15.01.2013 Views

PPT - The University of Texas at Arlington

PPT - The University of Texas at Arlington

PPT - The University of Texas at Arlington

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

SUPER RESOLUTION WITH<br />

BETTER EDGE ENHANCEMENT<br />

Gaurav Hansda<br />

Electrical Engineering Gradu<strong>at</strong>e Student<br />

<strong>The</strong> <strong>University</strong> <strong>of</strong> <strong>Texas</strong> <strong>at</strong> <strong>Arlington</strong><br />

Advisor<br />

Dr. K. R. Rao, EE Dept, UTA<br />

Committee Members<br />

Dr. Jon<strong>at</strong>han Bredow<br />

Dr. Howard Russell


� Introduction <strong>of</strong> image super-resolution<br />

(SR).<br />

� Rel<strong>at</strong>ed works<br />

� Proposed SR framework<br />

� Image quality assessment<br />

� Experimental Results<br />

� Conclusion<br />

� Future work<br />

� References<br />

11/19/2012<br />

Super-resolution with better edge<br />

enhancement<br />

2


Introduction <strong>of</strong> Image Super-<br />

resolution


� Wh<strong>at</strong> is resolution?<br />

◦ Optical resolution<br />

◦ Image resolution<br />

� Super-resolution<br />

◦ Low resolution (LR) High resolution (HR)<br />

11/19/2012<br />

Super-resolution with better edge<br />

enhancement<br />

4


� More detail the inform<strong>at</strong>ion contained in<br />

image.<br />

� Image resolution is directly proportional<br />

to optical resolution.<br />

� Ways to increase the image resolution:<br />

◦ Reduce the size <strong>of</strong> sensing elements<br />

◦ Increase the wafer size.<br />

11/19/2012<br />

Super-resolution with better edge<br />

enhancement<br />

5


� Surveillance video<br />

� Remote sensing<br />

� Medical imaging (CT, MRI, ultrasound,<br />

etc.)<br />

� Video standards conversion, e.g., from<br />

NTSC video signal to HDTV signal<br />

� Astronomical imaging<br />

� Target detection and recognition<br />

11/19/2012<br />

Super-resolution with better edge<br />

enhancement<br />

6


� Approaches to super-resolution :<br />

1. Interpol<strong>at</strong>ion based.<br />

2. Reconstruction based.<br />

3. Learning based.<br />

11/19/2012<br />

Super-resolution with better edge<br />

enhancement<br />

7


Proposed SR Framework


11/19/2012<br />

Super-resolution with better edge<br />

enhancement<br />

9


� Traditional filters (like Gaussian filter)<br />

implement only in domain.<br />

� Bil<strong>at</strong>eral filter gets also applied in range <strong>of</strong><br />

an image.<br />

� Closeness Domain<br />

� Similarity Range<br />

11/19/2012<br />

Super-resolution with better edge<br />

enhancement<br />

10


� Domain filtering : weigh pixel values with<br />

distance.<br />

� Range filtering : averages image values<br />

with weights th<strong>at</strong> decay with dissimilarity.<br />

� Range filter are non-linear.<br />

� Hence preserve edges.<br />

� Combin<strong>at</strong>ion <strong>of</strong> both range and domain<br />

filtering is denoted as bil<strong>at</strong>eral filtering.<br />

11/19/2012<br />

Super-resolution with better edge<br />

enhancement<br />

11


11/19/2012<br />

Super-resolution with better edge<br />

enhancement<br />

12


11/19/2012<br />

Super-resolution with better edge<br />

enhancement<br />

13


� Decomposition <strong>of</strong> image into<br />

homogeneous tiles.<br />

� Takes advantage <strong>of</strong> mean shift filtering.<br />

� Works in joint domain i.e. sp<strong>at</strong>ial-range<br />

domain.<br />

11/19/2012<br />

Super-resolution with better edge<br />

enhancement<br />

14


� Pixels<br />

Sp<strong>at</strong>ial loc<strong>at</strong>ion<br />

Color/grayscale intensity<br />

� For this pixel a set <strong>of</strong> neighboring is<br />

determined.<br />

� New sp<strong>at</strong>ial mean and grayscale mean<br />

calcul<strong>at</strong>ed th<strong>at</strong> serves new center for the<br />

