15.01.2013 Views

Progress of offshore longline culture in Sungo - Yslme.org

Progress of offshore longline culture in Sungo - Yslme.org

Progress of offshore longline culture in Sungo - Yslme.org

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

The progress <strong>of</strong> <strong>of</strong>fshore <strong>longl<strong>in</strong>e</strong><br />

mari<strong>culture</strong> <strong>in</strong> <strong>Sungo</strong> Bay<br />

Jihong Zhang, Jianguang Fang, Zengjie Jiang<br />

zhangjh@ysfri.ac.cn<br />

Yellow Sea Fisheries Research Institute, CAFS Q<strong>in</strong>gdao<br />

266071, Ch<strong>in</strong>a


Contents<br />

• Brief <strong>in</strong>troduce the progress <strong>of</strong> <strong>of</strong>fshore <strong>longl<strong>in</strong>e</strong><br />

<strong>culture</strong> <strong>in</strong> <strong>Sungo</strong> Bay<br />

• Potential <strong>of</strong> <strong>of</strong>fshore <strong>longl<strong>in</strong>e</strong> <strong>culture</strong> <strong>of</strong> scallops<br />

Chlamys farreri<br />

• Discussion


1. <strong>Progress</strong> <strong>of</strong> <strong>of</strong>fshore <strong>longl<strong>in</strong>e</strong> <strong>culture</strong> <strong>in</strong> <strong>Sungo</strong> Bay<br />

Mov<strong>in</strong>g to the <strong>of</strong>fshore area would be a way to<br />

overcome the conflicts <strong>of</strong> space allotment and utilization<br />

and reduc<strong>in</strong>g environment impact <strong>of</strong> mari<strong>culture</strong><br />

<strong>in</strong>dustry (Benetti et al., 2003; Michler-Cieluch et al., 2009).


1. <strong>Progress</strong> <strong>of</strong> <strong>of</strong>fshore <strong>longl<strong>in</strong>e</strong> <strong>culture</strong> <strong>in</strong> <strong>Sungo</strong> Bay<br />

Currently, most <strong>of</strong> the<br />

emphasis worldwide is on the<br />

<strong>of</strong>fshore farm<strong>in</strong>g <strong>of</strong> f<strong>in</strong>fish,<br />

and because <strong>of</strong> the high<br />

costs and risks <strong>of</strong> practic<strong>in</strong>g<br />

<strong>of</strong>fshore aqua<strong>culture</strong>, <strong>in</strong>itial<br />

attempts have focused<br />

largely on the production <strong>of</strong><br />

high value species (Lipton<br />

and Kim, 2007).<br />

Atlantic salmon (Salmo salar);<br />

ra<strong>in</strong>bow trout (Onchorynchus mykiss)


1. <strong>Progress</strong> <strong>of</strong> <strong>of</strong>fshore <strong>longl<strong>in</strong>e</strong> <strong>culture</strong> <strong>in</strong> <strong>Sungo</strong> Bay<br />

Australia, New Zealand<br />

and New Hampshire <strong>of</strong> USA<br />

are engaged <strong>in</strong> <strong>longl<strong>in</strong>e</strong><br />

mussel <strong>culture</strong> at exposed<br />

site several miles from<br />

shore (Langan and Horton,<br />

2004).


North Yellow Sea<br />

Zhang Zidao island<br />

Mid-Yellow Sea<br />

<strong>Sungo</strong> Bay<br />

South Yellow Sea<br />

Qian Sandao island<br />

East Sea<br />

Sheng Si<br />

National High Technique<br />

Program: “Offshore <strong>longl<strong>in</strong>e</strong><br />

mari<strong>culture</strong> eng<strong>in</strong>eer<strong>in</strong>g and<br />

technique”: 2006-2010


1. <strong>Progress</strong> <strong>of</strong> <strong>of</strong>fshore <strong>longl<strong>in</strong>e</strong> <strong>culture</strong> <strong>in</strong> <strong>Sungo</strong> Bay<br />

•Eng<strong>in</strong>eer<strong>in</strong>g: moor<strong>in</strong>gs, ropes or l<strong>in</strong>es,<br />

conta<strong>in</strong>ment equipment<br />

•Choice on the potential target species:<br />

high value species, or simple<br />

management.


