16.01.2013 Views

Design of Water Resources Projects with Inadequate ... - Hydrology.nl

Design of Water Resources Projects with Inadequate ... - Hydrology.nl

Design of Water Resources Projects with Inadequate ... - Hydrology.nl

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ports in g/Etudes et rapports d'hydrologie 16<br />

<strong>of</strong><br />

resources projects<br />

<strong>with</strong> inadequate data<br />

Proceedings <strong>of</strong> the Madrid Symposium<br />

,June 1973<br />

Elaboration des projets<br />

d'utilisation des ressources en eau<br />

c dans données suffisantes<br />

Volume I<br />

Unesco - MIMO - 1AHS<br />

Unesco - OMM - AISH<br />

_-<br />

Actes du colloque de Madrid<br />

Juin I973


Studies and reports in hydrology/Études et rapports d’hydrologie 16


TITLES IN THIS SERIES / DANS CETTE COLLECTION<br />

1. The use <strong>of</strong> analog and digital computers in hydrology: Proceedings <strong>of</strong> the Tucson Symposium.<br />

June 1966 1 L'utilisation des calculatrices analogiques et des ordinateurs en hydrologie: Actes du<br />

colloque de Tucson, juin 1966. Vol. I & 2. Co-edition IAHS-Unesco / Coédition AISH-Unesco.<br />

2.<br />

<strong>Water</strong> in the unsaturated zone: Proceedings <strong>of</strong> the Wageningen Symposium, June 1967 1 L'eau dans<br />

la zone non saturée: Actes du symposium de Wageningen, juin 1967. Edited by 1 edité par P. E.<br />

Rijtema & H. Wassink. Vol. 1 & 2. Co-edition IAHS-Unesco 1 Coédition AISH-Unesco.<br />

3. Floods and their computation: Proceedings <strong>of</strong> the Leningrad Symposium, August 1967 / Les crues<br />

et leur évaluation: Actes du colloque de Leningrad, août 1967. Vol. 1 & 2. Co-edition IAHS-Unesco-<br />

WMO 1 Coédition AISH-Unesco-OMM.<br />

4. Representative and experimental basins: An international guide for research and practice. Edited<br />

by C. Toebes and V. Ouryvaev. Ptrblished by Unesco.<br />

4. Les bassins représentatifs et expérimentaux: Guide international des pratiques en matikre de recherche.<br />

Publié sous la direction de C. Toebes et V. Ouryvaey. Publié par l'Unesco.<br />

5. 'Discharge <strong>of</strong> selected rivers <strong>of</strong> the world 1 Débit de certain cours d'eau du monde. Published by<br />

Unesco 1 Publié par l'Unesco.<br />

Vol. I : General and régime characteristics <strong>of</strong> stations selected / Caractéristiques générales et<br />

caractéristiques du régime des stations choisies.<br />

Vol. II: Monthly and annual discharges recorded at various selected stations (from start <strong>of</strong> obser.<br />

vations up to 1964) / Débits mensuels et annuels enregistrés en diverses stations sélectionnées<br />

(de l'origine des observations à l'année 1964).<br />

'Vol. III: Mean monthly and extreme discharges (1965-1969) I Débits mensuels moyens et débits<br />

extrêmes (1965-1969).<br />

6. List <strong>of</strong> International Hydrological Decade Stations <strong>of</strong> the world 1 Liste des stations de la Décennie<br />

h'ydrologique internationale existant dans le monde. Published by Unesco 1 Publié par l'Unesco.<br />

7. Ground-water studies: An international guide for practice. Edited by R. Brown, J. Ineson, V. Konoplyantsev<br />

and V. Kovalevski. (Will also appear in French, Russian and Spanish 1 Paraitra<br />

également en espagnol, en français et en russe.)<br />

8. Land subsidence: Proceedings <strong>of</strong> the To'kyo Symposium, September 1969 1 Affaisement du sol:<br />

Actes du colloque de Tokyo, septembre 1969. 'Vol. 1 & 2. Co-edition IAHS-Unesco / Coédition<br />

AISH-Unesco.<br />

9. <strong>Hydrology</strong> <strong>of</strong> deltas: Proceedings <strong>of</strong> the Bucharest Symposium, May 1969 1 Hydrologie des deltas:<br />

Actes du colloque de Bucarest, mai 1969. Vol. 1 & 2. Co-edifion IAHS-Unesco I Coédition AISH-<br />

Unesco.<br />

10. Status and trends <strong>of</strong> research in hydrology 1 Bilan et tendances de la recherche en hydrologie.<br />

Published by Unesco 1 Publié par l'Unesco.<br />

11. World water balance: Proceedings <strong>of</strong> the Reading Symposium, July 1970 1 Bilan hydrique mondial:<br />

Actes du colloque de Reading, juillet 1970. Vol. 1-3. Co-edition IAHS-Unesco-WMO / Coédition<br />

AISH-Unesco-OMM.<br />

12. Results OF research on representative and experimental basins: Proceedings <strong>of</strong> the Wellington<br />

Symposium, December 1970 1 Résultats de recherches sur les bassins représentatifs et expérimen-<br />

taux: Actes du cowoque de Wellington, décembre 1970. 'Vol. 1 & 2. Coedition IAHS-Unesco 1<br />

Coédition AISH-Unesco.<br />

13. Hydrometry: Proceedings <strong>of</strong> the Koblenz Symposium, September 1970 1 Hydrométrie: Actes du<br />

colloque de Coblence, septembre 1970. Co-edition IAHS-Unesco-WMO 1 Coédition AISH-Unesco-<br />

OMM.<br />

14. Hydrologic information systems. Co-edition Unesco-WMO.<br />

15. Mathematical models in hydrology: Proceedings <strong>of</strong> the Warsaw Symposium, July 1971 1 Les mo-<br />

dèles mathématiques en hydrologie: Actes du colloque de Varsovie, juillet 1971. Vol. 1-3. Co-<br />

edition IAHS-Unesco-WMO / Coédition AISH-Unesco-OMM.<br />

16. <strong>Design</strong> <strong>of</strong> water resources projects <strong>with</strong> inadequate data: Proceedings <strong>of</strong> the Madrid symposium,<br />

June 1973 1 filaboration des projets d'utilisation des ressources en eau sans données suffisantes:<br />

Actes du colloque de Madrid, juin 1973. Vol. 1-3. Co-edition Unesco-WMO-IAHS / Coédition Unesco-<br />

OMM-AISH.


qesign <strong>of</strong><br />

water resources projects<br />

<strong>with</strong> inadequate data :<br />

Proceeúings <strong>of</strong> the Madrid Symposium<br />

.lune 1973<br />

Elaboration des projets<br />

d’utilisation des ressources en eau<br />

sans données suffisantes<br />

A contribution to the Iniernaiional Hydrological Decade<br />

Une contribution a la Décennie hydrologique internationale<br />

Con resurnenes en espano1<br />

Volume I<br />

Actes du colloque de Moúrid<br />

.luin 1973<br />

Unesco - WMO - LAHS 1974<br />

Unesco - OMM - AISH


Published jointly by<br />

the United Nations Educational, Scientific<br />

and Cultural Organization,<br />

7, Place de Fontenoy, 75700 Paris,<br />

World Meteorological Organization,<br />

41 av. Giuseppe-Motta, Geneva, and<br />

the International Association <strong>of</strong> Hydrological Sciences (President: J.-A. Rodier),<br />

19, rue Eugène-Carrière, 75018 Paris<br />

Publié conjointement par<br />

l’Organisation des Nations Unies pour<br />

l’éducation, la science et la culture,<br />

7, place de Fontenoy, 75700 Paris,<br />

l’organisation météorologique mondiale,<br />

41, av. Giuseppe-Motta, Genève, et<br />

l’Association internationale des sciences hydrologiques (président: J.-A. Rodier).<br />

19, rue Eugène-Carrière, 75018 Paris<br />

Impreso por el Centro de Estudios Hidrográficos, Madrid<br />

. PLJ[,dv: ’<br />

-.. __<br />

The selection and presentation <strong>of</strong> material and the opinions expressed in this publication<br />

are the responsibility <strong>of</strong> the authors concerned and do not necessarily reflect the<br />

views <strong>of</strong> the publishers.<br />

The designations employed and the presentation <strong>of</strong> the material do not imply the<br />

expression <strong>of</strong> any opinion whatsoever on the part <strong>of</strong> the publishers concerning the legal<br />

status <strong>of</strong> any country or territory, or <strong>of</strong> its authorities, or concerning the frontiers<br />

<strong>of</strong> any country or territory.<br />

Le choix et la présentation du contenu de cet ouvrage et les opinions qui s’y<br />

expriment n’engagent que ia responsabilité des auteurs et ne correspondent pas<br />

nécessairement aux vues des éditeurs.<br />

Les dénominations employées et la présentation des divers éléments n’impliquent<br />

de la part des éditeurs aucune prise de position à l’égard du statut juridique de l’un<br />

quelconque des pays et territoires en cause, de son régime politique ou du tracé<br />

de ses frontières.<br />

ISBN 92-3401137-1<br />

0 UnescuWMO-IAHS-1974<br />

Printed in Spain


PkEFACE<br />

The International Hydrological Decade (IHD) 1965-74 was launched by<br />

the General Conference <strong>of</strong> Unesco at its thirteenth session to promote<br />

international co-operation in research and studies and the training <strong>of</strong> spe-<br />

cialists and technicians in scientific hydrology. Its purpose is to enable<br />

all countries to make a fuller assessment <strong>of</strong> their water resources and a<br />

more rational use <strong>of</strong> them as man’s demands for water constantly increase<br />

in face <strong>of</strong> developments in population, industry and agriculture. In 1974<br />

National Committees for the Decade had been formed in 108 <strong>of</strong> Unesco’s<br />

131 Member States to carry out national activities <strong>with</strong>in the programme<br />

<strong>of</strong> the Decade. The implementation <strong>of</strong> the programme is supervised by a<br />

Co-ordinating Council, composed <strong>of</strong> 30 Member States selected by the Ge-<br />

neral Conference <strong>of</strong> Unesco, which studies proposals for. developments<br />

<strong>of</strong> the programme, recommends projects <strong>of</strong> interest to all or a large<br />

number <strong>of</strong> countries, assists in the development <strong>of</strong> national and regional<br />

projects and co-ordinates international co-operation.<br />

Promotion <strong>of</strong> collaboration in developing hydrological research techni-<br />

ques, diffusing hydrological data and planning hydrological installations<br />

is a major feature <strong>of</strong> the programme <strong>of</strong> the IHD which encompasses all<br />

aspects <strong>of</strong> hydrological studies and research. Hydrological investigations<br />

are encouraged at the national, regional and international level to streng-<br />

then and to improve the use <strong>of</strong> natural resources from a local and a global<br />

perspective. The programme provides a means for countries well advanced<br />

in hydrological research to exchange scientific views and for developing<br />

countries to benefit from this exchange <strong>of</strong> information in elaborating re-<br />

search projects and in implementing recent developments in the planning<br />

<strong>of</strong> hydrological installations.<br />

As part <strong>of</strong> Unesco’s contribution to the achievement <strong>of</strong> the objectives<br />

<strong>of</strong> the IHD the General Conference authorized the Director-General to<br />

collect, exchange and disseminate information concerning research on<br />

scientific hydrology and to facilitate contacts between research workers<br />

in this field. To this end Unesco initiated two series <strong>of</strong> publications: Studies<br />

and Reports in <strong>Hydrology</strong> and Technical Papers in <strong>Hydrology</strong>.<br />

The Studies and Reports in <strong>Hydrology</strong> series, in which the present<br />

volume is published, is aimed at recording data collected and the main<br />

results <strong>of</strong> hydrwlogical studies undertaken <strong>with</strong>in the framework <strong>of</strong> the<br />

Decade, as well as providing information on research techniques. Also<br />

included in the series are proceedings <strong>of</strong> symposia. Thus, the series com-<br />

prises the compilation <strong>of</strong> data, discussions <strong>of</strong> hydrological research techni-<br />

ques and findings, and guidance material for future scientific investigations.<br />

It is hoped that the volumes wil furnish material <strong>of</strong> both practical and<br />

theoretical interest to hydrologists and governments participating in the<br />

IHD and respond to the needs <strong>of</strong> technicians and scientists concerned<br />

<strong>with</strong> problems <strong>of</strong> water in all countries.<br />

A number <strong>of</strong> these volumes have been published jointly <strong>with</strong> the In-<br />

ternational Association <strong>of</strong> Hydrological Sciences and the World Meteoro-<br />

logical Organization which have co-operated <strong>with</strong> Unesco in the imple-<br />

mentation <strong>of</strong> several important projects <strong>of</strong> the IHD.


PRBFACE<br />

La Conférence générale de l’Unesco, à sa treizième session, a décidé<br />

de lancer, pour la période s’étendant de 1965 à 1974, la Décennie hydrologique<br />

internationale (DHI), entreprise<br />

e<br />

mondiale visant a faire progresser la connaissance<br />

en matiere ci’ vdrologie scientifique par un développement de<br />

la coopération inyrnati nale et par la formation de spécialistes et de<br />

techniciens. Au moment oìi l’expansion démographique et le développement<br />

industriel et agricole provoquent un accroissement constant des besoins<br />

en eau, la DHI permet à tous les pays de mieux évaluer leurs ressources<br />

hydrauliques et de les exploiter plus rationnellement.<br />

I1 existe actuellement dans 108 des 131 Etats membres de l’Unesco un<br />

comité national qui, pour tout ce qui a tratit au programme de la Décennie,<br />

impulse les activités nationales et assure la participation de son pays<br />

aux entreprises régionales et internationales. L’exécution du programme<br />

de la DHI se fait sous la direction d’un Conseil de coordination composé<br />

de 30 Etats membres désignés par la Conférence générale de l’Unesco; ce<br />

conseil étudie les propositions concernant le programme, recommande<br />

l’adoption de projets intéressant l’ensemble des pays ou un grand nombre<br />

d’entre eux, aide à la mise sur pied de projets nationaux et régionaux, et<br />

coordonne la coopération à l’échelon international.<br />

Le programme de la DHI, qui porte sur tous les aspects des études et<br />

des recherches hydrologiques, vise essentiellement à développer la collaboration<br />

dans la mise au point des techniques de recherches, dans la<br />

diffusion des données hydrologiques, dans l’organisation des installations<br />

hydrologiques. I1 encourage les enquêtes nationales, régionales et internationales<br />

tendant à accroître et à améliorer l‘utilisation des resources naturelles,<br />

dans une perspective locale et générale. Il permet aux pays avancés<br />

en matière de recherches hydrologiques d’échanger des informations; aux<br />

pays en voie de développement, il <strong>of</strong>fre la possibilité de pr<strong>of</strong>iter de ces<br />

échanges pour élaborer leurs projets de recherches et pour planifier leurs<br />

installations hydrologiques en tirant parti des acquisitions les plus récentes<br />

de l’hydrologie scientifique.<br />

Pour permettre a l’Unesco de contribuer au succès de la DHI, la Conférence<br />

générale a autorisé le Directeur générale à rassembler, à échanger<br />

et à diffuser des informations sur les recherches d’hydrologie scientifique<br />

et à faciliter les contacts entre les chercheurs dans ce domaine. A cette<br />

fin, l’Unesco fait paraître deux nouvelles collections de publications: «Etudes<br />

et rapports d’hydrologie» et «Notes techniques d’hydrologie,.<br />

La collection «Etudes et rapports d’hydrologie,, dans laquelle est publié<br />

le présent ouvrage, a pour objet de présenter les données recueillies et les<br />

principaux résultats des études effectuées dans le cadre de la Décennie<br />

et de fournir des informations sur les techniques de recherche. On y trouve<br />

aussi les Actes de colloques réunis sur ce sujet. Cette collection publie<br />

donc des données, des techniques et des résultats de recherches ainsi<br />

qu’une documentation pour les travaux scientifiques futurs.<br />

On espère que ces volumes apporteront aux hydrologues et aux gouvernements<br />

qui participent à ,la DHI des matériaux d’un intérêt tant pra-


tique que théorique, et qu’elle répondra aux besoins des techniciens et<br />

des hommes de science de tous pays qui s’occupent des problèmes de l’eau.<br />

Certains de ces ouvrages sont publibs en coopération avec l’Association<br />

internationale des sciences hydrologiques ou l’organisation météorologique<br />

mondiale dans le cadre de projets réalisés conjointement par ces orga-<br />

nisations et l’Unesco.


INTRODUCTION<br />

The Symposium on the Development <strong>of</strong> <strong>Water</strong> <strong>Resources</strong> <strong>Projects</strong> <strong>with</strong><br />

<strong>Inadequate</strong> Data was held in Madrid from 4 to 8 June 1973 for the purpose<br />

<strong>of</strong> focusing on the methodology for hydrologic studies for water resources<br />

projects <strong>with</strong> inadequate data and on current practices for the assessment<br />

<strong>of</strong> design parameters.<br />

The Symposium was opened at the Palacio de Exposiciones on the<br />

morning <strong>of</strong> 4 June by Miniester <strong>of</strong> Public Workes <strong>of</strong> Spain Addresses were<br />

then given by Dr. Dumitrescu on behalf <strong>of</strong> the Director General <strong>of</strong> Unesco,<br />

Pr<strong>of</strong>essor Nevmec on behalf <strong>of</strong> the Secretary-General <strong>of</strong> WMO, Dr. Rodier<br />

as President <strong>of</strong> IAHS and by Dr. Briones, on behalf <strong>of</strong> the Spanish Na-<br />

tional Committee for the IHD.<br />

The Symposium was attended by 480 participants from 77 countries.<br />

The technical programme, detaimled in the Table <strong>of</strong> Contents, included<br />

consideration <strong>of</strong> 3 major areas:<br />

1. Methodology for hydrological studies <strong>with</strong> inadequate data,<br />

2. Current practices in different countries,<br />

3. Relation between project economics and hydrological data.<br />

Each area was further sub-divided into topics for each <strong>of</strong> which the<br />

individually contributed papers were abstracted into a general report, orally<br />

presented by an invited expert, and followed by discussion.<br />

Since the individual papers were not presented at the Symposium orally<br />

by the authors, thery are reproduced here in the orden in which<br />

they were reported in each general report under each topic.


üesip d water reswrcee projects <strong>with</strong> inadequate dati: Pmeeedin.p d the Madrid 8ympoilUm.<br />

June i973 / Blabontion de# projeu d‘utilhition des ressourcci en eau rans domdes nuttlrantei:<br />

Acui du mlloque de Madrid, juin 1973.<br />

Volume I Contents Table des matieres<br />

Foreword/Avant-propos<br />

TOPIC 1.1 . TRANSFER OF INFORMATION FROM OBSERVED POINTS TO<br />

POINTS OF INTEREST, ESPECIALLY FOR THE ASSESSMENT<br />

OF THE CHARACTERISTICS OF DISCHARGES.<br />

POINT 1.1 - EXTRAPOLATION DES INFORMATIONS RECUEILLIES AUX<br />

POINTS OBSERVES A DES POINTS PRESENTANT UN INTE-<br />

RET PARTICULIER, NOTAMMENT POUR L’EVALUATION<br />

DES DEBITS CARACTERISTIQUES.<br />

SOKOLOV, A.A. (U.S.S.R.) GENERAL REPORT<br />

ALBINET, M., CASTANY, G., DELAROZIERE-BOUILLIN, O., JONAT, R.,<br />

MARGAT, J. (FRANCE)<br />

Evaluation et répartition des ressources en e au d’une grande région par<br />

les paramétres hydroclimatiques et hydrog6ologiques ...............<br />

BALEK, J. (CZECHOSLOVAKIA)<br />

Use <strong>of</strong> representative and experimental catchments for the assement <strong>of</strong><br />

hydrological data <strong>of</strong> African tropical basins .......................<br />

CORMARY, Y - J.M. MASSON. (FRANCE)<br />

Diverses méthodes convergentes pour l’utihtion de l’information a<br />

I’écheUedgionale .......................................<br />

DUBREUIL, PIERRE. (FRANCE)<br />

Le transfert d’infomtion hydrologique a des bassins versants non obser-<br />

vés ....................................................<br />

GARCIA-AGREDA, R., RASULO, G., VIPARELLI, R. (ITALY)<br />

Pluviometric zones and the criteria to define their boundaries for regions<br />

<strong>with</strong>scarcedata ............................................<br />

OBERLIN, G.R., GALEA, G.C., TONI, J.T. (FRANCE)<br />

Estimation des étiages de bassins non equipés ....................<br />

TIERCELIN, J.R. (FRANCE)<br />

ParamBtres régionaux relatifs aux ressources en eau. Utilisation. PdciPion<br />

d’estimation ............................................... 125<br />

VAN HYLCKAMA, T.E.A. (U.S.A.)<br />

Estimating evapotranspiration by homoclimates ................ 74<br />

1<br />

15<br />

27<br />

47<br />

61<br />

89<br />

103


VOSKRESENSKI, K.P. (U.S.S.R.)<br />

Prinoiph for the computation <strong>of</strong> tho nuin Ohinctdutb <strong>of</strong> river wrtm<br />

reaowcea in the abuncl <strong>of</strong> oburvrtiona on the bu& <strong>of</strong> goographid<br />

interpoiation <strong>of</strong> run<strong>of</strong>f puameten ..............................<br />

VUGLLNSKI, V.S., SEMENOV, V.A. (U.S.S.R.)<br />

Evaiurtion <strong>of</strong> water IWOIUWW <strong>of</strong> mounîdn am11 in cani <strong>of</strong> rhnce or<br />

inadequacy <strong>of</strong> datr on run<strong>of</strong>f ..................................<br />

TOPIC 1.2 - THE IMPROVEMENT OF OVERALL HYDR0UX;IC INFOR-<br />

MATION BY SHORT-TERM ADDITIONAL AND PARTICULAR<br />

OBSERVATIONS AND MEASUREMENTS. INCLUDING THE<br />

PLANNING OF THE ADDITIONAL MEASUREMENT CAM-<br />

PAIGN USING HYDROLOGIC DATA SENSITIVITY ANALYSIS<br />

BASED ON PROJECT ECONOMICS.<br />

POINT 1.2 - AMELIORATION DE L'ENSEMBLE DE L'INFORMATION<br />

HYDROLOGIQUE AU MOYEN DE COURTES CAMPAGNES DE<br />

MESURES COMPLEMENTAIRES ET D'OBSERVATIONS PARTI-<br />

CULIERES, COMPRENANT LA MISE EN OEUVRE DE CAM-<br />

PAGNES DE MESURES ADDITIONNELLES UTILISANT UNE<br />

ANALYSE DE SENSIBILITE DES DONNEES BASEE SUR<br />

L'ECONOMIE DES PROJETS.<br />

RODDA, JOHN (U.K.) GENERAL REPORT<br />

BEARD, LEO R. (U.S.A.)<br />

Hydrological data fiii-in and network design ..................<br />

DELHOMME, J.P., DELFINER, P. (FRANCE)<br />

Application du Krigeage a l'optimisation d'une campagne pluviométrique<br />

enzonearide ..............................................<br />

HALASI-KUN, GEORGE, J. (U.S.A.)<br />

Improvement <strong>of</strong> run<strong>of</strong>f records in smaller watersheds based on permeabi-<br />

lity <strong>of</strong> the geological subsurface ...............................<br />

KOVACS, GEORGE. MOLNAR, GEORGE. (HUNGARY)<br />

Determination <strong>of</strong> snow water equivalent and snowmelt water by<br />

thickness <strong>of</strong> snow cover data .................................<br />

MEIJERINK, A.M.J. (NETHERLANDS)<br />

Evaluation <strong>of</strong> local water resources in semiarid hard rock region by using<br />

photo.hydrological indices ....................................<br />

PANT,P.S.,GUPTA, M.G. (INDIA)<br />

Application <strong>of</strong> satellite cloud pictures in snow hydrology <strong>of</strong> the Himalayas<br />

and in the estimation <strong>of</strong> rainfall over India during southwest<br />

monsoonseason ............................................<br />

137<br />

145<br />

153<br />

161<br />

17<br />

191<br />

205<br />

217<br />

233


I<br />

TOPIC I.3A - THE USE OF SIMULATION TECHNIQUES ESPECIALLY DE-<br />

SIGNED FOR DATA-SCARCE AREAS. STATISTICAL ME-<br />

THODS AND DATA OPERATION.<br />

POINT I.3A - UTILISATION DES TECHNIQUES DE SIMULATION SPE-<br />

CIALEMENT EWIBOREE POUR DES REGIONS OU LES<br />

DONNEES SONT RARES. METHODES STATISTIQUES ET<br />

TRAITEMENT DES DONNEES.<br />

JAMES, IVAN CHARLES. (U.S.A.) GENERAL REPORT<br />

CORMARY, Y . GUILBOT, A. (FRANCE)<br />

Etude des relations pluie-débit sur trois bassins versants d’investigation . .<br />

CHARANIA, S.H. (KENYA)<br />

Extension <strong>of</strong> run<strong>of</strong>f records for small catchments in semi-arid regions ...<br />

DAVYDOVA,A.I., KALININ, G.P. (U.S.S.R.)<br />

Simulation <strong>of</strong> hydrological samples by natural water flow characteristics<br />

HAMLIN, M.J., KOTTEGODA, N.T. (U.K.)<br />

The preparation <strong>of</strong> a data set for hydrologic system analysis ..........<br />

LENTON, ROBERTO L., SCHAAKE JR., JOHN C., RODRIGUEZ-ITURBE, IG-<br />

NACIO. (U.S.A.)<br />

Potential application <strong>of</strong> Bayesian techniques for parameter estimation<br />

<strong>with</strong>limiteddata ...........................................<br />

McMAHON, T.A., MEIN, R.G. (AUSTRALIA)<br />

Storage-yield estimates <strong>with</strong> inadequate streamflow data .............<br />

MARTIN JADRAQUE, VALENTIN. (SPAIN)<br />

Estimation <strong>of</strong> Gumbel law parameters in small samples ..............<br />

MOSS, M.E.. DAWDY, D.R. (U.S.A.)<br />

Stochastic simulation for basins <strong>with</strong> short or no records <strong>of</strong> streamflow<br />

O’CONNELL, P.E., WALLIS, J.R. (U.S.A.)<br />

Choice <strong>of</strong> generating mechanism in synthetic hydrology <strong>with</strong> inadequate<br />

data .....................................................<br />

PORRAS, PEDRO., FLORES, ALFREDO. (VENEZUELA)<br />

Stochastic application in ungauged basins for planning purposes .......<br />

ROCHE, MARCEL. (FRANCE)<br />

Homogdnbisation et interpolation des donndes pour un modèle de simula-<br />

tion .....................................................<br />

SHARMA, H.D., BHATTACHARYA, A.P., JINDAL, S.R. (INDIA)<br />

The use <strong>of</strong> simulation techniques for sequential generation <strong>of</strong> short-sized<br />

rainfall data and its application in the estimation <strong>of</strong> design flood ......<br />

241<br />

265<br />

281<br />

293<br />

305<br />

321<br />

335<br />

349<br />

365<br />

311<br />

355<br />

407<br />

419


VISSER, J.H. (LEBANON)<br />

The we <strong>of</strong> rtochutlc mod& in hydroJgricultu<strong>nl</strong> dwdopmrnt projoct<br />

Libbanon ................................................<br />

WALLIS, J.R., MATALAS, N.C. (U.S.A.)<br />

Rehtivr importuice <strong>of</strong> decidon vuirbiem in fiood frequency uulydi ...<br />

WEISS, G. (U.K.)<br />

Shot nohe models for aynthetic generation <strong>of</strong> multimite M y munflow<br />

data .....................................................<br />

WOOD, ERIC F. (U.S.A.)<br />

Flood control ddgn <strong>with</strong> Limited data . A comparinon <strong>of</strong> the chsical<br />

andBayesianapproaches .....................................<br />

TOPIC 1.3B . THE USE OF SIMULATION TECHNIQUES ESPECIALLY DE-<br />

SIGNED FOR DATA-SCARCE AREAS. THE USE OF MATHE-<br />

MATICAL MODELS.<br />

POINT I.3B - UTILISATION DES TECHNIQUES DE SIMULATION SPE-<br />

CIALEMENT ELABOFSE POUR DES REGIONS OU LES<br />

DONNEES SONT RARES. UTILISATION DES MODELES MA-<br />

THEMATIQUES.<br />

NASH, J.E. (IRELAND) GENERAL REPORT<br />

BERNIER, J. (FRANCE)<br />

Données inadéquates et modeles mathématiques de la pollution en riviere<br />

COOK, SAMUEL P., MBURU, SAMUEL G. (KENYA)<br />

Regional groundwater recharge estimates via meteorological data ......<br />

DELLEUR, J.W., LEE, M.T. (U.S.A.)<br />

A rainfall-run<strong>of</strong>f model based on the watershed stream network .......<br />

HANN, C.T. (U.S.A.)<br />

Monthly streamflow estimation from limited data ..................<br />

KOREN, V.I., KUTCHMENT, L.S. (U.S.S.R.)<br />

Obtaining deficient information by solving inverse problems for mathe-<br />

maticalrun<strong>of</strong>fmodels .......................................<br />

ROFAIL, NABIL. (EGYPT)<br />

The mathematical model <strong>of</strong> water balance for data-scarce areas ........<br />

VILARO, FRANCISCO., CUSTODIO, EMILIO. (SPAIN)<br />

Data acquisition and methodology for a simulation model <strong>of</strong> the Llobre-<br />

gat Delta (Barcelona, Spain) ...................................<br />

435<br />

449<br />

457<br />

469<br />

485<br />

513<br />

525<br />

53 1<br />

545<br />

551<br />

569<br />

581


Contents<br />

Table des matieres<br />

Volume I<br />

ForewordIAvant-propos ............................<br />

TOPIC 1.1 - TRANSFER OF INFORMATION FROM OBSERVED POINTS TO<br />

POINTS OF INTEREST, ESPECIALLY FOR THE ASSESSMENT<br />

OF THE CHARACTERISTICS OF DISCHARGES.<br />

POINT I. 1 - EXTRAPOLATION DES INFORMATIONS RECUEILLIES AUX<br />

POINTS OBSERVES A DES POINTS PRESENTANT UN INTE-<br />

RET PARTICULIER, NOTAMMENT POUR L’EVALUATION<br />

DES DEBITS CARACTERISTIQUES.<br />

SOKOLOV, A.A. (U.S.S.R.) GENERAL REPORT<br />

ALBINET, M., CASTANY, G., DELAROZIERE-BOUILLIN, O., JONAT, R.,<br />

MARGAT, J. (FRANCE)<br />

Evaluation et répartition des ressources en eaux d’une grande région par<br />

les paramètres hydroclimatiques et hydrogéologiques ...............<br />

BALEK, J. (CZECHOSLOVAKIA)<br />

Use <strong>of</strong> representative and experimental catchments for the assessment <strong>of</strong><br />

hydrological data <strong>of</strong> African tropical basins .......................<br />

CORMARY, Y - J.M. MASSON. (FRANCE)<br />

Diverses méthodes convergentes pour l’utilisation de l’information à<br />

l’échelle régionale ...........................................<br />

DUBREUIL, PIERRE. (FRANCE)<br />

Le transfert d’information hydrologique à des bassins versants non obcer-<br />

vés ......................................................<br />

GARCIA-AGREDA, R., RASULO, G., VIPARELLI, R. (ITALY)<br />

Pluviometric zones and the criteria to define their boundaries for regions<br />

<strong>with</strong> scarce data ............................................<br />

OBERLIN, G.R., GALEA, G.C., TONI, J.T. (FRANCE)<br />

Estimation des étiages de bassins non equipés .....................


II<br />

TIERCELIN, J. R. (FRANCE)<br />

Parametres régionaux relatifs aux ressources en eau. Utilisation. Précision<br />

d’estimation ...............................................<br />

VAN HYLCKAMA, T.E.A. (U.S.A.)<br />

Estimating evapotranspiration by homoclimates ...................<br />

VOSKRESENSKI, K.P. (U.S.S.R.)<br />

Principles for the computation <strong>of</strong> the main characteristics <strong>of</strong> river water<br />

resources in the absence <strong>of</strong> observations on the basis <strong>of</strong> geographical<br />

interpolation <strong>of</strong> run<strong>of</strong>f parameters ..............................<br />

VUGLINSKI, V.S.,SEMENOV, V.A. (U.S.S.R.)<br />

Evaluation <strong>of</strong> water resources <strong>of</strong> mountain areas in casi <strong>of</strong> absence or<br />

inadequacy<strong>of</strong>dataonrun<strong>of</strong>f ..................................<br />

TOPIC 1.2 - THE IMPROVEMENT OF OVERALL HYDROLOGIC INFOR-<br />

MATION BY SHORT-TERM ADDITIONAL AND PARTICULAR<br />

OBSERVATIONS AND MEASUREMENTS. INCLUDING THE<br />

PLANNING OF THE ADDITIONAL MEASUREMENT CAM-<br />

PAIGN USING HYDROLOGIC DATA SENSITIVITY ANALYSIS<br />

BASED ON PROJECT ECONOMICS.<br />

POINT 1.2 - AMELIORATION DE L’ENSEMBLE DE L’INFORMATION<br />

HYDROLOGIQUE AU MOYEN DE COURTES CAMPAGNES DE<br />

MESURES COMPLEMENTAIRES ET D’OBSERVATIONS PARTI-<br />

CULIERES, COMPRENANT LA MISE EN OEUVRE DE CAM-<br />

PAGNES DE MESURES ADDITIONNELLES UTILISANT UNE<br />

ANALYSE DE SENSIBILITE DES DONNEES BASEE SUR<br />

L’ECONOMIE DES PROJETS.<br />

RODDA, JOHN (U.K.) GENERAL REPORT<br />

BEARD, LEO R. (U.S.A.)<br />

Hydrological data fiil-in and network design ......................<br />

DELHOMME, J.P., DELFINER, P. (FRANCE)<br />

Application du Krigeage à l’optimisation d’une campagne pluviométrique<br />

enzonearide ..............................................<br />

HALASI-KUN,<br />

GEORGE, J. (U.S.A.)<br />

Improvement <strong>of</strong> run<strong>of</strong>f records in smaller watersheds based on permeabi-<br />

lity <strong>of</strong> the geological subsurface ................................


KOVACS, GEORGE. MOLNAR, GEORGE. (HUNGARY)<br />

Determination <strong>of</strong> snow water equivalent and snowmelt water by<br />

thickness <strong>of</strong> snow cover data ..................................<br />

MEIJERINK, A.M.J. (NETHERLANDS)<br />

Evaluation <strong>of</strong> local water resources in semiarid hard rock region by using<br />

photo-hydrological indices ....................................<br />

PANT, P.S., GUPTA, M.G. (INDIA)<br />

Application <strong>of</strong> satellite cloud pictures in snow hydrology <strong>of</strong> the Himalayas<br />

and in the estimation <strong>of</strong> rainfall over India during southwest<br />

monsoonseason ............................................<br />

TOPIC I.3A - THE USE OF SIMULATION TECHNIQUES ESPECIALLY DE-<br />

SIGNED FOR DATA-SCARCE AREAS. STATISTICAL ME-<br />

THODS AND DATA OPERATION.<br />

POINT I.3A - UTILISATION DES TECHNIQUES DE SIMULATION SPE-<br />

CIALEMENT ELABOREE POUR DES REGIONS OU LES<br />

DONNEES SONT RARES. METHODES STATISTIQUES ET<br />

TRAITEMENT DES DONNEES.<br />

JAMES, IVAN CHARLES. (U.S.A.) GENERAL REPORT<br />

CORMARY, Y - GUILBOT, A. (FRANCE)<br />

Etude des relations pluie-débit sur trois bassins versants d'investigation . .<br />

CHARANIA, S.H. (KENYA)<br />

Extension <strong>of</strong> run<strong>of</strong>f records for small catchments in semi-arid regions ...<br />

DAVYDOVA,A.I.,KALININ,G.P. (U.S.S.R.)<br />

Simulation <strong>of</strong> hydrological samples by natural water flow characteristics<br />

HAMLIN, M.J., KOTTEGODA, N.T. (U.K.)<br />

The preparation <strong>of</strong> a data set for hydrologic system analysis ..........<br />

LENTON, ROBERTO L., SCHAAKE JR., JOHN C., RODRIGUEZ-ITURBE, IG-<br />

NACIO. (U.S.A.)<br />

Potential application <strong>of</strong> Bayesian techniques for parameter estimation<br />

<strong>with</strong>limiteddata ...........................................<br />

McMAHON, T.A.,<br />

MEIN, R.G. (AUSTRALIA)<br />

Storage-yield estimates <strong>with</strong> inadequate streamflow data .............<br />

III


IV<br />

MARTIN JADRAQUE, VALENTIN. (SPAIN)<br />

Estimation <strong>of</strong> Gumbel law parameters in small samples ..............<br />

MOSS, M.E., DAWDY, D.R. (U.S.A.)<br />

Stochastic simulation for basins <strong>with</strong> short or no records <strong>of</strong> streamflow<br />

O’CONNELL, P.E., WALLIS, J.R. (U.S.A.)<br />

Choice <strong>of</strong> generating mechanism in synthetic hydrology <strong>with</strong> inadequate<br />

data .....................................................<br />

PORRAS, PEDRO., FLORES, ALFREDO. (VENEZUELA)<br />

Stochastic application in ungauged basins for planning purposes .......<br />

ROCHE, MARCEL. (FRANCE)<br />

Homogénéisation et interpolation des données pour un modèle de simula-<br />

tion .....................................................<br />

SHARMA, H.D., BHATTACHARYA, A.P., JINDAL, S.R. (INDIA)<br />

The use <strong>of</strong> simulation techniques for sequential generation <strong>of</strong> short-sized<br />

rainfall data and its application in the estimation <strong>of</strong> design flood ......<br />

VISSER, J.H. (LEBANON)<br />

The use <strong>of</strong> stochastic models in a hydro-agricultural development project<br />

inLebanon ................................................<br />

WALLIS, J.R., MATALAS,N.C. (U.S.A.)<br />

Relative importance <strong>of</strong> decision variables in flood frequency analysis<br />

WEISS, G. (U.K.)<br />

Shot noise models for synthetic generation <strong>of</strong> multisite daily streamflow<br />

data .....................................................<br />

WOOD, ERIC F. (U.S.A.)<br />

Flood control design <strong>with</strong> limited data - A comparison <strong>of</strong> the classical<br />

andBayesianapproaches .....................................<br />

TOPIC I.3B - THE USE OF SIMULATION TECHNIQUES ESPECIALLY DE-<br />

SIGNED FOR DATA-SCARCE AREAS. THE USE OF MATHE-<br />

MATICAL MODELS.<br />

POINT I.3B - UTILISATION DES TECHNIQUES DE SIMULATION SPE-<br />

CIALEMENT ELABOREE POUR DES REGIONS OU LES<br />

DONNEES SONT RARES. UTILISATION DES MODELES MA-<br />

THEMATIQUES.


NASH, J.E. (IRELAND) GENERAL REPORT<br />

BERNIER, J. (FRANCE)<br />

Données inadéquates et modèles mathématiques de la pollution en riviere<br />

COOK, SAMUEL P., MBURU, SAMUEL G. (KENYA)<br />

Regional groundwater recharge estimates via meteorological data ......<br />

DELLEUR, J.W., LEE, M.T. (U.S.A.)<br />

A rainfall-run<strong>of</strong>f model based on the watershed stream network .......<br />

HANN, C.T. (U.S.A.)<br />

Monthly streamflow estimation from limited data ..................<br />

KOREN, V.I., KUTCHMENT, L.S. (U.S.S.R.)<br />

Obtaining deficient information by solving inverse problems for mathe-<br />

matical run<strong>of</strong>f models .......................................<br />

ROFAIL, NABIL. (EGYPT)<br />

The mathematical model <strong>of</strong> water balance for data-scarce areas ........<br />

VILARO, FRANCISCO., CUSTODIO, EMILIO. (SPAIN)<br />

Data acquisition and methodology for a simulation model <strong>of</strong> the Llobre-<br />

gat Delta (Barcelona, Spain) ...................................<br />

V


Foreword<br />

While the need for hydrological and meteorological data <strong>of</strong> many types<br />

for the design <strong>of</strong> water resources projects is obvious, it is <strong>of</strong>ten found,<br />

especially in many developing countries, that such data are either lacking<br />

or inadequate.<br />

Recognizing the existence <strong>of</strong> this problem, the Co-ordinating Counci*l <strong>of</strong><br />

the IHD appointed a group <strong>of</strong> experts (third session, Paris, June 1967) to<br />

study the problem <strong>of</strong> design <strong>of</strong> water resources projects <strong>with</strong> inadequate<br />

data.<br />

Similarly, the Commission for <strong>Hydrology</strong> <strong>of</strong> WMlO (third session, Geneva,<br />

September 1968) established a Working Group on Hydrological <strong>Design</strong><br />

Data for <strong>Water</strong> <strong>Resources</strong> <strong>Projects</strong> to prepare guidance material on this<br />

subject for the WMO Guide to Hydrological Practices and to maintain<br />

liaison <strong>with</strong> the IHD group <strong>of</strong> experts appointed by the Co-ordinating<br />

Council.<br />

As a means <strong>of</strong> taking stock <strong>of</strong> the work carried out by the hydrological<br />

community in coping <strong>with</strong> project design <strong>with</strong> scarce data, Unesco and<br />

WMO jointly convened a symposium on this subject. The Symposium was<br />

organized <strong>with</strong> the co-operation <strong>of</strong> the IAHS and the Spanish National<br />

Committee for the IHD and was held in Madrid from 4 to 8 June 1973 at<br />

the invitation <strong>of</strong> the Government <strong>of</strong> Spain.<br />

The Madrid Symposium concentrated on the methodology <strong>of</strong> hydro-<br />

logical studies for water resources projects <strong>with</strong> inadequate data and on<br />

current practices for the assessment <strong>of</strong> design parameters.<br />

The Minister <strong>of</strong> Public Works <strong>of</strong> Spain opened the Symposium at the<br />

Palacio de Exposiciones on the morning <strong>of</strong> 4 June. Addresses were given<br />

by Dr. Dumitrescu on behalf <strong>of</strong> the Director-General <strong>of</strong> Une,sco, Pr<strong>of</strong>essor<br />

Nemec on benalf <strong>of</strong> the Secretary-General <strong>of</strong> WMO, Dr. Rodier as President<br />

<strong>of</strong> IAHS and by Dr. Briones, on behalf <strong>of</strong> the Spanish National Committee<br />

for the IHD.<br />

The Symposium was atteneded by 480 participants from 77 countries.<br />

The technical programme, detailed in the Table <strong>of</strong> Contents, included<br />

consideration <strong>of</strong> 3 major areas:<br />

1. Methodology for hydrological studies <strong>with</strong> inadequate data;<br />

2. Current practices in different countries;<br />

3. Relation between project economics and hydrological data.<br />

Each area was further sub-divided into topics for each <strong>of</strong> which the<br />

individually contributed papers were abstracted into a general report,<br />

orally presented by an invited expert, and followed by discussion.


This volume <strong>of</strong> proceedings was compiled by the Spanish National Com-<br />

mittee for the IHD; it includes all the general reports and individual<br />

papers presented at the Symposium, as well as the discussions. It is issued<br />

as a joint Unesco/WMO/IAHS publication in the spirit in which the three<br />

Organizations have collaborated during the IHD.<br />

Since the individual authors did not present their papers orally at the<br />

Symposium, the papers are reproduced here in the order in which they<br />

are discussed in the general report for each topic.<br />

Unesco, WMO and IAHS wish to record their thanks to the Spanish<br />

National Committee for the IHD for the many contributions <strong>of</strong> its members<br />

towards the organization <strong>of</strong> the Symposium, and for the Committee's as-<br />

sistance in the publication <strong>of</strong> these proceedings.


AVANT-PROPOS<br />

I1 est évident que, pour élaborer des projets d’utilisation des ressources<br />

en eau il est nécessaire de disposer de données hydrologiques et météoro-<br />

logiques de types très divers; or il apparaît que ces données sont souvent<br />

inexistantes ou insuffisantes, notamment dans beaucoup de pays en voie<br />

de développement.<br />

Conscient de ce problème, le Conseil de coordination de la DHI a créé,<br />

lors de sa troisième session (Paris, juin 1967) un groupe d’experts chargé<br />

d’étudier les moyens d’elaborer des projets d’utilisation des ressources<br />

en eau sans disposer de données suffisantes.<br />

De son côté, la Commission d’hydrologie de l’OMM a constitué à sa<br />

troisième session (Genève, septembre 1968) un groupe de travail sur les<br />

données hydrologiques nécessaires à l’élaboration des projets d’aménage-<br />

ment des ressources hydrauliques; ce groupe de travail a été chargé de<br />

formuler des recommandations destinées à figurer dans le Guide OMM des<br />

pratiques hydrologiques, et d’assurer la liaison avec le groupe d’experts<br />

de la DHI créé par le Conseil de coordination.<br />

Afin de faire le point des travaux accomplis par la communité hydro-<br />

logique en ce qui concerne l’élaboration de projets pour lesquels on ne<br />

dispose pas de données suffisantes, l’Unesco et l’OMM ont décidé de réunir<br />

conjointement un colloque consacré à cette question. Ce colloque, organisé<br />

avec la collaboration de 1’AISH et du Comité national espagnol pour la<br />

DHI, s’est tenu à Madrid en juin 1973, à l’invitation du gouvernement es-<br />

pagnol.<br />

Le colloque de Madrid a traité en particulier de la méthodologie des<br />

études hydrologiques sans données suffisantes et des pratiques courantes<br />

utilisées pour l’évaluation des paramètres de calcul.<br />

Le colloque a été ouvert par le ministre espagnol des travaux publics,<br />

le matin du 4 juin, dans le cadre du Palais des expositions. Des allocutions<br />

furent prononcées par M. Dumitriscu, au nom du Directeur général de<br />

l’Unesco, par le pr<strong>of</strong>esseur Nemec, au nom du Secrétaire général de l’OMM,<br />

par M. Rodier, président de I’AISH, et par M. Briones, au nom du Comité<br />

national espagnol pour la DHI.<br />

480 participants, venant de 77 pays, participèrent au colloque.<br />

Le programme technique, dont le contenu détaillé figure dans la table<br />

des matières, portait sur trois domaines principaux:<br />

1. Méthodologie des études hydrologiques sans données suffisantes;<br />

2. Les pratiques courantes utilisées dans différents pays;<br />

3. Relation entre les données économiques du projet et les données<br />

hydrologiques.


Chacun de ces domaines était subdivisé en thèmes, et sur chaque thème<br />

un rapport général synthétisant les communications individuellles était pré-<br />

senté par un expert, puis suivi d’une discussion.<br />

Les Actes du colloque, établis par le Comité national espagnol pour<br />

la DHI, comprennent l’ensemble des communications individuelles et des<br />

rapports généraux, ainsi que le compte rendu des débats auxquels ils ont<br />

donné lieu. Ils constituent une publication conjointe de l’Unesco, de l’OMM<br />

et de I’AISH, reflétant l’esprit dans lequel les trois organisations ont col-<br />

laboré pendant la DHI.<br />

Comme les communications individuelles n’ont pas été présentées ora-<br />

lement par leurs auteurs, elles sont reproduites dans l’ordre où elles sont<br />

apparues dans le rapport les concernant.<br />

Unesco, l’OMM et 1’AISH tiennent à remercier le Comité national es-<br />

pagnol pour la DHI du concours qu’il a apporté à l’organisation du colloque<br />

et à la publication de ses Actes.


TRANSFER OF INFORMATION FROM OBSERVATION POINTS TO OTHER<br />

POINTS AND DISSEMINATION OF HYDROLOGICAL INFORMATION TO<br />

UNEXPLORED BAS INS<br />

GENERAL REPORT<br />

Pr<strong>of</strong>. A.A. Sokolov<br />

The netv~ork <strong>of</strong> !yyi;lr;rolugioaì 3bssrvations efist:Ag at present represents<br />

a discrete field <strong>of</strong> points ivhioh refleots o<strong>nl</strong>y approximately the *:onstant<br />

variations <strong>of</strong> hydrologioai elmeats in space and time.<br />

As quite truly notetl Fierre Dubreuil in his report ("the problemi<br />

af traafer <strong>of</strong> data from observations on a point to one or emother area<br />

and their dissenclnation on territories and subjeots where no observations<br />

wero onrried out, has always been. and is n q one <strong>of</strong> the central problems<br />

<strong>of</strong> hydrologf.<br />

This problem is erspecdally important for developing countries where<br />

the network <strong>of</strong> hydrologioal stations is still hadequate and the existing<br />

series <strong>of</strong> observationa too brief(ehort).<br />

But wen in developed countries v:ith a well organieed and sufficiently<br />

dense network <strong>of</strong> statione and<br />

is, and always will be/ a great number <strong>of</strong> water bodies (or regiodor! whose<br />

regime not enough light is thrown by obsemstion data, as a nwnbre <strong>of</strong> middle-<br />

sized, and espeoially small water bodies, considerhg their great qurntiQ,<br />

pnill always be examined o<strong>nl</strong>y selectively.<br />

posts, having operated Por a long time, there<br />

In the Soviet Unior, for eYaqle,accordhg to data Prom detailed<br />

inventarication(2) are numbered about 150 O00 rivera <strong>with</strong> a length Of<br />

more than 10 h(and if ne inolude the shortest rivers <strong>with</strong> a l enw balm<br />

10 h, their total number will aminit to 2 960 O00 ) and about 40 300 lske~<br />

<strong>with</strong> an area erneeding i square h(?:iùif lakes <strong>with</strong> an area <strong>of</strong> less thsa<br />

1 sq.km are boluded, their total number amounts to 2 850 o00 ).The<br />

permanently operathg referenoe network <strong>of</strong> hpirologioal stations inoludes


2<br />

ebout 6200,and the meteomlogioal<br />

-<br />

network more<br />

-<br />

than 10.000 observation points.<br />

The task <strong>of</strong> hydrology as a soienoe oonsiate h establishing, on<br />

the basis <strong>of</strong> a selective stuty <strong>of</strong> water subjects, natural laws <strong>of</strong> the<br />

hyilfolcgioal regime and the distribution in spaoe <strong>of</strong> its ohaxeoteristios,<br />

<strong>nl</strong>lowing <strong>with</strong> a suffioient reliability and preoiwneea neoessaay for praotioe,<br />

to spread hydrologioal data to subjeots or regions <strong>with</strong> a soarcity or<br />

the absenoe <strong>of</strong> hydrologioal data.<br />

Here we would like to refer agaiii to the already mentioned report tnf<br />

Fierre Dubreuil whioh stresses that the most important in the problem <strong>of</strong><br />

transfer <strong>of</strong> hydrological data to unexplored basins is the analysis anä atuày<br />

<strong>of</strong> the laws <strong>of</strong> the influenoe <strong>of</strong> natural and anthropogenous faotors on water<br />

regime aad water balanoe, in the establishment <strong>of</strong> qualitative and quan.t;it&e<br />

relations "<strong>Hydrology</strong> - environment". The author <strong>of</strong> the report notes that the<br />

applioation in the computation <strong>of</strong> the flcod flow and <strong>of</strong> other elements <strong>of</strong><br />

~drologioal reg- Qf numerous empirio formulae, determined for certain<br />

natural oonditions in other regions <strong>with</strong> different conditions, <strong>of</strong>ten results<br />

in gose errors and misoalculations.<br />

The transfer <strong>of</strong> hydrological data to unexplored basina(regiœna) is<br />

direotly or indirectly relnted to the methodology <strong>of</strong> mapping the oharaoterietioe<br />

<strong>of</strong> the 4drological regime applied in hydrology, since the praotioalwcyra and<br />

man8 <strong>of</strong> such tranefer are generally baeed on the mapping <strong>of</strong> oharaoteristioe<br />

<strong>of</strong> the hydrological regime and ita parr reters.<br />

"mo basic methods <strong>of</strong> dissemination(transfer) <strong>of</strong> hydrolngioal daea<br />

on mexplored basins(regions) are used <strong>with</strong> the aid <strong>of</strong> mapa:<br />

1) Drwiilg <strong>of</strong> maps <strong>of</strong> isolinesi 2) Division <strong>of</strong> a territory into regions<br />

based on the uniformity <strong>of</strong> hydrologioal cha-e.oteriat$oa <strong>of</strong> the regime and<br />

its parameters.<br />

The prinoiple <strong>of</strong> the method <strong>of</strong> isolines is the assumption <strong>of</strong> the<br />

presenoe in ths nature <strong>of</strong> a smooth, colistant chenve <strong>of</strong> the oharaoteristiorr<br />

<strong>of</strong> the hydrological regime in space,froin one point to another. The division<br />

into regions, on the oontrary, proceeds from the assuqtion "IIomogeneity"


<strong>of</strong> larger or smaller territories end O€ 8 sudden, spcqmodio ohange <strong>of</strong> the<br />

characteristios <strong>of</strong> the regime between one region and another..<br />

In the publications on hyckology these h o methods <strong>of</strong> geographic<br />

generalization are <strong>of</strong>ten opposed to one another. The appearanoe OC.& critioal<br />

thaf<br />

attitude ooncerning the method <strong>of</strong> isolines proceeds from the fact w th the<br />

development <strong>of</strong> the study <strong>of</strong> smll basins more and more faotors(data) are in<br />

contradiction <strong>with</strong> the mothesis on which this method is baaed. The smaller<br />

the river basin, more tho oharacteristics <strong>of</strong> its hydrologioal regime may differ<br />

from the meaning <strong>of</strong> the isolizes wì-ich suppose their smooth change throughout<br />

the territoryo<br />

--<br />

To this o m be given a greaf number 3f exnrnpleao In the USSR, or the<br />

territory ssturted on the left bank <strong>of</strong> the Volea, for instanoc, two small<br />

basins louated side by side (1OC-200 8q.h.) have a mean many-years spring<br />

flow <strong>of</strong> 27 and 97 mn, while on the map <strong>of</strong> isolines <strong>of</strong> the mean depth <strong>of</strong> the<br />

spring flow, at this place is shown an isoline <strong>of</strong> 6ûnnn.<br />

"aturally, the question arises: w ht indioate isolineat what is their<br />

sigriificanoe and their meming if the run<strong>of</strong>f <strong>of</strong> actual basins deviates so much<br />

from them?<br />

In our piiblications (3,u are examined the reasons <strong>of</strong> the oontradictory<br />

opinions on the effioienoy <strong>of</strong> the utilization <strong>of</strong> the method <strong>of</strong> isolines and<br />

<strong>of</strong> the method OP division into regions. They are oauaed by a misunderetandhg<br />

and an oppesition <strong>of</strong> the zonaliw(moth variations) and the eronali-&(sudden,<br />

looal deviafiole) in nature.<br />

- In our opinion sonai and asonal 1-8, as well as the method8 <strong>of</strong> mapping<br />

based on them methods <strong>of</strong> isolines and <strong>of</strong> division by regione, do not<br />

but mutually oomplete eaoh other. The first (isolines) shows the general,<br />

zonal law# 00 distribution <strong>of</strong> the characteristios <strong>of</strong> hydrologioal regime through<br />

the territory <strong>of</strong> closed basins( ooinoidenoe or a small difference <strong>of</strong> $be aurfaoe<br />

and the eubsurfaoe nater divide), dieplqred in the murse <strong>of</strong> &ir averaging<br />

for large areas, for whioh the influence <strong>of</strong> azonal(looa1) factors <strong>of</strong> the<br />

environment o m be disregardedzThe seaond. permits to reveel the kiternaï,<br />

disorste by its essenoe, structure Of' these avoraged oharaoteristioa,<br />

3


4<br />

conditioned by the influence <strong>of</strong> local fwtors - geological struotures, slopes,<br />

vegetation, spi1 and grounds, which constitubo the surface <strong>of</strong> tho basin, ad.<br />

others a<br />

ûno <strong>of</strong> the rundamental proTLsions <strong>of</strong> the theorj <strong>of</strong> hydrological mqping<br />

and <strong>of</strong> the applioation <strong>of</strong> t he method <strong>of</strong> extrapolation <strong>of</strong> data on unexplored<br />

basizs by means <strong>of</strong> maps <strong>of</strong> io3linesS cor.8ists in tha fact that the data uaed<br />

in this chse, concern basins complying <strong>with</strong> the condition:<br />

A ~ A ( A<br />

ma^ ( 1)<br />

i<br />

-<br />

whsre A - mean value <strong>of</strong> optimal areas OZ the catchment in which is telerated<br />

the interpolatcion o: hydrological characteristics by mans <strong>of</strong> isolineai<br />

- A 6, A max respecti/vely the lower and the upper limit <strong>of</strong> the catchment<br />

area, whose date are unsuitable for drawing m pa <strong>of</strong> isolines.<br />

O<strong>nl</strong>y relation o those basins wiiich comply <strong>with</strong> the condition(I),the<br />

goographical Iritqrpolation is parrrlssible and, consequently, the hypoaesis O?<br />

a smoth and omstant rwiation <strong>of</strong> tho oharnoteristics <strong>of</strong> the hydrological reLi-ie<br />

on tho terr%toFj is correcto<br />

f<br />

In the oatoi-wnt weas rwging from O to A nLio are found other laws. They<br />

ar+ l.aClected in larger or mallsr deflections <strong>of</strong> the characteristioe <strong>of</strong> the<br />

rui<strong>of</strong>f <strong>of</strong> small rivers fro,^ zonal(ssa the abova exainple i>f 27,37 arid 6ûmi)inevitably<br />

everrrged and as if liberated from the influonoe <strong>of</strong> the local factorsíspecificities<br />

oí' the environment, according ti, P. hbreuil). Chi<strong>nl</strong>g to the fa& that in small<br />

basins individual peculiaruios <strong>of</strong> the conditions <strong>of</strong> the run<strong>of</strong>f <strong>of</strong> snow melt<br />

and rainfall plow are sham most sharply(for example, the g mmd o," one basin ia<br />

made <strong>of</strong> ~and,oi' another - <strong>of</strong> olay, or one basin is open, another has a forest cover,<br />

etco) the data on the runaff <strong>of</strong> these basins generally are not suitable for a<br />

geographioal awmarizing <strong>with</strong> mags <strong>of</strong> isolines. With the decreaae <strong>of</strong> the size <strong>of</strong><br />

the ce.%chment increases the probabili% <strong>of</strong> the defleotions, as well as their<br />

importanoeo<br />

The above oan be illustrated by a scheme <strong>of</strong> defleotions o? the mean annul<br />

run<strong>of</strong>f(for m my years) <strong>of</strong> karat rivers from Its zonal significapoe in relation to<br />

the area <strong>of</strong> the oatchment(fig.1) .These "fork-shaped" shhemes <strong>of</strong> deflections can<br />

be disclosed also in study%ng the iliflwnce <strong>of</strong> othar Pactors(for example, the<br />

dekreb <strong>of</strong> afforestation) on the runoef a d their relatione to the dimension <strong>of</strong>


<strong>of</strong> the o.ztohment.<br />

Th oqiplltation <strong>of</strong> these dsfleotiona is owried out by mane <strong>of</strong> gemtic<br />

P<br />

rdlatiora <strong>of</strong> the charaoteristioa <strong>of</strong> the hy.itrologioal regime pli* the faotors<br />

LieteriliQ tham by the lntroduotion <strong>of</strong> oorrection factors in th~ zonal oharaoteris-<br />

Lics sf the hydrologioal regime, obtained for the uriexplcred'bssina tlrougk- the<br />

mq~S <strong>of</strong> isolines.<br />

Y!ie principles <strong>of</strong> oomputation <strong>of</strong> the main oharcoterietios <strong>of</strong> water<br />

resources in the absence or scarcity <strong>of</strong> )Ij-1romtrioal drrta, based on the above eox:al<br />

ari e.zo-ml geographioal laws <strong>of</strong> $he rtmDff, ar9 examhed <strong>with</strong> mre tietails in the<br />

rop0t.t <strong>of</strong> R<strong>of</strong> K.P.Voekresendqr(5)<br />

In the light <strong>of</strong> the atom, tht> oonolusion drawn in the report <strong>of</strong> I.Bdek(e;<br />

euòmitted to th3 present Symposim, beco*:es olear end convincing, nariiely, that<br />

the defiliition <strong>of</strong> reference hy4rologiaal charaoteristios for mexplored sub jecte<br />

(regions)o<strong>nl</strong>y on the basia <strong>of</strong> data from r-jpreaentativa and experimental basins,<br />

cwnot be ~eoomaded, i.e. it ie not possible to transfer direotly data Prom<br />

7bswvations on 8-1 catoinnents tr, unexplored large basine.<br />

The author <strong>of</strong> the report, analysing the data on experimental and represat-<br />

ativu basins <strong>of</strong> fropioal Mrioa, where under the THP programe were created m re<br />

than 100 represantativ<br />

+<br />

d experimental basins, brawe the ooaoluiona that a joint<br />

StUdy(8nalya~s)dfdata from experimental and representative basine and <strong>of</strong> those Prom<br />

the standard network is neoesomy. The differenoe between the charaoterietios <strong>of</strong> the<br />

run<strong>of</strong>f, obtained on small experimontai catchumts and aidlar characteristioa o? the<br />

bash <strong>of</strong> a standard netmork, should be carefully analysed.<br />

Considering the influace <strong>of</strong> fc-eats on the run<strong>of</strong>f on the basis <strong>of</strong> dooumente<br />

from experimental investigationa ia Xqa, ;r.Balak drws the conoluaion that a bamboo<br />

or a high mountain forest reduoes the surface run<strong>of</strong>f a that the replaobanent <strong>of</strong><br />

forests by aEricultural farm inoreases the voliono <strong>of</strong> the run<strong>of</strong>f. Transevaporation<br />

from forest vegetation mas three times higher than that from aeac;o<strong>nl</strong>;r subnierged<br />

fields.<br />

With the increase OP tho 'egrje c? boggiilp;, accorahg to data from obser<br />

vations in the basin <strong>of</strong> the river Ilafou, the annual run<strong>of</strong>f deoreases. in this oonna-<br />

ctiori, 7.Balek underlines that mra attertio- should bo drawn 'to hy~oloy;y <strong>of</strong><br />

tropical mmps, as these wrsnps play an i:pcrtoil-t role in ti-9 foranation <strong>of</strong> the<br />

river rm<strong>of</strong>f<br />

5


6<br />

At ths same time he notes that the methods <strong>of</strong> oomptation <strong>of</strong> the nuirf8<br />

usad at present in the temperate climate should Se revised taking into aooount<br />

the specific oonditione <strong>of</strong> tropioal oatohrnents.<br />

In the report <strong>of</strong> VbS. Vuglinsw and V.A. se?mmv(fl are atudied the<br />

specificities <strong>of</strong> formation and the methods oî .h.anefer <strong>of</strong> data from observa-<br />

tions to unexplored basins si' the run<strong>of</strong>f in mountain are-, including the<br />

conmody utilized method <strong>of</strong> detedning the standard <strong>of</strong> the annual run<strong>of</strong>f,<br />

based on the establishment <strong>of</strong> regional relations <strong>of</strong> the npdulua <strong>of</strong> the<br />

annual run<strong>of</strong>f to tho height <strong>of</strong> the uatchment, aooording to data from explored<br />

bas ias<br />

The authors note that,pthe computation <strong>of</strong> the run<strong>of</strong>f <strong>of</strong> small oatch-<br />

-.axts th utilization <strong>of</strong> the relatlon <strong>of</strong> the nodulus <strong>of</strong> rur<strong>of</strong>f to tho height<br />

<strong>of</strong> tho catohment obtains not always satisfaatory resdtte, whio-h can be<br />

explained by the kifluence <strong>of</strong> looal faotors in the mouutains~ In this relation<br />

oatchments <strong>with</strong> the same altitude 0811 differ ccmsirlerably by the conditions <strong>of</strong><br />

their formation, as well as by the volun.3 <strong>of</strong> the ennual run<strong>of</strong>f.<br />

In suoh cases the auL,hors recomnend to determine the standards <strong>of</strong> i ki<br />

annual run<strong>of</strong>f <strong>of</strong> mountain catcbments witi sufficient or exoessive misture,<br />

by meau <strong>of</strong>' a joint solution <strong>of</strong> tho equation <strong>of</strong> the sate- and heat-balanoe.<br />

Tile run<strong>of</strong>f is oaloulated bj the differenoe between preoipitation and m po-<br />

transpiration. The definition <strong>of</strong> the Etasdard annual preoipitation is oarried<br />

out <strong>with</strong> the applioation <strong>of</strong> graphs <strong>of</strong> the relation <strong>of</strong> preoipitationa <strong>with</strong> the<br />

altitude, taking into amount the crogaphio speoifioities <strong>of</strong> the mear<br />

TT oniputation <strong>of</strong> the etandexde <strong>of</strong> aruiual evaporation is made by a<br />

i.mre preoi e equation <strong>of</strong> & ïbhdyko# nihioh takes into aooouut the turbulent<br />

heat exohange th3 baaio paramatera <strong>of</strong> mhioh are : radiation bCbhaOe, precipi-<br />

tation and turbulent heat-exohange.<br />

The above sohem <strong>of</strong> computation is used for catolnnents looated in the<br />

lower and middle mmtein bolts. For the higher iiiomrtaine this method oan<br />

be used also, but ki this o w the number OP terma <strong>of</strong> the water bcilanoe<br />

equation i8 Fnoreased(it i ta oaïouïata the volume <strong>of</strong> glacier6<br />

ablation, Qf anow pa& melt and a dietinot oeïoulation <strong>of</strong> evaporation from


various underlying surfaces <strong>of</strong> the high muutains~o<br />

In this report are also studied the methoCs <strong>of</strong> oaloulation <strong>of</strong> the<br />

coeft'ioient <strong>of</strong> variability <strong>of</strong> the annual ruu<strong>of</strong>'f - Cv, ueed in momtait~<br />

ter ri to i- ies<br />

In the report <strong>of</strong> the group <strong>of</strong> authors: ML Albitlet, G. Castany, Mpe<br />

Delaroziere-Boulllin, R. Jonac et G. &-gat(B) is exposed the method <strong>of</strong> appraisal<br />

<strong>of</strong> the &mers1 water resoiiroos(equstsd by the authors to the mean m ual r-uiorf)<br />

anci the renmable groundwater resources <strong>with</strong> inadequate data. used by th93 authors<br />

for the territory <strong>of</strong> Franca and Venezuela.<br />

The authors recomiiend to determine the general water resourcss(Ptreamf1m)<br />

'51~ means <strong>of</strong> maps <strong>of</strong> isolines <strong>of</strong> preci;>itatkon &Td evapotranspiration, by the<br />

?ifference precipitation minus<br />

t<br />

evepotransporation calculated by ths method<br />

Thornthwalte or Turc. Th3 value f these differancea are dotarmined by conventional<br />

scpares. ìVhm there is a grmi. Wference <strong>of</strong> the factual evaporation,obtained<br />

>y the differeroe precipitatior? minus run<strong>of</strong>f in a looked discharge seotion line<br />

mid evaporation, calculated by ti- method <strong>of</strong> Thornthwaite or Turc, a oorreotion<br />

coeri'icient is introduced C, by means <strong>of</strong> irhich the map OP the rateu evaporatào.on<br />

13 cor reoted.<br />

yhe authore determina the na%iiral resources <strong>of</strong> groundwaters far the<br />

smis squares <strong>of</strong> the map as the volume <strong>of</strong> tha goneral run<strong>of</strong>f by moans <strong>of</strong><br />

"Geological coefficients" de%i,eci as a portion <strong>of</strong> the unclergound flair in the<br />

generai river ~ f f i<br />

'fl.is approach to th?: cle.:iriitiov <strong>of</strong> the volurm <strong>of</strong> renewed resourods<br />

<strong>of</strong> groundwaters is also utili.eed in the ':SSt? in the publioations <strong>of</strong> B.I.Kudolin<br />

and o.v.Fopov(9)<br />

The method o? computation <strong>of</strong> the total run<strong>of</strong>f by meam ,>P the difference<br />

3recipi :.ation minue evapotranapii.ution arid ths 3ef inition, ori tYAs basig oí' the<br />

so-. ..allad "Clhtio rUn<strong>of</strong>f",recomnan


8<br />

+<br />

method o<strong>nl</strong>) in regions xh he differenoe-preoipitation rtlh~us wapotranepiration<br />

is stffioiently important.<br />

In the practioal application <strong>of</strong> the method, the definition <strong>of</strong> diïferentiated<br />

rr?min@<strong>of</strong> the "geologiaal coefficient" for eaoh square <strong>of</strong> the map Ocin giv$ise<br />

to difficultiee, especially when the territory has been inauffioiently stuclied.<br />

In the reporta e€ van E ylch are examined the methods <strong>of</strong> oompukation<br />

<strong>of</strong> evapotranspiration in regione <strong>with</strong> identioal olhtic oonditione (11)<br />

The author indioates that the existing simplified nudele <strong>of</strong> oalouiation<br />

<strong>of</strong> evapotranspiration through a limited number OP parameters, for at€UUple, by the<br />

temperature <strong>of</strong> the aiqmrathwaite ,me@ aid Criddle,and otherr) lead to errore<br />

in the evaluation <strong>of</strong> the monthly and annual volumea <strong>of</strong> evaporation m-hg %O<br />

3~% or mare. Contradictions in t h resulta <strong>of</strong> oalouiationa mado i>r existing<br />

formulae are shown 3x1 fig.1. The author reoommenda, wh& oaloulating evaporation,<br />

a more detailed method <strong>with</strong> the utilieation <strong>of</strong> euch parametera M radiation<br />

balance, precipitations, air misture8 wìcity <strong>of</strong> wind.<br />

To find an isauo to this sAtuation, namely, that the mentioned initial data<br />

are not everywhere available, tho author proposes to utilize the idea <strong>of</strong> homolhate.<br />

The main point <strong>of</strong> his proposal oo#neists in the choice <strong>of</strong> a well-bonm region<br />

mhere the cli<strong>nl</strong>atir; conditions approaoh to the mx-. the conditions <strong>of</strong>' the area<br />

in whioh the oamputation <strong>of</strong> evaporation m&be oarried out, nnd where the hitiril<br />

data are misskiq. According to the aseertion <strong>of</strong> the author, it is possible by thi&<br />

homolinatio method to oaloulate the monthly and m.nual volrpnes <strong>of</strong> ewlpotrauepira-<br />

tion, differiiig not more than by i@ from those which were measwed.<br />

The author describes the desip sohhome adopted by him for the homoolimatio<br />

maluationa <strong>of</strong> evaporation which is based on tho equation developed ky Penmaw<br />

(i9fflDiq56) and leer OD improved by Montet((1963)wd Van Baveiï(1966).<br />

It should be noted that this equatior does not take inb aooount the<br />

temperature stratifioation ar-d th e mietur6 cq-tmt <strong>of</strong>' +,he soil. Therefore it<br />

iB applioable o<strong>nl</strong>y for computation <strong>of</strong> potential svapotranspiration from soctions<br />

<strong>of</strong> the land <strong>with</strong> an opthal nmisture(irrigation, oapillary subteraraean feeding,<br />

herbagea oloeed up in the stage o f optimel development). Unfortunately the report<br />

doeo not metnion this.


An important particularity used by the author cf the equation oonsista in<br />

the possibility to oaloulate instentaneOue(urgent) values <strong>of</strong> the velocity <strong>of</strong><br />

?vaToration.me author <strong>of</strong> the (van 'PlC%)<strong>of</strong> the opini.on that the Us8 OP<br />

the seasonal, montka and even aeeWy mean values OP the inftfal meteorologiosl<br />

factors for the evaluation <strong>of</strong> the evaporability(%) gives false resultem We have<br />

tr agree ruith thie.<br />

var. iìylcluraa<br />

In the reference equation Fropoaed by is taken into aooount the<br />

resistance <strong>of</strong> the outleta(aooord3ng to bntwt). The reoalaulation <strong>of</strong> tho ptential<br />

evqoration by the equation, in nhioh is taùa into aooount the rssisfauoe <strong>of</strong><br />

ouilete, has prmed that this equation obtains the best reaults(8ee lower part<br />

cif figme).<br />

This method shoulü be wed oniy for the computation <strong>of</strong> ahorMenn(hourly)<br />

data. l'o illuetrate his opinio8fn Hylc-s fig.1 in which it o m be seen that<br />

fi oalculated by the mean hourly initial data cire nearer to fhoee measured,<br />

than the data from oalculation through mean daily values <strong>of</strong> meteorologiod elements.<br />

TO conolude, t!ie author riotee that on the basis <strong>of</strong> the available climatio<br />

olassification(maps) it is possible to use the homolimati0 method and obtain<br />

reliable evaluations <strong>of</strong> the potential Jvapotrsnspirntion for insuffioiontly axplored<br />

regions<br />

The defeot <strong>of</strong> the proposed method <strong>of</strong> trm-sfer o? data from one region<br />

to another oonaista in a huffioient preciseness <strong>of</strong> the definition <strong>of</strong> the hoim-<br />

climate end the absence <strong>of</strong> reliable homolimatic maps.<br />

We have to atop shortly on two other reports, although different by their<br />

oontent, but having m q<br />

oomn features. We have iri mind the reports <strong>of</strong> G.R.<br />

Tiercelin (12) and <strong>of</strong> the maup <strong>of</strong> airthora R. OaroirnAgreda, G. Raastd.0 and<br />

Viparelli(l3). Their oomnon feature is the statistical aepe& <strong>of</strong> the problein <strong>of</strong><br />

trauef er <strong>of</strong> hydrologioal data to unexplored basins(regi0ne)<br />

h3 notes ir his report G.R.Tieroelii: ,disregarding minor d*ih, the<br />

methods <strong>of</strong> ddinition <strong>of</strong> parameters <strong>of</strong> the run<strong>of</strong>f oould be divided eseentitrlly<br />

hito *O grOU2jS 8<br />

1) The establishment <strong>of</strong> a regional dependame <strong>of</strong> the value <strong>of</strong> the defined<br />

9


10<br />

paraueter(man, oodfioient <strong>of</strong> variation, coeffioient <strong>of</strong> oorreìation between<br />

adjaoenf temm <strong>of</strong> a series, eto.) from basio phyaiographio oharaoteristics<br />

(precipitation, evaporation, dimension <strong>of</strong> the area <strong>of</strong> the Oabhmonf, height<br />

above sea ïeveï, forests, etc.).<br />

2) A joint analysis <strong>of</strong> run<strong>of</strong>f data by a group <strong>of</strong> bydrologioal identical<br />

catohments(<strong>with</strong> a similar condition <strong>of</strong> formation <strong>of</strong> the run<strong>of</strong>f).<br />

In the first oaae, the value <strong>of</strong> the interested parameter for an unexplored<br />

stream is oaloulated by the dependence obtained through the data <strong>of</strong> the neighbus<br />

h g streams, and in the seoonä oase this value is oonsidered a8 equal to the<br />

arithmetioal mean value f'rorn the seleoted values <strong>of</strong> parameters <strong>of</strong> rfvere studied<br />

jointly.<br />

In the work <strong>of</strong> G.P.Tieroelin is used BP assooiated analysis <strong>of</strong> data<br />

aooording to som previously seleoted and hydrologioahy identiod rivers, <strong>with</strong><br />

the same periods <strong>of</strong> observation and having slightly differat seleotive vduss<br />

<strong>of</strong> statistioal parame'ters.In this m ~ ~ is e r determined the regimal signjd'ioanoe<br />

<strong>of</strong> parameters <strong>of</strong> the monthly run<strong>of</strong>f. Data from 12 stations <strong>with</strong> 49 years <strong>of</strong><br />

observatioiis(Prom 1920 to 1968) are wed and are divided iPt0 ho group80<br />

ñegional aues <strong>of</strong> ertain parameterskoeffioienti <strong>of</strong> variatiow&ficiat <strong>of</strong><br />

htraouolear correlation, obtained by means <strong>of</strong> averaging for "idmtioal"<br />

regions are reoonunended by the autbr tQ be trenaferred to irnqlored sl;reama<br />

<strong>of</strong> a given region.<br />

very importtant in this report is the theoretical part devoted fo the<br />

definition <strong>of</strong> the mean-square-error <strong>of</strong> the kraasfer <strong>of</strong> the regiod value <strong>of</strong><br />

the parameter to a oompletely ur-explored or Fnsuffioiently studied wateroourse.<br />

The importanoe <strong>of</strong> the mean square error depends on the qumtlty and<br />

<strong>of</strong><br />

hydroïogioaï data for the region(o0oasionaï deviation), as neil as from the<br />

representativeness <strong>of</strong> the studied river for a given region(deviat5on oaused by<br />

geographioal faotors). The Formulation <strong>of</strong> this problem tio a large extent reminds<br />

the works <strong>of</strong> S.N.Kritcky, ?d.F.b&el and $.G.Blokhinov(m in whioh it is also<br />

proposed to oonsider fho complete dispersion <strong>of</strong> parrunstere <strong>of</strong> Joint<br />

f<br />

series a8<br />

the result <strong>of</strong> a oonoerted aotion <strong>of</strong> the abové) oauses. The praotioa pplication


<strong>of</strong> the proposed formulae requires a great oare, as their utilization implies<br />

the sigiif;oance <strong>of</strong> unknown nctuE1 values <strong>of</strong> dispersions <strong>of</strong> paraneters and the<br />

correlation between the selocted paraneters. In the presenoe <strong>of</strong> short series and<br />

1;lieir smdl nimiber the substitiition <strong>of</strong> actual values by seleoted values o m in<br />

a nunibre <strong>of</strong> oases oomiderably distort the value <strong>of</strong> the mean-square-error <strong>of</strong> e.<br />

i.ogio2irsS inportanoe.<br />

In the work <strong>of</strong> G.R.Tiercelil? , th0 choice <strong>of</strong> a group <strong>of</strong> catchmante<br />

(ciivisiori by regiom) was cwïied out on the basi8 <strong>of</strong> orly a "Visual'1<br />

comparison <strong>of</strong> the selective values <strong>of</strong> the parameters oaloulated for separate<br />

rivers.<br />

In our opinion, a preliminary analysis <strong>of</strong> the conditions <strong>of</strong> formtion<br />

<strong>of</strong> tho riin<strong>of</strong>f on catchments outlined for ct joint stuciy <strong>with</strong> a consequent applic-<br />

ation for the final selection <strong>of</strong> statistioal oritoria <strong>of</strong> similarity, would<br />

be m re aoourate. This more rigid apprcjach to the seledion <strong>of</strong> sMlar regions<br />

is applied in the work <strong>of</strong> R. Garcia-Agrede., G.Rassulo and R.Viparelli(l3),<br />

in which the authors propose to se1eot"plwiorietric zones'by the oonstruction<br />

<strong>of</strong> "peridssible" 9% confidenoe intervals <strong>of</strong> paraiiiaters <strong>of</strong> distribution, determined<br />

according to data from observations in separate points. This more rigid approaoh<br />

will enable w,in a numbor OP cases, +A avoid tho inclusion by mistake in OW<br />

g-oup catohinontJ <strong>with</strong> heterogonoous ooI?i?itions <strong>of</strong> formation <strong>of</strong> the run<strong>of</strong>f<br />

The arithntetioal mean should hardly be taken always as D regional value. It would<br />

be m re advisable to weigh the selective values <strong>of</strong> parametars obtained for<br />

separate rivers. For example, the weight ooeffioiente should be taken in a direat<br />

ratio <strong>with</strong> the areas <strong>of</strong> attraotion and the length <strong>of</strong> the utilized series.<br />

In apite <strong>of</strong> the great preoiseness <strong>of</strong> regional parameters noted in the<br />

work o," Mr. Tieroelin , whioh in the opinion <strong>of</strong> the author can be muoh higher<br />

than for parameters obtained in a short series, the proposed method oannot,<strong>of</strong><br />

coupse, replace a oareful analysis <strong>of</strong> initid data - whioh was already stressed<br />

in the report <strong>of</strong> P. Dubreuil.<br />

In this oorineotion, we would like to refer to the detailed oritioiem<br />

<strong>of</strong> the method <strong>of</strong> hodostations(interc;anneotion <strong>of</strong> series) submitted in the report<br />

<strong>of</strong> A.I.ChebotareP. and B.I.Serpik on the Leningrad Symposium on Floods and their<br />

Coniputation(l5), <strong>with</strong> whose opinion, ooncerning the sffioiency <strong>of</strong> this method,<br />

i quite agreeo<br />

11


12<br />

Besides, the author himelf repeatedly atreeeee th0 neoeseity <strong>of</strong> a oareful<br />

approaoh to the interconneotion <strong>of</strong> eerie8 <strong>of</strong> obeervationa on rims <strong>of</strong> the<br />

so-called identioal regione.<br />

To conoluäe, it diould be noted fhat bestigatiom on the a;plication<br />

<strong>of</strong> the mathematioal apparatus for the Lins <strong>of</strong> epeoe interpolation <strong>of</strong> hydrologioal<br />

oharacterietios <strong>of</strong> the multiple liuear oorrelation are oarried out at preaeurt(16,17)<br />

At the sau~ time onethe basis <strong>of</strong> a multiple linear regreasion, the oonetruc-<br />

tion <strong>of</strong> a field <strong>of</strong> isolines <strong>of</strong> hyärologioal characteristior, impleppsnted by a<br />

conputor <strong>with</strong> an ewaluation <strong>of</strong> the preoiseneas <strong>of</strong> interpolation in q givan point,<br />

ie eventually projeoted.


I. P.Dubreui1. Transfer <strong>of</strong> hydrologioal information to uuexploreâ river basins<br />

(presented ta the Symposiimi )<br />

2. A.P.Dodt~, ReG. Dubrovina, A.I. i8aevat"Rivers and Lakes <strong>of</strong> the USSR"<br />

(reference data) Gidrometeoiedat, 1971.<br />

3e A.A.Sokolov "Zonal m d a~oneï factors <strong>of</strong> the run<strong>of</strong>P".Coll.nf public. on %drology<br />

No 2, GidrO~teOisdat, 1961.<br />

4. A.A. Sohlov.The theory <strong>of</strong> hydrologioal mapping. Bull&ln VW, N0.1~1968.<br />

5. K.P.Voükrûs~~e Principles for the computation <strong>of</strong> the basi4 oharaoteristioa<br />

<strong>of</strong> water resouroes <strong>of</strong> rivers <strong>with</strong> inadequate observationa on the baais <strong>of</strong> the<br />

geographical interpolation <strong>of</strong> th^ paraniators <strong>of</strong> the' run<strong>of</strong>f (presented to the<br />

Splposf tall$<br />

6, 3.Balek. Utilieation <strong>of</strong> representativo and experimental catobments for the<br />

weluation <strong>of</strong> hydrological datri Sron Aifricm. tropical bas- (presented to the<br />

Syqo s id<br />

7. V.S.Vuglinsky and V.A.Semonov. fialualiion <strong>of</strong> water rmources <strong>of</strong> mountain<br />

territories in the absence or soarcity <strong>of</strong> data <strong>of</strong> the run<strong>of</strong>f(presonted to the<br />

symposium)<br />

8. M. Albinef, GICastauy, Mr8r belaroeiercBouillin, R. Jonirc,. J. Margat.<br />

Evaluation and distribution <strong>of</strong> water resources <strong>of</strong> large regions on the baais <strong>of</strong><br />

hydroclimatio and hydrologic oharaoteristioa (presented to the ~psimn)<br />

9. G.I.Kudelin, OiVmPOpOV. Influeuce <strong>of</strong> olimate on the natural 1-8 <strong>of</strong> formation<br />

<strong>of</strong> the groumator fian. Reports OP the soviet geeïogistrr to the 24th session<br />

<strong>of</strong> th9 International Congresri on ûeology.%ydrogeology and Engitmerlng bolo&,<br />

"Nauka", baoon, 1Wm<br />

10. M.I.LlvovEtoh. Elemnte <strong>of</strong> water regime <strong>of</strong> the rivers OP %e Earth. hblio.<br />

<strong>of</strong> KtU cenisa) sa) Board OP the Qdrsmiteomlogioal Servioe) Ser.IVlvol.18<br />

Sverdlovsk - Leahgrßddr<br />

13


14<br />

Hylckama<br />

11. T.E.A. V a Computation <strong>of</strong> evapotrmspiration by region8 <strong>with</strong><br />

idontical climatic condWions(presented to the Symposium)<br />

12. 1LR.Tiercelb Regional parainstors concarning water resouroes. üsee.heciseneas<br />

<strong>of</strong> evaïuation(presented to the Symposium)<br />

13. R. Garoia-Agreda, G. Rasuulc, R. Viparelli. Pluviornetrio zones and oriteria<br />

for evaluation <strong>of</strong> their limits Por region8 w5th insufficient data from observations<br />

(presuntod to the Symposium)<br />

14. S.?l.Kritzky, M.F.Menke1. T.bthod <strong>of</strong> a joint aaolyeis <strong>of</strong> observation8 <strong>of</strong> the<br />

run<strong>of</strong>f <strong>of</strong> identical basina. Public. <strong>of</strong> the CCI (State Institute <strong>of</strong> <strong>Hydrology</strong>)<br />

vol.180, kMmmeteoizdat, lr;7G.<br />

15. A.I.ChsLotmev and B.;.SerpZc. Of the passibility <strong>of</strong> using the<br />

intorconnected seriea <strong>of</strong> hyàrologioal ohaxaoteristios for the oomputaticn oi t h<br />

run<strong>of</strong>f:. Internationo1 Sy-fnposiun on Flscds a d their ComputationbGidrometeoiedat,<br />

1969<br />

16. A.V. lbjdestvendcy. The exporimco <strong>of</strong> bringing the river run<strong>of</strong>f to a long-term<br />

period by the method <strong>of</strong> multiple linear correlation. Coll. <strong>of</strong> public. on ~drolog<br />

No .10.Gidromsteoi~dat,1970.<br />

17. A.G. bbanova, A.V. HojdestvensQ. Space-correlation funotiona <strong>of</strong> the river'<br />

ra<strong>of</strong>f <strong>of</strong> the rivers <strong>of</strong> the D<strong>nl</strong>epr b ash coll. <strong>of</strong> puklio. on ~dr010gy~1Jo.11<br />

Gi drom tuo izdat , 1973


EVALUATION ET REPARTITION DES RESSOURCES EN EAUX D'UNE GRANDE<br />

ABSTRACT<br />

REGION PAR LES PARAMETRES HYDROCLIMATIQUES ET HYDROGEOLOGIQUES<br />

Par: M. Albinet, G. Castany, Mme O. Delaroziere-bouillin,<br />

R. Jonac et J. Margat.<br />

The evaluation and repartition <strong>of</strong> total and groundwater resources<br />

or a large unit, country, region or groundwater basin, may be rapidly<br />

made <strong>with</strong> restricted data, by simple calculation, still obtaining a<br />

satisfactory accuracy.<br />

The total water resources, asimilated to the average annual total<br />

run<strong>of</strong>f rate <strong>of</strong> the water courses may be evaluated by the specific<br />

run<strong>of</strong>f. This is calculed, either directly <strong>with</strong> hydrometric data, or<br />

in the absence <strong>of</strong> gauging by extrapolation based on hydrogeological<br />

characteristics collated <strong>with</strong> the values by the climatological exprez<br />

sions (L.TURC, THORTHWAITE).<br />

The groundwater renouvelable resources are egal to the average<br />

annual groundwater flow rate those evaluation tests on the division,<br />

<strong>with</strong> the help <strong>of</strong> an index, <strong>of</strong> the specific run<strong>of</strong>f. These indes are<br />

worhed out <strong>with</strong> the help <strong>of</strong> geological characteristics an hydrogeo-<br />

logical characteristics punctually obtained b,y field tests.<br />

Thus <strong>with</strong> resticted hydrogeological and hydrometric data and<br />

sufficient data concerning the precipitations, tempertures and geology,<br />

it is possible to obtain a satisfactory knowledge <strong>of</strong> water resources<br />

which exploitation and planification. Practical results have been<br />

obtained in France and Venezuela.<br />

RESUME<br />

L'évaluation et la répartition des ressources en eaux, globales<br />

et soutterraines, d'une grande unité, pays, région ou bassin hidro-<br />

géologique, peuvent être effectuées rapidement avec des données res-<br />

treintes, par des calcule simples, tout en obtenant une précision<br />

satisfaisante.<br />

Les ressources en eaux globales, assimilées au debit d'écoulement<br />

global annuel moyen des cours d'eau, peuvent être évaluées par le mo-<br />

dule spécifique d'ecoulement total (i/s.km2). Celui-ci est calculé,<br />

soit directement 2 partir des les données hydrométriques, soit, en<br />

l'absence de jaugeages, par extrapolation basée sur les paramètres<br />

hydrogéologiques et confrontée avec les valeurs calculées par les ex-<br />

pressions climatologiques (L.TURC, THORTHWAITE).<br />

Les ressources en eaux souterraines renouvelables son égales au<br />

débit de l'écoulement souterrain annuel moyen, dont l'évaluation repose<br />

sur le fractionnement, a l'aide d'index, du module spécifique<br />

d'écoulement total. Ces index sont étables l'aide des paramètres<br />

geologiques et des caractéristiques hydrogéologiques obtenues ponctuellement<br />

par des essais sur le terrain.<br />

Ainsi avec des données hydrométriques et hydrogéologiques res-<br />

treintes et des données suffisantes sur les précipitations, les tem-<br />

pératures et la géologie, il est possible d'obtenir une estimation<br />

satisfaisante des ressources potentielles moyennes pour la mise en<br />

valeur et la planification, Une realisation pratique a été obtenue<br />

en France et au Venezuela.


