

1.00E-10<br />

1.00E-11<br />

1.00E-12<br />

1.00E-13<br />

1.00E-14<br />

Thoresby Oxy-Fuel<br />

400 450 500 550 600 650 700<br />

Temperature ( o C)<br />

T22<br />

T91<br />

E1250<br />

TP347HFG<br />

HR3C<br />

San25<br />

IN740<br />

Thema Datum Bereich<br />

Seite 35


Addition of Calcium Chloride or<br />

Calcium Bromide to enhance<br />

oxidation of <strong>Hg</strong> may probably be a<br />

none starter under oxyfuel<br />

combustion conditions!!!<br />

I could be a “villain” to a lot of commercial<br />

interests to this type of <strong>Hg</strong> reduction control<br />

technology!<br />

But will the addition of other Calcium/Magnesium<br />

compounds enhance <strong>Hg</strong> removal???<br />

36


Carbon in Ash<br />

- This could be dependent to the burner design<br />

and combustion regime.<br />

- It is expected that a lower Carbon in Ash during<br />

oxyfuel combustion conditions<br />

37


Would the capture of SO2 / SO3 in the ash<br />

enhanced by lower carbon in ash?<br />

Marrier and Dibbs (1974) Thermochimica Act (Vol. 8)<br />

E.ON UK Results at 26%O2<br />

38<br />

38


Review of Literature<br />

- Assessing all the published worked relevant to<br />

Mercury and oxyfuel combustion<br />

- Aim: My attempt to establish what we know...<br />

39


Mercury<br />

Speciation<br />

• <strong>Hg</strong> measured by on-line analyzer<br />

• <strong>Hg</strong> data taken when firing lignite<br />

• <strong>Hg</strong> in flue gas (air firing) was ≈ 13.5µg/m 3<br />

• <strong>Hg</strong> concentration in flue gas increase in oxy mode<br />

corresponded to removal of N2. • Oxidized (ionic) <strong>Hg</strong> increased from 25% to 30%<br />

� Increases removal (less elemental <strong>Hg</strong>)<br />

• Oxidized <strong>Hg</strong> removed in WFGD<br />

CONCLUSIONS:<br />

1. <strong>Hg</strong> oxidation may improve with oxycombustion<br />

2. <strong>Hg</strong> removal is expected to be the same as for air firing<br />

© 2009 Babcock & Wilcox Power Generation Group, Inc. All rights reserved. .40


Experimental Results from Guo et. al. (2009)<br />

Thermal Degradation of 3 Chinese Coal<br />

41


Suriyawong et. al. (2005)<br />

42


List of Literature<br />

• Gharebaghi, M., Goh, B., Porter, R.T.J., Pourkashanian, M. and Williams, A.. (2009). Assessment<br />

of Fate of Mercury in Oxy-coal Combustion. 1st International Oxyfuel Combustion Conference<br />

(OCC1). Cottbus, Germany. (8-11 September 2009). IEA Greenhouse Gas R&D Programme.<br />

• Gharebaghi, M., Hughes, K.J., Porter, R.T.J., Pourkashanian, M. and Williams, A.. (2010). Mercury<br />

Speciation in Air- and Oxy-Coal Combustion: A Modelling Approach. 33rd International<br />

Symposium on Combustion. Beijing, China.<br />

• Guo, S., Yang, J., Liu, Z., and Xiao, Y.. (2009). Behaviour of Mercury Release During Thermal<br />

Decomposition of Coals. Korean Journal of Chemical Engineering. Vol. 26, pp. 560-563.<br />

• McDonald D.K., DeVault D., Tranier J.P., Perrin N. (2009). Oxyfuel Process Developments Leading<br />

to Demonstration Plant Design. 1st International Oxyfuel Combustion Conference (OCC1).<br />

Cottbus, Germany. (8-11 September 2009). IEA Greenhouse Gas R&D Programme.<br />

• Pavlish, J.H., Hamre, L.L. and Zhuang, Y.. (2010). Mercury Control Technologies for Coal<br />

Combustion and Gasifications Systems. Fuel. (Vol. 89) pp. 838-847.<br />

• Santos, S.O. (2006). Mercury (<strong>Hg</strong>) in Oxy-Coal Fired Power Plant with CO2 Capture -What is the<br />

Real Score? 3rd IEAGHG International Oxyfuel Combustion Research Network Workshop.<br />

Yokohama, Japan. (5-6 March 2008).<br />

•<br />

43


List of Literature<br />

• Sethi V., Omar K., Martin P., Barton T., Krishnamurthy K. (2007). Oxy-Combustion Versus Air-<br />

Blown Combustion of Coals. in “The Power of Coal.” The Proceedings of the 32nd International<br />

Technical Conference on Coal Utilization & Fuel Systems. Clearwater, FL, USA, 10-15 Jun 2007.<br />