1. <strong>Progress</strong> <strong>of</strong> <strong>of</strong>fshore <strong>longl<strong>in</strong>e</strong> <strong>culture</strong> <strong>in</strong> <strong>Sungo</strong> Bay<br />

80-100 m<br />

Concrete/<br />

wooden<br />

stake<br />

Lantern<br />

net<br />

1.5m<br />

2.5m<br />

100m<br />

1 m<br />

Ear<br />

hand<strong>in</strong>g<br />

石坠重2.5kg<br />

Float<strong>in</strong>g<br />

buoys<br />

Sketch map on the <strong>of</strong>fshore surface <strong>longl<strong>in</strong>e</strong> <strong>culture</strong>


1. <strong>Progress</strong> <strong>of</strong> <strong>of</strong>fshore <strong>longl<strong>in</strong>e</strong> <strong>culture</strong> <strong>in</strong> <strong>Sungo</strong> Bay<br />

Numerical modell<strong>in</strong>g<br />

research and Simulation the<br />

raft resistant to the different<br />

current.


1. <strong>Progress</strong> <strong>of</strong> <strong>of</strong>fshore <strong>longl<strong>in</strong>e</strong> <strong>culture</strong> <strong>in</strong> <strong>Sungo</strong> Bay<br />

Float<strong>in</strong>g buoys<br />

Sketch map on the <strong>of</strong>fshore submerged <strong>longl<strong>in</strong>e</strong> <strong>culture</strong>


1. <strong>Progress</strong> <strong>of</strong> <strong>of</strong>fshore <strong>longl<strong>in</strong>e</strong> <strong>culture</strong> <strong>in</strong> <strong>Sungo</strong> Bay<br />

Conta<strong>in</strong>ment equipment<br />

abalone<br />

octopus<br />

Sea cucumber<br />

Japanese scallop


2. Potential <strong>of</strong> <strong>of</strong>fshore <strong>longl<strong>in</strong>e</strong> <strong>culture</strong> <strong>of</strong> scallops<br />

Scallop Chlamys farreri is one <strong>of</strong> most<br />

important species that is farmed <strong>in</strong> the<br />

northern coast <strong>of</strong> Ch<strong>in</strong>a. In Shandong<br />

prov<strong>in</strong>ce, the mari<strong>culture</strong> <strong>in</strong>dustry <strong>of</strong> the<br />

scallop developed very quickly s<strong>in</strong>ce 1992.


2. Potential <strong>of</strong> <strong>of</strong>fshore <strong>longl<strong>in</strong>e</strong> <strong>culture</strong> <strong>of</strong> scallops<br />

cultivated area (*10 3 ha)<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

area (ha) production (t)<br />

1986<br />

1988<br />

1990<br />

1992<br />

1994<br />

1996<br />

year<br />

The annual production and cultivated<br />

area <strong>of</strong> scallop Chlamys farreri <strong>in</strong><br />

Shandong prov<strong>in</strong>ce<br />

1998<br />

2000<br />

2002<br />

2004<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

production (*10 3 t)<br />

Ma<strong>in</strong>ly <strong>culture</strong><br />

species shifts from<br />

Chlamys farreri to bay<br />

scallop Argopecten<br />

irradians for the<br />

reason <strong>of</strong> high<br />

summer mortality rate.


2. Potential <strong>of</strong> <strong>of</strong>fshore <strong>longl<strong>in</strong>e</strong> <strong>culture</strong> <strong>of</strong> scallops<br />

• The cause <strong>of</strong> the high mortalities <strong>in</strong><br />

summer has not been entirely identified,<br />

environment problem is one <strong>of</strong> the<br />

hypothesized causes.


2. Potential <strong>of</strong> <strong>of</strong>fshore <strong>longl<strong>in</strong>e</strong> <strong>culture</strong> <strong>of</strong> scallops<br />

The aim <strong>of</strong> this experiment is to study the<br />

potential <strong>of</strong> long-l<strong>in</strong>e <strong>culture</strong> <strong>of</strong> scallop Chlamys<br />

farreri <strong>in</strong> <strong>of</strong>fshore areas and to evaluate the<br />

optimized <strong>culture</strong> mode.