16<br />

1 . INTRODUCTION<br />

1.1. Rappel des notions sur l'écoulement de l'eau dans le sol et le<br />

sous-sol. Répartition de l'eau des précirdtatlons.<br />

Le débit de l'écoulement total QT, mesur8 à la station de<br />

jaugeage d'un cours d'eau, exutoire d'un bassin versant, est la somme<br />

de l'écoulement de surface QR dans le réseau hydrographique et de 1'<br />

écoulement souterrain QW, transité par les aquifères du bassin drainé$<br />

L'écoulement de surface, QR, direct, rapide (quelques heures<br />

quelque6 Bows) correspond à la crue de l'hydrogramme d'écoulement.<br />

L'écoulement souterrain, QW, lent,différ$, de parcours com-<br />

plexe dans les aquifères et de longue durée (quelques années à des<br />

centaines, voire des milliers, de millénaires) est à l'origine du<br />

débit des cours d'eau pérennes en absence de précipitations (étiage).<br />

D'oui l'importance de la mesure des débits d'étiage représentant le<br />

déMt minimal moyen de l'écoulement souterrain.<br />

Le débit de l'écoulement total est alimenté par les préci-<br />

pi ta ti ons e f f i c ac e s, PE, dl f f ér en c e s entre 1 I évapo transpira ti on<br />

réelle, ETR et les précipitations totales, PT ( PE = PT - ER). Eh 1'<br />

absence de variation<br />

des réserves (longue période d'observation) le<br />

déficit d'écoulement moyen interannuel E"T est égal à PT - QT.<br />

Les débits de llécoulement total et de 88s deux composants,<br />

l'écoulement de surface et l'écoulement souterrain, sont régis par six<br />

groupes de facteurs conàîtionnelst<br />

-<br />

caractéristiques dee précipitations: intensi téídurée, nature ;<br />

caractéristiques géologiques du sol: lithologie des terrains,<br />

perméabilité verticale, structures;<br />

- c arac t éri stiqu e 6 mo rp bolo giqu e s : rnorphom 6 t 15 e, pen tes , reli e f ;<br />

- cmactéristiques hydrogéologiques: humidité de la zone non<br />

eaturée, pr<strong>of</strong>ondeur de la surface piézométrique, paramètres hydrauli-<br />

ques des roches réservoirs et de l'écoulement et de6 structures hydro-<br />

géologiques;


- caractéristiques de la couverture végétale.<br />

Ces facteurs, interférant, peuvent @tre ramenés B trois grands<br />

ensembles: hydroclimatologie-hydrométrie, géomorphologie, géologie.<br />

Les caractéristiques géomorphologiques et géologiques du bas-<br />

sin jouent un r8le primordial dans le fractionnement de l'eau des préci-<br />

pitations, d'o.ii la possibilité d'établir des index, utilisables pour 1'<br />

évaluation du débit de l'écoulement total et de l'écoulement souterraint<br />

De m8me il est possible d'établir des index climatiques.<br />

Les réservoirs aquiferes ont un r8ie régulateur du débit de 1'<br />

écoulement souterrain par la faible vitesse d'écoulement déterminée par<br />

la transmissivité et par la mise en réserve temporaire d'eaux souterrai-<br />

nes, fonction de la diffusivité ( transmissivité/coefficient d'emmagasi-<br />

nement) et des conditions aux limites. Les réserves en eaux souterraines<br />

sont donc a considérer pour l'évaluation des ressources en eau.<br />

1.2. Débit de l'écoulement moyen interannuel et ressources en eaux<br />

renouvelabl es.<br />

L'écoulement moyen interannuel, QT, est assimilé aux ressour-<br />

ces en eaux renouvelables, potentielles, moyennes globales. I1 est<br />

déterminé sur une période de 5 à 10 ans:<br />

- directement par traitement statistique des données hydrométriques;<br />

- -<br />

indirectement 6. l'aide d'expressions climatiques mensuelles ( TURC<br />

et THORNTHWAITE) résolues manuellement ou sur ordinateur.<br />

L'écoulement moyen interannuel, QT, erprimé en laine d'eau<br />

2<br />

moyenne, ou module spécifique d'écoulement total (l/s.km ) permet les<br />

interpolations et extrapolations et l'estimation des ressource8 poten-<br />

tielles moyennes des bassins non jaugés.<br />

L 'estimation des ressources potentfelles moyennes globales par<br />

cette méthode est très acceptable pour les besoins de la planification,<br />

comparée aux &mi.uations basées uniquement sur des mesures hydrométri-<br />

ques relatives à de longues périodes.<br />

17


18<br />

1.3. - Débit et distribution spatiale de l'écoulement souterrain mq- interannuel<br />

Le débit de l'écoulement souterrain moyen<br />

assidlé au débit moyen interannuel des aquifères dans le cours d'eau,<br />

peut être évalué par l'analyse de l'écoulement moyen interannue1,QT.<br />

Une méthode de fractionnement, à l'aiae d'index et étalonnage par des<br />

analyses d'hydrogrammes de bassins représentatifs assez homog&nes, a<br />

áté appliquée. Ces index expriment:<br />

index = écoulement souterrain - - c$w en pour cent<br />

écoulement total QT<br />

2. PRINCIPES DE LA METHODE<br />

Une importance particulière est apportée, dans un souci<br />

de planification et d'aménagement du territoire, à la connaissance,<br />

donc A la cartographie, de la distribution spatiale des ressources en<br />

eau, globales et souterraines. Les données hydrologiques disponibles<br />

sont, dans la plupart des régions, insuffisantes pour permettre<br />

une cartographie. Par ailleurs dans bien des cas il serait inte-<br />

ressant de pouvoir estimer les modules spécifiques d'écoulement<br />

de bassins non jaugés.<br />

C'est dans ces perpectives qu'une méthode simplifiée<br />

d'évaluation des écoulements moyens, total et souterrain, par bassin<br />

versant a été mise au point en vue d'une cartographie à petite échelle<br />

applicable B l'ensemble d'une région ou d'un pays.<br />

Son principe, 6es modalités d'application et les résul-<br />

tats obtenus sont présentés sur un exemple concret.<br />

La méthode d'évaluation et de cartographie de 1'8couleumt<br />

a été établie de facon à pouvoir Itre traitée automatiquement. le, ou<br />

les, bassin6 étudiés étant discrétisés en mailles régulières.<br />

2.1. Données de bases nécessaires à l'application de la méthode.<br />

Ce sont:<br />

- surface du bassin versant


- débit moyen interannuel, QT, de la période p, mesuré à l'exutoire<br />

du bassin versant;<br />

- carte en courbes isohyetes des précipitations moyennes interannuelles<br />

PT, de la période p, sur l'ensemble du bassin versant;<br />

- carte de zonalité de l'évapotranspiration réelle moyenne inter-<br />

annuelle ETR, de la période p, sur l'ensemble du bassin versant. E$<br />

théorie n'importe quelle méthode de calcul d'un indice d' évapotrans-<br />

piration réelle a partir des données climatologiques mesurées ponctuel-<br />

lement peut 8tre utilisé. En général, les valeurs de llévapotranspi-<br />

ration réBlle moyenne interannuelle les plus significatives sont ob-<br />

tenues par calcul sur l'pas de temps11 mensuel, soit à partir de la<br />

hauteur des précipitations et de la température par la méthode de<br />

THORNTHWAITE, soit à partir de la hauteur des précipitations, de la<br />

température et de l'insolation par la méthode de TURC mensuelle. Dans<br />

ces deux cas, les calculs doivent Btre effectués mensuellement pour<br />

chacune des années réelles successives de la période choisie. La moyen-<br />

ne interannuelle doit Btre évaluée exclusivement à partir des valeurs<br />

annuelles de 1' évapotranspiration réelle obtenues. Ces opérations<br />

peuvent Etre réalisées automatiquement à l'aideud'un programme de cal-<br />

cul établi au Bureau de recherches géologiques et minières (B.R.G.M.).<br />

2.3. Calcul de l'écoulement total.<br />

Les données de base étant acquises, les cdculs suivants<br />

sont<br />

-<br />

effectués successivement:<br />

calcul de la lame d'eau prkcipitée moyenne interannuelle (en mm),<br />

m, sur l'ensemble du bassin versant, par moyenne des lames d'eau précipitées<br />

-<br />

sur chaque maille;<br />

calcul du déficit d'écoulement moyen interannuel (en mm), ETT,<br />

sur 1 'ensemble du bassin versant, par moyenne des déficits d'écoulement<br />

relatifs à chaque maille lorsque l'on a admis une hétérogén6ité de<br />

ETR dans le bassin (sinon ETT = PT - QT);<br />

19


20<br />

- comparaison<br />

de la différence, PT - QT (données mesurées) avec<br />

hTT. (données calculées) et calcul d'un coefficient de correction c;<br />

C=(PT-QT)/ETT<br />

Puis calage des "bilans" unitaires de chaque maille ( ETT =<br />

PT - QT) sur le débit d'écoulement total du bassin par application du<br />

coefficient de correction, C, à 1'EITR de chaque maille.<br />

- calcul de l'écoulement total unitaire, maille par maille (en mm),<br />

par différence entre la lame d'eau précipitée et la hauteur d'&rapo-<br />

transpiration réelle corrigée.<br />

2.3. Evaluation de la distribution spatiale de l'écoulement souterrain<br />

La distribution par maille de ltécoulement total pour le<br />

bassin étudie étant connue1.trois procédures sont appliquées en fOnC-<br />

tion des données disponibles pour l'évaluation et la distribution spa-<br />

tiale<br />

-<br />

de l'écoulement souterrain.<br />

premier<br />

-<br />

cas:iaxistence d'une carte des index géologques (page 514<br />

l'écoulement souterrain, QW, de chaque maille est obtenu di-<br />

rectement par application des index à la valeur de l'écoule-<br />

-<br />

ment total de la maille;<br />

le calcul de l'écoulement souterrain total du bassin versant<br />

est effectué par sommation des écoulements souterrains de<br />

chaque maillem C'est cette procédure qui a été utilisée pour<br />

l'étude de la P'ranche-Comté (France) objet du cas concret.<br />

"<br />

- deuxième cas: existence d'une estimation de l'écoulement souterrain<br />

total à l'exutoire du bassin versant (valeur obtenue par analyse des<br />

hydrogrammes, selon une convention appropriée) et d'un bassin litholo-<br />

giquement assez homogène. Cette méthode, concevable en théorie est<br />

rarement applicable en pratique, car les bassins assez grands qu'il<br />

faut considérer ne sont généralement pas homogènes.<br />

- troisiéme cas: existence d'une carte des index et de la valeur<br />

estimée de,l'écoulement souterrain total à l'exutoire du bassin versant


- une première valeur de l'écoulement souterrain de chaque<br />

maille est obtenue par application des index à la valeur de<br />

l'écoulement total de la maille;<br />

- calcul de l'écoulement souterrain total du bassin versant<br />

par sommation des écoulements souterrains de chaque maille;<br />

- comparaison de l'écoulement souterrain total avec l'écoule-<br />

ment total, QT, et calcul d'un coefficient de correction C1:<br />

-<br />

QT QW<br />

- application de ce coefficient de correction C1 aux débits<br />

souterrains de chaque maille.<br />

I1 est important de souligner que le débit souterran<br />

calculé pour chaque maille a la signification de l'alimentation spé-<br />

cifique moyenne probable des nappes souterraines dans la maille, par<br />

infiltration de l'eau des précipitations, indépendamment de tout<br />

apport pouvant provenir d'une autre maille.<br />

2.4. Simplifications admises.<br />

La méthode d'éualuation des écoulements, total et souter-<br />

rain, peut fournir des résultats significatifs al elle est appliquée<br />

H des bassins versants de dimensions assez grandes, à partir des<br />

données hydroclimatologiques moyennes interannuelles, établies<br />

sur une période suffisamment longue pour que le rble des réserves,<br />

superficielles ou souterraines, puisse $tre négligé.<br />

De plus cette méthode s'adresse aux bassins versants pour<br />

lesquels il est possible d'admettre que le débit des nappes souter-<br />

raines est drainé essentiellement par les cours d'eau du bassin. Eh<br />

domaine karstique,par exemple il sera nécessaire de grouper les<br />

bassins versants de telle sorte que les transferts d'eau aux limites<br />

des groupements établis soient négligeables.<br />

terrain,<br />

3. APPLICATION DE LA METHODE A UN CAS CONCRET - POSSIBILITES<br />

D 1 AUTOMATI SATION - PROGRAMME FI,&.<br />

Le calcul et la cartographie des écoulements, total et sou-<br />

ont été réalisés pour les bassins versants du Doubs, de la<br />

21


22<br />

Haute baône et de ltxin, sur une période de référence moyenne de 5<br />

ans. A cet effet, une carte des précipitations moyennes et une carte<br />

de 1' évapotranspiration réelle moyenne interannuelle (méthode de TURC<br />

mensuelle) ont été réalisées.<br />

Trois ensembles de bassins versants ont été utilisés, en<br />

fonction des relevés hydrométriques disponibles, pour llapplication<br />

du programme I.L$C. Dans leur définition, tous les bassins versants<br />

é1éi;lentdres présentant entre eux des échanges souterrains ont été<br />

groupés de telle sorte que pour chaque ensemble les limites topogra-<br />

phiques et hydrogéologiques soient concordantes. Les groupements<br />

suivants ont donc été traités:<br />

- bassins versants de la riaute-Saône et de l'Ognon limités aux<br />

stations de jaugeage de day-sur-&8ne (sur la aaôiie) et de Pesmes<br />

(sur l'Ognon). Superficie totale : 5 782 km2, débit total mogcpn<br />

(période<br />

-<br />

i964-iY68): 3 093, 7. lo6 m3/an;<br />

bassins versants du Doubs et de la Loue limités aux stations<br />

de jaugeage de Rochefort (mir le Doubs) et de Champagne (sur la Loue)t<br />

Superficie totale: 6 350 km'; débit total moyen (période 1964-1968):<br />

5 086,3 .i0 6 m 3 /an;<br />

- bassin versant de l'Ain limité à la station de jaugeage de<br />

r*<br />

Chaaey. Superficie totale: 3 630 km2, débit total moyen (periode<br />

1963-1967): 3 944.i06 J/an.<br />

3.1. MaillaRe des bassins<br />

La planche 1 prhsente le maillage adopté pour le Calcul<br />

des écoulements. Les mailles, généralement carrées (sauf aux limites) I<br />

ont une surface de 25 km<br />

2<br />

pbur les bassins du Doubs et de la Haute-<br />

Saône et de 9 km<br />

2<br />

pour celui de l'Ain. Soit au total pour chaque<br />

bassin versant hydrographique: Haute-Sadne et Ognon, 232 mailles;<br />

Doubs et Loue, 254 niailles; Ain, 405 mailles.<br />

3.2. Cartographie de la distribution probable de l'écoulement total<br />

et de 1 'écoulement souterrain.


Les valeurs par maille de l'écoulement total sont directement<br />

fournies par l'application du programme de calcul FLØC.<br />

La planche 1 présente la carte de la distribution probable de 1'<br />

écoulement total pour le territoire étudié. Elle donne les valeurs en<br />

mm par maille de l'écoulement total moyen interannuel (1964-1968) et<br />

les courbes d' (gal écoulement total''.<br />

3.3. CartograDhie de la distribution probable de l'écoulement souter-<br />

rain.<br />

7<br />

L'application des index aux valeurs calculées de l'écoulement<br />

total permet de dresser une carte de la valeur moyenne du débit des<br />

nappes d'eau souterraine de la région étudiée.<br />

Pour l'ensemble du territoire étudié,l'aptitude du sol et du<br />

sous-sol à permettre l'infiltration a été analysée sur la base des<br />

données de la carte lithologique établie spécialement (fig.2) cl partir<br />

de l'examen des hydrogrammes de quelques cours d'eau. Mais les stationr<br />

de jaugeage dont les données on été utilisées sont généralement rap-<br />

portées A des bassins versants étendus, climatologiquement et litholo-<br />

giquement hétérogènes. L'analyse de leurs hydrogrammes n'a donc pu,<br />

dans la plupart des cas, permettre de définir.<br />

tisfaisante l'importance de l'aptitude du sous-sol A permettre l'in-<br />

filtration. Compte-tenu de ces réserves (et de la possibilitk d'affi-<br />

ner cette analyse lorsque l'on disposera des relevés de nouvelles sta-<br />

tions<br />

-<br />

de jaugeage) deux types de domaines ont été distingués:<br />

les domaines od l'infiltration est nbgligeable, le sous-sol pou-<br />

23<br />

avec une précision sa-<br />

vant Btre conddéré comme imperméable à l'échelle de cette étude) Pour<br />

ces-dbmalnes, A l'échelle du l/ 200 O00 la quad totalité de l'écoule-<br />

ment<br />

-<br />

est de l'écoulement de surface. L'écoulement souterrain est nui;<br />

les domaines à réservoirs aqui feres pour lesquele l'infiltration<br />

est possible. L écoulement souterrain représente alors une proportion<br />

plus ou moins élevée de l'écoulement total. I1 est possible de dis-<br />

tinguer:


24<br />

- les domaines 03. l'écoulement souterrain représente une proportion<br />

moyenne de l'écoulement total (9 %) avec les grès du Permien et du<br />

Trias inférieur, les formations marno-calcaires du Crétacé et les dép8tr<br />

giaci air es et fluvi o- glaci air es ;<br />

- les domaines OC l'ecoulement souterrain représente une forte propor-<br />

tion de l'écoulement total (80 %> avec le Crétacé & dominante calcaire<br />

du bassin de l'Ain et les formations alluviales;<br />

- les domaines OU l'écoulement souterrain représente la totalité de<br />

1 'écoulement: formations calcaires du Nuschelkalk et du Jurassique<br />

supérieur et moyen.<br />

Conclusions - Gomparaisons entre les écoulements<br />

mesurés et estimés- Validité de la méthode.<br />

Différents tests ont été effectués sur plusieurs bassins<br />

afin, connaissant les débits mesurés, d'estimer quelle validité ont les<br />

débits calculés. A titre d'exemple, on peut 'citer le bassin versant du<br />

2<br />

Dessoubre (568 km inclus dans le bassin du Doubs) pour lequel ont été<br />

mesurés 14,2 m3/s (1964-1968) et calculée 16,16 m 3 /s.


SRAE - FRANCHE-COMTE<br />

Carte da k dihbutin rribbk da I'iroulmrnt trtilnomlnterannud<br />

(1964-19681


USE OF REPRESENTATIVE AND EXPERIMENTAL CATCHMENTS FOR THE<br />

LSCESSMENT OF HYDROLOGICAL DATA OF AFRICAN TROPICAL BASINS:?<br />

ABSTRACT<br />

J. Balek<br />

Institute <strong>of</strong> Hydrodynamics,-Academy <strong>of</strong> Science,<br />

Prague, Czechoslovakia<br />

Extensive hydrological records in tropical Africa are available<br />

mostly for large basins. Since the beginning <strong>of</strong> IMD observation on<br />

small representative and experimental areas has been started and<br />

valuable short records are already available. A great number <strong>of</strong> the<br />

tropical basins still remain unobserved. Although the demand for<br />

hydrological data needed for engineering and agricultural develop-<br />

ment is increasing, in many cases it can be found difficult to<br />

provide reliable estimates <strong>of</strong> the hydrological characteristics.<br />

Considering the high fluctuation <strong>of</strong> rainfall patterns and high<br />

non-uniformity <strong>of</strong> the topographical and vegetational cover on small<br />

tropical catchments it cannot be recommended to establish the cal-<br />

culation <strong>of</strong> the data for the ungauged areas o<strong>nl</strong>y on the records<br />

from representative/experimental catchments. All the data from the<br />

catchments should be compared and analysed jointly <strong>with</strong> the records<br />

<strong>of</strong> standard network in an attempt to obtain regional characteristics<br />

typical for certain topographical vegetational and rainfall patterns.<br />

Examples <strong>of</strong> the calculation <strong>of</strong> the data in the Central Africa region<br />

are presented in the paper.<br />

RESUMEN<br />

Utilización de las cuencas representativas y experimentales pa-<br />

ra la evaluación de los datos hidrológicos en las cuencas inobserva<br />

das del Africa tropical.<br />

Los datos más fidedignos y más antiguos existen para las cuen--<br />

cas grandes del Africa tropical. Durante el DHI empezaron las obsef<br />

vaciones de las cuencas experimentales. Hasta el presente muchas -<br />

cuencas tropicales son inobservadas y los cálculos de las caracte--<br />

rísticas hidrológicas para diversos proyectos técnicos y agrícolas<br />

son difíciles. En las pequeñas cuencas tropicales existen signifi--<br />

cantes variaciones en la distribución de las lluvias, topografia y<br />

vegetación y no es posible calcular las características hidrólogi--<br />

cas solamente por la aplicación de los datos de la cuenca represen-<br />

tativa/experimental más próxima. Hay que utilizar todos los datos -<br />

de las cuencas representativas y experimentales y de la normal red<br />

regional que existen en la región, para determinar las caratteristi<br />

cas hidrológicas de la misma región, representativas para predomi--<br />

nantes tipos de la topografía, vegetación y distribución de las llu<br />

vias. Algunos ejemplos sobre la determinación de los datos para lac<br />

cuencas del Africa Central se presentan en el artículo.<br />

+: The research was sponsored by the National Council for Scientific<br />

Research <strong>of</strong> Zambia. Some unpublished data were obtained by the<br />

courtesy <strong>of</strong> W.M.O.


28<br />

INTRODUCTION<br />

During the International Hydrological Decade observations<br />

<strong>of</strong> several representative and experimental catchments were<br />

started in various parts <strong>of</strong> the African tropics, Data<br />

obtained from these catchments together <strong>with</strong> the data from<br />

the catchments established as parts <strong>of</strong> various special<br />

proj ects represent very valuable material for engineering<br />

and agricultural projects in Africa. As a main problem can<br />

be considered how to make best use <strong>of</strong> the data when they<br />

are applied outside the catchment boundaries. As can be<br />

seen from the compilation <strong>of</strong> UNESCO (l), long records for<br />

the African tropics are available in most cases for very<br />

large basins. Obviously such data is <strong>of</strong> very limited use<br />

because the number <strong>of</strong> big hydrotechnical schemes is rather<br />

small. More frequently the data are required for small<br />

basins as a basis for numerous rural development projects.<br />

For the interpolation between the data from very large<br />

basins and very small catchments there is no standard<br />

method available. As listed by Toebes and Ouryvaev (2) the<br />

main purpose <strong>of</strong> the representative catchments is fundamental<br />

research, studies <strong>of</strong> natural changes, hydrological prediction,<br />

extension <strong>of</strong> records and in the case <strong>of</strong> experimental<br />

catchments additional effects <strong>of</strong> cultural changes. Extension<br />

<strong>of</strong> the records is one <strong>of</strong> the most important tasks in the<br />

tropics because increasing the network density can be very<br />

difficult, owing to such circumstances as the river<br />

accessability, staff problems, finances, etc. Thus the idea<br />

<strong>of</strong> concentrating the effort into small areas well instrumented<br />

and observed according to the requested standards, appears<br />

to be very useful, particularly regarding satisfactory results<br />

as obtained in temperate regions. As an example can be given<br />

Volynka catchment located near to the Czechoslovakian,<br />

Austrian and West German borders,


River<br />

Volynka<br />

Sputka<br />

Peklovka<br />

I I I<br />

Drainage<br />

area<br />

km2.<br />

Rainfall Run<strong>of</strong>f<br />

mm. mm.<br />

I I I<br />

1<br />

385 709 246<br />

105 7 54 304<br />

80 625 143<br />

I I I<br />

331<br />

463<br />

443<br />

25.9<br />

8.8<br />

16. 3<br />

29<br />

I<br />

--q--E-<br />

Evapotrans<br />

Yield<br />

pirat ion<br />

i/ s/ km2.<br />

4.53<br />

mm. - !<br />

The catchments is situated in the Sumava mountains. In the<br />

mountains are also the headwaters <strong>of</strong> three rivers (Fig. 1).<br />

Supposing that no direct observation would be available, an<br />

estimate can be done according to the relationship obtained<br />

from the representative catchment (Fig. 2):<br />

River<br />

Drainage<br />

km’.<br />

Otava<br />

Blanice<br />

T.Vltava 347 957 550<br />

However, all three rivers have been observed for a long<br />

period, and actual data calculated:<br />

Drainage<br />

Blanice<br />

T. Vltava 34 7 957 514<br />

1<br />

q-T<br />

- I<br />

Evapotrans<br />

Yield<br />

p irat ion<br />

1 / s / km2.<br />

mm .<br />

17.4<br />

Ev apo tr ans<br />

mm .<br />

Obviously, in a region where very little is known on the<br />

hydrological regime <strong>of</strong> the rivers, results as obtained<br />

indirectly can be considered as satisfactory.


30<br />

Because factors such as snow melting, çoil freezing and<br />

thawing etc. complicate hydrological regimes <strong>of</strong> temperate<br />

catchments, one would expect that in tropical catchments<br />

even better results can be achieved. However, owing to a<br />

high variability <strong>of</strong> evapotranspiration, such an expectation<br />

is far from being correct. There are several factors<br />

contributing to the increased evapotranspiration variability:<br />

Precipitation<br />

Above rather monotonous topography <strong>of</strong> tropical Africa slow<br />

changes in annual rainfall totals can be expected. The<br />

raingauge network is not dense enough to provide a more<br />

complete picture, however, available records support previous<br />

presumption. From the records <strong>of</strong> a very dense network<br />

established in small areas, follows that the distribution<br />

<strong>of</strong> hourly, daily, monthly and even annual rainfall totals<br />

is highly non-uniform. In Fig. 3 the distribution <strong>of</strong> the<br />

annual rainfall in four Zambian catchments, each <strong>of</strong> them<br />

less than 2 km , has been plotted. The rainfall distribution<br />

was measured by the network <strong>of</strong> about 60 gauges. The<br />

variability has been observed for 5 years (3) and it is has<br />

been proved that there is no relationship between the<br />

topographical and rainfall pattern. Jackson (4), studying<br />

the interception <strong>of</strong> Tanzanian forest, proved similar high<br />

variability <strong>with</strong>in a small area. This <strong>of</strong> course makes it<br />

difficult to apply some theories, such as, for example unit<br />

hydrograph, because the centres <strong>of</strong> the storms are rather<br />

randomly distributed above the catchments. Thus, identical<br />

run<strong>of</strong>f volumes produce different types <strong>of</strong> hydrographs and<br />

identical rainfall totals produce a great variety <strong>of</strong> run<strong>of</strong>f<br />

volumes.


Swamps<br />

Origin, size and location <strong>of</strong> swamps in tropical basins are<br />

other factors highly influencing tropical hydrological<br />

regimes. The total area <strong>of</strong> African swamps is about 340.000<br />

km2. They have not yet been classified, according to origin<br />

vegetation, geomorphology, and thus the knowledge <strong>of</strong> their<br />

hydrological role is also very limited. Several catchments<br />

containing swamps have been under intensive observation in<br />

the tropics. In Uganda the evapotranspiration from swampy<br />

vegetation consisting mai<strong>nl</strong>y <strong>of</strong> the papyrus, has been<br />

studied, because it highly influences the water balance <strong>of</strong><br />

the Upper Nile basin. In Zambia heaäwater swamps, so called<br />

dambos, forming a significant part <strong>of</strong> Central African water<br />

resources, are under intensive study. By a comparison <strong>of</strong><br />

the results already available it can be concluded that the<br />

influence <strong>of</strong> the swamps varies according to their storage<br />

capacity, location <strong>with</strong>in the basin and vegetation. Seasonal<br />

distribution <strong>of</strong> rainfall above the swamps plays an important<br />

role as well. In Fig. 4 rainfall-run<strong>of</strong>f relationships as<br />

depending on the percentage <strong>of</strong> the swamps <strong>with</strong>in the Kafue<br />

basin have been plotted. River Kafue has a low gradient-much<br />

below 0,001. From the graph it can be seen how the increased<br />

size <strong>of</strong> swamps reduces the annual run<strong>of</strong>f. Such a type <strong>of</strong><br />

relationship is valid for the swamps <strong>with</strong> u<strong>nl</strong>imited capacity<br />

and located in middle and lower courses <strong>of</strong> the river. On the<br />

other side the headwater swamps behave differently (5). Owing<br />

to the limited storage capacity and high gradient <strong>of</strong> the<br />

swamps the carryover from year to year is negligible and in<br />

most cases the swamps are emptied before the next rainy<br />

season starts. The swamps are sorrounded by dense woodland<br />

where no surface run<strong>of</strong>f can occur and the o<strong>nl</strong>y surface run<strong>of</strong>f<br />

produced from the catchment is from the over-storaged<br />

31


32<br />

groundwater aquifer in the swampy areas. As compared <strong>with</strong><br />

the previous type <strong>of</strong> swamps, the time <strong>of</strong> increased evapotrans<br />

piration is rather limited in the headwaters. However,<br />

representative/experimental catchments are frequently located<br />

in the headwaters and thus any extension <strong>of</strong> the results<br />

toward the lower reaches is very difficult. In Fig. 5 three<br />

curves characterizing the behaviour <strong>of</strong> the headwater<br />

catchments <strong>with</strong> swamps <strong>of</strong> various slopes are plotted. The<br />

lowest line represents flat areas covered by Brachystegia<br />

woodland in the vicinity <strong>of</strong> the swamps. These areas do not<br />

release any run<strong>of</strong>f at all. The middle curve characterizes<br />

the run<strong>of</strong>f from the catchment slope <strong>of</strong> 3%, containing 6% <strong>of</strong><br />

swamps or catchments slope <strong>of</strong> 6% containing 5% <strong>of</strong> swamps.<br />

The upper curve represents an area slope <strong>of</strong> 10% <strong>with</strong> 20% <strong>of</strong><br />

swamps.<br />

The very first attempts to measure the evapotranspiration<br />

from swamps were made by Hurst (6) who concluded that the<br />

evapotranspiration from the Nile papyrus can exceed the<br />

evaporation from free water surface. By some hydrologists<br />

this has been considered as improbable, however recent<br />

measurements support Hurst's conclusion.<br />

Vegetation<br />

As can be seen from the map in Fig. 6, changes <strong>of</strong> the<br />

vegetational cover generally follow the changes <strong>of</strong> the<br />

climate. Thus it might be expected that an intensive<br />

observation <strong>of</strong> catchments established in each <strong>of</strong> the<br />

climatical/vegetational belts can provide a full picture <strong>of</strong><br />

the role <strong>of</strong> the tropical vegetation. However, a more detail<br />

ed map <strong>of</strong> any <strong>of</strong> the regions indicates a great variety <strong>of</strong><br />

vegetational types. It may not be difficult to find a<br />

catchment <strong>with</strong> uniform cover dominant in the region; the<br />

question is whether such a catchment can supply more<br />

representative data than the catchment <strong>with</strong> non-uniform


cover. For example, in the catchments <strong>of</strong> tropical mountains<br />

the vegetation varies accordingly <strong>with</strong> the temperature and<br />

there a catchment covered by all characteristical mountaineous<br />

types is certai<strong>nl</strong>y more representative than a catchment<br />

uniformly covered by one type o<strong>nl</strong>y.<br />

The influence <strong>of</strong> the African vegetation on ‘che hydrological<br />

cycle has been studied for a long time, In 1949 Wicht (7) drew<br />

up a set <strong>of</strong> conclusions on the role <strong>of</strong> vegetation, founding<br />

that the forest will use more water than grass, the consumption<br />

<strong>of</strong> water by forest depends essentially on the amount <strong>of</strong> water<br />

available in the soil and that the removal <strong>of</strong> vegetation causes<br />

an increased discharge. In Kenya actual evapotranspiration/<br />

potential evaporation ratio Et/Eo from various plantations was<br />

measured (8) and in the experimental areas was found that<br />

either bamboo or tall montane forest is an ideal protection<br />

against overland flow, while the replacement <strong>of</strong> trees by<br />

plantation increased the run<strong>of</strong>f.<br />

The evapotranspiration from the grassland and woodland has<br />

been measured in Zambian catchments. It has been found that<br />

the trees consume approximately three times more water than<br />

seasonally flooded grassland. The short grass roots have o<strong>nl</strong>y<br />

a limited chance to consume soil water, while the woodland<br />

trees will tap the water from the groundwater table during<br />

the dry periods. These results were confirmed by soil moisture<br />

measurements and root density analysis (9). It has been proved<br />

also that the Et/€, rate fluctuates year by year and month by<br />

month depending on the meteorological situation, distribution,<br />

intensity and amount <strong>of</strong> rainfall and groundwater storage<br />

available during the dry season (3). The following table<br />

indicates the fluctuation <strong>of</strong> evapotranspiration as obtained<br />

for the swamp grasses and Brachystegia woodland in 1969/70:<br />

33


Month<br />

October<br />

November<br />

December<br />

January<br />

February<br />

March<br />

April<br />

May<br />

July<br />

August<br />

S ep t em b er<br />

Y ear<br />

Rainfall<br />

mm<br />

43.18<br />

80.01<br />

414.27<br />

311.92<br />

237.49<br />

29.97<br />

55.12<br />

. O0<br />

1.02<br />

.o0<br />

11.18<br />

1184.1 5<br />

Evapotranspiration<br />

I<br />

Woodland<br />

mm<br />

Et/Eo Grass Et/Eo<br />

65.35 .4 20.07 .1<br />

98.55 .6 43.82 .3<br />

128.54 .9 95.28 .7<br />

185.71 1.2 97.43 .6<br />

197.91 1.5 71.93 .5<br />

237.05 1.4 77.69 .5<br />

152.66 1.1 39.37 .3<br />

111.54 .9 16.81 .i<br />

74.01 .7 6.02 .1<br />

63.77 .5 5.40<br />

N<br />

60.04 .4 5.28<br />

N<br />

1457.00 .8 407.64 .3<br />

The year 1969/70 was chosen as an example because it followed<br />

after a very wet year and the evapotranspiration from the<br />

woodland exceeded the precipitation, owing to the groundwater<br />

storage accumulated during the wet year. The grass in swamps<br />

evapotranspirated approximately the same amount <strong>of</strong> water as<br />

during previous years. The ratio Et/Eo indicates when the<br />

actual evapotranspiration exceeded potential evaporation.<br />

The values in the table have been determined as limits for<br />

the locations fully covered by the woodland or by the grass.<br />

Supposing the data were applied outside such an intensively<br />

observed area, actual vegetational composition has to be<br />

taken into account, because owing to it actual evapotranspiration<br />

can be found anywhere between the two extrema1<br />

values. The results as obtained in Zambia are representative<br />

for the vegetation <strong>of</strong> tropical wet and dry highlands. To<br />

obtain a more complete picture, similar experiments should


e performed at least <strong>with</strong> two high montane vegetational types,<br />

four types <strong>of</strong> medium altitude forest, two types <strong>of</strong> swamp forest,<br />

two types <strong>of</strong> forest savanna mosaic, four types <strong>of</strong> wooded<br />

savanna, two types <strong>of</strong> thicket, two types <strong>of</strong> swamp vegetation<br />

and various types <strong>of</strong> tropical cultivated areas.<br />

Topography<br />

From flat areas covered by the Brachystegia woodland neithein<br />

surface nor sub-surface run<strong>of</strong>f has been observed. An occurrence<br />

<strong>of</strong> flow was observed o<strong>nl</strong>y from the parts <strong>of</strong> the catchments<br />

having some pronounced gradient. Mixed vegetation found there<br />

suggest the idea that the vegetational cover is influenced by<br />

the gradient as well. Actual influence <strong>of</strong> the catchment slope<br />

can be analysed by a comparison <strong>of</strong> rainfall-run<strong>of</strong>f relationships<br />

developed for neighbouring catchments <strong>of</strong> different gradients.<br />

In Fig. 7 there is a family <strong>of</strong> graphs developed for the<br />

equatorial highland region. Very likely, for dry-wet tropical<br />

highlands the run<strong>of</strong>f values will be higheri for the same amount<br />

<strong>of</strong> rainfall, owing to the increased rainfall rates <strong>of</strong> separate<br />

rainfalls.<br />

Attention should be paid also to the size <strong>of</strong> the representative/<br />

experimental areas. According to Toebes and Ouryvaev (2) the<br />

recommended size lies between 1 and 250 km2 and rarely exceeds<br />

1000 km2. Frequently the areas less than 100 km2, so called<br />

small catchments, are recommended for experimental catchments,<br />

this being based on the presumption that a certain uniformity<br />

can be guaranteed. As follows from the previous discussion,<br />

the significant factors in the tropical hydrological cycle are<br />

highly variable even in small areas and no catchment is small<br />

enough from the point <strong>of</strong> view <strong>of</strong> the uniformity. On the other<br />

hand the extension <strong>of</strong> data from very small areas is not an easy<br />

task. It can be perhaps concluded that in tropical regions where<br />

o<strong>nl</strong>y observational network <strong>of</strong> low density is available, a<br />

catchment <strong>of</strong> any size can be considered as representative<br />

35


36<br />

providing that a higher accuracy <strong>of</strong> basic hydrometeorological<br />

data can be obtained from there than from the standard<br />

network Several catchments established <strong>with</strong>in the main area<br />

can increase the amount <strong>of</strong> information remarkably. A similar<br />

increase can be achieved by the observation <strong>of</strong> several<br />

neighbouring catchments. Sometimes occurrence <strong>of</strong> two or more<br />

factors in some extremal forms can produce rather surprising<br />

results. For instance, at one catchment in Kagera basin near<br />

the Tanzanian-Ugandan borders, steep mountains are drainaged<br />

into an extensive swamp. As a result, the run<strong>of</strong>f coefficient<br />

reaches almost 30%, which is surprisingly high value for the<br />

tropics. Data from such a catchment cannot be applied directly<br />

to the neighbouring basins, however, since a more dense network<br />

has been established there and the effects resulting from the<br />

combination <strong>of</strong> two extremal factors can be measured and analysed,<br />

the catchment can serve as a representative area as well.<br />

CONCLU SION S<br />

Misleading results can be obtained from direct application <strong>of</strong><br />

the data obtained from the experimental catchments in the<br />

tropics. Therefore, whenever possible, data from experimental<br />

and representative catchments should be compared and combined<br />

<strong>with</strong> the data as obtained from the standard network. Parti-<br />

cularly basic data, such as annual rainfall, run<strong>of</strong>f and yield<br />

should be compared before any further analysis is carried out.<br />

Any difference between the data as obtained from the catchments<br />

and from the standard network should be fully explained and the<br />

data developed for any cross section <strong>with</strong>in a basin should fit<br />

<strong>with</strong> the data €or the headwater catchments and for the lowest<br />

observed point as well. O<strong>nl</strong>y equal periods <strong>of</strong> observation<br />

should be used for the comparison, although in some cases it<br />

mean neglecting the long term records. The long term records<br />

however, are to be used later on, together <strong>with</strong> long term<br />

precipitation records, for the extension <strong>of</strong> data <strong>with</strong>in a<br />

reg ion.


In table 1 an example <strong>of</strong> the basic data for the Kafue river<br />

basin is given based on the observation <strong>of</strong> the experimental<br />

catchments and standard network as well. Conclusions <strong>of</strong> the<br />

research on the swamp behaviour served as an additional<br />

source <strong>of</strong> information. Map indicating rivers and swamps is<br />

in Fig. 7 (Headwater swamps are too small and cannot be<br />

traced in the map, however it has been estimated that they<br />

cover at least 10% <strong>of</strong> the basin headwaters). Once the data<br />

€or hydrologically significant cross sections such as<br />

confluences, swamp inflows and outflows, observed cross<br />

sections etc. have been estimated, the calculation <strong>of</strong> the<br />

data €or any point <strong>with</strong>in the main basin is easy and more<br />

reasonable.<br />

According to the UNESCO survey and other sources, more than<br />

one hundred representative/experimental catchments have<br />

been established in various parts <strong>of</strong> the African tropics.<br />

More information can be obtained from them providing that<br />

the materials is collected and analyzed jointly.<br />

More attention, should be paid to the hydrology <strong>of</strong> tropical<br />

swamps, because they play an important role in tropical<br />

hydrology.<br />

The results available from severa$ experimental catchments<br />

indicate that various hydrological methods currently used<br />

in temperate regisns need to be reviewed, regarding special<br />

conditions existing in tropical catchments.<br />

37


i.<br />

2.<br />

3.<br />

4.<br />

5.<br />

6.<br />

7.<br />

8.<br />

9.<br />

38<br />

--<br />

REFERENCES<br />

--_____-__________-_--_----__- 1971. Discharge <strong>of</strong> selected<br />

rivers <strong>of</strong> the world. UNESCO, Paris.<br />

Toebes, C., Ouryvaev, V., 1970. Representative and<br />

experimental basins. UNESCO, Paris.<br />

Balek, J., Perry, J., 1972. Luano catchments, first phace-<br />

final report. National Council for Scientific Research,<br />

TR 28 Zambia.<br />

Balek, J., Perry, J., 1973. <strong>Hydrology</strong> <strong>of</strong> seasonally inundated<br />

African headwater swamps, Journal <strong>of</strong> <strong>Hydrology</strong>. In print.<br />

Jackson, I.J., 1971. Problems <strong>of</strong> throughfall and interception<br />

assessment under tropical forest. Journal <strong>of</strong> <strong>Hydrology</strong> 12.<br />

Hurst, H.E. Le Nil. Paris.<br />

Wicht, C.L., 1949. Forestry and water supplies in South<br />

Africa. Dept. Agric. S. Afr. Bul. 33, p. 58.<br />

Pereira, H.C. 1962. Hydrological effects <strong>of</strong> changes in land<br />

use in some East African catchment areas. East Afr. Agric.<br />

Forestry Journal 27.<br />

Maxwell, D., 1972. Root range investigations. National<br />

Council for Scientific Research, TR 26 Zambia.


Y<br />

ri<br />

Lc<br />

O<br />

39


djONnä 1WlNNVjO WU<br />

O m<br />

ul<br />

O<br />

I- O<br />

O


RNNLJQL RFIINFQLL 1966- 67, LUQNO - CQTCHMENTS .-<br />

v Gauging Statlms<br />

Levei at lûûûmm<br />

Fig.3


O<br />

P 8 8 8 a


Fig ,6


ABSTRACT<br />

REGIONAL VALUATION OF IIYUROLOGlCAL INFORMATION<br />

Y. Cormary - J.M. Masson<br />

This information, inadequate by its very nature, is basically obtained as<br />

temporal series <strong>of</strong> climatic, hydrometric and water level data, <strong>of</strong> different<br />

durations.<br />

A diagnosis about data coherency and the subsequent possibility <strong>of</strong> regional<br />

interpolation, might result <strong>of</strong> different methods.<br />

1.<br />

2.<br />

3.<br />

RESUME<br />

The mere report on a map <strong>of</strong> the parameters (<strong>of</strong> probability for instance)<br />

related to classical hydrologic variables. For the 12 months <strong>of</strong> monthly<br />

variables this yields however too many values. A solution might be the<br />

fitting to the 12 values <strong>of</strong> a parameter, <strong>of</strong> a FOURIER <strong>of</strong> which o<strong>nl</strong>y the<br />

2 to 4 first coefficients may be conveniently retained for cartography.<br />

Report on a map <strong>of</strong> the basic stochastic processes parameters. Probability<br />

distribution <strong>of</strong> many hydrologic var,iables are derived from those proces-<br />

sed and thus depend on the interpolated parameter values. Furthermore<br />

these processes make a better use <strong>of</strong> the existing information and a gaghg<br />

point. Analysis <strong>of</strong> coincidences between different recorded series may also<br />

improve the estimation parameters on the short ones.<br />

Principal componentes analysis (mai<strong>nl</strong>y on climatic data) which through an<br />

interpolation <strong>of</strong> covariance matrix, outline some regional tendancies and<br />

a quantitative interpolation at any point.<br />

4. Analysis <strong>of</strong> variance <strong>of</strong> regressions between flows and rainfalls for instance<br />

on n different watersheds, in order to obtain the effect or morphological,<br />

geological, vegetation, soil factors and therefore transform<br />

a basically qualitative information into a quantitative one.<br />

Each <strong>of</strong> these methods has been actually employed on the rivei- Allier (France).<br />

L'information, insuffisante par nature, est représentée essentiellement par<br />

des series chronoligiques de données climatiques, hydrométriques et piézométriques<br />

plus ou moins longues et nombreuses. '<br />

Un diagnostic d'interpolation sur la cohésion des mesures et les possibilités<br />

d'interpolation géographique peut s'effectuer de plusieurs manières différentes:<br />

1. Cartographie des paramètres des lois de distribution de variables hydrologiques<br />

classiques. Pour des variables mensuelles, ceci aboutit à prendre<br />

en compte un nombre trop important de paramètres. Une solution consiste à<br />

ajuster des séries de FOURIER pour représenter l'évolution des paramètres<br />

au cours de l'année. I1 suffit alors de cartbgraphier 2 à 4 coefficients,<br />

les autres étant des constantes caractéristiques de la région.<br />

2. Cartographie des paramètres des processus stochastiques de base, qui permettent<br />

entre autre de retrouver les lois de distribution des variables<br />

hydrologiques, mais décrivent mieux qu'elles la totalité du phénomène<br />

(pluies ou crues) et utilisent mieux la totalité de l'information disponible.<br />

3. L'analyse de la concomitance des phénomènes entre séries de meme nature ou<br />

non permet de mieux estimer les paramètres de ces processus (modele de renouvellement<br />

double).<br />

3. Analyse des composantes principales (sur les données climatiques essentiellement)<br />

qui permet de dégager les quelques tendances régionales predominantes<br />

et permet une interpolation en tout point.<br />

4. Analyse de variance des coefficients de n régressions ajustées entre variables<br />

hydrologiques (pluies et débits par exemple) sur n bassins versant dif<br />

férents pour mettre en évidence l'influence des caractéristiques physiqueset<br />

morphologiques (géologie, végétation, pente, ... ) et prendre en compte de<br />

manière quantitative une information de type naturaliste essentiellement<br />

qualitative.<br />

Chaque méthode a été utilisée au cours d'une étude du bassin versant de la rivi$re<br />

Allier.<br />

-<br />

Yves CORMARY - Ingénieur Agronome - Laboratoire National d'Hydraulique - Pr<strong>of</strong>esseur<br />

Associé à l'Université des Sciences et Techniques du Languedoc - MONTPELLIER (Fran-<br />

ce).<br />

Jean-Marie MASSON - Inggnieur Agricole - Maître Assistant à l'Université des Scien-<br />

ces et Techniques du Languedoc - MONTPELLIER (France).


48<br />

I - INTRODUCTION<br />

En hydrologie, l'information est constitu6.e esscntiellement<br />

par des mesures de paramètres hydrométriques, climatiques et piézo-<br />

métriques. Ces mesures sont des variables liges à l'espace (l'endroit<br />

uù ia mesure a été effectuée) et au temps (l'époque où eiie a et6<br />

effectuée).<br />

Sur un emplacement donné, la mesure d'un paramètre est<br />

faite de manière continue ou à intervalles de tmps rh~.,iillc.r. 1.a<br />

suite des mesures au même emplacement constitue line séric rhronologique.<br />

Régionalement, au cours des années, les emplacemerts des<br />

points de mesure changent et on se trouve finalement en présence<br />

de séries chronologiques plus ou moins longues et plus WI moins<br />

nombreuses.<br />

Cependant, quand un problhe relatif à l'eau se ;rose -et<br />

le nombre des problèmes qui se posent ne cesse d'?iipeii'-er .avec<br />

le développement économique de nos régions-. I1 n'mistc p:.iti,uc-<br />

ment jamais à 1' emplacement souhaité les infnrmationn nécessaires<br />

pour résoudre le problème, ou tout au moins ces infarnations sont<br />

insuffisantes. Un des moyens de pallier ce manque de donz6es en<br />

quantité suffisante et au bon endroit, consiste à rnobi1is.c.r toute<br />

l'information disponible sur la région environnante.<br />

En France, l'importance de cette valorisation dc l'infor-<br />

mation régionale n'avait pas échappé au co<strong>nl</strong>té "Actior. Concertée<br />

Eau" qui proposait comme sujet d'htude en lu65 d'abord- les<br />

problemes de ressources de maniere scientifique et ri:.iwalc et<br />

de procéder à une synthèse sur un bassin d'assez vaste fiinen!,ion.<br />

Le souhait du comite se concrétisa par un cf'iltïat d'Etude<br />

passé entre la Dflégation GCnérale .? 12 Xcrkerchc Cr i.'u;i:ifique et<br />

Technique (D.G.R. C.T. ) et le tahoratoire F:.:.7ticriai d"1ydrsuliqrie<br />

(E.D.F.). Le bassin choisi fut celui de 1'ALLT.IR (14 O00 km2j et<br />

parmi les sujets étudiés, on relevait : "ia mise sur pied d'iriie<br />

étude des lois de distribution à l'6chelle régionale, permettant<br />

de créer de nouveaux nodoles dc repr6sentatinn, d'extrnpoler<br />

l'inforination et de déterminer une hiérarchie de l'iii:>:-&t dc<br />

chaque station".


L'étude effectuée par le Groupe Hydrologie du L.N.H. et<br />

la Faculté des Sciences de Montpellier a fait l'objet d'une publication<br />

de synthese sous forme d'un atlas cartonné et illustré intitulé :<br />

"Méthodes d'.études régionales des reesources en eau".<br />

Nous développons ici quelques pages de cette publication,<br />

pages consacrées des méthodes d'analyses régionale3 de l'information.<br />

-<br />

11.- INTERPOLATION REGIOXALE DE L'INFORXATION ET ANALYSE DE LA COHEREK'CE<br />

SPAT1 ALE.<br />

i 1 - 1 - pf~se_elcom~qe_be_lljnooimsq~oo_Ear c arto9laE-~-_régionale -<br />

A/- Au moyen de processus s tzchastiques simples.<br />

Une série chronologique sur une station, par exemple<br />

la série des observatiors journalières des précipita,tions ou<br />

des débits, présente une structure bien particulière qu'on<br />

peut représenter au moyen d'un processus stochastique.<br />

Le type de processus le mieux adapté à beaucoup de<br />

phénomènes est un processus de r~nouvellement.<br />

4<br />

hrru t eu r<br />

des pluies y1<br />

T1<br />

Tt<br />

y3<br />

49<br />

temps<br />

Pour tenir c'ompte des variations saisonnières, on dé-<br />

coupe l'année en périodes OU le processus est à peu près sta-<br />

tionnaire : les Ti successifs, durées entre les événements,<br />

doivent &tre indépendants et suivre la même loi de probabi-<br />

lité de densité f(T). Les Yi successifs doivent être égale-<br />

ment indépendants et suivre la même loi de probabilité de<br />

densité g(y).


50<br />

I1 s'agit donc de trouver ces lois de probabilité des variab!es<br />

fondamentales T et Y et d'estimer leurs paramètres, ce qui nous ramène<br />

aux méthodes classiques de la statistique avec cependant ces différenres<br />

- On mobilise toute l'information. Ainsi pour la pluie, on<br />

tient compte aussi bien des jours secs que des jours pluvieux<br />

- Ces variables fondamentales sont observées en grand riombre,<br />

ce qui rend leur analyse statistique beaucoup plus valable que l'ana-<br />

lyse de variables déduit:., fonction souvent compliquée des variables<br />

fondamentales (les pluies ou les débits maximums par exemple).<br />

. Un modèle a été ainsi construit pour représenter la sixcessiun<br />

des pluies journalières à une station.<br />

I1 suppose que la hauteur d'une pluie journalière est la SOIIIIIIP<br />

d'averses fictives se produisant à des instants aléatoires et rpportant<br />

des quantités de pluie aléatoires. Si le nombre des averses par jour<br />

pluvieux suit une loi de POISSON et que les hauteurs des averses<br />

fictives suivent une loi exponentielle, les hauteurs de pluie journa-<br />

lière doivent suivre une loi des fuites (loi I G ama zéro), ce qui<br />

est bien vérifié siir les stations de l'ALLIER. On peut alors estimer<br />

2 paramètres du processus.<br />

p = hauteur moyenne des averses élémentaires fictives<br />

= nombre moyen d'averses élénientaires fictives par jour de<br />

pluie.<br />

c<br />

Ceci, à partir de la moyenne P 24 et de la variance b224<br />

des pluies de 24 heures non nulles.<br />

p=--- *24<br />

L<br />

P24<br />

P=<br />

-<br />

2 P 242<br />

/I 224<br />

Les deux autres paramètres du modèle sont :<br />

TI<br />

T2<br />

durée moyenne des episodes secs<br />

durée moyenne des épisodes pluvieux.<br />

qui permettent de connaître en terme de probabilité ilétat sec ou<br />

pluvieux d'un jour connaissant l'état du jour précédent ; on a en effet<br />

G ér if i é le caractère markovien de la matrice de transition des états.<br />

On a :


La cartographie des différents paramètres sur l'ensemble<br />

des stations du bassin de l'Allier s'crganise bien et permet l'in-<br />

terpolation des parametres du modèle pour n'importe quel point du<br />

bassin, ainsi que le montrent les graphiques ci-joints concernant<br />

le mois d'octobre.<br />

D'une manière généraìe.on remarque :<br />

- l'influence atlantique (Ti court, T2 long,/U fort, faible).<br />

- l'influence méditerranéenne IT, long, T2 court,,U faible,/=, fort).<br />

Le processus peut s'appliquer aussi aux crues et aux t'empé-<br />

ratures moyennant la fixation d'un seuil.<br />

E/- .Au moyen de processus stochastiques associés.<br />

Exposé simplifié du modèle associant crues et pluies (;enou-<br />

vellement double).<br />

Chaque processus est défini B partir de la. distribution des durées<br />

ectre événements H1 et de celles des grandeurs des événements<br />

(z, 1 -<br />

Par convention, il y a un événement "crue" ou "pluie" quand<br />

la variable dépasse un seuil choisi pour que, en particulier, les<br />

caractéristiques de grandeur (volume total, valeur de pointe) enregistrées<br />

pendant que la variable est au-dessus du seuil, et les caractéristiques<br />

de distributibn dans le temps (durée séparant 2 év6nements<br />

homologues) ne soient pas autocorrélées niais que les 2 6x76nements<br />

pluies-débits soient aussi fréquemment associés que possible.<br />

- pour certains événements (Xi et X2) il y a concomitance entre 1<br />

et II (Pi cas). Sur les grandeurs (zl et Z2) est évaluée la corréletion<br />

pluies crues<br />

I<br />

x2<br />

S<br />

4<br />

x2 s<br />

4<br />

51


52<br />

- pour d'autres événements (X 3, P3 cas et X4, P4 cas) ii n'y a<br />

pas concomitance. Ceci s'explique entre autre chose par le fait<br />

que nous sommes obligés de définir un seuil de dépassement cons-<br />

tant sur chacune des deux variables pluies et débits quelle que<br />

soit la saison ou la saturation du sol.<br />

- Marche h suivre :<br />

Sur une courte période T1 on évalue à la f ois les paramètres<br />

du rencuvellement simple simultané sur chacun des deux processus, on<br />

estime égzlement la corrélation existant entre les grsideurs hydrométriques<br />

-.t les grandeurs pluviométriques (Zl, Z2) soit & . Sur la<br />

série longue (Ti + T,) on estime les paramètres du proce;ci;s pluies<br />

L<br />

seul.<br />

Soit ûT1 un paramètre donné du processus crues, moyenne du<br />

nombre annuel de crucs par pérjrJde, des débits maximums, ou des voiumes<br />

de crue,évalué sur une série courte de T1 et accompagné de<br />

sa variance d'érhantillocnage, soit Var (8 ). La prise en consid&-<br />

T1<br />

ration du procescus pluies (sur T, + Tz) nous permet alors, d'évaluer<br />

de nouvelles estimations des paramètres du processus crues ;<br />

estimations dites améliorées, qui sont accompagndes de nouvelles Trariances<br />

d'échantillonnage plus réduites appliquhcs da.is la théorie<br />

du renouvellement.<br />

D'autre part, ccs améliorations seront d'autant plus effica-<br />

ceti que les proportions :<br />

a =<br />

seront plus fortes.<br />

+ +<br />

P1<br />

et b =<br />

P1<br />

p3 pl p4 pl<br />

Le résultat final rend compte de la superpositioii du proces-<br />

sus X, (Z,) et X (Z ) dans les lois déduites sur les crues<br />

3 3<br />

C/- Autres .néthodes d'analyse de la cohérence temporelle des séries chro-<br />

nologiques.<br />

Dans certains cas, il suffit de mettre seulement en évidence<br />

la simultanéité des événements : l'association statistique des épi-<br />

sodes pluvieux h deux stations ou celle des crues et épisodes plu-<br />

vieux sur un bassin. Dans d'autres, les deux séries de données peu-<br />

vent être considérées comme respectivement les entrées et les SOT-<br />

ties d'un système de transformation dont on cherche à identifier à<br />

la fois la structure et les paramètres (transformation des pluies<br />

en débits sur un bassin restreint, des débits amont en débits aval<br />

sur.un bief, de la pluie en variations d'un écoulement issu de nap-


pes). Suivant la nature des hypothèses (ou des connaissances) le<br />

linéarité, l'invariance dans le temps ou suivant le niveau des<br />

entrées du système, la solution est facile, difficile ou impossi-<br />

ble.<br />

Si le système de transformation n'a pas ou ne prétend pas<br />

avoir de signification physique il suffit d? détzrminer la fonc-<br />

tion (dite boîte noire) de transformation la plus efficace. Les<br />

transformations de Laplace, de Fourier, etc. répondent à ce pro-<br />

blème de même que les études dc type 'diener sur les fonctions<br />

aléatoires (en utilisant les estimations des fonctions de corré-<br />

lation et d'nutocorrélation sur plusieurs couples, entráes-s<strong>of</strong>ties.<br />

L'analyse spectrale a aussi conme intérêt d'expliciter mieux que<br />

les procédés classiques la structure des corrélations et l'effica-<br />

cité d'un échantillonnage de mesures un pas de temps déterminé.<br />

Le calcul automatique permet essentieliement les raìciils ma-<br />

triciels, le tirage au hasard (simulation) et la répétition infinie<br />

des tatonnements fastidieux. Les applications en sont :a généralisa-<br />

tion des calciils d'amélioration des stations cuuztes en fonction de<br />

plusieurs stations longues, i'utilisation des techniques de l'analy-<br />

se factorielle pour étudier les liaisons entre variables ou entre<br />

groupe de variables. Ce qui met an évidence les redondances entre<br />

variables ou entre mesures et permet de retenir les plus significa-<br />

tives (analyse discriminante ou canonique.<br />

Ces méthodes élémentaires en dehors des services apprécia-<br />

bles qu'elles rendent par elles-mêmes font parties intégrantes de<br />

méthodes plus élaborées que l'ordinateur permet de maîtriser et sur-<br />

tout d'appliquer à un ensemble important de données hydrornétéorolo-<br />

giques (plusieurs postes, plusieurs variables).<br />

11.2- F.lodele rigional statistique -___-_- _--_ des pluies _-___-_-_____-_-<br />

mensuelles.<br />

I1 s'agit d'expliciter la cohérence spatiale des précipita-<br />

tions mensuelles, afin, par exemple d'optimiser le réseau de mesures.<br />

Sur l'Allier 30 stat'ions avaient fonctionné pendant 40 ans simultané-<br />

ment. Une telle information peut facilement se condenser sous la forme<br />

d'un tableau carré 30 x 30 dont chaque élément m i j représente soit<br />

la variance, soit la covariance, entre la station i et la station j.<br />

Une méthode dite "des composantes principales'' permet par<br />

un opérateur linéaire matriciel A d'élhments a i de passer des 30 va-<br />

riables aléatoires initiales X (pluviométrie des 40 années successives)<br />

à 30 variables aléatoires Y indépendantes, dont la matrice de corréla-<br />

tion est ,cette fois-ci diagonale. C'est-à-dire ne comportant que des zé-<br />

ros pour les covariances. De plus, cette matrice rassemble dans les tous<br />

premiers texnies dc la diagoii<strong>nl</strong>c toutr la variation coiiteniie dans 1 'in-<br />

formation ini tiaie. En revcnant dans 1 'espace initial chaque variable<br />

53


54<br />

aléatoire X de départ peut s'écrire sous la forme d'une combinaison<br />

linéaire des 3 ou 4 composantes les plus importantes, dites principa-<br />

les.<br />

Les coefficients de ces combinaisons linéaires indiquent<br />

la part prise par chaque station L'la constitution de chacun de ces 3<br />

ou 4 facteurs essentiels et indépendants. D'autre part chaque station<br />

est pour chaque mois caractérisée par un petit nombre de paramètres<br />

que l'on peut cartographier de manière cohérente.<br />

x =<br />

de réa-<br />

lisa-<br />

tioris<br />

Notons m..<br />

Xl<br />

m.<br />

= variance (Xi)<br />

= covariance (X.,X.)<br />

N = 30<br />

= 40<br />

ij 1 J<br />

X 1,'<br />

On peut rassembler ces mii, m. en une i.iatrice de covarian-<br />

1j<br />

ce c'est-à-dire un tableau carré<br />

mil' m12' m13 ............................. m<br />

1N<br />

m2,, mZ2 ....................................<br />

............................. m.. ............<br />

Ji<br />

..............................................<br />

%i .......................................... m<br />

N,N<br />

Cette matrice symétrique (m.. = m..) comporte des éléments<br />

a<br />

trop nombreux pour en dégager les partiidlarii!es, et on va tenter par<br />

une transformation de les réduire.<br />

Puisque les dernières composantes principales Y sont assi-<br />

milables B des constantes, on peut écrire grâce aux propriétés de la<br />

matrice d'éléments a. (matrice unitaire dont l'inverse égale la trans-<br />

pos6e) : ij<br />

3<br />

k<br />

xi = aij<br />

yj + c


où C est en particulier une constante ùe centrage tenant compte en moyen-<br />

ne des composantes négligées, K étant le nombre de composantes principa-<br />

les retenues.<br />

Les Y. n'étant pas corréìés, (3) signifie que ia pluie men-<br />

suelle Xi a la station i est une combinaison linéaire i.e, une somme<br />

pondbrée d'effets Y. non corrélés, ce qui suggère que ces effets sont<br />

ceux des régimes climatiques ind6pendants et dominants sur le bassin.<br />

Pour caractériser fl, on reporte sur-la carte du bassin aux<br />

N stations longues, les valeurs des coefficirnts a. ... On cons-<br />

11<br />

fate que ces valeurs s'organisent, présentent une direction systématique<br />

de variation, perturbée, ce qui Pst normal, par le relief du bassin. On<br />

procdde. de meme pour Y P4,.puisque dans 1,'Allier ces 4 composantes<br />

occupent 80 à 90 $2iey?i variance totale.<br />

Les cartes obtenues suggèrent qu'on assimile Y1, quiprend k<br />

lu: seul 70 % de la variation, aux influences climatiques dominantes ve-<br />

nant du Nord-Ouest. Y,, avec 10 & 15 $ de la variation et un gradient des<br />

courbes orients Sud-XÕrd, est assimilable aii climat méditerranGen-<br />

Enfin Y et Y reprbsenteraient les influences continentales<br />

3 4<br />

assez importantes dans les vb!lées de l'Allier.<br />

Ces transformations permettent :<br />

1.- de reconstituer les pluies aux points sans mesures. Les valeurs des<br />

Coefficients a; . comme nous 1 'avons vu peuvent s'interpoler Yynopti-<br />

quement. I1 estJalors possible de procéàer d'abord pour chaque année<br />

et à l'aide de la pluviométrie des stations longues au calcul de la<br />

réalisation des quatre ou cinq composantes principales pour chaque<br />

mois. Ensuite, les coefficients 8. lus sur les K cartes permettent<br />

14 .<br />

inversement de calculer la pluviom trie en un point quelconque à par-<br />

tir des K (quatre ou cinq) composantes précedenment calculées.<br />

La théorie permet d'expliciter les erreurs résiduelles dues<br />

au fait qu'on se limite aux quatre ou cinq composantes qui expliquent<br />

80 à 90 % de la variance totale.<br />

2.- d'estimer les corrélations entre les pluies mensuelles de deux points<br />

quelconques du bnssin. On calcule d'abord les variances et covariances<br />

pour ces deux points à partir des coefficients aij et de la variance<br />

des composantes principales (valeurs propres) correspondantes- Ce cal-<br />

cul permet celui de corrélation et débouche sur des indications objec-<br />

tives concernant la gestion du reseau (puisqu'on pcut déterminer a la<br />

fois l'information ajoutée par chaque poste & la connaissance de la<br />

lame d'eau et l'étendue ,de la "zone d'influence'' de ce poste).<br />

3.- Le calcul de la loi de probabilité de la lame d'eau sur une surface<br />

quelconque (bassin versant) puisque l'on connaît la pluviométrie dr<br />

toutes les iascs 6I6iiiPntaires quc l'on pcut dbcouper dans le bassin<br />

versant eii mPme teinpc que leur corrélation.<br />

55


56<br />

4.- calciil de la loi de probabilité d'une sécheresse simultanée à plu-<br />

sieurs stat


L'autocorrélation des ddbits (et des pluies) s'apprécie<br />

sur l'ensemble des stations et conduit à ui,e fonction annuelle lissée.<br />

La simulation se fait par un processus de Markov d'ordre 1<br />

compte tenu de la matrice des intercorrélations, les erreurs étant ti-<br />

idpc dans des lois normales centrées. Les moyennes, écarts types pour<br />

chaque station et chaque mois se déduisent de la cartographie des quel-<br />

ques paramètres du lissage précédent.<br />

Lorsqu'il s'agit de simuler en tenant compte des séries<br />

historiques de pluies, il faut pallier la faible autocorrélation des<br />

pluies : un tirage des erreurs ayant une forte corrélation avec les<br />

débits générés au mois précédent est substitué au tirage au hasard.<br />

III.- MODELES KEGIOSAL'X AShLYTIQL"o8.<br />

m.1- A l'échelle - - annuelle.<br />

-___<br />

Sur le bassin versant de l'Allier et à condition de consi.dé-<br />

rer la meme période de temps, les débits annuels D sont linéairement<br />

liés aux précipitations annuelles P (23 bussins étudids). Les cocffi-<br />

cients de r6gression et les ordonnies 9 l'origice ont des val:%urs<br />

qui dépendent des caractéristiques physiqucc des bassins. Les carac-<br />

téristiques qui ont le plus d'influence sont : la pente moyenne et<br />

le pourcentage de terrains incultes.<br />

Ces variables ont un? signification discutable dans la me-<br />

sure OU elles en intkgrent beaucoup d'autres (géologie, altitude,<br />

etc.).<br />

Une analyse de variance - effectuhr en fonctioii de 2 ou 3<br />

modalités des deux caractéristiques prépondéran-tes - nous a per-<br />

mis de choisir statistiquement les coePfi.cients de régression et<br />

l'ordonnt5e à l'origine a retenir suivant les modalitós qui slave-<br />

rent reprisenter des cas différents.<br />

- Résultats de l'analyse de variaLice sur IPS relations<br />

pluie-débit 1'6ciielle aniiuellr.<br />

30<br />

7 30<br />

I<br />


58<br />

Ces liaisons peuvent être utilisges pour allonger des séries<br />

ou mieux pour obtenir les paramètres des lois de distribution des<br />

débits annuels. Sur un bassin supposé ne comporter aucune mesure,<br />

on retrouve ìn. moyenne à 1 6 près mais on sous-estime ia vnriance<br />

de 40 5.<br />

m.2- A l'échelle de la crue.<br />

~<br />

Une crue peut être assimilée à un volume modulé dans le temps.<br />

- Le rrridement de la pluie conditionne le volume R. Sur l'Allier, le<br />

meilleur type de liaison trouvé entre R et la pluie totale P est<br />

U = a.Fb. avec Q débit avant ia crue ; b, c et a sont des<br />

coefficirnts dont la'valeur varie d'un bassin à l'autre et peut<br />

etre reliée aux caractéristiques physiques et morphologiques.<br />

Les valeurs de a et b dépendent surtout de carartéristiques<br />

morphologiques et physiques : s'. de forêts, de labours, géologie,<br />

surface... C'ne analyse de variance faite eri fonction de plusieurs<br />

modalités de 2 de ces caractéristiques, permet de déterminer les<br />

coefficients iì prendre en considération.<br />

- La modulation dans le temps peut être étudiée moyennant une hypo-<br />

thèse de linéaiitl psr la théorie ¿!e l'hydrogramme unitaire.<br />

Sur l'Allier, les hydrogrammes unitaires trouvés sont commo-<br />

dément représentés par l'équation d'une courbe (Pearson III) qui est<br />

définie grâce à deux paramètres o( et K qui sont estimés à partir<br />

des moments H, et M2.<br />

Ces valeurs, différentes d'un bassin à l'autre peuvent être<br />

reliées par analyse de variance à des caractéristiques morphologi-<br />

ques telles que : la longueur et la pente du "rectangle équivalent",<br />

le pourcentage de la surface du bassin occupée par les gneiss, l'hyp-<br />

Sométrie et la surface du bassin versant.<br />

Sur un bassin non jaugé, à partir des caractéristiques physi-<br />

ques il est donc théoriquement possible, pour une pluie donnde, ales-<br />

timer le rendement et la modulation de la crue correspondmte.<br />

Les mêmes modalités d'approche permettent de relier les pa-<br />

ramètres des corrélations des débits minimums annuels de 30 j (Q30<br />

en l/s/km2) avec un facteur climatique (calculé à partir de P et<br />

1IE:T.P.) à la géologie et Èi la surface des bassin.


IV.- CO?;CLUSION.<br />

Ces dernières méthodes en cours de développe'ment, rejoi-<br />

gnent la théorie du contrôle qui est aussi une des bases de l'opti-<br />

misation économique. Ceci contribue à créer un outil et un langage<br />

commun aux économistes et RUX hydrologues. En meme temps, se fait<br />

jour, chez ces derniers en particulier, le souci d'expliciter "la<br />

valeur ajoutée" non seulement de leurs méthodes (ou modèles) mais<br />

aussi de leurs mesures et même de l'organisation de celles-ci (ré-<br />

seaux). Cette valeur ne peut s'expliciter qu'à travers une intégra-<br />

tion au plan des décisions économiques, intégration qui met en jeu<br />

d'autres variables beaucoup plus mal connues que la variable hydro-<br />

logique.<br />

L'exemple actuel le plus préoccupant qui peut concréti-<br />

ser ce problème de l'élaboration de l'information pour SR mobilisa-<br />

tion en vue d'un objectif prxcis, est bien entendu celui de la pol-<br />

liition. Dans ce domaine il est clair que l'emploi d'un modèle quel<br />

qu'il soit suppose dès le départ une méthode d'acquisition des don-<br />

nées conçiies.en fonction du modèle. I1 ne peut être seulement ques-<br />

tion d'utiliser l'information statistique issue d'un paramètre iso-<br />

lé à la significat.ion très fluctuante dans le temps et suivant la<br />

valeur d'zutres paramètres et dérivan$ au cours des années sous l'in-<br />

fluence des progrès de l'industrie. Une exploration préalable, par<br />

simulation sur le modèle' envisagg devrait permettre de définir cet-<br />

te stratégie d'acquisition des données. Celui-ci permet d'explorer<br />

les conséquences en particulier biologiques et écbnomiques des va-<br />

riations de tel ou tel facteur dont l'homne a la maîtrise (soutien<br />

des étiages ou modifications de la charge polluante).<br />

C'est-à-dire l'évolution rapide vers l'intégration et<br />

l'interprétation, dans le domaine de l'eau ,des diverses discipli-<br />

nes axées sur l'étude spécifique soit des ressources superficielles<br />

ou souterraines, soit de la pollution, soit des besoins oil des pro-<br />

blèmes économiques. Ces domaines sont encore assez séparés et il en<br />

résulte un effort d'adaptation permanent.<br />

t *<br />

t<br />

Cette note evoque divers points développés dans une publication de<br />

synthèse du Laboratoire National d'Hydraulique et du Laboratoire<br />

d'Hydrologie de Montpellier, éditée sous l'égide de la Délégation<br />

Générale à la Recherche Scientifique et Technique, ouvrage de 133 pages<br />

intitulé "Méthodes d'gtude régionale des ressources ell eau. Application<br />

au bassin dè l'Allier'', dont les auteurs principaux sont MM. CORMARY,<br />

BERNIER, MASSON, LOBERT, DAUTY, SAUCEROTTE, etc... Cette publication<br />

synthétise un bon nombre d'6tudes méthodologiques dont le but est la<br />

valorisation régionale de l'information.<br />

59


ABSTRACT<br />

LE TRANSFERT D'INFORMATION HYDROLOGIQUE<br />

A DES BASSINS VERSANTS NON OBSERVES<br />

Par<br />

Pierre DUBREUI L*<br />

The lack <strong>of</strong> sufficient hydrological datas is generally more<br />

important in the basins <strong>of</strong> small area and located in poorly<br />

developed countries. To estimate the water resources in such<br />

basins, we have to do a transfer <strong>of</strong> information from "similar<br />

basins" for which we have enough datas. This transfer may be by<br />

analogy when the regional density <strong>of</strong> hydrological information is<br />

too slight; that's made up by a qualitative analysis <strong>of</strong> the geo-<br />

morphological factors, which are similar or not, and <strong>of</strong> their<br />

influence on water resources, between the project basin and the<br />

similar ones. When the regional density <strong>of</strong> hydrological datas is<br />

higher -old hydrometric network and/or numerous representatives<br />

basins- the transfer will be easier, using stochastic relations<br />

between dependent hydrological variables and explicative variables<br />

fo the physical environment; practically, in this case, we can<br />

establish and utilize regional graphs and norms. Some practical<br />

examples show the possibilities and limits <strong>of</strong> the two methods <strong>of</strong><br />

transver.<br />

--<br />

RE S UME<br />

L'abscence de données hydrologiques suffisantes est d'autant<br />

plus aiguë que les bassins versants sont de faible superficie et<br />

situés dans des contrées peu développées. L'estimation des res-<br />

sources en eau sur de tels bassins exige un transfert d'informa-<br />

tion depuis des bassins de comparaison oh l'on possède des don-<br />

nées. Ce transfert peut être analogique lorsque la densité réeio<br />

nale d'information hydrologique est faible; il consiste en une<br />

analyse qualitative des éléments géomorphol<strong>of</strong>iques comparables<br />

ou dissemblables et de leurs effets sur les ressources en eau<br />

entre bassin du projet et bassins de comparaison. Lorsque la den<br />

sité régionale d'information hydrologique est élevée -réseau hy-<br />

drométrique ancien et/ou nombreux bassins représentatifs- le<br />

transfert fait appel aux liaisons stochastiques entre variables<br />

hydrologiques dépendantes et variables du milieu physique expli-<br />

catives et se matérialise par des normes ou abaques régionaux.<br />

Des exemples précis et utilisés des deux méthodes de transfert<br />

illustrent leurs possibiiitês et leurs limites respectives.<br />

* Chef du Département de la Recherche Appliquée-au Service Hydro<br />

logique de 1'O.R.S.T.O.M. - France.<br />

-


62<br />

Les pays dans lesquels il y a encore de nos jours absence d'infom-<br />

tion hydrologique sont en quarstité de plus en plus réduite.<br />

L'estinmtion des ressources en eau ne peut y etre faite, a priori,<br />

que d'une manière grossière en procédant par analogie avec d'autres pays dotés<br />

eux d'information hydrologique ; ce transfert analogique d'information est<br />

évidement beaucoup moins stir que celui auquel on peut procéder dans un pays<br />

ou une région non dénué d'infomation hydrologique, la méthodologie restant la.<br />

m& come on le verra plus loin.<br />

Mis 3. part ces exceptions, la p1upal-t des pays disposent d'informations<br />

hydrologiques fournies soit pr les réseaux hydrométriques, soit par les<br />

bassins représentatifs. Ces infornations hydrologiques,quelle que soit la<br />

densité des dispositifs de mesures,ne concernent qu'un certain nombre de bassins<br />

versants. I1 y a toujours des bassins versants non observés, même dans les pays<br />

dotés d'excellents réseaux de mesures. Or, les besoins de connaissance de la<br />

ressource en eau se posent aussi bien pour les bassins des réseaux que pour les<br />

bassins non observés. En effet, les réseaux de mesures ont été généralenient miis<br />

en place peu à peu au cours de l'histoire, l'implantation des stations s'effectuant<br />

en considération des besoins médiats. Dans certains cas, une planification<br />

préalable de l'implantation des stations du réseau a pu ¿?tre réalisée en<br />

tenant compte de certains objectifs à moyen terme de l'utilisation des eaux.<br />

Malgré tout, la croissance des besoips en eau est telle,au cours des années<br />

présentes de la seconde moitié du erne siècle,que les ressources en eau sont<br />

recherchées là OU, il y a vingt ou trente ans, il paraissait ne pas y avoir de<br />

problème et oh, par conséquent, aucune station de mesures ne fut implantée.<br />

On peut donc dire aujourd'hui que l'hydrologue doit partager son<br />

temps entre l'analyse des informations collectées sur les bassins observés et<br />

l'estimation des mems informations sur les bassins non observés.<br />

Si le problème de cette estimation se pose sur un grand cours d'eau<br />

drainant un bassin de superficie importante, il est à peu p&s certain que l'on<br />

trouve en amont et en aval du lieu d'estimation - c'est-à-dire du site d'un<br />

projet d'aménagemnt hydraulique - une station d'observation. Dans ces condi-<br />

tions, le transfert d'analogie est facile puisque les caractéristiques hydrolo-<br />

giques du lieu d'estination sont comprises entre celles des stations d'observa-<br />

tions dont elles diffèrent d'ailleurs assez peu.<br />

La majorité des problèmes d'estjmation se posentpour des bassins non<br />

observés c'est-à-dire pour des bassins versants de superficie faible à modérée<br />

sur lesquelles n'existent aucune station de mesure. La résolution de ces<br />

problemes exige le recours à l'information disponible dans des bassins voisins<br />

de la &me région climatique. Le transfert d'information repose sur le postulat<br />

selon lequel deux bassins auront des caractéristiques hydrologiques identiques<br />

si leur milieu physico-climatique - leur environnemnt - est le &m.


Le problème consiste donc à analyser ce milieu physico-cbtique, en dégager<br />

les paramètres susceptibles d'influencer les caractères hydrologiques afin de<br />

mettre en évidence le r8le de ce milieu sur lesdits caractères.<br />

Si l'on dispose, dans une région climatique homogène, d'une informa-<br />

tion hydrologique abondante et de bonne qualité, ia méthode de transfert<br />

consiste à utiliser un ensemble de liaisons numériques ou graphiques établies<br />

entre variables hydrologiques et paramètres de l'environnement.<br />

Si l'information hydrologique régionale est insuffisante ou si<br />

l'ensemble précédent de liaisons l'hydmlogie-milieult n'a pas été élaboré, la<br />

méthode de transfert est purement analogique et qualitative puisqu'elle ne<br />

peut estkr les caractères hydrologiques du lieu d'estimation que par analogie<br />

avec ceux du ou des bassins observés ayant l'environnement le plus comparable<br />

avec celui du bassin non observé.<br />

On examine successivement ces deux méthodes de transfert de l'informa-<br />

tion hydrologique en s'appuyant sur des exemples concrets.<br />

1. Relations entre variables hydrologiques et paramètres de l'environnement<br />

Sur un plan général, le problème consiste en l'établissement de<br />

relations entre des variables hydrologiques V1, V2.. . définies, a priori, et<br />

certains paramètres Pl, P2". P du milieu physico-climatique, de la forme<br />

n<br />

V1 = f (Pl, P2...P<br />

k ) de telle sorte que l'écart résiduel soit minimal.<br />

Le problème n'est pas nouveau. Déjà au début du neme siècle, l'hydrologie<br />

considérée aujourd'hui com classique avait abordé le problem en<br />

élaborant diverses formules d'écoulement ou explicatives de variables hydrologiques.<br />

La littérature consacrée à ces formules est abondante ; on en trouve<br />

un bon catalogue dans l'ouvrage de G. REMENIERAS rl] y<br />

011 peut citer :<br />

a) les formules donnant le déficit d'6coulement annuel moyen en<br />

fonction des précipitations et de La température annuelles moyennes comme celle,;<br />

Cie COUTACa\IE et TURC ou celle de THOFCNTHWAITE prenant en considération le bilan<br />

mensuel entm pluie et évapotranspiration.<br />

b) les formules donnant h s caractéristiques de l'hydrogram unitaire<br />

de cyue - temps de réponse en fonction de la longueur du bassin, débit de pointa<br />

en fonction de la surface, de la durée de la pluie et de l'état du bassin ...<br />

etc . - come celles de SEDER établies dans la région des Appalaches aim<br />

U.S.A.<br />

63


64<br />

c) les formules donnant le débit ma-1 d'une cme de fréquence<br />

choisie, soit établie de manière rationnelle c om celle de CAQUOT<br />

(Q = KI? Cn A', K fonction de la fréquence, C coefficient de ruissellemnt,<br />

I pente et A surface du bassin), soit établies expérimentalement come celles<br />

des italiens GIEWEUI, KENTURA... etc ... qui reliaient débit et surface<br />

de bassin, temps de concentration de l'écoulenient et surface et pente du bassin.<br />

L'utilisation abusive de ces formules a conduit à de nombreux déboires.<br />

I1 faut, en effet, considérer qu'elles ont été établies à partir de données<br />

expérimentales en quantité limitée et en provenance d'une certaine région et<br />

qu'il était illogique de les appliquer à des bassins situés dans des régions<br />

d'environnemnt différent. En outre, les paramètres explicatifs pris en compte<br />

étaient peu nombreux et pour certaines uniquemnt du domaine climatique ; pzr<br />

conséquent, leur application ne pouvait donner que des résulta-ts d'autant plus<br />

erronés que les particularités de milieu étaient importantes.<br />

On admt aujourd'hui que le domine d'utilisation de ces formles<br />

doit @tre limité à la région de laquelle proviennent les données expérimentales<br />

ayant contribué à leur élaboration OU à des régions d'environnement comparables.<br />

I1 est, en effet, évident que si la liaison proposée est de la forme<br />

V = f (Pl, P2.0ePk)J c'est que les paramètres du milieu P à P ne sont pas<br />

1 kS1 n<br />

influents sur V mais c'est aussi à l'inverse que &.-dite liaison n'est utilisa-<br />

1<br />

ble que dans une région OU les valeurs de P à<br />

k+l<br />

P<br />

n<br />

ne sont pas différentes de<br />

celles de la région d'élaboration de laAite liaison.<br />

Au cours de la seconde moitié du erne siècle, les mesures hydrométriques<br />

ont été intensémnt développées tandis que, parallèlemnt, les utilisateurs<br />

des eau mnifestaient des exigences croissantes quant à la connaissance de la<br />

ressource disponible - précision accrue, diversification des variables -o<br />

Les relations régionales entre variables hydrologiques et paramètres<br />

du milieu doivent de nos jours etre établies à partir de toute l'infomation<br />

disponible critiquée et s'appuyer sur une analyse poussée du milieu.<br />

Rassembler, analyser et critiquer 1' information hydrologique régionale<br />

disponible est aujourd'hui une opération longue et délicate. A l'O.R.S.T.O.M.,<br />

la mise au point d'une monographie de grand bassin hydrographique demnde 4 à 5<br />

ans (SENEGAL, NIGER, CHARI.. .) , la synthèse de quelques 200 bassins représenta-<br />

tifs demnde encore plus de temps. A partir du moment oh lqon exige une bonne<br />

précision des relations hydrologie-milieu, l'analyse critique de consistance<br />

des données est indispensable quelle qu'en soit la durée ou la complexité. C'est<br />

peu pourquoi ces relations régionales, tant attendues par les planificateurs<br />

et les utilisateurs de la ressource en eau, ne voient le jour que très lentemnt,<br />

beaucoup plus lentement que les formules précédemment évoquées.


Ceci est d'autant plus regrettable qu'en l'absence de telles relations, l'utili-<br />

sateur est amené, pour chaque projet, à. solliciter l'avis de l'hydrologue qui<br />

se trouve contraint d'opérer au coup par coup par simple transfert analogique<br />

dont la précision des résultats est moindre. I1 paraft urgent qu'un effort<br />

prioritaire soit décidé en vue de l'établissenient rapide de ces relations<br />

régionales dans tous les pays possédant déjà une information suffisante.<br />

L'0.R.S.T.O.M. a concentr6 une partie de ses activités sur cet objec-<br />

tif au cours des dix dernières années.<br />

Dès 1965, C. AWRAY et J. RODIEX [2] établissaient un ensemble de<br />

graphiques permettant l'esthtion des crues décennales à l'issue de bassins<br />

versants de 2 à 200 km2 en Afrique occidentale intertropicale, à partir de<br />

l'information collectée sur quelque 60 bassins représentatifs exploités de 1<br />

à 5 ans.<br />

Le tableau suivant décrit sommairemnt le contenu de ces graphiques.<br />

: Variable expliquée : Fonction : Paramètre explicatif :<br />

.--------------------:------------------:---------------------.<br />

: decemale : précipitation<br />

: Coefficient de missel-: décroissante : logarithme de la<br />

: lenient : surface<br />

Hauteur de l'averse croissante : Hauteur annuelle de :<br />

: Temps de montée, temps croissante 11<br />

de base et coefficient :<br />

: de forme de l'hydro- :<br />

' gram.<br />

Le miLieu physique était pris en compte par l'intermédiaire de<br />

groupes climatiques (subdésertique à végétation steppique, tropical à végétation<br />

de savane plus ou mohs arbode, équatorial à végétation forestière) à<br />

l'intérieur de chacun desque1 étaient constitués des sous-groupes homogènes<br />

de relief et perméabilité, ces deux paramètres étant d6finis par rangement en<br />

classes arbitraires d'aptitude croissante RI à R6, Pl à P5. Ainsi rien que<br />

pour le coefficient de ruissellement décennal y avait-il près de 25 relations<br />

graphiques pour les seuls groupes de climats subdésertique et tropical.<br />

65


66<br />

Cette synthèse est actuellenient en cours de révision et d'extension<br />

à partir des infomtions collectées sur plus de 200 bassins représentatifs,<br />

en essayant d'expliciter numériquement les liaisons graphiques et en intmdui-<br />

sant tous les pardtres du milieu par le biais de régressions multiples ou de<br />

composantes principales. Le problème du choix des variables et de l'interdépen-<br />

dance des paramètres du milieu a nécessité des études préalables [3] .<br />

On peut également mentionnéfdeux autres exemples de synthèses régionales<br />

élaborées à partir d'informations issues cette fois des réseaux hydrométriques,<br />

après mise en forme de cefis-ci dans des monographies de bassins. Ces<br />

synthèses, ayant conduit B des noms hydrologiques pour aménagements hydrauliques<br />

régionaux, ont été réalisées en collaboration avec J. HERBAUD et G. GIRARD<br />

[4,5] , l'une au CESLRA état du nord-est du BRESIL, l'autre en ALSACE (France).<br />

Elles concernaient pour l'une tous les bassins de 100 à 10.000 h2, pour l'autre<br />

tous ceux de 15 à 3.000 km2.<br />

Une quantification aussi accentuée que possible a été effectuée pour<br />

la prise en compte des paramètres du milieu, ce qui a permis d'établir des<br />

abaques à plusieurs paramètres sans que l'on ait systématiquement numériser les<br />

liaisons.<br />

Le tableau suivant donne une vision globale des liaisons établies,<br />

le paramètre explicatif principal figurant toujours avant les paramètres<br />

secondaires en corrigeant l'effet e<br />

Les domines d'application de ces deux ensembles de liaisons régiona-<br />

les sont évidement très différents. Celui du Jaguaribe concerne un climat<br />

tropical austral semi-aride, à 600-1000 mn de pluie et terrains cristallins ou<br />

gréseux sous savane arbustive plus ou moins défrichée. Celui d'Alsace correspond<br />

au climat tempéré semi-continental B hiver net, avec 800 & 2500 m de pluie<br />

(effet modéré de la neige de 1000 à 1800 m d'altitude) sur terrains cristallins<br />

ou gréseux sous cultures ou f<strong>of</strong>lts à conifères dominants.<br />

On constate cependant certaines similitudes dans les paramètres<br />

explicatifs principaux (surface drainée, hauteur annuelle de pluie) des principales<br />

variables (écoulement annuel et crue décennale) ce qui rejoint et confirm<br />

globalement l'orientation prise par les awburs de formules. Mais les influences<br />

secondaires du milieu sont assez spécifiques : r8le de la pente et de la for&<br />

en Alsace, de la nature géologique du sous-sol au Brésil. Enfin, les coefficients<br />

ùes équations de liaison sont également spécifiques d'un domaine d'application.<br />

Alors que les formules appliquées sans discernement peuvent conduire<br />

L des estimations erronées de 100 et 200 $, l'utilisation des ensembles de<br />

liaisons régionales %ydrologie-enviromeIilenttr assure une précision de 20 à<br />

50 % dans les résultats.


: Variable expliquée : Paramètres explicatifs : Forme de la liaison :<br />

: A - ALSACE<br />

1. Ecoulement moyen<br />

annuel<br />

1.1. Hauteur annuelle de:<br />

précipitations<br />

1.2. Taux de forets :<br />

2. Ecart-type de . ' 2.1. Surface du bassin 1<br />

11 écoulement S<br />

annue 1<br />

4<br />

3. Débit spécifique : 3.1. Surface S<br />

-1 de crue : 3.2. Hauteur annuelle de:<br />

décennale Q precipitation<br />

3.3. Taux de for&<br />

4. Rapport des 4.1. Surface<br />

pointes de crue i<br />

centennale et<br />

décennale<br />

5. Part de l'écoule- : 5.1. Hauteur annuelle de:<br />

ment d'été dans : précipitation<br />

1' écoulement<br />

annue 1<br />

: 5.2. Taux de for€%<br />

67<br />

linéaire croissante :<br />

linéaire croissante<br />

se400 h2 : linéaire i<br />

décroissante :<br />

S>~OC b2 : linéaire<br />

constante :<br />

4,33<br />

Q = 1950. S<br />

linéaire croissante<br />

linéaire décroissante :<br />

en dessous d'un certain:<br />

seuil d'indice de pente:<br />

croissante<br />

linéaire croissante<br />

(liaison diff &ente sur:<br />

terrains cristallins et:<br />

sédimentaires)<br />

linéaire croissante si :<br />

s>75 km2<br />

: B - JAGUARIBE<br />

1. Ecoulement moyen I 1.1. Surface du bassin I L : A S-Oj1'<br />

annue 1 S<br />

i 1.2. Hauteur annuelle dei A = k P" avec n>l<br />

pr6cipitation P :<br />

1.3. Taux de terrains Linéaire décroissante<br />

sédimentaires<br />

(gres><br />

: 1.4. Degré de défriche- : linéaire croissante :<br />

ment<br />

i


68<br />

2. Variabilité de<br />

l'écoulement<br />

(rapport K entre<br />

une fréquence<br />

donnée et la<br />

moyenne )<br />

3. Débit maxjml<br />

spécifique de<br />

crue décennale Q<br />

4. Rapport de pointe<br />

entre crue<br />

annuelle et<br />

décennale<br />

: 2.1. Surface<br />

: 2.2. Ecoulement moyen<br />

: 3.1. Surface S<br />

:Q=BS<br />

: 3.2. Hauteur annuelle de: B croSt linéairement<br />

précipitation P : avecP<br />

: 3.3. Taux de terrains : linéaire décroissante<br />

sédimentaires<br />

(gres><br />

: 3.4. Fornie du chevelu : effet croissant si<br />

: radial, décroissant si<br />

: Ilen adte"<br />

: 4.1. Surface<br />

: croissante<br />

croissante<br />

4,484<br />

: croissante<br />

La généralisation de synthèses régionales de ce type pmttra non<br />

seulemnt de mieux répondre à toutes les demandes des utilisateurs de l'eau<br />

mais également d'améliorer les ensembles de liaison eux-mêmes en précisant les<br />

limites de leur champ d'application et de comprendre les causes qui font que<br />

crest tel paramètre plut8t que tel autre qui ici ou là explique mieux les<br />

caractéristiques hydrologique s.<br />

2. Transferi, analogique de l'information<br />

Lorsqu'un bassin versant non observé est situé dans une région dans<br />

laquelle une synthèse de l'information hydrologique disponible a conduit à un<br />

ensemble de liaisons du type de celles qui viennent d'@tre décrites, ou s'il<br />

est situé dans une région d'environnement comparable, l'estimation des princi-<br />

pales caractéristiques hydrologiques de ce bassin est chose aisée. I1 suffit<br />

d'en calculer les paramètres du milieu utilisés dans les liaisons hydrologie-<br />

environnenient et d'appliquer celle s-ci.


La plus grande prudence s'impose si l'on n'est pas sûr de l'hornogénéit6 de<br />

l'environnenient du bassin avec celui de la région étudiée et si les paramètres<br />

du bassin ont des valeurs extérieures au champ couvert par ceux-ci dans ia-<br />

dite région : toute extraplation hors du strict domaine d'application est<br />

risquée et ne peut etre effectuée qu'après une reconnaissance géomorphologique<br />

du bassin et de la région de référence.<br />

Beaucoup plus fréquemment le bassin non observé est situé dans une<br />

r6gion pour laquelle on ne possède pas de synthèse de Itinfomation hydrologique,<br />

laldite synthèse nécessitant de longs et délicats travaux d'analyse critique.<br />

Ainsi en France, en dehors de l'Alsace, aucune région n'a fait jusqu'ici l'objet<br />

d'une telle synthèse systématique. Certes, l'analyse de l'information hydrolo-<br />

gique n'est pas restée au point zéro et beaucoup d%ydrologues régionaux sont<br />

A I& intuitivement d'esthr des caractères hydrologiques de bassins non<br />

observés. Ce transfert analogique n'a l'inconvénient que de devoir etre refait<br />

?I chaque demande et d'&re dépendant de la qualité ou de l'intuition de<br />

l'hydrologue,donc d'@tre imprécis et inconsistant.<br />

Malgré ces défauts, il reste la seule méthode d'estimation en<br />

l'absence de liaisons régionales établies.<br />

Le processus opérationnel est le suivant :<br />

a) reconnaTtre le bassin concerné et analyser son environnenent<br />

physico-climatique,<br />

b) rechercher dans la région des bassins observés ayant des environnements<br />

aussi comparables que possible avec celui du bassin concerné,<br />

c) analyser les variables hydrologiques des bassins de comparaison<br />

ainsi sélectionnés,<br />

d) procéder au transfert analogique des variables hydrologiques des<br />

bassins de comparaison au bassin concerné.<br />

Ce transfert est la seule opération originale de ce processus. En<br />

réalité, il s'appuye implicitenient sur l'hypothese que les valeurs des variables<br />

hydrologiques vont évoluer des bassins de comparaison au bassin concerné CO~E<br />

elles évoluent dans les régions connues c'est-à-dire en fonction des parmètres<br />

du milieu. I1 s'agit donc jntuitivewnt de déceler les paradtres explicatifs<br />

principaux de l'hydrologie régionale,puis d'estimer le sens et l'intensité de<br />

leur action pour transférer les variables hydrologiques.<br />

69


70<br />

Si l'on peut réaliser cela sans trop de difficulté pour les paramètres classi-<br />

ques tels que la hauteur annuelle de précipitation et la surface, il n'en est<br />

pas de mhiie des autres facteurs (pente, perméabilité des terrains, cou~rt<br />

végétal ... ) au sujet desquels on peut simplement dire que leur effet sera<br />

croissant ou décroissant sans pouvoir préciser de combien. On limite les risques<br />

d'erreur en choisissant, si possible, des bassins de comparaison dont les fac-<br />

teurs principaux - surface, pluie annuelle - sont proches de ceux du bassin<br />

concerné, sachant que l'effet des facteurs secondaires est de l'ordre de<br />

grandeur de l'imprécision de l'estimation de la variable hydrologique d'après<br />

les facteurs principaux.<br />

Nous avons été anen6 à plusieurs reprises à réaliser des transferts<br />

analogiques de cette sorte pour des problems d'hydraulique agricole en France<br />

l'issue de très petits bassins versants ; par exemple :<br />

- barrage réservoir à l'issue d'un bassin de 300 km<br />

2<br />

pour un Syndicat<br />

intercommunal d'adduction d'eau (région du Centre Ouest de la France)<br />

- barrage en terre pour plan d'eau touristique l'issue d'un bassin<br />

de moins de 20 h2 (versant atlantique des Pyrénées).<br />

N'importe qui aurait pu utiliser à l'occasion une formule classique<br />

d'écoulement j le risque d'erreur aurait certainement &é énorme. Le transfert<br />

analogique évite l'erreur grossière bien qu'il ne perniette pas d'atteindre la<br />

précision d'emploi des Liaisons régionales hydrologie-milieu quand elles existent,mais<br />

à la condition qu'il soit effectué par un hydrologue doté d'un sens<br />

critique aigu, connaissant l'hydrologie régionale et capable de détecter les<br />

effets secondaires de l'environnement (géomorphologie, nature des sols . etc ... ).<br />

3. Conclusion<br />

Les abaques régionaux et le transfert analogique dtinformation permettent<br />

d'estimer bs principales variables hydrologiques d'un bassin non observé<br />

avec une précision qui peut satisfaire le planificateur ou l'utilisateur de<br />

l'eau qui procède<br />

un aménagement simple et modeste. Si l'aménagement est<br />

complexe - réservoir à but multiple, régularisation interannuelle - son coût<br />

s'accr<strong>of</strong>t et la precision requise de lthydrologue également. Les méthodes exps6e:<br />

ici deviennent alors caduques au-delà du stade de l'avant-projet OU des études<br />

préliminaires. I1 est alors indispensable de doter le site d'aménagemnt d'une<br />

station hydrométrique pour affiner les estimations. Cela est pwsque toujours<br />

possible car, entre les études préliminaires et le projet définitif, st6coulent<br />

bien souvent plusieurs années dont l'hydrologue pourra tirer pr<strong>of</strong>it s'il a été<br />

avisé en temps utile du problème et de la précision souhaitée.


Ref érence s bibliographiques<br />

1. RAS G. - i960 -<br />

de l'Ingénieur1' Coll. du Lab.<br />

Nat. d'Hydraulique, Eyrolles édit. Paris<br />

2. RODER J.A., AWRAY C. - 1965 - "Premiers essais d'étude générale<br />

du ruissellement sur les bassins expérimntaux et représentatifs<br />

d'Afrique tropicale" A.I.S.H. Symposium de Budapest - Public. no 66,<br />

vol. 1, pp. 12-38<br />

3.<br />

4.<br />

5.<br />

DUBRF;UIL P. - 1970 - '%e rôle des paramètres caractéristiques du<br />

milieu physique dans la synthèse et l'extrapolation des données<br />

hydrologique s recueillies sur bassins représentatif A o I. S. H a<br />

Colloque de Wellington, N. Zél., Public. no 96, vol. I, pp 583-590<br />

DUBREUU, P., GIRARD G., HERBAUD J - i968 - 'Nonographie hydrolo-<br />

gique du bassin du Jaguaribe" Coll. 'Némoires de l'ORSTOM1' no 28,<br />

21 x 27, 385 P.<br />

DUBREUIL P., HERBAUD J. - 1970 - Yontribution à la connaissance<br />

quantitative des modifications du régime hydrologique sous l'effet<br />

du taux de boisement à l'aide de deu exemples : le bass+ alsacien<br />

du Rhin, et le bassin du Jaguaribe (Brésil)" - S.H.F. XIeme<br />

journées de l'Hydraulique - Paris - Tome I, question III, rapport<br />

8.<br />

71


ABSTRACT<br />

ESTIMATING EVAPOTRANSPIRATION BY HOMOCLIMATES<br />

T.E.A. van Hylckama"<br />

Data for planning <strong>of</strong> water resources projects in arid or<br />

semi-arid climates are generally inadequate. It is here that<br />

the evapotranspiratia term plays an important role in the<br />

hydrologic cycle. Estimating this term by various empirical<br />

formulae using o<strong>nl</strong>y measured or estimared air tgmperatures<br />

and length <strong>of</strong> growing season <strong>of</strong>ten leads to erroneous results.<br />

It is better to use parameters, such as net radiation, humidity,<br />

wind speeds and rainfall characteristics, obtained from regions<br />

<strong>with</strong> climates similar to that <strong>of</strong> the region under study. Such<br />

homoclimatic regions have soils and vegetation <strong>of</strong> a comparable<br />

nature because both are largely a result <strong>of</strong> the climate itself.<br />

Examples <strong>of</strong> the transfer <strong>of</strong> parameters to determine evapotrans-<br />

piration by the use <strong>of</strong> homoclimates show that such monthly and<br />

yearly values are, at most, 10 percent larger or smaller than<br />

the measured ones, a significant improvement over empirically<br />

determined values which <strong>of</strong>ten are more than 30 percent <strong>of</strong>f.<br />

RESUME<br />

Dans les pays arides ou sub-arides, les données nécessaires<br />

2 l'établissement des projets hydrauliques sont presque toujours<br />

insuffisantes. C'est dans ces pays également que le terme éva-<br />

potranspiration tient un rôle important dans le cycle hydrolo-<br />

gique. Son estimation à l'aide de differentes formules empiri-<br />

ques, qui ne tiennent compte que de la température de l'air et<br />

de la durée de la saison culturale, conduit souvent à des re-<br />

sultats erronés. I1 est préférable d'utiliser les valeurs de<br />

parametres plus efficaces, comme le rayonnement net, l'humidi-<br />

té, la vitesse du vent et le régime pluviométrique, obtenues<br />

dans des régions ayant des climats analogues à celui de la ré-<br />

gion étudiée. On peut penser que des régions de climats voisins<br />

ont des caractéristiques de sols et de végétation voisines, car<br />

ces deux éléments sont en grande partie le résultat du climat<br />

lui-même. L'auteur présente des exemples de transfert de don-<br />

nées pour le calcul de l'évapotranspiration, basé sur ces consi<br />

derations. Les valeurs mensuelles et annuelles obtenues diffé-<br />

rent de moins de 10% des valeurs mesurées, alors que l'emploi<br />

de formules empiriques simplistes fournit des résultats que<br />

différent souvent de plus de 30%.<br />

>* Research Hydrologist, U.S.Geologica1 Survey<br />

Texas Tech University, Lubbock, Texas.