•<br />

• Suriyawong A., Gamble M., Lee M.H., Axelbaum R., Biswas P. (2006). Submicrometer Particle<br />

Formation and Mercury Speciation under O 2-CO 2 Coal Combustion. Energy and Fuels. (Vol. 20),<br />

pp. 2357-2363.<br />

•<br />

• Suriyawong A., Gamble M., Lee M.H., Axelbaum R., Biswas, P. (2005). Submicrometer Particle<br />

Formation and Mercury Speciation under Oxygen-Carbon Dioxide Coal Combustion.<br />

Proceedings, 22nd Annual Pittsburgh Coal Conference, Pittsburgh, PA, USA, 12-15 Sep 2005.<br />

Pittsburgh, PA, USA, Pittsburgh Coal Conference, paper 275, 10 pp (2005) CD-ROM<br />

•<br />

• Wall T., Liu Y., Spero C., Elliott L., Khare S., Rathnam R., Zeenathal F., Moghtaderi B., Buhre B.,<br />

Sheng C., Gupta R., Yamada T., Makino K. and Yu J. (2009). An Overview on Oxyfuel Coal<br />

Combustion - State of the Art Research and Technology Development. Chemical Engineering<br />

Research and Design (Vol. 87). pp. 1003-1016.<br />

44


Discussion Points<br />

(CO2 Processing Unit)<br />

45


Flue Gas<br />

Vent<br />

1.1 bar<br />

20°C<br />

25% CO 2<br />

75%<br />

inerts<br />

46<br />

Driers<br />

CO 2 Compression and Purification System –<br />

Inerts removal and compression to 110 bar<br />

Flue Gas<br />

Expander<br />

30 bar Raw CO 2<br />

Saturated 30°C<br />

76% CO 2 24% Inerts<br />

Flue Gas<br />

Heater<br />

Aluminium plate/fin exchanger<br />

-55°C<br />

CO 2 product<br />

110 bar<br />

96% CO 2<br />

4% Inerts<br />

-60°C dp


47<br />

NOx SO 2 Reactions in the CO 2<br />

Compression System<br />

� We realised that SO 2, NOx and <strong>Hg</strong> can be removed in the CO 2<br />

compression process, in the presence of water and oxygen.<br />

� SO2 is converted to Sulphuric Acid, NO2 converted to Nitric<br />

Acid:<br />

–<br />

–<br />

NO + ½ O2 2 NO2 =<br />

=<br />

NO2 N2O4 (1) Slow<br />

(2) Fast<br />

– 2 NO 2 + H H2O 2O = HNO 2 + HNO 3 (3) Slow<br />

– 3 HNO 2 = HNO 3 + 2 NO + H 2O (4) Fast<br />

– NO 2 + SO 2 = NO + SO 3 (5) Fast<br />

– SO 3 + H 2O = H 2SO 4 (6) Fast<br />

� Rate increases with Pressure to the 3 rd power<br />

– only feasible at elevated pressure<br />

� No Nitric Acid is formed until all the SO 2 is converted<br />

� Pressure, reactor design and residence times, are important.