Inshore<br />

5-20m<br />

Offshore<br />

30-40m<br />

3.5 mile<br />

Experiment <strong>of</strong> scallop <strong>culture</strong> <strong>in</strong> different water depth


Material and methods<br />

Experiment design<br />

Inshore<br />

(<strong>in</strong>d./disk)<br />

Offshore<br />

(<strong>in</strong>d./disk)<br />

20 20<br />

Scallop Density<br />

(<strong>in</strong>d./m 2 )<br />

280<br />

30 30<br />

425<br />

40 40<br />

565


Material and methods<br />

20 scallops were sampled at random for each<br />

experimental groups every month from May 2007 to April<br />

2008. Shell height, wet weight and dry weight <strong>of</strong> shell and<br />

s<strong>of</strong>t body tissue were recorded.<br />

Meanwhile, environmental parameters: temperature,<br />

sal<strong>in</strong>ity, chlorophyll a, suspended particle materials,<br />

particle <strong>org</strong>anic materials and dissolved <strong>in</strong><strong>org</strong>anic<br />

nutrients were measure monthly. The current velocity at<br />

<strong>in</strong>shore and <strong>of</strong>fshore were measured <strong>in</strong> May 2008 .


Concentration <strong>of</strong> chlorophyll a<br />

(mg m -3 )<br />

Results<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

May July Aug. Sep. Oct. Nov. Mar.<br />

Inshore chla: 2.67±2.35<br />

Offshore : 1.90±1.56 mg/m3<br />

Organic content<br />

(POM/TPM, %)<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

May<br />

July<br />

Aug.<br />

Sep.<br />

Oct.<br />

Nov.<br />

Mar.<br />

Particulate <strong>org</strong>anic matter<br />

Suspended particulate matter<br />

(POM, mgl -1 )<br />

(TPM, mgl -1 )<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

20<br />

15<br />

10<br />

0<br />

5<br />

0<br />

May<br />

May<br />

July<br />

Aug.<br />

POM (mg/l)<br />

Inshore:12.29±9.07<br />

Offshore:16.99±8.09<br />

Sep.<br />

Oct.<br />

Nov.<br />

Mar.<br />

July<br />

Aug.<br />

Sep.<br />

Oct.<br />

Nov.<br />

Mar.<br />

TPM (mg/l)<br />

Inshore: 43.98±35.56<br />

Offshore: 65.82±31.61<br />

Temperature ( o C)<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

May July Aug. Sep. Oct. Nov. Mar.<br />

<strong>in</strong>shore <strong>of</strong>fshore


Tidal current (cm s -1 )<br />

Results<br />

Mean current speed at one tidal cycle <strong>of</strong> <strong>in</strong>shore and<br />

<strong>of</strong>fshore area were 1.39±0.385 and 20.40±12.24cm s -1 ,<br />

respectively, with a maximal speed <strong>of</strong> 2.60 and 46.0cm<br />

s -1 , respectively.<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0:01<br />

2008-5-4<br />

4:01 8:01 12:01 16:01 20:01 0:01<br />

2008-5-5<br />

Date&Time<br />

<strong>of</strong>fshore<br />

4:01 8:01 12:01 16:01 20:01<br />

0<br />

0:01<br />

2008-5-4<br />

Current velocity <strong>of</strong> <strong>in</strong>shore and <strong>of</strong>fshore area <strong>in</strong> <strong>Sungo</strong> Bay<br />

Tidal current (cm s -1 )<br />

10<br />

8<br />

6<br />

4<br />

2<br />

4:01 8:01 12:01 16:01 20:01 0:01<br />

2008-5-5<br />

Date&Time<br />

Inshore<br />

4:01 8:01 12:01 16:01 20:01


Scallop cultivated<br />

<strong>in</strong> <strong>of</strong>fshore area<br />

Scallop cultivated<br />

<strong>in</strong> <strong>in</strong>shore area


Results<br />

Mean survival (% survivors related to the <strong>in</strong>itial number) <strong>of</strong><br />

scallops Chlamys farreri for 11 months (average ±SE).<br />

Initial density<br />

(Ind./disk)<br />

Offshore site<br />

(%)<br />

Inshore site<br />

(%)<br />

20 92±2 86±1<br />

30 90±1 83±2<br />

40 86±3 82±2


Results<br />

Shell height<br />

Dry tissue weight<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Inshore site Offshore site<br />

A<br />

IS-20<br />

IS-30<br />

IS-40<br />

May July Aug. Sep. Oct. Nov. Mar.<br />

E<br />

May July Aug. Sep. Oct. Nov. Mar.<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

80<br />

60<br />

40<br />

20<br />

0<br />

B<br />

OS-20<br />

OS-30<br />

OS-40<br />

May July Aug. Sep. Oct. Nov. Mar.<br />

F<br />

May July Aug. Sep. Oct. Nov. Mar.<br />

The groups OS-<br />

30 and OS-20<br />

had greater dry<br />

s<strong>of</strong>t tissue<br />

weights than the<br />

others (ANOVA,<br />

p


Results<br />

Instantaneous growth rate <strong>of</strong> the scallop (dry tissue weight )<br />