next iter<strong>at</strong>ion.<br />

� At the end, final mean color will be assigned<br />

to the starting position.<br />

11/19/2012<br />

Super-resolution with better edge<br />

enhancement<br />

15


Original Image Mean-shift image segmented image<br />

11/19/2012<br />

Super-resolution with better edge<br />

enhancement<br />

16


� Cre<strong>at</strong>es strong discontinuities <strong>at</strong> image<br />

edges.<br />

� <strong>The</strong> filtered signal within a region<br />

deline<strong>at</strong>ed by those edges becomes fl<strong>at</strong>.<br />

� S<strong>at</strong>isfies the maximum -minimum principle<br />

[26].<br />

� No appearance <strong>of</strong> Gibbs phenomenon<br />

[27].<br />

11/19/2012<br />

Super-resolution with better edge<br />

enhancement<br />

17


Original Image Image after Shock Filter<br />

11/19/2012<br />

Super-resolution with better edge<br />

enhancement<br />

18


� Idea : <strong>The</strong> reconstructed HR image from<br />

the degraded LR image should produce<br />

the same observed LR image if passing it<br />

through the same blurring and<br />

downsampling process.<br />

11/19/2012<br />

Super-resolution with better edge<br />

enhancement<br />

19


� Start with initial guess <strong>of</strong> HR image.<br />

� Simul<strong>at</strong>e a LR image based on this HR<br />

image.<br />

� Compare this LR image with the original<br />

LR image.<br />

� Propag<strong>at</strong>e or back-project this error onto<br />

the initial guessed HR image.<br />

� Iter<strong>at</strong>e this process until the error is<br />

minimized.<br />

11/19/2012<br />

Super-resolution with better edge<br />

enhancement<br />

20


Input LR image IBP output HR image<br />

`<br />

11/19/2012<br />

Super-resolution with better edge<br />

enhancement<br />

21


Significance <strong>of</strong> initial guess in IBP<br />

11/19/2012<br />

Super-resolution with better edge<br />

enhancement<br />

22


� Two criterions used for structure learning:<br />

◦ Zero mean normalized cross correl<strong>at</strong>ion<br />

(ZNCC).<br />

◦ Mean absolute difference (MAD)<br />

• ZNCC emphasizes the similarity <strong>of</strong> the<br />

structural or geometrical content.<br />

• MAD underlines the similarity <strong>of</strong> the luminance<br />

(and color) inform<strong>at</strong>ion.<br />

• If ZNCC > τ ZNCC and MAD < τ MAD M<strong>at</strong>ching<br />

block.<br />

11/19/2012<br />

Super-resolution with better edge<br />

enhancement<br />

23


Image Quality Assessment (IQA)