74<br />

NOMENCLATURE<br />

BV<br />

E<br />

Ea’ Eo<br />

H<br />

L<br />

*a<br />

da<br />

k<br />

P<br />

r<br />

r<br />

a<br />

r<br />

U<br />

a<br />

Z<br />

a<br />

z<br />

A<br />

Y<br />

N Y<br />

turbulent transfer coefficient (g cm-2 min-l mb-l) or<br />

(10 kg m-2 min-’ 0.1 kPa‘l).<br />

rate <strong>of</strong> evaporation (g cm-2 min’l, mm hr-1, or cm day-l).<br />

actual (or measured) rates and computed potential rates.<br />

net radiation (cal cm-2 min-l or 41867.4 j m-2 min-1).<br />

latent heat <strong>of</strong> vaporization (about 585 cal g-1 or 2.46 x 106 j kg-l).<br />

temperature <strong>of</strong> the air at height za (meters) (OC).<br />

saturation pressure deficit <strong>of</strong> air (mb or kPa + 10) = the difference<br />

between saturation and actual vapor pressure.<br />

Von Kármán coefficient taken as 0.41.<br />

ambient pressure, assumed constant for the sites discussed at 983 mb<br />

or 98.3 kPa.<br />

correlation coefficient.<br />

external resistance (sec cm-1).<br />

stomatal or canopy resistance (sec cm-1).<br />

windspeed at elevation z (cm min’l).<br />

a<br />

elevation above surface (m or cm).<br />

roughness parameter (cm).<br />

first derivative <strong>of</strong> saturation vapor pressure versus T (mb OC1).<br />

psychrometric constant (mb<br />

a dimensio<strong>nl</strong>ess number dependent upon T<br />

for p = 983 mb Aly = -0.32 + exp 0.045<br />

and p;


I INTRODUCTION<br />

Evapotranspiration and hence the potential evapotranspiration term plays an<br />

important role in the hydrologic cycle, becoming more important as the climate<br />

gets drier. Harrold 111 estimates that 75% <strong>of</strong> all the precipitation falling on<br />

the conterminous United States goes to evapotranspiration, but in arid lands this<br />

percentage can approach 100. Hence the estimate <strong>of</strong> potential evapotranspiration<br />

(E,) "is an essential requirement in the assessment <strong>of</strong> total available water,<br />

regional water balance and irrigation demand" 12 1.<br />

Although the parameters governing potential evapotranspiration are well<br />

known, in areas <strong>with</strong> inadequate hydrological data, the model required to estimate<br />

Eo quantitatively becomes difficult to construct. Often rather serious simpli-<br />

fications have been assumed at the cost <strong>of</strong> accuracy in the prediction <strong>of</strong> the<br />

information needed in water resources projects 131. Hounam 141 presents a few<br />

examples <strong>of</strong> "approximations and over-sirnpliïications <strong>with</strong> regards to procedures<br />

or data. For example vapor pressure <strong>of</strong> the bulk air is sometimes substituted<br />

for surface vapor pressure <strong>with</strong> considerable loss <strong>of</strong> reliability, net radiation<br />

may be estimated from sunshine or even cloudiness and air temperature, whilst<br />

the advective term, which can be quite significant in areal evaporation, is<br />

neglected in most methods."<br />

The desire to have a quantitative estimate <strong>of</strong> Eo regardless <strong>of</strong> the paucity<br />

<strong>of</strong> parameters has resulted in a plethora <strong>of</strong> empirical equations (= models) which<br />

are valid o<strong>nl</strong>y (if at all) for areas or regions where the empirical correlation<br />

between Eo and one or more parameters was established.<br />

Blaney-Criddle 15 I , who derived a formula for irrigated areas and Thornthwaite,<br />

whose equatiori is based on data from humid climates 16 l.<br />

75<br />

Two examples may suffice:<br />

Yet such equations are <strong>of</strong>ten used for estimating potential evapotranspira-<br />

tion when the information needed is inadequate. One has an idea <strong>of</strong> mean monthly<br />

temperatures and rainfall, either on the area under study itself or in the<br />

neighborhood, and determines Eo by the use <strong>of</strong> one or the other <strong>of</strong> these empirical<br />

equations.<br />

A fairly convincing example that such methods lead to unsatisfactory results<br />

is presented in figure 1. This graph, based on data presented and discussed by<br />

Cruff and Thompson 171, illustrates the very poor agreement between six different<br />

models used to estimate potential evapotranspiration. The reason for the discrepancies<br />

is to be found in the characteristics <strong>of</strong> the evapotranspiration<br />

phenomenon. Plants, and to a certain extent soils, respond to such inputs as<br />

radiation, vapor pressure and winds in a rapid and no<strong>nl</strong>inear fashion. Taking<br />

seasonal, monthly, or even weekly averages <strong>of</strong> such parameters and use those to<br />

estimate Eo leads necessarily to erroneous results. This is especially true<br />

when the advective term, combining wind speed and vapor pressure,becomes dominant.


76<br />

It seems that there is a better approach especially if homoclimatic maps,<br />

such as the ones being discussed below, are available. One searches for an<br />

area <strong>with</strong> a climate as similar as possible to the one <strong>of</strong> the area under study,<br />

but which has, in addition to the climatic characteristics, also data available<br />

that allow a computation <strong>of</strong> potential evapotranspiration <strong>with</strong> a satisfactory<br />

degree <strong>of</strong> accuracy.<br />

In the following we shall first discuss climate classification and review<br />

the literature on homoclimates, then show that the so-called combination method<br />

enable-s one to obtain very satisfactory estimations <strong>of</strong> potential evapotranspira-<br />

tion arid finally present an example <strong>of</strong> the proposed method.<br />

I I HOMOCL INATE S<br />

The earlier climatologists, such as Köppen Island Lang 191, classified<br />

climati,:; mostly by certain relationships between mean annual temperatures and<br />

rain€,'l. Later mean monthly values were taken into account and climates were<br />

Classified by the march <strong>of</strong> temperature and mean monthly rainfall throughout the<br />

year 1101. Still later aridity indices were used 1111 and in 1948 Thornthwaite<br />

introduced the concept <strong>of</strong> potential evapotranspiration. Climates now are <strong>of</strong>ten<br />

characterized by diagrams, combining graphs <strong>of</strong> temperature and precipitation, or<br />

evapotranspiration and precipitation [ 12 I . Stations having similar climatic<br />

diagrams are called homoclimes 1131. By extention the term has come to mean a<br />

"region climatically similar to another specified region" I14 I .<br />

Meigs 1151 was probably the first and maybe the o<strong>nl</strong>y one to use the word<br />

homoclimates in this sense. He used the 1948 Thornthwaite system and his maps<br />

<strong>of</strong> the homoclimates <strong>of</strong> arid lads are rather crude and on a scale (about 1 to 3Q<br />

x LO6) too small to be <strong>of</strong> much practical value.<br />

In Arid Zone Research XXI UNESCO 1161 presents a much more detailed set <strong>of</strong><br />

maps which are called bioclimatic maps because "the purpose---is to exhibit for<br />

a particular region a synthesis <strong>of</strong> the climatic factors <strong>of</strong> special importance<br />

to living creatures".<br />

subject in itself'' and mention that 26 meteorological elements can affect the<br />

climate, the environment and therefore, a particular animal or plant species 1171.<br />

They fully realize that, at the present time, insufficient information on all<br />

these items is available, but continue: "fortunately however there is one fact<br />

which is firmly established: namely that <strong>of</strong> all the elements in the environment<br />

those <strong>of</strong> most importance for living entities, plants in particular, are warmth<br />

and water".<br />

The authors say that "climate is an extremely complex<br />

U<strong>nl</strong>ike most other climate geographers, however, they were not<br />

content to use the ombrothermic diagrams alone, (ombros = rain), but used a<br />

xerothermic index which includes the effects <strong>of</strong> rainy days, days <strong>with</strong> mist an6<br />

dew, and allows for atmospheric humidity. This is an attractive compromise<br />

between the 26 elements and the use <strong>of</strong> o<strong>nl</strong>y monthly averages <strong>of</strong> temperature and<br />

precipitation. A day, for instance, <strong>with</strong> 5 centimeters <strong>of</strong> rainfall in one hour


has an effect vastly different from a day<br />

12-hour period. A day <strong>with</strong> an average <strong>of</strong><br />

same as one <strong>with</strong> the same temperature but<br />

humidity <strong>of</strong> 80 percent.<br />

<strong>with</strong> a 5 centimeter drizzle during a<br />

15OC under a dry clear sky is not the<br />

under clouds and <strong>with</strong> relative<br />

Using the diagrams and indices mentioned above, UNESCO I i6 I distinguishes<br />

33 different climates, ranging from true desert (for instance in Libia) to glacier<br />

climates such as in the high mountains <strong>of</strong> Austria. There are four maps <strong>of</strong> a<br />

scale <strong>of</strong> 1 to 10~000,000 <strong>of</strong> the dry regions in South Africa, South America, the<br />

southwest <strong>of</strong> North America and the southern parts <strong>of</strong> Australia. Two others on<br />

a scale <strong>of</strong> 1 toS,b00,000 cover an area from the AtlaIitic (long ?OoW) to points<br />

west <strong>of</strong> Karachi (Pakistan) (long 72OE) and from northern Italy (lat 25ON) to<br />

well into the Sahara and also covering the Arabian Peninsula (lat 14ON).<br />

Another source that, at times, could be used to find homoclimatic regions<br />

are the 15 volumes "World Survey <strong>of</strong> Climatology" 1181. However, due to the preferences<br />

<strong>of</strong> 11 sub-editors and numerous authors, the classifications are not<br />

consistent, ranging (for example in Volume 8) from the 1918 Köppen system to<br />

classifications according to dynamic concepts from the viewpoint <strong>of</strong> air-mass<br />

mixing and transformation I19 I .<br />

Terjung's maps <strong>of</strong> isanomalies 1201 might eventually help to improve homoclimatic<br />

maps. For the present time the author states: 'I--- the rather crude<br />

maps presented here and their cursory examination should not be considered<br />

definitive or qualitatively accurate".<br />

It is perhaps unfortunate that in none <strong>of</strong> these sources useful data on<br />

ioeasured potential evapotranspiration could be found, and an example <strong>of</strong> the<br />

applicability <strong>of</strong> the method <strong>of</strong> using homoclimates to estimate potential evapo-<br />

transpiration had to be taken from the semiarid southwestern parts <strong>of</strong> the United<br />

States.<br />

III THE COMBINATION CONCEPT AND SHE CANOPY RESISTANCE<br />

As mentioned earlier, longtime averages <strong>of</strong> meteorological parameters are<br />

inadequate to estimate potential evapotranspiration. The dynamic characteristics<br />

and the sensitivity <strong>of</strong> Eo to environmental parameters are most clearly demonstrated<br />

by the correlation method, aïso known as the eddy flux, eddy transfer or covar-<br />

iance method 14, 221.<br />

In this method measurements have to be taken <strong>with</strong> a<br />

frequency <strong>of</strong> a few seconds or less. Another method, not as sensitive to be sure,<br />

but quite suitable for our purpose it seems, is a method that combines the energy<br />

budget <strong>with</strong> a mass-transfer term 123, 24, 251. A complication arises when the<br />

plants, even under conditions <strong>of</strong> potential evapotranspiration, react to the<br />

environment and seem to control transpiration by means <strong>of</strong> opening or closing the<br />

stomata 126, 27, 281.


78<br />

It must, first <strong>of</strong> all, be shown that potential evapotranspiration can be<br />

estimated uite accurately by the use <strong>of</strong> the combination formul developed by<br />

Penman 1237 and improved by Monteith 129, 301 and van Bavel 125 . The latter,<br />

following the method first used by Penman 1311, derived the fol owing expression<br />

for the instantaneous evaporation rate:<br />

E = '/L<br />

B in this equation is defined as:<br />

V<br />

(A/y) H + L Bv da<br />

A/Y + 1<br />

cai cm-2 min-'<br />

Because expression (2) is based upon standard wind-pr<strong>of</strong>ile theory, van Bavel<br />

warns that it applies strictly to adiabatic conditions o<strong>nl</strong>y. But he points out<br />

that the combination model (1) has reduced the criticality <strong>of</strong> (2).<br />

This model predicts potential evapotranspiration from wet bare soil and from<br />

alfalfa covered soil <strong>with</strong> great accuracy over hourly periods, as was convincingly<br />

shown by van Bavel I25 1 . However, when used to compute evapotranspiration from a<br />

stand <strong>of</strong> saltcedar (Tamarix pentandra) , I32 1 there were fai-rly large discrepancies<br />

when computed and measured values were compared.<br />

discrepancies was immediately evident. It is a Weil-known fact that over tall<br />

vegetation, the roughness length (2,) varies <strong>with</strong> the wind speed, 133, 341 and a<br />

zero displacement length must be incorporated in equation (2). Alternatively,<br />

a modified roughness lengths can be used, and this was done in the present<br />

computations 135 I .<br />

One <strong>of</strong> the reasons for the<br />

With this modification the discrepancies are smaller but the<br />

results are still not very satisfactory. A typical example is given at the top<br />

<strong>of</strong> figure 2.<br />

Inspection <strong>of</strong> the data further showed that the largest deviations between<br />

computed and measured evapotranspiration occured under conditions <strong>of</strong> high wind<br />

speeds. This indicated that there could possibly be a stomatal or other type <strong>of</strong><br />

resistance inside the plants, but most likely a closing <strong>of</strong> the stomata under<br />

conditions <strong>of</strong> high evaporativity 1241. It is possible to measure diffusion<br />

resistance directly on most broadleaf plants by the use <strong>of</strong> one or other type <strong>of</strong><br />

porometer 136, 371. These instruments cannot be used on the small scale-like<br />

leaves <strong>of</strong> saltcedar which are less than 2 millimeters long and 1 millimeter wide.<br />

Xonteith (301, however, has shown how external and stomatal resistant-es can he<br />

estimated from microclimatological data. The combined energy budget and mass<br />

transfer equation then becomes:


in which the external resistance is:<br />

and the stomatal resistance:<br />

r a = (log, (z/zO)l2 / U k2<br />

r = (A/y + 1) (Eo/Ea - 1) x ra (5)<br />

A recomputation <strong>of</strong> potential evapotranspiration <strong>with</strong> equation (3) shows that a<br />

muili closer agreement between measured and computed evapotranspiration can be<br />

obtained.<br />

Notice that equation (5) contains the potential as well as the measured<br />

evapotranspiration, but once rs has been computed, it was found that it very<br />

highly correlated <strong>with</strong> wind speeds, and also (but less) <strong>with</strong> vapor pressure<br />

deficits. Using the resistances obtained from the equation (5) for one set <strong>of</strong><br />

data, potential evapotranspiration could then be computed for other sets <strong>of</strong> data<br />

and such values are plotted at the bottom <strong>of</strong> figure 2.<br />

IV AN EXAMPLE<br />

In order to demonstrate how the application <strong>of</strong> homoclimatic data may help to<br />

estimate Eo, a comparison will be made between evapotrenspiration rates measured<br />

in evapotranspirometers near Buckeye, Arizona (lat 33ON, long 113OW) <strong>with</strong> those<br />

computed <strong>with</strong> data available from a homoclimatic area about 50 kilometers to the<br />

east near Tempe, Arizona. Thus we pretend that the needed parameters at Buckeye<br />

were not available and we use those from a homoclimatic region.<br />

Hourly data for 3 days were available from technical reports issued by the<br />

U. S. <strong>Water</strong> Conservation Laboratory 138, 391. Figure 3 shows a typical example<br />

<strong>of</strong> hourly values measured at Buckeye, compared <strong>with</strong> those computed from the Tempe<br />

data. Figure 4 presents a comparison between two sets <strong>of</strong> computed data. Measured<br />

hourly data for 9 April were not available but, as figure 2 shows, the computed<br />

values are quite valid. Note, incidentally, that on this day in early spring<br />

there were a few hours <strong>with</strong> dew (negative E's). Not o<strong>nl</strong>y are the correlation<br />

coefficients very high (0.94 for figure 3 and 0.92 for figure 4) but the regression<br />

equations indicate nearly 1:l relationships. For data <strong>of</strong> figure 3 we have:<br />

E, = 0,19+0,86 Eo, and for figure 4: Ea = 0,02+0,94 Eo. The t values for both<br />

equations are well above the 1% confidence limits: respectively 6.3 and 4.0.<br />

Student's t value for the 1% limit and 22 degrees <strong>of</strong> freedom is 2.8, 1401.<br />

That the combination method is valid strictly for short-time data has already<br />

been mentioned. The fact is clearly shown by the data in table 1. In the left<br />

79


80<br />

two columns the sum <strong>of</strong> 24 hourly values <strong>of</strong> evapotranspiration rates is given as<br />

mi.llimiters per day. In the right two columns the rates are given as computed<br />

from mean daily averages <strong>of</strong> the parameters in equation (3). As can be seen the<br />

sum <strong>of</strong> the hourly values are not o<strong>nl</strong>y very close to another but also compare<br />

favorably <strong>with</strong> the measured values.<br />

The data available did not allow to extend the computations to months or<br />

years. However, the agreement on hourly and daily bases makes it very likely<br />

that, on monthly and yearly bases, even better agreement can be obtained.<br />

V CONCLUSIONS<br />

Serra 1411, remarks "climatology and hydrology are two very different<br />

disciplines: if the first is ãescriptive and 'static', the other studies---the<br />

'dynamics' <strong>of</strong> water and working methods used for the first will have little<br />

chance to fít the second.---The climatologist works <strong>with</strong> an 'average year'. To<br />

establish his---classification indices he will use the average temperature <strong>of</strong><br />

each <strong>of</strong> the twelve months <strong>of</strong> the year---. The hydrologist by contrast must<br />

follow from day to day---the living reality <strong>of</strong> a phenomenon." The phenomenon<br />

Serra refers to is,<strong>of</strong> course,the evapotranspiration.<br />

If however, the climatic classification is detailed enough and one has in<br />

one part <strong>of</strong> such an area sufficient information, quantitatively as well as quali-<br />

tatively, on the parameters that drive the evapotranspiration, then it is reason-<br />

able to assume that in other parts <strong>of</strong> this homoclimate the same data are applica-<br />

ble, at least <strong>with</strong>in acceptable limits. It might <strong>of</strong> course be necessary (and it<br />

is nearly always possible) to correct for latitude, elevation and exposure.<br />

What we are dealing <strong>with</strong> seems to be an integration between climate and<br />

meteorology, something that Kisiel 1421 had in mind when he wrote: "The future<br />

<strong>of</strong> hydrology rests on our ability and willingness to undertake the last integrative<br />

effort on a continuing and adaptable basis. This effort is particularly<br />

urgent if one accepts the thesis that each watershed or basin is a law unto<br />

itself. Transferability <strong>of</strong> laboratory knowledge to the field and <strong>of</strong> knowledge<br />

from one watershed to another or from one climate to another rests inexplicably<br />

on our ability to provide a mathematical foundation to the cycle <strong>of</strong> model building<br />

and its parts.''<br />

The present paper shows that, in principle, the use <strong>of</strong> homoclimates is<br />

possible and reliable for effectively estimating evapotranspiration rates <strong>with</strong><br />

the model presented above. The difficulty lies in the fact that there are so<br />

few homoclimatic maps and those few do not always use the best method <strong>of</strong> classi-<br />

fying the climates. There obviously is a great need for more and more reliable<br />

homoclimatic maps. These maps should show the locations <strong>of</strong> stations where com-<br />

plete sets <strong>of</strong> microclimatological data can be obtained for estimating the poten-<br />

tial evapotranspiration <strong>with</strong> a desirable degree <strong>of</strong> accuracy.


REFERENCES<br />

1.<br />

2.<br />

3.<br />

4.<br />

5.<br />

6.<br />

7.<br />

8.<br />

9.<br />

10.<br />

11.<br />

12.<br />

1;.<br />

14.<br />

15.<br />

16.<br />

17.<br />

Harrold, L. L., (1969). Evapotranspiration: a factor in the plant-soilwater<br />

economy, in Chow, V. T. (Dir.), The progress <strong>of</strong> hydrology, Proc. <strong>of</strong><br />

First Internat. Seminar for Hydrol. Pr<strong>of</strong>essors, Urbana, Illinois, pp. 694-<br />

716.<br />

Mozayeni, M., (1969). Application <strong>of</strong> some empirical methods in the study <strong>of</strong><br />

evapotranspiration in Iran, Seminar on evaluation <strong>of</strong> water resources <strong>with</strong><br />

scarce data, Tehran, Iran, Central Treaty Organization, pp. 181-194.<br />

Dawdy, D. R., (1969). Mathematical modeling in hydrology, in Chow, V. T.<br />

(Dir.), The progress <strong>of</strong> hydrology, Proc. First Intern. Seminar for Hydrol.<br />

Pr<strong>of</strong>essors, Urbana, Illinois, pp. 346-361.<br />

Hounam, C. E., (1971). Problems <strong>of</strong> evaporation assessment in the water<br />

balance, Report No. 13, World Meteorol. Organization, Geneva, Switzerland.<br />

Blaney, H. F., & Criddle, W. D., (1962). Determining consumptive use and<br />

irrigation water requirements, Tech. Bull. No. 1275, Agr. Research Service,<br />

U. S. Dept. <strong>of</strong> Agr.<br />

Thornthwaite, C. W., & Mather, J. R., (1957). Instructions and tables for<br />

computing potential evapotranspiration and the water balance, Publications<br />

in Climatology, X, No. 3, Centerton, New Jersey.<br />

Cruff, R. W., & Thompson, T. H., (1967). A comparison <strong>of</strong> methods <strong>of</strong> estimating<br />

potential evapotranspiration from climatological data in arid and subhumid<br />

environments, <strong>Water</strong> Supply Paper No. 1839-My U. S. Govt. Printing<br />

Office, Washington.<br />

Kuppen, W., (1900). Versucheiner Klassifikation der Klimate, vorzugsweise<br />

nach ihren Beziehungen zur Pflanzenwelt, Geog. Zeitschr., 6, pp. 593-611 and<br />

657-679.<br />

Lang, R., (1915). Versuch einer exacten Klassifikation der Buden in klimatologischer<br />

and geologischer Hinsicht. Internat. Mitt. Bodenkunde, 5, pp. 312-<br />

346.<br />

Kuppen, W., (1918). Klassifikation der Klimate nach Temperatur, Niederschlag<br />

und Jahreslauf, Petermann's Geog. Mitt., 64, pp. 193-203 and 243-248.<br />

de Martonne, E., (1926).<br />

Paris, 9, pp. 3-5.<br />

L'indice d'aridité. ßull. Rssoc. Géog. frangais,<br />

Thornthwaite, C. W., (1948). An approach toward a rational classification Qf<br />

climate, Geog. Review., 38, pp. 55-94.<br />

Buschhe, R. E., (ed.), (1959). Glossary <strong>of</strong> meteorology, Am. Meteorol. Soc.,<br />

p. 105.<br />

Gove, P. B., (ed,), (1968). Webster's third international dictionary, G. & C.<br />

Merriam Comp., Springfield, Mass., p. 1084.<br />

Meigs, P., (1951). World distribution <strong>of</strong> arid and semi-arid homoclimates,<br />

UNESCOfNSfAZf37, Paris.<br />

UNESCO, (1963).<br />

Bioclimatic map <strong>of</strong> the mediterranean zone, Arid Zone Research<br />

XXI, UNESCO, Paris and FAO, Rome.<br />

C:ilead, M., & Rosenan, N., (1958). Climatological observational requirements<br />

in arid zones, in UNESCO Climatology, Arid Zone Research X, Paris, pp. 181-188.<br />

81


82<br />

18.<br />

19.<br />

20.<br />

22 s<br />

23.<br />

24.<br />

25.<br />

26.<br />

27.<br />

28.<br />

29.<br />

30.<br />

31.<br />

32.<br />

33.<br />

34.<br />

3s.<br />

36.<br />

37.<br />

38.<br />

39.<br />

Landsberg, H. E., (ed. in chief), (1969). World survey <strong>of</strong> climatology,<br />

Elsevier Publishing Company, Amsterdam.<br />

Nagao, T., (1961). Dynamical classification <strong>of</strong> climate based on the airmass<br />

mixing and transformation, Geog. Rev. Japan, 34, pp. 307-320.<br />

Terjung, W. ï., (1968). Some maps <strong>of</strong> isanomalies in energy balance climatology,<br />

Archives Meteorol. Geophys. Bioclimatology By 16, pp. 279-315.<br />

Gangopadhyaya, PI., Harbeck Jr., G. E. Nordenson, T. J., Omar, M. H., and<br />

Uryvaev, V. A., (1966). Measurement and estimation <strong>of</strong> evaporation and<br />

evapotranspiration, Techn. Note No. 83, World Meteorol. Organization, Geneva,<br />

Switzerland.<br />

Penman, H. L., (1956). Evaporation: ai? introductory survey, Metherland<br />

Jour. <strong>of</strong> Agr. Sci., 4, pp. 9-29.<br />

Budyko, M. I., (1956). Teplovoi balans aemnoi poverkhnosti, Translated by<br />

Nina A. Stepanova, 1958: The heat balance <strong>of</strong> the earth's surface, U. S.<br />

Dept. <strong>of</strong> Commerce.<br />

van Bavel, C. H. M., (1966). Potential evapoiation: the combination concept<br />

and its experimental verification, <strong>Water</strong> <strong>Resources</strong> Research, 2, pp. 455-467.<br />

van Bavel, C. H. M., Newman, J. E., & Hilgeman, R. H., (1967). Climate and<br />

estimated water use by an orange orchard, Agr. Meteorol., 4, pp. 27-37.<br />

Turner, N. C., (1969). Stomatal resistance to transpiration in three contrasting<br />

canopies, Crop Science, 9, pp. 303-307.<br />

Parlange, J-Y, & Waggoner, i?. E., (1970). Stomatal dimensions and resistance<br />

to diffusion, Plant Physiology, 46, pp. 337-342.<br />

Monteith, J. L., (1963). Gas exchange in plant communities, in Evans, L. T.<br />

(ed.), Environmental control <strong>of</strong> plant growth, Academic Press, New York,<br />

pp. 95-112.<br />

Monteith, J. L., (1965). Evaporation and environment no. 19: The state and<br />

movement <strong>of</strong> water and living organisms, Cambridge, Symposia <strong>of</strong> the Society<br />

for Experimental Biology, pp. 205-234.<br />

Penman, H. L., (1948). Natural evaporation from open water, bare soil and<br />

grass, Proc. Royal Soc. (London) A 193, pp. 120-145.<br />

van Hylckama, T. E. A., (1970b). <strong>Water</strong> use by saltcedar, <strong>Water</strong> <strong>Resources</strong><br />

Research, 6, pp. 728-735.<br />

Baumgartner, A., (1956). Untersuchungen Uber den WBrme- und Wascerhaushalt<br />

eines jungen Waldes. Ber. Deutscher. Wetterdienstes, 5(28), pp. 1-53.<br />

Tajchman, S., (1967). Energie- und Wasserhaushalt verschiedener Pflanzenbest-<br />

Bnde bei Munchen. Univ. Muchen, Meteorol. Inst., Wiss. Mitt., 12, pp. 1-94.<br />

van Hylckama, T. E. A., (1970a). Winds over saltcedar, Agric. Meteorol.,<br />

7, pp. 217-233.<br />

Byrne, G. F., Rose, C. W., & Slatyer, R. O., (1970).<br />

porometer, Agr. Meteorol., 7, pp. 39-44.<br />

An aspirated diffusion<br />

Stiles, W., (1970). A diffusive resistance porometer for field use, Jour.<br />

Applied Ecology, 7, pp. 617-622.<br />

Conaway, J., & van Bavel, C. H. M., (1966). Remote measurement <strong>of</strong> surface<br />

temperature and its application to energy balance and evaporation studies<br />

<strong>of</strong> bare soil surfaces. Tech. Rep. U. S. Army Electronics Conmiand 2-67P-1.<br />

van Bavel, C. H. M., (1967). Surface energy balance <strong>of</strong> bare soil as<br />

influenced by wetting and drying. Tech. Rept. U. S. Army Electronics Conmiand<br />

2-67P-2.


40. Fisher, R. A., & Yates, F., (1943). Statistical tables for biological,<br />

agricultural and medical research. Oliver and Boyd Ltd., London, table ïïI.<br />

41. Serra, P. L., (1954). Le controle hydrologique d'un bassin versant, in Soc.<br />

Hydrotechnique de France, Pluie, Evaporation, Filtration et Ecoulement,<br />

Compte Rendu des Troisièmes Jourdes de l'Hydraulique, pp. 29-35.<br />

42. Kisiel, C. C., (1969). Mathematical methodology in hydrology, in Chow, V. T.<br />

(Dir.), The progress <strong>of</strong> hydrology, Proc. <strong>of</strong> First Internat. Seminar for Hydrol.<br />

Pr<strong>of</strong>essors, Urbana, Illinois, pp. 362-399.<br />

83


NOSW3S SNIMOä9 b13d W3<br />

O O O O<br />

O In O In<br />

cv 4 4<br />

O O O<br />

In O In<br />

4 4<br />

I I I I<br />

I I I<br />

m<br />

c\I<br />

m<br />

IL<br />

a-<br />

CCI<br />

~<br />

In<br />

L<br />

N<br />

m<br />

a-<br />

l o ’ H<br />

a<br />

w<br />

U<br />

CI<br />

&<br />

O<br />

u<br />

E<br />

(I<br />

I-<br />

C(<br />

U<br />

E<br />

k &<br />

O<br />

x<br />

I-<br />

3<br />

5<br />

I<br />

a<br />

I<br />

O<br />

3<br />

I<br />

>-<br />

œ<br />

3r<br />

æ<br />

O<br />

z<br />

w<br />

z<br />

:<br />

..<br />

O<br />

k<br />

æ<br />

O<br />

84


äflOH ä3d WW


Fig. 4<br />

Comparison <strong>of</strong> 24 hourly values <strong>of</strong> evapotranspiration<br />

computed <strong>with</strong> equation (5) using Buckeye data (Y> and<br />

Tempe data CX), (9 April '66).<br />

87


88<br />

TABLE 1. <strong>Water</strong> use by saltcedar in millimeters per day<br />

Sum <strong>of</strong> 24 Computed from<br />

hourly values Measured mean daily values<br />

Dates Tempe data Buckeye data Buckeye* Tempe data Buckeye data<br />

-<br />

1966<br />

9 April 11.0 11.5 10.4 14.9 14.4<br />

28 April 14.6 15.6 15.4 18.7 18.2<br />

3 May 13.9 12.2 13.5 17.0 15.8<br />

*The lysimeters at Tempe were allowed to dry out so no potential evapotranspira-<br />

tion data were available.


PLUVIOMETRIC ZONES AND THE CRITERIA TO DEFINE THEIR<br />

ABSTRACT<br />

BOUNDARIES FOR REGIONS WITH SCARCE DATA<br />

by<br />

García-Agreda R., Rasulo G., Viparelli R.<br />

A zone is defined "pluviometric zone" if the parameters <strong>of</strong><br />

the rainfall distribution function assume the same value in all<br />

<strong>of</strong> its points, or vary <strong>with</strong> continuity from one point to another<br />

according to their location.<br />

Consequently, if it is necessary to estimate the rainfall<br />

distribution at a point, o<strong>nl</strong>y the information derived from<br />

pluviometers <strong>of</strong> the same pluviometric zone is useful.<br />

By refering particularly to regions in which there is a<br />

scarcity <strong>of</strong> data, the authors point out that, in order to define<br />

the boundaries <strong>of</strong> the pluviometric zone pertaining to a given<br />

point, it is necessary preliminarly to formulate a working<br />

hypothesis based on climatic maps in which also the geomorphology,<br />

soils and vegetation are considered.<br />

RESUME<br />

Une zone est défine "zone pluviométrique" si les paramètres<br />

de la loi de probabilité des pluies ont la même valeur dans<br />

toute la région ou ils varient d'une façon continue d'un point<br />

à l'autre.<br />

Par conséquence, s'il faut estimer la répartition statisti-<br />

que des pluies en un point, on peut utiliser seulement les in-<br />

formations tirées des pluviomètres disposés dans la même zone<br />

pluviométrique.<br />

En particulier, en se rapportant aux régions pour lesquel-<br />

les on a peu de données, les auteurs soulignent que, dans le<br />

but de définir les lignes de contour de la zone pluviométrique<br />

qui comprend 1.e point considéré, il fau-t d'abord formuler une<br />

hypothèse de travail qui se base sur des cartes climatologiques<br />

dans lesquelles on considère aussi la géomorphologie, les sols<br />

et la végétation.


90<br />

Symbols<br />

1: Let us indicate by:<br />

- h : the annual rainfall depth at any point;<br />

- y : the log <strong>of</strong> h;<br />

- O{h} and {y} : the distribution functions <strong>of</strong> h and y;<br />

- MChl; 0th) and y{h} = m:<br />

aih}<br />

respectively the mean, the<br />

standard deviation and the coefficient <strong>of</strong> variation <strong>of</strong> the<br />

probability distribution <strong>of</strong> h;<br />

- M {y}, oiy} and 02{y): respectively the mean, the stan-<br />

dard deviation and the variance <strong>of</strong> the probability distribution<br />

<strong>of</strong> y.<br />

Let us also indicate by:<br />

- hi <strong>with</strong> 1 c i < n: the n values <strong>of</strong> h registered during<br />

the observation period;<br />

- yi <strong>with</strong> 1 < i c n: the n values taken by y = log h;<br />

- h, s{h} and gCh}: respectively the estimates <strong>of</strong> MIh},<br />

o{h} and yth};<br />

- 7, sty} and s’{y): respectively the estimates <strong>of</strong> MCy},<br />

aiy} and 02{y};<br />

- 71 and 72, Sf{y} and s;{y): respectively the confidence<br />

limits <strong>of</strong> and s‘{y] <strong>with</strong> a tollerance level <strong>of</strong> 95%;<br />

Assume h is distributed <strong>with</strong> a good approximation according<br />

to the log-normal law 113 [2].<br />

Consequently, y is distributed according to the normal law<br />

the parameters M{y} and o{y} which characterize its distribution<br />

are connected to M{h} and y{h} by the equation:<br />

and<br />

equations:<br />

By estimating the parameters 7 and s2{h} by means <strong>of</strong>


and<br />

n<br />

I-<br />

t Yi<br />

n<br />

n<br />

n - 1<br />

the confidence limits <strong>of</strong> 7 and s2{hl could be expressed by means<br />

<strong>of</strong> ecuations:<br />

in which t0,025 and ~0,025, to,g75 and ~0,975 are respectively<br />

the percentiles <strong>of</strong> t and x corresponding to the probability 0,025<br />

and 0,975.<br />

In t roduc ti on<br />

(3)<br />

2: From direct measurements taken at each single point A,<br />

B ... <strong>of</strong> a region, it is possible to deduce o<strong>nl</strong>y estimates <strong>of</strong><br />

the values that M{h} and y{h) assume at the said points.<br />

Takin into account the fact the said estimates could<br />

deviate from the real value due to sampling errors and that in<br />

technical problems the average rainfall depth distribution on<br />

given surface must be known, it is necessary:<br />

a) to improve the said estimates by decreasing the uncer-<br />

tainty <strong>with</strong> which they were determined;<br />

b) to estimate M{h) and y{h} and consequently the annual<br />

rainfall depth that occurs <strong>with</strong> a given probability, even at<br />

points where no pluviometers had been installed.<br />

The two problems become greater in regions where o<strong>nl</strong>y a<br />

few measuring stations are available and for most <strong>of</strong> them <strong>with</strong><br />

a few years <strong>of</strong> observation.<br />

91


92<br />

Hydrological Similitude Criteria and Pluviometric Zones<br />

3: The rainfall depth registered, at a generic point A, for<br />

a given event occurs due to the evolution <strong>of</strong> meteorological<br />

conditions that have their repercussions also on the rainfall<br />

depths that occur in the same event in a more or less extended<br />

zone around A. As it is known, for different environmental<br />

conditions, such as those connected <strong>with</strong> the morphology <strong>of</strong> the<br />

zone, the rainfall depth that occurs during the same event in<br />

different points, could be highly different; however, in passing<br />

from one event to another, at least normally, the said environ-<br />

mental conditions excercise a differential action that acts<br />

always in the same direction.<br />

Finally, the rainfall depths h registered at a point A, are<br />

affected both by meteorological factors common to the entire zone<br />

and acting <strong>with</strong> a variable intensity from one rainfall event to<br />

another; and by the environmental factors that are invariables in<br />

time, but, normally, variable from one point to another,. The<br />

deviations that are observed among the values that h assumes in A,<br />

year after year, depend upon the variability in time <strong>of</strong> the<br />

meteorological factors; while the deviations that are noticed<br />

among the values that h assumes, <strong>with</strong> the same probability,<br />

respectively in A and in each <strong>of</strong> the other points <strong>of</strong> the zone<br />

around A, depend upon the variability <strong>of</strong> environmental conditions.<br />

Consequently, if in a zone characterized by common meteoro-<br />

logical factors k pluviometers are installed, in agreement <strong>with</strong><br />

what has been said by other authors [l), it is safe to suppose<br />

that in passing from one pluviometer to another, the variation<br />

coefficient y{h} remains constant.<br />

Therefore, ify{h} is constant, it derives, from equation<br />

(11, that even 02{y} remains constant.<br />

At this point, we will say that a greater number <strong>of</strong> pluviom<br />

eters belong to the same pluviometric zone if the variance assumes<br />

a common value u “Cy}.<br />

As it is known, the definition <strong>of</strong> a pluviometric zone and<br />

its connected hypothesis are to be considered in a statistical<br />

way.


Precisely, it cannot be excluded that at each single point<br />

the variance 02iy} could differ from the value assumed as<br />

the value to characterize the zone; however, due to the fact that<br />

for each single point o<strong>nl</strong>y an estirnate s2{y] <strong>of</strong> 02{y) could be<br />

had it is evident that:<br />

1) the deviation s2{y} - ~''{y), that is observed for single<br />

point between s2{yl and o''{yI, could be caused partly, s*{yI -<br />

- 02{y), by a sampling error (a non-significant part <strong>of</strong> the<br />

deviation between s2{y} and o"{y) and partly, 02{y] - ot2{y), by<br />

the real difference between 02{y} and or2{y) (the significant<br />

part 1 ;<br />

2) that, however, the deviation significant part is always<br />

modest and such that s'{y] - a"{y} s2{y} - 02{yl t o'íy} -<br />

- C I ~ ~ would I ~ ] range around values that s'{y) - 02{y} would<br />

assume.<br />

4: To determine the pluviometric zo'nes that lie a given<br />

region, the methodology to follow could be divided in theree<br />

phases.<br />

An attemp to formulate a working hypothesis delimiting the<br />

single zones is made during the first phase.<br />

By deducing the best estimate <strong>of</strong> s'2{y} <strong>of</strong> the value that<br />

the variance o'2{y) assumes in all the points <strong>of</strong> the zone during<br />

the second phase, the working hypothesis is formulated.<br />

In doing this, the different significance that the series<br />

<strong>of</strong> data, obtained in each pluviometer <strong>of</strong> the zone, have, must be<br />

taken into account depending on the number <strong>of</strong> a data that appears<br />

in each one <strong>of</strong> them.<br />

Particularly, if k pluviometers lie in the zone, having<br />

indicated by s:{y}, <strong>with</strong> r being variable from 1 to k, the<br />

variance estimated for each single pluviometer from the nr data<br />

registered in it, the best estimate <strong>of</strong> s''{y} could be obtained<br />

by means <strong>of</strong> equation:<br />

93


94<br />

In the third phase, finally, by assuming that ot2{y}=<br />

= s'2(y) we proceed on to the pro<strong>of</strong> <strong>of</strong> the working hypothesis<br />

thus formulated, checking by means <strong>of</strong> equation (6) that the<br />

single estimates differ from the single value <strong>with</strong> differences<br />

that could be attributed solely to sampling errors.<br />

Naturally, in this process we have supposed that data<br />

collected in each pluviometer <strong>of</strong> the zone are not correlated<br />

among themselves [3].<br />

5: As an example, let us refer to Morocco<br />

In fig. 1, the assumed working hypothesis<br />

<strong>of</strong> the region in pluviometric zones is reported<br />

<strong>of</strong> the division<br />

In fig. 2, shows for some zones a statistical control test<br />

<strong>of</strong> the validity <strong>of</strong> the working hypothesis.<br />

As it can be observed, the pro<strong>of</strong> has been carried out by<br />

reporting on a diagram, whose ordinates represent the values <strong>of</strong><br />

s2{y} and whose abscissas represent the number n <strong>of</strong> observation<br />

years :<br />

a) the estimate st2{y} that characterizes the zone;<br />

b) the range <strong>of</strong> confidence delimited by the two curves<br />

s: (n) and s', (n) corresponding to the said value <strong>of</strong> s'2{y} or,<br />

briefly, the confidence band <strong>of</strong> s2{y);<br />

<strong>of</strong> the zone.<br />

c) the point (n, s2{y}) corresponding to each pluviometer<br />

As it can be observed from the diagrams, as a pro<strong>of</strong> <strong>of</strong> the<br />

assumed working hypothesis, the points lie <strong>with</strong>in the confidence<br />

bands.


Adaptability <strong>of</strong> the Climatic Charts for the delimitations <strong>of</strong><br />

Pluviometric Zones.<br />

6: In fig. 3 are reported, <strong>with</strong> different simbols, the<br />

division <strong>of</strong> Morocco in pluviometric zones, as indicated<br />

previously, and the division in climatic zones as it deducted<br />

from the Meigs Chart [4].<br />

As it can be observed, if the arid zones corresponding to<br />

the Massif <strong>of</strong> Atlas, labeled by the indez .(1), and the semiarid<br />

zone between Anti Atlas and Hamada du Dra, labeled by the index<br />

(21, are excluded, a noticeable correspondence exist between the<br />

pluviometric zones and the climatic zones reported by Meigs.<br />

On the other hand, the disagreements mentioned previously<br />

could be easily explained if we consider that climatic charts<br />

are deduced by taking also into account geomorphology, the soil<br />

and the vegetation.<br />

In fact, for the zone (11, the lack <strong>of</strong> vegetation that has<br />

induced Meigs to define it arid, could be attributed not to fewer<br />

precipitations but to the presence <strong>of</strong> a calcareous massif that<br />

prevents the formation <strong>of</strong> a vegetative soil.<br />

On the other hand, for the zone (2) constituted by a large<br />

depression delimited by the Chain <strong>of</strong> the Massif <strong>of</strong> Atlas on one<br />

side and by Hamada du Dra on the other side, the presence <strong>of</strong><br />

vegetation that has induced Meigs to define it as smiarid, could<br />

be attributed not to waters caused by rain that falls directly<br />

on the zone, but to waters that rush there from nearby zones.<br />

Pluviometric zones <strong>of</strong> Bolivia and Saudi Arabia<br />

I: As it has been said in the previous paragraph 6, to<br />

formulate working hypothesis regarding the delimitations <strong>of</strong><br />

pluviometric zones for regions where o<strong>nl</strong>y few pluviometers are<br />

functioning and, moreover , in most cases, functioning solely for<br />

a short observation period, it could be useful to use climatic<br />

charts.<br />

95


96<br />

Thus, to define the pluviometry <strong>of</strong> Bolivia and sone zones<br />

<strong>of</strong> Saudi Arabia, we assumed the working hypothesis that the<br />

pluviometric zones coincide <strong>with</strong> the climatic zones (figs. 4<br />

and 5).<br />

Particularly, for Bolivia we used the chart published by<br />

UNESCO for the arid and semiarid zones [4], and the Trewartha<br />

and Robinson chart for the humid and sub-humid zones [5]. For<br />

Saudi Arabia o<strong>nl</strong>y the chart published by UNESCO was considered<br />

*<br />

phase :<br />

As is shown in the above mentioned figures, in the first<br />

O<strong>nl</strong>y pluviometers functioning for a long period <strong>of</strong> obser-<br />

vation have been considered;<br />

the estimates s2{y} have been deduced from the data<br />

collected in each zone;<br />

the estimates have been divided in groups and the location<br />

<strong>of</strong> each pluviometer has been labeled <strong>with</strong> a different symbol<br />

according to where s2{y} lies.<br />

From the figures we observe:<br />

1) in passing from one to the other climatic zone, the<br />

values <strong>of</strong> s2{y} lie in different groups;<br />

2) if in a zone more pluviometers are functioning, the<br />

corresponding values <strong>of</strong> s'{y] lie, either in the same or conti-<br />

guous groups.<br />

Consequently, by taking into account the definition given<br />

<strong>of</strong> the zones, it is safe to assume the hypothesis that the<br />

climatic zones coincide <strong>with</strong> the pluviometric zones even for the<br />

said regions.<br />

Consequently, in the second phase <strong>of</strong> elaborations, still<br />

taking into account the data relative to pluviometers functioning<br />

for a long period <strong>of</strong> observation, the working hypothesis for each


single zone has been formulated, by assuming as estimate st2{yl<br />

<strong>of</strong> the variation ot2{y} that characterizes the zone, the value<br />

deduced by means <strong>of</strong> equation (7).<br />

Finally, inthe third phase, by using also the data fur-<br />

nished by the pluviometers functioning for a shorter observation<br />

period, to verify the working hypothesis, it was checked that<br />

the deviations between, st2{y} and the value s2{y} deduced for<br />

each pluviometer could be attributed so,lely to sampling errors.<br />

In both cases, from the few data available, the hypothesis<br />

that the pluviometric zones coincide <strong>with</strong> the climatic zones is<br />

sufficiently ascerIained.<br />

Pluviometric Sub-zones<br />

8: As it has been stated by other authors [l] whenever the<br />

estimates <strong>of</strong> M{h} deduced for each pluviometer from the data<br />

registered during the observation period, it has been possible<br />

to distinguish, in each zone, one or more sub-zones.<br />

In each <strong>of</strong> the said sub-zones, when passing from one point<br />

to another, the values <strong>of</strong> the estimates fi either show that:<br />

a) they scatter around a single value M{h}, or that<br />

b) they scatter around values <strong>of</strong> M(h3 that vary in function<br />

<strong>of</strong> either one <strong>of</strong> the parameters which represent the morphology<br />

<strong>of</strong> the sub-zone (particularly, in the cases considered, the land<br />

elevation (2)).<br />

In the first case, each single pluviometric sub-zone has<br />

been characterized by indicating the value fit taken by arithmetic<br />

average <strong>of</strong> fi corresponding to the single pluviometers. In the<br />

second case, each individual sub-zone has been characterized by<br />

specifying the variation law <strong>of</strong> M{h} as function <strong>of</strong> z and by<br />

indicating the values 6' and that according to the<br />

(1)<br />

(2)<br />

mentioned variation law correspond to the highest and lowest<br />

elevation <strong>of</strong> the sub-zone pluviometers.<br />

97


98<br />

paper:<br />

In the fig. 6 are reported on a diagram on logarithmic<br />

a) the points (6, g'{h}) which represent the pluviometric<br />

sub-zones, for the first case;<br />

b) the intervals delimited by the points (hl (1) Y g'(h1)<br />

and (E1(*), g'{h]) for the second case.<br />

As it hast been found by other authors (61, when passing<br />

from one region to another, and for each region from one pluvio~<br />

etric zone to another, the variability increases as the average<br />

annual rainfall decreases.<br />

Instead, as it has been said previously, in each single<br />

pluviometric zone the variability expressed by means <strong>of</strong> ylh} or<br />

u2{y} is completely independent from an eventual variability <strong>of</strong><br />

the average rainfall.


RE FE RCN C ES<br />

[l] VIPARELLI C. : "Idrologia applicata all'ingegneria".<br />

Parte II Fondazione Politecnica del<br />

Mezzogiorno d'Italia, Napoli (1965).<br />

[2] . MARKOVIC R.D. : "Probability Functions <strong>of</strong> best fit to<br />

Distributions <strong>of</strong> annual Precipitation<br />

and Run<strong>of</strong>f".<br />

<strong>Hydrology</strong> papers, Colorado State Univer-<br />

sity Fort Collins, Colorado (Aug. 1965).<br />

[3] PENTA A., ROSSI F.: "Objective Criteria to declare a<br />

Series <strong>of</strong> Data sufficient for technical<br />

Purposesff.<br />

Simposio sobre proyectos de recursos hi-<br />

dráulicos con datos insuficientes. Ma-<br />

drid (1973).<br />

[4] CHOW W.T.: "Handbook <strong>of</strong> Applied <strong>Hydrology</strong>".<br />

Mc Gram-Hill Book Company. Pg. 24-3 e seg.<br />

(1964).<br />

[5] TREWARTHA G.T.; ROBINSON A.H. , HAMMOND E.H.: "Elements <strong>of</strong><br />

Ge o graph y It .<br />

Mc Gram-Hill. Book Company (1967).<br />

[6] HAZEN, ALLEN,: "Variation in annual rainfall".<br />

Eng. News, vol. 75 n. 1 (1916).<br />

The pluviometric data used in this paper have been taken from:<br />

- Institut Scientifique Chérifien du Maroc.<br />

- Servicio Nacional de Meteorología e Hidrología de Bolivia.<br />

- Empresa Nacional de Electricidad de Bolivia.<br />

- Ministery <strong>of</strong> Agriculture and <strong>Water</strong> <strong>of</strong> Saudi Arabian Kingdon.<br />

99


I<br />

l<br />

i<br />

I<br />

l<br />


PLWIO?,ETRIC ZONES AND TIE CRITWIA TO DEYIN2 TRTIR EOiZIDARJ2S ?CI!?<br />

ZEGIONS ::'ITH SCARCE DATA<br />

by<br />

Garcia-Agreda R., Rasulo G., Viparel?.i 9.<br />

Fig. 2<br />

N F<br />

8 8<br />

C3<br />

N O<br />

m<br />

9<br />

h<br />

- x<br />

U<br />

c<br />

x<br />

m


y<br />

Garcia-Agreda R., Rasulo G., Viparelli R.<br />

PLLT'IOXIX'RIC ZOPJ'XS AND TFIE CXITWIA TO DEFINE THEIR BOUNDARIES FOR<br />

EEGIONS WITH SCARCE DAIA<br />

-.<br />

uic. 2<br />

-- __ I<br />

rP<br />

M<br />

l<br />

m<br />

N<br />

O<br />

m<br />

o)<br />

N<br />

I I<br />

m m m<br />

- C U T -<br />

;;:<br />

m *<br />

N N<br />

I<br />

I<br />

l o<br />

o O<br />

O<br />

E<br />

Y<br />


8<br />

12<br />

16<br />

20<br />

24<br />

68 64 60<br />

I<br />

68 a4 60<br />

Fig. 4<br />

FLLWIO?3TTiIC ZONES hi TIE3 CRITERIA TO DEFINE THEIR BOUNDARIES FOR<br />

REGIONS WITH SCARCE DATA<br />

Garcia-Agreda R., Resulo G., Viparelli R.<br />

by<br />

F--..<br />

U 11111 Km aiici<br />

__<br />

24


ì , l<br />

I \<br />

O<br />

h-l<br />

ul<br />

N<br />

O<br />

N<br />

Ln c


jr<br />

Garcia-Agreda R., Rasulo G., Viparelli R.<br />

PLLVIOEETSIC zoms urn THE CRITERIA TO DEFINE THEIR BOUNDARIES BOR<br />

REGIONS WITH SCARCE DATA<br />

O


ABSTRACT<br />

ESTIMATION DES ETIAGES DE BASSINS NON EQUIPES<br />

par G.R. OBERLINB, G.C. GALEA* et J.T. TONI**<br />

The first data collected on the different creeks <strong>of</strong> the Or-<br />

geval representative watershed (104 km2), showed a great disparity<br />

between low water specific discharges. This disparity subsisted<br />

after adjustement <strong>of</strong> man influences (such as pumping and throws).<br />

The differences contrasted <strong>with</strong> the visible simplicity and homo-<br />

geneity <strong>of</strong> the watershed surface and <strong>with</strong> the supposed favourable<br />

outline <strong>of</strong> the ground water catchment. That is to say, even <strong>with</strong><br />

these propitious conditions in appraising the hydrological charac-<br />

teristics (good network and problem seemingly easy), the represen-<br />

tativity, i.e. the extrapolation <strong>of</strong> the results to similar<br />

neeghbouring creeks, was found at fault. To resolve this point<br />

<strong>with</strong>out additive equipment, gauging rounds were undertaken during<br />

low water seasons on a great number <strong>of</strong> creeks. The comparison <strong>of</strong><br />

these groups <strong>of</strong> instantaneous discharges, measured on the same day<br />

at different places, ser <strong>of</strong>f the behaviour <strong>of</strong> each watershed. In<br />

some cases, the analyses <strong>of</strong> these observed differences allowed the<br />

elaboration <strong>of</strong> general rules and led to pratica1 conclusiones, <strong>of</strong>-<br />

ten quantitative. As some sections <strong>of</strong> the measured creeks belonged<br />

to permanent network, and some other conditions having been satis-<br />

fied (especially: a great enough number <strong>of</strong> measurements during<br />

each low water season), the unknown characteristics <strong>of</strong> the unex-<br />

plored creeks have been evaluated from these <strong>of</strong> the permanent<br />

stations.<br />

RESUME<br />

Les premieres mesures effectuées sur les divers sous-bassins<br />

constituant le bassin représentatif de l'0rgeval (104 km'), ont<br />

fait entrevoir de trss importantes différences de débits spécifi-<br />

ques d'étiage. Celles-ci subsistaient après correction des in-<br />

fluences humaines (pompages et rejets). Ces différences contras-<br />

taient avec la simplicité et l'homogénéité apparentes du bassin<br />

en matière de caractéristiques physiques et avec 1 'aspect favora-<br />

ble de son hydrogéologie. Autrement dit, même dans ces conditions<br />

optimales d'estimation de caractéristiques hydrologiques (bon<br />

équipement de mesure et probleme a priori simple), la représenta-<br />

tivité, c'est-à-dire l'extrapolation de résultats aux bassins<br />

voisins et semblables, était mise en échec. Pour résoudre le pro-<br />

bleme sans équipements nouveaux, des campagnes de mesures volan-<br />

tes d'étiage ont été réalisées sur un certain nombre de cours<br />

d'eau. La comparaison de ces ensembles de débits instantanés, me-<br />

surés simultanément en divers lieux, a précisé les différences de<br />

comportement des bassins. Dans certains cas, l'analyse de ces dif-<br />

férences a pu suivre des règles générales et conduire à des con-<br />

clusions dont certaines étaient quantifiables. Comme plusieurs<br />

stations permanentes (équipées) étaient incluses dans ces cam-<br />

pagnes, et que certaines conditionsavaient été satisfaites (en<br />

particulier: un .?ombre suffisant de jaugeages au cours d'une<br />

même saison d'étiage), les caractéristiques inconnues des bassins<br />

non équipés ont alors pu être estimées.<br />

$; C.T.G.R.E.F., Parc de Tourvoie, F - 92160 ANTONY.<br />

*J. ,. ,. Direction Départementale de l'Agriculture. PARAKOU (Dahomey)


104<br />

INTRODUCTION<br />

Dans l'étude des basses eaux, en hydrologie, on se heurte toujours<br />

à une première difficulté concernant la qualité des données de débits de basses<br />

eaux. Cette difficulté résiste remarquablement bien aux dliorations apportées<br />

au fonctionnement des stations hydrométriques, même bien équipées. Sur les<br />

bassins versants d' investigation de l'orgeval, par exemple (surfaces variant<br />

de 7 ?i 104 km2), malgré d'efficaces et importants travaux (11, 18 procédure<br />

habituelle de mesure des hauteurs d'eau, puis de traduction nhauteur - débit"<br />

n'est pas toujours performante en très basses eaux.<br />

Une solution très généralement utilisée consiste alors à effectuer un<br />

grand nombre de mesures instantanées de débit (Jaugeages) et h Interpoler ent-e<br />

ces mesures toutes les fois OU cela est possible, c'est-à-dire lorsque la dé-<br />

crue n'est pas influencée par une crue, si minime solt-elle. Dans cette procédure,<br />

l'équipement de la station hydrométrique (échelle; iimnigraphe. etc.. . )<br />

n'est guère utilisé, sinon de façon qualitative fi]. Par généralisation de la<br />

méthode on peut envisager de réaliser ces campagnes de jaugeages sur des cours<br />

d'eau réellement non équipés et en espérer des résultats autres que ponctuels.<br />

1. RESEAU DE MESURES EPISODIQUES D'ETIAGES<br />

Les premières mesures conventionneiìes effectuées en lgtj2 SUT les 4<br />

stations équipées du bassin de l'orgeval (Minj stère de l'Agriculture, France)<br />

s'étaient évidemment heurtées awc difficultés hydrométriques citées plus<br />

haut. De plus, elles avaient décelé de très grandes différences dans les dé-<br />

bits spécifiques [g, I1 était difficile de savoir si ces différences avaient<br />

une origine hydroaéologique (hétérogénéité dans la répartition des réservoirs<br />

souterrains) ou étaient simplement dues aux aléas des Jaugeages, voire des<br />

influences humalnes (pompages, re Jets, retenues, etc.. . ). A priori, l'excep-<br />

tionnelle homogénéité du bassin en matière de géologie et de formationsde svr-<br />

face (51,Fi~. la) &ait en contradiction avec la premièrc hypothèse. Néan-<br />

moins, les mesures de type extensives mentionnées dens l'introduction ont<br />

été commencées dès 1963.<br />

La liste des stations concernées par ces mesures est donnée dans le<br />

tableau 1 et la Fig. lb présente leur répartition sur la surface du bassin.


2. 8EMERS RESULTATS ISSUS DE SINPLES CORRELATlONS INTER-STATIONS<br />

2.1. Préliminaire : Dans tout ce qui suit, nous appellerons débits d'étiages<br />

tout débit provenant du drainage d'un réservoir souterrain (même proche du<br />

sol), à l'exclusion dé tout ruissellement (de surface, direct, retardé,<br />

105<br />

etc...), et de tout écoulement "hypodermique". Nous faisons l'hypothèse que<br />

nous sommes dans ces conditions lorsque la dernière crue est distante de<br />

plusieurs jours (crues estivales tr&s modestes), ou de Plusieurs semaines<br />

(crues moyennes et fortes), gour des bassins de 10 à 100 Km?: Ne connais-<br />

sant pas la repré;.ntativité dans le temps de ces jaugeages instantanés,<br />

nous corrélons deux h deu lec jaugeages de même date. Pour simplifier, nous<br />

n'avons pasétudié toutes les combinaisons 2 à 2 réalisables avec le groupe<br />

des 9 ou 10 stations. Enfin, nous n'avons pas corrélé les débits spécifiques<br />

mais les débits absolus. Les grandes différences de comportement des divers<br />

bassins montrent en effet que la notion de surface du bassin superficiel<br />

nia sans doute pas grand chose h voir avec les dimensions des réservoirs<br />

souterrains générateurs des débits d'étiage.<br />

2.2. Rksultats : En général, sur tous les graphiques construits (environ 20), on<br />

observe une dispersior. assez forte (Fig. 22). Elle est même très forte sur<br />

toute corrélation concernant Mélarchez. Elle n'est acceptable qu'à l'inté-<br />

rieur du groupe des 3 stations aval du ru des Avenelles (Gouge, Avenelles,<br />

Theil) et de la station du Croupet.<br />

Même en faisant abstraction de la dispersion propre aux erreurs<br />

de mesure (les jaugeages d'étiage sont délicats et peu précis), l'ensemble<br />

des points reste très dispersé.<br />

ia première conclusion à en tirer est ia suivante : les conditions<br />

d'alimentation des différents réservoirs souterrains (à l'origine des débits<br />

d'étiage) ne sont pas homogènes sur l'ensemble du bassin, malgrdla taille<br />

-<br />

réduite (100 Km2) de ceiui-ci.<br />

En regardant de plus près on constate que, pour une année donnée,<br />

la dispersion est moins grande, et parfois même faible. D'ou la seconde<br />

conclusion : pour une période d'étiage continue donnée (un été), les c oa-<br />

tions d'alimentation (l'hiver prbcédent) se révelent stables dans le temps.<br />

Pour la plupart des bassins, cette dernière conclusion doit cepen-<br />

dant être nuancée quand on prend en compte les basses eaux tardives (zutorne).<br />

Ces dernières sont d6jà influencées par les premières pluies d'hiver (les


106<br />

débits remontent, ou bien leur baisse diminue ou s'annule), et les corré-<br />

lations montrent des comportements très différenciés selon les bassins :<br />

les points correspondant à des dates tardives (Octobre &. Décembre) sont<br />

souvent rassemblés d'un Seul côté du nuage de points, pour une année donnée.<br />

Nous dirons que les bassins qui "pr<strong>of</strong>itent'' rapidement des premières pluies<br />

d'hiver ont une alimentation plus superficielle que les autres. D'où la troi-<br />

sième conclusion : les bassins amont ont une alimentation ñettement plus super.<br />

ficieìïe que les autres (résultat classique) ; ce caractère supérficieì est<br />

surtout marqué au-dessous de i5 km2 (exutoire situé au-dessus des argiles<br />

vertes) ; surface égale, le ru du Rognon est plus "superficiel" que le ru<br />

des Avenelles : le ru de Bourgogne semble être intermédiaire entre les deux,<br />

mais la probabilité d'une assez forte rétention de surface (forêt) rend cette<br />

conclusion aléatoire.<br />

2.3. Aspect méthodologique : Des observations précédentes nous déduisons un graphiqi<br />

caractéristique (Fig. 23) d'une corrélation entre les étiages instantanés de<br />

deux bassins voisins, mais à système hydrogéologique (d'alimentation d'étiage)<br />

différencié. Il y a une forte dispersion globale, mais l'évolution est cohé-<br />

rente à l'intérieur d'une année donnée (i ou j ou k).<br />

3. CORRELRTION INTER-STATION PAFI WUBLES CUMUL5<br />

3.1. Résultats qualitatifs : Etant donné la forte dispersion des corrélations to-<br />

tales 2à 2, il était difficile d'en tirer des conclusions sur les abondances<br />

relatives des bassins corrélés. Les courbes de doubles cumuls ont donc été<br />

tracées. Elles confirment d'abord les conclusions précédentes : hétérog6néité<br />

non négligeable d'une année à l'autre, bonne homogénéité à l'intérieur d'une<br />

année avec courbure, caractéristique de 1' influence des premières pluies Aiver<br />

Néanmoins, une bonne tendance se dessine sur la plupart des graphiques et per-<br />

met de tirer des conclusions sur l'abondance relative des étiages. D'ou la<br />

quatrième conclusion, en raisonnant en débit spécifique (k surface égale) :<br />

le ru des Avenelles est nettement plus abondant que le ru du Rognon ; le ru de<br />

Bourgogne est legèrement plus abondant que le ru du Rognon : dans le bassin du<br />

Rognon, le ru du Petit Courcy (ferme Plessier) est nettement plus abondant w e<br />

le haut Rcgnon ; dins le bassin des \venelles, c'est le ru de 1'Etang qui<br />

apporte l'essentiel des étiages par rapport un bassin de Mélarchez insignifi;


107<br />

On constate une quasi identité entre les bassins d'étiage faible<br />

et ceux qui pr<strong>of</strong>itent rapidement des premières pluies d'hiver (rus "super-<br />

ficiels"). I1 en est be même entre ceux b. étiage pur (coeur de l'été) abon-<br />

- dant et ceux dont les eaux restent basses tardivement.<br />

A noter, enfin, que le caractère de "superficialité" attribué aux<br />

bassins de Mélarchez et de Pierre Levée et déduit d'une-réponse rapide aux<br />

premières pluies d'hiver, se décèle également pour la partie, aval du bassin.<br />

Ce sont les pentes plus fortes dominant l'extrêmité aval des thalwegs (en<br />

particulier au droit de la station des Avenelles et du Champ de Tir) qui<br />

sont probablement à l'origine de cette (faible) croissance relative des<br />

étiages de fin d'été.<br />

3.2. Aspect méthoddogique : La courbe type d'une corrélation par double cumul<br />

entre deux bassins voisins a été représentée sur la Fig. 32. On a bien<br />

entendu fait l'hypothèse de l'existence de différences classiques entre<br />

i- i-<br />

les nappes alimentant les étiages (- abondantes, - superficielles, etc...).<br />

Les caractéristiques d'abondance ont +té mises entre parenthèses<br />

sur la Fig. 32 car la liaison "abondance-pr<strong>of</strong>ondeur (des nappes)" observée<br />

sur l'ûrgeval, n'est pas générale, même si elle est fréquente.<br />

4. ESSAI DE COMPAXAISON QUAhTITATIVE ENTRE BASSINS<br />

Dans les tableaux qui suivent nous avons essayé de consigner, sous<br />

forme condensée et parfois numérique, les conclusions présentées auparavant.<br />

Chaque tableau se rapporte à une des 4 stations principales du bassin. Les<br />

diverses caractéristiques d'étiage déterminées sur ces 4 bassins principaux<br />

fi] fi] fi] (1/ pourront ainsi être approximativement transformées pour<br />

s'adapter à tel ou tel bassin non observé de manière continue ($9 8 & 9).<br />

Le rapport d'abondance moyenne K noté en colonne (4) est une estimation de la<br />

pente moyenne de la courbe des doubles cumuls (9 3), éventuellement affranchie<br />

des anomalies de cette courbe. Pour souligner les différences de comporte-<br />

ment des bassins, ce rapport est calculé avec les débits spécifiques.<br />

Ce coefficient K est donc (aux rapports des surfaces près) le rap-<br />

port entre les moyennes des mesures d'étiages épisodiques effectuées en 2<br />

stations. ia signification statistique de ces moyennes est a priori tout à<br />

fait particulière ; on verra au § 32 qu'elle peut être rattachée à une carac-<br />

téristique générale,


108<br />

4.1. Etiages instantanés comparés à cem de la station équipée de Mélarchez :<br />

--------_-e============;<br />

- ----- ~ -___<br />

Car adere<br />

Cours d'eau Station<br />

(1)<br />

Avenelles<br />

(Fosse Rognon) Mélarchez<br />

.---_I-----_--_..----------<br />

Etang. ........ Croupet<br />

Petit Couroy.. Bibartault<br />

Rognon.. ...... Pierre k v<br />

ßourgogne.. ... Ch. de Tir<br />

Rognon. .......<br />

Avenelles<br />

Fosse Rognon 1.<br />

(2 1<br />

Bibartault<br />

Gouge<br />

Rognon ........ Ch. de.Tir<br />

Avenelles..... Avenelles<br />

Orgeval.. ..... Theil<br />

Etang. ........ Croupet<br />

Rognon.. ...... Ch. de Tir 43,4<br />

Avenelles..... Avenelles 45,7<br />

Orgeval ...... Theil 104<br />

0,3 à 0,4 í (<br />

0,6 (<br />

superficiel<br />

des nappes<br />

(5 1<br />

-<br />

-------..--_-<br />

assez<br />

pr<strong>of</strong> ondes<br />

II II<br />

superfiddks<br />

assez pr<strong>of</strong>.<br />

It 11<br />

% par rapport au bassin de référenc5 Tableau 41<br />

superficiel<br />

un peu +<br />

superficiel<br />

pius<br />

:orréiation<br />

;res mauvaise<br />

4.2. Etiages instantanés comparés à ceux de la station équipée de la Gouge :<br />

Nous n'avons étudié que les bassins de surface pas trop petite par rapport<br />

à celle de la Gouge, pour ne pas introduire de trop grosses différences.<br />

Cours d'eau I Station I I 'Kf=<br />

1<br />

._______r____<br />

Caractere<br />

superficiel Remarques<br />

des nappes"<br />

(5) (6)<br />

Avenelles<br />

f par rapport au bassin de référence. Tableau 42<br />

1<br />

)corrélation<br />

)ves bonne<br />

1


_______-___ _--_-_-----<br />

_-_____-I__ --I---<br />

-----<br />

Cours d'eau Station<br />

(1) (2 1<br />

Avenelles.. Avenelles<br />

_______-__--..-----------<br />

Rognon ..... Ch. de Tir<br />

Orgeval ... Theil<br />

-____________ ---<br />

Grgeval ..., Theil<br />

_________________-------<br />

. Ch. de Tir<br />

Rognon . ___________________----<br />

__ - _______ -_- --<br />

109<br />

4.3. Etiages comparés à ceux des stations équipées des Avenelles et du Theil :<br />

5. INFLUENCE DES UTILISATIONS HUMAINES DE L'EAU<br />

K"<br />

superficiel<br />

des nappes*<br />

Remarques<br />

(4) (5) (6)<br />

plus<br />

Os4 superficiel<br />

0,75 semblable<br />

Ces observations portent sur 8 années et, pour chaque été, sur des pé-<br />

riodes de plusieurs mois, il nous semble que, sauf exception (cf. ci-dessous),<br />

les influences humaines sur les étiages (pompages, retenues d'eau, etc ...)<br />

ne peuvent pas avoir faussé les conclusions précédentes. De par leur irrégu-<br />

larité (les équipements se modifient, les lieux de pompage se déplacent, les<br />

volumes prélevés ou rejetés sont très irréguliers dans le temps) elles sont<br />

partiellement & l'origine de la forte dispersion mentionnée au début du 5 2,<br />

mais nous avons veillé à ne tirer des conclusions que sur les tendances,<br />

affranchies des irrégularités locales et instantanées. I1 faut noter jci que<br />

cette étude avait déjà été envisagée en 1966 avec les mesures réalisées<br />

cette date. Etant donné la dispersion observke, les résultats avaient<br />

tellement décourageants que ces cûmpacnes de jaugeages épisodiques ont failli<br />

être abandonnées. I1 n'a donc pas fallu moins de 8 ans pour arriver à u'a.f'-<br />

franchjr de ces variabilités locales et percevoir les tendances.<br />

Des estirriations rapides sur les rejets possibles de la commune de DOUE<br />

(alimentée depuis ].'extérieur du bassin) dans le ru de l'Etang, ou sur les<br />

pompages de COUIOhPlIEK3 dans le PU du Rognon (en amont du Champ de Tir), ont<br />

abouti & des influences mriximales de quelques 5, sauf pour le ru clii Ro:--i?n<br />

au Champ de Tir dans le bassin duquel 11 1/s sont captés en quasi-permanence<br />

par la ville de COULOMMIERS. Ces influences ont été ndgligées dans la<br />

été


11 o<br />

6.<br />

présente étude qui fournit simplement des ordres de grandeur pour les<br />

comparaisons entre bassins dans leur stade actuel de fonctionnement.<br />

Une autre influence peut-être non négligeable concerne le captage<br />

d'une partie des eaux de Pierre Levée, en aval immédiat de la station,<br />

par un puits qui ne devrait d'ailleurs servir que pour écrêter les hautes<br />

eaux, c'est-à-dire à partir d'un certain débit, largement supérieur a m<br />

basses eaux concernées dans cette étude. Ceci pourrait cxpliquer la fai-<br />

blesse du ru du Rognon à Bibartault (§ 31). I1 n'est pas posiible actuel-<br />

lement d'estimer les d6bit.s ainsi dérivés et donc de corriger les mesures<br />

faites à Pierre Levée.<br />

Pour le ru du Rognon au Champ de Tir, compte tenu de ce que nous ne<br />

savons pas où iraient les 11. l/s captés s'ils étaient libres de s'écouler<br />

naturellement, nous préférons travailler sur les débits observés.<br />

VARIATIONS DES ETIAGES D'AMONT EN AVAL<br />

Du fait de l'organisation propre d'un réseau hydrographique, lequel<br />

est constitué de divers tronçons réunis en des confluents, les surfaces<br />

contrôlées par un ru d'amont en aval subissent des discontinuités (conflu-<br />

ent) qui rendent délicates les études de variation des caractéristiques<br />

hydrologiques d'amont en aval. Ceci est particulièrement vrai lorsque, à<br />

un confluent, se réunissent deux tronçons de caractéristiques très diffé-<br />

rentes. En toute rigueur, il faudrait faire apparaitre ces discontinuités<br />

dans les résultats.<br />

En première approximation, nous négligeons ces nuances et les Fig. 6a<br />

et Gb qui suivent présentent un ordre de grandeur de la variation des débits<br />

d'étiage d'amont en aval sur les deux principaux rus du bassin : Avenelles<br />

et Rognon. Ces courbes ne donnent qu'une indication de la fourchette obser-<br />

vée sur les 8 ans d'observation. La courbe centrale (point M) n'est pas une<br />

courbe de vraies moyennes statistiques, lesquelles ne peuvent être calcu-<br />

lées étant donné la distribution anarchique des dates de jauseaye sur ces<br />

e ans. D'autre part, pour une date donnée, l'ensemble des débits observés<br />

d'amont en aval ne. forme pas nécessairement une courbe "parallèle" aux<br />

limites ou B la courbe centrale esquissés.<br />

Le caractère plus redressé des courbes du ru du i?ognon s'explique par<br />

le fait que, en allant de l'amont vers l'aval, il rencontre des rus pr-ogres-<br />

sivement plus abondants ($ 4 1). Ln situation est ir.versée porir le<br />

-


u des Avenelles à partir du confluent "ru de 1' Etang - ru de<br />

Fosse Rognon".<br />

111<br />

Les figures 6a et 6b peuvent servir à estimer des moyennes fictives de<br />

débits d'étiages mesur6,s en des stations non observées, ce qui permet d'es-<br />

timer leurs rapports K ($ 4).<br />

7. ASPECTS HYDROGEOIDCIQüES<br />

L'abondance des débits du ru des Avenelles à la Gouge était expliquée,<br />

Jucqu'à présent, par le fait que, situé au-dessous d'un affledrement d'argiles<br />

vertes, ce cours d'eau récupérait l'essentiel des infiltrations stoppées par<br />

cet horizon imperméable des argiles. Or, nous voyons que les débits sont<br />

déjà importants un peu au-dessus de cet affleurement, sur le ru de 1'Etang<br />

à Croupet par exemple.<br />

L'examen de la carte géologique (Fig. la) montrait d'autre part une<br />

forte présence de sables de Fontainebleau dans la partie aval du ru del'Etan@:<br />

(Ouest et Nord de la butte de DOUE).<br />

De même, ce sable (par ailleurs présent çà et là dans tous les limons de<br />

Brie) serait également plus abondant à l'amont du ru du Petit Couroy. Or<br />

dernier est, après le ru de l'Etang, le second "chateau d'eau'' pour les<br />

étiages du bassin. Ta station de Bibartault est, par ailleurs, sitde net-<br />

tement au-dessus de l'aff leurement des argiles vertes.<br />

ia liaison entre sable et étiages paraissait à envisager et nous avan-<br />

cions l'hypoth&se que les étiages du bassin de l'0rgeval étaient moins le<br />

résultat d'un drainage des limons localisé immédiatement au-dessus des argiles<br />

vertes, que le résultat du drainage des nappes éparses qui peuvent être loca-<br />

lisdes dans toute l'épaisseur des limons, mais qui sont simplement plus abon-<br />

dantes dans les zones oÙ le sable est plus fréquent.<br />

Quant aux étiages assez abondants du ru de Bourgogne, il pourrait s'agir<br />

d'une influence bénéfique de la forêt sur le volume des étiages, résultat qui<br />

commence a etre admis un peu partout (pour la zone tempérée), malgré les nom-<br />

breuses controverses toujours en cours sur ce suJet.<br />

Depuis peu, une campagne geophysique de sondages électriques a montré<br />

qu'il n'y avait guère de lentilles de sable, mais des lentilles de calcaire<br />

et meulière de 3rie. La signification géologique change, mais le rgsultat est<br />

quasiment le même pour 1'hyclrol.ogue. Une campagne de mesures épisodiques ue<br />

niveaux de puits a d'ailleurs confirms ces hypotheses.<br />

ce


11 2<br />

Dans tout ceci il faut noter l'extraordinaire différence de comporte-<br />

ment en étiage de bassins qui, en l'absence de ces mesures de débits<br />

partielles et épisodiques, étaient communément considérés comme remarquable-<br />

ment (voire exceptiotuîeììement ) homogènes. Ceci est un avertissement sérieux<br />

qui doit rendre extrêmement circonspect dans toute interpolation ou extrapo-<br />

lation de résultats à une échelle régionale.<br />

8. CARACTEXiISTIQUES D'ETIAGFS DES BASSINS NON EQUIPES<br />

I1 reste à présent à utiliser les résultats ci-dessus pour obtenir<br />

quelques caractéristiques d'étiages sur les bassins secondaires non contrô-<br />

lés en permanence. Ceci suppose d'avoir auparavant élaboré les caractéris-<br />

tiques correspondantes des bassins de référence, équipés.<br />

8.1. Résultats observés sur les bassins équipés :<br />

8.1.1. MéLhgdgs-:<br />

L'étude de la forme des courbes .de tarissement est décevante, ce<br />

qui n'est guère étonnant quand on considère la petite taille des bassins<br />

et l'hétkrogénéité des aquifères d'alimentation : ensemble de nappes<br />

plus ou moins superficielles et locales irrégulièrement distribuées dans<br />

l'espace. I1 n'est donc pas possible d'estimer les volumes emmagasinés<br />

avec une précision acceptable.<br />

L'étude des étiages à l'échelle de temps du mois civil n'est pas non<br />

PlUS très intéressante, étant donné l'inexistance d'une véritable saison<br />

sèche piuviométrique : ï'ûrgevaï est soumis à un climat où les pluies<br />

d'été sont aussi nombreuses et importantes que celles d'hiver. Certes,<br />

la fonction de rendement (coefficient d'écoulement) est très basse en<br />

été mais, s'agissant de petits bassins, l'influence de ces petites crues<br />

d'été est fondamentale sur les débits. I1 en résulte que les périodes<br />

d'étiage peu supérieures à 5 ou 10 jours sont relativement rares ; et<br />

celles de 3 jours consécutifs que l'on peut rencontrer sont toujours 2<br />

cheval sur 2 mois civils.<br />

Les seules caractéristiques intéressantes sont celles qui s'expriment<br />

en fonction des débits journaliers. Les plus connus snnt les débits classés,<br />

notés Dc et les minimums de débits moyens sur N jours notés Vcn<br />

n<br />

(N = 355 - n). Sur l'Orgeva1, nous avons. pris l'habitude fi] d'y ajouter<br />

un troisibme type, not8 QCn et appelé "débit caractéristique de période


continue". BI étiages la définition de ces QCn est la suivante :<br />

113<br />

QC d'une année est, le minimum des débits Journaliers maximums des<br />

n<br />

périodes de N jours consécutifs (N = 365 - n). Cette définition, un peu<br />

complexe, recouvre'en fait une caractéristique de type "seuil", facile<br />

à déterminer sur un graphique (Fig. 811).<br />

8.1.2. Eésultgtz :<br />

Les distributións des 10 valeurs annuelles détehnées, pour chacune<br />

des 4 stations de références, sur la période 19ó2-1g0, e& très irrégu-<br />

lière : non seulement il n'est pas raisonnable d'y ajuster des lois,<br />

mais l'extrapolation de la simple distribution expérimentale F(Q) n'est<br />

même pas envisageable. Dans ces conditions, les seuls résultats synthé-<br />

tiques que l'on puisse avancer sont les valeurs moyennes et extrêmes<br />

observées, en précisant qu'ils sont relatifs k 10 années d'observation,<br />

le tableau 812 ci-dessous récapitule les résultats et la Fig. 812 pré-<br />

sente les valeurs moyennes.<br />

I1 faut noter que les débits caractéristiques QC et VC pour<br />

n n<br />

n = 335 correspondent k des données "mensuelles", mais pour un mois<br />

"mobile", affranchi des limites civiles de début et fin de mois.<br />

O, 493<br />

O, 576<br />

O, 652<br />

1,oe<br />

Note : pour QCn,et VCn, durée de 1.a Période = (365 - n) jours.<br />

le


QCn en 1/s<br />

8.2. Estimation des caractéristiques des bassins non équipés :<br />

En examinarit les r6sultats rgcumks sur la Fig.fi12et en les confrontant<br />

aux termes de comparaisons (K essentiellement) présentés au $ 4, on cons-<br />

tate que :<br />

- la décroissance de chacune des.3 courbes quand n croît se fait à peu<br />

près selon la même pente pour les 4 bassins équipés ;<br />

- les courbes de valeurs moyennes sur 10 ans VC (n) et Dc (n) sont très<br />

n n<br />

proches ; celle de QCn(n) est nettement distincte ;<br />

- la connaissance des 3 points : QC335 , VC335 et Dc permet de dél-imi-<br />

. 365'<br />

ter un triangle représentant quasiment tous les résultats du tableau 812;<br />

- les rapports d'abondance spocifique K définis au $ 4 correspondent à peu<br />

près aux rapports K1 des QC (spécifiques) ; ceci est compréhen-<br />

335<br />

sible car de toutes les ca,ractéristiques d'étiages déterminées au $ 81,<br />

ce sont les QC qui sont le plus éloignés des minimums instantanés<br />

335<br />

et les moins éloignés donc de cette moyenne d'étiages mesurés qui a<br />

servì au calcul du rapport K. ;<br />

- Les rapports K et K entre les deux o.utres caractéristiques définissant<br />

2 3<br />

le "triangle" cité précédernent sont différents de K et Kl, mais leurs<br />

sont approximativement proportionnels et selon un coefficient indépendant<br />

du bassin à l'intérieur d'un même type de bassins (superficiel ou pr<strong>of</strong>ond)<br />

ces rapports sont cependant variables avec le bassin de référence uti-<br />

lisé ; ils sont présentés dans le tableau 82.<br />

Le tableau 82 peut être complété en utilisant les propriétés notées<br />

ci-dessus et 1es.connaissances qualitatives du bassin (0 $ 2 et 3) : les<br />

rapports K1 à 5 estimés y sont notés entre 2arenthèses. A l'aide de ces<br />

rapports et des résultats des bassins de référence, on a estimé, pour les<br />

6 bassins non équipés, les tro'is débits caractéristiques (QC 335' vc335 et


DC délimitant les triangleybbservés sur la Fig. 812. Certains bassins<br />

365<br />

(Croupet et Rognon au Champ de Tir) non équipés avaient été comparés ?i deux<br />

ou trois bassins de référence et les estimations concordent de maniere satis-<br />

faisante, sauf pour l'estimation du Champ de Tir (Rognon) & partir du Theil<br />

qui est faible,<br />

I1 faut noter que seul un souci d'économie à limité les comparaisons<br />

entre bassins équipés et non équipés ; il y avait en fait des données suffi.-<br />

santes pour comparer chacun des 6 bassins non équipés 5 chacun d:s 4 bassins<br />

équipks de référence.<br />

115<br />

La Fig. 82 récapitule les estimations. Compte tenu du caractère aléatoire<br />

des estimations de K et Y on a également cherché à respecter approximative-<br />

ment la forme des "triangles" qui étaient à peu près égaux sur les données<br />

observées (Fig. 812).<br />

MELARCHEZ<br />

2 5'<br />

Tableau 82 ,<br />

Rapports entre débits caractéristiques d'étiages et<br />

moyennes des étiages instantanés<br />

(les rapports estimés sont entre pareritheses)<br />

' ea11<br />

295 a 3<br />

(1)<br />

3<br />

O,? à O,¡<br />

4 à 5<br />

.<br />

2<br />

4 à 5<br />

fia4<br />

lCUARCHEZ (Y = M) 7 Km2 débits spécifiques<br />

G O U G E (Y = G) 24,7 Km2<br />

I I


11 6<br />

9. DISCUSSION<br />

L'absence de mesures continues sur les bassins non équipés ne permet pas<br />

de tester la précision des estimations faites au $ 82. Néanmoins, la méthode<br />

de comparaison (doubles-cumuls) ayant été appliquée aux 4 bassins observés de<br />

manière continue, on a là un moyen de tester partiellement la méthode : les<br />

estimations sont bonnes, voire excellentes, mais il était nécessaire de dis-<br />

poser d'au moins 2 ou 3 bassins pour connaître les relations entre les<br />

Ki (i = 1 à 3) et K.<br />

Compte tenu de la méthode employée, et de 1'irrégul.arité des distribdions<br />

$$ 81.2), il n'est pas bon de l'appliquer aux valeurs extrêmes observées<br />

l'on ne pourra suffisamment bien mesurer ni la fréquence des rgsultats (repérés.<br />

ou estimés), ni les intervalles de confiance correspondants.<br />

Mises à part les courbes de double-cumuls qui nous semblent etre une<br />

&ape nécessaire et fondamentale (elles permettent de c'affranchir des nom-<br />

breuses irrdgularités locales propres aux étiages et de percevoir la tendance),<br />

la suite de l'analyse pr6scntée ne prétend à aucune originalité et il serait<br />

possible d'utiliser les données autrement, par exemple en étudiant les liai-<br />

sons entre les jaugeages instantanés et les débits mensuels.<br />

Si ces cam-a.gnes de jnugeag'en épisodiques n'avaient -as 4té réa.lis4sJ 1-3<br />

dobits d'étiage auraient été estimés directement & parth- des 4 bassins n'user-<br />

vés, en appliquant la règle habituelle d'égalité de débit sphcifique, la<br />

car


117<br />

connaissance géologique conduisant à diviser le bassin en deux groupes : type<br />

"MELARCHEZ" pour ceux dont l'exutoire est situé au-dessus du niveau impermé-<br />

able des "argiles vertes!, type "GOUGE-AVENELJXS-THEIL" pour ceux dont l'exu-<br />

toire est situ6 au-dessous. A titre d'exemple, le tableau 9 présente les deu<br />

types d'estimations pour le QC 335 *<br />

Bass ins<br />

MELARCHEZ<br />

GOUGE<br />

AVENELLES<br />

THEIL<br />

CROUPET<br />

PIERRE LEWx<br />

BIBARTAULT (P. Courcy)<br />

" (Rognon )<br />

CHAPii &TIR (Bourgogne)<br />

Tableau 9<br />

Comparaison des estimations possibles du QC<br />

335 __---_--_____I<br />

II II II<br />

(Rognon 1<br />

--_-_----_____________<br />

__---_-___<br />

observés<br />

On voit sur le tableau 9 qu'en l'absence de ces jaugenges isolés les<br />

estimations de débit d'étiage auraient été complètement fausses pour les bas-<br />

sins du CROUPET et de BIEARTAULT (Petit Couroy), et très médiocres pour les<br />

2 bassins du CHAMP de TIR, l'écart pour le ru du Rognon au CHAMP de TLH<br />

n'étant que très partiellement réduit par une évmtuelle correction des<br />

débits (au grand maximum + O,25 l/s.W), suite aux captages de COUI13Kt4TERS.<br />

CONCLUSION<br />

Des camnsgnes de ,jaiiFeages 6pisodiqiies en basses eaux pcrrnettent d'c qf iv-r<br />

certaines caractéristiques d'étiages. de cours d'eau non observés en perniônence,<br />

SOUS réserve Ce satisfaire à un certain nombre de conditions. I1 est d'abord<br />

n6cessaire d'effectuer de nombreuses mecurcs (quasi simultanées en tous les<br />

,


11 8<br />

points étudiés) et pendant un assez grand nombre d'années (cycle saisonnier),<br />

de maniere à s'affranchir des incertitudes propres aux mesures d'étiages et<br />

des hétérogénéit6s d'alimentation des. réservoirs souterrains. Ensuite il faut<br />

gén6ralement se 1imit.er h l'estimation de caractéristiques moyennes, les irré-<br />

gularités citées ne permettant guère<br />

Enfin le jaugeage, lors de ces campagnes, de stations observées par ailleurs<br />

en permanence (équipées) est indispensable pour faire dépasser aux résultats<br />

le stade sommaire d'une moyenne de mesures instantanée<br />

que d'observer de$ moyennes à terme.<br />

(de sighification<br />

statistique inconnue) et permettre l'estimation de caractéristiques classiques.<br />

REMERCIEMENTS : Nous remercions ici M. HIAVEC Robert, Chef de la Division Hydro-<br />

l<strong>of</strong>fie du CTOREF et. M. DUEFEUIL P., Inspecteur de Recherche & l'ORSTOM, qui ont<br />

6th les instigateurs de ces campapes de mesures épisodiques. Nol.re reconnals-<br />

sance va aussi à MM. TESSIER, TOL?N%, ROSIQüE (.Ta et


BASSIN DE L'ORGEVAL<br />

Lôgende<br />

@ Statione Hydrometrlques<br />

1 Y6lnrchez<br />

2 Gouge<br />

3 Avenellei<br />

4 Thell<br />

5 Croupe<<br />

6 Plerrelav&<br />

e .<br />

10 .<br />

FIg 2 Réseau des étiagee<br />

119


W<br />

o<br />

120


\<br />

I-<br />

L :-<br />

121


122<br />

dibitr Q<br />

I I


123


ABSTRACT<br />

PARAMETRES REGIONAUX RELATIFS AUX RESSOURCES<br />

EN EAU. UTILISATION. PRECISION D'ESTIMATION<br />

par J.R. TIERCELIN<br />

Di vis i on H y drologie<br />

Centre Technique du Génie Rural, des Eaux et des Forêts<br />

(C.T.G.R.E.F.)<br />

Ministère de 1'Agricultur.e<br />

et du Développement Rural. France<br />

Experience has shown that some parameters relative to monthly<br />

and annual discharges are <strong>of</strong>ten similar between the various gauging<br />

stations <strong>of</strong> a network. Calling "regi'onal value <strong>of</strong> a parameter" the<br />

arithmetical mean <strong>of</strong> the values <strong>of</strong> this parameter in the various<br />

stations, one supposes that this regional value can be used even in<br />

places where no measurement are available. Theory and pratica1<br />

aplication show that some results obtained in this way reach a very<br />

interesting accuracy for people in charge <strong>of</strong> water management and<br />

designers <strong>of</strong> water resources projects.<br />

RESUMEN<br />

Las observaciones muestran que ciertos parámetros sobre los<br />

flujos mensuales y anuales varían poco entre las diferentes estacio<br />

nes hidrométricas de una red. Llamando por definición "valor regio-<br />

nal de un parámetro" a la media aritmética de los valores tomados<br />

por este parámetro en las diferentes estaciones de la red, se hace<br />

la hipótesis de que este valor regional conviene, si se utiliza ba-<br />

jo ciertas condiciones, a sitios sobre los que no existen observa-<br />

ciones. La teoria y la aplicación a un caso concreto muestran que<br />

ciertas estimaciones obtenidas de esta manera son, debido a su pre-<br />

cisión, muy interesantes para los responsables de la reordenación<br />

del agua y para los proyectistas encargados de idear los equipos hi<br />

drdulicos.


126<br />

L'utilisation des données d'un réseau en vue d'effectuer des synthkses<br />

régionales pour divers paranktres hycirologiques Ect une méthode pratiquée<br />

depuis longterps tn ce qui concerne les crues, meis égzlenent utilisable<br />

dans l'estimation des apports en eau [i]. En principe les valeurs grises<br />

p.? les lararrètris étudias vprient evec les. conditions physiques et c3.L-<br />

matiquos des aiffé~znts bassins, ce qui conduit à recourir k clas corrxia-<br />

t ions mlt iples .<br />

L'étude rnenoe dans le Sud-Ouest de 12 France montre que certzins ?a?-mktres<br />

ont un? v-lour qui varie très ?eu B'm bôssin versant 5 l'autre,<br />

r21


.2.3. Résultats des estimations :<br />

127<br />

Dans les tableaux qui suivent nous présentons les valeurs obtenues<br />

p3ur certains pararetres régionzux, ainsi que l'estimation de l'erreiir<br />

que l'on com3et en appliqurnt une valeur régionale d'un paramètre à un<br />

point de la r5gion concernée. Pour donner une représentation concrète<br />

de chaque valeur de procision, celle-ci est exprimée par la longueur<br />

d'une série d'cbservations qui fournirait la même variance d'erreur<br />

pour le même paramètre.<br />

En ce qui concerne d'abord les moyennes des logarithmes des débits<br />

mensuels, la prScision sbtenue est tra? faible pour que le résultat ait<br />

de l'intérêt, et ceci en raison de la tro- forte variabilité spatiale<br />

de la pluviodtrie (il pourrait en être autrement dans une raon moins<br />

accidentée).<br />

Pour ce qui est des vdriances drs logarithmes des dobits mensuels,<br />

les résultats sont complétk par la valeur du coefficient de variation<br />

des débits naturels, lié ?i Is varirnce v des logarithmes par l'expression<br />

:<br />

x=dex?(v) - 1 (cf. zar ex. 121).<br />

~n outre, ï'expression L = ex? (t fi- v/2) fournit le<br />

rapport d'un débit de fréquence quelconque au module, en appelant t<br />

la valeur de la variable normale centrée réduite pour cette fréqu, once.<br />

Par ailleurs, dans l'exemple traité, les résultats relatifs aux 12<br />

stations 6tudiées se regroupent nettement en deux ensembles correspondont<br />

respectivement à deux sous-régions : Massif-Central (stations 1, 2, 3, h,<br />

7, 6 du schéma d'ensemble), et Pyrénées (stztions 5, 6, 9, 10, 11, 12).


128<br />

2.4. Conclusion sur les résultats obtenus :<br />

L'utilisation de paramètres régionaux s'avère très fructueuse<br />

pour certains paramètres. Ainsi, dans la région étudiée, et SOUS les<br />

conditions qui seront examinées ci-après, en une station même dépour-<br />

L<br />

cients de variation des dkbits mensuels et des coefficients de corr6-<br />

lation sériels, est la même que si on avait disposé d'une trentaine<br />

d'années d'observations.<br />

En partant de séries courtes, le résultat obtenu est encore plus<br />

intéressant en valeur relative. Ainsi avec 10 ans d'observations<br />

(1959-1968) , les variances d'erreurs correspondent à une dizaine<br />

d'années équivalentes. Pour la variance dans le Massif Central, le<br />

nombre d'années équivalentes est même égal h 13. Ce résultat surpre-<br />

nant est une illustration concrete de la notion de stations-années.