OS-20 OS-30 OS-40 IS-20 IS-30 IS-40<br />

July 3.34 2.28 3.10 3.52 3.22 3.25<br />

Aug. 1.05 2.86 0.35 1.46 2.00 0.88<br />

Sep. 1.44 0.59 2.23 0.34 0.06 1.08<br />

Oct. 0.58 0.87 0.00 0.30 -0.14 0.28<br />

Nov. 0.58 1.05 0.64 0.12 0.69 -0.07<br />

Jan. 0.66 1.01 1.80<br />

Mar. 0.13 0.27 0.11 0.32 -0.25 -0.18<br />

April 1.03 1.13 0.99 0.95 1.01 0.52


Results<br />

The growth <strong>of</strong> the scallop at <strong>in</strong>shore and <strong>of</strong>fshore<br />

sites were described us<strong>in</strong>g Von Bertalanffy model:<br />

H t =H ∞ (1-e -k(t-to) )<br />

H t : predicted standard shell height at age t;<br />

H ∞ : the asymptotic height;<br />

k is a growth constant;<br />

t 0 : age at which the theoretical height is 0.


Results<br />

Estimated results <strong>of</strong> Von Bertalanffy growth parameter for<br />

different treatment groups.<br />

H ∞<br />

K (year -1 )<br />

OS-20 75.48 2.73<br />

OS-30 100.66 1.25<br />

OS-40 69.34 2.55<br />

IS-20 72.08 3.04<br />

IS-30 65.76 3.43<br />

IS-40 68.90 2.96<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Asymptotic height<br />

OS-20<br />

fit-os20<br />

0 200 400 600 800


Conclusion<br />

Item OS-20 OS-30 OS-40 IS-20 IS-30 IS-40<br />

Wet weight per scallop (g) 34.13 36.54 28.11 34.02 26.39 29.61<br />

Survival rate (%) 92 90 86 86 83 82<br />

Yields per lantern net (kg) 9.42 9.87 7.25 8.78 6.57 7.28<br />

Seed<strong>in</strong>g cost per lantern net<br />

(US$)<br />

Simple economic evaluation<br />

0.17 0.26 0.34 0.17 0.26 0.34<br />

Pr<strong>of</strong>it per lantern net (US$) 5.21 5.38 3.80 4.84 3.50 3.82


Conclusion<br />

• Offshore long-l<strong>in</strong>e <strong>culture</strong> <strong>of</strong> scallop<br />

Chlamys farreri is successful.<br />

• OS-30 treatment group has higher<br />

production, larger shell height and<br />

economic benefit.


Prospect<br />

A major problem with<br />

<strong>longl<strong>in</strong>e</strong> <strong>culture</strong> <strong>of</strong> lantern<br />

cage is the bi<strong>of</strong>oul<strong>in</strong>g, which<br />

may reduce growth rates <strong>in</strong><br />

scallop <strong>culture</strong>.


Work is go<strong>in</strong>g …..


Work is go<strong>in</strong>g …..<br />

• The <strong>in</strong>dividual filtration rate, excretion rate and<br />

respiration rate <strong>of</strong> the scallop at <strong>in</strong>shore and<br />

<strong>of</strong>fshore area had been measured, we will try to<br />

evaluate the carry<strong>in</strong>g capacity <strong>in</strong> the <strong>of</strong>fshore.<br />

Biodeposit trap


Work is go<strong>in</strong>g …..<br />

food outside<br />

<strong>in</strong>flow<br />

food 1<br />

consumption1<br />

number <strong>of</strong> l<strong>in</strong>es<br />

growth 1<br />

length<br />

depth flow<br />

transport 1<br />

fiiltration rate<br />

scallop density<br />

food 2<br />

scallop 1 scallop 2<br />

k<br />

flow rate<br />

number <strong>of</strong> scallop per l<strong>in</strong>e<br />

consumption 2<br />

growth 2<br />

transport2<br />

Conceptual model for the food consumption<br />

•To simulate and evaluate<br />

the <strong>in</strong>fluence <strong>of</strong> cultivated<br />

density on the growth<br />

rate <strong>of</strong> scallop.<br />

•To expect the growth<br />

and production <strong>of</strong> scallop<br />

at different area.


Thanks

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!