� Peak signal-to-noise r<strong>at</strong>io (PSNR)<br />

� Structural SIMilarity index (SSIM)<br />

� Fe<strong>at</strong>ure SIMilarity index (FSIM)<br />

◦ Human Visual System (HVS) is sensitive lowlevel<br />

fe<strong>at</strong>ures, such as edges and zero<br />

crossings.<br />

◦ A good IQA metric should compare the lowlevel<br />

fe<strong>at</strong>ure sets between the reference<br />

image and the distorted image.<br />

11/19/2012<br />

Super-resolution with better edge<br />

enhancement<br />

25


Experimental Results


Lena Clock Barche<br />

Est<strong>at</strong>ua Port<strong>of</strong>ino<br />

11/19/2012<br />

Super-resolution with better edge<br />

enhancement<br />

27


0.96<br />

0.94<br />

0.92<br />

0.9<br />

0.88<br />

0.86<br />

0.84<br />

0.82<br />

0.8<br />

Algorithms<br />

Proposed algorithm<br />

Bicubic interpol<strong>at</strong>ion<br />

POCS<br />

NLIBP<br />

2D auto regressive model<br />

Proposed<br />

algorithm<br />

Bicubic<br />

interpol<strong>at</strong>ion<br />

PSNR (dB) SSIM FSIM<br />

28.91 0.9106 0.9518<br />

28.27 0.8631 0.9418<br />

27.93 0.9457 0.9467<br />

28.69 0.8573 0.9259<br />

29.05 0.8754 0.9487<br />

POCS NLIBP 2D auto regressive<br />

model<br />

SSIM<br />

FSIM<br />

11/19/2012<br />

Super-resolution with better edge<br />

enhancement<br />

28


1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

Algorithms PSNR (dB) SSIM FSIM<br />

Proposed algorithm 29.24 0.8913 0.9243<br />

Bicubic interpol<strong>at</strong>ion 26.98 0.9331 0.9077<br />

POCS 21.65 0.6372 0.7567<br />

NLIBP 27.46 0.8226 0.8845<br />

2D auto regressive model 27.37 0.8403 0.9161<br />

Proposed<br />

algorithm<br />

Bicubic<br />

interpol<strong>at</strong>ion<br />

POCS NLIBP 2D auto<br />

regressive model<br />

11/19/2012<br />

SSIM<br />

FSIM<br />

Super-resolution with better edge<br />

enhancement 29


1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

Algorithms PSNR (dB) SSIM FSIM<br />

Proposed algorithm 30.19 0.7933 0.9412<br />

Bicubic interpol<strong>at</strong>ion 29.81 0.776 0.9204<br />

POCS 24.51 0.6187 0.8101<br />

NLIBP 30.66 0.7785 0.9033<br />

2D auto regressive model 30.08 0.784 0.9226<br />

Proposed<br />

algorithm<br />

Bicubic<br />

interpol<strong>at</strong>ion<br />

POCS NLIBP 2D auto regressive<br />

model<br />

11/19/2012<br />

SSIM<br />

FSIM<br />

Super-resolution with better edge<br />

enhancement 30


1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

Algorithms PSNR (dB) SSIM FSIM<br />

Proposed algorithm 26.97 0.7995 0.9217<br />

Bicubic interpol<strong>at</strong>ion 25.64 0.7728 0.8904<br />

POCS 22.46 0.588 0.7539<br />

NLIBP 26.61 0.771 0.8673<br />

2D auto regressive model 25.71 0.7743 0.8924<br />

Proposed algorithm Bicubic<br />

interpol<strong>at</strong>ion<br />

POCS NLIBP 2D auto regressive<br />

model<br />

11/19/2012<br />

SSIM<br />

FSIM<br />

Super-resolution with better edge<br />

enhancement 31


1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

Algorithms PSNR (dB) SSIM FSIM<br />

Proposed algorithm 29.19 0.929 0.9268<br />

Bicubic interpol<strong>at</strong>ion 28.63 0.9331 0.9305<br />

POCS 21.74 0.8201 0.8049<br />

NLIBP 29.19 0.9292 0.9215<br />

2D auto regressive model 28.98 0.9357 0.9379<br />

Proposed<br />

algorithm<br />

Bicubic<br />

interpol<strong>at</strong>ion<br />

POCS NLIBP 2D auto regressive<br />

model<br />

11/19/2012<br />

SSIM<br />

FSIM<br />

Super-resolution with better edge<br />

enhancement 32


� 3-6% increase in the FSIM index.<br />

� <strong>The</strong> proposed algorithm out-perform the<br />

other existing techniques when the image<br />

scene under consider<strong>at</strong>ion has more<br />

details (complex) in it. E.g. port<strong>of</strong>ino,<br />

est<strong>at</strong>ua and even barche.<br />

11/19/2012<br />

Super-resolution with better edge<br />

enhancement<br />

33


Future Work<br />

11/19/2012<br />

Super-resolution with better edge<br />

enhancement 34


11/19/2012<br />

Super-resolution with better edge<br />

enhancement 35


[1] R. C. Gonzalez and R. E. Woods, "Digital Image Processing". New Jersey: Prentice Hall, 2008.<br />