III - CONDITIONS D'APPLICATION<br />

3.1. Utilisation d'un paramètre régional en une station :<br />

129<br />

Un paramètre régional est estimé à partir d'un réseau de<br />

stations dominées par des bassins versants présentant des carac-<br />

téristiques physiques plus oit moins variées.<br />

Pour avoir le droit d'utiliser des paramètres régionaux en<br />

un point de la région étudiée, il'faut qudes caractéristiques<br />

du bassin versant concerné entrent ?i peu près dans la gamme des<br />

caractéristiques physiques des bassins versants dominant<br />

stations du réseau, sinon les variances d'erreurs calculées<br />

n'ont aucune signification.<br />

3.2. Combinaison avec d'autres méthodes d'estimation hydrologique :<br />

On peut faire grief à l'utilisation de valeurs régionales de<br />

ne donner des résultats,intéressants que pour certains paramètres<br />

et de ne pas s'appliquer en particulier à l'estimation de modules<br />

ou de moyennes de logarithmes des débits (du moins dans l'exemple<br />

d'application traité). En fait, il faut observer que ces derniers<br />

paradtres peuvent etre estimés.par diverses autres méthodes, meme<br />

en.des points oh il y a peu ou pas d'observations.<br />

Dans ces conditions , l'utilisation de valeurs régionales<br />

apparaft comme un complément des méthodes existantes pour l'esti-<br />

mation des ressources en eau, en vue de connaftre de façon précise<br />

les paramètres de dispersion et de corrélation sérielle, qui sont<br />

en général estimés avec une précision médiocre lorsqu'il y a pe'<br />

ou pas d'observations.<br />

3.3. Application d'autres régions :<br />

La dthode est théoriquement utilisable à partir de n'importe<br />

quel réseau de stations observée$ simultanément. Néanmoins, pour<br />

qFe la précision soit intéressante, il faut ,utiliser des groupes<br />

de stations suffisamment homogènes, ce .qui peut conduire à diviser<br />

la région comme cela a été fait dans l'exemple d'application précédent.<br />

Moyennant cette précaution, il est vraisemblable que la<br />

dthode est applicable ?i n'importe quelle région du globe, tant<br />

pour les débits que pour les pluies.<br />

--------&o--------<br />

NOUS tenons h remercier, à. l'occasion de cette public ation :<br />

- Mme OBERLIN, du CTCREF, qui a effectué une grande partie du travail de<br />

programmation sur ordinateur,<br />

n M. BERNIW, d'Electricité de France, dont les conseils ont permis de mener<br />

h bonne fin les calculs de variance d'erreur,<br />

- M. HLAVEK, Chef de la Division Hydrologie du CTGFtEF, dont les observations<br />

ont conduit B améliorer la rédaction de la note,<br />

- M. de BEAUREGARD, d'Electricit6 de France, MM. EUICLE et BmIERE des 'Cir-<br />

conscriptions Electriques Sud-Ouest et Centre-Ouest, qui nous ont fourni<br />

les données nécessaires B l'étude.<br />

les


130<br />

I - PRECISION D'ESTIMATION<br />

A N N E X E<br />

1.1. Position du problème :<br />

Considérons n stations étudiées simultan6ment durant m années.<br />

Nous étudions pour un mois pkticulier p de l'année les débits mensuels<br />

sous la forme d'une variable qui doit 6tse comparable entre les différentes<br />

stations : en pratique il s'agira soit du débit moyen mensuel<br />

spécifique, soit du logarithme de cette grandeur. Soit A cette vari-<br />

able pour la station de rang J ; &e donne lieu m réalisations<br />

1. i<br />

m<br />

paJ , paJ, ... paJ, à partir desquelles nous déduisons l'estimation<br />

d d'un paramètre (par exemple moyenne ou variance de A ). Les obser-<br />

PJ P J<br />

vations et les variables aléatoires entrant en Jeu sont figurées dans<br />

le tableau ci-dessous.<br />

j=q<br />

Nous posons par définition c o m paramètre régional la valeur<br />

n<br />

pdj/tl, moyenne des valeurs relatives aux différentes<br />

.P J<br />

... et a sont des estimations<br />

stations. es valeurs iì &, ... P<br />

des valeurs théoriques u 1s ... ... et pu.<br />

1 i m<br />

pa1 ..... pai ..... Pal<br />

:1 :i 'm<br />

paJ ..... paJ ..... paJ<br />

:<br />

:1 :I 'm<br />

pan ..... pan ..... Pan<br />

P J<br />

Valeur<br />

théorique<br />

Le problème qui se pose est le suivant. En un emplacement J'<br />

de la région concernée, différent des emplacements qui ont servi<br />

h l'estimation de la valeur régionale, on décide d'appliquer le<br />

paramètre régional 0. En fait, théoriquement, ce qui nous intéresse<br />

est 1a.vraie vaïeur'inconnue u I prise par le parmètre à l'empia-<br />

cement J', et le problème consJste donc à estimer la variance de


l'erreur - ) commise en attribuant à un bassin quelconque J' la<br />

pUJ '<br />

valeur régionale du paramètre.<br />

L'erreur ( d - ) résulte elle même de la composition de deux<br />

erreurs indépenbteg<br />

131<br />

- l'erreur d'adéquation ( u - u), de nature purement physique, provenant<br />

P J' P<br />

du fait que la valeur régionale standard n'est pas parfaitement adaptée<br />

au bassin j' ;<br />

- l'erreur d'échanti'llonnage ( u - a), de nature purement statistique.<br />

P P<br />

1.2. Résultats généraux :<br />

Pour avoir une estimation de l'erreur d'adéquation, nous posons le<br />

postulat suivant : le bassin J' présente vis à vis du standard régional<br />

une différence du &me ordre de grandeur que les bassins 1.. . J.. . .n<br />

en regard de ce standard (Ce p6lnt délicat e t fondamental pour l'application<br />

de la méthode sera discuté au $ ci-après). Dans ces conditions,<br />

nous poso s que l'erreur d'adéquation, exprimc5e par l'écart quadratique<br />

(u - uJi)', est donnée par l'expression :<br />

(1) = (pu - puJ)2/n<br />

J=<br />

Cet écart quadratique moyen, ajouté B la variance de 1'échantIllOnnage<br />

de d; donne l'expression théorique de la variance d'erreur totale :<br />

(2)<br />

A u = u + var ( Q)<br />

P P<br />

Le problème est maintenant de rattacher cette expression aux observations.<br />

Pour cela nous allons calculer l'expression de l'espérance mathématique<br />

0 )2 en fonction des valeurs théoriques u et puJ.<br />

E ( ~ Q - ~ J P<br />

Décomposons les espérances de carrés et de produits en faisant res-<br />

sortir les variances et covariances :<br />

E ( p *) ~ = u2 + var ( Q)<br />

P P<br />

2<br />

E(b )= u2+var(h)<br />

P J P J P J<br />

E ( 0. Q ) = p~.p~J + cov ( Q,<br />

P P J P P<br />

û<br />

J<br />

)<br />

Comme 0 est la moyenne arithmétique des valeurs<br />

P<br />

la dernière ligne s'écrit : n<br />

19... pQkS s.<br />

Q<br />

P n'


132<br />

Eh reportant ces expressions dans (3), il vient ,:<br />

ce qui permet d'exprimer ( u- u )* en fonction des observations :<br />

P P J<br />

et en effectuant pour toutes lesvaleurs de J la sommation (1) :<br />

L'erreur totale donnée par (2) s'exprime donc par la formule :<br />

et en remplaçant les expressions théoriques par leurs estimations, nous obtenons<br />

en définitive :<br />

Par ailleurs, la poursuite des calculs exigera le recours à la matrice des co-<br />

variances liant les variables aléatoires A et relatives à deux stations<br />

quelconques J, k. L'estimation sans biad de PAkcette covariance est fournie<br />

Nous ne pouvons d'ailleurs écrire cette expression qu'en admettant en<br />

principe que le débit du mois p de l'année i à une station est quasiment indé-<br />

pendant du débit du mois p de. l'année i - 1 ?i la &me station, de faconia dis-<br />

poser pour chaque variable aléatoire A d'une série de réalisations a<br />

indépendantes entre elles. PJ P J<br />

II - VARIANCE D'ECHANTILWNNACE DE LA MOYEN'NE<br />

2.1. Expression de la variance d'échantillonnage :<br />

1<br />

Les<br />

i<br />

paramètres sont donnés ici par l'expression : d -(paj + ...<br />

+ am)/m. PJ P J<br />

paJ '*<br />

P J<br />

m


(6)<br />

ia covariance de a.et û est donnée par ì'expression :<br />

PJ p k<br />

&<br />

m<br />

&<br />

2<br />

i' i")<br />

m CBV =<br />

côv 'PaJ' pak<br />

133<br />

Parmi les termes de la sommation, on peut distinguer ceux pour les-<br />

quels i' = i", et qui correspondent ?i des variables relatives à la même<br />

année, et ceux pour lesquels i' # i", correspondant à des années diffé-<br />

rentes. Pour ces derniers, lorsque j = k, nous avons posé l'approximation<br />

d'indépendance (ci. supra) ; nous poserons a fortiori la dm hypothèse<br />

pour J # k.<br />

k<br />

11 vient donc simplement dans ces conditions : c8v (ptìJ,pûk)=pCJ/m<br />

et en particulier : & ( CI ) = c /m.<br />

P J P J<br />

ce qui d!aprbs (4) permet d'écrire l'expression de la variance d'erreur :<br />

n n<br />

A> = 1) (pO-paJ)2/n -2 pcj/m<br />

j =I J=l<br />

De même N( 0) o servations independantes. hypothétiques donnent pow<br />

variance d'erre& &2. Les variances étant d es le rapport des effectifs<br />

d'observations :<br />

nous obtenons en définitive l'expression cherchée :<br />

j,q P P J


(8)<br />

134<br />

111 - YARIANCE D'EcHANTILLONNAGE DE LA VAAIANCE<br />

3.1. Expression de la variance. d'6chantillonnage :<br />

Considérons les définitions de variabies et de paramètres, ainsi<br />

que les résultats obtenus au 5 1 pour l'ensemble des parametres. Pour<br />

qu'il n'y ait pas d'atnbigulté avec les résultats du 5 2 relatifs aux<br />

moyennes , nous remplaçons ici toutes les lettres "u'' par les lettres<br />

Il 11<br />

v.<br />

Le parametre empirique dont nous étudions la variance est l'esti-<br />

mation sans biais de la variance théorique. A partir des observations,<br />

cette estimation sans biais s'écrit :<br />

D'après [3], nous avons pour covariance de 0 et 0 en supposant<br />

normales les variables aléatoires A etpAk P. J ~ k '<br />

P J<br />

côv ( 0 o ) = 2 ( Ck)2/m<br />

P J ' P ~ P J<br />

et en particulier<br />

J2<br />

(9) v&? (pvJ) = (pcJ) /m<br />

(10)<br />

d'ou, d'après la formle (4) dans laquelLe on remplace les lettres "u"<br />

par des lettres "v" ; la variance d'erreur cherchée :<br />

Si on juge plus commode de se référer aux écarts-types qu'aux variances,<br />

on déduira l'erreur A\ sur l'écart-type à partir de<br />

P<br />

l'erreur &v sur ia variance en posant l'approximation :<br />

P<br />

#2&$/ps , ce qui donne :<br />

i=/<br />

14 # A-v/4pol P<br />

3.2. Nombre d'années équivalentes :<br />

Le raisonnement est analogue à celui du 0 2.2.


Une série de m années Inddpendantes donne par variance d'erreur en<br />

moyenne (loi normale) :<br />

Compte tenu en outre de ia relation : ,&:V/ q v<br />

= m/N (4)<br />

b nombre d'années fictives cherché est donné en définitive par la<br />

relation :<br />

IV - VARIANCE D'ERREUR DU COEFFICIENT DE COW1ELATION SERIELLE<br />

135<br />

Théoriquement il serait concevable d'appliquer ici des raisonnements<br />

analogues à ceux qui ont été faits pour les moyennes et les variances.<br />

En pratique 'le calcul paraft Inextricable et surtout nécessite l'obtention<br />

préalable des corrélations croisées entre les observations de chaque<br />

mois p à chaque station avec les observations du mois p-1 à toutes les<br />

autres stations. k coût du calcul serait en définitive hors de proportion<br />

avec son intérêt.<br />

4.1. -ne supérieure des variances d'erreur :<br />

Dans la recherche de la variance d'erreur affectant un paramètre régional<br />

quelconque 0, on peut obtenir une borne supérieure de cette variance,<br />

utilisable pour n'importe quel parametre.<br />

2<br />

En effet, d'une part, l'expression 2 9 - pû,) /n est un maJorat de<br />

J -1<br />

(pu - puJ)<br />

2<br />

l'erreur d'inadéquation U =<br />

/n, puisqu'elle résulte de la<br />

P<br />

ComtJinaiSon entre cette erreur d'inadéquation et les erreurs d'échantillonnage<br />

sur pQ, et pûl...pûJ...pûn.<br />

D'autre part, nous obtiendrons une borne supérieure-de la variance<br />

d'échantillonnage de par le raisonnement suivant.. Nous avons :<br />

P<br />

n A<br />

var ( û) = var<br />

P [ +. ... + pûJ .... + pûn)/n]<br />

=var (a + .*.<br />

P l<br />

+ .*<br />

2<br />

+ ,fln,/n


136<br />

~ e s stations constituant le rbseau sont relativement homogènes ;<br />

ainsi on peut supposer que var . , varpûj,. . var Q . sont du &me<br />

pn<br />

ordre de grandeur K. Dans ces conditions, les expressions telles que<br />

covar ( ) pour J k auront pour major.ant K. I1 vient dans ces<br />

P J ' P ~<br />

conditions : var < K<br />

Une estimation de l'ordre de grandeur K sera fournie par moyenne des<br />

termes var 0 d'ou :<br />

P J<br />

var (,fi) < i var û / n<br />

j -GI PJ<br />

En définitive, nous obtiendrons l'expression générale suivante,<br />

constituant une borne supérieure de la variance d'erreur d'un parametre<br />

j -1 PJ<br />

1 n --<br />

Références bibliographiques :<br />

[l] BENSON M.A. & MATALAS N.C. (1967) - Synthetic hydrology based on regional<br />

statistical parameters. <strong>Water</strong> resources research. Vol 3 n" 11,<br />

.<br />

[2] AITCHISON J. & BROWN .J.A.C. - The lognormal distribution. CAMBREGE<br />

University Ress.<br />

[3] ANDERSON - An introduction to multivariate statistical analysis. WIIM.


PRINCIPLES FOR THE COMPUTATION OF THE MAIN CHARACTERISTICS OF<br />

RIVER WATER RESOURCES AT THE ABSENCE OF OBSERVATIONS ON THE<br />

BASIS OF GEOGRAPHICAL INTERPOLATION OF RUNOFF PARAMETERS<br />

ABS T RACT<br />

K .P. Voskresenski<br />

State Hydrological Institute<br />

Leningrad, USSR<br />

At the absence <strong>of</strong> hydrological data river run<strong>of</strong>f parameters<br />

may be determined by means <strong>of</strong> geographical interpolation <strong>of</strong><br />

their values computed by observations on other rivers <strong>of</strong> the<br />

given area. Thus it is possible to obtain principal characteris-<br />

tics <strong>of</strong> run<strong>of</strong>f determining the rate <strong>of</strong> possible development <strong>of</strong><br />

rmiver water resources, category and dimensions <strong>of</strong> the projectei<br />

hydraulic structures, On the basis <strong>of</strong> the mentioned principles<br />

methods for river run<strong>of</strong>f computation have been developed in the<br />

USSR for the whole territory <strong>of</strong> the country.<br />

RESUME<br />

En l'absence de données hydrologiques directes, les paramè-<br />

tres de l'écoulement peuvent être déterminés par interpolation<br />

géographique des valeurs observées sur d'autres rivières de la<br />

même région. On peut obtenir ainsi les principaux paramètres de<br />

l'écoulement qui déterminent les possibilités <strong>of</strong>fertes par l'uti<br />

lisation des ressources en eaux de surface et permetten de fixer<br />

les caractéristiques hydrauliques des aménagements. Sur la base<br />

de ces principes, on met au point en URSS des méthodes de calcul<br />

de l'ecoulement de surface pour l'ensemble du pays.


138<br />

The problem <strong>of</strong> river run<strong>of</strong>f computation in connexion <strong>with</strong><br />

water resources development and engineering projects <strong>with</strong> inade-<br />

quabe observational data is very important for many countries<br />

<strong>of</strong> the world.<br />

It is known, that hydrological observabions are made on<br />

a relatively small number <strong>of</strong> stations and never cover all the<br />

rivers intended for water resources development. It is <strong>of</strong>ten<br />

difficult to predict what rivers will be used for water manage-<br />

ment in future therefore they are ungauged from the hydrological<br />

point <strong>of</strong> view. Thus, in case <strong>of</strong> any particular problem on hydrau-<br />

lic engineering difficulties arise because <strong>of</strong> the absence <strong>of</strong><br />

long-term hydrological observations on a particular river.<br />

In case <strong>of</strong> absence or inadequacy <strong>of</strong> observations basic<br />

characteristics <strong>of</strong> river run<strong>of</strong>f may be determined o<strong>nl</strong>y by in-<br />

direct methods based on the use <strong>of</strong> information on water regime<br />

<strong>of</strong> other rivers in the given region or o<strong>nl</strong>argerterritory.<br />

In the Soviet Union there have been developed and introduced<br />

into practice methods for the computation <strong>of</strong> river run<strong>of</strong>f para-<br />

meters essential for water management projects in region in-<br />

sufficiently gauged from the bydrological point <strong>of</strong> view.<br />

The developed methods provided computation <strong>of</strong> river run<strong>of</strong>f<br />

parameters in any region <strong>of</strong> the USSR <strong>with</strong> different climatic<br />

conditions from sub-tropics to the arctic zone.<br />

In case <strong>of</strong> absence or inadequacy <strong>of</strong> hydrological obse.mations<br />

basic water resources characteristics may be determined by<br />

means <strong>of</strong> geographical interpolation (in some cases - by extra-<br />

polation) <strong>of</strong> river run<strong>of</strong>f parameters computed by a small number<br />

<strong>of</strong> basic points <strong>with</strong> long-term observation series usually estab-<br />

lished on main rivers <strong>of</strong> the country.<br />

This method is physically based on distinct variations <strong>of</strong><br />

climakic features <strong>of</strong> river run<strong>of</strong>f, i.e. water balance elements<br />

according to geographic zones.<br />

Latitudinal climatic zonation is the basic law <strong>of</strong> geographic<br />

environment variations. In general it i8 explained by cosmic<br />

reasons determining the amount <strong>of</strong> solar radiation in different<br />

areas <strong>of</strong> the world; the latitudinal zonation to a great extent<br />

also depends on the total aiimospheric circula-Lion determining<br />

water cycle on continents and islands, on the location <strong>of</strong><br />

continents and on the direction <strong>of</strong> sea currents.<br />

In accordance <strong>with</strong> the location <strong>of</strong> climatic zones in plains<br />

and altitudinal climatic belts in mountains it is possible to<br />

observe latitudinal and altitudinal variations <strong>of</strong> water balance<br />

elements, i.e. precipitation, evaporation and run<strong>of</strong>f. This <strong>of</strong>fers<br />

a basis for the plotting <strong>of</strong> maps <strong>of</strong> run<strong>of</strong>f or it5 main parameters<br />

used for the determination <strong>of</strong> river water resources characteris-<br />

tics in case <strong>of</strong> data absence. Run<strong>of</strong>f parameters <strong>of</strong> ungauged rivers<br />

may be also determined by means <strong>of</strong> direct interpolation <strong>of</strong> their<br />

values between the values obtained for basic points <strong>with</strong> long-<br />

term observation series.


139<br />

Hydrological parameters interpolation is made in accordance<br />

<strong>with</strong> areal change <strong>of</strong> climatic factors <strong>of</strong> run<strong>of</strong>f <strong>with</strong> the account<br />

<strong>of</strong> non-climatic effect <strong>of</strong> the environment, i.e. topography,<br />

geology, soils and vegetation and permanent morphometric basin<br />

characteristics, i.e. drainage area, slope, etc.<br />

Mean run<strong>of</strong>f <strong>with</strong>in any region aepending mai<strong>nl</strong>y on climatic<br />

features <strong>of</strong> the region may greatly differ from its actual value<br />

<strong>with</strong>in the limits <strong>of</strong> individual river basins. In some cases nonclimatic<br />

factors become predominant and the role <strong>of</strong> climatic<br />

factors becomes subordinate theref ore mean run<strong>of</strong>f may exceed<br />

the climatic norm or be less than this nom. Local factors<br />

effect is best revealed on small rivers. With .the increase <strong>of</strong><br />

river basin the effect <strong>of</strong> local factors is averaged and in case<br />

<strong>of</strong> its optimal value, run<strong>of</strong>f depends o<strong>nl</strong>y on non-climatic<br />

elements. On the other hand, the increase <strong>of</strong> basin area above<br />

some definite limit causes great difference in run<strong>of</strong>f value<br />

in different basin parts and discrepancy between its averaged<br />

value and the climatic norm. This is explained by the fact that<br />

large river basins are usually located <strong>with</strong>in several geographic<br />

zones<br />

Thus interpolation <strong>of</strong> run<strong>of</strong>f over territory is possible<br />

o<strong>nl</strong>y for rivers <strong>with</strong> basin areas <strong>with</strong>in the limits <strong>of</strong><br />

Am7A y A,<br />

me K (1)<br />

where: An+~is mean optimal basin area when run<strong>of</strong>f interpolation<br />

is possible; Am and AK indicate its upper and lower limits<br />

respectively.<br />

Optimal drainage area is different in various geographic<br />

regions. It depends on a combination <strong>of</strong> natural conditions determining<br />

river run<strong>of</strong>f. The optimal drainage area for any region<br />

is established experimentally.<br />

Difference in run<strong>of</strong>f <strong>of</strong> individual rivers for any area determined<br />

by the map depends not o<strong>nl</strong>y on the basin size but on the<br />

peculiarities <strong>of</strong> methods for run<strong>of</strong>f maps plotting. It substantially<br />

differs from the methods <strong>of</strong> other water balance elements<br />

mapping. U<strong>nl</strong>ike maps <strong>of</strong> precipitation anci evaporation when data<br />

are related to the observation points while plotting the maps,<br />

maps <strong>of</strong> run<strong>of</strong>f are prepared by its values related to the basin<br />

centre since water discharge measured at the discharge site is<br />

the averaged value <strong>of</strong> run<strong>of</strong>f from the basin upstream this site.<br />

Therefore a discrepancy is possible in run<strong>of</strong>f values determined<br />

by the map in the basin centre and in its periphery areas. The<br />

difference in run<strong>of</strong>f values will tend to decrease simultaneously<br />

<strong>with</strong> the decrease <strong>of</strong> basin area.<br />

Thus, <strong>with</strong>in definite limits <strong>of</strong> basin areas gradation run<strong>of</strong>f<br />

depends on the size <strong>of</strong> this area. The value <strong>of</strong> a critical area<br />

in any region above which run<strong>of</strong>f is subject to no changes,<br />

may be determined by the graph <strong>of</strong> relations between run<strong>of</strong>f and


140<br />

basin area. It is evident that run<strong>of</strong>f values are plotted on<br />

the graph in relative units, i.e. as depth <strong>of</strong> run<strong>of</strong>f from the<br />

whole basin (in mm) or as specific discharge (in l/sec per<br />

1 sq.km).<br />

Geographical interpolation method may be used to de termine<br />

basic run<strong>of</strong>f parameters showing the rate <strong>of</strong> possible development<br />

<strong>of</strong> water resowces <strong>of</strong> the river, as well as the types and catego-<br />

ries <strong>of</strong> the projected hydraulic structures, i.e. annual run<strong>of</strong>f,<br />

annual streamflow distribution, maximum discharges, Low (minimum)<br />

flow or periods <strong>of</strong> no flow in the river.<br />

The dependence <strong>of</strong> different run<strong>of</strong>f characteristics on basin<br />

area is different, In its general case it may be expressed by<br />

equation<br />

M.3<br />

where: M is specific run<strong>of</strong>f from basin area A; Q is parameter<br />

expressing run<strong>of</strong>f value independent <strong>of</strong> basin size;<br />

n is the index <strong>of</strong> run<strong>of</strong>f reduction <strong>with</strong> the change <strong>of</strong> basin<br />

area.<br />

For mean annual run<strong>of</strong>f <strong>with</strong>in the limits <strong>of</strong> optimal areas<br />

ha? ; for the modulus <strong>of</strong> maximum discharge independent <strong>of</strong><br />

basin size nLd ; for the mndulus <strong>of</strong> minimum discharge n>i<br />

Proceeding from the stated character <strong>of</strong> run<strong>of</strong>f reduction<br />

maps <strong>of</strong> mean annual run<strong>of</strong>f are plotted by the data related to<br />

the rivers <strong>with</strong> basin areas emtceeding; the lower limit <strong>of</strong> the<br />

optimal area. These data are reduced to a long-term period on<br />

the basis <strong>of</strong> correlation <strong>with</strong> other points having long-term<br />

observation series and located in the given region or even<br />

beyond its boundaries.<br />

The duration <strong>of</strong> a long-term period is supposed to be<br />

sufficient if standard error <strong>of</strong> mean run<strong>of</strong>f does not exceed the<br />

accuracy <strong>of</strong> measuremenets and annual run<strong>of</strong>f computation (in the<br />

USSR it is accepted to be equal to !%).<br />

Data on large rivers are used o<strong>nl</strong>y to control the correctness<br />

<strong>of</strong> plotting run<strong>of</strong>f isolines system. For this purpose run<strong>of</strong>f<br />

determined by the map as mean weighted value is compared <strong>with</strong><br />

the actual mean run<strong>of</strong>f at the outlet obtained by measurements.<br />

Since the value <strong>of</strong> run<strong>of</strong>f on small rivers <strong>with</strong> basin areas<br />

less than the optimal value may be less because <strong>of</strong> the effect<br />

<strong>of</strong> prevailing non-climatic factor or it may exceed mean run<strong>of</strong>f<br />

value in the given Brea, a correction should be introduced to<br />

run<strong>of</strong>f determined by the map. The value <strong>of</strong> corrections is deter-<br />

mined by local graphs <strong>of</strong> relations between run<strong>of</strong>f and basin<br />

area.<br />

For the USSR area two types <strong>of</strong> mean run<strong>of</strong>f reduction from<br />

small basins have been established. In the zones <strong>of</strong> water<br />

surplus and variable moistening river run<strong>of</strong>f from basin leas


than the optimal area tends to decrease due to incomplete<br />

drainage <strong>of</strong> ground water <strong>with</strong>in river basins. On the contrary<br />

in arid zones run<strong>of</strong>f tends to increase <strong>with</strong> the decrease <strong>of</strong><br />

basin area due to decrease <strong>of</strong> losses by evaporation.<br />

Appropriate corrections have been determined for rivers<br />

in ùifferent geographic regions.<br />

To determine mean run<strong>of</strong>f <strong>of</strong> ungauged mountain rivers<br />

local graphs <strong>of</strong> relations between run<strong>of</strong>f and the altitude are<br />

usually usea. Mean basin elevation essential for this purpose<br />

is obtained from topographic maps. As a rule, <strong>with</strong>in the limits<br />

<strong>of</strong> every geographic region there are several local dependences<br />

<strong>of</strong> run<strong>of</strong>f change <strong>with</strong> the altitude. The number <strong>of</strong> these graphs<br />

depends not o<strong>nl</strong>y on the range <strong>of</strong> altitudes and mountain slopes<br />

exposure, but also on the number <strong>of</strong> observational points in the<br />

given region. Their increase leads to new local graphs. Thus,<br />

the available graphs are averaged for some territory.<br />

Normal run<strong>of</strong>f is the main water resources characteristic.<br />

But when planning water resources development it is essential<br />

to obtain data on run<strong>of</strong>f for wet and dry years <strong>with</strong> different<br />

frequency <strong>of</strong> occurrence. In the practice <strong>of</strong> hydrological computations<br />

in the USSR probable run<strong>of</strong>f values are obtained by<br />

distribution curve <strong>of</strong> Pearsan III in its integral expression<br />

i.e. frequency curve. Normal run<strong>of</strong>f, coefficient <strong>of</strong> variation<br />

(C ) and coefficient <strong>of</strong> asymmetry (CS) are frequency curve<br />

pallameters. In case <strong>of</strong> observational data available the parameters<br />

are computed by mathematical statistics methods. In case<br />

<strong>of</strong> data inadequacy these parameters are established by geographicalinterpolation<br />

method.<br />

The computation <strong>of</strong> variation coefficient <strong>of</strong> annual run<strong>of</strong>f<br />

is based on the account <strong>of</strong> effect <strong>of</strong> climatic factors variability<br />

and factors <strong>of</strong> natural run<strong>of</strong>f control. Experimental data<br />

show that run<strong>of</strong>f variability tends to increase <strong>with</strong> the debrease<br />

<strong>of</strong> its value. Therefore maximum variations <strong>of</strong> run<strong>of</strong>f are observed<br />

in arid regions, while minimum ones - in the zone <strong>of</strong> water<br />

surplus. The normal run<strong>of</strong>f itself may serve as an index <strong>of</strong> <strong>nl</strong>imatic<br />

variability.<br />

141<br />

Among the factors <strong>of</strong> natural run<strong>of</strong>f control the capacity <strong>of</strong><br />

river basin is <strong>of</strong> the greatest importance; it determines under-<br />

ground water storage. The basin area is an indirect index <strong>of</strong><br />

basin capacity .<br />

An empirical formula has been obtained for the whole USSR<br />

territory <strong>with</strong> the account <strong>of</strong> the two mentioned factors:<br />

here:bfo is normal run<strong>of</strong>f (l/sec per 1 sq.km); A is basin area<br />

?sq.km);B is parameter computed by substitution <strong>of</strong> She values<br />

known for the river-analogue in the given area into equation (3).


142<br />

The meaning; <strong>of</strong> coefficients <strong>of</strong> asymmetry in case <strong>of</strong> the<br />

absence <strong>of</strong> observations is determined by the ratio <strong>of</strong> Cv and Cs<br />

established by the rivers-analogues in the given basin. If<br />

no analogues are available in the zones <strong>of</strong> water surplus or<br />

variable moistening the follbwing ratio is accepted Ce = 2 C<br />

and for arid zones C, = 1.5 + 1.8 C,; for extremely arid re#&ns<br />

cs = 1.5 c,.<br />

When computing maximum discharges in case <strong>of</strong> no observations<br />

it should be taken into account that the flood character on<br />

rivers in any geographic region is mai<strong>nl</strong>y determined by clima-<br />

tic features and therefore data obtained from observations on<br />

some rivers are extended to all the rest <strong>of</strong> water courses <strong>of</strong><br />

the same region.<br />

Different empirical formulae are used for maximum discharge<br />

computation, their parameters are determined by observational<br />

data on some rivers <strong>of</strong> the region under consideration.<br />

Rational formulae are widely used which are based on the<br />

account <strong>of</strong> maximum or extreme rainfall intensity during flood<br />

concentration; in general they may be given as follows:<br />

where: K is coefficient <strong>of</strong> dimensionality; h is maximum rate<br />

<strong>of</strong> rain or snow melt during lag-time ‘i ; dis coefficient <strong>of</strong><br />

run<strong>of</strong>f during the same interval.<br />

The time <strong>of</strong> flood concentration is <strong>of</strong>ten determined by<br />

empirical relations between this value and river length or<br />

basin area. Run<strong>of</strong>f coefficient is accepted by the analogy <strong>with</strong><br />

flooãs on other rivers proceeding from the general nature <strong>of</strong><br />

top cover and topography.<br />

For practical computations it is reasonable to use reduction<br />

foriïiulae <strong>of</strong> a general type:<br />

where: maf-is maximum specific discharge;<br />

Je - is extreme specific discharge if A-0 and c= i<br />

C -is addition to basin area taking into account the<br />

character <strong>of</strong> run<strong>of</strong>f maxima variations in case <strong>of</strong><br />

small basin areas;<br />

n. -is the index <strong>of</strong> maximum run<strong>of</strong>f reduction.<br />

The parameters in the formula are established on the basis<br />

DQ processing <strong>of</strong> data on maximum discharges in the given region.<br />

Minimum (low) flow is determined by the rate <strong>of</strong> underground<br />

water drainage by rivers. The amount <strong>of</strong> underground water<br />

discharging into rivers depends on the number and capacity <strong>of</strong><br />

aquifers cut through by river channel. The depth <strong>of</strong> erosion cut


143<br />

usually tends to increase <strong>with</strong> the increase <strong>of</strong> basin area. Therefore<br />

maximum run<strong>of</strong>f varies <strong>with</strong> the change <strong>of</strong> basin area.<br />

In this case the optimal basin area is supposed to be the<br />

area when rivers cut through all the aquifers <strong>of</strong> the given<br />

region. It is possible to plot a map <strong>of</strong> minimum flow for such<br />

rivers to be used for computations.<br />

For small water courses local graphs <strong>of</strong> relations between<br />

minimum flow and basin area are established.<br />

The rate <strong>of</strong> wa.ter resources development <strong>of</strong> some rivers<br />

is determined by the duration <strong>of</strong> no flow period. Such rivers<br />

occur in arid and permafrost zones. The duration <strong>of</strong> dry period<br />

is also determined by the basin area size.<br />

The experience <strong>of</strong> the use <strong>of</strong> indirect methods for the computation<br />

<strong>of</strong> main characteristics <strong>of</strong> water resources <strong>of</strong> the USSR<br />

rivers shows the eqediency <strong>of</strong> their use in countries <strong>with</strong><br />

different climates and different physiographic features.<br />

1. Voskresenski K.P., Norma i izmenchivost godovogo atoka rek<br />

Sovetskogo Soyuza (Annual run<strong>of</strong>f norm and vari-<br />

ability for the USSR rivers), Hydrometeorological<br />

Publishing House, Leningrad, 1962, 545 p.<br />

2. Voskresenski K.P. Gidrologicheskie raschety pri proektiro-<br />

vanii sooruzheniy na malykh rekakh, ruchiakh i<br />

vrememykh vodotokakh (Hydrological computations<br />

for engineering projects on small rivers and<br />

temporary mater couraes), Hydrometeorological<br />

Publishing House, Leningrad, 1956, 468 p.


EVALUATION OF WATER RESOURCES OF MOUNTAIN AREAS IN CASE OF<br />

ABSTRACT<br />

ABSENCE OR INADEQUACY OF DATA ON RUNOFF<br />

Vuglinski V.S.<br />

State Hydrological Institute<br />

Leningrad, USSR<br />

V.A. Semenov<br />

Kazakn Research Hydrometeorological Institute<br />

Alma-Ata, USSR<br />

Normal annual run<strong>of</strong>f, as water resources indicator, may be<br />

determined for mountain areas on the basis <strong>of</strong> taking into account<br />

the laws <strong>of</strong> run<strong>of</strong>f distribQtion over territory and according to<br />

altitudinal zones established by the observational data from the<br />

gauged rivers. These laws are connected <strong>with</strong> latitudinal and<br />

longtudinal zonalities, <strong>with</strong> differences in the nature <strong>of</strong> the<br />

underlying surfaces and slopes exposure relative to moisture<br />

carrying air fluxes. These laws are quant'itatively expressed by<br />

regional dependences <strong>of</strong> normal run<strong>of</strong>f upon mean basin elevation<br />

and the rate <strong>of</strong> its glacierization. Another method, providing<br />

the determination <strong>of</strong> normal run<strong>of</strong>f also in case <strong>of</strong> complete<br />

absence <strong>of</strong> hydrometric data, is based on a combined solution <strong>of</strong><br />

water and heat balance equations <strong>with</strong> the account <strong>of</strong> the energy<br />

component <strong>of</strong> the water cycle. Data from standard meteorological<br />

network are used for computation.<br />

RES UME<br />

Le débit moyen annuel, en tant qu'indice des ressources en<br />

eau, peut être déterminé dans les régions montagneuses en se<br />

basant sur les lois de distribution établies pour l'ensemble du<br />

territoire à partir des données obtenues aux stations de jau-<br />

geages, en tenant compte d'une división par zones d'altitude.<br />

Ces lois sont liées à la situation géographique (longitude et<br />

latitude), qui se traduit par des différences dans la nature du<br />

sous-sol et dans l'orientation des pentes par rapport 3 la di-<br />

rection des masses d'air humide. Elles se traduisent par des<br />

relations régionales quantitatives entre le ddbit moyen d'une<br />

part et l'altitude moyenne du bassin et le pourcentage de gla-<br />

ciers d'autre part. Une autre méthode, permettant d'évaluer le<br />

débit moyen en l'absence totale de données hydrométriques, met<br />

en jeu la résolution de deux équations, relatives l'une au bi-<br />

lan hydrologique, l'autre au bilan thermique tenant compte des<br />

termes énergétiques du cycle de l'eau. Les calculs sont effec-<br />

tués à partir des données fournies par le réseau m6téorologique.


146<br />

A hydrometric network is very scarce in mountain areas since<br />

they are hardly accessible. Methods for the evaluation <strong>of</strong> surface<br />

water resources in case <strong>of</strong> inadequacy or complete absence<br />

<strong>of</strong> observational data are based either on the account <strong>of</strong> the<br />

laws <strong>of</strong> space distribution <strong>of</strong> normal annual run<strong>of</strong>f @pical <strong>of</strong><br />

the gauged regions or on the application <strong>of</strong> an appropriate<br />

design scheme.<br />

Space distribution <strong>of</strong> water resources (undisturbed by man's<br />

activities) in mountains and in plains is the result <strong>of</strong> hydrometeorological<br />

factors interactions (precipitation, air temperatue,<br />

evaporation) <strong>with</strong> underlying surfaces. But u<strong>nl</strong>ike plain areas<br />

where latitude and distance from the sea serve as main factors<br />

<strong>of</strong> heat and moisture ratio chasacterizing water resources, the<br />

orography becomes the main factor <strong>of</strong> river run<strong>of</strong>f formation in<br />

mountains. The effect <strong>of</strong> topograpb on river run<strong>of</strong>f results in<br />

its direct influence on the flow velocity down the channels,<br />

depending on the slopes <strong>of</strong> watersheds and bqsins top cover. But<br />

the most important effect <strong>of</strong> topography on water resources is developed<br />

by its influence on water balance elements ( recipitation,<br />

evaporation, change <strong>of</strong> water storage in river basinsl;. This<br />

effect is <strong>of</strong> a particular importance in mountainous arid zones<br />

<strong>of</strong> Asia. For example gross precipitation in the mountains <strong>of</strong><br />

Middle Asia, Kazakhstan and Mongolis ranges from 150-lOO mm and<br />

less in areas protected from humid air masses (hollows, slopes<br />

<strong>of</strong> unfavourzble orientation) up to 1500-2000 mm and more on<br />

favourably oriented slopes <strong>of</strong> periphery mountain ridges relative<br />

to air fluxes. The increase <strong>of</strong> precipitation according to elevation<br />

and simultaneous losses by evaporation on high elevations<br />

due to low air temperatures stipulate the improvement <strong>of</strong> conditions<br />

<strong>of</strong> river feeding characteristic for mountain areas as far<br />

as the basin elevation increases.<br />

In connexion <strong>with</strong> the stated above, methods based on the<br />

establishment <strong>of</strong> relations between run<strong>of</strong>f and orographic peculiarities<br />

<strong>of</strong> the location have been accepted in the USSR for the<br />

evaluation <strong>of</strong> water resources in poorly gauged mountain areas.<br />

These orographic peculiarities are as follows: elevation, slope<br />

and orientation <strong>of</strong> the region relative to the direction <strong>of</strong> moistw?e<br />

transfer.<br />

For the evaluation <strong>of</strong> mean annual run<strong>of</strong>f<br />

Q as an index <strong>of</strong><br />

areal water resources the relations between specific discharge<br />

and elevation <strong>of</strong> the watershed, which in majority <strong>of</strong> cases is<br />

expressed as mean weighted elevation (H) are widely used.


147<br />

These relations are established for every region nn %hi? bapis<br />

<strong>of</strong> data obtain9d for gauged watersheds and are uwed ta /?cl;om-ine<br />

normal run<strong>of</strong>f <strong>of</strong> ungauged watersheds in the a2progriat;e repien.<br />

Sirice high mountain areas are very poorly gaiged tbs cvaluri-<br />

tion <strong>of</strong> water resources for such areas Is madß according im<br />

extrapolated portions <strong>of</strong> the dependences Cj E f (II). Data on<br />

precipitation, ablation and liquid glacia?. run<strong>of</strong>f are used %o<br />

make extrapolation more reliable .<br />

In case <strong>of</strong> data on glacierization w&lable they are ursd<br />

both for the extrapolation <strong>of</strong> dependences Q. = f (HI an0 ?or<br />

direct conput;ation <strong>of</strong> mean annual run<strong>of</strong>f iron relat;ively smdl<br />

high mountain areas. According to ths investigations made by<br />

V.L. Schultz /1/ the rise <strong>of</strong> such empirical relations provi


14 8<br />

and subsoils- m is the exponent <strong>of</strong> run<strong>of</strong>f reduction; I is mean<br />

basin slope [ '/oo).<br />

When river basins are composed <strong>of</strong> karst rocks the effect <strong>of</strong><br />

other azonal factors on river run<strong>of</strong>f may be neglected and o<strong>nl</strong>y<br />

run<strong>of</strong>f changes caused by karst may be taken into account. Hence,<br />

for example, an appropriate correction (<strong>with</strong> negative sign) to<br />

zonal run<strong>of</strong>f for the Kazakh folded area is computed by empirical<br />

e quat ion :<br />

(2)<br />

where: Q is correction (l/sec per 1 km') due to karst effect.<br />

For the evaluation <strong>of</strong> zonal normal run<strong>of</strong>f the maps <strong>of</strong> isolines<br />

<strong>of</strong> normal run<strong>of</strong>f are used; these maps are compiled by<br />

observational data mai<strong>nl</strong>y from the basins fully located <strong>with</strong>in<br />

one climatic zone. The method <strong>of</strong> isolines is usually preferable<br />

in case <strong>of</strong> natural water resources evaluation for large river<br />

basins and for poorly gauged mountain areas as a whole.<br />

Very few maps <strong>of</strong> isolines <strong>of</strong> normal run<strong>of</strong>f plotted for<br />

particular mountain areas are available in the USSR. Since the<br />

initial &ta are linited, these maps are small-scaled, mai<strong>nl</strong>y<br />

<strong>of</strong> 1 : 2 500 O00 scale not more; these maps are hardly suitable<br />

for the estimation <strong>of</strong> normal annual ryn<strong>of</strong>f from small and middlesize<br />

watersheâs not exceeding 1000 km . Thus, the method <strong>of</strong> isolines<br />

provides a sufficiently accurate determination <strong>of</strong> normal annua3<br />

run<strong>of</strong>f mai<strong>nl</strong>y for large mountain watersheds (more than 1000 km 1.<br />

The method <strong>of</strong> collective analom based on the graphs <strong>of</strong> relations<br />

between run<strong>of</strong>f and mean basin elevation is used bn majoritg <strong>of</strong><br />

cases for the computation <strong>of</strong> run<strong>of</strong>f from middle-size basins, i.e.<br />

more than 500-600 km2. When computing run<strong>of</strong>f from small basins<br />

and <strong>of</strong>ten larger basins the use <strong>of</strong> the two mentioned methods<br />

is not always reasonable. It is <strong>of</strong>ten explained by inadequacy <strong>of</strong><br />

initial information on run<strong>of</strong>f and by a considerable effect <strong>of</strong><br />

azonal factors in mountains; in this connexion even basins <strong>with</strong><br />

similar elevation <strong>with</strong>in the same mountain region may differ<br />

greatly in the conditions <strong>of</strong> run<strong>of</strong>f formation and its quantitative<br />

characteristics.<br />

In such cases the determination <strong>of</strong> normal annual run<strong>of</strong>f<br />

from mountain watersheds located in conditions <strong>of</strong> sufficient<br />

and excessive moistening is made by a combined solution <strong>of</strong><br />

equations <strong>of</strong> water and heat balances. An indubitable advantage<br />

<strong>of</strong> this method is in the fact it ensures a relatively accurate<br />

determination <strong>of</strong> normal annual run<strong>of</strong>f not o<strong>nl</strong>y from large<br />

mountai basins but from watersheds <strong>with</strong> the areas not exceeding<br />

1000 km 9 .<br />

The computation is based on the equation <strong>of</strong> mean long-term<br />

annual water balance where normal annual run<strong>of</strong>f is determined


149<br />

by the difference between precipitation P and evaporation E:<br />

Q= P-E (3)<br />

When usin@; this equation it is essential to obtain a<br />

reliable accuracy in determination <strong>of</strong> noml annual precipitation<br />

and evaporation. The method is applicable for such mountain<br />

areas where the available hydrometeorological network provides an<br />

objective evaluation <strong>of</strong> precipitation distribution compared <strong>with</strong><br />

run<strong>of</strong>f. In this case it should be kept in mind that evaporation<br />

is less variable over area and altitudinal zones compared <strong>with</strong><br />

run<strong>of</strong>f and it ILK' be computed for mountain watersheds <strong>with</strong> a<br />

sufficient accuracy .<br />

It should be noted that in equation (3) underground water<br />

exchange <strong>with</strong> adjacent watersheds is not taken into account1 As<br />

a rule, this component is not big in mountains especially in<br />

permafrost zone. But in cases when its valiles are commensurable<br />

<strong>with</strong> the other values <strong>of</strong> equation (3) the account <strong>of</strong> this<br />

component is essential.<br />

The determination <strong>of</strong> one <strong>of</strong> the parameters in equation (3)<br />

i.e. normal annual precipitation, is made <strong>with</strong> the use <strong>of</strong><br />

graphs <strong>of</strong> precipitation and elevation <strong>with</strong> the account <strong>of</strong> local<br />

orographic peculiarities. In this case correction should be introduced<br />

for the initial data which take into account the underestimation<br />

<strong>of</strong> precipitation by standard precipitation gauges.<br />

Computation <strong>of</strong> normal annual evaporation is made by equation:<br />

where: W is radiation balance <strong>of</strong> the moistened surface; Wa is<br />

tubule& heat exchange; L is latent heat <strong>of</strong> evaporation; e<br />

is base <strong>of</strong> natural logarithms; th is hyperbolic tangent.<br />

Equation (4) is a precised version <strong>of</strong> M.I. Budyko's equation<br />

/3/ due to Wa value.<br />

In the right <strong>of</strong> equation (4) three unknown parameters are<br />

intrmduced: P, W and W .<br />

The way <strong>of</strong> de$ermina!ion <strong>of</strong> normal annual precipitation ie given<br />

above .<br />

The value6 <strong>of</strong> radiation balance <strong>of</strong> the moistened surface may<br />

be taken from appropriate maps or computed. For many areas <strong>with</strong>in<br />

the USSR territory there exist design formulae for W<br />

determina-<br />

tion according to latitude and elevation <strong>of</strong> the loca%LQ. In<br />

particular, for Trans-Baikal area /4/ such formula may be<br />

presented as follows:


150<br />

where: '9" is mean watershed latitude; h = (H - SOO ) is the<br />

exceedence <strong>of</strong> mean watershed latitude over 500 a.s.1. When<br />

computing radiation balance <strong>of</strong> the moistened surface <strong>of</strong><br />

mountain watersheds its variations according to the exposure<br />

and steepness <strong>of</strong> slopes are taken into account.<br />

The uetermination <strong>of</strong> Wa as well as Wp is made either according<br />

to appropriate maps or, in case <strong>of</strong> available data on mean<br />

long-term monthly air temperature, water vapour pressure and<br />

total cloudiness, by a combined solution <strong>of</strong> heat balance<br />

equation and the equation <strong>of</strong> Magnus. This method is presented<br />

in detail in some publications /5,6/. When using equation (4)<br />

it should be noted that mean long-term annual values <strong>of</strong> W<br />

and W are rather stable characteristics slowly changing {ver<br />

territory a d altitudinal zones.<br />

After computing normal annual evaporation it is possible to<br />

estimate mean long-term annual run<strong>of</strong>f by equation (3).<br />

It should be noted that the presented scheme <strong>of</strong> computation<br />

may be changed for watersheds located in low and middle-height<br />

mountains. As to watersheds covering high mountain zone, this<br />

method <strong>of</strong> combined aolution <strong>of</strong> water and heat balances for<br />

normal annual run<strong>of</strong>f determination may be applied as well;<br />

the difference is that the number <strong>of</strong> terms in water balance<br />

equation increases ( it is essential to take into account the<br />

ablation <strong>of</strong> glaciers, melting <strong>of</strong> snow fields, separate account<br />

<strong>of</strong> evasoration from different types <strong>of</strong> underïying surfaces<br />

in high aountains, i.e. ice, snow, talus and rocks).<br />

The evaluation <strong>of</strong> long-term variations <strong>of</strong> surface water<br />

resources <strong>of</strong> poorly gauged mountain areas is usually made &y an<br />

analytical frequency cume <strong>of</strong> annual river run<strong>of</strong>f. The values<br />

<strong>of</strong> run<strong>of</strong>f variation coefficient C, essential for its plotting<br />

are evaluated by their regional empirical relations be tween<br />

normal run<strong>of</strong>f, mean weighted elevation <strong>of</strong> the watershed or the<br />

glacierization area. These relations are established according<br />

to observational data from the gauged rivers, and the coefficient<br />

<strong>of</strong> asymmetry C is established by the ratio <strong>of</strong> this parameter<br />

and coefficient <strong>of</strong> variations for the gauged rivers <strong>of</strong> the region.<br />

Ìimpirical dependences <strong>of</strong> variation coefficient <strong>of</strong> annual<br />

runo?f and . the determining factors for ungauged mountain areas<br />

are usually<br />

expressed by equations:


where: a, b, c and r are regional parameters; H is mean<br />

weighted elevation <strong>of</strong> watershed; is exponent <strong>of</strong> watershed<br />

glacierieation(percentage from the total draina@ area),<br />

The selection <strong>of</strong> the equation depends on the character <strong>of</strong><br />

151<br />

river feeding. The dependence <strong>of</strong> variation ûoeff icient <strong>of</strong> annusl<br />

run<strong>of</strong>f and specific river discharge (equation 6) are used maim for areas <strong>with</strong> a considerable portion <strong>of</strong> rainfalls in mountain<br />

river feeding.<br />

When estimating C, for ungauged mountain rivers <strong>of</strong> the arid<br />

zone where the effect <strong>of</strong> snow melt water is <strong>of</strong> particular<br />

importance, the preference is given to the relations <strong>of</strong> variation<br />

coefficient and mean weighted watershed elevation (equation 7).<br />

For rivers located in basins where glaciers cover more than<br />

IQ% <strong>of</strong> the drainage area the dependence <strong>of</strong> C, upon mean weighted<br />

elevation is usually broken and the preference is iven %o empirical<br />

relations between Cv and basin glacierization ? equation 8).<br />

If there are no data available on the amount <strong>of</strong> glaciers then<br />

instead <strong>of</strong> glacierization rate for C, determination <strong>of</strong> ungauged<br />

mountain rivers its indirect indices are sometimes used showing<br />

the relations between the area <strong>of</strong> altitudinal zone where glaciers<br />

are located and the area <strong>of</strong> the whole basin.<br />

For the determination <strong>of</strong> variation coefficient <strong>of</strong>-annual run-<br />

<strong>of</strong>f <strong>of</strong> mountain rivers the equation recommended by LP. Voskre-<br />

senski /7/ is used as well :<br />

where: X is regional parameter.<br />

The coefficient <strong>of</strong> asymmetry <strong>of</strong> mean annual run<strong>of</strong>f for ungauged<br />

mountain rivers is usually accepted as C, = 2Cv.<br />

RE F E R E N C E S<br />

1. Schultz V.L. Reki Srednei Asii (Middle Asia rivers). Pt.1 and<br />

2, Hydrometeorol. Publ. House, Leningrad, 1965.<br />

2. Lavrentiev P.F., Semenov V.A., Khitrunova M.S. Uchet sredaei<br />

vysotg vodosborov, ikh orientatsii i azonalnykh faktorov<br />

podstila jushche i poverknosti gri rasc hetakh srednego<br />

godovogo stoka rek Severnogo Kazakhstana (The account <strong>of</strong><br />

mean basins elevation, their orientation and azonal facGor’P<br />

<strong>of</strong> the underlying surface when computing mean annual run<strong>of</strong>f<br />

<strong>of</strong> north Eazakhstan rivers), Trana. <strong>of</strong> Kaz. NIGBdI,<br />

VOI. 41, 1971.<br />

3. Budyko M.I. Teplovoi balans zemnoi poverkhnoeti (Heat baleme<br />

<strong>of</strong> the Earth’s surface). Hydrometeorol. Publ. House,<br />

Leningrad, 1956.


152<br />

4. Vuglinski V.S. Yetodika rascheta radiatsionnogo balansa<br />

gornoi territorii i ee primenenie na primere<br />

basseina r. Vitini (Methods for the computation <strong>of</strong><br />

radiation balance <strong>of</strong> mountain area and its applica-<br />

tion illustrated by the Vitim river basin). Trans.<br />

<strong>of</strong> GGI, 1972, ~01. 199.<br />

5. Vuglinski V.S. Raschet normy godovogo stoka neisuchennykh<br />

gornykh rek s primeneniem uravneniy vocino o i teplovo-<br />

go balansov (na priiaere basseina r. Vitimy. (Compu-<br />

tation <strong>of</strong> normal annual run<strong>of</strong>f <strong>of</strong> ungauged mountain<br />

rivers WI th the use <strong>of</strong> equations <strong>of</strong> water and heat<br />

balances !strated by the Vitfm river basin).<br />

Trans. <strong>of</strong> &(GI, 1972, vol. 200.<br />

6. Anàreyanov V.G. Vnutrigodovoe raspredelenie rechnogo<br />

stoka (Annual stream flow distribution), Leningrad,<br />

Hyàrometeorol. Publ. House, 1961.<br />

as Voskresenski K,P. Horma i izmenchivost godovogo stoka rek<br />

Sovetskogo Sojusa (Normal annual run<strong>of</strong>f and its<br />

variations for the rivers <strong>of</strong> the Soviet Union).<br />

Leningrad, Hydrometeorol. Publ. House, 1962,


IMPROVEMENT OF HYDROLOGICAL INFORMATION FC?. FX.?:LCT<br />

DESIGN BY SHORT TERM MEASURES -<br />

1. Introduction<br />

GENERAL REPORT<br />

by<br />

Dr. John Rodda<br />

At the present time, when the amount <strong>of</strong> attention given to all asjxcta <strong>of</strong><br />

th:: environnent is growing rapidly, the collect ion <strong>of</strong> enviromental<br />

information is increasing in importance, especicaìly for use as o m ~f the<br />

bases Of measures for enviromental protection and combatting pollution.<br />

Kere the hydrologist and meteorologist are amongst the more fortam.tc <strong>of</strong><br />

environmental scientists: they probably have at their dislwaal a lager<br />

body <strong>of</strong> information relevant to their needs than is available tc oihcr<br />

scientists in their particular fields. On the other hand it is true to c . ~<br />

that many watcr resources projects are designed <strong>with</strong> inaclc::imte data, indcd,<br />

sometimes <strong>with</strong> virtual1.y no date zt all.<br />

likely that wrong decisions will be taken, that wrone critcria will be<br />

selected and that inappropriate and uneconomic designs will be adopted.<br />

The end product can be a water resources system which pstly or entirely<br />

fails to meet the objectives that were foreseen for it, the bexr‘its it<br />

pro&uces,bcaring little relation to the capital invested.<br />

2. zata and Networks<br />

The classic response to this situation is to collect noce and m ro data<br />

for thc national archive. Aniassine; a large quaiitily or^ ìucirologi.:al<br />

information is even seen as an end in itself and virtus.lly mJ’ 5.ncrease<br />

in the total is considered <strong>of</strong> value.<br />

particularly where national data collection propmr,:es are nct plmned<br />

scieiitifically.<br />

types, generally rainfdl and streamflow records, other LW’C~S heina very<br />

largcly neglected; for example, sediment surveys and soil muistiire records.<br />

St&tions in the data network are <strong>of</strong>ten badly distributed, t5m-C arc<br />

differences in the lengths <strong>of</strong> records and their quality is frcqixntly<br />

suspect. Such networks usually produce information inefficienti.;? and<br />

uneconomically - the oppoeite <strong>of</strong> the true objective <strong>of</strong> network &si@.<br />

Scientific design would produce a system whioh would add the moi;:<br />

know1ede;e for the least effort. This sytem would ncit o<strong>nl</strong>y consïf;t <strong>of</strong><br />

station-type time series observations, but also <strong>of</strong> surveys <strong>of</strong> various<br />

kinds, including questionnaires 2nd oensusee. It would not be ti riKi8 c;’stcrn,<br />

but one that would be altered and amended in response to needa and as<br />

objectives change.<br />

Lui if th.e purpose <strong>of</strong> a network can be stated clczrly .then itn ?tasip is<br />

likely’to be fecilitated.<br />

Inadequste duta m ke it more<br />

This is not alwRjr:; the CasQ,(<br />

Usually the bulk <strong>of</strong> the information is <strong>of</strong> cno or two<br />

üf ooume networks iisly have various objectivce<br />

F’or project design purposes a network would have


I54<br />

a different form and composition from a network installed for researoh<br />

purposes, although both would be COmPOnCntO <strong>of</strong> and contributors to the<br />

national network which would itself provide the overall information framework.<br />

in the oontext <strong>of</strong> this symposium it is important to consider firat<br />

the form <strong>of</strong> the national network and the attributes that would fit it best<br />

to the needs <strong>of</strong> project deoign end second the project nbtwoa itself.<br />

3. Data PrODertißS<br />

Langbein (1972) wpsted that water data, And thus the n dork for<br />

acquiring them, have three intrinsio properties:<br />

and continuity. Imoartialitg relates to the aganoy or Bgenoiee that<br />

operate the network and archive the infomatttion from it. In its<br />

Perception <strong>of</strong> data problems, the agency itself tends to introduce R bias<br />

in the data, a bias towards ita own speaialty. Por example M organieatioii<br />

concerned <strong>with</strong> water suppl.y wouiû tend to dieregard infomation about<br />

floods and the means <strong>of</strong> colleoting these data. One solution to this<br />

problem is for basic data oollection to be the remit <strong>of</strong> en agenay <strong>with</strong>out<br />

opcratiûïìal or cxccative roles, such ôs onc ifi-dve3 in reeearch.<br />

Relevance <strong>of</strong> the data then becmes important because thie type <strong>of</strong> data<br />

agency is one stage removed from the problems to which the data arc applied.<br />

On the other hand, this avoids what Langbein calls the "squeeking wheel<br />

principle whereby attention is continually uircctod toward8 mrrently urgcrì:<br />

problema at the expense <strong>of</strong> the existing balance <strong>of</strong> the network and its<br />

oapacity to be employed for solving future as yet -own problems,<br />

Continuity follows from the fact that hydrological datu are time-dependent,<br />

hence their collection needs to be oontinuous. Continuity ia at risk<br />

at times <strong>of</strong> national atresa euch as during tine <strong>of</strong> war, -turd disaster<br />

or finanoiai stringency.<br />

agencies are required to alter their progremmos and those not directed to<br />

olear and easily recornisable objeotives tend to be curtailed.<br />

4. The Fctwork<br />

impartiality, relevance<br />

Organisationai change ia also a haed;<br />

Ideally the oountrywide hydrologiosl network should preoeed development,<br />

invariably the reverse is true. Most national networks have resultßd<br />

from ad hoc responses to particular problems. Pow networks Beem to have<br />

reached the optimum in termo <strong>of</strong> distribution <strong>of</strong> stations, types <strong>of</strong> data<br />

and form <strong>of</strong> amhive. Perhaps the difficulty <strong>of</strong> deoiding what the<br />

optimum is one reason for this, although Dswdy et al (1972) put forward the<br />

idea <strong>of</strong> the leoel <strong>of</strong> information being optiwl when decisions involviq<br />

this infomation become insensitive to its m her inorease. !Phis ooucept<br />

has the difficulty that the optimum information level and thus tho optimum<br />

network differs for different objeotivee, so that it m w not be readily


applicable to a malti-purpose countrywide network.<br />

problem <strong>of</strong> scale and the fact that the component parts <strong>of</strong> the hydrolo&al<br />

network may have developed separatoly crnd to differing degrees.<br />

155<br />

the evaporation network and the water quality network are u<strong>nl</strong>ikely to have<br />

been co-ordinated and this may apply to the other variables.<br />

5. Scale <strong>of</strong> Networks<br />

The factor <strong>of</strong> soale ia pu1 important point to consider in project design for<br />

there are differences between information needs on national and local<br />

scales. At the national level tho network would consist <strong>of</strong> long term,<br />

bench mark primary stations for sampling in the main, variations in time.<br />

The distribution <strong>of</strong> theso stations would relate to the degree <strong>of</strong> the<br />

country's development and its hydrological heterogeneity. in other words<br />

a country <strong>with</strong> uniform climate, geolot;y and relief, a small number <strong>of</strong><br />

inhzbitants utilizi<strong>nl</strong>: few <strong>of</strong> the resources woulù most probtrbly possess<br />

a less developed network than oneaith diVerBe physical features, a<br />

large population and a strong industrial base.<br />

lhe twu couiitrias would present a siuiLr GGZ~IYLS:, bUt both crtrcrkz<br />

should necessarily be capable <strong>of</strong> utilization, at the vem least, for<br />

accounting for the resource and for the warning <strong>of</strong> hazards.<br />

1Òcal scale stations would tend to be <strong>of</strong> a short term, secondary tyae<br />

(Gandin 1967) established to sample variability in space.<br />

network would be a major part <strong>of</strong> this secondary network.<br />

secondary network would mostly serve current information needs, the baoio<br />

countrywide network would satisfy future demands (Laagbein 1965).<br />

6.<br />

Use <strong>of</strong> Basic Network for Roject Desim Purposes<br />

Information from the basio network can be employed to provide estimates<br />

<strong>of</strong> hydrological variables for any Given point <strong>with</strong>in a country and can<br />

thus be applied for project desi-, purposes. The estimâtion may be<br />

undertaken SbjJly bf interpolation between isopleths on B countrywide<br />

map, constructed from the basic network. observations.<br />

data fram the network can be applied in a mapping technique suoh as<br />

the application <strong>of</strong> the grid system for storage and processing hydrological<br />

information from a large area and its use in relating the hydrolgical<br />

variables to the area's physical characteristics (Solomon et al 1968).<br />

Maps <strong>of</strong> mean annual precipitation, temperature and waporation were<br />

constructed by this method and then employed <strong>with</strong> measures <strong>of</strong> the<br />

topograpliy to develop a map <strong>of</strong> run<strong>of</strong>f.<br />

There io also the<br />

importanoe <strong>of</strong> maps, maps also being important to that regionalisation<br />

type <strong>of</strong> approaoh. For example, measureß <strong>of</strong> the pertinent eurface or<br />

For exanple<br />

The information needs <strong>of</strong><br />

At the<br />

The project<br />

Whereas the<br />

Alternatively<br />

This approach stresses the


156<br />

subsurface features <strong>of</strong> an area whioh can be mapped or measiired in the<br />

field are related to a otatistic Of the hydrological vari;:ble in queetion.<br />

Relationships between mean annual rainfall amounts and niemures <strong>of</strong> -Lhe<br />

topo6.raph.y such ae alevationplope and exposure have been widely de.lcrmined,<br />

likewise relations between the mean annual flood and catchment characteristics<br />

including area,channel slope anù drainé@ density.<br />

The paper 'sIrnprovement <strong>of</strong> run<strong>of</strong>f records in smaller watershede, based on<br />

permeability <strong>of</strong> the geological subsurfacess by Dr Bala&Xun follows this<br />

2<br />

type <strong>of</strong> appl-oach. Records from basins less than 25OKu1 in area locaied<br />

in li!? USA and Central Europe were used in thio study. P~ak run<strong>of</strong>fs<br />

(m3 sec -' Km2) <strong>of</strong> 100 year return period were related to basin size, the<br />

geological character <strong>of</strong> those basins assessed from permeability<br />

certain storm sires and intensities and also to the slope <strong>of</strong> the basin.<br />

Dr Halasi-Kun siicgests there is evidence for a significant correlation<br />

betuem permeability and peak run<strong>of</strong>f but that the geological effect<br />

2<br />

"fades" for basins larger than 235h . This paper also ermines 50 year<br />

2<br />

low flows in the same bapjns (1 sec-' Km ) and again relates ihese flow6<br />

to p3OlOC;iC;rl characteristics. The author concludes that including<br />

permeability improves this type <strong>of</strong> approach and <strong>of</strong> course he is correct<br />

in the sense that the inclusion <strong>of</strong> any further uncorrelated but<br />

quantifiable catchment characteristics is a step forward.<br />

he hacl included as much <strong>of</strong> his basic data that it was possibla to<br />

publish.<br />

It does not deal <strong>with</strong> estimation from catchment characteristics but <strong>with</strong><br />

reconstruction <strong>of</strong> records from a shorter period <strong>of</strong> more complote records<br />

applied to a longer period <strong>of</strong> more limited information. This is the<br />

paper by Ih. Kovecs and Dr Kolnar: "Determination <strong>of</strong> snow water<br />

eqyivslent and enow melt water by thickness <strong>of</strong> snow cover data''<br />

One wishes<br />

Another paper submitted for this section <strong>of</strong> the programme which (]:!ala<br />

uith information from the basic network is not strictly in the mine cztegorg.<br />

Snow<br />

depth has been observed at about 1000 stations in Hungary for 100 years<br />

and since 1960, water equivalent has also been measured at 60 stations.<br />

From studios <strong>of</strong> the bulk density <strong>of</strong> fresh snow ( Y min), mow saturatcd<br />

<strong>with</strong> capillmy water ( Y k) and melting mow ( 5' ma), snow depth and the<br />

number <strong>of</strong> layers <strong>of</strong> enow developed during accumulation (R)o tanned the<br />

critical bulk density, and R.<br />

between y max and R and dao a method for obtaining the duration <strong>of</strong><br />

melting from air temperature records during the molting period. These<br />

relations are then applied to the hindcasting <strong>of</strong> snow water equivalents<br />

from depth measurements and to forecasting duuration <strong>of</strong> the melt period<br />

and potential volume <strong>of</strong> melt water.<br />

Then they arrive at a similar relation<br />

The predicted snow water e-ivalent?:<br />

are oomparcd <strong>with</strong> meamred volumes at one site for part <strong>of</strong> 1963 and the


match between them seems reasonably good.<br />

provided for the enow melt cdoulations.<br />

15 7<br />

The paper by Ur Beard œHydrological dzta fill in and Network Desi&* is<br />

similar to the previous one in that it deals <strong>with</strong> the extension <strong>of</strong><br />

records from stream gaugingetations <strong>with</strong> long recoi.de to stations <strong>with</strong><br />

o<strong>nl</strong>y short ~%cordS. A stoolustic model, which can accept montly data, is<br />

based upon multiple linear regressions, using fransformed variables, and<br />

these are derived from each station for eachGalendar month. To illustrate<br />

what happens as a result <strong>of</strong> chanoe variations in small samples, 10,000<br />

5-year sample8 were drawn from a normal population and their means and<br />

standard deviations oalculated. For each sample items were perated and<br />

their location in the parent population identified. It was found that in<br />

the oase <strong>of</strong> extremes tco many extreme vdues were generated indicating a<br />

bias in the estimates <strong>of</strong> extremes.mzde from small samples. To overcome<br />

this bias a transom hinotion was generated.<br />

(equation 2) showing the nucber ~f itefie 3: iiaedid in the shrt-tem<br />

recorà than can improve the accuracy <strong>of</strong> the short-term mean so that it ia<br />

reliable as the mean obtained l'rom the lon&er reoord Values <strong>of</strong> I, are<br />

tabulated for various correlations and samplo ßizes against the longer<br />

record length (table 2). Four different %year soquencee were selected<br />

from 40 years <strong>of</strong> reoord at one station and for each <strong>of</strong> tho four cases tho<br />

remaining 35 years were filled in.<br />

for the 40 years <strong>of</strong> reconstructed record ware compared <strong>with</strong> the actual<br />

40 year mean. The process wzs repeated Sor 3 other stations and a matrix<br />

is presented showing 8 comparison <strong>of</strong> statistics derived from these recodo.<br />

The author concludes that for correlations above 0.95 short records need<br />

not be continued beyond 5 years but belar 0.8 short records should be<br />

oontinued. Between these values a study <strong>of</strong> regional variations would<br />

reveal the relative advantage <strong>of</strong> continuing existing stations or starting<br />

new ones.<br />

A similar cornpanson is not<br />

An equation is given<br />

Then the mean flow for the %years and<br />

Arising from studies like theee is the question <strong>of</strong> how estimateo compare<br />

<strong>with</strong> field measurements. Nash and Shaw (1966) in a study <strong>of</strong> United Kingdom<br />

floods, disoovered that even a single year <strong>of</strong> discharge records produced<br />

a more reliable guida to the mean annual flood than the methods <strong>of</strong><br />

estimation then in current use. lore recently the UK Flood Study Team<br />

have found (Sutcliffe 1973) that estimated mean annual floods are <strong>with</strong>in<br />

2 30$ <strong>of</strong> the mean <strong>of</strong> the measured annual maxima for the catchments<br />

studied.<br />

t


158<br />

7.<br />

Short Term Instrumental and’Observational kessurez<br />

There are a number Of constraints to the design <strong>of</strong> a project network,<br />

time probably being the most important. Usually there are o<strong>nl</strong>y 2 or 3<br />

years between the time a Project is conoeived and the time when the<br />

design has to be finalised. The risks involved in employing these<br />

2 or 3 years <strong>of</strong> information is then a maximum but the risks diminish as<br />

the record length inCrcaseS.<br />

more records may be COStly in terms <strong>of</strong> loss <strong>of</strong> benefit from the water<br />

resources system. At some Point a balance will be struck‘ between risk<br />

and benefit: this point will depend upon factors such a8 the type <strong>of</strong><br />

project and the Proportion cf the resource to be develo2ed. Amongfit the<br />

other constraints are those <strong>of</strong> finance, the skills available and the<br />

location <strong>of</strong> the project. Uith adequate funds a well-equipped team can be<br />

brought together and the project placed on a firm footing.<br />

location in terms <strong>of</strong> OlimatC and topopa& can be a very considerable<br />

handicap even <strong>with</strong> a well funded project.<br />

However, deferring a project to accumulate<br />

Depending on the nature <strong>of</strong> the projeot and the informstion it requires<br />

the defiign <strong>of</strong> the network hinges on, the answers to a nimber <strong>of</strong><br />

An unfavourable<br />

questions:<br />

1. How is the information to be obtained?<br />

2. How many sites need it be obtpined from?<br />

3. Where are these sites to be located?<br />

No papers were submitted describing an:! advances in inckwmentation or gouncï<br />

based survey techniques that might be applied to project design.<br />

are new instruments and new methods that could be employed to acquire<br />

information for pro jeot deoign. Batterj operated magnetic tape recording<br />

rain gauges and telemetering gauges proùuce more information more rapidly<br />

than conventional instruments, Automatic weather stations and automatically<br />

operated neutron probes do the same in the fields <strong>of</strong> evaporation aild soil<br />

moisture measuremcnt and then there are automatic dilution gauging devices<br />

for atream flow measurement to say nothing <strong>of</strong> the other methods <strong>of</strong> river<br />

gauging that do not require the conventional stilling well and structure<br />

in the channel.<br />

recent years, but there was o<strong>nl</strong>y one paper submitted to this Section in<br />

this category.<br />

Remote sensing techniques have dvaiced eiiormously in<br />

Hhat about the use <strong>of</strong> aerial photography,radar and the<br />

various forms <strong>of</strong> imagery from satellites?<br />

exception is the paper by Dr leijerink “Svaluation <strong>of</strong> local water resouses<br />

in a semi-arid hard rock region, by using photo-hydrological indices”.<br />

Yet there<br />

They are not mentioned. The<br />

By interpreting aerial photographs an assessment was made <strong>of</strong> the local<br />

water resourcës in part <strong>of</strong> the Cuddapah Basin in south India. Following<br />

field surveys <strong>of</strong> the area‘s geologyssoils and land use the next stop was


to divide the basin into hydrologically homongeous 1andBczpes. The<br />

hyydrology <strong>of</strong> these landscapes was deduced from the photographs from<br />

159<br />

features affected by surface flow and from the characteristics <strong>of</strong> the<br />

superficiel deposits and solid geolow. For example <strong>with</strong>in a particular<br />

landscapo the yield <strong>of</strong> a well is assmiod to be directly related to the<br />

size <strong>of</strong> the irrigated area.<br />

for one landficape and also the recharge areas for those wells;<br />

relationship between these factors giving a guide to yield &B a function<br />

<strong>of</strong> recharce area.<br />

and the results ct the interpretation were checked in the field for the<br />

different relationships.<br />

The question <strong>of</strong> the number <strong>of</strong> sites to be sampled is frequently answered<br />

in terms <strong>of</strong> the funds available for installing and oparating the netuork.<br />

For areas <strong>with</strong>out records <strong>of</strong> any cort,arriving at a number is particularly<br />

difficillt for the number and location <strong>of</strong> stations hincos OA the distribution<br />

<strong>of</strong> the hydrologiczl variable.<br />

according to a predermined grid or according to the distribution <strong>of</strong> elevation.<br />

Another method would be to delimit areas <strong>of</strong> homogeneous topograpbjand<br />

~eolocr and to site one station in each area.<br />

exist it is usually far simpler to deterinine where tÒ site additional<br />

gauges.<br />

This is one <strong>of</strong> the topics discussed in the paper by Kessiers Delhomme and<br />

Delfiner: "Applicaton du Krigeage a' l'optimisation du'une coinpagne<br />

Pluviometrique en zone aride". The subject <strong>of</strong> this paper is the<br />

2<br />

Kadjemeur Wadi in the east <strong>of</strong> Chad , a basin 245Km in area containing<br />

33 rain gauges. Here the technique <strong>of</strong> Kriging is employed to determine<br />

the o ptim weights <strong>of</strong> the gauges in thc network for the calculation <strong>of</strong><br />

the mean basin rainfall.<br />

<strong>of</strong> the method and then they apply it to the description <strong>of</strong> a storm on<br />

6 AU~UQ~ 1966. Thc map obtained by ttìa technique <strong>of</strong> kriging niötohes the<br />

hand drawn isobyetal map very well; in general it produces a broader<br />

smoother interpretation. A comparison <strong>of</strong> the estimates <strong>of</strong> the mean basin<br />

rainfalls is given for Krigingand three other methods, the "hiessen,<br />

mithmetic mean and planimetering methods. In general the results are sirnilar<br />

but the concentration <strong>of</strong> gauges on the western side <strong>of</strong> the basis distorts<br />

the arithmetic mean results ifi some storms.<br />

the problem <strong>of</strong> where to locate an extra page.<br />

gauges<br />

the barain or in the centre.<br />

The areas irrigated by wells were determined<br />

the basin, where the gain <strong>of</strong> information is a maaimum b? construoting<br />

isopeths <strong>of</strong> gain fiyre 8 shows where these two points axe located - on<br />

the<br />

A similar exercise was under-taken for surfzce wa.ter<br />

One method would be to site stations<br />

Where some stations already<br />

The authors provide a background to the theory<br />

Finally the authorsooncider<br />

From the distribution <strong>of</strong><br />

subjectively one would choose a site at the south eastern end <strong>of</strong><br />

Kriging ~ 110~s determination <strong>of</strong>the point in


160<br />

the south eastern boundary and in the centre <strong>of</strong> the basin. There are<br />

various metliods for computing the mean basin .rainfall th8-t have been<br />

advocated recently - various forms Of surfaïri fittinc Sor example.<br />

problcm is that all these methods rely on the accuracy <strong>of</strong> the point<br />

rainfall measurements which we kno~ as being far from accurato. The<br />

question <strong>of</strong>' what is the true mean basin rainfall remalns unanswered.<br />

CONCI Ir3IONS<br />

In the verj lengthy title to thio section in the prop-mme for the<br />

symposium, two separate topics were raised, first the improvement <strong>of</strong><br />

hydrological information by short term measures and second the value<br />

<strong>of</strong> such measures, particularly as expressed by project economios. While<br />

one might argue that the first topic is covere? by the five papers<br />

reviewedobviously,the absence <strong>of</strong> any papers for the second is a<br />

significant pointer to tho need for work on thin topic. The reviewer<br />

proposes that UNESCO and Mi0 should consider strengthening activities<br />

in this field by appointing a rapporteur to prepare a guide to methods<br />

that may be applied to this problem.<br />

References<br />

Langbein W B<br />

Dawdy D R<br />

Gandin L S<br />

Langbein W B<br />

Solomon S I<br />

Nash J E and<br />

Shaw B L<br />

1972 "<strong>Water</strong> Da-ta Today and in Prospect"<br />

flydroloaical Sciences Bulletin<br />

Vol. 17 110 4 PP 369-385<br />

The<br />

Xoss !: E & Matalas N C 1972 9'Application <strong>of</strong> Systems Anulysis<br />

to Network <strong>Design</strong>"<br />

in Casebook on yydrolopical Network Eesia Practice<br />

(Mitor U B Langbein)<br />

wE",O Chapter III - 4.1<br />

i967 "On the PlanninE <strong>of</strong> Metero1o:cicsl Networks<br />

ifil0 Commission for Clirnatoìoa 4i>p<br />

1965 "Nationzl Networks <strong>of</strong> Eydro1o;:ical Data"<br />

Denouvillies J P, Chart E J, kloolley J A Cadou C<br />

1968 "The Use <strong>of</strong> the Grid Square System for Computer Estimation<br />

<strong>of</strong> Precipitation, Tenperature and Run<strong>of</strong>f"<br />

<strong>Water</strong> <strong>Resources</strong> Reseerch<br />

VOI 4 NO 5 pp 919-926<br />

1966 "Mood Frequency as a Function <strong>of</strong> Catchment Characteristics'<br />

S.vm.sosium on River Flood Hydrolorn<br />

Institute <strong>of</strong> civil Engineers, London pp iiFi36<br />

Sutcliff J V 1973 Personal comniunication.<br />

I%ì JORN c RODDA Institute <strong>of</strong> IIydroloa present Department <strong>of</strong> the Dnvironment<br />

Wallingford, Berks. Address: 2 Karsham Street, LOiLO€T SW1<br />

May 1973 ~~~LUm>


ABSTRACT<br />

HYDROLOGIC DATA FILL-IN AND NETWORK DESIGN<br />

Leo R. Beard<br />

A study for the Texas <strong>Water</strong> Development Board in the<br />

USA develops techniques for transferring streamflow data<br />

from locations <strong>of</strong> long record to locations <strong>of</strong> short record<br />

and uses such techniques to determine the relative value <strong>of</strong><br />

continuing current records or establishing new stations.<br />

Multisite stochastic generation techniques are adapted to<br />

the problem <strong>of</strong> filling i,n missing data by use <strong>of</strong> recorded<br />

data at many other locations in the region. Several weaknes-<br />

ses <strong>of</strong> stochastic data analysis techniques are studied and<br />

new procedures are developed to overcome these weaknesses.<br />

Results <strong>of</strong> the study are to be used for planning streamflow<br />

measurement programs.<br />

RESUMEN<br />

Un estudio hecho para el Texas <strong>Water</strong> Development Board<br />

en Los E.E.U.U. desarrolla t6cnicas para transferir datos de<br />

estaciones de largo período a estaciones de corto período y<br />

demuestra el valor relativo para continuar estaciones o esta<br />

blecer nuevas estaciones. La generación de datos probabilís-<br />

ticos para reconstituir el periodo histôrico en varias esta-<br />

ciones en una regibn es demostrado por medio de otras esta-<br />

ciones en la región. Varias deficiencias en el uso del aná-<br />

lisis de datos probabillsticos son estudiadas y nuevos proce<br />

dimientos son desarrollados para sobreponerlas. Los resulta-<br />

dos del estudio serán usados para el planeamiento de progra-<br />

mas en el estudio del cauce en ríos.<br />

(1)<br />

Technical Director, Center for Research lin <strong>Water</strong> <strong>Resources</strong>,<br />

University <strong>of</strong> Texas, Austin, Texas, USA.<br />

(1)


162<br />

THE DATA FILL-IN PROBLEM<br />

In planning the design and operation <strong>of</strong> water resources projects, it is<br />

necessary to test the plans on the basis <strong>of</strong> at least 40 or 50 years <strong>of</strong> stream flow<br />

that can reasonably be expected to occur in the future. Many projects are<br />

influenced by stream flow and other hydrologic quantities that occur at several<br />

locations simultaneously. Accordingly, adequate testing <strong>of</strong> a design or operation<br />

plan requires 40 or more years <strong>of</strong> simultaneous hydrologic events at several<br />

locations. Usually it is desired to use for this purpose recorded past flows<br />

adjusted, if necessary, to future conditions. In many regions, even the best<br />

hydrologic records are very short, and in all regions there are very short records<br />

that must be extended for planning purposes. Detailed discussions <strong>of</strong> the use <strong>of</strong><br />

synthetic streamflows in addition to historical streamflows are contained in<br />

references 1 and 2.<br />

Also, in anticipation <strong>of</strong> future water resources studies, it is necessary to<br />

determine whether to continue records at existing hydrologic stations or to<br />

establish new stations <strong>with</strong> available resources. It is the purpose <strong>of</strong> this paper<br />

to describe a study made by The University <strong>of</strong> Texas for the Texas <strong>Water</strong> Development<br />

Board in the USA wherein techniques were developed for filling in missing data and<br />

for evaluating short records in relation to long records..<br />

THE DATA FILL-IN MODEL<br />

The computer model used in the study is one developed in the Hydrologic<br />

Engineering Center <strong>of</strong> the Corps <strong>of</strong> Engineers and described in reference 3. It<br />

accepts monthly stream flow, rainfall, evaporation or other hydrologic quantities<br />

as variables. The computation procedure consists <strong>of</strong>:<br />

a. Transforming all variables to logarithms<br />

b. Transforming all logarithms to form normal distributions<br />

c. Deriving, from the data, multiple linear regression equations for<br />

estimating missing quantities from the preceding quantity at the same station and<br />

the current or preceding quantity, depending on availability, at all other stations.<br />

d. Estimating missing quantities using the appropriate regression equation<br />

and a random component, and applying the reverse transform to obtain hydrologic<br />

quantities.<br />

In order to preserve the variance and the correlation matrix relating all<br />

variables, it is necessary to introduce a random component whose standard<br />

deviation is equal to the standard error <strong>of</strong> estimate <strong>of</strong> the regression equation.<br />

The model uses a different regression equation for each station and for each<br />

calendar month at that station, and this regression equation can change every year<br />

depending on the availability <strong>of</strong> data at other stations during the current and


preceding months, Detailed discussion <strong>of</strong> the data fill-in techniques and<br />

associated mathematical problems is contained in reference 4.<br />

S HORT-RECORD EFFECTS<br />

163<br />

When several hydrologic variables are analyzed simultaneously, it is<br />

usual that some records are very short and that records at some stations do not<br />

coincide in time <strong>with</strong> records at other stations. Because these short records<br />

and their apparent interrelationships can be very misleading (due to unrepresenta-<br />

tive occurrences <strong>with</strong>in the short time period), it is necessary to provide controls<br />

in the mathematical model so that unreasonable effects will not be generated.<br />

Also, it is necessary to devise estimates <strong>of</strong> intercorrelation for those pairs <strong>of</strong><br />

variables where simultaneous data are not available.<br />

Each element <strong>of</strong> the correlation matrix is computed using simultaneous<br />

values <strong>of</strong> each pair <strong>of</strong> variables after they have been transformed to normal. For<br />

those stations where no simultaneous values exists, correlation coefficients<br />

are estimated by examining the common correlation coefficients that each <strong>of</strong> these<br />

variables has <strong>with</strong> each <strong>of</strong> the other variables in the system. This yields information<br />

by which the maximum and minimum logical correlation coefficient between the<br />

two variables can be established. After this has been done for all other variables,<br />

the correlation between these 2 stations is established as an average <strong>of</strong> the logical<br />

maximum and minimum values. This is a necessary step for completing the correla-<br />

tion matrix fromwhich regression equations must be computed.<br />

Another short-period effect that can have serious consequences in planning<br />

is the instability <strong>of</strong> the mean and standard deviations <strong>of</strong> the logarithms <strong>of</strong><br />

hydrologic quantities. It is possible that, when records are as short as 4 or 5<br />

years, unusually extreme values can occur. When this happens, extrapolation to<br />

40 or 50 years can result in unreasonably extreme quantities being generated.<br />

Similarly, in such short records, it is possible that no large or small events would<br />

occur, in which case extrapolation to long periods might not include events that<br />

would normally occur in such periods.<br />

Table 1 illustrates what happens as a result <strong>of</strong> these small-sample chance<br />

variations. Here, 10,000 5-year samples were drawn from a normal population,<br />

and the unbiased mean and standard deviation were computed for each. Then,<br />

for each sample, 5 items were generated using these sample statistics, and their<br />

location in the true parent population identified. In the fourth line under ratios, it<br />

is shown that far too many extreme values were generated in this manner. Thus,<br />

there is a significant bias in estimates made from small samples. In order to<br />

overcome this, the following empirical transform function to be applied to generated<br />

devia tes was developed:<br />

X I = x - . ~~x~/(N-U~'~<br />

in which I<br />

X<br />

X<br />

N<br />

=<br />

=<br />

=<br />

adjusted deviate (absolute value)<br />

generated deviate (absolute value)<br />

sample size


164<br />

II)<br />

LI<br />

6<br />

H<br />

O<br />

O<br />

O<br />

O<br />

Ln<br />

Ln<br />

al<br />

N<br />

m<br />

al<br />

a<br />

-4<br />

.-4<br />

E<br />

cn<br />

LI<br />

O<br />

w<br />

v><br />

al<br />

m<br />

><br />

al<br />

U<br />

-4<br />

n<br />

ry<br />

O<br />

r:<br />

O<br />

-4<br />

rn<br />

LI<br />

al<br />

a<br />

II)<br />

-4<br />

n<br />

<strong>nl</strong>9mœI-<br />

V, ri19<br />

m<br />

8<br />

-I<br />

-<br />

b-<br />

O<br />

c b


The last line under ratios in Table 1 illustrates that this formula produces a<br />

very nearly normal distribution <strong>of</strong> values generated from a large number <strong>of</strong><br />

small-sample statistics.<br />

STABILITY PROVISIONS<br />

165<br />

The model used in this study for data fill-in includes a number <strong>of</strong><br />

features that are necessary in arder to produce stable projections when using<br />

short and intermittent records. When the correlation matrix that was derived<br />

as discussed above is used in constructing a regression equation, it is entirely<br />

possible that the assembled Correlation coefficients will be mutually inconsistent,<br />

since they are not based on simultaneous data. If this occurs, it simply means<br />

that the quantity to be estimated is over-defined and that some <strong>of</strong> the inconsistent<br />

data must be removed for the purpose <strong>of</strong> estimating that particular quantity. This<br />

is accomplished automatically in the computer by testing for consistency and,<br />

when the correlation coefficient exceeds unity, eliminating that variable in the<br />

equation which has the lowest direct correlation <strong>with</strong> the quantity to be estimated.<br />

This elimination process is continued automatically until the correlation<br />

coefficient becomes less than unity.<br />

Even though the correlation'matrix is consistent, it can still be highly<br />

unstable. This occurs usually when 2 <strong>of</strong> the explanatory variables are highly<br />

interdependent. One indication <strong>of</strong> this condition is the occurrence <strong>of</strong> very<br />

high regression coefficients <strong>of</strong> opposite signs for those 2 variables. The test<br />

for this condition uses the beta coefficient, which is the regression coefficient<br />

that results when each <strong>of</strong> the variables is adjusted to unit variance (it thus<br />

measures the direct degree <strong>of</strong> impact <strong>of</strong> each variable on the regression estimate) .<br />

If any beta coefficient exceeds 1.5 , variables are eliminated from the regression<br />

study until this condition no longer exists. In this manner, a primary cause <strong>of</strong><br />

generating unreasonable quantities is eliminated.<br />

REQUIREMENTS FOR MATHEMATICAL ACCURACY<br />

Experience <strong>with</strong> the use <strong>of</strong> this model for hydrologic data fill-in has<br />

indicated that mathematical accuracy, integrity, and continuity are absolutely<br />

essential in order to avoid unreasonable estimates. Many attempts have been<br />

made to smooth the statistics and correlation coefficients from month to month<br />

throughout the year in order to stabilize the estimates, but these have usually<br />

resulted in mathematical problems that could not be readily overcome. Attempts<br />

have also been made to adjust coefficients <strong>with</strong>in the correlation matrix in such<br />

a manner as to remove inconsistencies and increase stability, but these also<br />

have resulted in erratic computation. It has become apparent that the regression<br />

equation for estimating a missing value must be used exactly as calculated<br />

from the observed or filled-in data.


166<br />

The transform function used for converting flows to normal has also<br />

been a source <strong>of</strong> serious mathematical difficulty. If the data being transformed<br />

are highly skewed, transformed values can become highly erratic, particularly<br />

for small samples. In order to stabilize this transform, hydrologic quantities<br />

whose lower limit is zero are first transformed to logarithms (after adding a<br />

small increment). The size <strong>of</strong> this increment is then adjusted so that the<br />

skew <strong>of</strong> the logarithms does not differ much from zero. Then the approximate<br />

Pearson type III transform function appears to be completely adequate for<br />

transforming the logarithms to normal. However, when the skew coefficient <strong>of</strong><br />

the untransformed values differs from zero by more than a value <strong>of</strong> about 0.5,<br />

very serious transform problems can occur.<br />

V&UE OF DATA FILL-IN<br />

It can be shown that adjustment <strong>of</strong> short-record statistics by use <strong>of</strong><br />

long-record correlated data can result in improvement <strong>of</strong> the accuracy <strong>of</strong> the<br />

mean value in accordance <strong>with</strong> the following equation:<br />

in which<br />

N1 = number <strong>of</strong> items in short record<br />

N2 =<br />

R , =<br />

number <strong>of</strong> items in long record<br />

cross correlation coefficient<br />

N1 = number <strong>of</strong> items that would be needed in the short record to<br />

obtain an accuracy <strong>of</strong> the mean that is equivalent to that<br />

obtainable by the adjustment.<br />

Some values obtained <strong>with</strong> this equation are illustrated in table 2.<br />

In filling in missing values <strong>of</strong> monthly streamflows by correlation <strong>with</strong><br />

long-record stations, correlation coefficients vary from month-to-month, so<br />

there is not a simple relationship that will show how much value is obtained<br />

by extending short records in this manner. However, a group <strong>of</strong> 4 stations having<br />

40 years <strong>of</strong> simultaneous data was used to estimate the increase in reliability <strong>of</strong><br />

average-flow estimates based on 5 years <strong>of</strong> data correlated <strong>with</strong> 40 years <strong>of</strong> data<br />

at near-by locations. The experiment was conducted as follows:


Table 2<br />

Theoretically Equivalent Sample Size<br />

for Computing Equally Reliable Mean Value<br />

167<br />

Correlation Coefficient<br />

Sample<br />

Size .5 .8 .9 .95 .98<br />

Sample Size <strong>of</strong> Related Variable = 40<br />

5 6.4 11.4 17.2 23.8 31.3<br />

10 12.3 19.2 25.5 31 .O 35.8<br />

20 22.9 29.4 33.6 36.4 38.5<br />

40 40 .O 40 .O 40 .O 40 .O 40 .O<br />

Sample Size <strong>of</strong> Related Variable = 100<br />

5 6.6 12.8 21.7 35.1 57.1<br />

10 12.9 23.6 . 36.9 53.3 73.7<br />

20 25 .O 41 .O 56.8 71.9 86.3<br />

40 47.1 64.9 77.8 87.2 94.4<br />

Starting <strong>with</strong> one station, four different 5-year sequences were selected<br />

from the record. For each <strong>of</strong> these, data were filled in for the remaining 35 years.<br />

For each <strong>of</strong> these 5-year sequences, the mean flow for the 5 years and the<br />

mean flow for the 40 years <strong>of</strong> filled in sequence were compared <strong>with</strong> the mean<br />

flow for the 40 years <strong>of</strong> actual record at the station. Standard errors from the<br />

40-year recorded mean were computed.<br />

The ratios <strong>of</strong> the standard error <strong>of</strong> the 40-year filled-in data mean to<br />

the standard error <strong>of</strong> the 5-year data mean are shown in table 3 in the row<br />

designated as obsenred. This process was repeated for each <strong>of</strong> the 4 stations in<br />

order to obtain the 12 observed values <strong>of</strong> table 3.<br />

The expected ratios shown in table 3 were computed as the inverse<br />

ratios <strong>of</strong> the square root <strong>of</strong> effective record lengths computed from equation 2.<br />

The standard-error ratios thus obtained are somewhat larger than expected,<br />

partly due to the fact that the 40-year record mean is not the true long-term<br />

mean and partly due to the variation <strong>of</strong> monthly correlation coefficients from the<br />

correlation coefficients <strong>of</strong> annual flows shown in table 3.


168<br />

Short<br />

Record<br />

Sta tion<br />

1685<br />

Correl coef<br />

Observed<br />

Expected<br />

1675<br />

Correl coef<br />

Observed<br />

Expected<br />

1710<br />

Correl coef<br />

Observed<br />

Expect ed<br />

1730<br />

Correl coef<br />

Observed<br />

Expected<br />

Table 3<br />

Ratios <strong>of</strong> Standard Error <strong>of</strong> Fill-in<br />

Mean to Observed Mean for 5-year Records<br />

Correlated <strong>with</strong> 40-year Records<br />

1685<br />

.97<br />

.75<br />

.42<br />

.82 .79<br />

1 .o9 1 .O3<br />

.65 .68<br />

Long-Record Station<br />

1675 1710<br />

.97 .82<br />

.51 .82<br />

.42 .65<br />

.79<br />

.95<br />

.68<br />

.73 .75 .78<br />

.74 .92 .30<br />

.73 .72 .69<br />

1730<br />

.73<br />

.80<br />

.73<br />

.75<br />

.86<br />

.72<br />

.78<br />

1 .O7<br />

.69<br />

Although the results shown in table 3 are somewhat erratic due to the use<br />

<strong>of</strong> small samples and a small number <strong>of</strong> cases, it is apparent that the fill-in<br />

process described herein is generally valid and that table 2 can be used as a<br />

general guide in determining whether to continue short records or to start records<br />

at new locations where data are also needed. The advantage <strong>of</strong> the monthly fill-<br />

in model over a simple adjustment <strong>of</strong> mean flows is that realistic variations <strong>of</strong><br />

annual streamflow patterns for interrelated stations can be developed for use in<br />

simulation studies.<br />

U<strong>nl</strong>ess correlation coefficients between short-record and long-record values<br />

are well above 0.5, there appears to be very little gain in reliability through<br />

correlation. Where there is good correlation, the gain in reliability that can be<br />

expected through maintaining a short record for a longer period (such as continuing<br />

a 5-year record until it is 10 years long) is a function <strong>of</strong> the length <strong>of</strong> near-by iong-<br />

record stations.


169<br />

Where correlation coefficients are well above .95, short records need<br />

not be continued much beyond 5 years ,but the near-by long record should<br />

be continued as long as greater reliability is needed. Where Correlation<br />

coefficients are much below .8, short records should be continued. Between<br />

these limits, the relative value <strong>of</strong> continuing a short record or starting a new<br />

record depends on the unreliability <strong>of</strong> estimating flows at ungaged locations,<br />

which concerns an area <strong>of</strong> study beyond the scope <strong>of</strong> this paper.<br />

CONCLUSIONS<br />

The stochastic data fill-in model described can be used to estimate<br />

monthly values <strong>of</strong> missing hydrologic data at short-record locations where<br />

longer records exist in the region. The value <strong>of</strong> the fill-in procedure is a<br />

function <strong>of</strong> the correlation between the short-record and long-record data and<br />

the relative lengths <strong>of</strong> record, generally as expressed in equation 2. This<br />

relation, as illustrated in table 2, can be used to determine whether to continue<br />

short records or establish new stations. It appears from table 2 that short<br />

records need not be continued beyond 5 years (u<strong>nl</strong>ess hydrologic conditions<br />

change) where near-by records are continued that correlate at the .95 level<br />

or better. Where the correlation coefficient is below .8, records should generally<br />

be continued. Between these two values, a study <strong>of</strong> regional variations would<br />

be needed to determine the relative advantage <strong>of</strong> continuing existing stations or<br />

starting new ones.<br />

ACKNOWLEDGMENT<br />

The study upon which this paper is based was supported by the Texas<br />

<strong>Water</strong> Development Board. Computation assistance was furnished by R.V.<br />

Juyal and J.W. Barron. Opinions and conclusions expressed are those <strong>of</strong> the<br />

author.<br />

1.<br />

2.<br />

3.<br />

4.<br />

REFERENCES<br />

Beard, Leo R. (1965) Hydrologic Simulation Procedures in <strong>Water</strong> Yield<br />

Analysis, Sixth Congress, International Commission on Irrigation<br />

and Drainage, New Delhi, pp 22.103 - 22.116.<br />

Weiss, Arden O. and Beard, Leo R. (1971) A Multi-Basin Planning<br />

Strategy, <strong>Water</strong> <strong>Resources</strong> Bulletin, Journal <strong>of</strong> the American <strong>Water</strong><br />

<strong>Resources</strong> Association V.7, No.4, pp. 750-764.<br />

Beard, Leo R. (1965) Use <strong>of</strong> Interrelated Records to Simulate<br />

Streamflow, Journal <strong>of</strong> the Hydraulics Division, American Society <strong>of</strong><br />

Civil Engineers, September 1965, pp. 13-22.<br />

Beard, Leo R., Fredrich, Augustine J. and Hawkins, Edward F. (1970)<br />

Estimating Monthly Streamflows <strong>with</strong>in a Region, National <strong>Water</strong> <strong>Resources</strong><br />

Engineering Meeting, American Society <strong>of</strong> Civil Engineers, Preprint 1125.


ABSTRACT<br />

APPLICATION DU KRIGEAGE A L'OPTIMISATION<br />

D'UNE CAMPAGNE PLUVIOMETRIQUE EN ZONE ARIDE<br />

-<br />

J.P. DELHOMME, P. DELFXNER<br />

In arid areas, hydraulic planning must <strong>of</strong>ten be performed in a<br />

few years: install a rain gauge network, strengthen it if necessary and<br />

determine the major features <strong>of</strong> the basin, mai<strong>nl</strong>y the volume <strong>of</strong> precipi-<br />

tation and its geographic distribution. It seems impossible to utilize<br />

the usual elaborate statistical methods because they appeal to time COT<br />

rrelations which can hardly be inferred, Indeed, after an initial pro-<br />

gram <strong>of</strong> precipitation measurements for a basin, data for o<strong>nl</strong>y a sh-ort<br />

time interval are available, and regional climatological statiwn are<br />

commo<strong>nl</strong>y too far removed geograplìically to andd useful ingormqti'on. TO<br />

solve the interpolation problems , o<strong>nl</strong>y the spatial stxuctgre 08 preci-<br />

pitation on the basin itself can 6e considered. Kriging provides the<br />

best linear estimates based on the experimental data, and this under<br />

very few assumption. In particular, it avoids the traditional assump-<br />

tion <strong>of</strong> second order stationarity, used in optimal filtering for exam-<br />

ple, and which is not justified in many cases. Moreover, Kriging per-<br />

mits quantification <strong>of</strong> precision <strong>of</strong> estimation and provides a solution<br />

to the problem <strong>of</strong> optimal location <strong>of</strong> new points <strong>of</strong> measurement, accor<br />

ding to a criterion <strong>of</strong> maximum gain <strong>of</strong> information,<br />

RESUME<br />

Lors d'une étude d'aménagement hydraulique en zone aride, on ne<br />

dispose souvent que de quelques années pour implanter un réseau pluvio-<br />

métrique, le renforcer si besoin est, et cerner les caractéristiques ma<br />

jeures du bassin, principalement le volume d'eau tombé et sa réparti-<br />

tion. Les techniques statistiques élaborées traditionnellement semblent<br />

alors d'un emploi difficile car elles font intervenir des corrélations<br />

temporelles dont l'inférence statistique est quasiment imposible. En<br />

sffet, aprbs une première campagne de relevés pluviométriques sur le b a<br />

ssin, on n'y possède que de tr8s courtes séries chronologiques et les<br />

stations ciimatologiques régionales sont souvent trop élognées géogra-<br />

!hiquement pour apporter une information &ellement valable. Pour trai -<br />

ter les problèmes d'interpolation, on ne peut donc prendre en considéra<br />

tion que la structure spatiale de la pluviométrie. Le Krigeage permet<br />

ie trouver les meilleurs estimateurs linéaires construits sur les va-<br />

leurs expérimentales, et ce, sous des hvpoth8ses tres larges: en parti-<br />

)ulier, l'hypothèse classique de la stationnaritg du second ordre, di-<br />

fficilement admissible dans bien des cas, n'est pas nécessaire. Le Kri-<br />

Ceage permet en outre de quantifier la précision de notre estimation,<br />

?t appoiyte une sol-ution au problème de l'implantation optimale de nou-<br />

reaux points de mesure selon un critère de gain maximal d'information.