48<br />

CO 2 Compression and Purification System –<br />

Removal of SO 2, NOx and <strong>Hg</strong><br />

1.02 bar<br />

30°C<br />

67% CO2 8% H2O 25%<br />

Inerts<br />

SOx<br />

NOx<br />

� SO 2 removal: 100% NOx removal: 90-99%<br />

BFW<br />

Condensate<br />

cw<br />

15 bar<br />

Dilute H 2SO 4<br />

HNO 3<br />

<strong>Hg</strong><br />

30 bar<br />

cw<br />

Water<br />

Dilute HNO 3<br />

30 bar to Driers<br />

Saturated 30°C<br />

76% CO 2<br />

24% Inerts<br />

cw


NG Industry Practice<br />

• Activated Carbon bed is<br />

generally employed. This is<br />

expected to be applied to<br />

oxy-combustion oxy-PC as<br />

well.<br />

• It is important to be aware<br />

with regard to short term<br />

performance drop of the<br />

activated carbon bed<br />

during shut down or<br />

process upset.<br />

• Competing reaction of <strong>Hg</strong><br />

and Sulphur species<br />

50


Flue Gas<br />

Vent<br />

1.1 bar<br />

20°C<br />

25% CO 2<br />

75%<br />

inerts<br />

51<br />

Driers<br />

CO 2 Compression and Purification System –<br />

Inerts removal and compression to 110 bar<br />

Flue Gas<br />

Expander<br />

30 bar Raw CO 2<br />

Saturated 30°C<br />

76% CO 2 24% Inerts<br />

Flue Gas<br />

Heater<br />

Aluminium plate/fin exchanger<br />

-55°C<br />

CO 2 product<br />

110 bar<br />

96% CO 2<br />

4% Inerts<br />

-60°C dp


What is the Feasibility and Effectiveness of Cold<br />

Trapping of <strong>Hg</strong> as final polishing process?<br />

(Figure from US Patent 4982050)<br />

• <strong>Hg</strong> is heavier than the gas at temperature<br />

colder than -10 o C (solid at -40 o C)<br />

52


Summary and Conclusions<br />

• For any oxy-combustion process, the<br />

removal of mercury from the CO2 rich flue<br />

gas is a necessary to protect key<br />

components in the CO2 clean up and<br />

processing unit.<br />

• Damage cause by Mercury to any<br />

aluminium based equipment is a Random<br />

Event!!!<br />

53


Understanding Failure<br />

Mechanisms<br />

• Statement from ALPEMA:<br />

In general, mercury will not react with aluminium unless it is<br />

allowed to exist in contact with the heat exchanger in its liquid<br />

state and there is water present. If these conditions exist within a<br />

heat exchanger, then mercury contamination can result in<br />

problems. This attack is most severe when coupled with another<br />

corrosion process.<br />

• Currently, the common practice of NG<br />

Processing means reducing the mercury to<br />

less than 0.01 µg/Nm3.<br />

• QUESTION: Is the 0.01 µg/Nm 3 to be used as<br />

well in the oxy-coal combustion power plant?<br />

54<br />

54


Summary and Conclusions<br />

• What is the speciation of <strong>Hg</strong> in an oxycoal<br />

combustion cases?<br />

• Together with this challenge is how we measure<br />

the speciation under oxyfuel combustion<br />

condition?<br />

• How we deal with the impact of:<br />

• Higher concentration of NOx, SOx, HCl, HBr,<br />

CO2, etc...<br />

55


Role of Chlorine and its<br />

Chemistry<br />

• What is the role of Coal Chlorine and its<br />

Chemistry to the heterogeneous and gas<br />

phase oxidation of <strong>Hg</strong> under oxyfuel<br />

condition.<br />

• SO 2(g) + Cl 2(g) + H 2O(g) ↔ 2HCl(g) + SO 3(g)<br />

56


Impact of SO3 on <strong>Hg</strong> Removal Efficiency<br />

of the Activated Carbon<br />

Air Fired Case (CODEN Study) Oxy Fired Case<br />

57


Mercury Management in the CO2 Processing Plant<br />

• I don’t see any technical barrier in<br />

removing <strong>Hg</strong>. This has been done in LNG<br />

industry. The consideration of cost is the<br />

main question!<br />

• There are 3 levels where <strong>Hg</strong> (both<br />

elemental and ionic) could be captured in<br />

the CO2 processing plant.<br />

• Compression stage<br />

• Moisture Removal stage<br />

• Activated Carbon Guard bed<br />

58


CS Energy/IHI Burner Testing Programme at<br />

Callide A Power Station<br />

• Callide A Project – would be the world’s 1 st oxyfuel<br />

retrofitted power station. (Would be the largest<br />

demonstration of the technology by 2011!)<br />

• First oxyfuel pilot plant that will actually<br />

produce electricity.<br />

• Installation of new IHI 2x ~30MWth Wall Fired<br />

Burners (with operation of 4 burners at full<br />

load)<br />

o A unique position to provide information related to<br />

the burner – burner interaction<br />

• Project Scope (4 years operation):<br />

o Oxygen plant (nominal 2 x 330 tpd ASUs)<br />

o Boiler refurbishment and oxy-fuel retrofit (1 x 30<br />

MWe Unit)<br />

o CO2 compression & purification (75 tpd process<br />

plant from a 20% side stream)<br />

o Road transport and geological storage (~ 30 tpd<br />

liquid CO2)<br />

Courtesy of CS Energy, IHI<br />

60


Interest to receive updates - Please Register at:<br />

Conference Dates:<br />

www.<strong>ieaghg</strong>.org/index.php?/create-an-account.html<br />

12th 12 Sept. 2011 Asia Pacific Programme - Oxyfuel Working Group Capacity Building Course<br />

th Sept. 2011 Asia Pacific Programme - Oxyfuel Working Group Capacity Building Course<br />

12 th –15 th Sept. 2011 2nd Oxyfuel Combustion Conference<br />

16 th Sept. 2011 Facility Visit to Callide Power Station<br />

Dates to Remember:<br />

15 th Sept. 2010 Call for papers opens<br />

15 th Dec. 2010 Deadline for Abstract Submission<br />

15 th Feb. 2011 Conference Registration opens<br />

15 th Apr. 2011 Notification of Acceptance for Oral / Poster <strong>Presentation</strong>s<br />

15 th May 2011 Early Bird Registration Deadline<br />

12 th – 16 th Sept. 2011 2 nd International Oxyfuel Combustion Conference<br />

61

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!