[2]C. E. Shanon, , "A m<strong>at</strong>hem<strong>at</strong>ical theory <strong>of</strong> communic<strong>at</strong>ion," Bell System Technical Journal,<br />

vol. 27, no.4, pp. 623 - 656, Oct. 1948.<br />

[3] J. B. A. Maintz and M. A. Viergever. , "A survey <strong>of</strong> medical image registr<strong>at</strong>ion," Med. Image<br />

Anal. vol. 2, no.1, pp. 1-36. Oct.1997.<br />

[4] T. Bauer, "Super-resolution imaging: <strong>The</strong> use case <strong>of</strong> optical astronomy. " Proceedings <strong>of</strong> the<br />

IADIS Intern<strong>at</strong>ional Conference Computer Graphics, Visualiz<strong>at</strong>ion, Computer Vision and Image<br />

Processing,Rome, Italy, pp. 49-59, 2011.<br />

[5] M. Irani and S. Peleg. , "Motion Analysis for Image Enhancement: Resolution, Occlusion, and<br />

Transparency,” Journal <strong>of</strong> Visual Communic<strong>at</strong>ion and Image Represent<strong>at</strong>ion, vol. 4, no.4, pp.<br />

324-335, Dec.1993.<br />

[6] C. Tomasi and R. Manduchi. "Bil<strong>at</strong>eral filtering for gray and color images," Proceedings <strong>of</strong><br />

the Sixth Intern<strong>at</strong>ional Conference on Computer Vision, Bombay, India, pp. 839, Jan.1998.<br />

Available: http://dl.acm.org/cit<strong>at</strong>ion.cfm?id=938978.939190.<br />

[7] R. Keys. , "Cubic convolution interpol<strong>at</strong>ion for digital image processing," IEEE Transactions<br />

on Acoustics, Speech and Signal Processing, vol. 29, no.6, pp. 1153-1160, Dec. 1981.<br />

[8] L. Zhang, L. Zhang, X. Mou and D. Zhang. , "FSIM: A Fe<strong>at</strong>ure Similarity Index for Image<br />

Quality Assessment," IEEE Transactions on Image Processing, vol. 20, no.8, pp. 2378-2386, Aug.<br />

2011.<br />

11/19/2012<br />

Super-resolution with better edge<br />

enhancement 36


[9] Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli. , "Image quality assessment: from error visibility to<br />

structural similarity,” IEEE Transactions on Image Processing vol. 13, no.4, pp. 600-612, Apr. 2004.<br />

[10] A. J. Jerri. , "<strong>The</strong> Shannon sampling theorem—Its various extensions and applic<strong>at</strong>ions: A tutorial<br />

review,” Proceedings <strong>of</strong> the IEEE vol. 65, no.11, pp. 1565-1596, Nov.1977.<br />

[11] T. M. Lehmann, C. Gonner and K. Spitzer. , "Survey: interpol<strong>at</strong>ion methods in medical image<br />

processing," IEEE Transactions on Medical Imaging, vol. 18, no.11, pp. 1049-1075, Nov.1999.<br />

[12] H. Hou and H. Andrews, "Cubic splines for image interpol<strong>at</strong>ion and digital filtering,” IEEE Transactions<br />

on Acoustics, Speech and Signal Processing, vol. 26, no.6, pp. 508-517, Dec.1978.<br />

[13] K. Turkowski. "Filters for common resampling task," in Graphics Gems, A. S. Glassner, Ed. San Diego,<br />

CA, USA: Academic Press Pr<strong>of</strong>essional, Inc., pp. 147-165,1990.<br />

[14] J. D. van Ouwerkerk. , "Image super-resolution survey," Image and Vision Computing vol. 24, no.10, pp.<br />

1039-1052, Feb.2006.<br />

[15] A. Papoulis. , "A new algorithm in spectral analysis and band-limited extrapol<strong>at</strong>ion," IEEE Transactions<br />

on Circuits and Systems, vol. 22, no.9, pp. 735-742. Sept. 1975.<br />

[16] W. T. Freeman, E. C. Pasztor and O. T. Carmichael. ”Learning low-level vision”. IJCV vol.40, no.1, pp. 25-<br />