17 2<br />

Pour l'hydrogéologue, les précipitations sont non seulement<br />

descriptif du climat, mais aussi, et surtout, l'élément constitutif<br />

du débit des cours d'eau.<br />

A ces deux aspects fondamentaux correspondent deus types<br />

d'approche différents d'une épisode pluvieux. I1 s'agit d'une part<br />

d'estimer en tout point du bassin la hauteur de précipitation pour<br />

avoir une vue d'ensemble de la répartition spatiale de l'averse et<br />

pour en localiser les épicentres, d'autre part, d'intégrer cette<br />

hauteur de précipitation sur toute la surface afin d'evaluer la qua2<br />

tité d'eau tombée sur le bassin durant ce laps de temps.<br />

Dans les deux cas, on ne dispose au départ que des indications ponctuelles<br />

recueillies aux stations pluviométriques. Si 1 'on veut obtenir des évaluations<br />

correctes ã partir de ces données en nombre limité, on doit attacher une<br />

grande importance au choix d'une méthode d'estimation qui soit adaptée aux<br />

buts poursuivis et présente le maximum de fiabilité. Que signifierait une quantité<br />

d'eau calculée avec 100 .d'erreur? Comme dans tout calcul physique, une<br />

valeur numérique n'a de sens F qu'accompagnée d'un intervalle d'incertitude. Si<br />

la précision n'est pas satisfaisante, il conviendra ã 1 'avenir d'installer de<br />

nouveaux pluviomètres. Quelle serait alors leur implantation optiqale? Ces<br />

questions trouvent une réponse satisfaisante dans le cadre de la théorie du<br />

krigeage de G. MATHERON (i), (Z), (3).<br />

I1 n'est pas place ici pour un long exposé théorique que le lecteur<br />

pourra trouver dans les ouvrages de G. MATHERON cités en références.<br />

Aussi a-t-on préféré en montrer une application au cas concret d'une<br />

campagne pluviométrique en zone aride.<br />

PRESENTATION DU CADRE DE L'ETUDE<br />

Les données utilisées ont été empruntées ã une campagne de 1'ORSTOM<br />

dans la région Est du Tchad (4) en 1965-66. Durant la saison dds pluies a lieu<br />

la recharge de nappes souterraines de faible importance qui fournissent 1 'essentiel<br />

des ressources pendant la saison sèche.<br />

Afin d'accroître cette recharge, un projet de construction de barrages<br />

de suralimentation sur certains ouadis a été décidé, les études de reconnaissan-<br />

ce hydrologique devant s 'étendre sur deux années.<br />

On a retenu le cas du bassin de l'ouadi Kadjemeur d'une superficie de<br />

245 km2 et présentant de faibles dénivellées (inférieures ã 100 m.).<br />

Les conditions climatiques sur ce bassin versant sont assez difficiles<br />

?i estimer ã partir des stations climatologiques régionales (Fig.l), du fait de<br />

la rapidité des changements de régime climatique dans la région: en 400 km du<br />

Nord au Sud, on passe du régime sahélien sud d'Abeche au régime saharien de Fada<br />

Les périodes d'observation sont très inégales (Abeche: 31 ans, Guereda: 12 ans,<br />

Iriba: 8'ans, Biltine: 15 ans, Arada: 8 ans, Fada: 32 ans), et les corrélations<br />

d'une station à l'autre ne sont pas satisfaisantes.


173<br />

On ne peut donc prendre en compte que les données recueillies sur le<br />

bassin lui-même, où l'on dispose de 33 points de mesures: 3 pluviographes, 19<br />

pluviomètres association et 11 totalisateurs (Fig.2).<br />

LES BASES CONCEPTUELLES DU KRIGEAGE<br />

Le phénomène étudié est considéré comme une fonction Z associant une<br />

valeur numérique Z(x) à tout point x d'un certain domaine du plan ou de 1 'espace.<br />

On connaît les valeurs prises par Z aux points expérimentaux xl, x2, ...., x<br />

Selon les cas, on cherche ã estimer:<br />

N'<br />

i) la valeur ponctuelle Z(xo) au point xo<br />

2) la valeur moyenne sur un domaine S, soit i Is Z(x)dx<br />

3) la valeur moyenne pondérée de Z, soit:<br />

Z, = j' Z(x)p(x)dx avec p(x)dx = 1<br />

Pour cela, on se'-donne un estimateur Z" de la valeur exacte sous forme<br />

d'une combinaison linéaire des données disponibles:<br />

N<br />

z* =J xi Z(Xi)<br />

1 =1<br />

I1 y a de multiples facons de choisir les coefficients de pondération<br />

xi: tout le problème est de déterminer les meilleurs possibles.<br />

A cet effet, on peut se laisser guider par des considérations physiques.<br />

La qualité de l'estimation doit dépendre de deux facteurs: le nombre et la disposition<br />

spatiale des points de mesure d'une part, la continuité, la régularité<br />

du phénomène étudié, de l'autre.<br />

Pour le premier point, il est clair que l'estimation est d'autant meilleure<br />

qu'il y a plus de données expérimentales. Mais 1 'effectif du réseau de<br />

mesure n'est pas forcément déterminant. Interviennent également la disposition<br />

relative des points expérimentaux entre eux et leur localisation par rapport au<br />

domaine a estimer (point ou surface). Par exemple, pour estimer une quantité<br />

globale sur une région, il est en général préférable d'avoir moins de points mais<br />

disposés de façon uniforme que beaucoup de points agglutinés dans une seule zone.<br />

La conclusion est inverse si 1 'on désire une estimation locale au voisinage précisément<br />

de cette zone la mieux échantillonnée.<br />

Le second point est plus subtil et négligé dans la plupart des métho-<br />

des utilisées actuellement en hydrologie. Une fonction s'interpole d'autant<br />

mieux qu'elle est plus régulière. S'agissant par exemple d'estimer une valeur<br />

ponctuelle Z(xo), il n'y a aucune raison d'utiliser la même formule d'interpola-<br />

tion quand on travaille sur des pluies annuelles ou des pluies journalières.<br />

Dans un cas la valeur au point x diffère peu de celles des points voisins, dans<br />

1 'autre, le phénomène est plus ctaotique et les points lointains apportent une<br />

information non négligeable.


174<br />

Comment tenir compte de la régularité de la variable?<br />

Les méthodes fonctionnelles de 1 'analyse mathématique ordinaire ne sont<br />

guère utilisables pour les fonctions traduisant un phénomène naturel. Celles-ci<br />

ont un comportement spatial bien trop complexe, trop erratique pour se laisser<br />

décrire ii 1 'aide d'expressions analytiques classiques. Pour souligner cette particularité,<br />

G. MATHERON (1) propose de donner a de telles fonctions le nom de<br />

"vari ables régionalisées".<br />

Une façon commode ii la fois sur le plan conceptuel et pratique de traiter<br />

une variable régioiiziisée est de raisonner en termes probabilistes. On<br />

considère la variable régionalisée comme une "réalisation de fonction aléatoire",<br />

c'est ii dire comme le résultat d'un tirage au sort dans un ensemble de fonctions.<br />

Pour préciser cette idée, supposons qu'on range dans un même groupe un ensemble<br />

d'averses analogues, autrement dit, un ensemble de fonctions Zi(X) associant à<br />

chaque point x la hauteur de précipitation en ce point. La fonction aléatoire<br />

Z est telle que pour tout indice i et tout point x du domaine:<br />

z(x,i) = z.(x)<br />

1<br />

Au tirage au sort de l'indice i de l'averse correspond la fonction numérique or-<br />

dinaire Zi(X), c'est ii dire une réalisation de la fonction aléatoire Z. Ainsi<br />

sont fixées du même coup les valeurs prises par la fonction en tous les points<br />

de son domaine de définition, expérimentaux ou non.<br />

Dans le cadre de cette hypothèse, les notions statistiques telles que<br />

moyenne, vari ance , covari ance ou auto-corrél ati on prennent un sens précis.<br />

E le symbole "espérance mathématique", on a:<br />

Soit<br />

E CZ(x)l = m(x) moyenne<br />

E [Z(X)-m(x)]* = D2 [Z(X)]<br />

vari ance<br />

E [Z(x)-m(x)] [Z(y)-m(y)] = K(x,y) covariance<br />

K(X,Y)/=) .JK(y,y) = P(X,Y) auto-corrélation<br />

On voit que p(x,y) se déduit directement de K(x,y), la réciproque étant fausse.<br />

On utilisera donc plutôt K(x,y) qui contient plus d'information.<br />

Pour procéder valablement à 1 'inférence statistique de la moyenne et<br />

de la covariance aux différents points de l'espace, il faut disposer de chroni-<br />

ques suffisantes. Lorsque ce n'est pas le cas, come dans l'exemple de Kadjemeur,<br />

des hypothèses supplémentai res sont nécessaires. Les méthodes optimales du type<br />

de celle du filtrage de WIENER (5), introduite en météorologie par L.S. GANDIN<br />

(6) se placent dans 1 'hypothèse où la variable est "stationnaire d'ordre 2": la<br />

moyenne m(x) est constante et la covariance ne dépend pas séparément des points<br />

d'appui x et y, mais uniquement du vecteur x-y:<br />

E [~(x)] = m<br />

E [Z(x)-m] [Z(Y)-~] = K(x-Y)


175<br />

Ces hypothèses peuvent être trop restrictives. On sait par exemple que<br />

les précipitations sont plus abondantes en altitude qu'en plaine. Par conséquent,<br />

dans le cas général d'une région à relief varié, leur moyenne m(x) présente une<br />

"dérive" et ne peut être considérée comme constante. Par ailleurs, il apparaît<br />

que les calculs d'optimisation n'exigent pas que la variable elle-même, mais<br />

uniquement ses accroissements y possède une covari ance stationnai re.<br />

Ceci étant, les hypothèses du krigeage sont 1 es sui vantes :<br />

1) m(x) n'est pas forcément constante, mais est suffisamment régulière<br />

pour être représentée par une expression de la forme:<br />

k<br />

m(x) = 1 a, f'(x)<br />

1<br />

1 =o<br />

Les fonctions f fxì sont choisies à 1 'avance foolvnomes. fonctions<br />

trigonométriques; etc.. .) ; les al sont des cÒef~cienG inconnus<br />

Une telle formulation englobe le cas le plus simple où la moyenne<br />

est constante. La "dérive" m(x) se réduit alors à:<br />

O<br />

m(x) = ao f (x)= ao<br />

fo(x) étant la fonction identiquemint égale à 1.<br />

O<br />

On supposera toujours que f 1, car cela implique que l'erreur<br />

d'estimation Z-Z* est une combinaison linéaire d'accroissements<br />

de Z(x)<br />

2) Seconde hypothèse: 1 a variance des accroissements Z( x+h) -Z( x)<br />

ne dépend que du vecteur h. On pose:<br />

y(h) = i D2 [Z(x+h)-Z(x)]<br />

~ ( h ) est le vario ramme. Cette fonction du vecteur h renseigne<br />

sur 1 'isotropie +<br />

ou anisotropie de la variable régionalisée.<br />

A direction fixée, elle indique comment varie, en moyenne quadratique<br />

l'écart de valeurs prises en deux points x et x+h<br />

lorsque la distance h augmente. A une variable très régulière<br />

correspond un variogramme très continu, et inversement.<br />

Ces bases définies, il est possible de résoudre tour à tour les différents<br />

problèmes posés.<br />

KRIGEAGE DES ISOHYETES<br />

Soit Z(x) la hauteur de précipitation tombée sur un territoire pour une<br />

période déterminée. Afin d'estimer la valeur ponctuelle Z(x,) , on cherche parmi<br />

les estimateurs linéaires construits sur les données expérimentales z*=xhiZ(xi)<br />

celui qui minimise 1 'erreur quadratique moyenne E[Z*-Z(xo)]2. Or: 1<br />

2<br />

E [Zf-Z(x0)] = D2 [Z*-Z(x0)] + [E[Z'-Z(x0)]]'


176<br />

Le premier terme D2 [Zf-Z(xo)] est la variance de l'erreur.<br />

fonction du variogrannne:<br />

Elle s'explicite en<br />

D2 rhiZ(xi)-Z(x0)] = - 1 1 h-X.y(xi-x.) t 2 1 hiy(xi-xo)<br />

ij 1 J J<br />

i<br />

Le second terme [E[Z*-Z xQ)]I2 est le carré de l'erreur moyenne.<br />

moyenne représente un biais et il faut donc l'annuler.<br />

E [fc-z(x0)] = E<br />

D'après les hypothèses faites sur la dérive:<br />

d'où:<br />

Si l'on pose:<br />

m(xi) = 1 alf 1 (xi) et rn(xo) = 1 alf 1 (x,)<br />

1 1<br />

E [z*-z(xO)l = c al<br />

1<br />

'if 1 (xi) - f'(xO)]<br />

1 1<br />

1 hif (xi) = f (x,)<br />

1<br />

bc 1 = O, 1, ...., k<br />

Cette erreur<br />

him(xi) - m(xo<br />

l'erreur moyenne sera nulle quels que soient les coefficients a qu'il ne sera<br />

1<br />

pas nécessaire de connaître.<br />

Minimisant 1 'erreur quadratique moyenne sous ces k+l conditions, on<br />

obtient le système de krigeage où figurent ktl paramètres de Lagrange ul:<br />

(SI)<br />

1<br />

1 h.y(xi-x.) t 1 ulf (xi) = y(xi-xo)<br />

j J J 1<br />

1 hjf<br />

1<br />

(Xj) = f<br />

1<br />

(x )<br />

O<br />

j<br />

(i=l, ..., N)<br />

(l=O,l,. ..,k)<br />

Ce système est régulier, donc admet une solution unique, pourvu que<br />

les f (xi) soient linéairement indépendants sur 1 'ensemble des points expérimen-<br />

taux (cf.(l) ou (2)).<br />

A l'optimum, la variance d'estimation a pour expression:<br />

D2[Z*-Z(Xo)] = 1 Xjy(x.-x ) t 1 plf 1 (x,)<br />

j 1<br />

On remarque que cette variance ne dépend que du variogramme et des<br />

solutions hi et pl du système de krigeage, c'est à dire uniquement de la struc-<br />

ture du phénomène et de la disposition des points de mesure.


177<br />

L'exemple qui a été retenu est celui de 1 'averse du 6/8/66, la plus<br />

importante de l'année. I1 a été traité sur ordinateur à l'aide du programme<br />

BLUEPACK mis au point à Fontainebleau(79,Le bassin de 1 'ouadi Kadjemeur ne présentant<br />

pas un relief très marqué, la pluviométrie n'y possède pas de dérive systématique.<br />

On a donc pris pour seule fonction de base fo 5 1.<br />

Le variogramme est linéaire avec une discontinuité à 1 'origine.<br />

O pour h = o<br />

ríh) =<br />

en mm2. 20.4 t 11.23 h pour h # O en km<br />

I1 a été d'it plus haut que le variogramme est d'autant plus continu que<br />

la variable est plus régulière.<br />

La discontinuité à l'origine du y(h) traduit une irrégularité à petite<br />

échelle. Ce phénomène a été observé depuis longtemps par les hydrométéorologues<br />

qui 1 'expliquent par les perturbations locales, l'instabilité du mouvement de<br />

l'air au voisinage du sol et l'arrivée de la pluie sur le pluviomètre par rafales<br />

irrégulières. A la limite, si on connaissait parfaitement les hauteurs d'eau en<br />

tout point, il serait probablement impossible d'en tracer la carte, les fluctua-<br />

tions locales interdisant tout tracé continu.<br />

Prise entre la fidélité aux valeurs expérimentales et la nécessité de<br />

dégager des grands traits représentatifs du phénomène, la cartographie manuelle<br />

exige en permanence des choix plus ou moins arbitraires. Ainsi sur 1 'averse du<br />

6 Août (Fig.4), il n'a été tenu aucun compte de la hauteur 27.6 mm mesurée au<br />

pluviometre n"26, alors que les cotes extrêmales 55.5 et 54.5 mm ont été scrupu-<br />

leusement respectées.<br />

Le krigeage, pour sa part, accorde aux valeurs expérimentales une importance<br />

directement 1 iée au degré de structuration du phénomène.<br />

La carte de la Fig.3 a été obtenue après estimation par krigeage aux<br />

noeuds d'une grille régulière.Le pluviomètre n"29 (OU la hauteur mesurée est de<br />

55.5 mm) n'a ainsi contribué que pour environ 63% dans 1 'estimation du point de<br />

grille le plus proche. L'influence, non négligeable, des autres stations a ramené<br />

ce point de grille à une valeur de 48.7 mm.<br />

A cette estimation est attaché un écart-type de l'ordre de 6.25 mm, ce<br />

qui rend cette valeur parfaitement compatible avec la valeur expérimentale voisine.<br />

Sur 1 'ensemble du bassin, les écarts-types d'estimation sont compris entre 5.5<br />

et 14 mn, la zone la plus mal connue étant bien entendu la partie Sud-Est.<br />

ESTIMATION DE LA LAME D'EAU MOYENNE SUR UN BASSIN<br />

A l'heure actuelle, trois méthodes sont utilisées: le planimétrage<br />

des cartes tracées manuellement, la moyenne arithmétique simple, la méthode des<br />

polygones de THIESSEN.


178<br />

La précision de la première méthode est directement liée à la qualité du<br />

tracé de la carte. Mais elle dépend aussi du soin de l'opérateur: de l'attention<br />

qu'il a portée au comptage des carreaux du papier mi1limétré.o~ à éviter les a-<br />

coups dans le maniement du planimètre.<br />

La moyenne arithmétique est le procédé de calcul le plus simple, pour ne<br />

pas dire le plus simpliste. Soit Q la quantité totale d'eau qui s'est abattue<br />

sur le bassin be surface S. Si Z(x) est la hauteur d'eau au point x, la hauteur<br />

d'eau moyenne Z a pour expression:<br />

7 = Q/S soit 2 = i Is Z(x)dx<br />

Faire une moyenne arithmétique simple sur les Z(x):<br />

c'est perdre de vue que seules les-quantités d'eau sont additives, et non les<br />

hauteurs. Pour qu'une telle moyenne ait un sens, il faudrait que tous les pluvio-<br />

mètres soient équivalents, qu'ils représentent en quelque sorte chacun l/Nième du<br />

bassin ,<br />

Les polygones de THIESSEN (8) procèdent d'une analyse physique plus<br />

sérieuse. Ils reposent sur 1 'hypothèse qu'une station est représentative de 1 'ensemble<br />

des points du bassin pour lesquels elle est la station la plus proche -<br />

voir Fig.2. L'idée de base est en fait plus générale et ne repose pas réellement<br />

sur la forme géométrique des polygones. Soit en effet une partition quelconque<br />

du bassin en "zones d'influence'' de surface Si:<br />

s = s, + s, i- .... t SN<br />

Dire que la valeur expérimentale Z(xi) est représentative de la zone Si, c'est<br />

poser:<br />

L'estimation de la quantité d<br />

Q' =<br />

et la lame d'eau moyenne a pour valeur:<br />

eau totale est alors:<br />

Sur le plan formel, 1 'estimateur 2* n'est autre qu'une moyenne pondérée des Z(xi).<br />

Ce qui importe en vérité, ce sont les poids Si/S et non la géométrie des zones<br />

d ' i n f 1 uence .<br />

On est ainsi tout naturellement amené à rechercher les poids Xi qui<br />

opti mi sent 1 'es ti mateur :<br />

t*= 1 Xi Z(Xi)<br />

1


179<br />

En procédant de façon analogue au cas du krigeage ponctuel, on montre que les hi<br />

sont solutions du système:<br />

Comme on choisit toujours pour fo(x) la fonctior constante identiquement<br />

égale 5 1, la première des conditions sur les fonctions f (pour 1=0) s'écrit<br />

si mpl emen t :<br />

I:xj=l<br />

j<br />

La variance d'estimation a pour expression, 5 1 'optimum:<br />

De même que pour le krigeage ponctuel, cette variance ne dépend que de<br />

la structure de la variable et de la configuration des points expérimentaux. Par<br />

conséquent, si le variogramme est connu, on peut calculer la variance d'estimation<br />

sans avoir besoin de la valeur des hauteurs d'eau. C'est cette propriété remarquable<br />

qu'on utilisera pour localiser un nouveau point de mesure par la "méthode<br />

du point fictif".<br />

Sur l'ouadi Kadjemeur, les calculs ont été effectués pour les 13 épisodes<br />

pluvieux de 1966. Vu le faible nombre de points de mesure, il était difficile<br />

de procéder 5 1 'inférence statistique du variogramme averse par averse, d'autant<br />

plus que parfois certaines données étaient manquantes. Prendre brutalement<br />

le variogramme moyen sur l'ensemble des averses eut été faire violence à la nature<br />

car ces averses diffèrent par leur intensité et leur dispersion. Une hypothèse<br />

plus raisonnable a été d'admettre que les variogrammes des épisodes pluvieux<br />

sont proportionnels:<br />

Yk(h) = Wk<br />

oùyk(h) est le variogramme de la kième averse, y(h) le variogramme moyen et Wk<br />

le coefficient de proportionnalité. Cette relation équivaut 5 admettre qu'il y<br />

a conservation des corrélations spatiales sur le bassin. En notant s la variance<br />

expérimentale des hauteurs d'eau de la kiëme averse et 3 la moyenne !es sz, il<br />

en résulte que:<br />

Ok = s;/s;T<br />

-<br />

,


TABLEAU I<br />

xi (en a)<br />

Thiessen (9)<br />

averse<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

effectif<br />

21<br />

28<br />

33<br />

33<br />

33<br />

33<br />

33<br />

33<br />

33<br />

33<br />

33<br />

31<br />

17<br />

moyenne<br />

mm<br />

13.81<br />

34.69<br />

5.34<br />

38.25<br />

1.06<br />

2.33<br />

21.81<br />

4.47<br />

32.29<br />

O .58<br />

O .40<br />

22.35<br />

6.35<br />

1.0 1.0 0.Y 1.2 1.1 1.b 1.1 5.3 3.3 5.U U.6<br />

1.1 1.1 0.8 1.1 1.5 1.5 8.3 3.4 3.8 2.1 1.1<br />

mm2<br />

19.58<br />

64.20<br />

31.90<br />

73.39<br />

1.31<br />

10.96<br />

225.61<br />

82.86<br />

152.21<br />

1.08<br />

1.13<br />

46.46<br />

45.75<br />

o .34<br />

1.10<br />

0.55<br />

1.26<br />

o .o2<br />

0.19<br />

3.88<br />

1.42<br />

2.62<br />

o .o2<br />

o .o2<br />

O .80<br />

O .79


181<br />

On constate une similitude assez nette qui justifierait a posteriori<br />

l'intuition de THIESSEN.<br />

De façon à permettre une comparaison plus complète des différentes méthodes<br />

évoquées, on a porté sur un même graphique (Fig.6) les évaluations des lames<br />

d'eau pour les 13 averses, par moyenne arithmétique, par planimétrage, par<br />

THIESSEN et par krigeage. De part et d'autre de la bissectrice des axes,sur<br />

laquelle figure la valeur krigée, on a indiqué la fourchette à 2 écarts-types.<br />

I1 ressort que trois méthodes donnent des résultats à peu pres équivalents.<br />

Seule la moyenne arithmétique se singularise, en particulier sur les<br />

averses du 9 Août, du 13 au 14 Septembre, du 11 Août et du 23 Juillet, où les<br />

valeurs estimées se situent en dehors de la fourchette pourtant très large de 4<br />

écarts-types. Avec la moyenne arithmétique, tous les pluviomètres ont même importance;<br />

le réseau étant plus fourni à l'Ouest, il y a systématiquement sousestimation<br />

ou sur-estimation de la lame d'eau selon que 1 'épicentre des averses<br />

se situe à l'Est ou à 1 'Ouest.<br />

Que retenir de ces comparaisons?<br />

Une fois écartée la moyenne arithmétique, il semblerait,du moins sur<br />

l'exemple traité, que l'avantage du krigeage ne soit pas très net. Pourtant,<br />

c'est la seule méthode autour de laquelle a pu s'articuler la comparaison, grâce<br />

au calcul d'erreur. En outre, les auteurs ont pu remarquer que la méthode de<br />

THIESSEN, et dans une moindre mesure le planimétrage, s'avèrent en pratique longs<br />

et fastidieux. Le krigeage quant à lui ne nécessite que l'investissement d'un<br />

programme.<br />

OPTIMISATION DU RENFORCEMENT D'UN RESEAU PLUVIOMETRIQUE<br />

Remarquons tout de suite que cette question n'a de sens que si le but<br />

poursui vi a été cl ai rement défi ni .<br />

Dans le cas d'une reconnaissance en vue d'un aménagement hydraulique,<br />

1 'hydrologue a pour objectif l'étude de la relation pluie-débit: il s'intéresse<br />

donc en premier lieu à la quantité d'eau tombée journellement sur le bassin.<br />

La variance d'estimation par krigeage a permis de donner la fourchette d'incertitude<br />

avec laquelle cette quantité peut être calculée. Elle fournit donc tout<br />

naturellement 1 'indicateur de précision nécessaire pour:<br />

1) décider de 1 'opportunité de renforcer le réseau,<br />

2) déterminer 1 'emplacement optimal d'un éventuel pluviomètre<br />

suppl émentai re.<br />

Pour ce faire, on utilisera la méthode du point fictif. A la question<br />

"comment implanter au mieux un nouveau point de mesure" peuvent être attachées<br />

certaines contraintes. Si ce choix ne se pose que parmi un certain nombre de<br />

points présélectionnés selon un autre critère (accès facile, relevé aisé,. . .),<br />

on implantera fictivement un pluviomètre en chacun d'eux et on déterminera le<br />

gain dn précision correspondant.


182<br />

On procedera de même le long d'un cheminement si 1 'on a décidé a priori de .retenir<br />

une ligne caractéristique du terrain (piste d'accès, accident de terrain,. ..).<br />

Quand au contraire, 1 'on ne possêde aucun a priori , on tracera, toujours<br />

de la même manière, une carte d'isogain en précision sur l'estimation de<br />

la lame d'eau. C'est la solution qui a été adoptée pour l'étude du cas de<br />

1 'ouadi Kadjemeur.<br />

LOCALISATION OPTIMALE D'UN PLUVIOMETRE SUPPLEMENTAIRE<br />

Soit U; la variance d'estimation ã partir des 33 pluviomètres existants,<br />

de la hauteur d'eau tombée en moyenne sur le bassin pendant une averse.<br />

Si on implante fictivement un nouveau pluviomètre en un point M, cette<br />

variance d'estimation prend une nouvelle valeur U ~M) < U:. Le gain en précision<br />

peut être défini comme:<br />

G(M) =<br />

uO<br />

Si 1 'on ne tenait aucun compte de 1 'existence de corrélations spatiales, on donnerait<br />

comme gain correspondant à un 34e point de mesure: 1/34 -3%. Quant à la<br />

localisation, elle serait indifférente à 1 'intérieur du bassin.<br />

Considérant un domaines, le krigeage permet de déterminer le point M<br />

où ce gain est maximal.<br />

Pour Kadjemeur, le domaine retenu a été choisi de sorte qu'il englobe<br />

le bassin et ses abords immédiats. Le lecteur est invité à se reporter à la<br />

Fig.7 pour voir où il aurait lui-même implanté une nouvelle mesure.<br />

I1 suffit de comparer les Fig.7 et 8 pour constater que sur de nombreux<br />

points, "1 'intuition" était insuffisante pour appréhender le problême d'une mani-<br />

ère globale.<br />

Le gain maximum est de 13% au 'lieu des 3% donnés par une analyse sommaire.<br />

L'optimum absolu est situé en bordure du bassin, alors qu'au centre, une<br />

grande zone est dépourvue de point de mesure.<br />

Pourtant si l'on revient aux coefficients du krigeage ou ã ceux de<br />

THIESSEN, force est de constater que ces résultats vont dans le sens d'un<br />

"soulagement" des pluviomêtres de poids les plus élevés: on tend vers une égalisation<br />

de la contribution des différentes stations, ce qui satisfait le sens<br />

physique de 1 'hydrologue.<br />

Enfin, l'examen de la carte isogain (Fig.8) sur l'ensemble du domaine<br />

est três instructif par lui-même. I1 apparaît qu'il vaut mieux implanter judicieusement<br />

un pluviomètre à l'extérieur du bassin plutôt que d'une manière<br />

redondante ã 1 'intérieur.


CONCLUSION<br />

183<br />

Dans une zone aride mal reconnue, 1 ' hydrométéorol ogue ne di spose pas<br />

de longues chroniques aux stations régionales; il se voit contraint de n'utiliser<br />

que les données qu'il a pu recueillir pendant une ou deux campagnes<br />

annuelles, pour calculer les lames d'eau sur son bassin versant.<br />

Formalisant et généralisant la méthode des coefficients de THIESSEN, le<br />

krigeage a permis, en fonction d'un objectif précis - estimation locale ou glo-<br />

bale - de trouver les poids optimaux ii affecter aux différents pluviomètres.<br />

Un intervalle de confiance a été associé à chaque estimation.<br />

Aussi le krigeage a-t-il permis de poser en termes de gain de précision<br />

le problème du renforcement d'un réseau: il donne objectivement le meilleur<br />

endroit pour implanter un pluviomètre supplémentaire et la nouvelle précision avec<br />

laquelle pourra être estimée la grandeur étudiée.<br />

La méthode présentée est d'un emploi très souple: le coût d'implantation<br />

peut varier selon 1 'emplacement, le bassin peut également être découpé en<br />

sous-bassins d'importance différente pour 1 'écoulement.


184<br />

BIBLIOGRAPHIE<br />

Matheron, G. (1965). Les variables régionalisées et leur estimation,<br />

Paris, Masson et Cie<br />

Matheron, G. (1969). Le krigeage universel, Fontainebleau, Cahiers du<br />

Centre de Morphologie Mathématique , Fasc .1<br />

Matheron, G. (1970). La théorie des variables régionalisées et ses applications,<br />

Fontainebleau, Cahiers du Centre de Morphologie Mathématique,<br />

Fasc .5<br />

Roche, M.A. (1968). Ecoulement de surface, alimentation de nappe et<br />

transport sol ide des ouadis Fera, Kadjemeur et S<strong>of</strong>oya, Fort-Lamy, ORSTOM<br />

Wiener, N. (1966). Extrapolation, interpolation and smoothing <strong>of</strong> stationnary<br />

time series, Cambridge, Mass., M.I.T. Press<br />

Gandin, L.S. (1963). Objective analysis <strong>of</strong> meteorological fields, Leningra<br />

Israël program for scientific translation<br />

Delfiner, P., Delhomme, J.P. (1973). Présentation du programme BLUEPACK,<br />

Fontainebleau, Ecole des Mines de Paris, note interne<br />

Thiessen, A.H. (1911). Precipitation averages for large areas, Monthly<br />

Weather Rev. , vol. 39, n07, p. 1082<br />

Del finer, P. (1968). Cartographie et morphologie des précipitations<br />

considérées comme variables régionalisées , Université de Grenoble<br />

(10) Delhomme, J.P. (1970). Présentation d'une méthode objective d'interpolatio<br />

pour la construction de cartes isopiézométriques , Douai , Communication au<br />

Groupe d'Etude de Bassins Versants Souterrains<br />

(11) Delhomme, J .P. (1971). Traitement géostatistique des données piézométrique<br />

le krigeage en hydrogéologie, Fontainebleau, Recyclage en hydrogéologie<br />

mathématique<br />

(12) Delfiner, P. (1973). Analyse du géopotentiel et du vent géostrophique par<br />

krigeage universel, Paris, Note EERM - Météorologie Nationale


Fig.1 - Situation du B.V de l'ouadi Kadjemeur<br />

185


186<br />

Fig.3- Carte obtenue par krigeage


2<br />

mm<br />

4<br />

100<br />

o 1 5 10<br />

c<br />

km<br />

Fig.5 -Variogramme moyen bp~vt~da~n&


188<br />

I<br />

Fig.6- Comparai.mi dei différ-iites méthodes d'estirnaticin globale


189


P<br />

..


IMPROVEMENT OF RUNOFF RECORDS IN SMALLER WATERSHEDS BASED ON<br />

ABSTRACT<br />

PERMEABILITY OF THE GEOLOGICAL SUBSURFACE<br />

Dr. George J. Halasi-Kun<br />

Chairman, Columbia University Seminars<br />

on Pollution and <strong>Water</strong> <strong>Resources</strong>, New York, USA<br />

In smaller watersheds <strong>with</strong> an area less than 250 km2, the recorded<br />

hydrologic data are scarce or non-existent because, Correlating<br />

the extreme run<strong>of</strong>f data <strong>with</strong> the characteristic permeability <strong>of</strong><br />

the different geological formations can not o<strong>nl</strong>y improve the va-<br />

rious methods for simulation or interpretation <strong>of</strong> hydrologic in-<br />

formation from other areas but also provides additional improve-<br />

ment in hydrological data gathering. An accoynt is given about<br />

tentative average values in millidarcys for permeability <strong>of</strong> diffe-<br />

rent geological formations based on selected bibliography and<br />

previous experience. Further correlation <strong>of</strong> peak run<strong>of</strong>fs in Central<br />

Europe and in the Northeastern coastal area <strong>of</strong> the United States<br />

<strong>with</strong> their specific geological subsurface is discussed.<br />

Finally, it is pointed out that the geological subsurface as a<br />

characteristic <strong>of</strong> the peak run<strong>of</strong>f does not apply at ail for water-<br />

sheds <strong>with</strong> an area over 300 km2. Similar but less clearly defined<br />

correlation can be found between the lowest run<strong>of</strong>f and the storage<br />

capacity <strong>of</strong> the geological formations.<br />

RESUME<br />

Dans les petits bassins, de surface infgrieure à 250 km2, les<br />

données hydrologiques enregistrdes sont rares ou <strong>nl</strong>existent %as.<br />

L'étude des corrélations entre les mesures d'écoulement extremes<br />

et la perméabilité caractéristique des différentes formations géo-<br />

logiques peut améliorer les diverses méthodes de simulation ou<br />

d'interprétation des reqseignements hydrologiques provenant<br />

d'autres régions, ainsi que le rassemblement des donnees h.flrologi-<br />

ques. On a essayé de donner des valeurs moyennes de perméabilité,<br />

en l'millidarcyt', pour différentes formations géologiques en se<br />

basant sur une bibliographie sélectionnée et sur l'expérience anté-<br />

rieure. D'autres corr&latio?s, entre les écoulements de pointe en<br />

Europe Centrale et sur la Cote Nord-Est des Etats-Unis, et leurs<br />

sous-sols géologiques, sont aussi discutée:. Enfin on montre que,<br />

pour des bassins d'une surface supérieure a 300 km', la structure<br />

géologique souterraine ne constitue pas du tout une caractgristique<br />

des écoulements de pointe. Des corrélations analogues, mais moi'ns<br />

clairement définies, peuvent se rencontrer entre les écoulements<br />

minimaux et la capacitd de stockage des formati'ons g@ologiques,


192<br />

(1) INTRODUCTION<br />

fi<br />

In smaller watersheds <strong>with</strong> an area less than 250 lan", the recorded<br />

hydrologic data is scarce. Generally, no data for longer<br />

period is at hand, when the area is planned for development. In<br />

accordance <strong>with</strong> various studies conducted in moderate climatic<br />

conditions in Central lcurope and in the Northeastern United States<br />

<strong>of</strong> !\merica, it seems that the peak run<strong>of</strong>f values <strong>of</strong> these drainage<br />

basins are highly dependent on the geologic subsurface where the<br />

permeability <strong>of</strong> the rock formations providesthe ground water storage,<br />

or their impervious surface preconditions the extent <strong>of</strong> the<br />

lake and swamp areas <strong>of</strong> the region cl]. Both these characteristicr<br />

directly influence the drainage density in the areas <strong>with</strong> different<br />

permeability faotor <strong>of</strong> the geological formations [2], as can<br />

be demonstrated, for instance, by the hydrographioal map <strong>of</strong> Southweet<br />

Germany from the Upper-Danube region [Figure 1).<br />

Another claeeio example can be the river training and flood<br />

control program <strong>of</strong> 1840-1950 in the Carpathian Basin in Central<br />

Europe where -- even in a large watershed like the Danube at<br />

Orshova, Romania (576,240 km- area <strong>of</strong> drainage basin <strong>with</strong> a yearly<br />

average rainfall <strong>of</strong> 900 mm) -- the diminishing <strong>of</strong> lake and swamp<br />

area by extensive drainage and flood control, the maximuin annual<br />

flood increased by 15~6 in the observed 110 year period (Figure 2)<br />

while the lake and swamp area decreased from llo7 to 3% <strong>of</strong> the<br />

watershed. In the Carpathian Basin (318,030 1ans <strong>of</strong> the Danube<br />

drainage basin related to the observation station Orshova, Romania)<br />

39,000 km2 agricultural land was reclaimed in the flood and<br />

marshland region. (Figure 3 shows the reclaimed area for the 110<br />

year period including the two lakes <strong>of</strong> that basin.)<br />

A similar effect on peak run<strong>of</strong>f was observed in the State <strong>of</strong><br />

New Jersey, U.S.A. in a territory <strong>of</strong> 20,295 h2, This obse ation<br />

is bas d on 67 gaging stations for watershed <strong>of</strong> from 25.6 2 to<br />

512 Inn 8 <strong>with</strong> an average yearly rainfall 1125 mm (Figure 4: Adjustment<br />

factor for effect <strong>of</strong> lakes and swamps on peak run<strong>of</strong>f in New<br />

Jersey 1897-1972 compared <strong>with</strong> data developed from the Danubian<br />

basin at gaging station Orshova, Romania 1840-1950).<br />

(2) hhXDdtma SURFACE FLOW<br />

Researohes conducted in the pa t decades concerned maximum<br />

flow in watersheds <strong>with</strong> area 250 km' or less, where the geological<br />

conditions, topographic characteristics and rock formations permit<br />

an evaluation <strong>of</strong> peak rates <strong>of</strong> run<strong>of</strong>f from smaller watersheds.<br />

Such research revealed a Olear influence <strong>of</strong> these factors on the<br />

peak run<strong>of</strong>f. In accordance <strong>with</strong> the findings abroad (in Central<br />

Europe in an area <strong>of</strong> 49,008 h a) 13) and in the Northeastern Uni-


193<br />

ted States (in an area <strong>of</strong> 20,295 km2) [23 the correlation <strong>of</strong> the<br />

100 year peak flow <strong>with</strong> the geologic subsurface, the topographic<br />

conditions (slopes) and the size <strong>of</strong> the watershed can be put in<br />

the following equation:<br />

Q = C.A-e, where<br />

Q = 100 year peak run<strong>of</strong>f value in m3fsec.km2<br />

A = area <strong>of</strong> watershed in km2<br />

C = coefficient depending on the geological subsurface <strong>with</strong> value:<br />

In Central Europe [3] for 100-125 mm/day point rainfall<br />

intensity and 15 km by 50 km recorded storm patternfrom<br />

1 to 10.2 (Figure 51<br />

In Northeastern United States <strong>of</strong> Amerlca [I] for 2OQ-250<br />

mm/day point rainfall intensity and 30 km by I05 km<br />

recorded storm pattern -<br />

from 7.3 to 147 (Table 1)<br />

e = exponent <strong>of</strong> the watershed area depending on the topographic<br />

character <strong>of</strong> the watershed (0.35 -plains; 0.37- slightly<br />

hilly plains; 0.44-0.46 -steeper hills and moderate mountains;<br />

0.50 - Alpine type mountains).<br />

Analyzing the figures <strong>of</strong> the geological run<strong>of</strong>f coefficient,,<br />

the result seems to be identical in both areas studied, if we<br />

assume that the point rainfall intensity and the size <strong>of</strong> recorded<br />

storm pattern have a direct influence on the peak run<strong>of</strong>f (Figure<br />

5). Furthermore the vegetative cover showed a 2 5% effect on the<br />

peak flood. Similar influence was observed concerning the form <strong>of</strong><br />

watershed Ct5% for fan-shaped and -30% elongated form <strong>of</strong> drainage<br />

basin). Urbanization alters the geological character <strong>of</strong> the surface<br />

and has a direct relation in increasing the surface peak flows<br />

41 *<br />

(3 1<br />

GROUND WATER STORAGE CAPACITY<br />

It is obvious that the rate <strong>of</strong> surface run<strong>of</strong>f must be related<br />

in an inverse way to the permeability <strong>of</strong> the geological subsurface<br />

<strong>of</strong> the watershed; and the quality and quantity <strong>of</strong> ground water<br />

storage is directly dependent on these condltlons. Based on over<br />

70,ûOû well-record files <strong>of</strong> domestic and industrial wells through-<br />

out the State <strong>of</strong> New Jersey, U.S.A.<br />

(area 20,295 km22 for the<br />

period 1947-1972, the ground water availability in rock formations<br />

from Precambrian thorough Triassic in age and from unconsolidated<br />

sediments from the Cretaceous to the present, can be estimated.<br />

Comparison <strong>of</strong> large statlstical samples <strong>of</strong> well-records i’n the<br />

rock formations to a depth <strong>of</strong> as much as 550 m has provided a means<br />

<strong>of</strong> estimating the ground water potential <strong>of</strong> areas underlain by


194<br />

specific rock types [5, 6, 7, 81. Several <strong>of</strong> these estimates <strong>of</strong><br />

ground water availability have been tested against the experience<br />

in areas <strong>of</strong> suburban development during times <strong>of</strong> drought 1961-1966.<br />

There us sufficient consistency in the results to indicate that<br />

underlying rock and sediment types may be determined from well<br />

data where they are otherwise concealed by soil and overburden.<br />

The gathered statistical data on ground water availability<br />

in New Jersey is based al60 on pumping tests and records <strong>of</strong> the<br />

wells, and their figures can be accepted on the assumption <strong>of</strong> an<br />

average yearly rainfall 1125 mm -- which can drop for two consecu-<br />

tive years <strong>of</strong>' drought to 850 mm. Ground water is available in the<br />

northern half (rock country1 <strong>of</strong> the area studied o<strong>nl</strong>y to a depth<br />

<strong>of</strong> 180 m below the surface. Boring tests proved that below that<br />

level, there is a very marked decrease in fractures and fissures<br />

from which water can be obtained. There is also evidence, <strong>of</strong><br />

course, that certain fracture zones may give abundant water at<br />

great depth, but these fractures are those such as the Triassic<br />

border fault or others that have been weil known. In the coastal<br />

half (coastal plains) <strong>of</strong> this examined region the limit, in<br />

accordance <strong>with</strong> the aquifer layers, is from 200 to 1000 m (from<br />

West to East) below the sealevel 8 .<br />

Evapotranspiration and interception average 450-560 mm yearly,<br />

and the yearly average run<strong>of</strong>f is up to 550 mm from the annual<br />

precipitation. The ground water availability indicator has a value<br />

from O to 450 mrn yearly, depending on the permeability and storage<br />

capacity <strong>of</strong> the geological formations 191.<br />

Despite the fact that the estimate <strong>of</strong> the regional availabi-<br />

lity is complicated by factors such as recharge or transmissability<br />

frow adjacent areas, there is clear evidence <strong>of</strong> correlation <strong>of</strong><br />

permeability <strong>of</strong> geological formations <strong>with</strong> surface peak run<strong>of</strong>f and<br />

ground water availability. The comparison can be based o<strong>nl</strong>y on<br />

average values <strong>of</strong> permeability because they are measured under<br />

difficult conditions and in various geological formations which<br />

are similar to those formations used in establishing run<strong>of</strong>f for-<br />

mula coefficients and ground water availability indicators (Ta-<br />

ble 21. ït must be pointed out that the various formations are<br />

also, in general, already mixed or interwoven even in smaller<br />

drainage areas. The uneven surface weathering, artificial imper-<br />

vious surface due to urbanization, the disintegrated underlying<br />

rock formations at various depths and possible faults add to the<br />

difficulty <strong>of</strong> establishing a practical average value <strong>of</strong> permeabi-<br />

lity, ground water availability or surface run<strong>of</strong>f even for a<br />

small waters he d.


195<br />

The various studies showed that the geological subsurface has<br />

an effect o<strong>nl</strong>y on smaller watersheds <strong>with</strong> an area <strong>of</strong> 250 km2 or<br />

less. The "geologic" character starts to "fade away" when the<br />

size <strong>of</strong> the watershed is larger than 235 km2; and for a watershed<br />

<strong>of</strong> over 340 km2 the use <strong>of</strong> formulas based on geologic conditions<br />

is not recommended because other factors affect the flood flow,<br />

and the influence <strong>of</strong> geological factors is negligible. Even more<br />

confined in area is the ground water availability estimate where<br />

the practical upper limit may be less than 200 km2, depending on<br />

the surface conditions and on the complexity <strong>of</strong> the subsurface<br />

rock formations.<br />

(4) LOWEST SURFACE FLOW<br />

The lowest flow in smaller watersheds -- whose importance is<br />

to find out the pollution effect <strong>of</strong> various polluting sources<br />

depends , similarly, on the permeability <strong>of</strong> the geological subsur-<br />

face, the length <strong>of</strong> drought, the frequency and'the amount <strong>of</strong> rain,<br />

the storage capacity <strong>of</strong> the aquifer layers, the evapotranspiration,<br />

the temperature <strong>of</strong> the atmosphere and <strong>of</strong> the soil, the retardation,<br />

effect <strong>of</strong> forests and <strong>of</strong> lakes and the elevation <strong>of</strong> the watershed<br />

not to mention transfer <strong>of</strong> available water from one watershed to<br />

the other. From these few factors is also evident that reliable<br />

data about lowest flow are even more scarce for smaller watersheds<br />

than the peak flow. In general, the surface watey records contain<br />

prery li'mited amount <strong>of</strong> data pertaining to lowest flows.<br />

Despite these circumstances, there is sufficient evidence to<br />

develop also a formula for lowest run<strong>of</strong>f based on records from<br />

both areas collected especially from the drought periods 1921 and<br />

2947 in Czechoslovakia [IO, 11, 12) and 1961-1966 in New Jersey<br />

15. 6, 7, 81 as it follows:<br />

Q z CSA-~, where<br />

Q lowest run<strong>of</strong>f (50 years?) value in l/sec.km2<br />

A = area <strong>of</strong> watershed in km2<br />

C coefficient depending on the geological subsurface (Table 31<br />

In Central Europe from O to 5.58<br />

In New Jersey, U.S.A. from O to 5.75<br />

e 0,065; the exponent indicates an almost even distribution <strong>of</strong><br />

the lowest run<strong>of</strong>f regardless <strong>of</strong> the size <strong>of</strong> watershed and the<br />

available data and values were not sufficient evidence to<br />

evaluate the influence <strong>of</strong> slopes and topographic configuration<br />

<strong>of</strong> the drainage basins in further details.


196<br />

In Both examined areas in the plain region, where the aquifer<br />

sediments prevail and reach considerable depth as far as 1000 m<br />

below sealevel, the run<strong>of</strong>f coefficients decrease in value because<br />

the surface run<strong>of</strong>f is absorBed by these highly permeable layers.<br />

As a contrast to this phenomena in ayeas such as these along the<br />

Atlantic Coast in New Jersey or the valley <strong>of</strong> the Danube and the<br />

Tisza in Southern Czechoslavakia, the ground water collected, even<br />

from distant area, "spills over" fpon its subsurface storage and<br />

keeps the surface run<strong>of</strong>f values up to 10.4 lfsec,km2 in periods <strong>of</strong><br />

drought. This outcropping <strong>of</strong> the gpound water can be observed also<br />

in the surface streams <strong>of</strong> the "Fine Barrens" area <strong>of</strong> Southern New<br />

Jersey. Unfortunately, the data concerning low run<strong>of</strong>f is far less<br />

available than that for, peak run<strong>of</strong>f or well-records, This makes<br />

further evaluation dad calculation extremely difficult, Therefore,<br />

this method <strong>of</strong> lowest run<strong>of</strong>f computation may be considered o<strong>nl</strong>y as<br />

an estimate for planning and developing purposes.


197<br />

Brm I OGRAP IIY<br />

1. T-Ialasi-Kun, G.J. (1972). “Data Collecting on <strong>Water</strong> <strong>Resources</strong><br />

and Computations <strong>of</strong> MaximUm Flood for Smaller <strong>Water</strong>sheds, If<br />

Simposio Internacional Yobre la Planifioacion de Recursos<br />

Ridraulicos - Ponenoias, Volume I, Mexico.<br />

2. rrerak, ñ!. , Stringfield, V.T. (1972). Karst, Amterdam-London-<br />

New York, Elsevier.<br />

3. Halasi-Kun, G.J. (1968). Die Ermittlu g von Hbchstabflüssen<br />

für Einzugsgebiete kleiner ala 300 b3 im Bereich der Slowakei,<br />

Braunsohweig, Leichtweiss-Inst itut.<br />

4. nalasi-Kun, G.J. (1969). ”Correlation Between Precipitation,<br />

Flood and Windbreak Phenomena o9 the Mountains, 1’ Proceedings<br />

<strong>of</strong> University Seminar on Pollution and <strong>Water</strong> <strong>Resources</strong>, Vol. I,<br />

~ e w York - Trenton, Columbia University - State <strong>of</strong> New Jersey,<br />

5. Miller, J. (1973). Geology and Ground Viater <strong>Resources</strong> <strong>of</strong> Sussex<br />

County ... , Geol. Bulletin No. 73, Trenton, State <strong>of</strong> New Jersey.<br />

6. Widmer, K. (1905). Geology <strong>of</strong> the Ground <strong>Water</strong> <strong>Resources</strong> <strong>of</strong><br />

Mercer County, Geoï. Report No. 7, Trenton, New Jersey ~eol.<br />

Surve y.<br />

7. Rhodehamel, E.C. (1970). A Hydrologic Analysis <strong>of</strong> the New Jersey<br />

Pine Barrens Region, <strong>Water</strong> <strong>Resources</strong> Circular No. 22, Trenton,<br />

State <strong>of</strong> New Jersey and U.S.G.S.<br />

8. Barksdale, H.C., Greenman, D.W., Land, S.M., Milton, O.S.,<br />

Outlaw, D.E. (1958). Groundwater <strong>Resources</strong> in the Tri-State<br />

Region Adjaoent to the Lower Delaware River, Special Report<br />

No. 13, Trenton, State <strong>of</strong> New Jersey.<br />

9. Halasi-Kun, G.J. (1971). llAspects hydrologiques de la pollution<br />

et des reBsources en eau, dans lee domaines urbains et industriels,lt<br />

Actes du Congres: Scienoes et Techniques An 2000, Paris,<br />

SICP.<br />

10. Dub, O. (1957). Hydrologia, hydrografia, hydrometria, Praha-<br />

Bratislava, SVTL.<br />

11. Halasi-Kun, G. J, (1949) Hydrologia, Kosice.<br />

12. Halasi-Kun, G.J. (1954). Voda v polnohospodárstve(<strong>Water</strong> in Agriculture),<br />

Bratislava, SPN.<br />

13. Davis, St.N., Dewiest, R.J.M. (1966). Hydrogeology, New Yorlc-<br />

London-Sydney, Je Wiley 81 Sons .<br />

14. Linsleg, R.K.Jr., Kohler, M.A., Paulhus, J.L.H. (1968). <strong>Hydrology</strong><br />

for Engineers, New York - Toronto - London, hiCGraW-Hill.<br />

15. <strong>Water</strong> <strong>Resources</strong> Data for New Jersey: 1961-1971, Part 1: Surface<br />

<strong>Water</strong> Records (1962-1972). Treiiton, U.S.G.S.


198<br />

FIGURE I: HYDROGRAPHICAL MAP OF SOUTHWEST GERMANY FROM<br />

THE UPPER-DANUBE REGION.


YEARS<br />

FIGURE 2: MAXIMUM' ANNUAL FLOOD OF THE DANUBE RIVER AT<br />

ORSHOVA, ROMANIA, 1840-1950.<br />

0 SERIES OF PEAK FLOOD DISCHARGES.<br />

@ AVERAGE PEAK FLOOD.<br />

@TREND OF THE AVERAGE PEAK FLOOD.<br />

199


LAKE AND SWAMP AREAIIN PERCENT OF DRAINAGE AREA<br />

201<br />

FOR WATERSHEDS OF 25.6-512km2 (BASED ON 67GAGHG STATIONS IN NEW JERSEY,<br />

USA I 1897 - 1972)<br />

------- FOR IIWTERCHED OF 576.240 km2 (DANUBE AT ORSHOVA,ROMANIA, 1840-1950 WE<br />

TO LAND RECLAMATION AND FLOOD CONTROL)<br />

FIGURE 4: ADJUSTMENT FACTOR FOR EFFECT OF LAKES AND SWAMPS ON PEAK RUNOFF<br />

IN NEW JERSEY, U.S.A. AND DANUBE AT ORSHOVA, ROMANIA


202<br />

Table 1: Peak Run<strong>of</strong>f Coefficient in Various Hydrogeologic Regions:<br />

Hydrogeologic Regions: Peak Run<strong>of</strong><br />

(formations) in Central Euroue:*<br />

(1) Kaolinite, Clay in-<br />

cluding argillaceous<br />

Triassic or Tertiary<br />

Paleogene Flysch<br />

(2) Paleozoic Shales,<br />

Schist and Mesozoic<br />

Mar 1<br />

(3) Igneous Rocks<br />

Tertiary Marl<br />

(5) Weathered Igneous<br />

Rocks, Limestone, Tuff<br />

(6) Mesozoic Triassic<br />

Brunswick Pormat ions .<br />

(7) Mesozoic Cretaceous<br />

Clayey Sands, Tertiary<br />

Eogene Clayey Sands<br />

(8) Tertiary Miocene Sands<br />

and Quaternary Moraines<br />

(9) Tertiary Neogene<br />

! (for peak run<strong>of</strong>f<br />

17 5-18.2<br />

14<br />

10<br />

7<br />

6<br />

7<br />

7<br />

1 9-2 5<br />

1.9-2 5<br />

1<br />

Coeff icient<br />

* Ratio <strong>of</strong> combined effeot for point rainfall i tensity and size<br />

<strong>of</strong> storm pattern in the two observed regions 113:<br />

1 to 8.2 = Eastern Czechoslovakia to New Jersey, U.S.A.<br />

147<br />

100<br />

81<br />

70<br />

69<br />

37<br />

30<br />

26<br />

12<br />

7.3


Table 2: Ground <strong>Water</strong> Availability in Various Hydrogeologic<br />

Regions and Their Average Permeability:<br />

(format ions )<br />

(i) Kaolinite, Clay in<br />

eluding argillaceous<br />

Triassic or Tertiary<br />

Paleogene Flysch<br />

(2) Paleozoic Shales,<br />

Schist and Mesozoic<br />

hfarl<br />

(3) Igneous Rooks<br />

(except Basalt,Diabase<br />

Sandst ones y Meeozoio<br />

't'riassic Stockton Form<br />

(4) Dolomite, Besalt a<br />

Tertiary Marl<br />

(5) Weathered lgneoae<br />

Rocks, Limestone a Tuff<br />

(6) MeeOZQiO Triassio<br />

Brunmiak Formations<br />

(7) Mesozoio Cretacteou<br />

Clayey Sands Tertiary<br />

Eogene Clayey Sands<br />

(8) Tertiary Miocene 3 nde<br />

and Quaternary Moraine 'I<br />

(10) Quaternary Beach<br />

Sands (cape May Form.)<br />

Woundwater Availability<br />

in New Jersey, U.S.A.<br />

(in mm/year [5,6,7,8)):<br />

Y<br />

d<br />

17 - 25 7<br />

less than 47<br />

63<br />

87 - 125<br />

150<br />

200-225<br />

2 50<br />

300<br />

3 50<br />

455<br />

203<br />

verage Permea-<br />

ility in milli-<br />

arcys 113,144 ) :<br />

1<br />

2<br />

1-1.9<br />

2<br />

2.5<br />

42<br />

3<br />

62<br />

7<br />

102-lP2<br />

102-142<br />

18.22<br />

Values are based on over 70,000 well-reoord files <strong>of</strong> domestic and<br />

industrial wells <strong>of</strong> the State <strong>of</strong> New Jersey from the period <strong>of</strong><br />

1947-1972. Further information especially for regions (2),(3)y<br />

(6) and (71, is in references ba6,TY8,13,143. The form <strong>of</strong> data<br />

on average permeability makes easy comparison <strong>with</strong> Figure 5.


204<br />

Table 3: Lowest Run<strong>of</strong>f Coefficient in Various Hydrogeol. Regions:<br />

ifydrogeologic Regions:<br />

Lowest Run<strong>of</strong>f Coefficient<br />

( f orrnat ions)<br />

tn Central Europe: I in New<br />

I<br />

Jersey, U.S.A.;<br />

(for lowest run<strong>of</strong>f values in ï/seo.km2)<br />

(i) Tiaoïinite, Clay inc<br />

luding argillaceous<br />

Triassic or Tertiary<br />

Paleogene Flysch<br />

O *3-O 6<br />

0-0 26<br />

(2) Paleozoic Shales,<br />

Schist and h4e s oz oio<br />

Marl<br />

3) Igneous Rocks<br />

I except Basalt,Diabase)<br />

0-1 70<br />

Sands t ones , Mes oz oio<br />

Triassio Stockton Form.<br />

(4) Dolomite, Basalt an<br />

Tertiary Marl<br />

*<br />

1-2<br />

O 17-0 79<br />

(5) 'Neathered Igneous<br />

Rocks, Limestone, Tuff<br />

(6) Mesozoio Triassi0<br />

Brunswick Formations<br />

(7) Mesozoic Cretaoeous<br />

Clayey Sands, Tertiary<br />

Eogene Clayey Sands<br />

(8) Tertiary Miooene Sands<br />

and Quaternary Moraines<br />

(9) Tertiary Neogene<br />

Sands, Mesozoic Cretaoeous<br />

Magothy-Raritan Formations,<br />

aternary River Drift<br />

O) Quaternary Beach<br />

ande (cape May Form.) -<br />

**<br />

4-5 68<br />

bless than 0.3"<br />

O. 62-0 91<br />

2 71-5 75


-- ABS TRACT<br />

-<br />

DETERMINATION OF SNOW WATER EQUIVALENT AND SNOWMELT WATER<br />

BY THICKNESS OF SNOW COVER DATAS<br />

George Kovács - George Molnár<br />

Res-earch Institute for <strong>Water</strong> <strong>Resources</strong> Develapment ,<br />

Budapest, Hungary'<br />

In studies on the accumulation- and melting process <strong>of</strong> snow bulk<br />

densities have been determined for fresh snow (Ymin), for snow saturated<br />

by capillarv water (y,> and for melting snow (ymax). Correlation<br />

studies have shown the magnitudes <strong>of</strong> y and Ymax to depend<br />

greatly on the number (RI Qf snow lagreps, Tke equations insolying the<br />

bulk densities listed above form the Basi's <strong>of</strong> tEe computation charts<br />

prepared by the authors. These can be applied to two tñus far unsolved<br />

problems: I. the reconstruction <strong>of</strong> past time serpes <strong>of</strong> water equi<br />

valent values for observing statìons w?tk data on tñe thi'ckness <strong>of</strong> the<br />

snow cover o<strong>nl</strong>y, and 2. forecasting the duration <strong>of</strong> the melting period<br />

and <strong>of</strong> the volume <strong>of</strong> snow-melt water form data on the thickness <strong>of</strong> cover<br />

and the air temperature predicted for the melting period.<br />

Au cours de l'analyse du phénomene d'accumulation et de fonte de<br />

e les auteurs ont déterminé le poids volumétrique (y min,<br />

) initial de la neige fraiche, le poids volumétrique (y ,<br />

) de la neige a capìllaire-saturatton, le poids volum&tbique<br />

(y max, [g/cm3] 1 de la neige en fonte, Les analpee correllati'onalles<br />

ont démontré que les valeurs de y et y max dépendent d'une mesure con<br />

k<br />

sidérable du nombre de couches de\la neige (7). Ce sont les equationsexprimant<br />

les poids volum~tri'qne prê=nt&ea pl.pe- EaPt qui servent de<br />

base au diagrama des auteurs, ce dernier permettant la solution de<br />

deux problemes jusqu'alors irrésolus: 1. Réalisation rétrospective des<br />

séries de données, dépendantes du temps, pour l'équivalent neige-eau<br />

dans le cas ou l'on n'a procédé qu'a l'observation de l'épaisseur de<br />

la neige, 2. Pronostics concernant la durse de la fonte et de la quantité<br />

d'eau qui s'y produit, a la Lase d'une épaisseur mesurée et d'une<br />

température prévue pour la période de fonte.


206<br />

ïNTPnODUCTIOIJ<br />

In water budget calculations, on the income side the snow or<br />

the meltage <strong>of</strong> snow is <strong>of</strong> great importance. The forecasting <strong>of</strong><br />

spring floods and undrained run<strong>of</strong>f waters, the planning <strong>of</strong> reser-<br />

voir operation during the melting period and other problems re-<br />

quire more accurate information on snow accumulation and melting,<br />

the continuous observation <strong>of</strong> the water content stored in the snow<br />

cover, $he recovery <strong>of</strong> past data and the reconstruction <strong>of</strong> snow<br />

water reoords <strong>with</strong> the help <strong>of</strong> observation data available. Above<br />

all the thickness <strong>of</strong> mow cover should be considered which has<br />

been continuously observed at more than 1000 stations for nearly<br />

100 years in Hungary. The network <strong>of</strong> water equivalent measuring<br />

stations, however, works o<strong>nl</strong>y from 1960, comprising presently 60<br />

s tat i onse<br />

The paper summarizes the investigations'aiming at the dis-<br />

covery <strong>of</strong> the relation between snow cover thickness and snow-water<br />

equivalent on the basis <strong>of</strong> the numerous (about 200 O00 per eeason)<br />

data for the 12 years between 1960 and 1971.<br />

1. THE PROCESS OF TIB DEVELOPWT, ACCüMüUTION<br />

AND MELTING OF SNOW<br />

1.1 The development and accumulation <strong>of</strong> snow<br />

Snow crystals are formed by the hexagonal ice prisms deposit-<br />

ed around the concentration cores (soot, dust, etc.) overcooled to<br />

-15 - -25OC in the high regions <strong>of</strong> the atrnosphere.Lom temperatures<br />

(-10 - -15OC) and high moisture contents are conducive to the for-<br />

mation <strong>of</strong> crystals containing large, ramifying pore apace and to<br />

the deposition <strong>of</strong> these crystals. Under reversed circumstances<br />

(temperature around O°C, low moisture content) so called cylindric<br />

crystals and needles <strong>of</strong> ice will develop and deposit densely pack-


ed, <strong>with</strong> high bulk density on the soil surface Il, 4, 103.<br />

The distribution examination performed using numerous data to<br />

determine the bulk density rg/cm31 <strong>of</strong> fresh snow having an<br />

intact crystal structure and containing no capillary water at all,<br />

yielded the following result:<br />

*min<br />

P 0.118 i 0.028<br />

3<br />

Ig/cm 3<br />

From the beginning <strong>of</strong> accumulation the snow cover becomes<br />

continuously more compact and its bulk density increases accord-<br />

ingly. This is the consequence on the one hand <strong>of</strong> the closer and<br />

closer agglomeration <strong>of</strong> snow crystale and, on the other hand, <strong>of</strong><br />

the increase <strong>of</strong> capillary water content stored in the pore spaces<br />

between the crystals. The increase in bulk density is caused by<br />

the combined effect <strong>of</strong> external (temperature, sunshine, wind,etc.)<br />

and internal (the weight <strong>of</strong> snow, etc.) factors to which the snow<br />

cover is exposed C3, 5, 6, 7, 8, 91.<br />

Obviously, the discharge <strong>of</strong> snow-melt water can o<strong>nl</strong>y start<br />

when the capillary pores between the crystals have already been<br />

saturated <strong>with</strong> water.<br />

The bulk density <strong>of</strong> mow saturated <strong>with</strong> water is called the<br />

critical bulk density (a,)<br />

1.2 The process <strong>of</strong> mow melting<br />

According to the correlation examinations performed to de-<br />

termine the critical bulk density (rk), the development <strong>of</strong> rk con-<br />

siderably dependa on the number CR) <strong>of</strong> snow layers developed dur-<br />

ing accumulation. During a cold spell following a temporary melt-<br />

ing period <strong>with</strong> a duration <strong>of</strong> a few days, a lager <strong>of</strong> ice will de-<br />

velop on the surface which layer separates the old and the newly<br />

fallen fresh mow. In the case <strong>of</strong> repeated recurrence <strong>of</strong> this<br />

phenomenon the snow layer is dissected into clearly distinguish-<br />

able layers, the number(R) <strong>of</strong> which is a good indicator <strong>of</strong> the<br />

207


208<br />

periodicity <strong>of</strong> accumulation and melting. The variations - i.e. the<br />

periodic fluctuation - in the snow thickness time series is a good<br />

basis for estimating the number <strong>of</strong> layers. The reliability <strong>of</strong> es-<br />

timation remarkably increases, if, besides the snow thickness re-<br />

cord also the air temperature record is available.<br />

The relation between the numerous data <strong>of</strong> the critical bulk<br />

density (ak) and <strong>of</strong> the number <strong>of</strong> snow layers - both types <strong>of</strong> data<br />

obtained from the 12 years long period between 1960 and 1971 - is<br />

described by the following regression equation:<br />

rk = 0.153 +<br />

3<br />

0.050 R 2 0.025 Edcm 3<br />

Performing the correlation examination separately <strong>with</strong> the<br />

data obtained from the mountaina and the lowlands, the following<br />

equations were obtained:<br />

'a<br />

km, t ain<br />

* 'lowland<br />

(2)<br />

= 0.160 + 0,042R 2 0.032 Ig/cm33 (3)<br />

t 0.146 + 0.052R 2 0,028 Cg/cm33<br />

It is interesting to note that the slope <strong>of</strong> the curve is some<br />

20 % flatter in the mountains than in the lowlands. This is prob-<br />

ably due to the fact that on the slopes in the mountain areas, the<br />

water <strong>of</strong> a short melting period can immediately flow down, so that<br />

here the ice layers frozen subsequently will be relatively thinner<br />

than in the lowlands.<br />

Melting starts at the instant <strong>of</strong> capillary saturation,i.e. at<br />

the development <strong>of</strong> the critical bulk density. In the course <strong>of</strong><br />

melting, the ice crystals are merged and destroyed progressively<br />

and become eventually completely liquid. During this process the<br />

bulk density <strong>of</strong> snow grows continuously until its maximum value is<br />

reached. The maximum bulk density (rma) is calculated using the<br />

regression equation:<br />

max = 0.213 + 0.054R $; 0.035 Cg/cm33 c 5)


209<br />

The duration (mo) <strong>of</strong> meltinq - as verified by the examina-<br />

tions performed - depends primarily on the temperature conditions<br />

prevailing during the melting period and on the amount (A h) <strong>of</strong><br />

snow-melt water.<br />

In the course <strong>of</strong> studies aimed at the discovery <strong>of</strong> the rela-<br />

tion between the different values <strong>of</strong> temperature and the amount <strong>of</strong><br />

meltage numerous potential relations were tested, <strong>of</strong> which<br />

Ah = f(K) K æ tmax + tmin<br />

3<br />

( 6)<br />

has been selected as the beat, in which tmax and tDin are the<br />

maximum and minimum temperatures, respectively, prevailing during<br />

the individual days <strong>of</strong> the melting period.<br />

The daily temperature value can be computed <strong>with</strong> Eq.(6) is<br />

called rneltinR heat standard (K, ['CI).<br />

To calculate the duration <strong>of</strong> melting the relation<br />

can be used where is the daily average melting heat standard <strong>of</strong><br />

the week after melting has started.<br />

It will readily be seen that the knowledge <strong>of</strong> the expected<br />

average maximum and minimum temperatures forecast in Hungary for a<br />

week by the National Meteorological Service is essential for pre-<br />

dicting the duration <strong>of</strong> the melting period.<br />

2. NEW CALCULATION METHODS<br />

Using the research results demonstrated above two as yet un-<br />

solved problems can be approached:<br />

- The creation and reconstruction <strong>of</strong> mow-water equivalent time<br />

series - essential in hydrological practice - for snow measuring


21 o<br />

stations where o<strong>nl</strong>y snow thickness observations are or were per-<br />

formed. In this way the water equivalent time series can be ex-<br />

tended in time for the duration <strong>of</strong> snow thickness observations.<br />

- Forecasting the volume <strong>of</strong> snow-melt water and the length <strong>of</strong> the<br />

meltirg period on the basis <strong>of</strong> the snow thickness measured and<br />

<strong>of</strong> the air temperature forecast for the melting period.<br />

To solve these two problems the chart shown in Fia.1 has been<br />

constructed, the use <strong>of</strong> which and the course <strong>of</strong> calculation are<br />

demonstrated using the data obtained in 1963 at one <strong>of</strong> the snow-<br />

-water equivalent measuring stations - Dombori puszta - in the<br />

lowlands. Since snow thickness and the water equivalent were ob-<br />

served simultaneously, the checking <strong>of</strong> the methods is also pos-<br />

sible.<br />

2.1 Producing the snow-water eauivalent time series <strong>of</strong> the Deri0.d<br />

examined from <strong>of</strong> snow thickness data<br />

In the period examined - from the 11th <strong>of</strong> January to the 9th<br />

<strong>of</strong> March - snow was stored continuously. Within the period, = as<br />

revealed by the snow thickness time series in the upper part <strong>of</strong><br />

Fig. 2 - three greater intermediate and from the 2nd <strong>of</strong> March a<br />

final melting occured.<br />

a] To produce the snow-water equivalent time series the snow<br />

bulk density time series must be reproduced first from the snow<br />

thickness data available. in the calculation the bulk density <strong>of</strong><br />

the freeh snow is supposed to be<br />

in all cases.<br />

rmin = 0.118<br />

3<br />

idcm 3<br />

During accumulation, when snow thickness is increasing, the<br />

average bulk density <strong>of</strong> the whole snow cover is calculated suppos-<br />

ing that the increment has also a bulk density <strong>of</strong> 0.118 g/cm3.


211<br />

E.g.: On the 19th <strong>of</strong> February the snow cover is 25.2 cm thick and<br />

has a bulk density <strong>of</strong> 0.320 g/cm 3 . Next day an additional<br />

amount <strong>of</strong> 1.6 cm snow cover fell. Thus the composition <strong>of</strong><br />

the mow layer is calculated <strong>with</strong> the layers having<br />

and<br />

25.2 cm (94 %) thickness and 0.320 g/cm3 bulk density<br />

1.6 cm (6 %) thickness and 0.118 g/cm3 bulk density<br />

i.e. total 26,8 cm thickness and 0.308 g/cm3 bulk density.<br />

On the first day (nk) <strong>of</strong> the particular temporary and <strong>of</strong> the<br />

final meltings the critical bulk density ( k) <strong>of</strong> the snow cover is<br />

taken into account <strong>with</strong> the corresponding number <strong>of</strong> layers.<br />

In the example, using part A) <strong>of</strong> the chart:<br />

rI.i5.<br />

ìr 11.12.<br />

r 11.21.<br />

r 111.2.<br />

= 0.202 g/cm3 because R = 1<br />

E 0.252 g/cm3 because R = 2<br />

t- 0,302 g/cm3 because A = 3<br />

E 0,351 g/cm3 because R = 4<br />

(These values are the solutions <strong>of</strong> Eq.(2) substituting<br />

R = 1, 2, 3 and 4, respectively.)<br />

On the last day <strong>of</strong> the particular temporary and <strong>of</strong> the final<br />

meltings the maximum bulk density <strong>of</strong> the snow cover is taken into<br />

account <strong>with</strong> the corresponding number <strong>of</strong> layers (see part A./ <strong>of</strong><br />

the chart). Thus<br />

bx.is.<br />

r11.19.<br />

ìf 11.23.<br />

r111.9.<br />

= 0.267 g/03 because R 5 i<br />

= 0.320 g/cm3 because R = 2<br />

o 0.374 g/cm3 because R = 3<br />

= 0.428 g/cm3 because R = 4<br />

(These values are the solutions <strong>of</strong> Eq.(3) substituting<br />

B e 1, 2, 3 and 4, respectively.)<br />

Accordingly, the skeleton <strong>of</strong> the bulk density time series is<br />

formed by the values rk and Y, chosen as the function <strong>of</strong> the<br />

value min and <strong>of</strong> the number <strong>of</strong> layers. Intermediate values can


21 2<br />

o<strong>nl</strong>y be estimated. In the period <strong>of</strong> accumulation the method al-<br />

ready demonstrated is used. in the melting period i.e. when the<br />

thickness <strong>of</strong> snow cover decreases,a linear interpolation consider-<br />

ing the change <strong>of</strong> thicknees is made to choose values betweenthe<br />

critical and maximum bulk density.<br />

With these considerations the whole time series <strong>of</strong> bulk den-<br />

sity can be produced.<br />

b) Once the lime series <strong>of</strong> snow thickness (v) measured and <strong>of</strong><br />

bulk density(J-) calculated are available, the time series <strong>of</strong> wa-<br />

ter equivalent (h) can be computed by the following equation:<br />

h Cmml = Cg/cm31 . 10 v Ccml (8)<br />

In Fig. 2, the data series <strong>of</strong> bulk density and <strong>of</strong> water equi-<br />

valent computed <strong>with</strong> the method demonstrated above are compared<br />

<strong>with</strong> the time aeries <strong>of</strong> data measured.<br />

2.2 Forecast <strong>of</strong> snow meltinq<br />

To demonstrate the method <strong>of</strong> forecasting the knowledge <strong>of</strong><br />

o<strong>nl</strong>y the snow cover thickness and <strong>of</strong> air temperature is suppoeed.<br />

a] First the initial water equivalent (ho) <strong>of</strong> the snow at the<br />

start <strong>of</strong> melting is to be determined. This can be read directly<br />

from diagram B <strong>of</strong> the chart.<br />

In the example, at the start <strong>of</strong> final melting on the 2nd <strong>of</strong><br />

March the thickness <strong>of</strong> mow cover containing 4 layers was 21.0 cm.<br />

A reading in the direction <strong>of</strong> the fat line on the chart yields an<br />

initial water equivalent <strong>of</strong><br />

ho = 74.0 2 6 Cmm],<br />

i.e. melting is expected to produce<br />

74.0~6 rn <strong>of</strong> snow-melt water<br />

(the water equivalent actually measured was 71.6 mm, i.e. o<strong>nl</strong>y 4 %


less than computed).<br />

b) With the water equivalent obtained as described above, and<br />

using the data on minimum and maxim air temperature forecast for<br />

the melting period, the duration (mo) <strong>of</strong> the melting period is<br />

estimated by means <strong>of</strong> part C <strong>of</strong> the chart.<br />

The meltina heat standard (K) needed for using the chart is<br />

calculated from Eq46).<br />

In the present example, for the week following the start <strong>of</strong><br />

melting = 5.6OC was obtained.<br />

Consequently, by reading in the direction <strong>of</strong> the fat line, a<br />

melting period <strong>of</strong><br />

rn =3 8 2 1 days<br />

O<br />

is predicted for the snow cover having a water equivalent <strong>of</strong><br />

74.0 mm. (The actual melting period measured was 7 days).<br />

Note that the forecaet described should be repeat.ed daily<br />

<strong>with</strong> the latest data to make continuous allowance for changes in<br />

the weather.<br />

s x a t<br />

From the results <strong>of</strong> error analyses performed for checking the<br />

two methods and from the first experiences gained <strong>with</strong> their ap-<br />

plication, the methods described for calculating the water equi-<br />

valent and forecasting snowmelt appear to be <strong>of</strong> practical interest.<br />

21 3


21 4<br />

REZERENCES<br />

Cil Karo1.B.P.: Snow cover (in Russian)<br />

Gidrometeorológitsheskoe izdátelstwo<br />

Leningrad, 1949.<br />

L23 Kovács.Gy.: The altitude system <strong>of</strong> snow conditions in the<br />

winter 1968-69. (in Hungarian)<br />

Annual report on the work <strong>of</strong> VITTJKI 1972, Buda-<br />

pest<br />

L31 Kovács G The development, accumulation and melting <strong>of</strong><br />

snow, the measurement and calculation <strong>of</strong> these<br />

features ( in Hungarian)<br />

Bogdhffy, be Pályázat . 1973, Budapest<br />

141 Kuzmin.P.P.: Physics <strong>of</strong> the snow cover (in Russian)<br />

Gidrometeoizdat, 1957.<br />

151 Péczels,Gy.: The consideration <strong>of</strong> the accumulation and melt-<br />

ing <strong>of</strong> snow in the analysis <strong>of</strong> the precipitation<br />

system <strong>of</strong> catchments (in Hungarian)<br />

Idójárás 1969/1, Budapest<br />

161 Sa1amin.P.: The examination <strong>of</strong> snow melting in the Bükk<br />

mountains in Hungarian)<br />

Id6járás 1 4 56/5, Budapest<br />

173 Sa1amin.P.: The problems <strong>of</strong> the examination <strong>of</strong> snow melting<br />

(in Hungarian)<br />

Discussion. Department <strong>of</strong> Agricultural Sciences,<br />

Hungarian Academy <strong>of</strong> Sciences, 1-3. IX. 1956.<br />

183 Sa1amin.P.: The influence <strong>of</strong> the relief on the accumulation<br />

and melting <strong>of</strong> snow (in Hungarian)<br />

Hidrológiai Köalöny 1960, Budapest<br />

191 To1lan.A.: Determination <strong>of</strong> Areal Values <strong>of</strong> the <strong>Water</strong> Equi-<br />

valent <strong>of</strong> Snow in a Representativ Basin<br />

(in English)<br />

Mordisk Hidrologisk Konferenc, Stockholm 1970.<br />

Li01 Yosida.2.: Physical Studies on Deposited Snow I-IV.<br />

(in Enalish)<br />

Gechanical Properties.<br />

Contributions from the Institute os Snow Tem-<br />

perature Suence, Sapporo, 1956.


RECONSTRUCTION OF THE WATER EQUIVALENT<br />

TIME SERIE8 OF JANUARY TO MARCH, 1963 AT<br />

DOHBORI PUSZTA.<br />

0,600<br />

0,500<br />

w 0,100<br />

- C0b:PU TED<br />

-_ OBSER VF D<br />

21 5


o<br />

216


EVALUATION OF LOCAL WATER RESOURCES IN AN SEMI-ARID,<br />

HARD ROCK REGION BY USING PHOTO-HYDROLOGICAL INDICES<br />

ABSTRACT<br />

By: A.M.J. MEIJERINK<br />

The local water resources <strong>of</strong> a semi-arid, hard rock<br />

area have been evaluated in a rapid, but approximate way,<br />

by using information derived from aerial photographs and<br />

from field observations.<br />

The sizes <strong>of</strong> irrigated areas <strong>of</strong> open, wide diameter<br />

wells, and <strong>of</strong> small reservoirs, have been taken as indices<br />

for the storage <strong>of</strong> groundwater and for the run<strong>of</strong>f generating<br />

capacity <strong>of</strong> small watersheds up -to a size <strong>of</strong> 40 kms2.<br />

Geological and geomorphological influences on the<br />

groundwater storage and the recharge <strong>of</strong> the wells, could be<br />

established.<br />

By means <strong>of</strong> a judgment <strong>of</strong> the catchment characteris-<br />

tics, the relative run<strong>of</strong>f could be estimated.<br />

RESUMEN<br />

The limitations <strong>of</strong> the use <strong>of</strong> the indices are discussed.<br />

Los recursos hfdricos locales de una zona semi-árida,<br />

de rocas de baja permeabilidad, han sido evaluados de una<br />

forma rápida pero aproximada, mediante el uso de información<br />

obtenida de fotografías aéreas y de observaciones de campo.<br />

Los tamalios de las áreas irrigadas por pozos abiertos<br />

de amplio diámetro y por pequeños estanques, han sido toma-<br />

dos como indices de la reserva de agua subterránea y de la<br />

capacidad generadora de la escorrentia de pequefias cuencas,<br />

hasta de 40 km2. de extensión.<br />

Se pudo establecer las influencias geológicas y geo-<br />

morfológicas en las reservas y en la recarga de los pozos.<br />

Evaluando las características de las cuencas se pudo<br />

estimar la escorrentla relativa.<br />

Se discuten asimismo las limitaciones 'del uso de los<br />

indices.


218<br />

I. Introduction.<br />

The aim <strong>of</strong> this paper is to show the use <strong>of</strong> photo-interpretation for the<br />

assessment <strong>of</strong> the local water resources in a semi-arid region, underlain by hard<br />

rocks <strong>with</strong> little storages.<br />

The region studied is a part <strong>of</strong> the Cuddapah Basin in south India (see figure 1 ),<br />

where the agriculture depend on the meager local water resources.<br />

By means <strong>of</strong> photo-interpretation the distribution and the relative quantities<br />

<strong>of</strong> the ground- and surface water resources could be studied.<br />

The study consisted <strong>of</strong> a simple differentiation <strong>of</strong> the area in more or less<br />

hydrologically homogeneous units and <strong>of</strong> an analysis <strong>of</strong> the irrigated areas <strong>with</strong>in<br />

the various terrain unit s.<br />

The sizes <strong>of</strong> the irrigated areas are in fact a control <strong>of</strong> the interpretation<br />

procedures and also an indicator <strong>of</strong> the hydrological situations.<br />

Approach.<br />

The following approach for the interpretation procedures has been adopted:<br />

____________________------_-_<br />

Differentiation <strong>of</strong> the region.<br />

The region has to be divided in certain 'landscapes'. Each landscape has<br />

its own complex <strong>of</strong> gross hydrological processes and gross water resources<br />

which differ from those in adjoining landscapes.<br />

Within each landscape there are a number <strong>of</strong> smaller land components which,<br />

on a reconnaissance scale, may be considered to be hydrologically homogeneous.<br />

The land components may be <strong>of</strong> erosional or denudational nature such as a<br />

dissected alluvial fan y an inselberg complex <strong>with</strong> the surrounding<br />

embayments y etc.<br />

The land components may be sub-differentiated, if necessary, in land elements.<br />

The land elements are described here as terrain units which are closely<br />

associated <strong>with</strong> simple hydrological processes.<br />

An example <strong>of</strong> a land element in this study is: an area <strong>with</strong> well terraced<br />

agricultural fields, which are capable <strong>of</strong> storing appreciable quantities <strong>of</strong><br />

surface run<strong>of</strong>f.<br />

Practical, rather than theoretical considerations are at the base <strong>of</strong> this scheme<br />

<strong>of</strong> land differentiation.<br />

However, the 'landscape' which has been described above, may be compared <strong>with</strong><br />

Verstappen's 'Main geomorphological Unit (1 96fl), <strong>with</strong> the 'Land System' <strong>of</strong> the<br />

Oxford Working Group (Brink et al. 1966) and <strong>with</strong> the 'Mesnosti' <strong>of</strong> the Eussian<br />

Authors (Vinogradow 1968).<br />

In the area <strong>of</strong> study, the boundaries <strong>of</strong> the landscapes follow closely the<br />

boundaries <strong>of</strong> the main lithological units.<br />

The close association between the landscape and the geology in the Cuddapah Basin<br />

is caused by two facts:<br />

1)<br />

2)<br />

The lithologies are markedly different from each other and large outcrop<br />

areas are formed because <strong>of</strong> structural conditions.<br />

The denudational development <strong>of</strong> the area under predominantly semi-arid<br />

conditions has resulted in the adjustment <strong>of</strong> the geomorphology to the<br />

pronounced geological fact ors.


- B. Hydrological evaluation.<br />

219<br />

Various landscapes occuring in the Basin, have been delineated and <strong>with</strong>in the<br />

landscapes a sub-differentiation was made <strong>of</strong> the land components and occasionally<br />

also <strong>of</strong> the land elements.<br />

The groundtruth <strong>of</strong> the interpretation, was in this particular case already<br />

available, because the author had carried out previously field checking <strong>of</strong><br />

interpreted geology and geomorphology <strong>of</strong> the basin during four field seasons.<br />

Moreover, a soil survey <strong>of</strong> representative strips in each landscape had been<br />

made by a third party.<br />

The possible hydrological significance has been estimated <strong>of</strong> the interpreted and<br />

mapped land components and land elements. The estimation is subjective.<br />

Details <strong>of</strong> the features, caused by overland flow and by concentrated sheet flow,<br />

as observed on the aerial photographs, have been used, as well as some other<br />

photographic characteristics. However, far more reliance was placed on the<br />

possible hydrological behaviour <strong>of</strong> the soils, weathered zones, superficial<br />

deposits, particulars <strong>of</strong> the lithology, etc.<br />

The photo-interpretation is thus mai<strong>nl</strong>y useful as a means <strong>of</strong> rapid inventarization<br />

and for the study <strong>of</strong> the inter-relationships <strong>of</strong> the interpreted features.<br />

The results <strong>of</strong> the mapping and the hydrological evaluation have then be compared<br />

<strong>with</strong> the outcome <strong>of</strong> the analysis <strong>of</strong> the index 'irrigated area'.<br />

In this text the emphasis is placed on the illustration <strong>of</strong> the use <strong>of</strong> the index<br />

in various terrain conditions, rather than on a description <strong>of</strong> the mapping<br />

procedures.<br />

The results obtained in three landscapes are discussed; first the groundwater<br />

occurrences, then the surface water resources.<br />

Nature <strong>of</strong> the index.<br />

This index is actually a composite index, as the irrigated area is not o<strong>nl</strong>y<br />

influenced by the available groundwater in the zone near the surface<br />

(the rocks are impermeable in unweathered conditions), but also by the irrigation<br />

practices. In the area, there are thousands <strong>of</strong> open wells, out <strong>of</strong> which irrigation<br />

water is lifted by animal traction. The open, wide diameter wells pumped for a<br />

number <strong>of</strong> hours are then left to recover for more than 24 hours.<br />

For the sake <strong>of</strong> briefness, a few examples are discussed.<br />

Because the agriculture is still carried out in a traditional manner, it has been<br />

assumed that the yield <strong>of</strong> the well is directly related to the size <strong>of</strong> the irrigated<br />

area.<br />

How accurate this relationship is, <strong>with</strong>in a given landscape, has not been<br />

investigated.<br />

As is discussed further on, it is not possible to compare the acreage per well<br />

<strong>of</strong> one landscape <strong>with</strong> another, because <strong>of</strong> differing soil conditions, crop<br />

rotation and water application.<br />

However, <strong>with</strong>in a landscape the irrigation practices seem to be uniform.<br />

Therefore, the following discussion pertains o<strong>nl</strong>y to the use <strong>of</strong> the index <strong>with</strong>in<br />

a landscape.


220<br />

8-<br />

&ample showing the effects <strong>of</strong> geomorphology on the occurence <strong>of</strong><br />

groundwater.<br />

-<br />

Well clusters and the irrigated areas have been investigated on the Vempalli<br />

calcareous shales. A part <strong>of</strong> the area is shown in figure 2.<br />

It may be noted that the width <strong>of</strong> the recharge zone on the pediments, is<br />

related to the width <strong>of</strong> the irrigated areas. This relationship once established<br />

can be used to indicate potential irrigable areas by means <strong>of</strong> mapping the<br />

pediments in the area.<br />

Field observations have shown that the depth <strong>of</strong> weathering and <strong>of</strong> sheetwash<br />

deposits, increases on the pediments in downstream direction.<br />

On the upper parts, the unweathered bedrock is close to the surface and little<br />

infiltration can take place. However, firther downstream till the central<br />

drainage line is reached, the sheet flow may infiltrate partly, and recharge the<br />

- limited - quantities <strong>of</strong> groundwater.<br />

The relationship between width and recharge zone and width <strong>of</strong> irrigated area has<br />

been found useful for locating 'under irrigated' areas in this particular<br />

landscape.<br />

- G.<br />

=ample showing the use <strong>of</strong> statistical test for the evaluation <strong>of</strong> factors<br />

which influence the occurrence <strong>of</strong> groundwater.<br />

In a pediments landscape, the well indices have been used to compare the influences<br />

<strong>of</strong> the rock types on the well yields.<br />

Four sample areas have been selected at the downstream parts <strong>of</strong> the pediments, in<br />

a rather narrow zone near ephemeral rivers, in order to minimize the influence <strong>of</strong><br />

the morphological position.<br />

The four sample areas are underlain by slates, by sericitic schists, by biotite<br />

schists and by gneisses.<br />

An analysis <strong>of</strong> variance shows that the differences in the sample means are not<br />

significant at the 5% level. The sample sizes varied from n = 12 to n = 24.<br />

Hence it is concluded that the influence <strong>of</strong> the lithology in this area on the<br />

well yield is not significant. It should be noted however, that the rock types<br />

are rather impermeable anyhow. The similarity <strong>of</strong> the well yields is attributed to<br />

the effects <strong>of</strong> weathering, type <strong>of</strong> soils,calcareous and siliceous crusts and to the<br />

deposition <strong>of</strong> sheet wash deposits.<br />

A little south <strong>of</strong> the sample areas, approximately 200 la2, fossil aeolian sands<br />

lare covering the pediment surfaces. The thickness <strong>of</strong> the sand cover varies from 1<br />

to over 20 meters.<br />

It can be expected that the well yields are higher than in the area <strong>with</strong>out sands,<br />

because <strong>of</strong> the good infiltration possibilities in the sands and the higher specific<br />

yields <strong>of</strong> the sandy medium.<br />

This expectation is confirmed by the indeces. However, no significant differences<br />

in the well yields in this area could be detected, after the indices had been<br />

sampled in four areas. The sample areas have been selected on bxoad drainage<br />

divides and near ephemeral channels.


- D.<br />

Ekample showing the possibility <strong>of</strong> predicting approximate well yields<br />

f l o m _ s _ l l m p i e _ _ - ~ ~ - ~ ~ _______________<br />

~ - ~ ~ ~ ~ ~ - ~ ~ ~ ~<br />

In the three discussed examples, the nature <strong>of</strong> the recharge area was <strong>of</strong><br />

interest. In the granite landscape along the western margin <strong>of</strong> the Cuddapah<br />

Basin, it was possible to delineate the 'catchment' areas <strong>of</strong> individual wells,<br />

and thus compare the size <strong>of</strong> the 'catchment' or recharge area <strong>with</strong> the size<br />

<strong>of</strong> the area irrigated by the wells.<br />

The landscape in which three sample areas have been selected, consists <strong>of</strong><br />

convex interfluves and concave to flat valley bottoms. On the interfluves<br />

the depth <strong>of</strong> weathering varies from O to 5 meters. The soils are red coloured,<br />

loamy sands to sandy loams <strong>with</strong> stone lines. The soils in the valley bottom<br />

are grey coloured gritty clay loams to sandy clays.<br />

Althou& large outcrops may occur in or next to the valley bottom, the average<br />

depth <strong>of</strong> weathering seems there to be higher. Inselbergs are found scattered over<br />

the area.<br />

2 21<br />

The recharge area <strong>of</strong> individual wells have been sampled wherever the local<br />

relief was sufficiently high to delineate the drainage divides on the interfluves<br />

and where the irrigated areas could be differentiated from the surrounding<br />

non-irrigated fields.<br />

The three sample areas are shown in figure 1, from which it may be noted that<br />

the mean annual rainfall <strong>of</strong> the sample areas is about the same.<br />

The three areas seem to be similar in geological and geomorphological respects.<br />

The areas irrigated by wells are shown in figure 3a, and have been plotted as<br />

a function <strong>of</strong> the recharge area in the graph <strong>of</strong> figure 3b.<br />

This graph shows the combined results <strong>of</strong> the three sample areas.<br />

In all the three sample areas the correlation coefficients are significant at<br />

the 5% level (Spearman rank correlation statistic), while no significant<br />

differences have been found between the three correlations (kskall and Wallis<br />

test <strong>of</strong> variance). For practical purposes, the line <strong>of</strong> best fit, shown in the<br />

graph may be used as a guideline for the estimated yield <strong>of</strong> open wells as a<br />

function <strong>of</strong> the recharge area in the sampled landscape.<br />

The scatter <strong>of</strong> the plotted points indicate approximately the degree <strong>of</strong> accuracy<br />

<strong>of</strong> the estimate.<br />

Remarks.<br />

These few examples show how the index irrigated area may serve as a check on the<br />

expectations <strong>of</strong> the water occurrences and the approximate quantities, <strong>with</strong>in<br />

well defined landscapes.<br />

It is not possible to compare the indices <strong>of</strong> one landscape <strong>with</strong> another, because<br />

the index is very sensitive to variations in irrigation practice, type <strong>of</strong> irrigated<br />

soils and the type <strong>of</strong> crops.<br />

If the yields in the various landscape have to be compared, the index has to be<br />

transposed in actual well yields.<br />

However, by employing this index as a control on the expectations, the value <strong>of</strong><br />

the photo-interpretation is increased and the amount <strong>of</strong> field works is greatly<br />

reduced.


222<br />

1x1. Surface water.<br />

- ____________________________I___________-------------------------<br />

A. The use <strong>of</strong> the index 'area irrigated by water stored in small reservoirs'.<br />

While scanning the aerial photographs, an apparent relationship was noted<br />

between the size <strong>of</strong> the catchment and the size <strong>of</strong> the irrigated areas below<br />

reservoirs. The reservoirs are usually constructed across the main drainage<br />

line, and are thus in a position to store the full run<strong>of</strong>f, provided <strong>of</strong> course,<br />

that the capacity <strong>of</strong> the tanks is sufficiently high.<br />

The reservoir capacities cannot be estimated on the aerial photographs<br />

accurately, because they are very shallow, usually less than 2 meters deep.<br />

However, it may be supposed that the irrigated areas are closely adjusted to<br />

the average available quantities <strong>of</strong> water in the reservoirs.<br />

Thus, the irrigated areas are used as an index, or measure, for the run<strong>of</strong>f<br />

from the catchments. The selected catchments are smaller than 40 h2.<br />

Comparisien <strong>of</strong> the indices are o<strong>nl</strong>y possible in a well defined landscape.<br />

Differences in irrigation practices, type <strong>of</strong> irrigated soil, etc., prohibit<br />

the comparision <strong>of</strong> the indices from two or more different landscapes <strong>with</strong><br />

each other.<br />

Therefore, the index is mai<strong>nl</strong>y used to investigate whether variations <strong>of</strong> the<br />

catchment characteristics, <strong>with</strong>in a landscape, are associated <strong>with</strong> variations<br />

in the index.<br />

Before embarking on the discussion <strong>of</strong> the analysis, it may be useful to<br />

illustrate briefly the rainfall factors, the magnitude <strong>of</strong> the evaporation and<br />

the type <strong>of</strong> run<strong>of</strong>f.<br />

- -------I------_-_-------------<br />

B. Rainfall, run<strong>of</strong>f and evaporation.<br />

Inspection <strong>of</strong> the daily rainfall records <strong>of</strong> a few stations in the area shows<br />

that most <strong>of</strong> the rainfall occurs during the summer monsoon (SW monsoon).<br />

The maximum daily rainfall in the winter monsoon (NE monsoon) is much lower,<br />

usually less than 20 mms. per day. Mean monthly rainfall varies from 150 mms.<br />

during the SW monsoon to 5 ms. during the dry months.<br />

The frequency <strong>of</strong> the maximum daily rainfall, based on the partial seriesis<br />

shown in figure 4. The days <strong>with</strong> more than 30 mms rainfall (arbitrary standard)<br />

have been used for the compilation.<br />

Field observations show that isolated showers tend to produce flashy run<strong>of</strong>f in<br />

this semi-arid area, where the catchments have little storage possibilities.<br />

However, according to the local population, the tanks get filled up mai<strong>nl</strong>y by<br />

prolonged rainfall. It is not uncommon that in the SW monsoon, during three<br />

consecutive days <strong>with</strong> rainfall, more than 100 mms are recorded.<br />

Such occasions cause overflow <strong>of</strong> the reservoirs.<br />

On the other hand, during dry years the tanks may not get filled up, or may not<br />

be replenished for the irrigation <strong>of</strong> the rfpening crops.<br />

Analysis <strong>of</strong> the irrigdted areas in some catchments, as measured on the aerial<br />

photographs, indicated that the tank capacities are not capable <strong>of</strong> storing the<br />

most important run<strong>of</strong>f events, This was found by comparing the irrigated areas,<br />

expressed per unit <strong>of</strong> catchment area, <strong>of</strong> two or more tanks in single catchments.<br />

The downstream irrigated area was larger in 10 out <strong>of</strong> 11 cases.