47, Jan. 2000.<br />

[17] W. T. Freeman, T. R. Jones and E. C. Pasztor. , "Example-based super-resolution,” IEEE Computer Graphics<br />

and Applic<strong>at</strong>ions, vol. 22, no.2, pp. 56-65, Mar. 2002.<br />

[18] C. B. Atkins, C. A. Bouman and J. P. Allebach. "Optimal image scaling using pixel classific<strong>at</strong>ion,"<br />

Intern<strong>at</strong>ional Conference on Image Processing, vol.3, pp. 864-867, Oct. 2001.<br />

11/19/2012<br />

Super-resolution with better edge<br />

enhancement 37


[19] D. D. Muresan and T. W. Parks, "Adaptively quadr<strong>at</strong>ic (AQua) image interpol<strong>at</strong>ion," IEEE<br />

Transactions on Image Processing, vol. 13, no.5, pp. 690-698, May 2004.<br />

[20] P. M. Narendra, "A Separable Median Filter for Image Noise Smoothing," IEEE<br />

Transactions on P<strong>at</strong>tern Analysis and Machine Intelligence, vol. PAMI-3, no.1, pp. 20-29.<br />

Jan.1981.<br />

[21] A. Roy, S. Kumar Parui, A. Paul and U. Roy, "A color based image segment<strong>at</strong>ion and its<br />

applic<strong>at</strong>ion to text segment<strong>at</strong>ion," Sixth Indian Conference on Computer Vision,<br />

Graphics & Image Processing,Bhubaneswar, India, pp. 313-319, Dec. 2008.<br />

[22] G. Huilin, D. Lihua, C. Wenjie and X. Gang, "<strong>The</strong> applic<strong>at</strong>ions <strong>of</strong> image segment<strong>at</strong>ion<br />

techniques in medical CT images," 30th Chinese Control Conference (CCC),Yantai, pp.<br />

3296-3299, July 2011.<br />

[23] D. Comaniciu and P. Meer. , "Mean shift: a robust approach toward fe<strong>at</strong>ure space<br />

analysis," IEEE Transactions on P<strong>at</strong>tern Analysis and Machine Intelligence, vol. 24, no.5, pp. 603-<br />

619, May 2002.<br />

[24] Q. Guo, X. Chang and H. Chu. "Mean-shift <strong>of</strong> variable window based on the<br />

epanechnikov kernel," Intern<strong>at</strong>ional Conference on Mech<strong>at</strong>ronics and Autom<strong>at</strong>ion,<br />

Harbin, pp. 2314-2319, Aug. 2007.<br />

[25] G. Gilboa, N. A. Sochen and Y. Y. Zeevi, "Regularized shock filters and complex diffusion,”<br />

Proceedings <strong>of</strong> the 7th European Conference on Computer Vision-Part I, pp. 399-413,<br />

2002.<br />

11/19/2012<br />

Super-resolution with better edge<br />

enhancement 38


[26] J. Weickert. "Coherence-enhancing shock filters," in P<strong>at</strong>tern Recognition, Lecture Notes in<br />

Computer Science, B. Michaelis and G. Krell, Eds. Springer Berlin / Heidelberg, pp. 1-<br />

82003.<br />

[27] L. Cosmin, L. Olivier, P. Sorin, T. Romulus and B. Monica, , "Image enhancement using a<br />

new shock filter formalism," ACTA Technica Napocensis:Electronics and Telecommunic<strong>at</strong>ions,<br />

vol. 50, no.3, pp. 27-30, Mar. 2009.<br />

[28] H. Luong, A. Ledda and W. Philips, "Non-local image interpol<strong>at</strong>ion," Proc. Int. Conf.<br />

Image Process., Atlanta, GA, United St<strong>at</strong>es, pp. 693-696, Oct. 2006.<br />

11/19/2012<br />

Super-resolution with better edge<br />

enhancement 39


Questions??<br />

11/19/2012<br />

Super-resolution with better edge<br />

enhancement 40

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!