Although the run<strong>of</strong>f may be prolonged when successive rainy days <strong>with</strong> high<br />

rainfall amounts occur, the run<strong>of</strong>f decreases rapidly after the cessation <strong>of</strong> the<br />

rainfall. Most <strong>of</strong> the run<strong>of</strong>f seems to occur in the form <strong>of</strong> direct run<strong>of</strong>f <strong>with</strong><br />

very little interflow (throughflow) and base flow.<br />

2<br />

The ephemeral rivers <strong>of</strong> the small catchments (up to 40 lan ) have dried up<br />

practically <strong>with</strong>in a few days.<br />

The evaporation <strong>of</strong> the area is high. The highest mean monthly evapotranspiration<br />

in the area is 200 to 220 ms, and the minimum mean monthly value is 11 cms<br />

(at the time <strong>of</strong> the winterrains).<br />

bhenthemeanyearly evapotranspiration figures, which are based on the Modified<br />

Penman fomla, are compared <strong>with</strong> the rainfall figures, the water shortages in the<br />

area become obvious.<br />

The average depth <strong>of</strong> ihe tanks is usually very small (< 1.5 meters), but the<br />

size <strong>of</strong> the tanks is comparatively very large (5 - 50 hectares).<br />

Monthly evaporation rates <strong>of</strong> more than 10 cms reduce therefore the effective<br />

storage <strong>of</strong> the tanks appreciably.<br />

Factors that influence the size <strong>of</strong> the irrigated area.<br />

From the above discussion, it is obvious that the index 'size <strong>of</strong> irrigated<br />

area' is an inaccurate measure for the run<strong>of</strong>f <strong>of</strong> the catchments.<br />

It is difficult to say for example, to what duration and frequency <strong>of</strong> the<br />

discharges, the index is related.<br />

For the evaluation <strong>of</strong> the use <strong>of</strong> the index the following argument has been<br />

used:<br />

If the index is a perfect measure for the run<strong>of</strong>f production <strong>of</strong> the watersheds,<br />

a perfect correlation between the index and the size <strong>of</strong> the catchments can be<br />

expected. Variations in the relationship should be attributable to variations<br />

<strong>of</strong> the hydrological effects <strong>of</strong> the landcomporients.<br />

Actually, it is the variation caused by the land components <strong>with</strong>in a landscape,<br />

that is <strong>of</strong> interest in this study.<br />

However, the imperfectness <strong>of</strong> the index may be demonstrated by pointing out<br />

the following sources <strong>of</strong> error:<br />

1. Original differences in the capacities <strong>of</strong> the reservoirs, because <strong>of</strong><br />

topographical differences, construction <strong>of</strong> the overflow, etc.<br />

2. Reduction <strong>of</strong> the original reservoir capacities by sedimentation.<br />

Age and history (breakages, desilting operations) <strong>of</strong> the tanks may differ<br />

<strong>with</strong>in a landscape, also the sedimentation rates per unit <strong>of</strong> catchment area.<br />

3. Minor differences in the irrigation practices, water management.<br />

4. Interpretation and measuring errors on the aerial photographs.<br />

The variation caused by these 4 factors cannot be evaluated <strong>with</strong>out detailed<br />

measurements in the field.<br />

Despite the fact that the mentioned factors are an important source <strong>of</strong> error,<br />

in all the four sample areas, a significant correlation has been found between<br />

the parameters 'sise <strong>of</strong> catchment area' and 'sise <strong>of</strong> irrigated area'.<br />

223


224<br />

The influence <strong>of</strong> the land components on the index is discussed here for one<br />

large landscape, the 'Cumbum Landscape'.<br />

In aiiother landscape, the 'landscape on the eastern basement complex', rather<br />

similar results have been obtained, and need therefore little elaboration.<br />

However, on the third landscape, the one on the granites in the west, where<br />

the land components seem to be equally distributed in the landscape, significant<br />

differences have been found in two sample areas.<br />

In the other landscapes <strong>of</strong> the Cuddapah Basin, no sufficiently reliable<br />

measurements could be made for a proper analysis.<br />

--______________________________________----_--------------------<br />

The Cumbum landscape, an example <strong>of</strong> the run<strong>of</strong>f variation <strong>with</strong>in a landscape.<br />

Descript ion.<br />

The landscape on the shales, siltstones and phyllites <strong>with</strong> occasional<br />

limestone beds <strong>of</strong> the Cumbums, forms a separate landscape in the Cuddapah Basi<br />

although the geomorphology <strong>of</strong> the landscape is not uniform.<br />

In some parts <strong>of</strong> the area, weathered remnants <strong>of</strong> large but thin alluvial<br />

fans are found, supporting a dense vegetation <strong>of</strong> grassland and dense shrub.<br />

Other parts may consist <strong>of</strong> eroded terrain <strong>of</strong> varying relief and skeletical<br />

soils. South <strong>of</strong> this area extensive remnants <strong>of</strong> an old weathered planation<br />

level are found.<br />

Estimation <strong>of</strong> the relative run<strong>of</strong>f from the aerial photographs.<br />

The run<strong>of</strong>f producing and run<strong>of</strong>f-storing land components in the watersheds<br />

have been interpreted and mapped.<br />

Land use features and geomorphological elements have been mapped separately,<br />

but have been plotted on a single map.<br />

The joint effects <strong>of</strong> the land use and geomorphology on the run<strong>of</strong>f has been<br />

evaluated by means <strong>of</strong> arbitrary standards:<br />

Land use features such as fields surrounded by earthern walls, behind small<br />

retention structures, etc. are capable <strong>of</strong> storing run<strong>of</strong>f and the areas <strong>with</strong><br />

many <strong>of</strong> such features have been classified as 'areas <strong>with</strong> low run<strong>of</strong>f'.<br />

Overgrazed, poorly cultivated fields on sloping land, fall in the class<br />

'high run<strong>of</strong>f'. The other areas have simply been classified as medium run<strong>of</strong>f.<br />

Similarly, geomorphological elements, such as old weathered fans, thick<br />

slope deposits, buried pediments and elements like heavily eroded soil<br />

bare outcrops, true pediment slopes etc, fall in two opposing classes; high<br />

and low run<strong>of</strong>f. The remaining elements <strong>with</strong> no evident extreme hydrological<br />

behaviour fall in the medium class.<br />

The percentages <strong>of</strong> the areas falling in the three land use and in the<br />

three geomorpho12gical classes are then determined, and a final judgement<br />

puts the catchment in one <strong>of</strong> the three categories.<br />

The hydrological evaluation <strong>of</strong> the land components cannot be done <strong>with</strong>out<br />

sufficient field howledge. The procedure is arbitrary, and the results will<br />

therefore vary from one observer to another.<br />

Analysis.<br />

The graph <strong>of</strong> figure 5a shows the index 'irrigated area' as a function <strong>of</strong> the<br />

catchment area. The line <strong>of</strong> best fit has been established by graphical<br />

correlation (Linsley, Kohler, Paulhus 1949).<br />

For all the watersheds, shown on the graph, the run<strong>of</strong>f class has been<br />

estimated.


2 25<br />

The run<strong>of</strong>f class is now compared <strong>with</strong> the deviation <strong>of</strong> the plotted position<br />

<strong>of</strong> the points on the graph <strong>of</strong> figure 5a <strong>with</strong> the line <strong>of</strong> best fit.<br />

Points which are below the line <strong>of</strong> best fit are called negative deviations,<br />

those above the line, positive deviations.<br />

Theoretically, possitive deviations should be associated <strong>with</strong> high or medium<br />

run<strong>of</strong>f classes, negative deviations <strong>with</strong> medium or low run<strong>of</strong>f classes.<br />

The results <strong>of</strong> the comparision are shown in figure 5b.<br />

Ideally, in the case <strong>of</strong> high run<strong>of</strong>f, all points should fall in the positive<br />

range and the cases <strong>of</strong> low run<strong>of</strong>f should fall in the negative range.<br />

The cases <strong>of</strong> medium run<strong>of</strong>f should have a symetrical distribution and the<br />

magnitude <strong>of</strong> the deviation should be limited.<br />

As can be judged from the graph <strong>of</strong> figure 5b, no ideal result has been<br />

obtained, although the mediam values (see the graph) <strong>of</strong> the three run<strong>of</strong>f<br />

classes are at three different levels ( + 36, - 38 and - 96 ).<br />

It should be remembered that the procedure is arbitrary and that there are<br />

many causes <strong>of</strong> variation. The procedure followed, i.e. the author's<br />

judgment, leads to an underestimation <strong>of</strong> the storages and losses in the<br />

catchments. However, the method is not ment for an estimation <strong>of</strong> the<br />

absolute run<strong>of</strong>f production, but for an estimation <strong>of</strong> the relative differences<br />

<strong>of</strong> the run<strong>of</strong>f in the various catchments <strong>with</strong>in a landscape.<br />

For this purpose, we feel that the results <strong>of</strong> the comparision <strong>of</strong> the run<strong>of</strong>f<br />

estimates <strong>with</strong> the deviation <strong>of</strong> the index, are satisfactory, so that the<br />

run<strong>of</strong>f classification may be applied in this landscape <strong>with</strong> some confidence.<br />

The landscape on the granites and example <strong>of</strong> unexplained differences in the<br />

index.<br />

Catchments and irrigated areas have been measured in two samples areas on<br />

the granites, along the western margin <strong>of</strong> the Cuddapah Basin.<br />

!Che areas, denoted here <strong>with</strong> the northern and the southern area, are 250 lans<br />

apart. The mean annual rainfall in the two areas is to same, between 600 and<br />

700 mms. O<strong>nl</strong>y small differences, if any are expected in the frequencies <strong>of</strong> the<br />

partial series.<br />

As has been discussed earlier, in the section on groundwater, both areas seem<br />

to be highly similar in geological and geomorphological aspects.<br />

The relationships between the catchment area and the size <strong>of</strong> the irrigated areas,<br />

is shown in figure 6.<br />

The Kendall rank correlation coefficient for the northern sample area is 0.78,<br />

for the southern area 0.90. Both the correlations are significant at the 5% level.<br />

However, the two sample areas show a marked difference between the indices<br />

'irrigated area' as a function <strong>of</strong> catchment size.<br />

The Muskall and Wallis test showed that the difference <strong>of</strong> the two relationships<br />

is significant at the 5% level.<br />

The explanation <strong>of</strong> the difference is difficult.<br />

Its has been tried to explain the difference by some additional photo-measurements<br />

<strong>of</strong> factors, that might influence the size <strong>of</strong> the irrigated area.<br />

Within the catchments, the percentage <strong>of</strong> outcrop areas in the two sample areas<br />

have been compared, but no significant difference has been found.<br />

It was reasoned that the percentage <strong>of</strong> outcrop area would influence the run<strong>of</strong>f<br />

(and thus the index), because <strong>of</strong> the very low storage possibilities on the<br />

outcrops. The number <strong>of</strong> wells in the irrigated area have also been compared <strong>with</strong><br />

the irrigated area. It was thought that the wells, which re-use the water from<br />

the reservoirs, could be <strong>of</strong> influenoe. However, no significant correlation has bt.,:.?<br />

found.


226<br />

The explanation <strong>of</strong> the difference in the relationships may be hidden in<br />

factors, which are not measurable on the aerial photographs.<br />

In this particular area, it is suggested that perhaps, the age <strong>of</strong> the reservoirs<br />

is an important causative factor.<br />

In the southern area the reservoirs may be older than those in the northern<br />

area, so that the smaller irrigated areas in the southern area, may be explained<br />

by a reduction <strong>of</strong> the reservoir capacity by sedimentation.<br />

Discussion <strong>of</strong> the results.<br />

In the area <strong>of</strong> study, the index 'area irrigated by open wells and by small<br />

reservoirs' provides a useful means <strong>of</strong> control <strong>of</strong> the hydrological significance<br />

<strong>of</strong> the photographic interpretation procedures.<br />

However, the use <strong>of</strong> the index requires a good deal <strong>of</strong> local knowledge <strong>of</strong> the<br />

terrain characteristics, irrigation practices, etc.<br />

The index should be used in a careful way and the purely empirical character <strong>of</strong><br />

the index restricts its use to well defined landscapes.<br />

However, a number <strong>of</strong> practical applications <strong>of</strong> some tested relationships have<br />

been found for some landscapes in the Cuddapah Basin.<br />

The experience and confidence gained by the study <strong>of</strong> the landscapes and by the<br />

analysis <strong>of</strong> the index has been used for the hydrological evaluation <strong>of</strong> those<br />

landscapes, for which no sufficient indices could be sampled.<br />

It is believed by the author, that for similar semi-arid,areas on hard rocks<br />

an approach along the same lines could give useful results, particularly when<br />

no appropriate hydrological data are existing.<br />

The indices are rather typical for the area investigated, but have been used<br />

for other areas in india as well. In regions where such indices are not<br />

existing, or are not very meaninghl, the evaluation <strong>of</strong> the landcomponents has<br />

to rely on other field observations. The field observations and measurements<br />

may consist <strong>of</strong> oral information <strong>of</strong> water level fluctuations in wells,<br />

determination <strong>of</strong> approximate yields, measurement <strong>of</strong> the base flow discharges,<br />

perhaps the estimation <strong>of</strong> the bankful discharges, and so on.<br />

The approach consists, in short, <strong>of</strong>:<br />

1.<br />

2.<br />

3.<br />

4.<br />

5.<br />

Interpretation <strong>of</strong> geology, geomorphology and <strong>of</strong> aspects <strong>of</strong> soils,<br />

land use and vegetation.<br />

Differentiation <strong>of</strong> the regior. in 'homogeneous hydrological landscapes'.<br />

Provisional hydrological evaluation <strong>of</strong> the land components.<br />

Field checking <strong>of</strong> the interpretations and the collection <strong>of</strong> approximate<br />

hydrological data. The field work and the collection <strong>of</strong> data should have<br />

been planned on the basis <strong>of</strong> the interpretation results.<br />

Comparision <strong>of</strong> the results and final, approximate evaluation <strong>of</strong> the<br />

influences <strong>of</strong> the land components for the development <strong>of</strong> the local water<br />

resources.<br />

-0-o-o-


Ref e re n ce s<br />

2 21<br />

Brink A.B., Mabutt J.A., Webster R. and Beckett P.H.T. (1966)<br />

Report <strong>of</strong> the working group on land classification<br />

and data storage. Milit. Engng. Exp. Establ.<br />

Christchurch, England. Engng. Report no. 940.<br />

Verstappen H.Th. and Zuidam R.A. (1969) I.T.C. system <strong>of</strong><br />

geomorphological surveys. I.T.C. textbook <strong>of</strong> P.I.<br />

VII, 2. 49 pp.<br />

Vinogradov B.V. (1968) Airphoto methods in geographical research<br />

in the U.S.S.R. Photogrammetria 23 pp 17-94<br />

Linsley R.K., Kohler M.A. and Paulhus J.L.H. (1949) Applied<br />

<strong>Hydrology</strong> Mc. Graw Hill, New York


228<br />

I = GRANITE LANDSCAPE , II = CUMBUM LANDSCAPE ,<br />

III = LANDSCAPE ON EASTERN BASEMENT COMPLEX -<br />

A = ANANTAPUR , K = KURNOOL , C = CUDDAPAH<br />

700 = ISOHYET<br />

Figure 1 - Map showing location <strong>of</strong> landscapes and the outline <strong>of</strong> the<br />

Cuddapah Basin.<br />

Fiyre 2 - Irrigated area in relation to the width <strong>of</strong> the recharge area.<br />

( dots = open wells, white = pediments, hatches = hills ).


Figure 3a - Sample area on the landscape on the granites, showing drainage<br />

divides, thalwegs, wells (open circles), sampled wells (dots)<br />

and the corresponding recharge and irrigated areas.<br />

The schematical section indicates the depth <strong>of</strong> weathering.<br />

R E C H A R G E A R E A<br />

Figure 3b - Irrigated area as a function <strong>of</strong> recharge area, for three sample<br />

areas in the landscape on the granites.<br />

229


;"O1<br />

1.2<br />

1 .o<br />

4<br />

w<br />

m<br />

4.8<br />

FI<br />

W<br />

U<br />

H<br />

œ<br />

œ .4<br />

U<br />

.2<br />

2 3 o.<br />

,? -<br />

+<br />

(scale for III )<br />

I I I i ,<br />

0.4 1 .o 2 4 6<br />

I I I I I L I , , I<br />

0.4 0.6 0.8 1.0 2 4 6 ô 10 years<br />

B E C U R R E N C E I N T E R V A L<br />

Figure 4 - Frequency curves <strong>of</strong> high daily rainfall (partial series), for<br />

three stations:<br />

I = Cuddapah, II = Kurnool, III = Anantapur.<br />

4 a 10 16 20 24 28 ~m2.<br />

D R A I N A G E A R E A<br />

Figure 5a - Area irrigated by reservoirs as a function <strong>of</strong> the catchent<br />

area for the Cumbum landscape.


Km2,<br />

2.8<br />

2.4<br />

2.0<br />

w<br />

m<br />

4<br />

1 .6.<br />

!a<br />

W<br />

I 3<br />

-4<br />

o 1.2<br />

H<br />

a<br />

e:<br />

H .a<br />

.4<br />

0<br />

rd<br />

5<br />

+<br />

200' -<br />

2 120<br />

3<br />

$ 40-<br />

3<br />

w o-<br />

M 40 -<br />

.rl C<br />

E! 120<br />

.rl<br />

*<br />

rl<br />

200<br />

-<br />

-<br />

-<br />

- IIII.I...IIL<br />

no. <strong>of</strong> catchments Y<br />

ii<br />

MEDIUA<br />

LOW<br />

Figure 5b - Results <strong>of</strong> comparison (see figure 5a and text).<br />

S A M P<br />

I. N.E.<br />

II. R A<br />

L E A R E A S :<br />

<strong>of</strong> K U R N O O L<br />

Y A C H O T I<br />

i/,-/ . ..<br />

/ +<br />

12 16 20 24 28<br />

D R A I N A G E A R E A<br />

231<br />

Figure 6 - Areas irrigated by reservoirs as a function <strong>of</strong> the catchment<br />

area. Two sample areas are shown <strong>of</strong> the landscape on the granites.


ABSTRACT<br />

APPLICATION OF SATELLTTE CLOUD PICTURES<br />

IN SNOW HYDROLOGY OF TKE AIMALAYAS AND<br />

IN THE ESTIMATION OP RAINFALL OVER INDIA<br />

DURING SOUTKWEST MONSOON SEASON.<br />

P.S. PANT and N.G. GUPTA<br />

Many <strong>of</strong> the rivers in the Indi'an suB-continent bave their ori-<br />

gins in the Himalayas. An important souTce <strong>of</strong> water supply for these<br />

rivers is, therefore, from the melting <strong>of</strong> the snow in the upper cat-<br />

chment o€ these rivers. As much <strong>of</strong> this region is inaccessible, the<br />

conventional observations are not availaBle, Examination <strong>of</strong> the sate-<br />

llite Television Pictures has revealed tñe possibility <strong>of</strong> estimating<br />

the snow coverage over the river basi'na in tke Hihalayas and thereby<br />

to estimate tlìe contriBution <strong>of</strong> snowmelt to tñe flow in tEese rivers.<br />

An attempt has also been made to estìmate the 24 hour rainfall amounts<br />

over the plains <strong>of</strong> India duTing tñe soutñwest monsoon seanson, using<br />

cloud imageries taken By wather satelli'tes. Tiìese estimates are found<br />

to be in reasona6le agreement witñ tñe values obtaihed by isohyetal<br />

analysis <strong>of</strong> actual Tai'nfall 8ata. Tfie ies<strong>nl</strong>ts'oBtaihed look promising.<br />

If confirmed from an analysis <strong>of</strong> several rainstorms, these will find<br />

wide application in estimation <strong>of</strong> 24 hour average areal rainfall over<br />

data sparse river catcñments.<br />

RESUME<br />

Plus de rivieres en le SuB-continent de l'Inde ont leur origi-<br />

ne dans les Himalayas. Une importante source de l'approvisionment<br />

d'eau pour ces rivieres est, donc, la fusion de neige dans la captation<br />

supérieure de ces rhi'eaes. Comme Seaancoup ae cette .pêg?on eat Pnacce-<br />

ssible, les observations de convention ne sont pas disponibles. Un ex5<br />

men de l'images têlévision du satellite a rdv'?lE! la possibilité pour<br />

estimer la enneigement sur les garages de rivières dans les Himalayas<br />

et ainsi pour évaluer le contribution pap la fusion de neilge an coule<br />

ment de ces rivilres. Un effort a &!té aussi Sai't pon? estihex la préci<br />

pitation pendant 24 heures sur les plaines ae l'Inde pendant la sud<br />

-ouest mousson par 'nauge photograpñ2es de satelliye du temps, Ces eya-<br />

luations sont d'accord raisonagle avec les valers obtenues par les ana<br />

lyses isohyetales de actuels prScipitation donnees. Les resultants se<br />

présentent bien, S'il est confirmé d'une analyse de plus de tempete de<br />

pluie, ces trouverent large application pour entilmer la précipitation<br />

asrienne pendant 24 heures sur la captation de rivières oh les données<br />

sont rares.


1. Ii@RDDUCTIDW<br />

1.1 &UIY rivers in India originate in the IIimalayas. The important<br />

some <strong>of</strong> water supply for these rivers, is the snow over the upper catchment<br />

amm. Wrefore mapping the sncw cover and its variation mer the Himslayas<br />

is vital to forecast the stream flow in theae rivers, which in turn is <strong>of</strong> groat<br />

inportance for generation OP power and irrigation through these rivers.<br />

1.2 Large p&s <strong>of</strong> the upper catchent <strong>of</strong> these rivera are inace8sibi.e<br />

mas and monitoring tho snow cover ard precipitation in these areas by comentional<br />

methods is difficult: With the advent <strong>of</strong> Polar Orbitting Satellites the<br />

possibïìity <strong>of</strong> mdtoring the abme-mentioned hylromerteorological parameters by<br />

reaiute sensing techniques has arisen. In the cloud imagery obtained through<br />

the satellites anow aver the Himalaya can be clearly recognbed.<br />

R is also<br />

reiativalg easy to identify individual river valleys on these satellite picturm<br />

d e r cloud f'roe conditions.<br />

1.3 Ih case <strong>of</strong> rivers whose stream flow ia mai<strong>nl</strong>y dependeat on precipitation<br />

it is inportant to evaluate a~ acourately as p0~sibI.e the distribution<br />

<strong>of</strong> precipitation <strong>with</strong> area and duration k? order to obtain run-<strong>of</strong>f from<br />

precipitation. 51 case <strong>of</strong> @lood forecasting the adàitional problem involved is<br />

that the 24 hour raFtiEaU data should be available eqmdi.tiousiy at the forecasting<br />

centre,( Since owll established conmsUnicatian links are nut available<br />

for ail the river catchment areas, it WU be advantageous if atleast a rough<br />

t38thIl&e <strong>of</strong> aerial precipitatiun (average) can be obtained frm in8tan'tBneoUS<br />

cloud imagery for calculating run-<strong>of</strong>f.<br />

1.4 Before one can make an attempt to derive the 24. hour precipitation<br />

m the basis <strong>of</strong> m instantaneous satellite cloud picture, one bas to knm<br />

the characteristics <strong>of</strong> rainfall ono ia trying to estimate. Over large parts<br />

<strong>of</strong> Pidia more than 75 per cent <strong>of</strong> the annual rainfall is received during the<br />

southwest mansoon season (June to September). During this seasong the rdnfall<br />

is not corrtinuou~ but ~ C W S in spells laethg for about 5 to 7 days. This Is<br />

uauolly associated <strong>with</strong> the occurrence <strong>of</strong> depressiona and their movement roughly<br />

dong the mowoon trough <strong>of</strong> lw pressure. These depressions which irsueliy<br />

fonn near the he4 <strong>of</strong> the Bay <strong>of</strong> Bengal cause locally heavy faUs varyiiig fra<br />

7 to 20 cm in 24. hour, The rainfall associated <strong>with</strong> them extends mer areas<br />

aa ïarge as 100,ûûû to 200,ooO sq. hs; In hilly areas rainfalls as high as<br />

25 to 35 cm in a day are recorded in assmiation <strong>with</strong> these depressions.<br />

Mansoon rabif& in general sbowe two diurnal peaks one in the afternoon d<br />

another in the early morning hours. It ia also noticed that the monsoon clod<br />

pattern, p&iCixlarly tbme comected <strong>with</strong> situations af monsoon depressions,<br />

do not show much äiffereme between the afternoon and the morning. It is therefore<br />

felt that the single satdite cloud pictures from the orbitting weather<br />

satellites can provide a fairly reasonable estimate <strong>of</strong> the +hour rainfall,


235<br />

1.5 in ader to attain reasombh auccees in our attempt to relate<br />

these satellite cloud bagery <strong>with</strong> aerial distribirticn <strong>of</strong> precipitation, we &ve<br />

choeen o<strong>nl</strong>y cccaaim Of raSn storms durhg the p1~oon season. Mher ue have<br />

&o restricted our attention to the plejm thua avo%dhg the complications that<br />

VU set in hilly areas, With these restrictions it is hopd that a reasonable<br />

degree <strong>of</strong> aucc888 can be achiwed,<br />

2. SNOW KyDRDi&GY OF HIULAYAS<br />

2.1 Monitoring <strong>of</strong> the snow cover over Hbhyaa far hy&dogical piurpases<br />

ha gained hportance in Tecent yoara in connection <strong>with</strong> cmstruction and<br />

operation <strong>of</strong> the dams cmatructed mer the rivers originating from the Himelayas.<br />

!i'he techniques wed in the application <strong>of</strong> satellite data for snaw mapping are<br />

basically those <strong>of</strong> Simple photo-htarpretaticm i.e., detailed vieu inapetion<br />

<strong>of</strong> individual photogmpha to identify the river comes and large valleys to<br />

detenuine the aerial extent <strong>of</strong> 8now cover and to make an estimate <strong>of</strong> the height<br />

<strong>of</strong> snowline.<br />

2.2 A duly au the aasessment <strong>of</strong> water flow ki River Sutlej by<br />

Satellite picturea was conducted by Gupta and abbi (1 ) . The aver Sutlej<br />

originate from Lakes B$Las d Mansarovar in Tibet and foUons a aourse <strong>of</strong> about<br />

@û hm towards west-north-wemt through mountainm terrain before ananating in<br />

the plains <strong>of</strong> Punjab.4 The monthly werage discharge data <strong>of</strong> the Bempur stream<br />

gauge site, located near the Hhalagaa, ahow that the water discharge which ia<br />

2000 - 3ûûO c1i8808 during the vinter mcmtha @acember-Febninry) reaches the<br />

peak velue during July when It b more than ten tkes the winter -<strong>of</strong>f.<br />

w u be seen frcm the mdhly average discharge data for the mar 19669 given<br />

in T&ie ï, that while tbe monthly average <strong>of</strong> water dischare;@ valu@ during<br />

wMer months do not vary much from year to year, there are large variati- in<br />

t b e for the anow melting period.<br />

Table 1<br />

MûNIHLY A m WER DBCXAWE SN CUSiES DIFERE3CE; 33 THE VfiUEs<br />

MONPH<br />

196F3<br />

1 %9<br />

OF WATER nmcmìm<br />

1968u1969<br />

JanUary<br />

31 88<br />

2359<br />

829<br />

February<br />

3068<br />

2665 43<br />

Mmh<br />

394<br />

3658<br />

3 O5<br />

d g d<br />

5944-<br />

5063<br />

881<br />

Hay<br />

11 6a3<br />

13868 -2260<br />

June<br />

31 893<br />

4r5892<br />

-1 2999<br />

July<br />

32/62 47081 -14319<br />

Bug;&<br />

2153 2<br />

N63 2<br />

-131<br />

-<br />

00<br />

September 1m<br />

17869<br />

-5592<br />

October 5w<br />

7357<br />

1450<br />

Naoeniber<br />

3760<br />

45@<br />

-788<br />

Decrember<br />

2800<br />

3500<br />

-700


236<br />

-tion <strong>of</strong> the satellite pictures for the above two years showed that BLICUdation<br />

<strong>of</strong> snow aver the western ELimalaya~ OCCW during the maths <strong>of</strong><br />

Novembe-F'ebruary. The snow-malt b- spring i.e., from the m&ha <strong>of</strong><br />

m h when the valleys and river courses start becorning viaible distinctly.<br />

The minimum snow cover ocam in the post-eionsoon period after the nœrth <strong>of</strong><br />

Septeaiber. Figure 1 shows sane <strong>of</strong> the river courses in the aateïïite picture<br />

<strong>of</strong> 9 June 1969 cover- northern and western Himalayas. Examination <strong>of</strong> day to<br />

day satellite Pictures revealed that well sustained precipitation activity mer<br />

the Sutlej basin during the spring and pre-monsoon aeason <strong>of</strong> 1969, cdributed<br />

to higher values <strong>of</strong> water discharges from the month <strong>of</strong> May aL1WBPds. Th basin<br />

was also affected by the recurdng monsoon depressionsin the month <strong>of</strong> September<br />

I969 whereas the year 1968 was marked by the rar3y <strong>with</strong>drawal <strong>of</strong> mmsoon from<br />

the region.'<br />

2.3 Snow cover stdy <strong>of</strong> northern snd western Himalayas conducted by<br />

Srinivasan and Raman (2) <strong>with</strong> the help <strong>of</strong> selected NnIIBLE3 ïV and ESA4<br />

Pictures <strong>of</strong> 1969-70 bas confirmed that accmulatian <strong>of</strong> snow starte from<br />

the month <strong>of</strong> November and reaches the reixhum during Janu;iry-February wilh<br />

snow line generally at 213 l0n.b The snow melt begins in 4ril ad the mlnimimi<br />

snow cover was found to occur ki this stdy in Augmt-October <strong>with</strong> anow line<br />

rising upto about 5 km. The tearporai. sequence <strong>of</strong> aIIMBu9 III Image Diesector<br />

Camera mea (IDCS) pictures <strong>of</strong> Northern ñhiìayas for the period <strong>of</strong> April<br />

196Waaueuy 1970 given in a report <strong>of</strong> NASA an NïMEiiJS (3) dematrates t b<br />

minimum <strong>of</strong> the snow cover aver the &dus river basin in the Himalaya dipring<br />

Augwt-September. The B~QV accmùlaticm mer the area cormences thereafter<br />

till the month <strong>of</strong> Bpril when mdting <strong>of</strong> snow begins.<br />

2.4 maph for the river Brahmputra, rivers originating fmn the<br />

Centrai and W e r n Himalayas do nut have lmg courses along the mountab.<br />

These are therefore not 80 distinctly vieible in satellite *dea a9 the<br />

rivera in northern end western Himalayas. Since the winter precipitatiar over<br />

these regions is much less canpared to northern a<strong>nl</strong> western Hiinalayaa t b<br />

magnitude <strong>of</strong> snw cover difference during the winter and summep semons ie not<br />

significant, especially so over central Hhaiayas. Examinatiosi <strong>of</strong> snow cover<br />

over the valleys in these regions, therefore shows that the height <strong>of</strong> the<br />

snowline is generally between 3.5 -5.0 Kms. The contribution <strong>of</strong> anw-mdt to<br />

the water discharge <strong>of</strong> rivers in these regions e m therefore be expected to<br />

be less than that in the western Himalafraa.'<br />

3. EsTmIDN OF RAINFALL DURmG THE SOUl!ME3T MNSOON SEASON<br />

3.1 In recent pars the satellite iimgeries bave been increasi~gly<br />

used to derive the relatianship Wween the cloud pattelas and the WcipittLtion<br />

distribution over the data sparse areas <strong>of</strong> tropics. In India an early<br />

attempt was made by Hulshrestha and Gupta (4) to st* the rainfall. and oled


patten associated <strong>with</strong> the mansoon depression. The nephandpis prepared by<br />

U.S. Weather Bureau were &tilb& by B-tt (5) to estimate the maithly rainfa<br />

in the Australian Region. The radiation data <strong>of</strong> TïBIS III waa utilised<br />

by &inbird (6) to derive the relatimmkip betuetm the height <strong>of</strong> clorid topa and<br />

precipitation depths. Similar studies for rainfall estimates have elso been<br />

conducted in &her parks <strong>of</strong> the globe.<br />

3.2 Tn order to establish a reasonably valid relation between the<br />

instantaneous eateììite cloud picture and the averxe areal precipitation over<br />

a particular area, it ha~ to be ensured that the particular clouds together <strong>with</strong><br />

their pattern will have an influence an the precipitation which we are trying to<br />

estimate and there will be no other significant development or changes which will<br />

&e our inference invaìid. B is also necessary to avoid atleast at the first<br />

instance local peculiarities like the existence <strong>of</strong> marked features <strong>of</strong> orography,<br />

so that the important factor that influences precipitation over the area is<br />

mostly the clouds and their patterns. As already explaincd at paras 1.4 and<br />

1.5 ahove, we have therefore chosen occasions <strong>of</strong> rainstom o<strong>nl</strong>y during the<br />

monsoon seaon.<br />

3.3 The =A-9 cloud pictures (taken around 0900 Carr) covering our<br />

regimi for the 1969 and 1770 mansoon seasons were examined in conjmction <strong>with</strong><br />

the hrs rainfall record at 0300 GMP <strong>of</strong> next day. This has lad to develop<br />

ment <strong>of</strong> the foilowing relations between cloud characteristics and mera<br />

average precipitation range.<br />

Table 2<br />

S.luo. Cloud cover Organisation and1 Aerial distribu- Probable range <strong>of</strong><br />

or appearance tion <strong>of</strong> rainfa 2L+ hr rainfall in cms.<br />

7. Overcast<br />

2. -ao-<br />

3. Broken to<br />

overcast<br />

4. ao-<br />

5. Scattered<br />

NO organisation<br />

smooth stratiform<br />

appearance.<br />

widespread<br />

ûrganised spiralling<br />

bands, convect ive<br />

appearance.<br />

&+<br />

Convect ive Fairly widebands<br />

spread along<br />

the bands<br />

Mai<strong>nl</strong>y stratiform<br />

<strong>with</strong> embedded bright<br />

convective patches<br />

Fairly widespread<br />

a) convective<br />

appearance<br />

Scattered<br />

b) stratiform scattered<br />

appearance.<br />

1-3 cma<br />

237<br />

7-12 C ~ S<br />

<strong>with</strong> scattered<br />

falls 712 C ~ S<br />

7-12 C ~ S<br />

1-3 cme <strong>with</strong><br />

scattered falls<br />

<strong>of</strong> 6 6 cas.<br />

4-6 c m<br />

1-3 ciü~


238<br />

The probability range <strong>of</strong> 26 hour rainfall given in the abme table are in accordance<br />

<strong>with</strong> the criteria followed k? the Mia Meteorological Department to<br />

define the rainfall oharacteristics as moderate, rather heavy, heavy wd very<br />

heavy <strong>with</strong> precipitation ~IIIOUWLS k? the range <strong>of</strong> 1-3, &6, 7-12 and more than<br />

12 cms respectively. I3 will be seen from the taDie that while the organised<br />

convective clod bands can cause the rainstonas, the stratiform clou3s give<br />

widespread moderate rains .<br />

3.4 M a r a Aypm et al (7) Sttdied two rainStroma which 00curr.d<br />

during the south-west mcmaoon season <strong>of</strong> 1970. One <strong>of</strong> these waa over the<br />

eastern ottar Pradesh and was <strong>of</strong> two day8 duration i.e. 14-15 September. Tt<br />

caused floods in the River Ganges and its tribuLaries. The other rainstorm<br />

atxurred an 5-7 September 190 and cawed severe flocrds in the Nmda basin.<br />

Abbi et ai also studied (8) the I&- storm. These rainstom were aastxfated<br />

<strong>with</strong> well marked monsoon depressions, fn the fomer case the depression w m<br />

more or less dation- wer the area during these two dap before recurving ki<br />

a northerly direction. The later depression followed a track which was aïmg<br />

the river basin, The ESSA-9 Satellite pictures correspondhg to rainstmms<br />

recorded on the above dates am shown at f- 2 to 6.<br />

3.5 The fht step in the process <strong>of</strong> estimation <strong>of</strong> 24. hour rainfell<br />

mer any partbular area ia an &hatian <strong>of</strong> the relative wupied by<br />

differed typa <strong>of</strong> clomis, mhly brlgkt commative and i3ttratifonn. For thie<br />

p ~ o san e overlay consisting <strong>of</strong> a fine mesh grid was prepared. By placing<br />

this mer the clod pictures and couabhg the nmber <strong>of</strong> squi3.e~ occupied by the<br />

&ove types <strong>of</strong> CloudEl ia the overall area under consideration, the relative<br />

areas occupied by different typa <strong>of</strong> clouds were obtained. These relative<br />

areas were muïtiplled by a factor <strong>of</strong> 10 in the caere <strong>of</strong> bright convective and<br />

by 0 in the case <strong>of</strong> stratiform. Tbe total number thus Mved for the area<br />

der consideration represents the average 2&hr rainfall over the area.<br />

Estimates <strong>of</strong> 24. hr. rainfail derived from satellite cloud pictures<br />

and corresponding values obtained from isohyetal anaiysis <strong>of</strong> actual rainfail<br />

recorded are given bdw at Tables 3 and 4.<br />

Date <strong>of</strong><br />

satellite<br />

picture<br />

13-6-70<br />

1&%70<br />

Table 3<br />

Bright Stratiform<br />

cìouä type cio&<br />

coverage coverage<br />

Dtiniated -rial Precipitation<br />

average 24. hour in cms an tim<br />

rainfa in cms basis <strong>of</strong> is<strong>of</strong>or<br />

1,8O,ooO sq.hs hyetal maw<br />

for 1,4D,ooO eq.<br />

a$<br />

8%<br />

rsra<br />

75%<br />

43 5mo& = 50.9<br />

100<br />

-0<br />

L.0<br />

7 05


Table 4<br />

239<br />

Date <strong>of</strong> Total Bright Stratiform &sthated aerial Precipitaticm in<br />

satellite cloid cioud type COVB- average 24. hoar cmie on the besi8<br />

Pictun, aoverage ccmer.!ì%e rage, rainfall in cm <strong>of</strong> isokyetal mapa<br />

for 2,30,0ClOaq.Kmc1 for 2,00,000<br />

sq. Elms,<br />

4-Cp70 33% 2s %<br />

5-9-70 93%<br />

6-9-70 65%<br />

75% 15%<br />

Z3QMZZ= 100 2.9 483<br />

389[10*27112 100 4.3<br />

3s Bi can be seen from the above table that the average aerid rain-<br />

fall estimiatea from the satallite cloud pf.ctms apee fairly well <strong>with</strong> the<br />

precipitatia depth8 b@ed 011 isohyetal anSlyeiaJ The value6 esthter3 in the<br />

case <strong>of</strong> rainstrom over Utta Pradesh are hadever found on the higher e2de where-<br />

as estimates in cae <strong>of</strong> Narmeda basin ~zle lai=,' Thia will sugg8st that the<br />

multiplloation factors appïieä for esthatuig the & hr rainfall. will differ<br />

from catchment to catchment,' Thia ie understandable because local factors<br />

pïey an import& roli in the amount <strong>of</strong> precipita'cion that c m actuall;g be<br />

redised from a particular type <strong>of</strong> cloud.<br />

While the resdts indicate that thi8 approach is prOimiahg we have yet<br />

to establish by applying the above criteria to many more s fma th& the fac-<br />

tors are valid,'<br />

4. CûNCLUS1DMS<br />

This preliminary study has shown that Satellite cloud pictures can<br />

be utilised for estimating the 2+hr rainfall which can be utilised for<br />

arriving at atleast preliminary estimate <strong>of</strong> river discharge for initial<br />

decision making in flood foreoasting.<br />

cloud pictures @trimI reasonable estimates <strong>of</strong> smw cover and snow line for<br />

utiilisation in t h esti.mates <strong>of</strong> snow-melt contribution to river<br />

dia charge ,<br />

8.0<br />

337<br />

It is also encouraging that satellite


240<br />

1, -ta, M.G, and Abbi, S.D.S(l9"l). ABsessmmt <strong>of</strong> water flow in<br />

river Sutlej by Satellite Pictures, Vayu kdal, V0l.l No.3,<br />

1 13-1 17.<br />

2.1 Srhivasan, U and Fiaman,S. (1 972). Satellite Pictures in the<br />

etudy <strong>of</strong> sntm hydrology mer Western Himalayas, Indian ~ J.bt.<br />

&phSeiCs., vo1.23 No.3, Pp.335-3.44e<br />

3, The beet <strong>of</strong> Nimbus (1 VI) %P. Prepared for W4, Goddard<br />

Space Flight Center, lularyland, contract No. NAS 5-10343<br />

u Kubhreetha, S.M. and Gupta, M.G. (1 964). SataUite &My <strong>of</strong><br />

an in&&wnsoon depression, Indian J .Met .Geoph'rs. , Vol.15,No0.2,<br />

pp. 175-182.<br />

5. Barrett, &C(1%0). The estimation <strong>of</strong> monthïy rainfail from<br />

satellite data, Mon.üeath.Rev., Vol.%, No.4, pp.322-327,<br />

6. Rainbird, A.F. (1 969). Some poterrtial amlicatiane <strong>of</strong> meteorological<br />

satellites in flood forecasting, Hydrological Forecasting,<br />

W.M,O. Tech. Note No.92, pp.73-80.'<br />

7;Harihara mar, P.S., Abbi, S.D.S. and Hem ñaj (1971)<br />

Rainfall and floods during 1970 southwest monsoon period,<br />

mdim J,M&.GeO&yS., Vol228 k.1, m.141-1@<br />

8. Abbi, S.D.S et al (1972). RainfaU study <strong>of</strong> the unprecidented<br />

fïoods <strong>of</strong> September 1970 in the Marmaäa basin, Mekeomlcytical<br />

Monograph, Hydrolowfio,-2/1 972,


FIGURE-1<br />

ESSA-9 PICTURE OF JUNE9,1969 SHOWS THE 5NOW<br />

COVERED MOUNTAIN RANGES OF NORTHERN AND<br />

WESTERN HIMALAYAS. DUE TO THE MELTING 8F SNOW<br />

FROM THE LOWER VALCEYSj MANY RIVER COURSES<br />

ARE VISIBLE IN THE PICTURE.<br />

241


24 2<br />

F IGURE-2<br />

ESSA-9 PICTURE OF SEPTEMBER 4,1969. AREA<br />

CONSIDERED FOR ESTIMATION OF AERIAL 24-<br />

HOUR RAINFALL IS SHOWN BY BLACK LINE.


FIGURE -3<br />

ESSA-9 PICTURE OF SEPTEMBER 5,1969. AREA<br />

CONSIDERED FOR ESTIMATION OF AERIAL 24-<br />

HOUR RAINFALL IS SHOWN BY BLACK LINE.<br />

243


244<br />

FIGURE - 4<br />

ESSA-9 PICTURE OF SEPTEMBER 6,1969. AREA<br />

CONSIDERED FOR ESTIMATION OF AERIAL 24-<br />

HOUR RAINFALL IS SHOWN BY BLACK LINE.


FIGURE- 5<br />

ESSA-9 PICTURE OF SEPTEMBER 13, 1969. AREA<br />

CONSIDERED FOR ESTIMATION OF AERIAL 24-<br />

HOUR RAINFALL IS SHOWN BY BLACK LINE.<br />

245


24 6<br />

FIGURE - 6<br />

ESSA-9 PICTURE OF SEPTEMBER 14, 1969.<br />

AREA CONSIDERED FOR ESTIMATION OF<br />

AERIAL 24-HOUR RAINFALL 15 SHOWN BY<br />

BLACK LINE.


THE USE OF SIMULATION TECHNIQUES, ESPECIALLY DESIGNED FOR<br />

DATA-SCARCE AREAS STATISTICAL METHODS AND DATA OPERATIONS<br />

Introduction<br />

General Report<br />

by<br />

Ivan C. James, II<br />

U.S. Geological Survey<br />

Simulation is not new to the field <strong>of</strong> water resources<br />

system design. The mass-curve analysis devised by W. Rippl<br />

ninety years ago continues in use as a graphical-simulation<br />

methodology for reservoir sizing. Allen Hazen made a lasting<br />

contribution to reservoir design techniques sixty years ago by<br />

introducing the concept <strong>of</strong> a probability distribution <strong>of</strong> annual<br />

<strong>with</strong>in-year storage requirements. Following this, there were<br />

few substantial changes in water resources design techniques<br />

until the potential <strong>of</strong> the synthesis <strong>of</strong> operations research,<br />

and the then newly developing digital computers were recognizea<br />

in water resources planning and design. Within this last twenty<br />

years following this synthesis there has been an explosion in<br />

the size and number <strong>of</strong> directions <strong>of</strong> water resources research.<br />

Simulation has continued to be a widely used planning and<br />

design tool. The advent <strong>of</strong> high level programming languages<br />

and the continuing increases in processing rates <strong>with</strong> each new<br />

computer'generation has made it feasible to simulate systems <strong>of</strong><br />

an incredible complexity. Simulations have been performed to<br />

test the responses <strong>of</strong> large scale river basin developments,<br />

salinity control projects, aquifers, estuaries, and stream-<br />

aquifer systems to changes in design and operating variables,<br />

just to name a few applications. Current efforts to simulate<br />

world-wide weather systems will dwarf these aforementioned<br />

simulation studies in terms <strong>of</strong> computations and data require-<br />

ments.<br />

Indeed, maybe we should stop to question this growth in<br />

comp1exit.y <strong>of</strong> simulation models. Have the requirements <strong>of</strong> our<br />

models outstripped the growth <strong>of</strong> our data base? Has the ability<br />

to build complexity and "realism" into our model$ exceeded our<br />

ability to interpret the results and make useful decisions from<br />

them? The answers to these questions depend upon one's objec-<br />

tive framework. I would argue that from the viewpoint Of economic<br />

efficiency, the first question presents a well posed, though not<br />

necessarily mathematically trivial problem. Some <strong>of</strong> the papers<br />

<strong>of</strong> this very symposium are providing encouraging, though somewhat<br />

limited, results on the question <strong>of</strong> optimal amounts <strong>of</strong> informa-<br />

tion for decision problems. The second question has much less<br />

<strong>of</strong> an analytical foundation. Marginal benefits from increasing<br />

the complexity <strong>of</strong> a model cannot be estimated if it is not known<br />

that the increase in complexity is converging to the "true<br />

nature" <strong>of</strong> the process being modeled. Perspective on this point<br />

might be increased by recalling the title <strong>of</strong> Tocher's book,<br />

The Art <strong>of</strong> Simulation. U<strong>nl</strong>ess the field <strong>of</strong> general systems theory<br />

develops some applied branches, the construction and evaluation<br />

<strong>of</strong> simulation mdoels will remain an art.


248<br />

Large scale rivex bssin simulation models require hydrologic<br />

input traces at many points. Additionally, there may also be<br />

requirements for other hydro-metrological input traces such as<br />

temperature, salinity, precipitation, solar insolation, and wind<br />

speed. In order for the response <strong>of</strong> the simulation model to be<br />

similar to that <strong>of</strong> the real system, generated input traces must<br />

maintain statistical relationships among themselves as are found<br />

in the natural data.<br />

Long complete natural records would be ideal, but are not<br />

<strong>of</strong>ten available. In the more typical case there is a mixture<br />

<strong>of</strong> record lengths and record quality, and not unusually the<br />

entire absence <strong>of</strong> a needed record. Even where all records cover<br />

a concurrent base period, the realization <strong>of</strong> the process during<br />

that period may exhibit such a pathologically singular behavior<br />

that a deterministic design using those data would be unwise.<br />

The problem, then, is to go from short records <strong>of</strong> varying<br />

lengths to long records. In doing so, one must establish a<br />

criterion for comparison among alternative techniques for infill-<br />

ing and generation <strong>of</strong> records. Philosophically we might use as<br />

a criteria the requirement that the decisions that are based on<br />

the simulation be the same as if long ,natural records were avail-<br />

able. This criterion is not measurable and hence the usually<br />

accepted proxy ha y/b5?n3jhe maintenance <strong>of</strong> low order moments<br />

and correlations.- - - More recently it has been suggested<br />

that other statistics might be pertinent to some design situa-<br />

tions.41 ?/ 61 :/ The nurst coefficient is one <strong>of</strong> these which<br />

may have importance for the design <strong>of</strong> long term storage carry-<br />

overs .g/<br />

There are a large number <strong>of</strong> uncertainties to be considered<br />

in the planning and design process. Uncertainties <strong>of</strong> the future,<br />

such as population, demand, technology, personal preferences,<br />

political choice, and hydrologic outcome plague us. As hydrolo-<br />

gists, we have tended to concentrate upon this latter source <strong>of</strong><br />

uncertainty <strong>with</strong>out a good perspective <strong>of</strong> our limited input<br />

into the total decision making process. Even in dealing <strong>with</strong>in<br />

our domain <strong>of</strong> hydrologic uncertainty, we can further subdivide<br />

this into the inherent stochastic uncertainty <strong>of</strong> the future<br />

events and our misspecification error in modeling the process.<br />

Making optimal decisions in the face <strong>of</strong> the inherent<br />

stochastic nature <strong>of</strong> the process is the justification for our<br />

detailed analysis and study <strong>of</strong> these processes; however, there<br />

are numerous opportunities for the introduction <strong>of</strong> the misspeci-<br />

fication error in this process. Let us list a few:


1.<br />

2.<br />

3.<br />

4.<br />

Failure <strong>of</strong> the simulation (design) model to capture<br />

the relevant characteristics <strong>of</strong> the real-world system.<br />

Failure <strong>of</strong> the decision process to optimize the objec-<br />

tive.<br />

Selection <strong>of</strong> an inappropriate or incorrect model for<br />

generating the input to the simulation.<br />

Sampling errors for the parameters <strong>of</strong> the flow<br />

generating models.<br />

The papers <strong>of</strong> this session must be evaluated primarily <strong>with</strong><br />

respect to these last two sources <strong>of</strong> error. The other sources<br />

<strong>of</strong> uncertainty should still be kept in mind.<br />

Review and Summary <strong>of</strong> Papers<br />

S. H. Charania Extension <strong>of</strong> Run<strong>of</strong>f Records for Small Catchments<br />

in Semi-arid Regions.<br />

249<br />

The Thomas-Fiering model is used for generation <strong>of</strong> synthetic<br />

monthly streamflow traces for two small catchments, one the<br />

Wakefield River in Australia, and the other the Kongoni River<br />

in Kenya. Transforms are applied to the streamflow data until<br />

the resulting values are approximately normally distributed.<br />

For the Wakefield River, the transform is the log <strong>of</strong> the square<br />

root <strong>of</strong> the flow.<br />

The generation <strong>of</strong> normally distributed random number6 is<br />

accomplished by a rather unusual technique. The area under the<br />

normal distribution is divided into 100 equal sub-areas by ver-<br />

tical lines. The average distances to each <strong>of</strong> these two bound-<br />

aries on each sub-area are tabulated for selection by use <strong>of</strong> the<br />

computer generated uniformly distributed random number. More<br />

commo<strong>nl</strong>y used methods include averaging a number <strong>of</strong> uniformly<br />

distributed random numbers to approximate normalcy, or normaliz-<br />

ing transforms such as the sine-cosine and Haddamard matrix<br />

transformations.<br />

Statistics <strong>of</strong> generated flows are checked. On the two<br />

streams tested, 23 <strong>of</strong> the 24 monthly means and 19 <strong>of</strong> the 24<br />

monthly standard deviations <strong>of</strong> the generated data fall <strong>with</strong>in<br />

the 95% confidence intervals. Skewness and kurtosis are appar-<br />

ently less weìl preserved.


250<br />

M. J. Ilamlin and N. T. Kotteyoda The Preparation OZ a Data Set<br />

for Hydrologic System Analysis<br />

Development <strong>of</strong> the water resources <strong>of</strong> the Wye and Severn<br />

River basins required a large scale simulation model. Genera-<br />

tion <strong>of</strong> input data for the simulation model was difficult due<br />

to widely varying record lengths and the necessity <strong>of</strong> adjusting<br />

records from the gaging site to the sites <strong>of</strong> potential interest.<br />

Additionally, it was felt necessary to generate daily flows.<br />

This was accomplished by first generating five day average flows<br />

and then disaggregating this into the five daily flows which<br />

would approximately maintain the relevant statistics.<br />

Development <strong>of</strong> records for the base period required:<br />

1.<br />

2.<br />

3.<br />

4.<br />

5.<br />

6.<br />

adjustments to natural conditions <strong>of</strong> regulated<br />

records.<br />

adjustments <strong>of</strong> short records to a base period.<br />

adjustments to another point on a stream based on<br />

drainage area and effective rainfall ratios.<br />

combinations <strong>of</strong> the above methods.<br />

construction <strong>of</strong> entire records at ungaged sites based<br />

on drainage and effective rainfall ratios applied to<br />

nearby streams. (Note: No stochastic component<br />

was added.)<br />

construction <strong>of</strong> records by summing lagged upstream<br />

records and making the usual ratio adjustments.<br />

(Note: No attenuation was used.)<br />

These adjusted base period records consisted <strong>of</strong> a long sequence<br />

<strong>of</strong> pentad (5-day average) data at all points <strong>of</strong> interest.<br />

All extensions <strong>of</strong> records to the base period are based<br />

upon a bivariate synthesis using one <strong>of</strong> the two long term sta-<br />

tions as the independent variable. The model is designed to<br />

maintain the seasonal means and standard deviations and the<br />

serial and cross correlation coefficients. It might be noted<br />

that this method does not maintain cross correlations between<br />

sets <strong>of</strong> extended records. For a simple example, note what<br />

happend when two stations X and Y are extended based on a<br />

station 2. Without loss <strong>of</strong> generality let all means be zero<br />

and all variances unity. Then:


Y = p 2 4. (1 - P&) l/Z 6<br />

Y=<br />

where E, 6, are NIID(0,l). The cross correlation between X and<br />

Y is then:<br />

The cross correlations generated by the authors is represented<br />

by the first term on the right hand side, while the physically<br />

possible values are defined by the equation for all -1 p 6 5 ~ 1.<br />

I doubt that the last word is in on the data infilling question,<br />

but the method <strong>of</strong> Crosby and Maddock?/ looks promising.<br />

251<br />

A nbmber <strong>of</strong> other ad-hoc procedures were used to maintain<br />

certain characteristics. The higher correlation <strong>of</strong> lowflows<br />

was approximated by selecting a threshold value below which the<br />

correlation was increased. Crossing properties were maintained<br />

by adjustment <strong>of</strong> the skew coefficient to higher values than<br />

found in the historical data. Daily data was obtained by<br />

interpolation and noise addition on the pentad data.<br />

The authors propose generating synthetic records by first<br />

generating records for the two major long term stations and<br />

then infilling the other records using the base period statis-<br />

tics.<br />

Roberto L. Lenton and John C. Schaake, Jr. Potential Application<br />

<strong>of</strong> Bayesian Techniques for Parameter Estimation <strong>with</strong> Limited Data<br />

The authors review the use <strong>of</strong> Bayesian techniques for parameter<br />

estimation. Bayes theorem is a formalism for incorporating a prior<br />

probability distribution <strong>with</strong> sample information to achieve a posterior<br />

probability distribution which gives appropriate weights to<br />

both the prior and sample information. Prior distributions aan üe<br />

constructed from subjective judgments, information transfer, or<br />

a combination <strong>of</strong> these.<br />

Bayesian decision making requirea the selection <strong>of</strong> an action<br />

such that the expected loss <strong>of</strong> utility is minimized. Thus, loss<br />

functions must be constructed for the parameters <strong>with</strong> probability<br />

distributions.<br />

An example <strong>of</strong> reservoir sizing using u first-order autore-<br />

gressive model is given. A beta distribution was fitted to serial<br />

correlations ùerived from 140 rivera <strong>of</strong> the world. Diffuse prior


252<br />

probability distributions were assumed for the two parameters whici<br />

contained information on the first two moments <strong>of</strong> flow. The Bayes<br />

estimator is compared to maximun likelihood estimators for several<br />

sample record lengths under an assumed quadratic loss function.<br />

As Bayesian techniques come into more use in hydraulic design<br />

there seem to be some remaining questions <strong>of</strong> the method <strong>of</strong> their<br />

use. Selecting a data base prior as the authors did should con-<br />

sider more <strong>of</strong> the physical makeup <strong>of</strong> the basin because invariably<br />

the size, shape, and geology should tell one that there is more<br />

to be known about the basin correlation structure than that given<br />

by the worldwide distribution. If working in a smaller region,<br />

one must also consider that his sample and the data upon which<br />

the prior was based suffer from similar time sampling biases due<br />

to interstation correlation.<br />

M. E. Moss and D. R. Dawdy Stochastic Simulation for Basins<br />

<strong>with</strong> Short or no Records <strong>of</strong> Streamflow<br />

The authors show the application <strong>of</strong> a first-order auto-<br />

regressive-moving-average (ARMA) model to the generation <strong>of</strong><br />

streamflow record for reservoir design. The method is partic-<br />

ularly applicable where no records exist, but regioiial rela-<br />

tionships can define the mean5 and variances <strong>of</strong> monthly flow,<br />

and the means and variances <strong>of</strong> monthly effective basin precip-<br />

itation. The mean design size as determined by the use <strong>of</strong> the<br />

sequent-peak algorithm on fifty synthetic records <strong>of</strong> 58 years<br />

length is found to be essentially the same as that determined<br />

from the historical record <strong>of</strong> the same length.<br />

The paper also demonstrates an example <strong>of</strong> a seemingly<br />

growing area <strong>of</strong> research in hydrologic model building. This<br />

area is characterized by a synthesis <strong>of</strong> ideas from determinis-<br />

tic model builders on how the components <strong>of</strong> a basin's hydrol-<br />

ogy should operate <strong>with</strong> stochastic modeling techniques. Note<br />

how the assumption that the basin releases base flow as a<br />

linear reservoir allows for the model parameters t.> be estimated<br />

as functions <strong>of</strong> precipitation parameters.<br />

One difficulty in using the model comes from its requirement<br />

for means and variances <strong>of</strong> effective monthly basin precipitation.<br />

These data are not among the commo<strong>nl</strong>y available weather records.<br />

Mean and variance <strong>of</strong> total monthly point precipitation are, or<br />

could be, mapped for many reqions; however, the reduction <strong>of</strong><br />

these values to the model input parameters would require adjust-<br />

ments for basin size and probably also basin shape and orienta-<br />

tion <strong>with</strong> predominant st.orm paths. This obstacle could be<br />

economically surmounted if the model was to be used extensively<br />

in one region.


T. A. McMahen and R. G. Xein Storage Yield Estimated <strong>with</strong><br />

<strong>Inadequate</strong> Streamflow Data<br />

A seventeen year streamflow record is extended using a<br />

modified Boughton rainfall-run<strong>of</strong>f model and an 84 year daily<br />

rainfall record. Gould's stochastic model is applied to the<br />

extended record to determine storage requirements.<br />

Boughton's model is similar to several other rainfall-<br />

run<strong>of</strong>f models, being <strong>of</strong> the conceptual-component type. Infil-<br />

tration, evapotranspiration, surface run<strong>of</strong>f and groundwater<br />

components are computed as functions <strong>of</strong> storage in the three<br />

conceptual zones <strong>of</strong> interception storage, uppersoil storage and<br />

lower soil storage. The lower soil storage zone is subdivided<br />

into two subzones, each <strong>with</strong> baseflow discharges to obtain a<br />

base flow <strong>with</strong> a double recession constant. The nine model<br />

parameters are estimated by a standard function minimization<br />

procedure using the split sample technique such that one-half<br />

<strong>of</strong> the rscord is used for calibration and the other one-half<br />

for estimation <strong>of</strong> the fitting error. The criterion to be<br />

minimized in the calibration procedure is not stated.<br />

The relative information content is checked to show that<br />

there is a gain <strong>of</strong> information about the mean due to the exten-<br />

sion. It would seem that storage requirements are also sensi-<br />

tive to the variance and serial correlation. The information<br />

content <strong>of</strong> these statistics were apparently not checked.<br />

253<br />

Reservoir capacity for 50% and 90% drafts <strong>with</strong> 5% chance<br />

<strong>of</strong> failure were made <strong>with</strong> Gould'c stochastic storage model.<br />

A comparison <strong>of</strong> these results <strong>with</strong> those obtained by behavioral<br />

analysis (reservoir routing) <strong>of</strong> the synthesized flow record<br />

gives similar results at the 50% level <strong>of</strong> development <strong>with</strong>out<br />

correction for the effect <strong>of</strong> serial correlation, but a much<br />

smaller storage requirement for the Gould model (30% <strong>of</strong> behav-<br />

ioral value) at the 90% level <strong>of</strong> development. Correcting the<br />

Gould model for serial correlation increases the storage require-<br />

ment to 86% <strong>of</strong> the behavioral value.<br />

The authors attribute the remaining discrepancy to being<br />

beyond the range <strong>of</strong> the serial correlation correction procedure.<br />

At such a high level <strong>of</strong> development, some hydrologists might<br />

argue for models <strong>with</strong> higher persistence than the lag-one<br />

Markov model.


254<br />

Pedro Porras G. and Alfredo Flores E. Stochastic Application in<br />

Ungaged Basins for Planning Purposes<br />

<strong>Water</strong> resources planning is described as being dynamic.<br />

Feedback from each iteration can be used to define requirements<br />

for more detailed information. The first version <strong>of</strong> the National<br />

Plan <strong>of</strong> Development <strong>of</strong> <strong>Water</strong> <strong>Resources</strong> required an inventory <strong>of</strong><br />

surface run<strong>of</strong>f. The approach for the second version <strong>of</strong> the plan<br />

was stymied due to inadequate data, hence the application <strong>of</strong><br />

stochastic methods were tried.<br />

In designing these methods, several generalizations from<br />

the data were helpful. Some <strong>of</strong> the physiographic factors affect-<br />

ing precipitation were more influential on rainfall quantity;<br />

others were more influential in affecting the distribution <strong>of</strong><br />

precipitation throughout the year. Ratios <strong>of</strong> monthly to annual<br />

precipitation were <strong>of</strong>ten similar in different zones. Data<br />

deficiencies made the construction <strong>of</strong> monthly isohyetal maps<br />

a difficult task.<br />

All data were reduced to percent <strong>of</strong> the 10-year average at<br />

that station and grouped into four sets each <strong>with</strong> a 500 mm/yr.<br />

range in average precipitation. It was found in low rainfall<br />

areas that the variance increased <strong>with</strong> the mean rainfall, while<br />

there was no relationship at high rainfalls. In either case<br />

the Gumbel distribution was found to fit the data best.<br />

When the data were rescaled to common minimum and maximum<br />

values for the 10-year historical record, it was found that the<br />

cumulative marginal distributions were essentially the same.<br />

Thus monthly rainfall at ungaged sites was generated by use <strong>of</strong><br />

a transition process and rescaling <strong>with</strong> the 12 sets <strong>of</strong> maps <strong>of</strong><br />

monthly maximum and minimum values and map <strong>of</strong> average rainfall.<br />

For a given precipitation, the marginal distribution <strong>of</strong> evapo-<br />

transpiration was found to be normal. This provided a mechanism<br />

for generating irrigation requirements from the generated rain-<br />

fall. A two parameter model was used to compute monthly run<strong>of</strong>f<br />

from monthly rainfall. A computer program was written to carry<br />

out these computations for 2 minute-<strong>of</strong>-angle grid points on<br />

the maps.<br />

One point to which the authors may want to address some <strong>of</strong><br />

their comments is the use to which their results will be applied.<br />

The procedure they have described generates results indepen-<br />

dently at neighboring grid points. Thus some possibly important<br />

properties <strong>of</strong> the generated irrigation requirements such as the<br />

covariance among the grid points in a region are lost. This<br />

information may be <strong>of</strong> considerable importance when estimating<br />

the distribution <strong>of</strong> regional water demands.


Marcel Roche Standardization and Interpolation <strong>of</strong> Data for a<br />

Simulation Model<br />

255<br />

The author finds that it is necessary to review and<br />

recompute all records when constructing a base period set <strong>of</strong><br />

data for input to a sìmulation model. This involves obtain-<br />

ing the original gage-heights and applying the rechecked shift<br />

and datum corrections. Inspection <strong>of</strong> discharge rating curves<br />

and hydrograph cumparison <strong>with</strong> nearby stations provide addi-<br />

tional subjective checks on the quality <strong>of</strong> the records. Examples<br />

<strong>of</strong> substantial errors have been found using these methods.<br />

<strong>Water</strong> quality computations also require checking, although<br />

<strong>of</strong> a different nature. Often one must combine records derived<br />

from conductivity measurements as well as partial and complete<br />

chemical analyses. Precipitation records should be checked by<br />

double mass curve analysis for any systematic errors. Original<br />

records should be checked for random transcription errors.<br />

These operations are necessary to obtain monthly values <strong>of</strong><br />

these parameters for the period <strong>of</strong> record.<br />

The extension <strong>of</strong> these records to cover the base period may<br />

be accomplished hy using regression analysis. To preserve the<br />

variance, a random component must be added back onto the regres-<br />

sion estimate. This process, however, can produce negative<br />

flows and other problems. The author suggests instead estab-<br />

lishing a line <strong>of</strong> relation through the origin <strong>of</strong> the form y = Ax<br />

such that the variance is preserved.<br />

For some basins it is possible to improve the prediction<br />

<strong>of</strong> the missing data by including an index <strong>of</strong> local rainfall as<br />

a factor in the multiple regression. An intuitively reasonable<br />

rainfall index is a weighted sum <strong>of</strong> previous rainfall amounts<br />

where the weights decrease in some geometric progression <strong>with</strong><br />

time since the event.<br />

Variances <strong>of</strong> estimated salinities are preserved by empir-<br />

ically estimating the marginal distribution <strong>of</strong> salinities for a<br />

number <strong>of</strong> flow classes, and generating from the marginal distri-<br />

bution appropriate to the flow class.<br />

Finally, the problems <strong>of</strong> adjusting records from points <strong>of</strong><br />

collection to point <strong>of</strong> need, such as Hamlin and Kottegoda faced,<br />

must be solved. This is complicated by the necessity <strong>of</strong> main-<br />

taining an additional continuity relationship for the total<br />

dissolved load.


256<br />

Several <strong>of</strong> the pgints that the author brings up deserve<br />

some discussion. In the U.S., the annual computations <strong>of</strong> surface<br />

water records are rechecked and compiled after a five year accum-<br />

ulation. Thereafter it would be unusual to recover any remain-<br />

ing errors. Statistical interpretation <strong>of</strong> historical water-<br />

quality records in the U.S. has sometimes been difficult because<br />

the chemical analyses were done on composited samples. The exist-<br />

ence <strong>of</strong> several methods <strong>of</strong> compositing added to this difficulty.<br />

Have the hydrological services <strong>of</strong> other countries had this<br />

problem? The autiior admits to the inelegance <strong>of</strong> his practical<br />

techniques for maintaining variance, but one might also wonder<br />

if other unmaintained parameters such as the covariance prop-<br />

erties might be important to the decisions resulting from the<br />

simulation model.<br />

H. D. Charma, A. P. Bhattacharya, and S. R. Jindal The use <strong>of</strong><br />

Simulation Techniques for Sequential Generation <strong>of</strong> Short-Sized<br />

Rainfall Data and-its Application in the Estimation <strong>of</strong> <strong>Design</strong><br />

Flood<br />

The authors attack the problem <strong>of</strong>, synthetic generation <strong>of</strong><br />

the 6 one-hourly rainfall values for the maximum annual storms.<br />

These were then used for computing flood peaks which would<br />

presumably include worse conditions in the catchment than those<br />

experienced in the typically 10-20 years <strong>of</strong> record available.<br />

The historical data used were the 6-hour annual storms recorded<br />

at New Delhi in the 1956-1965 period.<br />

The rainfalls <strong>of</strong> an annual storm are assumed to result from<br />

an autoregressive process <strong>of</strong> the form:<br />

Xt = r<br />

+ t,t-1 Xt-l<br />

This model was used on the 10 years <strong>of</strong> data shown in table I to<br />

obtain the statistics shown in table II. Unfortunately, an<br />

error, possibly in programming, seems to occur in the generating<br />

model such that the process takes the form:<br />

X = E (E generated from a uniform distribution)<br />

1 1<br />

and<br />

- X = X t + r l < t L 6<br />

t,t-1 Xt-l<br />

hence, the o<strong>nl</strong>y variation <strong>of</strong> the hourly rainfall increments is<br />

introduced by way <strong>of</strong> El and the variance <strong>of</strong> any hourly increment<br />

is then:<br />

Et


where r<br />

1,Q<br />

E l<br />

and the variance <strong>of</strong> the total storm rainfall is<br />

This gives a variance <strong>of</strong> the totals <strong>of</strong> annual storms <strong>of</strong> about<br />

37 compared to the sample variance in the historical data <strong>of</strong><br />

about 430. This would seem a sufficient reason for the dis-<br />

crepancies between the historical and generated data shown in<br />

figures 2 and 3.<br />

Perhaps the authors could respond to the questions:<br />

1. Why was a uniform distribution selection for E ?<br />

1<br />

2. Why was no random component added on to each hourly<br />

value, independent <strong>of</strong> the other hourly values?<br />

J. H. Visser The Use <strong>of</strong> Stochastic Models in a Hydro-Agricul-<br />

tura1 Development Project in Lebanon<br />

257<br />

Consistent monthly temperature, rainfall, and streamfiow<br />

data were needed for a model used to simulate the operation <strong>of</strong><br />

an irrigation project. The purpose <strong>of</strong> the simulation model was<br />

to provide an economic evaluation <strong>of</strong> the project and a design<br />

sizing <strong>of</strong> the reservoir.<br />

The historical data consisted <strong>of</strong> several 30-year rainfall<br />

records, some 15 year temperature series, two 14-year and 13<br />

three-to-five-year streamflow series.<br />

The data generating mechanism has several features peculiar<br />

to the length <strong>of</strong> record and type <strong>of</strong> data being generated. Square<br />

root <strong>of</strong> precipitation and log <strong>of</strong> discharge were the transforma-<br />

tions chosen to approximately normalize the distribution <strong>of</strong><br />

these data. Strong annual but weak monthly correlations between<br />

precipitation and streamflow led the authors to the following<br />

method <strong>of</strong> monthly streamflow generation. Annual streamflows<br />

were first generated based on a regression <strong>with</strong> annual precipi-<br />

tation. An autocorrelated series <strong>of</strong> monthly flows is then


258<br />

generated and adjusted so that its sum is eque1 to Lhe previously<br />

generated annual flow. Temperatures are generated to maintain<br />

their serial correlation and a cross correlation <strong>with</strong> precipita-<br />

tion.<br />

For the short streamflow records, not enough data were<br />

available for estimation <strong>of</strong> the mean, variance, serial anã cross<br />

cross correlations for each calendar month. The monthly means<br />

were removed and this series extended on the basis <strong>of</strong> oqe <strong>of</strong><br />

the long term flow records which had been similarly transformed.<br />

J. R. Wallis and N. C. Matalas Relative Importance <strong>of</strong> Decision<br />

Variables in Flood Frequency Analysis<br />

The authors present interim results <strong>of</strong> a Monte Carlo simu-<br />

lation <strong>of</strong> the process <strong>of</strong> fitting flood frequency curves to data<br />

generated from known distributions. The ultimate objective,^ <strong>of</strong><br />

the study is the development <strong>of</strong> strategies for optimal selection<br />

<strong>of</strong> flood frequency analysis techniques given the loss function,<br />

length <strong>of</strong> record, sample flood statistics, and a prior distri-<br />

bution over possible frequency distributions for floods.<br />

The results presented by the authors are the probabilities<br />

<strong>of</strong> best fit <strong>of</strong> either the normal, log-normal, or Gumbel dis-<br />

tribution to data generated in every point in the experimental<br />

hyperspace:<br />

distribution: normal, Gumbel;/S;gTmal <strong>with</strong><br />

skew = 1/4, 1/2, 1, 1.14, 2, 2<br />

record length : 10, 30, SO, 70, 90 years<br />

plotting position: Weibull, Hazen<br />

fitting criteria: minimum sum <strong>of</strong> squares, minimum sum <strong>of</strong><br />

absolute deviations<br />

It should be noted here that probability <strong>of</strong> best fit is a measure<br />

<strong>of</strong> the flexibility <strong>of</strong> a distribution in fitting a set <strong>of</strong> data and<br />

gives neither a connotation <strong>of</strong> better fit to the distribution<br />

that generated the data nor any measure <strong>of</strong> how well the fitted<br />

distribution estimates the T-year flood.<br />

A quick glance at the results allows for some possibly<br />

interesting interpretations. The maximum probability <strong>of</strong> select-<br />

ing the correct distribution where the real world is normal<br />

comes from the use <strong>of</strong> the Weibull (W) distribution and the mini-<br />

mum sum <strong>of</strong> absolute deviations (MSAD) fitting criterion. Simi-<br />

larly if the real world is Gumble then selection <strong>of</strong> Hazen and


259<br />

MSAD for short records and Woibull-MSS (minimum sum <strong>of</strong> squares)<br />

for longer records gives the maximum probability <strong>of</strong> the under-<br />

lying distribution being <strong>of</strong> best fit. For all <strong>of</strong> the log-normal<br />

distributions, the MSS criteria <strong>with</strong> Weibull for short and Hazen<br />

for long records maximized this probability.<br />

What is apparent is that there is no dominant strategy for<br />

selection <strong>of</strong> plotting position and criteria. The selection <strong>of</strong><br />

these two factors then has an effect on the analysis to deter-<br />

mine the "best-fitting'' distribution. Perhaps the U.S. <strong>Water</strong><br />

<strong>Resources</strong> Council should wonder how the acceptance <strong>of</strong> the<br />

Weibull plotting position and the MSS criteria influenced<br />

their decision to use the log-Pearson type III distribution<br />

in flood frequency analysis.<br />

Discussions <strong>of</strong> the theoretical issues involved in the<br />

selection <strong>of</strong> a plotting position formula can be found in<br />

Langbei<strong>nl</strong>O/, Benson=/, and Appel=/.<br />

G.Weiss Shot Noise Models for Synthetic Generation <strong>of</strong> Multi-<br />

site Daily Streamflow Data<br />

This paper is another example <strong>of</strong> a synthetic gcnerating<br />

mechanism which has a physical interpretation. The shot noise<br />

process is a particular linear filtered Poisson process. For<br />

those familiar <strong>with</strong> unit hydrograph theory, the psocess may be<br />

described as the convolution <strong>of</strong> a negative exponential shaped<br />

hydrograph <strong>with</strong> a time series <strong>of</strong> rainfall events that have a<br />

Poisson occurrence and an exponential distribution <strong>of</strong> magnitude.<br />

This generating mechanism was selected to give a first-order<br />

autoregressive process which would reproduce recessions.<br />

Analytical resolutions <strong>of</strong> problems in parameter estimation<br />

and conversion from a continuous to a discrete-averaged time<br />

series are obtained. A generalization to two site generation<br />

is presented which maintains a cross-correlation. The general-<br />

ization to multiple sites is not given but could possibly be<br />

derived.<br />

Some shortcomings in the generated data required adjustments<br />

in the process. The skews were found to be too high, and the<br />

monthly variances too low. The suspected reason for these<br />

results was because the model did not consider the base flow<br />

component. A double shot noise process was developed which was<br />

the sum <strong>of</strong> two independent shot noise processes <strong>with</strong> different<br />

sets <strong>of</strong> parameters. One might imagine that this physically


260<br />

represents a surface run<strong>of</strong>f model superimposed on a base flow<br />

run<strong>of</strong>f model. The break in this line <strong>of</strong> physical interpretation<br />

comes because each process has a separate time series <strong>of</strong> pulses<br />

or rainfall. A more intuitive physical model might be one in<br />

which a fraction <strong>of</strong> the rainfall went into the surface run<strong>of</strong>f<br />

mechanism and its complement into the baseflow mechanism.<br />

I realize that this may complicate the parameter estimation<br />

problem. The author is invited to give his assessment <strong>of</strong> the<br />

problems and benefits from extending the model in this manner.<br />

Eric F. Wood Flood Control <strong>Design</strong> <strong>with</strong> Limited Data - A Compar-<br />

ison <strong>of</strong> the Classical and Bayesian Approaches<br />

Classical and Bayesian techniques are compared in the design<br />

<strong>of</strong> a flood control structure. The author makes two reasonable<br />

assumptions about the distribution <strong>of</strong> floods: (1) Floods above<br />

a base level can be assumed to occur as a Poisson process; and<br />

(2) The upper tail <strong>of</strong> many right-side unbounded frequency dis-<br />

tributions is approximately exponential. From these assumptions<br />

is derived an approximate cumulative probability function for<br />

the floods above the base level:<br />

where<br />

z = flood magnitude above the base level<br />

v = arrival rate <strong>of</strong> floods above the base level<br />

a = reciprocal <strong>of</strong> mean <strong>of</strong> floods above the base level<br />

t = time horizon<br />

This model is the basis for estimation by both the classical and<br />

Bayesian techniques.<br />

ln the classical technique, the parameters V and a are<br />

estimated by maximum likelihood techniques. This uses o<strong>nl</strong>y<br />

the site record and no other information.<br />

In the Bayesian technique, the parameters are estimated<br />

by first forming prior probability distributions on the param-<br />

eters based on regional studies and subjective judgement. Bayes<br />

equation is used to incorporate the sample information into the<br />

prior distribution to obtain a posterior distribution on these<br />

Parameters. Iii the example results <strong>of</strong> a regression analysis


261<br />

are used for estimating the parameters <strong>of</strong> the gamma-l prior<br />

distribution <strong>of</strong> (Y. Since large flood events are correlated,<br />

this method may underestimate the variance <strong>of</strong> (Y. Subjective<br />

judgement based on personal experience is assumed to provide<br />

the information for the parameters <strong>of</strong> the gamma-1 prior distri-<br />

bution <strong>of</strong> v.<br />

Caution should be exercised when interpreting the economics<br />

<strong>of</strong> the design application example. Note that these costs assume<br />

the particular model correct, and are not measures <strong>of</strong> efficiency.<br />

For example, at the optimum level <strong>of</strong> protection there is an<br />

equal marginal trade-<strong>of</strong>f between protection costs and damage<br />

costs; therefore, the evaluation <strong>of</strong> the design based on the<br />

classical model using the Bayesian model to estimate flood<br />

damages would give expected flood damages <strong>of</strong> less than the<br />

$7 x lo5 value resulting from the less expensive protection<br />

work designed on the basis <strong>of</strong> the Bayesian model.<br />

Bayesian decision theory as demonstrated in this example<br />

may have much merit as a tool for incorporating information<br />

from regional studies and small samples for decision making in<br />

data scarce areas.<br />

Summary<br />

Synthetic data generation for infilling and extension <strong>of</strong><br />

records is a difficult task when the analyst hac a mixture <strong>of</strong><br />

types, lengths, and quality <strong>of</strong> available historical data.<br />

The approaches developed by these authors attest to this<br />

variety <strong>of</strong> available data and to the various particular require-<br />

ments for input data <strong>of</strong> their simulation models and planning<br />

procedures. The literature is replete <strong>with</strong> examples <strong>of</strong> tech-<br />

niques developed for special problem applications.=/ =/ E/<br />

It was previously noted that in their data infilling and<br />

extension procedures several authors used methods which main-<br />

tained o<strong>nl</strong>y one <strong>of</strong> the relevane cross-correlations. Multisite<br />

synthetic data generation also has problems. Fierings/ dis-<br />

cusses some <strong>of</strong> the earlier attempts at overcoming the problem<br />

<strong>of</strong> inconsistent correlation matrices. More recent investiga-<br />

tions <strong>of</strong> this problem?/ =/ have led to serious questions<br />

about the feasibility <strong>of</strong> consistent parameter estimation for<br />

the more complicated flow generating models=/. F@r practical<br />

reasons, one must achieve a compromise between elegance and<br />

feasibility in these extension procedures.<br />

Difficulties remain in the problem <strong>of</strong> how much and <strong>of</strong><br />

what type <strong>of</strong> data are really needed for models used in decision


262<br />

processes. Decision theory tools have o<strong>nl</strong>y provided answers<br />

for simple and <strong>of</strong>ten analytic models. The extension <strong>of</strong> these<br />

tools into the pre-posterior 'analysis <strong>of</strong> data requirements for<br />

simulation models may be computationally prohibitive An example<br />

<strong>of</strong> an approach is given by Young, Tseng, and Taylore/-<br />

Moss and Dawdy, and Weiss have proposed essentially new<br />

statistic models which use some physical interpretation from<br />

the basin in parameter estimation. Is this to be a new emphasis<br />

in model research? Wallis and Matalas, McMahon and Meir, and<br />

Wood are interested in the sensitivity <strong>of</strong> model and analytic<br />

selection on design results. Does this question have any poten-<br />

tial for being answered? These and other questions deserve some<br />

discussion.<br />

In this short time, I have attempted to cover a few <strong>of</strong> the<br />

main points which the authors <strong>of</strong> the 12 papers have documented.<br />

These short synopses cannot do justice to the research and<br />

intellectual effort that was necessary in approaching these<br />

very pressing and practical problems. I urge each <strong>of</strong> you to<br />

read the papers. Perhaps this discussion can provide some<br />

insights that will be helpful in that task.<br />

<strong>of</strong><br />

1.<br />

2.<br />

3.<br />

4.<br />

5.<br />

To the authors I <strong>of</strong>fer my apology for any mistakes or errors<br />

either emphasis or interpretation.<br />

References<br />

Matalas, N, C., 1967, Mathematical assessment <strong>of</strong> synthetic<br />

hydrology, <strong>Water</strong> <strong>Resources</strong> Research, v. 3, no. 4, pp. 937-945.<br />

Fiering, M. B., 1965, Streamflow Synthesis, Harvard University<br />

Press, Cambridge, Mass. 139 p.<br />

Beard, Leo R., 1965, Use <strong>of</strong> interrelated records to simulate<br />

streamflow, J. Hydraul. Div., Amer. Soc. Civil Eng., 91,<br />

pp 13-22.<br />

O'Connell, P. E., 1971, A simple stochastic modelling <strong>of</strong><br />

Hurst's law: Proceedings <strong>of</strong> the International Symposium on<br />

Mathematical Models in <strong>Hydrology</strong>, Warsaw.<br />

Rodriguez-Iturbe, Ignacio, Jose M. Mejia, and David R. Dawdy,<br />

1972, Streamflow simulation 1. A new look at Markovian<br />

models, fractional Gaussian noise, and crossing theory:<br />

<strong>Water</strong> <strong>Resources</strong> Research, v. 8, no. 4, pp. 921-930.


263<br />

6. Mejia, Jose M., Ignacio Rodriguez-Iturbe, and David R. Dawdy,<br />

1972, Streamflow simulation 2. The broken line process as<br />

a potential model for hydrologic simulation: <strong>Water</strong> <strong>Resources</strong><br />

Research, v. 8, no. 4, pp. 931-941.<br />

7. Carlson, R. F., A. J. A. MacCormick, and D. G. Watts, 1970,<br />

Application <strong>of</strong> linear random models to four annual stream-<br />

flow series, <strong>Water</strong> <strong>Resources</strong> Research, V. 6, no. 4, pp.<br />

1070-1078.<br />

8. Wallis, J. R. and N. C. Matalas, 1972, Sensitivity <strong>of</strong> res-<br />

ervoir design to the generating mechanism <strong>of</strong> inflows:<br />

<strong>Water</strong> <strong>Resources</strong> Research, V. 8, no. 3, pp. 634-641.<br />

9. Crosby, D. S., and Thomas Maddock, III, 1970, Estimating<br />

coefficients <strong>of</strong> a flow generator for monotone samples <strong>of</strong><br />

data: <strong>Water</strong> <strong>Resources</strong> Research, v. 6, no. 4, pp. 1079-1086.<br />

10. Langbein, W. B., 1960, Plotting positions in frequency<br />

analysis in Dalrymple, Tate, Flood-frequency analyses:<br />

U.S. Geological Survey <strong>Water</strong> Supply Paper 1543-A.<br />

11. Benson, Manuel A., 1967, Average probability <strong>of</strong> extreme<br />

events: <strong>Water</strong> <strong>Resources</strong> Research, v. 3, no. 1, 225 p.<br />

12. Appel, Charles A., 1968, A note on the average probability<br />

<strong>of</strong> extreme events: <strong>Water</strong> <strong>Resources</strong> Research, v. 4, no. 6,<br />

1359 p.<br />

13. Moreau, David H., and Edwin E. Pyatt, 1970, Weekly and<br />

monthly flows in synthetic hydrology: <strong>Water</strong> <strong>Resources</strong><br />

Research, v. 6, no. 1, pp. 53-61.<br />

14. Pentland, R. L., and D. R. Cuthbert, 1971, Operational<br />

hydrology for ungaged streams by the grid square techniqumr<br />

<strong>Water</strong> <strong>Resources</strong> Research, v. 7, no. 2, pp. 283-291.<br />

15. Benson, M. A., and N. C. Matalas, 1967, Synthetic hydrology<br />

based on regional statistical parameters: <strong>Water</strong> <strong>Resources</strong><br />

Research, v. 3, no. 4, pp. 931-935.<br />

16. Fiering, M. B., 1968, Schemes for handling inconsistent<br />

matrices: <strong>Water</strong> <strong>Resources</strong> Research, v. 4, no. 2, pp. 291-297.<br />

17. Matalas, N. C., and J. R. Wallis, 1971, Correlation con-<br />

straints for generating processes: Proceedings <strong>of</strong> the Inter-<br />

national Symposium on Mathematical Models in <strong>Hydrology</strong>,<br />

Warsaw.


264<br />

18. Slack, J. R., 1972, Bias, illusion, and denial as data<br />

uncertainties: Proceedings <strong>of</strong> the International Symposium<br />

on Uncertainties in Hydrologic and <strong>Water</strong> <strong>Resources</strong> Systems,<br />

Tucson, Arizona.<br />

19. Young, G. K., M. T. Tseng, and R. S. Taylor, 1972, Data<br />

selection for environmental simulations - A water tempera-<br />

ture example: <strong>Water</strong> <strong>Resources</strong> Research, v. 8, no. 5,<br />

pp. 1226-1233.


ABSTRACT<br />

ETUDE DES RELATIONS PLUIE-DEBIT<br />

SUR TROIS BASSINS VERSANTS D'INVESTIGATION.<br />

Y. C OWRY - A. GUI LBOT<br />

Research basins are useful way to study hydrologic cycle<br />

On three <strong>of</strong> them,<strong>with</strong> areas between 109 and 250 km2,the<br />

authors have stablished a model relating rain and run<strong>of</strong>f<br />

This model is able to simulate mesured run<strong>of</strong>f series<br />

from rain series and provide a better understanding <strong>of</strong> hydrologic<br />

mechanisms at the scale <strong>of</strong> this basins.<br />

ïhis paper suggests a méthodology which,applied to many<br />

ba.sins,should permit the identification <strong>of</strong> the relations between<br />

the physical caracteristics <strong>of</strong> a basin and the model parameters<br />

identification which is necessary in order to apply this model<br />

to ungaged basins.<br />

RES UME<br />

Les bassins versants d'invectigatioh constituent en ecx<br />

mêmes un outil de recherche privilégié en ce qui concerne les<br />

mécanismes mis en jeu par le cycle hydrologique naturel.<br />

Sur trois d'entre eux.de superficie comprise entre<br />

100 et 250 km2,les auteurs ont établi un modèle de liaison pluie<br />

débits permettant la reconstitution des séries de débits observés<br />

à partir des séries concomitantes de pluie et autorisant une<br />

mellleure connaissance des mécanismes hydrologiques considérés<br />

A l'échelle de ces bassins<br />

L'approche du cycle hydrologique à nécessité diverses<br />

opérations telles que:<br />

-choix du schéma hydrologique et mise au point du modele<br />

-réglage du modele et mise au point d'an processus de<br />

determination numérique des parametres ,<br />

-vérification de la validité du modèle par comparaison<br />

aux séries obserdes tau niveau des caractéristiques statistiques<br />

des principales grandeurs hydrologiques'<br />

-étude de la convergence des méthodes d'optimisation en<br />

présence d'erreurs aléatoires sur les données d'entrées<br />

-analyse spatiale et temporelle des séries entrée-sortie<br />

(choix du pas de temps des entrées et determination du décalage<br />

pluie-débit par analyses spectrales)<br />

Cette étude définit une méthodologie générale d'utilisa-<br />

tion qui devrait permettre,à long terme,l'identification des<br />

relations liant les caractéristiques physiques d'un bassin et les<br />

parametres du modele,identification nécpssaire dans le ras d'ap-<br />

plication du modèle à des bassins non contrôlés<br />

COWRY Yves - Ingénieur<br />

Agronome - Laboratoire National<br />

d'Hydraulique E.D.F. - Pr<strong>of</strong>esseur Aesocié à l'Université des<br />

Sciences et Techniques du Languedoc - Montpellier (France)<br />

GUILBOT Alain - Ingénieur - Laboratoire d'Hydrologie -<br />

Université des Sciences et Techniques du Languedoc - Montpellier<br />

(France)


2 66 I. GENERALITES :<br />

Dans l'étude de la liaison pluie - débit,il s'agit<br />

d'élaborer généralement un modele, type "boite noire" qui:<br />

considérant la séries des pluies comme"entrée",permet d'obtenir<br />

une"s0rtie"concordant sensiblement avec la série chronologique<br />

concomitante des débits observés<br />

On peut alors envisager plusieurs types de modeleS.tels<br />

que les modeles linéaires classiques obtenus par corrélation,<br />

analyse multivariables,analyse factorielle..,,les modeles à<br />

élément central linéaire (basé sur l'hypothèse de l'hydrogramme<br />

unitaire) ou les modeles conceptuels qui,en quelque sorte,font<br />

la synthèse générale.<br />

La stucture d'un modèle conceptuel est fondée sur la<br />

connaissance ou la pseudo-connaissance des phénomenes en jeu<br />

dans le cycle hydrologique. .<br />

On suppose,par exemple,que les taux et les vitesses de<br />

transfert de l'eau de pluie par telle ou telle partie de cycle<br />

hydrologique sont asservis à l'état de remplissage de la zone<br />

correspondante par des fonctions à un ou deux parametres.<br />

La sortie résultante,en l'occurence la dérie des débits<br />

calculés,est comparée à la sortie observée daps le systeme réel,<br />

c'est à dire la série des débits observés à l'exutoire du bassin.<br />

Si la concordance ne semble pas satisfaisante,on modifia<br />

les psrametres des foictions des divers sous-systemes,jusqu'à<br />

obtenir une corredpondance satisfaisante entre les séries observées<br />

et calculées<br />

Ceci ne devrait etre fait,non pas dans le but d'un calage<br />

spécifique permettant d'obtenir l'hydrogramme d'un bassin<br />

particulier,mais dans l'optique d'une recherche de liens entre<br />

les valeurs des parametres du modele et les caractéristiques du<br />

bass in.<br />

I1 est donc nécessaire d'une part d'appliquer le même<br />

modèle à de nombreux bassins,d'autre part que tout modele conceptuel<br />

soit,au départ,aussi simple que possible et que des modifications<br />

ne lui soient apportées que sf la nécessité absolue apparaisse.(raisons<br />

physiques ou amélioration évidente de la reproduction)<br />

Un systeme simple,parceque dans un schéma élaboré,il<br />

y aura de fortes chances que le modele comporte deux sous-systeme<br />

tout à fait équivalents et il sera extremement délicat de lever<br />

l'indétermination sur l'attribution de la valeur des parametres à<br />

l'un ou l'autre de ces sous-systèmes,ensuite parceque seul un<br />

modele simple permettra l'identification parometres-caractéris-<br />

tiques du bassin et donc son utilisation sur des bassins non<br />

jaugés.


267<br />

II.LES BASSINS ET LES DONNEES:<br />

L'étude porte sur trois bassins expérimentaux présentant<br />

des caracteres morphologiques,géologiques et pédologiques<br />

bien différenciés.<br />

-le bassin de ia DIEGE,affluent de la DORDOGNE,<br />

d'une superficie de 225 km2.Géré par EDF depuis 1960 puis par<br />

le Laboratoire d'Hydrologie de l'université des Sciences et<br />

Techniques du Languedoc,c'est un bassin montagneux.,cristsllin,<br />

bien boisé et soumis à des influences océaniques et méditerranéennes.<br />

-le bassin de l'ORGEVAL,affluent du GRAND MORIN<br />

d'une superficie de 104 km2 Géré par le C.T.G.R.E.F(Ministere de<br />

l'Agriculture) depuis 1962,c'est un vaste plateau limoneux,coJver<br />

dans sa majeure partie de culture et soumis à des influences<br />

océaniques et continentales.<br />

-le bassin de l'HALLUE,affluent de la SOW-,<br />

d'une superficie de 219 km2.Géré depuis 1966 par le B.R.G.F,<br />

c'est un bassin de relief modér6,formé de craie recouverte de<br />

limon et principalement mis en culture.11 est soumis essantiel-<br />

lement à des influences océaniques.<br />

Ces trois bassins étant des bassins expérimentaur,les<br />

données étaient caractérisées d'uns part par un volume important<br />

d'informations disponibles,d'autre part par une qualité de l'enregistrement<br />

et du dépouillement (à de rares exceptions pres)<br />

Le choix d'une pluviométrie représentative fut fait,<br />

soit en fonction de nos propres connaissances du bassin(B.V de<br />

la DIEGE),soit en fonction des conseils de l'organisme de gestion<br />

(BV de i'OXGEV?,L),soit apres une analyse spatiale de ia pïuviom6triecB.V<br />

de 1'HALLUE).<br />

Le choix de l'indice d'ETP a,par contre,été mené de m2-<br />

niere quelque peu arbitraire et de façon indépendante pour les<br />

tois bassins ce qui semble une erreur,compte tenu de l'importance<br />

effective de sa variance interannuelle et de son niveau moyen<br />

Remarqueune méthode systématique de dépouillement a<br />

été mise au point et utilisée dans le cadre de cette étude.<br />

I1 s'agit de.traduire l'enregistrement pluviométrique<br />

ou limnimétrique dans un systeme (X,Y) sur machine D.MAC puis<br />

de transformer ces données"digita1isées en donées de pas de<br />

temps voulu (2h,10 mn..)<br />

III.LES MODELES:<br />

Dans le cadre d'une précédente étude,plusieurs mcdeles<br />

avaient été élaborés et testés par le Laboratoire.<br />

Trois d'entre eux ont été'retenus et rendus opérationnel<br />

Ce sont les modeles DIEGE.MER0 et CREC


268<br />

---- IV.LES METHODES EMPLOYEES:<br />

4.1.1:Méthodes des composantes principales appliquée à<br />

la détermination de la représentativité de l'.information pluviométrique<br />

:<br />

La méthode d'analyse en composantes principales permet<br />

de substituer k vecteurs X de n composantes corrélées entres elles<br />

à k vecteurs Y de p composantes indépendantes avec p


269<br />

4 . 2 s ~ :<br />

Les parametres des fonctions des divers sous-systemes<br />

des modeles fproduction,transfert) sont rarement déterminés a<br />

priori de façon précise.Nous avons accompli un effort tout particulier<br />

pour mettre au point une technique de détermination numérique<br />

de ces parametres,technique devant etre assez générale<br />

pour etre appliquée systématiquement 3 n'importe quel bassin en<br />

assurant une convergence réelle et rapide vers un optimum objectif.<br />

La méthodologie que nous proposons,testées initialement<br />

sur séries fictives,donc currespondsnt à une structure de modele<br />

et un jeu de parametres définis,semble particulièrement intéressante:<br />

1.Définition de la zone de variation de chacun<br />

des parametres (en fonction de la nature du bassin et des result<br />

ats des analyses préalables des séries d'entrées)<br />

2.Tirage au hasard,d'abord dans une loi uniforme<br />

puis dans une loi normale avec diminution de la variance<br />

de ia loi en cas de succes(ceci afin d'éviter Loe recherche systématique<br />

à partir d'un faux minimum)<br />

3.Recherche "direcre",avec rotation des axes<br />

de co~rdonnéos("nûCENaRû~~:.~.~c~erche séquentieiie effectuée successivefiient<br />

sur chacun des axes de coordonnées(correspondant<br />

chacun à un parametre) suivant un pas d'exploration modifié selon<br />

les échécs et les succes rencontrés.Si,dans toutes les directions<br />

ont a enregistré au moins un succes suivi d'un échec,on défini<br />

alors la nouvelle direction du premier axe comme étant celle<br />

joignant !e point initial et le point final.La direction des<br />

autres axes est obtenue par la méthode d'ortogonalisation de<br />

SCHMIDT.<br />

4.Recherche fine par ta méthode du gradient<br />

conjuguée (Powell) lorsque la précédente méthode ne converge<br />

que tres 1entement.La méthode de POWELL utilise la méthode des<br />

directions conjuguée mais modifie le procédé de base afin d'accélérer<br />

la vitesse de convergence vers l'optimum tout en définissant<br />

un processus de recherc!:e le long d'un axe.<br />

Ce dtverses méthodes appliquées en cascade permettent<br />

la réduction d'un critere d'écart cho.si afin d'assurer une<br />

reconstitution satisfaisante et homogene sur une période déterminée,(le<br />

critere choisi est de la forme<br />

1 IQobs-<br />

F = -5<br />

Qca$ IOobs - OmovPd<br />

9<br />

N Qobs moyen<br />

N étant le nombre de mois de la période,>de calage et Qmoyen le<br />

module de la période de calage<br />

Ce choix a été fait dans le hut de rendre préférentiels<br />

les écarts SUU les valeurs extrêmes.En effet,dans cette expressio<br />

plus on s'écarte duidébit moyen,plus l'écart relatif est pondéré<br />

par une valeur importante,et cela,aussi bien pour les faibles<br />

débits.que pour les crues.


270<br />

Exemple d'application de la méthode d'optimisation proposée<br />

En appliquant un jeu de paramètres à une série de données pluviométriques<br />

journalières, nous avons généré une série de débits fictifs journaliers<br />

à l'aide du modèle CREC.<br />

Nous nous sommes ensuite proposé de reconstituer cette série de<br />

débits en utilisant la méthode précédemment décrite.<br />

La réelle convergence de la méthode, tant au niveau de la fonction<br />

critère qu'au niveau des paramètres, semble montrer son efficacit6 dans le<br />

cas de séries parfaitement adéquates, sans erreúrs de mesure et avec un<br />

modèle vrai.<br />

x1<br />

x2<br />

x3<br />

x4<br />

x5<br />

X6<br />

x7<br />

Résultats de la recherche des paramètres<br />

du modèle (;I:EC par la méthode préconisée<br />

Erreur<br />

Valeur Etape 1 Etape 2 Etape 3 relative %<br />

vraie<br />

O. 069 O. 0597 0.0765 O. 0693 O. 4<br />

o.. a43 O. 7322 o. 5871 o. a435 O. 06<br />

o. 0212 0.3922 0.0361 9.0221 4<br />

O. 0344 o. ooao O. 0272 O. 0343 O. 3<br />

3.902 6.5784 4.5951 3. a290 1.9<br />

7.992 6. a303 5.5790 a. 020 O. 4<br />

15.146 27.7554 4.6670 13. aaao 8.3<br />

O 636 58 1.5<br />

[Interprétation des résultat4<br />

L'adéquation du modèle CREC à l'étude de la liaison pluie-débit<br />

sur les trois bassins étudiés peut s'accompagner d'une tentative de jus-,<br />

tification.<br />

Le schéma proposé par ce modèle présente au niveau du transfert<br />

une zone que l'on peut qualifier d'hypodermique et une zone souterraine.<br />

I1 apparaît que, pour le bassin de l'HALLUE, l'écoulement calculé<br />

provient pour une part essentielle de la zone souterraine, ce qui est en<br />

accord avec l'influence prépondérante des variati.ons de la nappe phréatique<br />

sur les débits observés sur ce bassin.<br />

De même pour le bassin de l'ORGEVAL, drainé artificiellement<br />

(drainage agricole) et ne présentant pas de réserves souterraines importantes,<br />

la majeure partie de l'écoulement calculé provient de la zone<br />

définie comme "hypodermique'' (l'alimentation de la zone souterraine<br />

semblant être une constante du bassin).<br />

Enfin, sur le bassin de la DIEGE, l'écoulement hypodermique est<br />

là aussi essentiel. De plus, deux remarques sont à faire : d'une part ce<br />

bassin peut présenter dans le cas d'une saturation importante du sol<br />

accompagnée de pluies intenses, du ruissellement "superficiel" (crue historique<br />

de 19601, ce que l'on retrouve au niveau du schéma du modèle CREC,<br />

d'autre part, il semblerait que l'alimentation des réserves souterraines


(faibles dans cette région) ne se<br />

seuil de teneur en eau de la zone<br />

I1 Y a donc une cohérence<br />

produisent qu'à partir d'un certain<br />

hypodermique.<br />

certaine entre la nature des divers<br />

271<br />

bassins et le comportement hydrologique du modèle proposé.<br />

Le manque de politique homogène au niveau du choix de l'indice<br />

d'ETP ne peut malheureusement pas permettre la comparaison de la fonction<br />

de production sur les trois bassins et un effort reste à faire quant à<br />

ce choix.<br />

Conclusion<br />

Si, sur le plan opérationnel, les modèles utilisés se moritrent<br />

,différents au niveau de l'application (performance, sensibilité,....), ils<br />

restent tous discutables sur le plan conceptuel, puisqu'ils fixent a<br />

priori, en l'absence de foute veritable information intermédiaire entre<br />

la pluie et le débit, le schéma du cycle hydrologique.<br />

Néammoins, cette approche a permis de mettre en évidence l'ad+"-<br />

tion de certains schémas du cycle hydrologique pour représenter plusieurs<br />

bassins, en autorisant une extrapolation temporelle (35 ans sur la DIEGE).<br />

Dans un esprit d'application de ces méthodes 2. des projet; d'aménage-<br />

ment des ressources en eau sans données suffisantes, il resterait à :<br />

- dégager des groupes de bassins justiciables de chaque schéma<br />

- définir des critères d'adéquation a priori d'un bassin à un<br />

schéma déterminé<br />

- caractériser chaque bassin par des index mesurablesmou analy-<br />

sables en absence de longues séries de données, et dont la détermination<br />

déboucherait sur l'appréciation quantitative des paramètres d'un modèle<br />

global,<br />

Ceci permettrait le choix d'un modèle (schéma et valeurs des<br />

parametres) capable de i-zprésenter le comportement d'un bassin non jaugé,<br />

dont on pourrait, à partir des séries climatologiques dispoqibles, simuler<br />

1 'écoulement.


272<br />

R E F E R E N C E S<br />

(1) F. AUBIN - A. GUILBOT (note HYD 13/72 et 14/72)<br />

- Application de l'analyse spectrale - bassin de la DIEGE<br />

- Influence d'erreurs aléatoires sur la convergence d'une méthode<br />

d'opthisation. Tentatives de filtrage des séries chronologiques<br />

(2) Y. CORIíARY - A. GUILBOT (HYD 6/71)<br />

Etude générale de quelques modèles détermises de relations<br />

pluie-débit<br />

(3) Y. CORMARY - A. GUILBOT (HY3 44/70 - SHF - NOV. 1970)<br />

Méthodes d'optimisation des paramètres des modèles déterdnistes<br />

(4) Y. CORIlARY - A. GUILBOT (HYD 16/71)<br />

Processus d'optimisation en quatre étapes applicable B la recherche<br />

des paramètrss des modèles déterministes<br />

(5) Y. CORMARY - S. RAMBAL (HYD 32/71)<br />

Relations pluie-débiG, bassin versant de 1'HALLUE B l'échelle<br />

journalisre et à l'échelle bi-horairE<br />

(6) Y. CORMARY - G. GALEA (HYD 27/71)<br />

Relations pluie-débit, bassin versant de l'ORGEVAL, à l'échelle<br />

j ourna 1 i gr e<br />

(7) Y. CORMARY - M. ANGLES (HYD 7/71)<br />

Relations pluie-débit sur le bassin de la DIEGE à l'échelle<br />

journalii2te et à l'échelle bi-horaire<br />

(8) Y. CORMARY - M. LARINIER (HYD 34/71)<br />

Etudes théoriques des processus d'infiltration, d'évaporation<br />

et de drain8ge. Bibiiovraphie. Schemas d'approche du cycle<br />

hydrologique<br />

(9) Y. CORMARY - M. LARINIER ( HYD 33/71) .<br />

Utilisation du catalogue des sols pour la prédétermination des<br />

parametres dans les modèles HûLTAN et HANON<br />

(10) G, GALEA (thèse de 3ème cycle - 1972)<br />

Etude des relations pluie-débit sur le bassin de 1'ORT;EVAL<br />

(11) M. ANGLES (thèse de.3Eme cycle,- 1972)<br />

Etude des relacions pluie-déhit sur le bassin de la DïEGE<br />

000


Eva po ro. t ion<br />

Inférieures aux<br />

po<br />

&<br />

s s ib i 1 i t 6 s à I nbu:, rp 1 ion<br />

i(épartition de ia<br />

pluia absorbée dnns'<br />

los rdsorvoira S ut 1.1<br />

7 PARAMETRES<br />

MODELE CWEC 273<br />

RESERVOIR<br />

Percolation<br />

x, ct x2 tarissrment dos r6servoirs II et G<br />

x oL x4<br />

3<br />

x" et x4<br />

3<br />

x7<br />

rél~artition do In pluio entre les réservoirs S et H<br />

Supérieures aux<br />

po s s ibil i t é s d I ab sorption<br />

'I<br />

rui s s e 11 ein en t<br />

suparficiol<br />

aliaiontntion du r6servoir G (A partir du résorvoir H)<br />

rEductj on do 1lIc.T. P.<br />

2 po~ciinbt.rab détoriiiinaiit 1 'atsoi'ption DETA at CAM>IA.<br />

7<br />

1<br />

I<br />

EX UT01 RE


274<br />

U<br />

a<br />

10 PARAMETRES<br />

MODELE MERO<br />

-<br />

Débordement 1 rcolation dan<br />

. (Ministore de 1 lAgriculture ferahlion<br />

xl, x2, ‘x3 , x4 répartition des surplus antre G, Q et L flu&dBt$c)<br />

x58 “61 x7 , x8<br />

décrue des réservoirs G et Q<br />

X 9 1 xl0 rcmplissage maxirnum de U et L


MODELE DIEGE<br />

STOCK MOYEN<br />

des IO JOURS<br />

PRECEDENTS<br />

i<br />

4 I<br />

I<br />

7 PARAMETRES 8'<br />

. . XI ,x~,xj parambtroa de 'ddcruo<br />

' . I<br />

S?OCI< JOURNALIER<br />

275<br />

I ,<br />

),:" &&&cg<br />

%?brX5,X7 parambtroo de rolotion stock-ddbit r & '3.<br />

x6 .' ~arambtro de rdduotion do l(ETP<br />

' ' ' _".


276<br />

-<br />

m<br />

c<br />

.A<br />

m<br />

m<br />

4<br />

n<br />

m<br />

.r(<br />

O<br />

Fi<br />

U<br />

Fi<br />

3<br />

.--<br />

W<br />

1<br />

c<br />

rn<br />

C<br />

4<br />

.d<br />

4<br />

e<br />

al<br />

13<br />

(Y<br />

4<br />

a<br />

w<br />

U<br />

w<br />

L,<br />

8<br />

w<br />

;1<br />

W<br />

CI<br />

-<br />

wu1<br />

Ual<br />

ww<br />

c<br />

U<br />

m<br />

o<br />

w<br />

m<br />

4<br />

rl<br />

-4<br />

U<br />

1<br />

rn<br />

o<br />

w<br />

e<br />

m<br />

m<br />

o<br />

cl<br />

U<br />

e<br />

5<br />

ri<br />

ri<br />

al<br />

m<br />

u)<br />

rl<br />

1<br />

s<br />

c<br />

m<br />

m m<br />

W U<br />

P C<br />

o<br />

.-E<br />

mal<br />

U+<br />

o a<br />

H O<br />

U<br />

w<br />

w


MODELE CAEC<br />

CRITIOUE DCS DEBITS GENIRES<br />

imk1<br />

4 3 9<br />

B""Y0I journo1ior<br />

MODELE rmRo xviii<br />

critiquo dos rcsultats<br />

1<br />

ANNUEL JOURNALIER<br />

I<br />

DEDIT MINIMUM '<br />

ANNUEL JOURNALIER I i<br />

I<br />

MODELE CR@C CHIIIOUE i suits)<br />

a<br />

i m;<br />

2<br />

1<br />

M3DCLE PSCRO<br />

I . b<br />

67 68. I 69 70<br />

I<br />

C.I.,. extrapolation<br />

Y, P<br />

BASSIN DE L'HALLUE<br />

critique (suite) XIX<br />

MDDCLE ANNUEL<br />

"7s "f ;<br />

2 1<br />

1-<br />

L<br />

67 s'a 39<br />

I<br />

~<br />

ca!aqe<br />

I<br />

_j<br />

8<br />

.<br />

extrepo~etion<br />

I ! .& id<br />

t . y:-<br />

-<br />

I<br />

!<br />

..i, - .,<br />

b<br />

0 Qcalc ....<br />

2 77


zo T-<br />

278<br />

I . . . .<br />

I C M I W I I A I O N O<br />

c


0.9<br />

0.6 -<br />

0.14<br />

MODELE CREC METHODE DE POWELL<br />

MODULES ANNUELS<br />

PIRIWE 11-61<br />

&er=<br />

.* CakkJn<br />

DEBITS MOYENS MINIMUM$<br />

. SUR IO JOURS CONSECUTIFS<br />

BASSIN DE L'ORGEVAL<br />

;-<br />

8<br />

6 -<br />

4 -<br />

2 -<br />

o<br />

279<br />

7 -<br />

Io<br />

m'l 1 Periode 63-69<br />

16 -<br />

14 - ob:erves<br />

- CO caicules<br />

e----+--*<br />

Période de calage : 1964 - 1966<br />

MODELE CREC<br />

METHODE DE POWELL<br />

d3 s'4 6: s's i7 s'0 619 -<br />

b<br />

AMEß


EXTENSION OF RUNOFF RECORDS FOR SMALL CATCHMENTS IN SEMI-ARID REGIONS<br />

ABS TRACT<br />

S. H. Charania<br />

A mathematical model developed by Thomas and Fiering is used<br />

for the purpose. This model is based on statistical principles to<br />

produce an u<strong>nl</strong>imited record which has the same statistical properties<br />

as the original record. The statistical characteristics <strong>of</strong> data used<br />

are the means, standard deviations, volumes, skewness, variances and<br />

kurtosis <strong>of</strong> flows. Briefly, the main steps for the synthesls <strong>of</strong> data<br />

available or their transformations are as follows:<br />

(al determina'ion <strong>of</strong> statistical properties;<br />

(b) determination <strong>of</strong> frequency distributions;<br />

(c> regression and correlation analysis <strong>of</strong> data (or their<br />

transformati0ns)<strong>with</strong> a detailed study <strong>of</strong> the confidence<br />

limits <strong>of</strong> lines <strong>of</strong> regression and statistical parameters;<br />

(dl generation <strong>of</strong> random numbers;<br />

(el synthesis <strong>of</strong> flows using the above model.<br />

Tn order to speed up the work and to get more accurate results,<br />

computers are used for almost all the calculatlons; various computer<br />

programmes (Fortran IV), required for the development <strong>of</strong> synthesized<br />

data, are developed. The data tested on the model are from small<br />

catchments in semi-arid regions <strong>of</strong> Kenya and Australia.<br />

RESUME<br />

Un modèle mathématique a été mis au point par Thomas et Fier-<br />

nig. I1 est conçu pour produire une série illimitée ayant les mêmes<br />

propriétés statistiques que la série d'observations disponible. Les<br />

caractéristiques statistiques prises en compte sont: les moyennes,<br />

les dcarts types, les variances, les coefficients d'assymétrie et<br />

d'aplatissement des distributions de dlbits. Les principales étapes<br />

pour la synthese ou la transformation des données disponibles sont<br />

résumées ci-dessous:<br />

(a) Détermination des propriétés statistiques.<br />

(b) Détermination des distributions de fréquence.<br />

(c) Etude des regressions et corrélations concernant les données<br />

ou leurs transformées; étude détaillée des limites de confiance<br />

des courbes de régression et des paramètres statistiques.<br />

Cdl Production de nombres au hasard.<br />

(e) Synthèse de séries de débits ä partir du modkïe élaboré.<br />

Presque toutes les opkrations sont faites sur ordinateur afin<br />

d'obtenir des rgsultats rapides et précis. Plusieurs programmes écrits<br />

en fortran IY ont dtd mis au point pour l'obtention des donnees syn-<br />

thétiques. Le modèle a 6te appliqué 3 des données recueillies SUT de<br />

petits bassins des rbgions semi-arides du Kenya et dfAustralie.


282<br />

INTRODUCTION<br />

Hew and untapped souroes <strong>of</strong> water need to be developed and<br />

controlled to meet the inoreasing demand for water. For this we<br />

require long records <strong>of</strong> flows <strong>with</strong> exact sequence <strong>of</strong> hydrological<br />

events. Such long records are, unfortunately, not available, es-<br />

pecially in the semi-arid regions. In semi-arid regions <strong>of</strong> Africa<br />

and Australia usually o<strong>nl</strong>y 20 to 30 years <strong>of</strong> records are available.<br />

Short reoords can be extended to any required period <strong>of</strong> time<br />

by simulation techniques whioh involve certain types <strong>of</strong> mathematical<br />

or logical models that describe the behaviour <strong>of</strong> the system over ex-<br />

tended periods <strong>of</strong> real time.<br />

There are two variants <strong>of</strong> simulation, operational gaming<br />

and the Monte Carlo techniques. The Monte Carlo technique is the<br />

one used in this paper.<br />

PRINCIPLES OF THE MODEL BY TñOMAS AND FIERING<br />

Data used<br />

The streamflows considered should be independent values<br />

and also <strong>of</strong> a long period. Therefore annual, monthly and daily<br />

streamflows can be oonsidered; annual flows are definitely in-<br />

dependent flows, but they are <strong>of</strong>ten not used when the period <strong>of</strong><br />

record is too short. Daily flows are not used if they are not<br />

independent flow values. Monthly flow values generally satisfy<br />

the requirements <strong>of</strong> independence and adequate periods <strong>of</strong> record and<br />

are used.<br />

The model rewiremsnts<br />

The data used should be serially correlated and normally<br />

distributed. If the historical flows are not normally distributed<br />

appropriate transformations are or should be used to make them so.<br />

In such cases, the synthesized flows should be converted to their<br />

original form.<br />

The model<br />

The method assume8 that the streamflows are made up <strong>of</strong> two<br />

components, the deterministic and the random. Therefore the model<br />

(a reoursive equation) for unit time interval (one month) to generate<br />

flows is:


I _- QJ =mean flows <strong>of</strong> consecutiva months.<br />

Qí~+i) AND<br />

Q; AND Q (i+,) =flows during the months i and ;+f.<br />

BJ =regression coefficient.<br />

ri =norma2 random variate.<br />

aj+- =standard deviation <strong>of</strong> flaws.<br />

In computations j runs cyclically from 1 to 12 and the<br />

index i from O to 12 times the number <strong>of</strong> record years to be<br />

generated minus 1.<br />

Determination <strong>of</strong> Ti<br />

283<br />

The area under the normal distribution curve is divided<br />

into 100 equal areas, each bounded by a vertical line parallel to<br />

y-axis. The values <strong>of</strong> X at the boundary lines repreeent the bound-<br />

ary values <strong>of</strong> Ti for each area <strong>with</strong> equal probability. A typical<br />

vglue <strong>of</strong> Ti for each area is determined by calculating the mean <strong>of</strong><br />

the boundary values. Out <strong>of</strong> 100 typical values <strong>of</strong> Ti one is selected<br />

for use in the model using the random numbers.<br />

CRITERIA FOR SELECTION OF THE CATCHEIEñTS<br />

Two important phrases in the title need interpretation as<br />

follows r<br />

(a)<br />

(b)<br />

'for a small reservoir' - The size <strong>of</strong> the catchment is restricted<br />

to between i30 to 1300 square kilometres.<br />

'a eemi-arid region' - The rainfall in the catchment is<br />

limited to less than 508 milimetres per annum.<br />

The oatchments selected for the paper are Wakefield River<br />

catchment in Australia and Kongoni River catchment in Kenya.<br />

NOTES ON THE SELECTED CATCHMENTS<br />

Wakefield river catchment<br />

The catchment <strong>with</strong> an area <strong>of</strong> 420 square kilometres lies<br />

in south Australia. The general relief <strong>of</strong> the catchment consists<br />

<strong>of</strong> undulating plains <strong>with</strong> ridges ranging from 150 to 305 metres.<br />

The highest point in the catchment is 600 metres.


284<br />

The stream, 40 kilometres long, drops Prom 500 to 220<br />

metres and has two major tributaries, the Pine creek and Skillolgale<br />

creek. It is considered perennial but flashy.<br />

500 mm.<br />

Average rainfall on the catchment is between 400 to<br />

Temperatures are high in summer <strong>with</strong> normal annual range<br />

from 40 to 50 degrees farenheit (4.5OC to IOOC).<br />

Relative humidity is also high in summer <strong>with</strong> a peak <strong>of</strong><br />

80 per cent.<br />

Soils in the catchment are normal malee soils <strong>of</strong> a pinkish<br />

brown colour and light sandy texture. These are rich in lime but<br />

poor in humus and phosphate. Rocks in the area are mai<strong>nl</strong>y lime-<br />

stone.<br />

Monthly flows and their totals from 1953 to 1968 are<br />

available as are the monthly rainfalls for the five stations in<br />

and around the catchment.<br />

Eongoni river catchment<br />

A catchment <strong>with</strong> an area <strong>of</strong> approximately i5 square kilo-<br />

metres on the north west slope <strong>of</strong> Mount Kenya. The source <strong>of</strong> the<br />

river is at an altitude <strong>of</strong> 2600 metres and the station at 2000<br />

metres. The stream passes from the forest area into grasslands.<br />

The stream, <strong>with</strong> no major tributaries, is about 13 kilometres<br />

long and perennial.<br />

Average rainfall in the catchment is between 500 to 600<br />

milimetres, <strong>with</strong> heavy falls in April and November.<br />

It is hot in the catohment throughout the year <strong>with</strong> mean<br />

temperatures around 60 degrees farenheit (i5.5OC).<br />

Daily and monthly flovs <strong>with</strong> their totals from i932 to i969<br />

excluding 1954, 1955, and 1956 are available for the catchment and<br />

also the monthly rainfalls <strong>of</strong> three stations in and around the area.<br />

ANALYSIS<br />

Statistics <strong>of</strong> flows<br />

These assist finally in establishing the success <strong>of</strong> the<br />

method used. The following properties are required for each<br />

month <strong>of</strong> the year in recordt


(a) total volumes <strong>of</strong> flows;<br />

(a)<br />

(c)<br />

(d)<br />

(e)<br />

(f)<br />

(g)<br />

means <strong>of</strong> the flows and/or their transformed values;<br />

confidence limits <strong>of</strong> the means;<br />

variance and standard deviations <strong>of</strong> flows and their<br />

confidence limits;<br />

skewness <strong>of</strong> the flows - these show the degree <strong>of</strong> departure<br />

<strong>of</strong> the distribution <strong>of</strong> flows from symmetry. There is a<br />

dimensio<strong>nl</strong>ees measure but that i8 not used. The absolute<br />

and relative skewness are caloulated;<br />

kurtosis <strong>of</strong> flows - this measures the degree <strong>of</strong> spread <strong>of</strong><br />

the data and is calculated using moments;<br />

285<br />

trends <strong>of</strong> flows - the calculation is based on the principle<br />

<strong>of</strong> least squares.<br />

Frequency distribution<br />

This is a very important aspect <strong>of</strong> the procedure os there<br />

is a condition that the data used should be normally distributed.<br />

There are various methods to check whether the data is normally<br />

distributed or not. Por the paper the following procedure was<br />

followed:<br />

(a><br />

(b)<br />

(o)<br />

check the skewness and kurtosis <strong>of</strong> the flow data;<br />

if the skewness is not equal to zero and kurtosis is not equal<br />

to 3.0 the data is transformed and the statistics rechecked.<br />

The txansformations are carried until the values <strong>of</strong> skewness<br />

and kurtosis are 0.0 and 3.0 respectively;<br />

the data or the transformed values are plotted on the<br />

probability paper using plotting position ia/a. If the<br />

data give a straight line it is aesumed that the values<br />

are normally distributed.<br />

Bemession and correlation analysis<br />

A statistical relationship between the flows in different<br />

months is determined. A linear regression equation Y - A + Bx is<br />

developed for each month; the constants A and B are calculated as<br />

follows t


286<br />

Confidence limits <strong>of</strong> the regression constant B and the<br />

regression line are also determined.<br />

Coefficient <strong>of</strong> correlation (or covarianoe), an expression<br />

for the degree <strong>of</strong> scatter in regression is calculated using the<br />

following formula:<br />

Generation <strong>of</strong> random numbers<br />

The random numbers are used to obtain the random component<br />

<strong>of</strong> the model. There are alternative methods to generate a sequence<br />

<strong>of</strong> random numbers. The latest technique is the generation <strong>of</strong> psuedorandom<br />

numbers by digital computer methods. This produoes numbers<br />

that are<br />

(a) uniformly distributedl<br />

(b) statistically independent;<br />

(c) reproduaible;<br />

(a)<br />

non-repeating for any desired length.<br />

The validity <strong>of</strong> random numbers is tested by different<br />

methods but frequency test method is the most convenient.<br />

For the model we require random numbers that are normally<br />

distributed. The uniformly distributed random numbers are there-<br />

fore transformed to be normally distributed. These are then ad-<br />

justed for the mean and standard deviation.<br />

Calculations for the generation <strong>of</strong> streamflows for the<br />

two catchments are illustrated in Figures 1, 2 and 3.


DESCRIPTION OF RESULTS<br />

287<br />

Wakefield river catchment: Monthly flow values are used<br />

as historical records available for the simulation <strong>of</strong> records.<br />

These values are not normally distributed so they have to be trans-<br />

formed. It is found that the logs <strong>of</strong> square roots <strong>of</strong> flows are<br />

normally distributed.<br />

The total flows show that in i4 years <strong>of</strong> records available,<br />

the maximum annual run<strong>of</strong>f is 10.25 a lo3 cum/D. The years 1954,<br />

1957, 1959, 1962, 1965 and 1966 have very low run<strong>of</strong>fs compared to<br />

other years. The lowest run<strong>of</strong>f observed is 2.30 x lo3 cum/D.<br />

August has the highest total monthly flow <strong>of</strong> 88.5 x lo3 cum/D,<br />

the lowest flow is in February <strong>of</strong> 2.98 x 103 cum/^.<br />

The means, variances and the standard deviations follow a<br />

pattern which is similar to that for the volumes; on the other<br />

hand, skewness and kurtosis have completely different patterns:<br />

this could be due to accumulated errors and hence these values<br />

are o<strong>nl</strong>y taken as a guide. The confidence limits <strong>of</strong> the statistiical<br />

parameters are very useful in the final check.<br />

It is found that thereis very little scatter <strong>of</strong> values<br />

in regression and correlation analysis; the correlations are<br />

poor for a couple <strong>of</strong> months but for the rest they are very high<br />

indeed.<br />

Konsïoni river catchmentr In this oase also, the monthly<br />

flows are used. in the records <strong>of</strong> 30 years, the highest flow is<br />

recorded in Aprilr 41.5 x lo6 cum/D; the lowest is in February:<br />

zero flow.<br />

All statistical parameters, except for skewness and kurtosis,<br />

follow the same pattern as that for volumes; again, the skewness and<br />

kurtosis seem to have accumulated errors and cannot be relied upon.<br />

COBCLUSIOIPS<br />

The correlation <strong>of</strong> flows appear to be extremely good.<br />

The usefulness <strong>of</strong> the stochastic model for low flows, by<br />

Thomas and Fiering, is well demonstrated. 39 thie paper the model<br />

was used to simulate flows from the small experimental catchments<br />

<strong>of</strong> Kongoni river in Kenya and Wakefield river in Australia, and for<br />

both catchments, the parameters <strong>of</strong> synthetic flows lie <strong>with</strong>in the<br />

95 per cent confidence limits <strong>of</strong> the historical flows.


288<br />

The results therefore indicate that the model can be<br />

successfully applied to the flows from small catchments in<br />

semi-arid regions. Howevex, when applying the above theory, the<br />

following points should be consideredt<br />

(a><br />

the initial flow values should be reliable to avoid any<br />

accumulation errors in the final results#<br />

(b) the frequency distribution <strong>of</strong> th+ flaüdg if the initial<br />

flows are not normally distributed, appropriate transform-<br />

ations have to be used to normalise them;<br />

(c 1<br />

the selection <strong>of</strong> a value <strong>of</strong> 't'r this is an important<br />

part <strong>of</strong> the model; random numbers are used to achieve the<br />

purpose as explained in the paper;<br />

(a) negative flows: on synthesis, negative flows are obtained.<br />

If the transformed values used initially are in the log form,<br />

then no changes have to be made; if the initial transformed<br />

values are not in the log forra, then the negative values have<br />

to be removed by replacing them <strong>with</strong> zero values.<br />

References<br />

Fiering, M.B. (1961). Queing theory and simulation in reservoir<br />

design. Journal <strong>of</strong> Jïyd. Div. B.S.C.E., Vol. 87, pp. 36-59.<br />

Thomas, H.A. and Fiering, M.B. (1962). Mathematical synthesis<br />

<strong>of</strong> streamflow sequences for the analysis <strong>of</strong> river basin by<br />

simulation. Chapter 12 in '<strong>Design</strong> <strong>of</strong> water reaourceE systems'<br />

by Maas et al, Harvard.<br />

Beard, L.R. (1967). Hydrologic simulation in water analysis.<br />

Journal <strong>of</strong> Irrigation and Drainage Div. A.S.C.E.<br />

Smty, T.L. (1961). Elements <strong>of</strong> Queing theory. McGraw Hill book<br />

company Inc. New York.


Figure i - Wakefield river catchment<br />

289


290<br />

,-<br />

Figure 2 - Analysis <strong>of</strong> Kongoni river flows.<br />

I J A S O N D -<br />

Fm-3<br />

no<br />

.O.,”.


I,<br />

f =(SKU(NGl)+ SKUiNG)<br />

12) (-10)<br />

I READ STREAXí1.J) I=it d.14 I<br />

1 READ ARE4 U:.3)E? hORHPL CURVE 1<br />

__-<br />

I<br />

DETERVINE VPLXS U-: STAri?AkD FiORtJAL LARIATE FOR<br />

AREA UNGE P.ORMAL CUR\.€ FRCM 0.01 TO O5<br />

I STCAAil) = VkRAAil)+r0.5 I<br />

'<br />

..<br />

ss- xxxx ciz,rr,<br />

CSLV(l2,l) =xxxxi1z,141<br />

Ir11<br />

P= 1 A<br />

CALL THE RCNWM iiü:A;ER GNERATCG<br />

..<br />

S = 16.70<br />

NG2=100-NG+l<br />

/21 (-10) NO=NG2- 1<br />

T =CU(UíNG2) t SKL'ih'GJ!)<br />

/2a<br />

Figure 3 - Flow ohart for the synthesis <strong>of</strong> flows<br />

291<br />

-<br />

flG2=lGC - D<br />

T ;(i353 t SSL!;N13!:<br />

/z O)


ABS TRACT<br />

SIMULATION OF HYDROLOGICAL SAMPLES BY NATURAL WATER<br />

FLOW CHARACTER1 S TI CT ICs<br />

A.I.Davydova, G.P.Kaliniii<br />

The paper is concerned <strong>with</strong> long hidrological series which have<br />

a specified distribution and are characterized by basin annual flows<br />

rather than by random number sensors. The theoretical basis for cons<br />

truction <strong>of</strong> a numerical sequence is a combined analysis <strong>of</strong> mean an-<br />

nual flow probabilities for groups <strong>of</strong> basins (incompletely homoge-<br />

neous) selected to suit certain correlational estimates. By using va<br />

rious techniques the basic statistical characteristics <strong>of</strong> initial t i<br />

me distributions are taken into account, The length <strong>of</strong> such series<br />

depends on the amount <strong>of</strong> data on flows <strong>of</strong> rivers under study which<br />

are grouped by certain criteria.<br />

Simulation <strong>of</strong> hydrological series by natural water flow characteristics<br />

does not require any method to allow for the effect <strong>of</strong> a<br />

preceding value on the law whereby a subsequent one is distributed.<br />

Error is not accumulated in simulated series as they grow,<br />

On a examiné dans le rapport en question la technique de cons-,<br />

truction de longues séries hydrologiques 2 diktrìbùtion calculée par<br />

caractéristiques de l'écoulement annuel de bassins isolés, et non<br />

pas au moyen de capteurs de nombres occasionnels. C'est bien l'ana-<br />

lyse réunie de probabilités de valeurs annuelles moyennes de l'écou-<br />

lement par groupes de bassins (pas tout 2 fait homogJnes1, choisis<br />

suivant les estimations corrélatives determinées, qui sert de base à<br />

la construction de succession numériques. Les différents procédés<br />

mis en oeuvre permettent de tenir compte des élements statistiques<br />

principaux des distributions de départ temporeles. La longueur de t e<br />

lles séries est fonction du volume de l'écoulement des fleuves du<br />

monde, attirés au calcul et choisis selon les critères définis.<br />

En simulant les réalisations hydrologiques par caractéristiques<br />

naturelles de l'écoulement fluvial, point n'est besoin de recourir à<br />

une telle ou telle méthode de prise en considération de probabilités<br />

de la valeur précédente sur la loi de distrifiti'on de prohEY2litds<br />

de la valeu: suivante, Aucune atcumulation de l'erreur nia 12eu dans<br />

les séries a simuler au fur et a mesure du prolongement de celles-ci'.


2 94<br />

Variou8 ways to extend the initial hydrological data are<br />

used h water flow calculation and forecasting. Short time<br />

serie8 <strong>of</strong> hydrological observations <strong>of</strong> ten fail to give adequate<br />

c harac teristic 8 <strong>of</strong> river flow and ensure reliable calculations.<br />

Hydrological data are exbended by probabilistic techni-<br />

ques, among sbich the Monte-Carlo method ia the most widely<br />

U8ed. The esseqfe <strong>of</strong> the latter is that artificial curves <strong>of</strong><br />

probabilistic processes can be obtained by generation <strong>of</strong> random<br />

numbers distributed by a certûin law. Note that a model <strong>of</strong> the<br />

flow process thus obtained should have hundreds or thousands<br />

<strong>of</strong> terms to include all basic features <strong>of</strong> the process probabili-<br />

ty distribution f mtions. The applichtion <strong>of</strong> this technique<br />

for hydrological calculations was thoroughly developed by<br />

G.G.Svanidee [9J . The range <strong>of</strong> application <strong>of</strong> the Monte-Carlo<br />

insthod was considerably extended by other soviet researchers[2,6].<br />

This paper deals <strong>with</strong> construction <strong>of</strong> long hydrological<br />

series <strong>with</strong> discrete time by using annual flow dharacteristics<br />

rather than rarrlom number aensors.<br />

<strong>Water</strong> flow Q at a certain cross-section <strong>of</strong> a river is<br />

regarded as a function <strong>of</strong> time t. Eet be the number <strong>of</strong> ar-<br />

bitrary time instants t, .. m , t, for an arbitrary number oî<br />

basins x alia n values <strong>of</strong> flow. Any specified value can be<br />

expressed in terms <strong>of</strong> the probabiliby that it d1L not be ex-<br />

ceeded. Probability distribution func tions for non-excees <strong>of</strong><br />

annual flow values, mathematical expectation and other statis-<br />

tical characteristics <strong>of</strong> each series x are given as<br />

B,(t,* P, , ... t, Pn)* dere P i8 the probability distribu-<br />

tion density associated <strong>with</strong> the fumtion Fx.<br />

The approach consists in consecutive combination <strong>of</strong> river<br />

flow probability distributions for individual basins. in dohg<br />

so various techniques are employed to inClde basic statistical<br />

characteristics (such as mathematical expectation, coefficients<br />

variation, asymmetry aid correlation) <strong>of</strong> the initial time dist-<br />

ribUtiOM <strong>of</strong> the flow.<br />

Conditional probability distxibutions <strong>of</strong> a combined space<br />

am time sequerice are effectively used in *at is known in<br />

hydrology as the year-point- method in which effbiercy criteria<br />

for combination <strong>of</strong> time series have been developed and<br />

used in plotting a faired empirical distribution curve.<br />

Combined analysis m thods for incompletely homogeneous<br />

hydrolo&ical characteristics used in calculation <strong>of</strong> aiaximum<br />

flow hawe been developed br S.V.fulitsky and ?uí.B.bnkel' 181.<br />

In this case the theoretical scheme for the construction<br />

<strong>of</strong> a numerical sequence is a combined analysis <strong>of</strong> probabilities<br />

<strong>of</strong> mean annual flows that do not substantially vary over the<br />

period covered for groups <strong>of</strong> basins (incompletely homogeneous)


selected by certain correlation estimates.<br />

295<br />

Time series Oi river flow characteristics are grouped by<br />

values <strong>of</strong> the coefficients <strong>of</strong> correlation (r) betaen annual<br />

flows ob~erved and calculated for pabs <strong>of</strong> successive years.<br />

A certain relation between flows <strong>of</strong> Mfvidual years is established.<br />

The differences in correlation coefficients <strong>of</strong> river<br />

flows indthin a basin depend on the physical nnn gec,rapnical<br />

conditions &er which the flow vas furmå. When rivers are<br />

grouped by intra-series c osrelation indices, the physical and<br />

etatistical homogeneity <strong>of</strong> the flow series selected is to<br />

some extent alloued for.<br />

A group may izlude basins differing in the water content.<br />

Modular coefficients are employed to make flow indices <strong>of</strong> large<br />

and small basins conmeasurable.<br />

Three groups covering the r range from O through 0.45<br />

have been selected (Table I) <strong>with</strong> intra-series correlation as<br />

a criterion, Calculations for other values are equally possible,<br />

!Bible 1<br />

Rivers Grouped,<br />

by Averaging Intervals <strong>of</strong> Bhst Self-Correlation Coeff ic lents<br />

Averaged-<br />

values, r<br />

+0.10 +o. 25 +O.W<br />

The first group CO rises rivers whose flow intra-series<br />

correlation is Or r ~'3.220 and iarludes 40 basins, chbfly<br />

in Europe and North America, <strong>with</strong> coeff icients <strong>of</strong> variation<br />

F ranging from 0.20 to 0.60,<br />

The second group (+0.21 C r 5 +0,35) includes 45 qivers,<br />

chiefly in Ada and &8t Europe , <strong>with</strong> variation coefficients<br />

ranging from 0.10 to 0.40, i.e. below the range for the first<br />

group.<br />

The third group is characterized by coefficients <strong>of</strong> eor-<br />

relation between annual flows <strong>of</strong> successive years ranghg<br />

from 0.36 through 0.45 and ircludes 28 flow series <strong>with</strong> coefw<br />

ficients <strong>of</strong> variation from 0.20 to 0.40. The flow series in<br />

tius interval and duration, The latter varies from 40 to 150<br />

years.<br />

Over recent years the statistical analysis <strong>of</strong> correlation<br />

coefficients between neighboring terms <strong>of</strong> a series as a fu- tion <strong>of</strong> tinis intervals has revealed that %he de4pendeDC8 does<br />

exist in most cases 5,6] . Furthermore, studies [ 21 <strong>of</strong> inherent


296<br />

and random errors in calculating this coefficient by standard<br />

formulae show that the error8 may erneed 0.07. Values <strong>of</strong> first<br />

self-correlation coefficieubs r in grouping flow seriee are<br />

selected in a certain variation range , Table I.<br />

To prove or disprove interdependence <strong>of</strong> these series in<br />

each group, interseries-correlation coefficients R were calculated<br />

for 1921-1955. For some series, the comelation was<br />

found to be as low as iO.30. In order to meet the criteriw<br />

<strong>of</strong> indepeideme <strong>of</strong> samples, a hydro&ogicAl LIiqueme generated<br />

should consist <strong>of</strong> flow series from a certain grouping, the<br />

correlation coefficients <strong>of</strong> which are close to zero. This is<br />

one <strong>of</strong> the conditions for lack <strong>of</strong> simltaneity in flow variationa<br />

<strong>of</strong> rivers analysed in groups, which results in an illcrease<br />

<strong>of</strong> the overall data contained in combined hydrological series.<br />

It should be noted, however, that the application <strong>of</strong> nor-<br />

mal correlation techniques to flow variation etudies may pro-<br />

ve an improper practice because <strong>of</strong> possible no<strong>nl</strong>inear rela-<br />

tions. The depiidemes between values observed in initial hyd-<br />

rological series can be curvilinear. Therefore for some hyärolo-<br />

@cal series Cl 1 the initial characteristics <strong>of</strong>Qthad to be<br />

normalized.<br />

krmalized series thus obtained vm-e used to calculate<br />

correlation coefficients R. These -re compared <strong>with</strong> the coef-<br />

f icients obtainsd from actual flow characteristics. Formulae<br />

<strong>of</strong> normal correlation were used to find the proximity betwgen<br />

the associated correlation coefficients. This compromise can<br />

be justified by the lack <strong>of</strong> more refined techniques <strong>of</strong> estimati<br />

ing relations betaieen gamma-distributed random values. The am-<br />

lysis has shown that correlation coefficients obtained directly<br />

from series <strong>of</strong> observations and normalised series are close;<br />

for this reason first values <strong>of</strong> R were used in the calculatfoas.<br />

Flow series <strong>with</strong> inter-series correlation coefficients<br />

below 0.3, were tabulated h each group. These data lead to<br />

the assumption that relations between flow characteristics <strong>of</strong><br />

these basins are immaterial. !he averahed coefficients B and<br />

the standard values <strong>of</strong> the totali- <strong>of</strong> series for each group<br />

analysed are shown in Table 2.<br />

Table 2<br />

---_--------<br />

--_-- I<br />

Average Values <strong>of</strong> B and dR for the Groups <strong>of</strong> Rivers<br />

---<br />

-------- - ___- .-_- - ~<br />

>-- __-<br />

--.-<br />

-<br />

fiange <strong>of</strong> self-correlation coefficient variation<br />

--- I"_ -II _-_-_ - ---- --__ --------- --------<br />

O 5 r L +0.20 +0.21 5 r 5 +0.35 0.36LrC+O.45<br />

""_ . ----_-<br />

k2 0.129 0.134 0.157<br />

¿fi 0.062 O. 081 O. 076<br />

----__--------------_________II__ -<br />

_* .- . . ---- --- --_ - -- ----


297<br />

This table proves the absence <strong>of</strong> any substantial relation-<br />

ship betwen the flow series analysed, Now,in each group the<br />

flow series are combined in simulated sequ~11ce8. Thus from the<br />

first group (O L, r 6 +0.20) a sequerce <strong>of</strong> 841 terms m s formed,<br />

the second group 40.21 5 r5t0.35) gave a sequeme <strong>of</strong> 620 terms,<br />

and the third group (+0.365 r-L+0.45) yielded a sequerice <strong>of</strong><br />

530 terms. These flow characteristics are transformed using<br />

the coordinates <strong>of</strong> the selected type <strong>of</strong> distributions into the<br />

curves <strong>of</strong> the event probability security P. The ordinates <strong>of</strong><br />

securie cumes are computed wieh an allowme for coefficients<br />

<strong>of</strong> variation and asymmetry <strong>of</strong> each flow series. In this case<br />

the structure <strong>of</strong> the sequence <strong>of</strong> segueities comguted for the<br />

entire set <strong>of</strong> series is indeperdent <strong>of</strong> the flow variation and<br />

normal flow in individual basins. If flow series included in<br />

one sequeme are regarded as S&@pl0S <strong>of</strong> indepenient random va-<br />

lues, then the corresponding values <strong>of</strong> flow security are also<br />

i ndep e nde nt rand om value s.<br />

For each series x security curves were computed for taro<br />

types <strong>of</strong> distributions<br />

1. Values <strong>of</strong> securities in a tuee-pararnter Kritsky-<br />

&&e1 gamma-distribution P . This distribution was obtained<br />

b replm ing the variable x'%# the gama-distribution equation<br />

2'71. %e va iable is related to the initial value by the equa-<br />

lity Z E a r6 , where a and b are parameters to be deter-<br />

mined on the basis <strong>of</strong> experimrnial eviüeme (corresponding to<br />

C and C ). The equation <strong>of</strong> the distribution cume for y is<br />

ix this tase :<br />

y(x) = -- aa a8 b<br />

b ,<br />

f (4<br />

where a s and r(a) is the symbol <strong>of</strong> gamma-fulirtion.<br />

-k<br />

The ordinates <strong>of</strong> the security curve expressed by this<br />

equation are always positive when y = O and P = 10%. The shape<br />

behaviour <strong>of</strong> this distribution permits aqy relations betraeen<br />

a and b, i,e.between the variation coefficient Cv and the asymetry<br />

coefficient Cs<br />

cE3 (--- = I, 1.5, 2.0, 2.5, ... 6 )<br />

Three-parameter gamm-distribution curves fit I@ 11 the<br />

flow series <strong>with</strong> high values <strong>of</strong> Cv.<br />

2. P, obtained from generalized curves proposed by<br />

Kaliain pahose studies substantiated the generality <strong>of</strong> the probabilitptheoretical<br />

schematics dereby various samples <strong>of</strong><br />

flow are formed1 41 . Using the formulae K = f (P,C,) ,<br />

%- and the flow data for many rivers, the depedemies<br />

K=%v<br />

I( S(Cv) , K5% = f (Cv> , etc. for annual and mximum flows were<br />

1%obtained<br />

separately for each value <strong>of</strong> secul$.ty (P=l%; P=5%, etc.


298<br />

The tables <strong>of</strong> ordfnates <strong>of</strong> generalized curves for distribution<br />

<strong>of</strong> annual flow esess probabilities were then compiled.<br />

3. Fapirical values <strong>of</strong> mcurities for the entire sequerce<br />

were obtained by the saression<br />

Pem = m<br />

-e-. qoos ,<br />

&tI<br />

where m is the point in a sequence <strong>of</strong> n numbers.<br />

Thus, me have two theoretical aqd one empifica1 distributions<br />

&ich make up the long hydrological series constructed.<br />

Bor lack ~î npace and large sizes <strong>of</strong> the tables, the values<br />

<strong>of</strong> simulated samplings cannot be shown this paper.<br />

Let us now proceed to comparison <strong>of</strong> simulated empifica1<br />

and theore tical distributions <strong>of</strong> securiQ probabilities.<br />

For a series <strong>of</strong> 841 ternis, the representativi <strong>of</strong> the<br />

security probability distributions obtairied mas es 3 mated for<br />

Pea (empirical), PLM (Kritsky-bnkel) and Paen (generalized)<br />

because a choice <strong>of</strong> the distribution curve type may considerably<br />

affect the distribution <strong>of</strong> flow values varyi- in the<br />

..<br />

probability <strong>of</strong> excess.<br />

The following versions <strong>of</strong> estimates -re consideredt<br />

1) Uniform quantile distribution <strong>of</strong> Pe,, PK-M, Pge, .<br />

2) Alternation <strong>of</strong> series <strong>of</strong> increased anfi decreased water<br />

contents in simulated series.<br />

3) Convergence <strong>of</strong> the distributions obtaiiigd <strong>with</strong> respect<br />

to standard deviation.<br />

4) Comparison <strong>of</strong> sampled spectra by the distribution types.<br />

The first estimace was to reveal the homogeneity <strong>of</strong> strutture<br />

ad uniformity <strong>of</strong> security distribution <strong>of</strong> simulated flow<br />

series. !The number <strong>of</strong> hits <strong>of</strong> security curves in distributions<br />

Pen, PK-BiI, Pgep ws compared in terms <strong>of</strong> arbitrary quantile<br />

security probability distributions <strong>with</strong> respect to a fixed<br />

quantile do not coim:i.de for the three types. In most cases,<br />

kïowver, the deviation from the average velue does not exceed<br />

10%. The greatest variations are associated dCii quantiles <strong>of</strong><br />

15-2O% security.<br />

The statistical mthod <strong>of</strong> serial tests 103 was used in<br />

the analgcsls <strong>of</strong> the probability <strong>of</strong> an event t periods <strong>of</strong> higher<br />

or lower wter content as against the normal one) by the types<br />

<strong>of</strong> distribution. In this method, for several. samples <strong>of</strong> 100<br />

terms each in this case, the number <strong>of</strong> years (elements) m, <strong>with</strong><br />

flow values above the average om ard % <strong>with</strong> values below theaverage<br />

ani! calculated. Elemsnts <strong>of</strong> the same kind bounded on<br />

both sides by elements <strong>of</strong> another kind form series <strong>of</strong> U.


299<br />

Lf the values <strong>of</strong> U and the mathematical expectation E differ<br />

substantially, then the no-radom nature <strong>of</strong> the event is pro-<br />

ved. In this case the number <strong>of</strong> series should be greater or<br />

smaller than E by a value exceeding 33, (dispersions) <strong>of</strong> the<br />

sample.<br />

With the probability <strong>of</strong> higher and lower mter content<br />

studied in this way, ma obtained the relations <strong>of</strong> series in-<br />

dices, expectation and dispersion which are given in Table 3.<br />

The simulated series were analysed by both the technique dec-<br />

cribed in th& pa er and the Monte+Darlo method applied to<br />

the Krìtsky-Menke? distribution curve.<br />

Table 3<br />

Serial Test Method Parameters for Different Types <strong>of</strong><br />

Becurity Distribution <strong>of</strong> a Simulated Sequeme <strong>of</strong> 841 Terms<br />

9<br />

41 8 405 w5 4û6<br />

?i! 423 43 6 43 6 435<br />

U 3w 370 3 67 371<br />

E 421 421 42 1 421<br />

D 14.5 44.4<br />

CI------------------------------..<br />

14.4 14.4<br />

. -- -L _. . ---_-u--------<br />

The numerical values <strong>of</strong> U ani E are seen to differ for ail<br />

the three typs <strong>of</strong> diskibution by more than 3D an&%imilar<br />

ratios. The qualitative indices obtaimd may prove, firstly,<br />

that the distribution <strong>of</strong> elements above or below the norm tn<br />

series analysed is not random anã, secondly, that the parameter<br />

values I%, , 9, U, E, D obtained for samples <strong>of</strong> 841 terms<br />

indicate uniform conditions for the event probability in all<br />

the distribution types analysed; in other words, we have essentially<br />

several representations <strong>of</strong> the sanie process.<br />

In estimating the representativity <strong>of</strong> the hydro10 'cal<br />

series obtained we analyse the convergence <strong>of</strong> eqlrica8Land<br />

theoretical securities for the entire series. This estimate<br />

was obtained from the r.m.s. deviation between the theoretical<br />

and empirical distributions <strong>of</strong> securities, in per cent, for<br />

various quankile intervals aad for the entire series. In all<br />

the intervals the r.m.6. deviation does not exceed 1.5.<br />

The security <strong>of</strong> securities curves <strong>of</strong> the simulated sequernes<br />

(Pig.1) obtaimd for distributions Pgen have a similar<br />

trend <strong>with</strong> oniy minor differences.


300<br />

On the whole, comparison <strong>of</strong> empirical and theoretical cur-<br />

ves for tne entire sequsnce proves the representativeness <strong>of</strong><br />

the hydrological sequence obtained.<br />

Spectral analysis proved useful in studying the structure<br />

<strong>of</strong> the simulated sequemes. For comparison <strong>of</strong> quantirbative<br />

indices, the initial iflormation was furnished by the same<br />

sample <strong>of</strong> 841 terms obtained for Various modifications <strong>of</strong><br />

annual flow distsibution. Mote that in calculation <strong>of</strong> spectral<br />

density sequences <strong>of</strong> securiw probability in per cent, were<br />

used. Computations were made for nonfeired aIid faired estimates<br />

<strong>of</strong> a spectrum using the eqression [3] I<br />

values <strong>of</strong> the self-correlation fumtion, HI - maximum<br />

where shift, sé ordinal number <strong>of</strong> the shift, K = 1,2, ... , m.<br />

'phis equation makes it possible to obtain a dispersion<br />

spectrum for each frequency bad as percentage <strong>of</strong> tho total<br />

dispersion <strong>of</strong> the time series under etudy. A fairea estimate<br />

<strong>of</strong> dispersion spectral denSity was obtained by using the Hanning<br />

fairing weight fu= tionr -<br />

i= o, I, 2, ... , m<br />

D1 = O<br />

- Big.2 represents plots <strong>of</strong> non-faired , S@), and faired,<br />

S(p), spectra computed for the 841 terms aad frequencies<br />

f = O 0.1, ... , 0.2 &. If the delay <strong>of</strong> m includes less<br />

than i- <strong>of</strong> the samp e (80 terms), the shift <strong>of</strong> estimates <strong>of</strong><br />

S(p), S(p) being small.<br />

Because the simulated series contain compositional space<br />

and time information on the flow, the spectrum <strong>of</strong> these series<br />

follow9 the pattern <strong>of</strong> white noise and is scattered among all<br />

f requemies.<br />

Fluctuations <strong>of</strong> S(p) and s(p) in individual samples can be<br />

found by computing the nean value <strong>of</strong> the spectrum, the dispersion<br />

ad the r.m.8. error when frequencies are changed. The<br />

latter charac teristic is computed from thsore tical spectrum<br />

for which is taken a sampled spectrum computed <strong>with</strong> the use<br />

<strong>of</strong> Table 4.<br />

Table 4<br />

Sampled Spec tra Estimates<br />

--c-_---_---------------------- - -L---._*_-_-_---------<br />

Non-f aired Baked<br />

IO. 48 10.00 10.45 10.80 10.00<br />

!%$ersion 5.81<br />

6.02 4.18 5.01 4.72<br />

%ba* 0.660 0.782 O 0.660 0.782 0


These estimates are evideme <strong>of</strong> homogeneous structures<br />

<strong>of</strong> the simulated sequences for various groupings by the m e s<br />

oî distributions.<br />

301<br />

The analysis leads to the coralusion that hydrological<br />

series constructed from natural flow characteristics contain<br />

a vast body information on combination and duration <strong>of</strong> periods<br />

differing in water content and may prove useful in estimating<br />

possible ranges <strong>of</strong> flow variations for certain rivers* The<br />

proposed assessmnt <strong>of</strong> laws governing hydrological variations<br />

may prove helpful in tackling various *ter industry problems.


302<br />

REFERENCES<br />

1. Alekseev, G.A. Ob'ektivq'e metoäy vyraklnivaniya i normali-<br />

zatdi c orrelyataionnykh myazey. Gidrometeoixdat ,<br />

Leningrad, 1971.<br />

2. Vodnoenergethheskiye raachyoty metodom Monte-Carlo.<br />

Ed. by Resnikovsky A.Sh. "Energiya" , Moscow,<br />

19690<br />

otts 7l<br />

3. Jenkins, %---<br />

G. Spectral Analysis and its Application.<br />

4. Halinin, G.P. Problemy glogalnoy gidrologii. Gidrometeo-<br />

iedat, Leningrad, 7968.<br />

5. Kalinin, G.P., Davydova, A. I. Pro~tramtvenno-meiaeMoy<br />

analiz tsiklichmsti atoka rek. Vestnik MGU, ser.<br />

Geographiya, No.4, 1967.<br />

6. Kilasoniya, A.I. IC voprosu vybsra nachala gidrologicheskogo<br />

goda pri vodokhozyastven4ykh i vodnoenergetioheskikh<br />

raschyotakh. Trudy GrmMIZ, XVIII, 1969.<br />

7. Eritsky, S.N., &&el, LF. Vybor krivykh raspredeleniya<br />

veroyatnostey dl raschyotov rechnogo stoka.<br />

IZV. AN SSSR, OTg No. 6, 1948.<br />

8. Kritsky, S.N., Unkel, M.F. O mtodike sovmestnogo analiza<br />

nabluàenig ea stokom gidrologicheskikh skhodnykh<br />

basseynov. Trudy GGI, Issue 180, Gldrometeoizdat,<br />

Leningrad, 1970.<br />

9. Svanidze, G.G. Osnovy raschyota regulirovaniya rechnogo<br />

stoka metodom &<strong>nl</strong>;e-Carlo. Metsniereba, Tbilisi,<br />

1964.<br />

10. Yanko, Y. Bdstematiko-statisticheakiye Tablitsi,<br />

Gosstroyizdat, Mosc OW, 1961


303


304<br />

200 - I<br />

1<br />

I<br />

I . - 7- :*u<br />

0.1 0.t 0.8 0.4 0.6<br />

I 1 I I I I ' m<br />

10 N) 30 40 bD 60 Po 80<br />

7 I I -<br />

Y i .<br />

Fig.2. Simulated flow sample spectra for a generalized cume:<br />

(a) non-faired spectrum S(p)i (b> faired spectrum i@),


"THE PREPARATION OF A DATA SET FOR HYDROLOGIC SYSTEM ANALYSIS"<br />

ABSTRACT<br />

M.J. Hamlin, B.Sc. D.I.C. M.ASCE. M.I.W.E.<br />

N.T. Kottegoda, B.Sc. Ph.D. M.I.C.E. M.I.W.E.<br />

The potential <strong>of</strong> a complex water resource system can <strong>of</strong>ten be<br />

determined o<strong>nl</strong>y by the construction <strong>of</strong> a mathematical model which is<br />

then used to simulate the operation <strong>of</strong> the system. Where flow data<br />

is inadequate the input data for the model may present the most<br />

challenging aspect <strong>of</strong> the design. The use <strong>of</strong> data generation techniques<br />

to supplement historic records to obtain a complete data set, pseudo-<br />

historic in character, provides a possible solution. Totally synthetic<br />

data sets, based o<strong>nl</strong>y on the statistics <strong>of</strong> existing flow data, can be<br />

produced to provide an alternative approach. The operation <strong>of</strong> the<br />

computed model must be based on a relevant time unit. In most schemes<br />

studied in the United Kingdom decisions need to be taken daily and it<br />

is therefore appropiate for the data to be in daily form. In spite <strong>of</strong><br />

considerable research effort methods for the generation <strong>of</strong> sequences<br />

<strong>of</strong> daily records are still inadequate and pentads have been commo<strong>nl</strong>y<br />

used. These represent the aggregated flows over a five day period and<br />

are used for generation purposes. The five daily totals are subsequently<br />

sub-divided to give daily flow values.<br />

RES UME<br />

On peut souvent déterminer le potentiel d'un système complexe<br />

de ressources en eau en se contentant de construire et d'utiliser un<br />

modèle mathématique de simulation. Quand les données sur les apports<br />

sont insuffisantes, l'établissement des données d'entrées peut repré-<br />

senter l'aspect le plus ardu du calcul. L'emploi des techniques de<br />

génération de données pour suppléer aux observations historiques et<br />

obtenir une série de données complète, méthode de caractère pseudo-<br />

historique, fournit une solution possible. Des series totalement syn-<br />

thétiques établies uniquement à partir de la statistique des données<br />

existantes, peuvent être elaborées et fournir une autre solution. Le<br />

fonctionnement du modèle exige le choix d'une unité de temps appropriée.<br />

Dans la plupart des cas étudiés dans le Royaume Uni, des décisions<br />

doivent être prises journellement; il convient donc que les données<br />

soient journalières. Malgré un effort de recherche considérable, les<br />

méthodes destinées à créer des séries d'observations journalières<br />

restent insuffisantes et on doit fréquemment utiliser des données<br />

pentadaires. On génère ainsi des écoulements pentadaires que l'on<br />

subdivise ensuite pour obtenir des valeurs journalières.


306<br />

Introduction<br />

For the development <strong>of</strong> the potential resources <strong>of</strong> the Wye and<br />

Severn river basins it is necessary to investigate both the design <strong>of</strong><br />

individual components <strong>of</strong> the system and the operation <strong>of</strong> these individual<br />

componenils in an integrated system. The operational study requires the<br />

construction <strong>of</strong> a complex simulation model.<br />

Thig paper describes o<strong>nl</strong>y one<br />

aspect <strong>of</strong> the problem namely the provision <strong>of</strong> a set <strong>of</strong> compatible data as<br />

input to the simulation model. The work was undertaken for the <strong>Water</strong><br />

<strong>Resources</strong> Board who were! responsible for the main operational study.<br />

Theoretically a multisite generation model represents the most<br />

attractive solution. In practice for daily or even five daily flows this<br />

presents problems for which there are no immediate solutions and alternative<br />

possibilities had to be sought. The first <strong>of</strong> these involves the use <strong>of</strong><br />

historic and pseudo historic flow records to build up a set <strong>of</strong> data for each<br />

<strong>of</strong> the nodal points <strong>of</strong> the system and this was the course which was adopted.<br />

A second possibility is the generation <strong>of</strong> wholly synthetic data based on the<br />

statistics <strong>of</strong> existing gauging stations where a structure is created <strong>of</strong><br />

primary and secondary sites which are linked using a standard bi-variate model.<br />

The choice <strong>of</strong> time unit needs considerable care and units <strong>of</strong> five<br />

days were agreed as being appropriate. However these tend to over estimate<br />

the resources and for a detailed consideration <strong>of</strong> critical periods it is<br />

necessary to sub-divide these into five daily values preserving, in as far as<br />

is possible,,all the relevant statistics <strong>of</strong> the daily time series.<br />

The Physical System<br />

A diagramatic sketch <strong>of</strong> the two river basins is shown in figure 1.<br />

Both-rivers rise in mid Wales and flow South into the Bristol Channel. They<br />

are both used for water supply purposes but there are substantial untapped<br />

resources and the possibilities <strong>of</strong> inter-basin transfers both between the<br />

Wye and Severn but more importantly from the Severn towards South East<br />

England are <strong>of</strong> considerable national interest. In the first instance the<br />

mathematical model was to be operated using data for the 38 years from<br />

1932-1969 inclusive. These contain a number <strong>of</strong> well known low flow sequences<br />

and in particular the periods 193314 and 1949. For this purpose it was<br />

necessary to produce compatible sets <strong>of</strong> data for all the nodal points in the<br />

system. Some <strong>of</strong> this data was available from historical records for the full<br />

period. At other points o<strong>nl</strong>y partial records were available and there were<br />

a number <strong>of</strong> points devoid <strong>of</strong> any flow records. The sketch identifies a number<br />

<strong>of</strong> typical points <strong>with</strong>in the system although these do not represent the total<br />

number for which data was obtained. The points are classified from A to F<br />

as follows.<br />

A)<br />

Records at these stations had been collected for a number <strong>of</strong> years and<br />

existed for the full period 1932-1969.


B) Gauged records exist for the full period 1932-1969 but required<br />

adjustment to allow for the effect <strong>of</strong> reservoirs in upland sub-<br />

catchments.<br />

C)<br />

Records exist for o<strong>nl</strong>y part <strong>of</strong> the period and need infilling to<br />

complete the 1932-1969 sequence.<br />

307<br />

D) Gauged records exist for o<strong>nl</strong>y part <strong>of</strong> the period and require both<br />

infilling and adjustment to allow for reservoirs in the upland subcatchments.<br />

E) No records are available for these catchments but they can be deduced<br />

from neighbouring catchments using the relationship<br />

where % and A are the areas <strong>of</strong> catchments E and A<br />

A<br />

respectively I<br />

and RIE and RIA are the effective rainfalls <strong>of</strong><br />

catchments E and A respectively<br />

This relationship is purely deterministic and suffers from lack <strong>of</strong> a<br />

stochastic component. However since the stochastic component cannot<br />

be evaluated there are no means for including it.<br />

F) No record is available for this catchment and flow values can o<strong>nl</strong>y be<br />

deduced from upstream catchments using the following relationship<br />

is the total catchment area down to point F<br />

Al, A2, A are the areas down to points, 1,<br />

2 and 3 respectively<br />

RIF is the effective rainfall on Area AF<br />

RI1, RI2, RI3 are the effective rainfalls on Areas<br />

Al, A2 and A respectively<br />

3<br />

Q,, Q2, Q, are the flows at points, 1, 2 and 3 respectively<br />

“19 n are the times <strong>of</strong> travel from points 1, 2 and 3<br />

2’ “3 to point F respectively.<br />

The adjustments necessary to allow for reservoirs in the upland<br />

sub-catchments were calculated using a simple accounting technique which made


308<br />

allowance for the flow times from reservoir to the nodal point. The choice<br />

<strong>of</strong> generation model and method <strong>of</strong> infilling data required considerably more<br />

attention.<br />

The bivariate model<br />

As all records extend up to December 1969, bivariate synthesis was<br />

used to infill the earlier parts <strong>of</strong> records where this was necessary1. For<br />

this purpose pentad data at a satellite station, S, where the flow record is<br />

short is linked to the data at a key station, Ky which has a long and<br />

reliable record,through a bivariate model. If such a model is to be<br />

acceptable statistically it should maintain the coefficient <strong>of</strong> cross<br />

correlation, rks, between the stations, the lag one serial correlation<br />

coefficients, rk and rs <strong>of</strong> the two stations and the five day seasonal means<br />

Mkj+l and Msj+l, and seasonal standard deviations, Skj+l and SSj+ly at the two<br />

stationS.in season j+i, 1 i j 5 73, corresponding to time t+i. A bivariate<br />

model can be expressed by<br />

In this particular application as synthesized data was required at<br />

station S o<strong>nl</strong>y, Kt+l represents the historical flow at station K at time t+l<br />

in pentad units and St+l represents the concurrent synthetic flow at station<br />

S <strong>with</strong> St as its antecedent value. The variab)e Xt+l at time t+l is given by<br />

1<br />

xt+l = (B/Ssj) (St - Ms.) + i1 (1 - B2) ........................... .(2)<br />

3 t+l<br />

where qt+l is a series <strong>of</strong> non-autocorrelated numbers <strong>with</strong> zero mean and unit<br />

variance and a distribution which is estimated from the distribution <strong>of</strong> the<br />

historical data at the satellite station, S. As shown by Fiering2, the three<br />

correlation coefficients, rk, rs, rks, should be incorporated in the constant<br />

B as follows:-<br />

2 -1<br />

B = (1 - rks) (rs - rk Xs2) ...................................... .(3)<br />

In the first instance the Clywedog data at Llanidloes (station 1 in<br />

Table 1) was extended using the bivariate model and the data from the Elan<br />

Valley Key station. The cross correlation coefficient is 0.89 and it was<br />

found that a three parametric gamma distribution (Pearson type 3) fits the<br />

Clywedog data. These parameters were estimated and read into the main program.<br />

When evaluating reservoir storages from synthetic data at the<br />

satellite station certain defects in the model were found. A visual comparison<br />

<strong>of</strong> concurrent historic flows at the two stations in dry years such as 1959<br />

showed similarities in the low flows which were not reproduced by the<br />

bivariate model in its original form. This discrepancy was observed in the


pattern <strong>of</strong> low flows in the synthetic data prior to 1959,e.&,in the critical<br />

dry period <strong>of</strong> 1933 and 1934. In Fig 2 a comparison is made between 6 years <strong>of</strong><br />

historical data at a Key Station, Kt, and concurrent data at a satellite<br />

station, St, which is partly historical (years 4, 5 and U) and partly<br />

synthesised (years 1, 2 and 3) <strong>with</strong>out adjustment. The patterns <strong>of</strong> concurrent<br />

sets <strong>of</strong> high flows are random in both parts but the long runs <strong>of</strong> low flows<br />

in historical dry years were not maintained inathe synthesised data. In a<br />

separate analysis seasonal values <strong>of</strong> serial correlation were computed but no<br />

significant differences were found. This may be attributed to the fact that<br />

in this climatological zone the times <strong>of</strong> commencement <strong>of</strong> the dry and wet<br />

seasons and the lengths <strong>of</strong> seasons are highly stochastic variables.<br />

However, it nas found that when the flows are below a certain<br />

threshold value?defined <strong>with</strong> respect to the data at the key station, which is<br />

TT1 in Fig 2, the standardized values <strong>of</strong> flows at the two stations are<br />

highly correlated so that these are nearly equal. The level TT1 was found by<br />

trial and error and the data generation was repeated <strong>with</strong> the new criterion<br />

that when the flow in the key station is below the threshold value, the<br />

standardized flows at both stations are equal or alternatively they are<br />

different by a very small random component.<br />

A further refinement was included to establish a recession curve on<br />

runs <strong>of</strong> low flows. This was estimated empirically and an average value was<br />

read into the program so that the droughts just resemble the historical<br />

droughts. An examination <strong>of</strong> the adjusted synthesised data showed that<br />

differences in concurrent low flows such as those illustrated in Fig 2 were<br />

eliminated.<br />

Choice <strong>of</strong> probability distribution<br />

309<br />

In studies dealing <strong>with</strong> extreme flows and the persistence <strong>of</strong> high or<br />

low flows the probability distribution <strong>of</strong> the data is fundamental and except in<br />

the case <strong>of</strong> certain annual series the distributions <strong>of</strong> historical data are<br />

significantly different from the Gaussian or normal type. This is because the<br />

distribution <strong>of</strong> river flows in a historical sample is bounded by zero or a<br />

positive value at its left extremity and has a long tail on the side <strong>of</strong><br />

increasing flows.<br />

For this reason, the distributions are said to be positively<br />

skewed. Furthermore, the coefficient <strong>of</strong> skewness tends to increase inversely<br />

<strong>with</strong> the time unit on which the series <strong>of</strong> data is based, which means that the<br />

skewness in pentad data is more than,, in, say, monthly data.<br />

Kottegoda3 has shown that the incorporation <strong>of</strong> a gamma distribution<br />

in a monthly data generation model could yield realistic flow sequences <strong>of</strong><br />

synthetic data. In particular, reservoir storage requirements evaluated from<br />

some <strong>of</strong> these sequences surpass that from the historical records. In the case<br />

<strong>of</strong> pentad data, a wider range <strong>of</strong> distributions to include Pearson's Type I,<br />

-111 and VI functions are necessary in order to model the empirical<br />

distributions4.


310<br />

The underlying generating process in the bivariate model used in<br />

this study is autoregressive <strong>of</strong> the type<br />

k 1<br />

xt = -1 a.X t-j + nt (1 - R2) ...................................... (4)<br />

J -1<br />

in which Xt, an autocorrelated cycle-free seriespand nt, a random series,<br />

have zero mean, unit variance and non-identical distributions, aj are the<br />

autoregressive parameters, k is the order <strong>of</strong> the process, R is the coefficient<br />

<strong>of</strong> multiple correlation and t is a point on the time scale.<br />

In an unpublished study,a comparison is made between crossing and<br />

other properties in historical pentad data and data synthesised using an<br />

autoregressive model and other models <strong>of</strong> recent origin in all <strong>of</strong> which the<br />

skewness in the random component, rit, is varied. The crossing properties <strong>of</strong><br />

particular interest in hydrology are shown in Fig 3. A sequence <strong>of</strong> 5 day<br />

river flows, R, which varies <strong>with</strong> time t is intersected at two levels, viz.,<br />

RU, an upcrossing level above which the flow is higher than the mean flow<br />

and RD, a downcrossing level below which the flow is lower than the mean.<br />

Because <strong>with</strong> increasing time R rises above the level Ru at 4 points, there<br />

are 4 upcrossings <strong>with</strong> respect to Ru. Similarly there are 2 downcrossings<br />

<strong>with</strong> respect to RD. The mean length <strong>of</strong> the horizontal bases <strong>of</strong> the 4 shaded<br />

areas above the Ru line is called the mean surplus run length. The total<br />

area <strong>of</strong> the shaded parts or sums <strong>of</strong> ordinates <strong>with</strong>in them is the total<br />

surplus run sum.<br />

In the same way the mean length <strong>of</strong> the intercepts at the<br />

RD level is the mean deficit run length and the total area below the RD level<br />

is the total deficit run sum.<br />

The crossing properties <strong>of</strong> historical pentad data <strong>of</strong> the river Wye<br />

at Rhyader and synthesised data based on an autoregressive model are shown<br />

in Fig 4. For this analysis the 33 year historical record is divided into<br />

3 equal samples <strong>of</strong> 11 years so that sampling variations, that are commo<strong>nl</strong>y<br />

found in data <strong>of</strong> this type could be seen.<br />

The properties <strong>of</strong> Synthesised data<br />

are based on the means <strong>of</strong> results from ten 11 year non-historical sequences.<br />

If a Gaussian distribution is used in the model the numbers <strong>of</strong> downcrossings<br />

are far in excess <strong>of</strong> the numbers expected from the historical data. The<br />

ratio <strong>of</strong> skewness applied to the nt series to that estimated from the<br />

historical data ought to be between 1.0 and 2.0 if a realistic number <strong>of</strong><br />

downcrossings is to be obtained. A further increase in skewness results in an<br />

undesirable reduction in downcrossings. The necessity <strong>of</strong> providing f r<br />

greater skewness in the nt series than in the historical data was shown by<br />

Thomas and Fiering5 , who investigated the storage-yield relationship.<br />

approximation to the optimum skewness as obtained by analysing the independent<br />

residuals, Zt, where<br />

k<br />

Zt = Xt -j=l I: Xt-j .................................................... (5)<br />

3,4<br />

has been shown in other studies<br />

An


Another point in favour <strong>of</strong> using the appropriate value <strong>of</strong> skewness<br />

is the large number <strong>of</strong> negative values generated when the skewness is too low<br />

as is the case if the normal distribution is used. On the other :-:A Li che<br />

skewness applied is excessive, not o<strong>nl</strong>y ari. Fcg-tive values totally eliminated<br />

but the lowest flows are too high as can be seen in the top left hand diagram<br />

in Fig 4. In addition the numbers <strong>of</strong> downcrossings at various levels are<br />

much fewer than those in the historical records.<br />

31 1<br />

The deficit run lengths and run sums are also shown to be dependent<br />

on the skewness but when compared to the numbers <strong>of</strong> downcrossings, the change<br />

<strong>with</strong> respect to skewness is in the opposite manner. With regard to upcrossings<br />

at levels above 50 mms., an increase in skewness tends to 'correct' the<br />

synthesizeddata but more skewness is required than for the low flows. This<br />

may be achieved by incorporating two distributions in the model, one for high<br />

flows and the other for low flows6.<br />

There seems to be no basic difference in the results if.the underlying<br />

model is changed from the autoregressive type. Skewness is the more<br />

important criterion. This is generally true <strong>of</strong> all pentad flow series from<br />

this climatological zone. Full results will be published in the near future.<br />

Infilling <strong>of</strong> data<br />

'<br />

The ten stations at which pentad data was extended are listed in<br />

Table 1. The number <strong>of</strong> years <strong>of</strong> synthesised data range from 5 to 29 years.<br />

The two key stations used in the synthesis are given. In certain cases the<br />

choice <strong>of</strong> key station for the synthesis is obvious because <strong>of</strong> close proximity,<br />

e.g., the Wye at ñhyader and Elan at Caban Coch. In other cases, the key<br />

station was selected on the basis <strong>of</strong> the best cross correlation coefficient.<br />

The type <strong>of</strong> distribution adopted was ascertained from a preliminary programme<br />

and it is seen from the table that Pearson's Type 3 or 1 functions provide a<br />

good fit to the data. The best fitting distribution is determined by the<br />

Kolmogorov-Smirnov two sample tests between synthesised and historical data<br />

at the satellite stations. The cross correlation coefficien.ts between<br />

concurrent records at the key stations and satellite stations range from 0.79<br />

to 0.96 for the historical periods at the satellite stations. Comparative<br />

values were obtained in respect <strong>of</strong> the synthesised data at the satellite<br />

stations and concurrent historical data at the key stations. The table also<br />

indicates that the lag one serial correlation coefficient is naintained by<br />

the model.<br />

The flow diagram in Fig 5 shows the basic structure <strong>of</strong> the programe<br />

"Two station 5 Daily" which was used for the infilling <strong>of</strong> the pentad data at<br />

the ten stations. The programme contains twelve subroutines. Subroutine Fxy<br />

ascertains the threshold value, below which it is desirable to incorporate<br />

higher cross correlation in the standardised data in order to maintain<br />

realistic low flow sequences in the synthesised data.


312<br />

Subdivision to daily data<br />

Any system which is subject to daily changesin the operating<br />

strategy must have daily inputs. Initial studies can be undertaken using<br />

sets <strong>of</strong> data having a pentad or monthly time unit but ultimately this time<br />

unit has to be reduced.<br />

The method used was developed by Green7, a Ph.D student at the<br />

University <strong>of</strong> Birmingham, who was interested in a river pollution model for<br />

which daily river flow data was essential. Pentad data is broken down into<br />

daily flows by interpolation and to the interpolated values is added an error<br />

term whose purpose is to maintain the statistical characteristics <strong>of</strong> the<br />

actual daily flow data. The long term characteristics including floods and<br />

drought sequences are preserved in the five daily model.<br />

The synthesis is carried out in two stages. Actual daily data is<br />

accumulated into five-day averages which are then subdivided into synthetic<br />

daily values. The synthetic values are compared <strong>with</strong> the actual daily values<br />

so that the success <strong>of</strong> the parameters used in the process and <strong>of</strong> the process<br />

itself can be measured. Once the composition <strong>of</strong> the error term can be<br />

adequately described the synthetic five-day averages are broken down to yield<br />

synthetic daily flows.<br />

Alternative data sets<br />

The use <strong>of</strong> an historic sequence <strong>of</strong> data enables the system to be<br />

operated so that a whole range <strong>of</strong> possible planning decisions can be<br />

investigated. Each plan is compared against alternative plans based on the<br />

same set <strong>of</strong> input data. When an optimum plan has been identified it is<br />

desirable that the operational decisions and their consequences should be<br />

tested agai.nst other possible sequences <strong>of</strong> input data. The historic data can<br />

o<strong>nl</strong>y be used to investigate what would have happened in the past. Since the<br />

flows will never be repeated in an identical sequence there is no possibility<br />

<strong>of</strong> the same set <strong>of</strong> decisions occurring in the future.<br />

For this purpose it is proposed that a number <strong>of</strong> synthetic flow<br />

records should be produced. These will consist <strong>of</strong> compatible sets <strong>of</strong> data<br />

for the two major stations in the system namely Bewdley and Elan Valley.<br />

When these have been prepared, data at the other existing nodal points can be<br />

obtained using the basic statistics given in Table 1.<br />

Conclusion<br />

The procedure outlined in this paper shows how water resource systems<br />

may be designed in spite <strong>of</strong> the inadequacy <strong>of</strong> historic flow records. An<br />

extension <strong>of</strong> the method allows for wholly synthetic sets <strong>of</strong> data to be<br />

prepared so that the future effect <strong>of</strong> possible flow sequences can be studied.<br />

It is an essential feature <strong>of</strong> these synthetic sets that whilst on the one hand


they reproduce the statistics <strong>of</strong> the historic data they also, on the other<br />

band, contain sequences <strong>of</strong> rare events which are not disclosed in the<br />

original record.<br />

Acknowledgements<br />

The authors wish to acknowledge the,financial assistance and<br />

encouragement <strong>of</strong> the <strong>Water</strong> <strong>Resources</strong> Board and also <strong>of</strong> their colleague<br />

Dr. Kelway and Mrs. Ross who yere:responsible for the major task <strong>of</strong> data<br />

handling.<br />

References<br />

1.<br />

2.<br />

3.<br />

4.<br />

5.<br />

6.<br />

7.<br />

Hamlin, M.J. and Kottegoda, N.T., (1971) "Extending the record <strong>of</strong> the<br />

Teme", Jour. <strong>Hydrology</strong> 12, pp 100-116.<br />

Fiering, M.B., (1964) "Multivariate technique for synthetic hydrology"<br />

Jour. ASCE, 90, No HY5, pp 43-60.<br />

Kottegoda, N.T., (1970) "Statistical methods <strong>of</strong> river flow synthesis<br />

for water resources assessment". Proc. Inst. Civ. Engrs., Supplement<br />

(xviii) , Paper 7339s.<br />

Kottegoda, N.T., (1972) "Stochastic five daily stream 'flow model",<br />

Jour. ASCE, 98, HY5, pp 1469-1485.<br />

313<br />

Thomas, H.A. dr. and Fiering, M.B., (1963) "The nature <strong>of</strong> the storage-<br />

yield relationship", Operations Research in <strong>Water</strong> Quality Management,<br />

Chapter 1 <strong>of</strong> Report <strong>of</strong> the Harvard <strong>Resources</strong> Group to the U.S. Pub. Health<br />

Service, Cambridge, Mass.<br />

Kottegoda, N.T., (1972) "Flood evaluation - can stochastic models provide<br />

an answer?" Int. Symp. on Uncertainties in Hydrologic and <strong>Water</strong> Resource<br />

Systems, Tucson, Arizona.<br />

Green, N.M., (1973) "A synthetic model for daily streamflow", Jour. <strong>of</strong><br />

Hydrol, (in press).


314


Lake<br />

D<br />

FIG. 1<br />

catchment 1<br />

Not to scale<br />

315<br />

Avon


3-<br />

31 6


L a<br />

t<br />

4<br />

c<br />

J<br />

317


13A31 3NISSûä3 NhM 'I3A31 3NISSûä3 NMûCi<br />

t"<br />

O<br />

r:<br />

t -<br />

?3Am 3NISSOä3 dn<br />

'I3Aa-I 3NISSOXI dn<br />

.?<br />

"<br />

.? "<br />

.? "<br />

I<br />

'4 "<br />

I<br />

M<br />

I I<br />

I I<br />

i 1,<br />

a"<br />

I<br />

'I 4 i' '7 I<br />

?' P<br />

I I<br />

M M<br />

O<br />

? m FI ?<br />

31 8


[EVALUATE HARMONIC FITTED MEANS AND STD. DEVS. Subroutine Frier P'<br />

t<br />

IREAD DATA AT SATELLITE STATION 1<br />

t<br />

319<br />

~- __.<br />

TATION I<br />

t<br />

[COMPUTE SERIAL CORRELOGRAM OF RAW DATA Subroutine Correl<br />

+ 4<br />

ICOMPUTE SKEWNESS COEFFICIENTS OF FIVE<br />

[COMPUTE CROSS CORRELATION COEFFICIENTS. Subroutine Sat I<br />

t<br />

[FIND RUNS BELOW AND ABOVE MEAN. Subroutine Runs I<br />

t<br />

[OPTIONAL - STALL ANALYSIS ON HISTORICAL DATA. Subroutine Stall 1<br />

[OPTIONAL - DURATION ANALYSIS. HISTORICAL. Subroutine Dur<br />

GENERATE & TRANSFORM RANDOM NUMBERS TO PEARSON TYPE OR LOGNORMAL<br />

CHI SQUARE TEST Subroutine Rannor<br />

IDURATION ANALYSIS ON HISTORICAL AND SYNTHESIZED DATA. Subroutine Dur. 1<br />

1<br />

t<br />

t '\<br />

t<br />

J<br />

GENERATE DATA USING CONCURRENT DATA AT KEY STN. SET THRESHOLD VALUE<br />

FOR REALISTIC LOWFLOWS.. Subroutine f XY<br />

I<br />

COMPUTE MEANS, STD. DEVS., SKEW COEFFICIENTS OF SYNTHESIZED DATA.<br />

FIND HIGHEST AND LOWEST VALUES. Subroutine Percen.<br />

t<br />

IPUNCH CARD AND LINEPRINTED OUTPUT OF SYNTHESIZED DATA I<br />

b<br />

[ CO>íF'üTE CROSS CORRELATION COEFF. OF SYbTHECIZED AND M W DATA. Subroutine Sat11<br />

[OPTIONAL - STALL ANALYSIS ON SYNTHESIZED DATA. Subroutine Stall<br />

ISERIAL CORRELOGRAM OF SYKTHESIZED DATA. Subroutine Correl<br />

t<br />

[COMPARE RUNS IN SYNTHESIZED AND HISTORICAL DATA. Subroutine Runs<br />

I<br />

1<br />

IKOLMOGOROV-SMIRNOV TWO SAMPLE TEST OF SYNTHESIZED AND HISTORICAL DATA.<br />

I Subroutine Smir<br />

+<br />

I<br />

'I<br />

I<br />

1<br />

*r


POTENTIAL APPLICATION OF BAYESIAN TECHNIQUES FOR PARAMETER<br />

ESTIMATION WITH LIMITED DATA<br />

ABSTRACT<br />

Roberto L. Lenton, John C. Schaake Jr.<br />

and Ignacio Rodriguez-Iturbe<br />

Department <strong>of</strong> Civil Engineering<br />

Massachusetts Institdte <strong>of</strong> Technology<br />

The use <strong>of</strong> Bayesian Techniques for parameter estimation can<br />

potentially improve the available limited hydrologic data by taking<br />

into account not o<strong>nl</strong>y the information contained in the historical<br />

sample, but also all the information coming from other sources, both<br />

objective and subjective. At the same time, project economics can be<br />

considered by the use <strong>of</strong> a loss function which specifies the serious<br />

ness <strong>of</strong> choosing an estimate which is not the true one. For example,<br />

these techniques can be applied to the estimation <strong>of</strong> the parameters<br />

<strong>of</strong> a first order autoregressive model. Moreover, if the hydrologist<br />

is willing to make certain simplifying assumptions and limit his pro<br />

blem to the estimation <strong>of</strong> o<strong>nl</strong>y the autocorrelation coefficient, then<br />

comparatively simple estimators result. The comparison between Bayes<br />

and Classical estimators for p on the basis <strong>of</strong> the risk function and<br />

the expected risk shows that the Bayes estimator is considerably mo-<br />

re advantageous, especially when the sample is <strong>of</strong> a limited duration.<br />

RESUMEN<br />

La utilización de técnicas Bayesianas para la estimación de<br />

parámetros puede mejorar la informacibn limStada existente, aï tener<br />

en cuenta no sólo la información contenida en la muestra histórica<br />

sino también toda la información proveniente de otras fuentes tanto<br />

objetivas como subjetivas, A la vez, se pueden considerar los aspec-<br />

tos económicos mediante la utilización de una función de pérdidas<br />

que especifica la seriedad de escojer un esti’mado que no es el verda<br />

dero. Por ejemplo, se pueden utilizar estas têcnicas para la estima-<br />

ci6n de los parámetros de un modelo autoregresivo de primer orden.<br />

Mas afin, si el hidrólogo está dispuesto a .realizar ciertos supuestos<br />

simplificadores, y a limitar su problema a la estimación del coefi-<br />

ciente de autocorrelación solamente, entonces se pueden obtener esti<br />

madores relativamente simples. La comparación entre los estimadores<br />

Bayesianos y clbsicos para el parametro p, en Base a la función de<br />

riesgo y al valor esperado del riesgo, demuestra que el estimador Ba<br />

yesiano presenta considerables ventajas, especialmente cuando la mues<br />

tra es de una duración limitada.


322<br />

INTRODUCTION<br />

Various models have been proposed in the past for modelling the<br />

stochastic nature <strong>of</strong> the hydrologic processes; the purpose <strong>of</strong> using these<br />

models has been to aid in making better investment and management decisions<br />

regarding <strong>Water</strong> Resource projects.<br />

Two factors are decisive in the choice <strong>of</strong> a model: the available in-<br />

formation and the problem to be solved. Once the model has been chosen, how-<br />

ever, these two factors must continue to be considered. The o<strong>nl</strong>y control the<br />

hydrologist has over his model is in the estimation <strong>of</strong> its parameters. Hence<br />

the estimation technique should both use the%vailable information in the<br />

most efficient way, and in some manner take into account the problem at hand,<br />

Unfortunately, the classical methods <strong>of</strong> estimation do neither, and in this con-<br />

text have two important defects:<br />

1. They can o<strong>nl</strong>y take into account the information contained in the<br />

historical sample. Evidently the hydrologist is limiting himself by not in-<br />

troducing information from other sources which could reduce the uncertainties<br />

<strong>of</strong> estimation.<br />

2. They produce values that are independent <strong>of</strong> the economic consequences<br />

<strong>of</strong> erroneous estimates. It appears evident that it would be more rational<br />

to assess the opportunity losses to be undergone by estimating a parameter<br />

erroneously, and then use as a criterion for estimation the minimization <strong>of</strong><br />

those expected opportunity losses.<br />

Bayes Theorem seems to provide a framework for approaching the problems<br />

that have been indicated. The first point is taken into account by providing<br />

an "a priori" distribution on the parameter <strong>of</strong> interest. This prior<br />

distribution encompasses all infomation that is not in the historical sample,<br />

providing an assessment <strong>of</strong> both the most likely values and the degree <strong>of</strong> uncertainty<br />

<strong>of</strong> the parameter in question. The prior information enters the<br />

estimation procedure via Bayes Theorem, which expresses simply that<br />

where<br />

P (Om a p (O) p (Y/@) (1)<br />

Y = Vector <strong>of</strong> sample observations<br />

O = Parameter<br />

p(O/Y) = "Posterior" pdf <strong>of</strong> O I given Y<br />

p(O) = Prior pdf <strong>of</strong> O<br />

p(Y/O) = Likelihood function for the parameter O .<br />

The posterior pdf now replaces the likelihood function as the means<br />

for making inferences about the parameter, and as a means for taking into<br />

account the second problem that was noted - i.e., the economic consequences<br />

<strong>of</strong> erroneous estimates.<br />

There are iïitroduced by means <strong>of</strong> a loss function R (O,@), which specifies<br />

the opportunity loss which is undergqne when O, the true value <strong>of</strong> the<br />

parameter, is erroneously estimated as O . Hence the Bayesian criterion<br />

A


consists <strong>of</strong> choosing the value<br />

losses :<br />

or<br />

o =<br />

A h<br />

h<br />

0 that minimizes the expected opportunity<br />

min [a(@,@)] (2)<br />

o<br />

6 = min a(;,@) p (@/Y) do<br />

u n<br />

where fi is the region <strong>of</strong> the parameter 0 .<br />

(3)<br />

323<br />

Since it is evident that the Bayes approach depends rather heavily<br />

on two factors, the prior distribution and the loss function, these two points<br />

will be discussed below in greater detail.<br />

THE PRIOR INFORMATION<br />

If the prior pdf is to adequately represent all information other<br />

than that contained in the sample, it must be assessed <strong>with</strong> great care. The<br />

first question that must be answered is the source <strong>of</strong> ,this non-sample infor-<br />

mation.<br />

One reasonable source <strong>of</strong> information could be a collection <strong>of</strong> past<br />

records from other river basins on the value <strong>of</strong> the parameter <strong>of</strong> interest.<br />

The analysis can be performed on the frequency histogram <strong>of</strong> observed values,<br />

by fitting a known distributional form to it. This, <strong>of</strong> course, is o<strong>nl</strong>y valid<br />

for non-dimensional parameters (such as the coefficient <strong>of</strong> variation or the<br />

first order autocorrelation coefficient), the basic assumption being that<br />

there are physical reasons which tend to make some values <strong>of</strong> the parameter<br />

more likely than others, as reflected in the collection <strong>of</strong> records. As a<br />

first approximation, the hydrologist could analyze world-wide data; if he<br />

is not satisfied, he could regionalize this information or classify it, taking<br />

into account o<strong>nl</strong>y rivers <strong>of</strong> similar characteristics to the one he is studying.<br />

Another source <strong>of</strong> information could be the analysis <strong>of</strong> physical cha-<br />

racteristics <strong>of</strong> river basins which are related to the parameter <strong>of</strong> interest.<br />

By regression on these characteristics, a measure <strong>of</strong> the mean and variance<br />

<strong>of</strong> the parameter can be obtained, and a probability distribution fitted to<br />

it. This is the approach used by Wood (1973), in another paper presented at<br />

this conference,to derive prior information on exceedance flows. It also<br />

might be possible to derive a prior distribution on the basis <strong>of</strong> theoretical<br />

considerations if the relationship between the parameter and the physical<br />

characteristics <strong>of</strong> the basin can be modelled. The model would give a measure<br />

<strong>of</strong> the mean value to assign to the prior distribution, whilst the variance<br />

must be obtained by assessing the reliability <strong>of</strong> the hypothesized model.<br />

Finally, the hydrologist's judgement and experience must necessarily<br />

enter the picture. When a "data-based'' prior is used, the exact form <strong>of</strong> the


324<br />

prior pdf is tempered by the hydrologistvs subjective assessment; when<br />

no data is available, the hydrologist can approximate a prior distribution<br />

on the parameter from "introspection, casual observation or theoretical ob-<br />

servations" (Zellner, 1971); he must be extremely careful, however, in<br />

determining that the dispersion in his prior pdf properly represents his<br />

true state <strong>of</strong> knowledge or ignorance,<br />

THE LOSS FUNCTION<br />

The loss function k(6,o) has been defined as the function that<br />

specifieg the opportunity loss that obtains when the hydrologist "acts" as<br />

though O were the real parameter value, when in fact O is. These<br />

opportunity losses represent the difference between the benefits actually<br />

to be obtained from a given <strong>Water</strong>-<strong>Resources</strong> project and the greater value<br />

that would have been realized had the true parameter value been known, It<br />

is seen from this definition that the economic losses are a consequence <strong>of</strong><br />

the decisions or ('actions'' that the hydrologist recommends on the basis <strong>of</strong><br />

his estimate; for example, these decisions could consist <strong>of</strong> constructing a<br />

reservoir <strong>of</strong> a certain storage capacity or, in a more complex system, <strong>of</strong><br />

constructing a series <strong>of</strong> reservoirs, irrigation sites, power stations and<br />

diversions <strong>of</strong> a certain size or capacity,<br />

Formally, the loss function can be obtained in the following manner.<br />

(Pratt, Raiffa and Schlaifer, 1965). LetAthere be a set A <strong>of</strong> acts a<br />

(which are a consequence <strong>of</strong> the estimate 8 ), a set fi <strong>of</strong> parameter<br />

values O , and a value function (e.g. National Income Net Benefits) Vt<br />

<strong>with</strong> values vt(a,O). For every parameter point, the greatest <strong>of</strong> these<br />

values is mpx vt (ayo). Therefore the opportunity loss <strong>of</strong> any particular<br />

act a given that the parameter is O is<br />

!L(a,O) max vt(a,O) - vt(a,O)<br />

a<br />

where a, is the optimal act a for O .<br />

Finally, if<br />

be expressed<br />

as is the optimal act a for 6 , then (5) can<br />

These ideas are illustrated in Figure 1.<br />

Thus, to determine the structure <strong>of</strong> his loss function, the hydro-.<br />

logist must first evaluate the value functions associates <strong>with</strong> his problem.<br />

Application to a Reservoir Sizing Problem<br />

A simple, though common problem in <strong>Water</strong> <strong>Resources</strong> Engineering is the<br />

determination <strong>of</strong> the optimal storage capacity <strong>of</strong> a reservoir to provide re-


325<br />

gulated flow to an irrigation area <strong>of</strong> a given size <strong>with</strong> a given target demand.<br />

The action to be taken in this case consists <strong>of</strong> constructing the reservoir <strong>of</strong><br />

a certain capacity S; the value functions could consist <strong>of</strong> the net benefits<br />

derived from the irrigation system.<br />

These can be computed on the basis <strong>of</strong><br />

the long-term benefits derived from the operation <strong>of</strong> the irrigation site, the<br />

cost <strong>of</strong> the reservoir and <strong>of</strong> the irrigation system, and the short term losses<br />

which occur when the water supplied by the reservoir is insufficient to meet<br />

the irrigation target.<br />

As th2 reservoir size is increased, the short term losses decrease at<br />

the expense <strong>of</strong> reservoir Costs, and therefore the problem essentially consists<br />

<strong>of</strong> a trade-<strong>of</strong>f between these two fac'tors.<br />

A discrete set <strong>of</strong> value functions can be easily determined in this<br />

case through simulation for a discrete number <strong>of</strong> parameter values<br />

(oi, i = l,Z,...,n) and for a discrete number <strong>of</strong> design storage capacities,<br />

or actions, (aj, j = 1,2,...,n). Using the assumed flow mod21 <strong>with</strong> parameter<br />

oi, and setting the reservoir capacity at aj, the system net benefits<br />

Vt(Oiy aj) can be determined after simulating for an appropriate period <strong>of</strong><br />

years.<br />

This technique was applied to determine the loss function for a hypothetical<br />

problem <strong>of</strong> determining the optimal storage capacity <strong>of</strong> a reservoir<br />

to supply an irrigation system in the Rio Colorado Basin in Southern Argentina<br />

(see Lenton, Rodriguez-Iturbe, and Schaake, 1973) ; the assumed model was the<br />

first-order normal autoregressive model <strong>with</strong> parameters p ,a2 and p . The<br />

loss function for p , assuming and u' equal to the sample values, is<br />

shown in Figure 2.<br />

It should be pointed out that the loss function on all 3 parameters<br />

<strong>of</strong> the model could be determined using exactly the same technique, although<br />

a 6-dimensional matrix would be required.<br />

EXAMPLE APPLICATION: THE FIRST ORDER AUTOREGRESSIVE MODEL<br />

The Bayesian methodology for parameter estimation has been applied<br />

quite successfully to the case <strong>of</strong> the first-order normal autoregressive model<br />

by Lenton, Rodriguez-Iturbe and Schaake, (1973), the basic results <strong>of</strong> which<br />

are summarized below.<br />

The first order normal autoregressive process may be expressed as<br />

where y, = annual flow at year t<br />

w = independent normally distributed random-variable <strong>with</strong> zero<br />

mean and unit variance


326<br />

p = mean <strong>of</strong> the process<br />

u2 = variance <strong>of</strong> the process<br />

p = first-order autocorrelation coefficient <strong>of</strong> the process<br />

The Bayesian analysis begins <strong>with</strong> the assessment <strong>of</strong> the prior in-<br />

formation. In this case, in order to make the posterior analysis mathema-<br />

tically tractable, the model was reformulated in terms <strong>of</strong> the parameters<br />

v', U , and p, where v' is the inverse.pf the coefficient <strong>of</strong> variation.<br />

This approach has the considerable advantage <strong>of</strong> permitting the assumption<br />

<strong>of</strong> independence between the parameters at an "a priori" level, and hence<br />

the prior pdf could be expressed<br />

The prior pdf on the parameter p , p(p), was derived from a collection<br />

<strong>of</strong> past records from 140 rivers <strong>of</strong> the world, gathered by Yevjevich (1964).<br />

A Beta distribution <strong>of</strong> the form<br />

was fitted to the histogram <strong>of</strong> values <strong>of</strong> p derived from that collection,<br />

resulting in the following values <strong>of</strong> kl and k2<br />

kl = 9.888<br />

k2 = 14.499<br />

Assuming prior ignorance about the values <strong>of</strong> v' and U , (8)<br />

was expressed as<br />

It should be pointed out that it is possible to incorporate informa-<br />

tion on the parameter v' as well, utilizing the same collection <strong>of</strong> records<br />

from which the prior information on p was derived, and fitting a Beta pdf<br />

to the frequency histogram. However, this procedure has the disadvantage <strong>of</strong><br />

not permitting a marginal analysis on the parameter p , which can be con-<br />

siderably useful, as will be seen further on.<br />

The likelihood function for the parameters was derived in the usual<br />

manner, and multiplying the prior pdf by the likelihood function for the 3<br />

parameters <strong>of</strong> the process, the posterior pdf was shown to be


where<br />

Equation (11) is therefore the key equation for the optimum estima-<br />

tion <strong>of</strong> the parameters <strong>of</strong> the first order autoregressive model. To do this<br />

in a practical design problem the following two steps must be undertaken:<br />

327<br />

1.) Derive the loss function &(6,0), where O and 8 are now<br />

3x1 column vectors, by application <strong>of</strong> Equation (6). The value functions can<br />

be obtained through simulation, as shown in the Rio Colorado example.<br />

2.) Obtain the optimum parameter estimates 0 by solving Equation<br />

(3), by substitution <strong>of</strong> (11). In practical applications, this minimization<br />

procedure must be undertaken numerically. Note that the determination <strong>of</strong> the<br />

optimal estimates immediately gives the optimal action a6 through the<br />

value function Vt (a,O), as indicated in Figure 1.<br />

Some Simplifying Approaches<br />

The procedure outlined above may be considerab1:r simplified if the<br />

hydrologist is willing to limit his problem to the optimum estimation <strong>of</strong> o<strong>nl</strong>y<br />

the parameter P ,the other parameters being estimated by classical proce-<br />

dures. This approach may be justified by noting that the variance <strong>of</strong> these<br />

estimates is usually quite small.<br />

The marginal posterior pdf for P can be obtained in this case by<br />

integration <strong>of</strong> Equation (11). However, a much simpler expression, and one<br />

that produces almost identical estimates, can be derived by making the trans-<br />

f o mat ion<br />

The model can now be expressed as<br />

Xt = y, - lJ (12)


328<br />

The marginal posterior pdf for P for this process can be shorn<br />

to be (Thornber, 1967; Rodriguez-Iturbe et al., 1972)<br />

where<br />

T<br />

a = C x 2<br />

t<br />

t=o<br />

T<br />

a 1 = - 2 C xt x t-1<br />

t=l<br />

a2 = I xL<br />

t-1<br />

t=2<br />

Further fundamental simplificatiom can be made if the hydrologist<br />

is willing to fit a simple functional form to his loss function. In this<br />

case the minimization <strong>of</strong> Equation (3) can be determined analytically. Some<br />

distribution-free results are available in the literature (Raiffa and<br />

Schlaifer, 1960), for example, if the loss function can be assumed quadratic,<br />

then the optimum estimate is the mean <strong>of</strong> the posterior<br />

function can be assumed linear, i.e.<br />

pdf. If the loss<br />

then the optimum estimate is obtained from the value that satisfies<br />

kU<br />

P(P/X) = -<br />

%+ ko<br />

where P(p/X) is the posterior cdf for p .<br />

Lenton, Rodriguez-Iturbe and Schaake (1973) extensively studied<br />

the properties <strong>of</strong> the Bayes estimators under the quadratic and linear loss<br />

functions, <strong>with</strong> various degrees <strong>of</strong> asymmetry. Basically, interest centered<br />

around comparing the performance <strong>of</strong> Bayes estimators <strong>with</strong> that <strong>of</strong> some clas-<br />

sical estimators. The criteria for comparison were the risk functions


R(p) and the expected risk B.<br />

where<br />

By definition,<br />

R = Region <strong>of</strong> the sample vector Y<br />

Y<br />

Hence the expected risk is<br />

The prior pdf P(P) used was that given by Equation (9) <strong>with</strong> the<br />

Yevjevich data parameters.<br />

Some selected results are reprinted in Tables 1 and 2. They<br />

show the Bayes estimator to be considerably superior to the Maximum Liks-<br />

lihood (ML) estimator in all cases, especially in the presence <strong>of</strong> limited<br />

data.<br />

Table 1<br />

Comparison <strong>of</strong> Estimators under the Quadratic Loss Function<br />

Sample Length<br />

329<br />

The sensitivity <strong>of</strong> the Bayes estimator to the form <strong>of</strong> the loss function<br />

was also studied. The Bayes estimator was found to be remarkably robust;<br />

for example, for sample lengths <strong>of</strong> 10 years, if the coefficient<br />

ko was<br />

erroneously determined as ko = 4 instead <strong>of</strong> ko = 0.25, the Bayes estimator<br />

still performed almost twice as well as the ML estimator,under the expected


330<br />

risk criterion.<br />

Table 2<br />

Comparison <strong>of</strong> Estimators under the Linear Loss Function<br />

Furthermore, practically no difference in the expected risk was<br />

found when the symmetric linear loss function was used instead <strong>of</strong> the<br />

quadratic. In general, it was concluded that errors in the form <strong>of</strong> the<br />

loss function are less important than errors in the degree <strong>of</strong> asymmetry<br />

<strong>of</strong> the loss function. This observation tends to justify the simplification<br />

<strong>of</strong> fitting the loss function to a given functional form, provided that the<br />

correct degree <strong>of</strong> asymmetry is preserved.<br />

CONCLUSIONS<br />

The Bayesian framework for parameter estimation permits the hydro-<br />

logist to correct the defects <strong>of</strong> classical methods <strong>of</strong> estimation through<br />

the consideration <strong>of</strong> fi sources <strong>of</strong> information and through the considera-<br />

tion <strong>of</strong> the economic consequences <strong>of</strong> erroneous estimates.<br />

Infonation obtained from sources other than the historical sample<br />

is incorporated in the prior pdf; however, the source <strong>of</strong> information must<br />

be analyzed very carefully. The sample information enters the estimation<br />

procedure via the likelihood function. The economic consequences <strong>of</strong> erroneous<br />

estimates are taken into account by means <strong>of</strong> a loss function; a general tech-<br />

nique for obtaining this function for a hydrologic design problem is presen-<br />

ted.<br />

The general Bayesian approach to parameter estimation can be applied<br />

to the first order autoregressive model. In general, this procedure permits


the optimum estimation <strong>of</strong> the 3 parameters <strong>of</strong> the model. However, if the<br />

hydrologist is willing to make some simplifying assumptions and limit<br />

his problem to the estimation <strong>of</strong> P , relatively simple estimators can<br />

be derived. These estimators present considerable advantages over the<br />

classical estimators.<br />

ACKNOWLEDGEMENTS<br />

The work was supported by the Office <strong>of</strong> <strong>Water</strong> <strong>Resources</strong> Research,<br />

Office <strong>of</strong> the Interior, United States Govprnment, under Grant No.<br />

14-31-0001-9021.<br />

1.<br />

2.<br />

3.<br />

4.<br />

5.<br />

6.<br />

7.<br />

8.<br />

REFERENCES<br />

Wood, Eric F., (1973). Flood Control <strong>Design</strong> <strong>with</strong> Limited Data -<br />

,A Comparison <strong>of</strong> the Classical and Bayesian Approaches, Presented<br />

at the Symposium on the <strong>Design</strong> <strong>of</strong> <strong>Water</strong> Resource <strong>Projects</strong> <strong>with</strong><br />

<strong>Inadequate</strong> Data, Madrid, June 1973.<br />

Zellner, A. (1971). An Introduction to Bayesian Inference in Eco-<br />

nometrics, J. Wiley &Sons.<br />

Pratt, J.W., H. Raiffa, and R. Schlaifer (1965). Introduction to<br />

Statistical Decision Theory, McGraw-Hill.<br />

331<br />

Lenton, Roberto L., I. Rodriguez-Iturbe and John C. Schaake, (1973).<br />

A Bayesian Approach to Autocorrelation Estimation in Hydrologic<br />

Autoregressive Models, Ralph M. Parsons Laboratory, Report No. 163,<br />

M.I.T.<br />

Yevjevich, V. (1964). Fluctuations <strong>of</strong> Wet and Dry Years, Part II,<br />

Analysis by Serial Correlation, Colorado State University <strong>Hydrology</strong><br />

Paper No. 4, Fort Collins, Colorado.<br />

Thornber, H. (1967). Finite Sample Monte Carlo Studies: An Auto-<br />

regressive Illustration, J. Am. Statist. ASSOC., September 1967.<br />

Rodriguez-Iturbe, I., J. Valdes, R. Lenton and D. Valencia, (1972).<br />

Bayesian Hydrological Model Building, Proceedings <strong>of</strong> the ïnter-<br />

national Symposium on Uncertainties in Hydrologic and <strong>Water</strong> Resource<br />

Systems, Volume II, University <strong>of</strong> Arizona, Tucson, Arizona.<br />

Raiffa, H, and R. Schlaifer, (1961). Applied Statistical Decision<br />

Theory, M.I.T. Press.


332<br />

Figure 1 . The value functions and the determination<br />

<strong>of</strong> the loss function.<br />

\<br />

a


_c,<br />

-p" -0 6 -0 2 02<br />

R


STORAGE-Y1,ELD ESTTMATEC WITH INADEQUATE STREAMFLOW DATA<br />

T.A. McMahon and R.G. Mein<br />

Department <strong>of</strong> Civil Engineering, Monash University, Australia.<br />

ABSTRACT<br />

<strong>Inadequate</strong> streamflow data may result from short records.<br />

Various techniques can be used to deal <strong>with</strong> this paper the design<br />

problem <strong>of</strong> estimating the storage-yield relationship for a large<br />

reservoir on a stream having o<strong>nl</strong>y seventeen years <strong>of</strong> data is conside-<br />

red, There are two parts to this problem; the extension <strong>of</strong> the<br />

streamflow record and the estimation <strong>of</strong> storage capacity.<br />

For the example studied, the streamflow record was extended<br />

from daily rainfall using a simple rainfall-run<strong>of</strong>f procedure<br />

(Boughton's digital computer model modified <strong>with</strong> a groundwater<br />

component). The model was fitted to half <strong>of</strong> the available record and<br />

validated against the remaini'ng half. The agreement between estimated<br />

and historical data was better than that resulting from a month by<br />

month regression analysis between the historical flows and the flows<br />

at an adjacent site (<strong>with</strong> much longer streamflow records).<br />

In the part Gould's stochastic model is used to determine<br />

storage capacity. The mothod is independent <strong>of</strong> the initial conditions<br />

and takes into account seasonality and monthly serial correlation.<br />

Results are compared <strong>with</strong> those obtained using a behaviour analysis.<br />

RESUME<br />

L'insuffisance des données portant sur le débit peut résulter<br />

de la trop courte durée des relevés. L'on peut adopter différentes<br />

techniques pour y remédier. Dans le présent article, nous étudierons<br />

plus particulierement le probleme de l'élaboration d'une méthode<br />

permettant d'estimer les relations débit-accumulation dans le cas<br />

d'un grand réservoir situé sur un cours d'eau pour lequel lienregis-<br />

trement des données ne remonte qu'a dix-sept ans. Le problème peut<br />

être divisé en deux parties: ia prolongation des données concernant<br />

le débit d'eau et l'estimation de la capacité d'emmagasinage.<br />

Dans le cas précis, la série des données concernant le ddbit<br />

d'eau a été prolongé au moyen de données pluviométriques grace 3<br />

l'utilisation d'une simple procédure pluviométrie-écoulement (modèle<br />

numdrique de Boughton modifié par l'addition d'un autre facteur,lleau<br />

souterraine). Le modèle a St6 ajusté en utilisant la moiti8 des<br />

données disponibles, pour être ensuite contrôle par comparaison ayec<br />

l'autre moitié. L'accord entre les données estimées et historiques<br />

s'est révelé très supérieur à la corrélation, établie grâce à une<br />

analyse par régressions mensuelles entre les débits observés et ceux<br />

qui ont été obtenus dans un site voisin pour lequel les relevés por-<br />

tent sur une période beaucoup plus longue.<br />

Dans la deuxième partie le modèle stochastique de Gould est<br />

utilisé pour déterminer la capacité d'emmagasinage. Cette méthode est<br />

indépendante des conditions initiales et elle ti'ent compte des fac-<br />

teurs saisonniers aussi bien que de la correlation sérielle mensuelle.<br />

Une comparaison est faite entre nos résultats et ceux obtenus par la<br />

méthode d'analyse dite "de comportement'' (behaviour analysis 1.


336<br />

INTRODUCTION<br />

<strong>Inadequate</strong> streamflow data may result from measurement errors and<br />

shortness <strong>of</strong> record. In this paper we are concerned <strong>with</strong> the latter problem.<br />

Specifically, we take a seventeen year streamflow record, considered<br />

inadequate for storage estimation, and show how this can be extended using<br />

a relatively simple deterministic rainfall-run<strong>of</strong>f model.<br />

In the second part a stochastic storage model is used to estimate the<br />

capacity <strong>of</strong> a single reservoir €or various regulating conditions and<br />

probabilities in failure.<br />

The methodology is illustrated using the ïñomson River catchment at<br />

'Ihe Narrows (ref. no. 225210, iat 37O 53'S, long 146O 24'E) in Victoria,<br />

Australia. This is a 518 km2 forested catchment (Fig.1) <strong>with</strong> elevations<br />

varying between 400m and 1560m.<br />

In the south west, granodioritecountry gives<br />

rise to deep loam soils whereas the remaining area is sedimentary rocks <strong>with</strong><br />

shallow soils. Mean annual catchment rainfall is 1540mm which varies from<br />

below 1OOOmm to more than 2500m over the catchment.<br />

Three standard daily read rain gauges (Fig.1) are available <strong>with</strong><br />

records extending from 1886 to 1970. A fourth gauge <strong>with</strong> data from 1942<br />

onwards is also available. Stream heights at The Narrows have been recorded<br />

automatically since 1954 and masured gaugings have been made up to 531n~s-l.<br />

However, discharges up to 150m3s-l have been estimated. No long term<br />

evaporation measurements are available <strong>with</strong>in or near the catchment. The<br />

closest station is at Elelbourne, 130 km to the west.<br />

STREAMFLOW DATA ESTIMATION<br />

Basically there are two methods available for extending streamflow<br />

data at a gauging station. The first method consists in correlating the<br />

flows at that station <strong>with</strong> those at a nearby station <strong>with</strong> long records.<br />

From the additional records and the regression equation/s relating the two<br />

stations, flows at the station <strong>with</strong> the shorter record period are estimated.<br />

Searcy (1960) explains clearly the use <strong>of</strong> simple analytical and graphical<br />

regression procedures to do this. Multiple regression methods are sometimes<br />

used. Examples <strong>of</strong> these are given by Brown (1961) who illustrates the<br />

procedures <strong>with</strong> monthly data for the Snowy Mountains region <strong>of</strong> Australia.<br />

The second technique is based on deterministic rainfall-run<strong>of</strong>f models.<br />

Of the many digital computer models now available, o<strong>nl</strong>y one - Boughton's<br />

model - has been used extensively in Australia. Because <strong>of</strong> this and because<br />

it utilizes daily inputs, we adopted the Boughton model for extending the<br />

seventeen years <strong>of</strong> streamflow at The Narrows, in an attempt to improve upon<br />

the results obtained using the standard regression method.<br />

In relation to data estimation, one question which arises is whether<br />

data should or should not be extended. In circumstances where consistency<br />

between record lengths is required, data extension is mandatory. However,<br />

a check on whether statistically one is better <strong>of</strong>f extending data can be made


y computing the relative information content using the procedure given by<br />

Fiering (1962). Checks made for this study showed extension <strong>of</strong> the data is<br />

beneficial.<br />

337<br />

In this paper the terms data extension and data estimation are used<br />

synonymously to des cribe procedures in which equivalent historical estimates<br />

are made. Herein, we calculate historical monthly flws for the period 1886<br />

to 1353. On the other hand, data generation is an analytical tool in which<br />

a model, which represents the stochastic streamflow process, produces flow<br />

sequences that statistically are no different to the historical sequence,<br />

but cannot be adopted to represent the observed flow record.<br />

Boughton's Rainfall-Run<strong>of</strong>f Model (Boughton 1966, 1968)<br />

?he Boughton model simulates for a catchment daily surface run<strong>of</strong>f from<br />

daily rainfall inputs and is operated in three distinct cycles - wetting,<br />

drying and drainage. The wetting cycle is o<strong>nl</strong>y considered on rainfall days,<br />

but the drying and drainage cycle operate every day.<br />

a) Model structure.<br />

The model consists <strong>of</strong> four storages representing interception, upper-<br />

soil, drainage and the lower-soil zones (Fig.2).<br />

The interception store represents water stored on vegetation during<br />

rain periods. It fills during the wetting cycle and evaporates (at the<br />

Potential rate) during the drying cycle.<br />

When the interception store is full, excess rainfall is admitted to<br />

the upper soil store which represents the moisture holding capacity <strong>of</strong> the top<br />

soil. <strong>Water</strong> is lost from this store during the drying cycle by<br />

evapotranspiration.<br />

The drainage store fills during the wetting cycle o<strong>nl</strong>y after the upper<br />

soil store is full. This is intended to represent water in the upper soil<br />

which can later drain under gravity to the lower soil zone. If the drainage<br />

store is filled (i.e. the soil is saturated), surface run<strong>of</strong>f occurs. During<br />

the drainage cycle the drainage store is depleted by water transferring to<br />

the lower soil store. No evapotranspiration occurs from the drainage store.<br />

The lower soil store represents water held in the sub-soil zone.<br />

Drainage from the drainage store adds to the volume in storage, whilst<br />

evapotranspiration and deep percolation deplete it.<br />

üp-dating <strong>of</strong> the moisture status <strong>of</strong> the stores occurs daily.<br />

b) Infiltration.<br />

The model utilizes a relation similar to Horton's infiltration<br />

equation:<br />

-k . SS<br />

f = fc + (fo - fc) e . (1)


338<br />

where f = daily loss rate,<br />

fo = loss rate when soil is at wilting point,<br />

fc = limiting value which the loss rate<br />

approaches at high soil-misture levels,<br />

k = an exponent, and<br />

SS = lower-soil moisture level.<br />

Thus infiltration is a function o<strong>nl</strong>y <strong>of</strong> the lower soil moisture status. When<br />

this is low, the rate <strong>of</strong> infiltration from the drainage to the lower soil<br />

store is high, and vice versa.<br />

c) Evap o t rans pi r a t i on.<br />

As well as evaporation from the interception store, evapotranspiration<br />

takes place from the upper and lower soil stores. Evaporation need is first<br />

met from the interception store, and if that need is not filled, evapotranspiratic<br />

then takes place simultaneously from the upper and lower soil stores. The rate<br />

is a function <strong>of</strong> both the evaporation potential and the soil moisture status<br />

<strong>of</strong> each store. This approach follows the work <strong>of</strong> Denmead and Shaw (1962)<br />

and is shown schematically in Fig. 3.<br />

d) Surface run<strong>of</strong>f.<br />

In the model no attempt is made to simulate the time sequencing <strong>of</strong><br />

surface run<strong>of</strong>f. Run<strong>of</strong>f occurs o<strong>nl</strong>y on days <strong>of</strong> rain. The algorithm for<br />

estimating daily run<strong>of</strong>f volume is:<br />

Q = P - f tanh (P/f)<br />

where Q = daily surface run<strong>of</strong>f,<br />

P = daily rainfall less interception and upper soil<br />

store requirements, and<br />

f = daily loss rate.<br />

e) Groundwater.<br />

As proposed by Boughton, the model yields surface run<strong>of</strong>f o<strong>nl</strong>y. Ground-<br />

water loss whiclr is a function <strong>of</strong> the moisture status <strong>of</strong> the lower store '<br />

accretes to deep seepage. No base flow occurs.<br />

To overc8me this deficiency in the model, the authors substituted for<br />

the lower soil store shown in Fig. 2, the modification shown in Fig. 4.<br />

That is, the lower soil store is divided into two parts, each contributing<br />

to base flow. nie lower section <strong>of</strong> the store must be full before the upper<br />

section can hold water.<br />

On the assumption that there is no deep groundwater<br />

loss from the catchment, base flow was represented by the following<br />

equations and added to the surface run<strong>of</strong>f component.<br />

. . . (2)


Qb = kl S1 if SS E Slmax<br />

Qb = kl S1 + k2 S2<br />

Qb = Sp + kl S1 + k2 S2 if SS > Slmm + SZmax<br />

339<br />

. . . (3)<br />

. . . (4)<br />

. . . (5)<br />

where Qb = daily base flow,<br />

S1,S2 = soil moisture levels <strong>of</strong> each section <strong>of</strong> the<br />

lower soil store,<br />

S = maximum capacity <strong>of</strong> lower soil store sections,<br />

simax> 2max<br />

SS = lower soil moisture status,<br />

Sp = spill from lower soil store if the total capacity is exceeded,<br />

kl,k2 = base flow recession constants for the lower soil store<br />

sections determined from the streamflow data.<br />

This particular algorithm was chosen because it represents on a daily basis<br />

the double sloped hydrograph recession limbs observed for The Narrows flow<br />

data.<br />

f) Parameter estimates and optimization.<br />

Before the Boughton model can be used to predict run<strong>of</strong>f, values for<br />

several parameters must be determined. nie usual method for this is to estimate<br />

values, run the model, and compare the predicted and observed values <strong>of</strong> run<strong>of</strong>f.<br />

Then changes are made to the parameters to see if the agreement can be<br />

improved. There were nine parameters for which values were required, namely<br />

the capacities <strong>of</strong> the interception, upper soil, drainage and lower soil<br />

stores, S2, k2, fo, fc, and k. (kl was determined from base-flow recessions<br />

in the data). Systematic variation <strong>of</strong> the values <strong>of</strong> the parameters (optimization)<br />

is made to determine the values.<br />

The most common optimization procedure is the steepest descent method.<br />

Another procedure is the simplex method. Boughton (1968) and Nedler and Mead<br />

(1965) discuss these techniques. Model parameters are determined normally<br />

using half the available conmon rainfall and streamflw record period, the<br />

remaining half being used to test the model parameters by comparing the<br />

computed flows <strong>with</strong> the observed ones.<br />

Further details <strong>of</strong> the model can be found in Boughton's papers (1966,<br />

1968a,b) and in Pattison and McMahon (1973).<br />

Results.<br />

The model was applied on a daily basis to the Thomson catchment. For fhe<br />

period 1886-1971, daily catchment rainfalls were estimated from the daily ram gauge readings using Theissen weightings. AS daily streamflow data at The<br />

Narrows were available from 1954 to 1970, the period 1954-1962 was used to<br />

define model parameters, the remaining eight years was used as an independent<br />

test <strong>of</strong> their adequacy.


340<br />

Daily catchment evaporation estimates for the study period were estimated<br />

by applying monthly sunken tank pan coefficients taken from Wiesner (1970,<br />

Table 18) to kïbourne pan data. In addition to Melbourne being 130 km from<br />

the catchment, data was measured initially using a sunken tank but after 1967<br />

by American class 'Al pan. No suitable class 'A' pan coeffecients are<br />

available for the site. This results in the open surface evaporation estimates<br />

from 1967 to 1970 being uncertain.<br />

From Table I it is seen that the computed monthly flows compare<br />

favourably <strong>with</strong> the observed values. In making this assessment, the simplicity<br />

<strong>of</strong> the model, the difficulties in estimating catdiment evaporation and the<br />

normal accuracy <strong>of</strong> rainfall and streamflow data were all considered. The year<br />

1954 is difficult to simulate because <strong>of</strong> the effect <strong>of</strong> the choice <strong>of</strong> initial<br />

conditions, while the uncertainty <strong>of</strong> the correct evaporation values for 1967<br />

onwards is certai<strong>nl</strong>y a factor in the estimates for that period. A further<br />

comparison is shown in Table II for the period 1954-1970 between historical<br />

flows and those calculated using the model and those calculated from monthly<br />

regression analysis between The Narrows data and its most reliable set <strong>of</strong><br />

adjacent flows. The model results are better.<br />

RESERVOIR CAPACITY ESTIMATION<br />

Joy and McMahon (1972) have reviewed a large number <strong>of</strong> procedures for<br />

computing the capacity <strong>of</strong> a single reservoir and conclude that Gould's<br />

method is a satisfactory design tool.<br />

Gould's Stochastic Storage Model (Gould, 1961)<br />

Gould's technique is classi£ied as a stochastic approach and is based<br />

on the pioneering work <strong>of</strong> Moran (1959). Using discrete time units, Moran set<br />

up a simple mass balance <strong>of</strong> water in storage as follows:<br />

at+l = Pt + Xt - Yt . . . (6)<br />

where Xt,Pt+l = reservoir contents at the beginning and end <strong>of</strong><br />

tth discrete time period,<br />

= inflow during tth time period, and<br />

Xt<br />

Yt = release during tth time period.<br />

By neglecting seasonality and annual serial correlation and dividing the<br />

reservoir and streamflow into a number <strong>of</strong> equally sized zones, Moran was able<br />

to obtain a system <strong>of</strong> equations (the coefficients <strong>of</strong> which are equivalent to<br />

the transition matrix <strong>of</strong> stored contents) describing the cumulative probability<br />

<strong>of</strong> stored contents. The solution <strong>of</strong> these equations is the steady state<br />

condition <strong>of</strong> stored water.<br />

In Gould's technique, the reservoir is also divided into a number <strong>of</strong><br />

zones. The transition matrix - the relation <strong>of</strong> the volume <strong>of</strong> water in storage<br />

at time t to the volume stored at time (t+l) - is obtained by routing each


year <strong>of</strong> the historical flow record through a storage <strong>of</strong> specified size, a month<br />

at a time, beginning each year in each zone. (Twenty zones were used in this<br />

study). Thus seasonality and monthly serial correlation are automatically taken<br />

into account. Releases from the reservoir can be varied seasonally or in any<br />

other specified manner. However, annual flows are assumed independent. By<br />

recording the starting zone, finishing zone and the number <strong>of</strong> failures, the<br />

transition matrix <strong>of</strong> stored contents and the conditional probabilities <strong>of</strong><br />

failure <strong>with</strong>in the year subject to the reservoir contents at the start <strong>of</strong><br />

the year are built up. From the transition matrix, the steady state content<br />

is obtained.<br />

341<br />

As applied bj, Gould, the conditional probabilities <strong>of</strong> failure were<br />

based on annual failures determined from monthly flows. This results in an<br />

over-estimation <strong>of</strong> the required storage size. In the procedure used here,<br />

the method is modified so that the conditional probabilities <strong>of</strong> failure are<br />

determined by monthly failures from monthly flows (see Joy and McMahon, 1972).<br />

Space precludes an adequate description <strong>of</strong> Gould's procedure. It is<br />

set down clearly in example form in Appendix I <strong>of</strong> the original paper (Gould,<br />

1961).<br />

In the procedure annual flows are assumed independent. However, Gould<br />

provides an equation to correct for this if the annual serial correlation is<br />

significant. A limitation <strong>of</strong> the technique is that it requires computer<br />

facilities for solution. On the other hand, an advantage is that the<br />

probability <strong>of</strong> failure is independent <strong>of</strong> the initial starting conditions.<br />

Moreover, because <strong>of</strong> the assumption <strong>of</strong> annual independence, records <strong>with</strong><br />

missing years <strong>of</strong> data can be utilized <strong>with</strong>out recourse to data extension<br />

techniques.<br />

Results.<br />

Gould's procedure, modified as noted above, was applied to the 85 years<br />

<strong>of</strong> estimated streamflow data for conditions <strong>of</strong> 5% probability <strong>of</strong> failure and<br />

constant draft rates <strong>of</strong> 50% and 90% <strong>of</strong> the mean monthly flow. In this context,<br />

5% probability <strong>of</strong> failure implies that 5% <strong>of</strong> the time the reservoir is unable<br />

to maintain a specified constant draft (other equivalent terms are yield,<br />

release, regulation) which is defined as a percentage <strong>of</strong> the mean flow.<br />

Storage estimates are given in Table III and are compared <strong>with</strong><br />

estimates based on a behaviour analysis. In the behaviour analysis, changes<br />

in the volume <strong>of</strong> water stored were examined on a monthly basis by adding inflows<br />

to, and subtracting releases from the water stored in a reservoir <strong>of</strong> finite<br />

capacity. Probability <strong>of</strong> failure was defined as the proportion <strong>of</strong> time units<br />

that the storage is empty to the number <strong>of</strong> units <strong>of</strong> historical flow run<br />

through the storage. In the behaviour analysis, it is assumed that the<br />

reservoir is initially full.<br />

At 50% draft, the storage estimates are similar. On the other hand, at<br />

the higher draft the Gould estimate is about 30% <strong>of</strong> the behaviour value. At<br />

low drafts such as 50% <strong>of</strong> mean flow, annual serial correlation is unimportant


34 2<br />

(Table III). Nevertheless, at high drafts <strong>with</strong> long draw .down periods extending<br />

over years, annual serial correlation must be taken into account. On adjusting<br />

the 90% value for the annual serial correlation <strong>of</strong> 0.34 using Gould's correction<br />

(Gould, 1961), the value is increased to 86% <strong>of</strong> the behaviour estimate. It<br />

should be noted, however, that 0.34* is beyond the range <strong>of</strong> correlations<br />

(O - O. 25) used by Gould in deriving the correction procedures.<br />

Consequently<br />

the correction factor is based on an extrapolation and this probably accounts<br />

for the difference in storage estimates at the 90% probability level. It has<br />

been shown elsewhere (Joy and McMahon, 1972) that Gould's method is a<br />

satisfactory procedure for estimating storage capacity.<br />

Because <strong>of</strong> the long length <strong>of</strong> record (historical plus estimated) and the<br />

low variability <strong>of</strong> Thomson River flows (for example the annual coefficient <strong>of</strong><br />

variation is 0.42 compared <strong>with</strong> the more variable Australian rivers <strong>with</strong> values<br />

over l.O), the behaviour storage estimate is considered to provide a reasonable<br />

check on the Gould results. However, in normal situations where either the<br />

available record is shorter or the stream more variable, the behaviour procedure<br />

is not necessarily a satisfactow analytical tool. Some comments on this<br />

aspect may be found in McMahon, Codner and Joy (1972).<br />

CONCLUSIONS<br />

In this paper we have endeavoured to illustrate the use <strong>of</strong> a<br />

relatively simple deterministic computer model by Boughton to extend an<br />

inadequate data sequence to one more acceptable in length. A modification<br />

which allowed the model to account for base flow was described.<br />

Reservoir capacity estimates were computed using Gould' s procedure<br />

again <strong>with</strong> slight modifications. Results were compared <strong>with</strong> those found<br />

using a behaviour analysis.<br />

ACKNOWLEDGEMENT<br />

nie authors wish to thank the Melbourne Metropolitan Board <strong>of</strong> Works<br />

for providing the rainfall and streamflow data for this project.<br />

Mr, G. Codner, Department <strong>of</strong> Civil Engineering, Monash University, provided<br />

the authors <strong>with</strong> the regression equations used to obtain the comparative<br />

results in Table II.<br />

*The value <strong>of</strong> 0.34 annual serial correlation is much higher than usual for<br />

Australian streams. It is not possible to determine whether the Boughton<br />

model itself contributed to this high value.


REFERENCES.<br />

1.<br />

2.<br />

3.<br />

4.<br />

5.<br />

6.<br />

7.<br />

8.<br />

9.<br />

10.<br />

11.<br />

12.<br />

13.<br />

Boughton, W.C. (1966). A Mathematical Model for Relating Run<strong>of</strong>f to<br />

Rainfall <strong>with</strong> Daily Data, I.E. Aust., Civil Engg. Trans., CE8(1),<br />

pp. 83-93.<br />

343<br />

Boughton, W.C. (1968a). Evaluating the Variables in a Mathematical<br />

Catchment Model, I.E. Aust., Civil Engg. Trans., CElO(1) pp. 31-39.<br />

Boughton, W. C. (1968b). A Mathematical Catchment Model for Estimating<br />

Run<strong>of</strong>f, Jour. <strong>Hydrology</strong> (N.Z.), 7(2), pp. 75-100.<br />

Brown, J.A.E. (1961). Streamflow Correlation in the Snowy Mountains<br />

Area, Jour I.E. Aust., 33(3), pp. 85-95.<br />

Denmead, O.T. & Shaw, R.H. (1962). Availability <strong>of</strong> Soil <strong>Water</strong> to<br />

Plants as Affected by Soil Moisture Content and Meteorological<br />

Conditions,Agron. Jour. 54(5), pp. 385-389.<br />

Fiering, M.B. (1962). On the Use <strong>of</strong> Correlation to Augment Data,<br />

Jour. Amer. Stat. ASSOC., 57, pp. 20-52.<br />

Gould, B.W. (1961). Statistical Methods for Estimating the <strong>Design</strong><br />

Capacity <strong>of</strong> Dams, Jour. I.E. Aust., 33(12), pp. 405-416.<br />

Joy, C.S. 6 McMahon, T.A. (1972) Reservoir Yield Estimation Procedures,<br />

I.E. Aust., Civil Engg. Trans., CE14(1), pp. 28-36.<br />

McMahon, T.A., Codner, G.P. 6 Joy, C.S. (1972). Reservoir-Storage Yield<br />

Estimates Based on Historical and Generated Streamflows. I.E. Aust.,<br />

Civil Engg. Trans., CE14(2) (in press).<br />

Moran, P.A.P. (1959). The Theory <strong>of</strong> Storage, Methuen, London.<br />

Nedler, J.A. & Mead, R. (1965). A Simplex Method for Function<br />

Minimization, Comp. Jour., 7, pp. 308-313.<br />

Pattison, A. & McMahon, T.A. (1973). Rainfall-Run<strong>of</strong>f Models Using<br />

Digital Computers, I.E. Aust., Civil Engg. Trans., CE15 (in press).<br />

Searcy, J.K. (1960). Graphical Correlation <strong>of</strong> Gauging Station Records,<br />

Geological Survey <strong>Water</strong> -Supply Paper 1541-C, Washington.


344<br />

TABLE I : COMPARISON OF BOUCHTON MODEL RESULTS WITH HISTORICAL VALUES<br />

FOR OPTIMIZING PERIOD AND INDEPENDENT TEST PERIOD.<br />

Parame ter<br />

Standard deviation<br />

(w/month)<br />

Corre lati on<br />

coe f fi cient<br />

between historical<br />

and predicted<br />

Optimizing Period (1953-62) Test period<br />

Historical Boughton His torical<br />

Value Mode 1 Value<br />

1 4 8 I 49<br />

1 38<br />

40 42 32<br />

- .94<br />

(1963-1970)<br />

Bought on<br />

Model<br />

TABLE II : OBSERVED STREAMFLOW PARAMETERS (FOR PERIOD 1954-1970) COMPARED<br />

WIM "HOSE ESTIMATED USING REGRESSION ANALYSIS AND BOUGHTON MODEL<br />

Parameter His torical<br />

Value<br />

Me an<br />

(mm/mon th)<br />

Standard deviation<br />

(m/mon th)<br />

Corre lation coefficient<br />

between observed and<br />

predicted I<br />

- .92<br />

TABLE III : STORAGE ESTIMATES FOR 5% PROBABILIW OF FAILURE<br />

(Millions <strong>of</strong> cubic metres)<br />

I Draft I Gould Model I Behaviour Analysis I<br />

1<br />

* Values in brackets include Gould's correction for<br />

annual serial correlation.<br />

86<br />

40<br />

37<br />

43<br />

41<br />

.89


o km<br />

Legend<br />

Daily read rain<br />

A Gauging station<br />

U<br />

~~<br />

5<br />

Granodiorite<br />

Clay, silt stone, silty sandstone<br />

FIG. 1. 'IHOSON RIVER CATCHMENT<br />

34 5


346<br />

Lower Soil Store<br />

-<br />

FIG. 2. SCHEMATIC DIAGRAM OF BOUGITON MODEL<br />

-


Actual<br />

ET<br />

Rate<br />

Ip potential<br />

ET<br />

Rate<br />

t<br />

eld<br />

pacity<br />

FIG. 3. COMPUTATION OF ACTUAL ET RATE FROM POTENTIAL ET RATE<br />

IN BOUGHTON MODEL. (Figure shows graphically the<br />

method <strong>of</strong> calculation for moisture level S<br />

for potential rate p)<br />

Lower Sub-store 2<br />

Soi 1<br />

Store ---<br />

Sub-store 1<br />

Infiltration Evapotranspiration<br />

Baseflow 2 (kzSz)<br />

Baseflow 1 (klSi)<br />

-<br />

FIG. 4. MODIFICATION OF 'IHE LOWER SOIL STORE TO OBTAIN A BASE<br />

FLOW WITH DOUBLE RECESSION CONSTANT.<br />

347


ABS TRACT<br />

ESTIMATION OF GUMBEL LAW PARAMETERS IN SMALL SAMPLES<br />

Valentin Martfn Jadraque<br />

Civil Engineer<br />

A complete study <strong>of</strong> the distribution law <strong>of</strong> Gumbel for ex-<br />

treme values is realized and the methodology <strong>of</strong> estimation <strong>of</strong> the<br />

characteristical parameters, mean and typical desviation in the<br />

case <strong>of</strong> samples <strong>of</strong> few extension, which serve to determine the<br />

typical parameters u and u <strong>of</strong> this law,<br />

RES UM EN<br />

Se realiza un estudio completo de la ley de distribución de<br />

Gumbel para valores extremos y la metodología de estimación de los<br />

parametros caracterfsticos, media y desviación típica en el caso<br />

de muestras de poca extensión, los cuales sirven para determinar<br />

los pardmetros u y u de esta ley.


350<br />

Iii hydrological studies, and especially when studying<br />

the maximum annual flood <strong>of</strong> a river, this aleatory variable<br />

is considered as distributed according to the Gumbel law.<br />

However, the Gumbel law has more general applications, and<br />

its use is considered satisfactory as distribution <strong>of</strong> aleatory<br />

variables which are extremes (maximum or minimums) <strong>of</strong> a certain<br />

phenomenum produced in time.<br />

Tile study we are making is partly a reminder <strong>of</strong> the main<br />

properties <strong>of</strong> this variable, such as its distribution function,<br />

density function, moment generating function, and estimation <strong>of</strong><br />

the moments regarding the origin, estimating the mean, variance<br />

and typical deviation, and partly a development <strong>of</strong> the study on<br />

estimation <strong>of</strong> the characteristic mean and typical deviation<br />

parameters in the case <strong>of</strong> samples <strong>of</strong> small extension, which in<br />

turn help to find the typical iy and u paramcters <strong>of</strong> this law.<br />

The aleatory variable 5 <strong>with</strong> Gumbel distribution is one<br />

whose distribution function F (x) is:<br />

F (x) = Prob (5‘”) = e<br />

-e-% (x-u)<br />

(1)<br />

wliereMand u are parameters to be determined in each case, and<br />

whose estimation is analysed later on.<br />

The distribution function (i), as all distribution functions,<br />

fulfils the properties :<br />

F (x,) 5 F (x2 1 if x1 x2<br />

F (-”) = O<br />

F (+p.) = 1<br />

The density function f (x) will be:<br />

The distribution method is made by making:<br />

f’ (x) = FI’ (x) = 0


Taking Neper logarithms in (i) and deriving, one obtains:<br />

F" (x) = @.e-=' IF' (x) -oc.F(x) ] whereby;<br />

Thus :<br />

FI' (x) = O implies F' (x) = O(, F(x)<br />

e = 1 and therefore, X mode<br />

The poment generating function<br />

(t) = E (e 5 * t, =<br />

Making<br />

-I?¿. (x-u)<br />

-00<br />

-- 1<br />

Y = - ?<br />

dy = -U. x. dz<br />

ex = eU.y *<br />

= u<br />

Thus :<br />

u. t t o<br />

ys(t) = eu*t* (5 ! = e .r (i - (3)<br />

'p5(O) = 1<br />

351<br />

- "(x. u)<br />

. d. x<br />

[<br />

To calculate the moments in respect <strong>of</strong> origin &k , we recall<br />

tiiat :<br />

% = 'f k (0) = -$'f5(t4<br />

5<br />

t=O<br />

and therefore:<br />

y&(t> = 1 - o(1 . t + -. t2+ ... +- o(k* tk+ ...;<br />

Taking Neper logarithms in (3) , we get:<br />

d2<br />

l ! 2! k!<br />

LnV5 (t) = u. t -+ Ln r (i - t ) (41<br />

On the other harid, it is known that:<br />

r(i+x)=x! =lim nx<br />

n-+n<br />

(i+&-)<br />

J<br />

j = l


352<br />

Where<br />

C = 0,5772156 ... P Euler constant .<br />

If we call<br />

O0<br />

We will get:<br />

and, the re for e :<br />

O0<br />

K1=r+, c<br />

Ks = - s2<br />

a2 '<br />

..............<br />

...........<br />

Sr.(r - i)!<br />

xr =<br />

ar<br />

.............<br />

ïim ( i .L i i 1 .L ... L I . L<br />

n-+Eo 2 3 n "


Where hr is the cumulant r-esimo.<br />

Since iíl = dl = ,cam<br />

The typ ical devi at i on<br />

tnus :<br />

R<br />

D(5) = + = ka^<br />

Having obtained a sample <strong>of</strong> values xl, x2 .. . , xn, and<br />

A<br />

estimating the meanPx from this sample and the typical<br />

A<br />

deviation o-x , the estimation <strong>of</strong> the parametersGy u is<br />

made in accordance <strong>with</strong> the above formulas:<br />

=fc. - 0,45QOS. a;C<br />

With this theore tical reminder , we shall now analyse the<br />

estimators study centred on the meany, and the typical<br />

deviation cxL<br />

353<br />

The sample mean xn is, as we know, an estimator/ X centered,<br />

<strong>of</strong> the population meanPx . In fact:<br />

-<br />

x1 I xp 1 ... 1 x n<br />

With x =<br />

n n


354<br />

x1 1 x2 1 ... .! x<br />

E(^ ) - E(Xn) = E( "1 = 2 .[E(xl) 1 E(x2) .! ... 5<br />

TK - n n<br />

In the case <strong>of</strong> the sample typical deviatioii Sxn, this<br />

A<br />

estimatorcx, is not centered in the typical population deviation<br />

vX and we will tkrefore try and find<br />

&, , which<br />

depending on n, make - 3<br />

5Lxn- 1 .<br />

En En En -- n n<br />

be an estimator centered on x.<br />

Accordingly, it must be verified that:<br />

Where 5 is the Gumbel generical aleatory variable <strong>with</strong><br />

dis tribut ion function<br />

-d.(X - u)<br />

-e<br />

F(x) = e<br />

(d7 O) (-QiX,C .!a)<br />

Let us consider the variable 7=a.('5- u) In other words:y=o


<strong>with</strong>' Sxn =<br />

n<br />

- n<br />

Considering Yn as estimator <strong>of</strong> /"y , we get:<br />

E($,) =-O(.E(X ) - d. u = .(PX - 1.1) = c<br />

n<br />

To calculate E (S ) , samples (y1, y2 .. . y,) are<br />

Yn<br />

formed, <strong>with</strong> extension n <strong>of</strong> the aleatory variable 0 , whose<br />

distribution function is +(y) = Proh( ,r y) = - e-Y<br />

e 7<br />

(reduced Gumbel distribution o(= 1 u = O).<br />

Thus, for the simulation procedure , an aleatory number<br />

zi <strong>of</strong> the rectangular distribution (0,l) is formed, and<br />

making<br />

-Yi<br />

z.= e-e or in other words:<br />

1<br />

Yi = - I+LZi) one obtains a value yi <strong>of</strong> the aleatory<br />

variable 12 .<br />

Having fixed the value <strong>of</strong> n (extension <strong>of</strong> the sample) and<br />

obtained k samples <strong>of</strong> extension n, <strong>with</strong> sufficiently large k,<br />

we will get:<br />

355


Number <strong>of</strong><br />

sample<br />

356<br />

Number <strong>of</strong><br />

extension n<br />

Sample mean<br />

1 -<br />

€(y 1 = c = 0'5772 -. .% Yni - Y,* 1 ... Y,!;<br />

n li<br />

?'lie value <strong>of</strong> En will be:<br />

n<br />

-<br />

= Y,<br />

and a centered estimation <strong>of</strong>px and TX will be:<br />

ci ,XT 1 x2 .L ... L<br />

'n - -<br />

Px = Il - xn<br />

Typical sample desviation


Let us see another procedure to estimate the typical<br />

population deviation G X.<br />

x,).<br />

357<br />

Let us consider the extension sample n : (xi x2 ... xi ...<br />

Let us take a smaller to larger scheduling <strong>of</strong> the form:<br />

kl< "6 . . . ..(Xi& * * sk,<br />

Cons i der ing the "quas i - ranges" :<br />

ox =? n -xl=x rnáx - Xmin = range<br />

rix = 5<br />

n-1 - '2<br />

rZx = - >i3<br />

and in general:<br />

I r<br />

hx = %-h<br />

If we have obtained k samples <strong>of</strong> extension n, by<br />

simulation in the Gumbel reduced Taw, and in each <strong>of</strong><br />

them the "quasi-range" r , we will get:<br />

11Y


358<br />

Let ? nh be the coefficient - function n - such that:<br />

Therefore:E(rhy--)<br />

o( .?nh<br />

Arid thus<br />

Pnh =<br />

In this case a centered estimation <strong>of</strong> pr and G, would be:<br />

L As 1 ... -L x -<br />

* = x<br />

n n<br />

Concluding, we can say that, given a sample <strong>of</strong> extension n<br />

(Xi x2 ... Xn ):<br />

1) A centered estimation <strong>of</strong>rx is:<br />

I x2<br />

-<br />

1 ... 1 xn -<br />

= x<br />

n<br />

n<br />

2) Centered estimations <strong>of</strong> 6 y are:<br />

Precisely as both estimators ox, and b, are centered<br />

inKx , in each case it would be convenient to take the one<br />

whose variance is less, in other words, where:<br />

h


we get:<br />

or in other words: :<br />

the variation coefficients <strong>of</strong> S and r respectively,<br />

Yn hY<br />

the above expressions stands as follows:<br />

And therefore,<br />

Within the "quasi-ranges" rhx, as all the quotients &<br />

Prix<br />

are centered estimators <strong>of</strong> cx and since r = H.rhx,<br />

hY<br />

we get:<br />

359


360<br />

For two particular values hl and h2 <strong>of</strong> h, we get:<br />

and therefore:<br />

One concludes, in all cases, that the centered estimator<br />

<strong>of</strong> Q to be used between SX, I<br />

D Or, ____ 'hlx<br />

En qnh 1<br />

r<br />

or, e will be the one for which the corresponding<br />

variation coefficient V(S ) or V(rhly) or V (r h2Y ) is less.<br />

Yn<br />

With these grounds and criteria, we have obtained the following<br />

results for k = 20.000 samples <strong>of</strong> extension n, by statistical<br />

simulation <strong>of</strong> samples <strong>of</strong> Gumbel reduced law values:


-,- i<br />

I<br />

.<br />

. . . .<br />

....... -1..<br />

. __<br />

i ¡ , . -4<br />

!<br />

. I /<br />

. .- .~ - __ .<br />

.<br />

361


U o<br />

o<br />

U<br />

VI<br />

l.3<br />

U O<br />

m<br />

E<br />

.rl<br />

U<br />

VI<br />

2<br />

a<br />

o<br />

VI<br />

O<br />

c) s ci<br />

E<br />

ci x<br />

> o<br />

TI<br />

,-i<br />

d<br />

u<br />

.FI<br />

.d d<br />

bX<br />

- .d O<br />

U<br />

u<br />

VI<br />

O<br />

3<br />

rl<br />

o<br />

a<br />

r(<br />

5<br />

I


According to the above, and bearing inmind that:<br />

+ 3 I?


fi<br />

F)<br />

C<br />

C<br />

a<br />

364


ABSTRACT<br />

STOCHASTIC SIMULATION FOR BASINS WITH SORT<br />

OR NO RECORDS OF STREAMFLOW<br />

by M. E. Moss and D. R. Dawdy<br />

U.S. Geological Survey, Washington, D.C., USA<br />

Stochastic modeling <strong>of</strong> streamflows is a powerful tool<br />

in water resources systems desing. Statistics for simulation<br />

which are based on short records may be highly uncertain. A<br />

method is presented for the development <strong>of</strong> a stochastic model<br />

for an ungaged site. The means and variances <strong>of</strong> the monthly<br />

streamflows can be based on regional estimates or on physical<br />

characteristics <strong>of</strong> the basin. The autocorrelation structure<br />

is based on rainfall records and physical characteristics <strong>of</strong><br />

the basin alone. Application <strong>of</strong> the method to the design <strong>of</strong> a<br />

reservoir is presented. A comparison is made <strong>with</strong> a reservoir<br />

design based on the recorded flows at the site.<br />

RESUMEN<br />

Los modelos estocásticos son una buena herramienta para<br />

el estudio de los recursos hidráulicos pero los métodos de SL<br />

mulación basados en series de pequeña extensión son muy peli-<br />

grosos se presenta un método de modelo estocástico en el cual<br />

la media y la varianza de los valores mensuales de caudal se<br />

obtienen por comparación a escala regional de las caracteris-<br />

ticas físicas de las cuencas.<br />

La estructura de autocorrelación se basa en los valores<br />

de precipitación y características físicas de una sola cuenca<br />

se aplica este método al dimensionamiento de un embalse y se<br />

compara con los valores que se obtienen a partir de los cauda<br />

les medidos en el emplazamiento de la presa.


366<br />

Introduction<br />

In many parts <strong>of</strong> the world there are little or no streamflow da<br />

ta. Even in areas where there is a relatively good set <strong>of</strong> streamflow<br />

data, projects for water resources development are desired for sites<br />

where the data do not exist. Oftentimes regional relations are developed<br />

to interpolate or, more rarely, to extrapolate streamflow characteristics<br />

to ungaged sites. The less data there are, the less<br />

accurate are the regional relations based on those data, However, re<br />

gional relations <strong>of</strong>ten are the o<strong>nl</strong>y basis for design. Thus, the mean<br />

flow, variance <strong>of</strong> flow, and other statistical characteristics may be<br />

related to drainage area, mean rainfall, or other physical basin mea<br />

sures. For instance, in the United States <strong>of</strong> America, multiple regre<br />

ssion relations are developed i .e,, c1) fram which can be computed<br />

mean flows and variances <strong>of</strong> flows for each month in the year, as<br />

well as for the total year.<br />

Stochastic simulation <strong>of</strong> streamflow is coming into widespread<br />

use for project design (2). The statistics required for stochastic<br />

simulation usually are based upon streamflow records collected at or<br />

near the project site. The accuracy <strong>of</strong> the statistics estimated for<br />

a stochastic model are deteymined by the length <strong>of</strong> the streamflow re<br />

cords, Therefore, the regional relations mentioned earlier are a tool<br />

for supplementing the data base for stochastic simulation, In fact,<br />

a reional relation may be superior to records collected at the site<br />

for estimation <strong>of</strong> some statistical parameters (3). For data scarce<br />

areas regional relations may be the primary source for such estima-<br />

tes.<br />

Stochastic simulation models require a knowledge <strong>of</strong> and<br />

estimation <strong>of</strong> the persistence <strong>of</strong> streamflow. By persistence is<br />

meant the degree to which streamflow today affects streamflows<br />

in the future. This is sometimes called a carry-over effect.<br />

For the first order autoregressive models <strong>of</strong>ten used for stream-<br />

flow simulation, the first order autoregressive coefficient is<br />

sufficient to describe persistence. For more complex models,<br />

other measures <strong>of</strong> persistence may be needed. However, experi-<br />

ence to date indicates that regionalization methods currently<br />

used are inadequate for the statistical estimation <strong>of</strong> persistence<br />

characteristics 141. This is partly because they are strongly<br />

dependent upon subsurface geology, for which no simple regionali-<br />

zation techniques have been developed. Therefore, a methodology<br />

is needed which can be used to estimate the correlation structure<br />

<strong>of</strong> streamflow sequences. This correlation structure could then<br />

be combined <strong>with</strong> the regional relations to develop the parameters<br />

for streamflow simulation models for use for project design in<br />

data-scarce areas.<br />

-


Method <strong>of</strong> Approach<br />

367<br />

Model choice and parameter estimation are the keys to<br />

effective use <strong>of</strong> stochastic streamflow sequences in hydrologic<br />

designs such as that <strong>of</strong> sizing a reservoir. The mixed-autore-<br />

gressive-moving-average (ARMA) model described by Moss [5]<br />

provides a scheme by which parameter estimation may be performed<br />

<strong>with</strong> a minimum <strong>of</strong> hydrologic data. It is a model that preserves<br />

many <strong>of</strong> the statistical characteristics that are commo<strong>nl</strong>y associ-<br />

ated <strong>with</strong> streamflow sequences. ARMA models can be developed<br />

that are covariance stationary and that preserve the memory <strong>of</strong><br />

the streamflow process for longer periods than do the more com-<br />

mo<strong>nl</strong>y used autoregressive models 161. A scheme <strong>with</strong> such<br />

attributes would seem to lend itself to the development <strong>of</strong><br />

data for design decisions in those cases where actual hydrologic<br />

data are too few to provide adequate solutions.<br />

A first order ARMA model for streamflow may be defined as<br />

M n = a M + b Pn-l + c Pn<br />

n- 1<br />

where M and P are the streamflow and effective precipitation,<br />

n<br />

respectively, for the nth time interval and a, b, and c are<br />

coefficients that are related to the basin characteristics.<br />

Moss 151 has shown that, if the baseflow from a basin behaves<br />

as a linear reservoir, that is<br />

-kt<br />

Qt = e QO<br />

where Q is discharge at time, t, and k is a constant, related to<br />

the geoiogy and measuring the streamf low recession rate , the ARMA<br />

parameters can be evaluated as<br />

-k<br />

a = e (3) I<br />

k (Tn-l)<br />

c i l - r e<br />

n<br />

and where r is the ratio <strong>of</strong> infiltration to effective precipi-<br />

tation and qn is a measure <strong>of</strong> the time distribution <strong>of</strong> effective<br />

precipitation during the nth time interval. T is in reality a<br />

random variable, so that the ARMA model does n8t strictly des-<br />

cribe the streamflow process. However because T is usually<br />

restricted in its variations, the ARMA approximaeion may still<br />

be useful.<br />

(5) ,


368<br />

In many instances meteorologic information either in the<br />

form <strong>of</strong> raw-data or regional relations, such as maps, is avail-<br />

able where hydrologic data are not. Under such circumstances<br />

the parameters b and c can be defined as the expected values <strong>of</strong><br />

equations 4 and 5, and the meteorologic information can be used<br />

to fit parameters to the ARMA model in order to generate syn-<br />

thetic 5treamflow sequences. Parameters b and c were defined<br />

in this study by assuming the T for each month was a uniform<br />

random variable <strong>with</strong> a range from zero to one. These sequences<br />

can be used in design procedures, such as the sequent-peak<br />

algorithm <strong>of</strong> Thomas [71, in the same manner as actual observed<br />

discharge records. The model is not a perfect transfer mechanism,<br />

however, and the resulting designs will contain modeling errors<br />

in addition to the time-sampling errors that are inherent in the<br />

meteorologic data. Similar time-sampling errors would be inclu,ded<br />

in actual streamflow records were they available. Judgement <strong>of</strong><br />

the model as a design tool should be relative to the best avail-<br />

able alternative because <strong>of</strong> exact design methodology does not<br />

exist.<br />

If the ARMA model is used in the manner described above as<br />

a monthly streamflow generator, the statistical moments <strong>of</strong><br />

streamflow that will be preserved in the long run can be extracted<br />

from equation 1. The resulting correlation structure has been<br />

described by Moss [51. For the mean monthly streamflows a series<br />

<strong>of</strong> twelve linear equations is required:<br />

EIMnI = aEIMn-ll + bEIPn-lJ + cEIP<strong>nl</strong>, n = 2,12;<br />

12 12<br />

E[Mn] = c E[Pn]<br />

n= 1 n= 1<br />

where E[-] is the expected value or average <strong>of</strong> the variable con-<br />

tained <strong>with</strong>in the brackets. Similarly, for the variance and<br />

covariances <strong>of</strong> monthly streamflow<br />

Var [M ] = a2 Var IEln,ll + (b2 + 2abc) [Var Pn-ll<br />

n<br />

where Var 1.1 is the variance <strong>of</strong> the variable contained <strong>with</strong>in<br />

the brackets, and


= 1,12 i y = k-2-ke-2k- 2e -2k + 4e-k ] / Sk2<br />

369<br />

The coefficient 0.13 that appears In equation 8 was defined<br />

empirically by Monte Carlo methods by MOSS i51. The solutions <strong>of</strong><br />

these three sets <strong>of</strong> equations, although not necessary for the<br />

implementation <strong>of</strong> the model, yield estimates <strong>of</strong> the streamflow<br />

characteristics that can be examined for reasonableness prior<br />

to the design step.<br />

Data requirements for testing the model<br />

In order to test the model in a realistic design procedure,<br />

an existing 58-year streamflow record for the Toccoa River ne'ar<br />

Dial, Georgia, USA, was routed through a sequent peak algorithm<br />

to determine the reservoir capacity that would be required to<br />

meet the monthly water demands shown in figure 1. The demands<br />

described in figure 1 are hypothetical, but they vary seasonally<br />

in a realistic manner. The average demand is about fifty percent<br />

<strong>of</strong> the average streamflow, estimated from the existing record,<br />

for the Toccoa-Dial site.<br />

The ARMA model was subsequently used to generate 50 equally<br />

likely sequences <strong>of</strong> 58 years <strong>of</strong> monthly streamflow. For each<br />

synthetic sequence a reservoir capacity, which could be compared<br />

<strong>with</strong> that defined by the actual record, was determined. Precipi-<br />

tation records from an existing station, Blue Ridge Dam, that is<br />

approximately 5 miles downstream from the streamgaging station<br />

were used in conjunction <strong>with</strong> Thornthwaite 181 estimates <strong>of</strong><br />

evapotranspiration to estimate the mean monthly effective precipi-<br />

tation for each month. The standard deviations <strong>of</strong> monthly pre-<br />

cipitation for each month were assumed to be equal to those <strong>of</strong><br />

the measured precipitation at the Blue Ridge Dam site. The use<br />

<strong>of</strong> variance <strong>of</strong> point precipitation as a measure <strong>of</strong> variance <strong>of</strong><br />

precipitation over the basin tends to ovesestimate this parameter;<br />

however, because effective precipitation, which is the difference<br />

between precipitation and evapotranspiration, probably has a<br />

higher variance than precipitation, the assumption <strong>of</strong> variance<br />

<strong>of</strong> point precipitation as a surrogate for variance <strong>of</strong> basin-wide<br />

effective precipitation should not be unreasonable. The twelve<br />

estimates <strong>of</strong> mean effective precipitation and the twelve esti-<br />

mates <strong>of</strong> standard deviation <strong>of</strong> effective precipitation in<br />

conjunction <strong>with</strong> the assumption <strong>of</strong> log normality <strong>of</strong> effective<br />

precipitation were used to synthesize the 58-year records <strong>of</strong><br />

effective precipitation, which are converted to synthetic stream-<br />

flow records by the use <strong>of</strong> equation 1.<br />

Fitting <strong>of</strong> Parameters<br />

For the application <strong>of</strong> equations 6-8 to convert an effective<br />

rainfall to a run<strong>of</strong>f record, four inputs are necessary. First,<br />

<strong>of</strong> course, is the record <strong>of</strong> rainfall itself. Second, rainfall<br />

must be converted to rainfall excess by abstracting losses.


370<br />

This was done for the Toccoa basin through use <strong>of</strong> the Thornthwaite<br />

equation to estimate evapotranspiration. The Thornthwaite<br />

equation was chosen for reasons <strong>of</strong> simplicity. If adequate data<br />

were available a more accurate estimation might be made, such as<br />

by the Penman formula. Third, the separation <strong>of</strong> effective precipitation<br />

into direct run<strong>of</strong>f and infiltration must be performed<br />

by selecting r . Studies by the Tennessee Valley Authority<br />

n<br />

(Eklund, C. D., oral communication) indicate an average value<br />

<strong>of</strong> approximately 0.7 for r. This value was used for each month.<br />

Stochastic Simulation Results<br />

The utility <strong>of</strong> the methodology for deriving parameters for<br />

stochastic generation <strong>of</strong> streamflow was tested next. The parameters<br />

shown in figures 2-4 were used <strong>with</strong> an ARMA model to generate 50<br />

synthetic sequences <strong>of</strong> 58 years in length, the same length as<br />

the historical streamflow record. The sequent peak algorithm<br />

was then used <strong>with</strong> the demand curve <strong>of</strong> figure 1 to generate<br />

design reservoirs for each <strong>of</strong> the 50 sequences. The 50 design<br />

reservoirs for the synthetic sequences were then arrayed into<br />

a probability distriaition, as shown on figure 5. The distri-<br />

bution <strong>of</strong> design sizes is approyirnately normal. The mean value<br />

<strong>of</strong> the design size is fortuitously close to that size which was<br />

based upon the recorded flows.<br />

The apparent reason for the excellent agreement between<br />

average simulated and recorded design sizes probably results<br />

somewhat from compensating errors. The design storage is<br />

equivalent to about one-seventh <strong>of</strong> the mean annual flow. The<br />

excesses <strong>of</strong> demand over supply occur mai<strong>nl</strong>y during August to<br />

October. During that critical period the model overestimates<br />

both mean flow (figure 2), which tends to decrease storage<br />

requirement, and variability <strong>of</strong> flow, which tends to increase<br />

storage requirement (figure 3). The covariance structure is<br />

closely reproduced.<br />

Figure 5 indicates that the stochastic simulation is rela-<br />

tively realistic <strong>with</strong> respect to reservoir design size, which<br />

is related to the variance and the correlation structure <strong>of</strong><br />

flows. The fact that the actual record and the average <strong>of</strong> the<br />

synthetic records yield about the same design size indicates<br />

that the structure <strong>of</strong> the run<strong>of</strong>f series is maintained adequately.<br />

Therefore, in data-scarce areas, this approach may be a tool for<br />

use in project design.


1.<br />

2.<br />

3.<br />

4.<br />

5.<br />

6.<br />

7.<br />

8.<br />

References<br />

371<br />

Carter, R.F., (1970). Evaluation <strong>of</strong> the surface water data<br />

program in Georgia, U.S. Geol. Survey open-file report.<br />

Fiering, M.B., and Jackson, B.B., (1971). Synthetic<br />

Streamfiows, <strong>Water</strong> <strong>Resources</strong> Monograph No. 1, American<br />

Geophysical Union, 98 p.<br />

Ber:son, M.A. , and Matalas, N.C., (1967). Synthetic <strong>Hydrology</strong><br />

based on regional statistical paramerers, <strong>Water</strong> <strong>Resources</strong><br />

Research, 3(4), pp. 931-935.<br />

Thomas, D.M., and Benson, M.A., (1970). Generalization <strong>of</strong><br />

streamflow characteristics from drainage-basin character-<br />

istics, U.S. Geol. Survey <strong>Water</strong> Supply Paper 1975, 55 p.<br />

MOSS, M.E., (1972). Serial-Correlation Structure <strong>of</strong> Discre-<br />

tized Streamflow, U.S. Geol. Survey open-file report.<br />

O'Connell, P.E., (1971). A simple stochastic modeling <strong>of</strong><br />

Hurst's law, Symposium on Mathematical Models in <strong>Hydrology</strong>,<br />

IASH/UNESCO, Warsaw, Poland.<br />

Fiering, M.B., (1967). Streamflow synthesis, Cambridge,<br />

Harvard Univ. Press, p. 69-73.<br />

Veihmeyer, F.J., (1964). Evapotranspiration, in Handbook <strong>of</strong><br />

applied hydrology (edited by V. T. Chow), New York, McGraw-<br />

Hill CO., p. 11-26.


372<br />

24<br />

fn 22<br />

œ<br />

u<br />

c<br />

2 20<br />

U<br />

18<br />

æ<br />

U<br />

16<br />

O<br />

fn<br />

O -<br />

a<br />

Z -<br />

ri<br />

Z<br />

U<br />

14<br />

12<br />

10<br />

s 8<br />

u<br />

n<br />

œ 6<br />

YI<br />

+<br />

$ 4<br />

2<br />

O J F M R M J J A S O N D<br />

MONTH<br />

Figure 1. -- Monthly water demand.


Sä313WllN33 NI '30äVH3Slû AlHlNOW NV3W<br />

c<br />

ci<br />

d<br />

O<br />

E<br />

c<br />

id<br />

a,<br />

5:<br />

373


374<br />

-0<br />

-z<br />

-0<br />

-y><br />

-6<br />

-Y<br />

I<br />

I-<br />

--rz<br />

O<br />

z<br />

-I<br />

-6<br />

-z<br />

-LL<br />

-7<br />

u)<br />

a,<br />

oi<br />

&<br />

a<br />

c<br />

m<br />

-4<br />

a<br />

n<br />

rl<br />

f<br />

c,<br />

c<br />

O<br />

E<br />

w<br />

O<br />

m<br />

c:<br />

O<br />

-4<br />

c,<br />

m<br />

-4<br />

><br />

Q)<br />

a<br />

5<br />

&<br />

a<br />

5<br />

E<br />

m<br />

c,<br />

(o<br />

I<br />

I<br />

m<br />

m<br />

Li<br />

rn<br />

4<br />

E<br />

a


375<br />

u)<br />

(u<br />

07<br />

LI<br />

m<br />

c<br />

u)<br />

'4<br />

a<br />

$i<br />

rl<br />

c<br />

ci<br />

c<br />

O<br />

E<br />

al<br />

3<br />

-4<br />

ci<br />

3<br />

U<br />

(u<br />

u)<br />

d<br />

O<br />

U<br />

u4<br />

O<br />

u)<br />

(u<br />

U<br />

E<br />

m<br />

-4<br />

LI<br />

m<br />

><br />

O<br />

V<br />

I<br />

I<br />

w<br />

(u<br />

LI<br />

3<br />

lJ<br />

.rl<br />

h


376<br />

O<br />

h<br />

O<br />

v><br />

o<br />

o<br />

O<br />

t<br />

a<br />

a<br />

m<br />

a<br />

m<br />

a<br />

o<br />

a<br />

O<br />

OD<br />

o<br />

h<br />

o<br />

o<br />

O<br />

O<br />

*<br />

o<br />

PI<br />

O<br />

cv<br />

m<br />

0<br />

m<br />

N<br />

L<br />

(o<br />

ci<br />

c<br />

ai<br />

&<br />

-4<br />

s<br />

w<br />

ai<br />

u<br />

ai<br />

tn<br />

rd<br />

u<br />

O<br />

ci<br />

(o<br />

iw<br />

Q<br />

P,


ABSTRACT<br />

CHCICE OF GENERATING MECHANISM IN SYNTHETIC<br />

HYDROLOGY WITH INADEQUATE DATA<br />

by<br />

P.E. O'CONNELL<br />

Department <strong>of</strong> Civil Engineering, Imperial College,<br />

University <strong>of</strong> London<br />

and<br />

J.R. WALLIS<br />

IBM T.J. Watson Research Center, Yorktown Heights,<br />

New York 10598<br />

A formidable problem in synthetic hydrology is the choice <strong>of</strong> a<br />

model which will best represent the generating mechanism <strong>of</strong><br />

streamflow, which is unknown. Heret<strong>of</strong>ore, such a choice has primarily<br />

been based on a statistical matching between historic record parameters<br />

and the parameters <strong>of</strong> the generating mechanism. However, for<br />

short historic records, an equally good match may be obtained for a<br />

number <strong>of</strong> models and statistical tests are not powerful enough to<br />

determine the appropriate model. Alternative mechanisms, however, may<br />

yield quite different design results, resulting in either overdesign<br />

or underdesign <strong>with</strong> economic regrets in either case. It is suggested<br />

that an alternative approach to model choice would be a decision<br />

theoretic approach, where the choice <strong>of</strong> model is based on an economic<br />

regret function, and where the model which gives the minimum overall<br />

regrets would be the appropriate choice. An example <strong>of</strong> this approach<br />

is given where flows are generated by a lag-one Markoj and an ARI A<br />

(1, O, 11 process and the secuent peak algorithm is u ilised in a<br />

deterministic sense for reservoir design together <strong>with</strong> simple economic<br />

regret functions.<br />

RESUME<br />

Un problème trzs difficile de lrhydrologie synthetique crest<br />

ltadoption d'un modele lequel reprgsente le mieux le mecanisme gênétatrice<br />

de l'écoulement, lequel est inconnu. Jusqu'ici ce choix été<br />

fondé principalement sur un assortiment des parametres des données<br />

historiques avec des parametres du mécanisme génératrice, Toutefois,<br />

en cas des relevés historiques courts on obtient peutêtre un assortiment<br />

aussi bien en employant plusieurs modeles et les épreuves statistiques<br />

n'onts pas assez fortes pour détermin'e la modèle propre.<br />

Toutefois, les autres mécanismes donnent peutêtre les touts autres<br />

résultats pour dessein, le rêsultat est le sur-dessein ou le sous-<br />

-dessein accompanid en tout cas pap des regrets economiques., On prop'ose<br />

que l'approche alternatif au choix de la modèle est llqpproche de<br />

la théorie des decisions par lequel le choix de la modèle est fond6<br />

sur une fonction des regrets economiques et par lequel la modêle qui<br />

fourni les moins regrets totals sera le choix propre. Un exemple de<br />

cette approche est fourni quand les écoulements sont produi't par un<br />

procéds Markovien de deu1 retard et un proc6dé ASEVA 0, O, 12 et<br />

l'algorithme des pics successifs est utilisé au sens déterministique<br />

pour le dessein du réservoir avec des fonctions de regrets economiques<br />

egales.<br />

Y


378<br />

Introduction<br />

The ootid desig, <strong>of</strong> a water resource EF:E~~Z reqzres 'slowledge <strong>of</strong><br />

future flows <strong>with</strong>in t h elstem, which, i- tu--r., ITlies tkat :Be gcze-xting<br />

process <strong>of</strong> the tows is k<strong>of</strong>i. Eowever, the gtrerazirg Srocess <strong>of</strong> srreamflow<br />

is gererallg &om, 2.~5 lilirelv projectiors 05 %hre zlous, callec -T-thetic<br />

strezzflows, may be gererated using approxic-:iozs to tbe UrCsrlyirg gereratirg<br />

process.<br />

(a)<br />

(b)<br />

The apFros3ation procedure involves. -<br />

the postulation <strong>of</strong> t'ne underlybg generatirg Frocess ar6 its specification<br />

through a set <strong>of</strong> przeters,<br />

the estimtion <strong>of</strong> the parameter values from a historic sequence, or<br />

through some alterrative strategy.<br />

Some generating processes cvreztly availatle, proFrties <strong>of</strong> historic<br />

secperces, and techniques <strong>of</strong> paraneter estinztio: inU now be considered<br />

briefly.<br />

Gener2tir.g Trocosses<br />

The postulation <strong>of</strong> a generatirg process kas 'reret<strong>of</strong>ore been b e d on its<br />

ability to generste sjrthetic stremÎlows resez5lirg historic streznflows in<br />

terms <strong>of</strong> pärameters whic'n are thougit to inflilerce the äesie OÏ the water<br />

resorce system, [I), which necessitates that tte 3rocess re3reserts a redistic<br />

model <strong>of</strong> streamflow. The lag-oze ?%rkov process 'caä 5ee3 rather widely<br />

accepted as beizg ca-pble <strong>of</strong> fulfillizg this l2:ter role mtll discrete time<br />

fractional Gaussiul noise (dfGn) was aävocateä as s more resiistic moäel <strong>of</strong><br />

strezÏlow [2]. The spent for dfG3 as a ereriting process oÏ streãmflow<br />

finds its roots in the work <strong>of</strong> Hurst [:I, [4f u50 foud that, for some 800<br />

geopkrsical tine series, including streanflow<br />

- - 1 1<br />

S<br />

h<br />

where Iz/S is temed the rescaled ra^ge a d n is th-e record ler-gth. The<br />

expone'it h in equation (1) was found to have a a7e:age value OÏ 0.73 uith a<br />

stank-d deviati02 <strong>of</strong> O.Ca. For the lag-oae 3k-207 process =fi other processes<br />

lying <strong>with</strong>iri the BroEis Comain <strong>of</strong> attractioz, h equals 0.5, uhile for dfûn,<br />

h q v assume ayy value in the rGge C < h < 1, vit2 the excepriori <strong>of</strong> h = 0.5,<br />

and b C.5 <strong>of</strong> particular interesi. Values o? h > C.5 are<br />

s~-no;nous <strong>with</strong> long te,- srcistexe, vith the distat psr; exertizg mall<br />

but azable effects on present behaviour.<br />

The gelieration <strong>of</strong> a Lszmple <strong>of</strong> d-Gn req-aires infixite Ember <strong>of</strong> operatios,<br />

azd, con~equeztk~, a~~roxinaiio?s are reTïred ir, oräer to Io-date<br />

dfG2 =s an operational gsreratkg process. Tses? assro-xkatioïs w e quite<br />

:oces <strong>of</strong> szem3ou dictirct fron the agroe=z:ioz or' t're gezerz;irn - _<br />

refezred to Tr3rLouslr ; -&e a~~z-o.sirsziors 10 è3z äm -2$rss17es sx5sequeitly<br />

used to approxicsite the gererating srocess <strong>of</strong> sirsmflou.


To date, a =.aber <strong>of</strong> z_nproximtions to d3n ha7e been >-o?ored. Y%zdelbrot<br />

i53 kzs proposed B fast d% approximatiori, wLich requires less ore~atiozs ;CI<br />

elierzte t?mn the tyge I ard II fractiord noise ap?roxinntio-s Frooosed ;-;tially<br />

LJ , Cut he did rot extend the docuieentäïion to the level iecesszyy for syr-tetic<br />

i~y.gdrolo~. &,ser5 02 the tne II ayproxibtio: Tropsed initidly by Yzlldelkot<br />

aLd Ydis [o], Y'tzhs =à Y&is [7] L57e pro-osed a filtered ,'ractionzl<br />

noise asproximatioil, and have formulated the gezeratizg process for the puTses <strong>of</strong> sgzthetic hydrology in terns <strong>of</strong> the ppiation rea, vzriarce, lag-or-e exiocorrelation<br />

u-d h, the Hust coefficienz. The KXP! (l,O,l) process [S) IFS<br />

beeo found by O'CozeU [g] to <strong>of</strong>fer a sirple appr<strong>of</strong>ixtion to dSs. The a ~roxicatioi<br />

is sufficiect in the serse, that, for a certais rage <strong>of</strong> pûzameter Taues<br />

adecute agreemerc uith Burst's law (e-tion (1)) is obtaired uithin sequezces<br />

which are sufficiel;tlg lorg for the purooses <strong>of</strong> syctììetic hyckolog. More<br />

recently, the broke2 line orocess has been progosed by Kejia et zl [IGJ as e<br />

model <strong>of</strong> the gezorati-g process <strong>of</strong> strezflow ; houever, ì-kdelbrot [Il] hzs<br />

shorn that the broke2 line process may be regzzded nìerely as zz ¿?.;prOxiuEtiGZ<br />

to fractional Gaussian noise.<br />

Historic Seauences<br />

Frequently, a historic seauence <strong>of</strong> a-~uai streamflow has been relied upr<br />

to determine the existence 9. aon-existence <strong>of</strong> persistence thereir. For this<br />

pu-?pose, tests <strong>of</strong> significbnce for inde-zdence zre available bâsed on the<br />

theory <strong>of</strong> runs [12], LI31 ar-d the distrikation <strong>of</strong> the 12 -one serial correlation<br />

coefficient [1q. However, Wallis a d Patalas [75! have fomd that for<br />

a variety <strong>of</strong> such tests, the probability <strong>of</strong> type II error (i.e. the probability<br />

<strong>of</strong> accepting the rull hypothesis <strong>of</strong> independeme when it is false) is extrerely<br />

high for the sequexe lengths usually avzilable in hydrology.<br />

<strong>of</strong> persistence, estimates oi the lag-one autocorrelation tend to be biased<br />

towards zero, <strong>with</strong> the bias increasing <strong>with</strong> the intensity <strong>of</strong> the persistence,<br />

and to this latter Îact may be ascribed o=e <strong>of</strong> the reasons for the low power<br />

<strong>of</strong> the Acderson test. Where storage design is to be considered, the econorcic<br />

cor:sequences <strong>of</strong> ty-e II errors may welì be costly. Assuming that evidence <strong>of</strong><br />

persistexe has Leer established, the hisioric sequence h s generdly been<br />

relied upon to &-Ovide reliable evidence as to uhich ge2eratiig Eechanism is<br />

the appropriate ore for the flows. A model <strong>of</strong> the mderlyicg geserating<br />

necliacism is fitted EO the historic sequence, and goodness <strong>of</strong> fit testS.De<br />

then enployed to àetermine the adeauacy 05 the model. A set <strong>of</strong> procedures for<br />

model €itti% ami vdidatios &ve been set out by Box axd Je-&ir?s [SI; however,<br />

while s ~ch procedees may provide reliable resdts for the locger recorded<br />

sequerces U S ~ Y<br />

In the presezce<br />

available in industry E d economics, they are liable to<br />

pyovide misleadkg results for 'short' mual strearflow sequences. A question<br />

mises as to what length <strong>of</strong> record pay be considered 'short' ; uithout digressing<br />

too much, i; suflices to say th-t as 1or;g-terrn persisterce increases,<br />

the hfornztion coztent <strong>of</strong> a record [IÓ] decre- =ses.<br />

While the kg-oze autocorrelation has bee? used in the _past as a measure<br />

<strong>of</strong> Fereistence, it essentially measures ody &ort-te,ri -ersistexce, ad, to<br />

quzzitify long-term Frsistezce, other messures must be used. While h, the<br />

Emst coeîficierit, is a measure <strong>of</strong> long term -xrsistezce, estimates from sms-ll<br />

sansles gererated a lag oie Karkov process c d arrolaoatiox zo dftrri havc<br />

beer sko~?: to be hi- biased and extrezrly vz-iable, 1V++ a d therefore II-relisbible<br />

for chooaì=& betmees short memoLT processes for ubi@ h = 0.5 and 10%<br />

379


380<br />

memory processes, for which h > 0.5. Xore receLtly, Wallis ard O'Cozell k81<br />

have attempted to separate sequences genented by a lolig nezory LW! (l,O,l)<br />

process from seq-Jences generated by a short meao,ry lag ore Yzrirov process<br />

using the distribution ol US, the rescaled rmgo, deriveä t ~ough Xocte Carlo<br />

simulrtions. For the sequelice le-gths w d l y anilable ic. hydrology, they<br />

foud that reliable sepration was not possible.<br />

Historic sequences have bee:: suggested by Slack 1191 as sometimes providir4<br />

little more tha? ari illugoil <strong>of</strong> what the wderlyi-4 gezeratizg process is, 2c<br />

a sizgle realization <strong>of</strong> H stochastic process will rarely 'have Ezaple estimates<br />

<strong>of</strong> parameters e q d to their populatiozi counter-ts. Irdeed, Clack has also<br />

noted that a gereratirg crocess mg 6ezy itself ir the seXe that the process<br />

may generate firite sänylrs to wnich the gezeratirg process itself W o t be<br />

fitted. Slack 123J has illustrated this point more fully for a miltivaiate<br />

lag-ore Markov process, for which certain constraicts exist OP the raqe <strong>of</strong><br />

serial and cross correlations that the process ca3 acceyt.<br />

Coxequectly, the<br />

fact that a historic sequence yields prameter estimates macceptable to a<br />

model cannot be readily taken as evidence that the model is an inappropriate<br />

one.<br />

For the univariate lag-one Markov process, the question <strong>of</strong> 'self denial'<br />

does rot arise as estiusates <strong>of</strong> pl, the lag one aitocorrelation, will always<br />

lie in the range -1 < e, < 1, for uhich values <strong>of</strong> the process is stationary,<br />

and flous will be real-vdued. However, for dfGn, waich for zero mean and unit<br />

variace, is characterized by the covariance structure<br />

where s is the lag and h is the Hurst coefficient, ssmple statistics be<br />

in conflict <strong>with</strong> the covariance structure <strong>of</strong> the nodel. Approximations to dfGn<br />

serve to approximate the covariance structure C(s,h), where C(l,h) is uniquely<br />

specified by h. As the pocess is specified bhre unit varizce, then C(l,h)<br />

is the lag one serial correlztion, Q,, which for li > 0.5 must be positive, as<br />

must C(s,h) for s > 1.<br />

Eowever, finite sequences from a gezerating proce?<br />

<strong>with</strong> a covariance structure approGnating C(s,k! rzq yield h > 0.5 unile QI < O,<br />

or, alternatively, h < 0.5 while el > O, which are incopatible <strong>with</strong> the<br />

structure <strong>of</strong> the model. However, the dari model isI\employed primily to<br />

preserve 102% ruII effects 2.s evidenced by values <strong>of</strong> h > 9.5, a d the evidence<br />

supplied bx QI, which is a measure <strong>of</strong> short run effects, nag be ignored.<br />

Provided QI > C and h > û.5, the filtered type II ayproxioratioil proposed by<br />

Matalss and Wallis [7] zlloïs the sinultarieous :reservation oÎ estimates <strong>of</strong><br />

QI azd h through the ixorporation <strong>of</strong> an extrs filterizg yameter into the<br />

generating process. As a result, the form <strong>of</strong> the covariace Îwction for dfGn<br />

not be closely followeä for small s- while for large s, the differerce<br />

shoulà be negligible.<br />

The possibility <strong>of</strong> 'self-denial' eests for the ARIEiA (1 ,O,l) process.<br />

In or6er to ensure that the process is statiore? ar6 invertible, t)ïe Lwple<br />

space for the paneters <strong>of</strong> the pzocess, azd a, skown i2 figure (la) is<br />

defired as -1 < # < +I, -1 < 8 < +I. The corres-rciirg Lssrifle -ce for QI<br />

and e2 is sho.ir.11 iri figre (13). Hoïever, fizite -les froa the process<br />

may well yield estimtes oÎ pl u.d e2 lyhg ouiside the zcceptabìe rage.


3 81<br />

As a remit, a historic sequence m o t be relied u-pn to -est the<br />

correct generatkg process for the flous, 2nd ET well lezd to 2 moàel beicg<br />

selected uhich is not reyesentative <strong>of</strong> the gereratixg rec'mim <strong>of</strong> streamflou,<br />

Houever, parameter estication t hrow statistics zes-mred is. .zi historic<br />

sequerce is lugely relied upon for matching a gezeraticg process n th a his-<br />

toric streamflom sequence.<br />

Parezeter Estimtion<br />

hs already ooted, a geuerating process is geaerally specified by a set<br />

<strong>of</strong> population Faeters, denoted as {a] = (aq,u2, ... aE), estimtes <strong>of</strong> uhich<br />

must be obtained from a historic sequezce before tie generating process may be<br />

rendered operatioral. For the lag-ore Ykrkov process, the set { a 1 usu2i.l~<br />

comprises the me=, vziriaxe, skeuness a d lag-ore autocorrelation 2t each<br />

site, and in the ttiuìtisite case, lag-zero cross-correlatioss betveeri sites.<br />

For qproximatiors to dL%, sn additiorial parmeter, the Hurst coefficieat,<br />

is izcluded. For estimztioa purposes, the mettod <strong>of</strong> moments is gezErallg<br />

emploFed [I ] <strong>with</strong> the L.mall sample moment estimate <strong>of</strong> a parameter, a$, obtained<br />

from a historic sequence or' length n bei% equated to its correspondxg pop dation parameter in the generating process, ai. Such a procedure assumes<br />

that<br />

E [",3 = a<br />

n<br />

i.e. that the estimate ai is statistically unbiased. However, in the presence<br />

<strong>of</strong> persistence, recent sicdies have shown that this assumption is not justified<br />

<strong>with</strong> respect to estimates <strong>of</strong> the variance [21], leg-one autocorrelation [I51<br />

and the Hurst coefficient [I?].<br />

The bias affects the resemblance uhich is<br />

obtei2ed between historic axxi synthetic sequences, and is likely to adversely<br />

influence system desigri Mess some small sample bias corrections are applied<br />

to the estimates. Io order to illustrate this liztter point, the small sample<br />

properties <strong>of</strong> generatiw processes rnust be considered.<br />

Small Sample Prouerties o0 Ge-eleratirE Processes<br />

!The lag-one biarkov generating process m y be specified as<br />

where p 6 and p are the pophtion mean, variance and lag-one autocorrelation<br />

coefficient, and et is an edependectly distributed random nomal variable<br />

<strong>with</strong> zero mean ard unit vâriance. Estimation <strong>of</strong> the paraneters e, 6 and p<br />

will cou be considered.<br />

In equation (2), e may be estimated as the lag-one serial correlation<br />

coefficient uhence,


382<br />

ñouever, avaïL&le estkators <strong>of</strong> pl yield biased estimates <strong>of</strong> e [UJ. If<br />

the estimator oÏ QI suggested by Box a d Je_nkins is used, then e approximately<br />

satisfies<br />

For n = 25 and e= 0.3, aen E[@] = 0.21. If equation (3) is rearranged then<br />

E@] + l/n<br />

e =<br />

(4)<br />

1 - 4/n<br />

A<br />

If e is obtahed :rom a historic sequence <strong>of</strong> size n using the Box and Jenkins<br />

algorithm, and E{Q] is replaced by 6 in equation (4) then the ensuirg<br />

Ii<br />

estizate, e *, hill be Enroximately urtbissed. If Q is used in equation (21,<br />

then estimates <strong>of</strong> the lzg-o?e autocorrelation measured in synthetic sequences<br />

<strong>of</strong> size u, e , will satisfy<br />

while, if the length <strong>of</strong> a synthetic sequence approaches infinity, then<br />

i.e.<br />

<strong>with</strong><br />

where<br />

the proper resemblance ia maintained between historic and sythetic sequences<br />

respect to the lag oce autocorrelation.<br />

then while<br />

2<br />

If the small sample estimate <strong>of</strong> the variance, 6 , is defined as<br />

'> n<br />

s2 = (Xt -1) 2<br />

n- 1<br />

t=l<br />

2<br />

If g = O, then E {s 1 = 62 uhile if Q > O then fh, Q> is positive, uhereby<br />

s2 terds to underestimate 8, <strong>with</strong> th2 bias iilcreasing as e ixreases afd<br />

n decreases. For LL = 25 c d = 0.5, f(n,Q> = C.963, SO tkt the bias Kill<br />

ger-erdly not be too severe for m-ual streamflou sequences. 3 order to correct<br />

for the bias in E? mezs-zed in a historic sequence, a unbiased estimate oÎ the<br />

populztion variszce 2 %,y be defined as<br />

a2 = s2/f(n,p (8)<br />

A<br />

(5)


vhereupon<br />

E{$] = E{s2J/f(n,,) = 6 2<br />

"2<br />

so ttat 6 wiii be unbised. Hoïever, the foregoing correction- procedure pre-<br />

m e s that e is Lcco~",, &de, k practice, od? ar estfate, 8 , rill be<br />

avzïilzble. .In tkis sitti-tiori =y be corrected for tis ii6 &ea* outlked<br />

and ar: estimate <strong>of</strong> the vzrkce del'bed as<br />

^62 = s2/f(n, e*> (9)<br />

and that<br />

h<br />

may be evaluated at the expected &lue <strong>of</strong> Q' which yields<br />

then<br />

Hvïever, neither <strong>of</strong> the above two assu+ions are liable to hold, c d a2 a<br />

result, difficulty is eilcoutered in definirg irnbiaseci estimate <strong>of</strong> 6 .<br />

Nevertheless, equation (9) is likely to yield FS estimzte <strong>of</strong> & which is more<br />

appoxinstely wbissed than the straightformd estimate yielded by eqwtiozi<br />

(51 9<br />

383<br />

A''<br />

Using p, 6 as defired in eauation (9) a d e* as defined in equation (41,<br />

a synthetic seculice OZ size n nay be generated using eywitiol? (2). If g2<br />

denotes aa esthte <strong>of</strong> the variaxe mewed tkerein usi% equation (5) then :-<br />

2<br />

E($) a s<br />

while if the leqth <strong>of</strong> a synthetic sequexe aPyoaches kfinity, then aporoxii_<br />

matelg :<br />

E@> -6<br />

2


3 84<br />

A2<br />

where IS is defired via equation (9). Hence tFe correction procedure allows<br />

the growr resenMance betueen historic and synthetic sequences to be ubzirtzhed<br />

aporoemtely.<br />

A further quentie uKch may be <strong>of</strong> interest in rece--voir desigil studies<br />

is the variance <strong>of</strong> the sanple mea, 8, uhich for equatiori (2) is given as [2$] :-<br />

nhkh is the variace <strong>of</strong> the sample mean for an indeperdont rmdom procefis.<br />

However, foz Q > O, the term in braces is positive and greater than unity,<br />

vhereupon 6 will be larger t h for a randon time series. Hence if the iaformation<br />

contert <strong>of</strong> a sequezce is defized as the reciproczi <strong>of</strong> the vdance <strong>of</strong><br />

the -?le mean [16], thea, as persisteme increases, tke information coatent<br />

relative to the mean decreases. For e= 0.3 aLd n = 25<br />

6m<br />

= 0.0724 cr2<br />

Nevertheless, it should be noted that the lag-one Y!kov process is<br />

esseritially a short memory process for which h = 0.5. Ir. the preseme <strong>of</strong> locg<br />

term persistence, when 0.5 < h < 1, smdì sam?le biases in estimates <strong>of</strong> the<br />

variarce ar,d lag-one autocorrelation become more severe. and the vaziame <strong>of</strong><br />

the sample mean-tends to i-crease. For dan, the variarce <strong>of</strong> the szmple mean<br />

is given as<br />

2<br />

2<br />

-- 6<br />

(12)<br />

- 2-2h<br />

n<br />

2<br />

where IS is the variance<br />

result for white noise.<br />

2<br />

<strong>of</strong> the process. For b = 0.5, 6 reduces<br />

For h = 0.7, for which el = 0.30, and n<br />

3.6246 2<br />

- - = 0.145 6 2<br />

- 25<br />

to the<br />

= 25<br />

Comprison <strong>of</strong> equations (11) and (12) illustrstes that for dsz, and, consecuentlg,<br />

for agroximitio-s thereto, estimtes <strong>of</strong> -the -?le me= are auch more varizble<br />

and meliable, than for the lag-one I.'!kov &ort memoq process.<br />

Unfortunately, little is b o m <strong>of</strong> the s-3u sample u-operties <strong>of</strong> the aoproximatiocs<br />

to dan proposed bp Mandelbrot 151, ?!!'das ar0 Kdis [7] and Xejia<br />

et al; [IO], and equatiog (12) will o<strong>nl</strong>y be apFoximatelg true. An -tic<br />

derivation <strong>of</strong> such proprties would apear to Se a extreselg &iÎficult tz&<br />

in the face <strong>of</strong> the comaex mthemtical prooerties <strong>of</strong> tle approdmations. €?QU-<br />

ever; tlie LRDiA (I,O,I) p-ocess is mathemticdly more tractable and some scull,<br />

e l e results s v be derived.


The ABMB (l,O,l) generaticg process is &fined as<br />

where p and 6 are the nean and sLa&d deviatioa, $ zrd Q are the parameters<br />

<strong>of</strong> t'ne process, E d qt is u irdeperclent rzdom varille. ne varhce o? /7<br />

must be defined 2s<br />

var 3, = +%E&- I+&- L<br />

Estirates <strong>of</strong> the parameters jZf 2nd O ~7 be dertved from 2 historic, sequence<br />

throqh estinatirg el z d p2, the hg-0r.e =à lag-two zutocorrelation coefî-<br />

icierts, or tho;@ mir: the more efficient rethod <strong>of</strong> -&m likelihood. [8]<br />

Alterzztively, e!, and f my be used to defire estimtes <strong>of</strong> j? and 8. For<br />

aporoximatiors to dr%, estimates <strong>of</strong> h Lid e 1 Lime bee= &om to be bizsed,<br />

As h is not<br />

vith tke SiEs kcreaskg kith ircresLzg h 2zd el I [17, 151.<br />

385<br />

theoretically de5red ai diff3rer.t from 0.5 for the AXPA (l,O,l) process,<br />

which nevertheless yieldsAE fh] in the raxge C.5 to 1 for moderateJO large<br />

values <strong>of</strong> n, the bias iil h is difficult to Ruztify. E e bias in el could<br />

possibly be defired ardflim3.ly.k aAsinily fâshion to tkat for the lag-ore<br />

Markov process. Even if the b is in h zid could be defired, the appropiate<br />

bias correctiors m y not be copatiblz [19]. xri alterzative aggroach is to<br />

approximately. rztch observed Qq a d h values iri a =>le <strong>of</strong> size n <strong>with</strong> the<br />

aprro3riate Z {el] ard E 17 values for the ARRIT2 (l,O,l) process pre-<br />

defiEed through exteEsive Monte Carlo simulatioris [25]. This approach<br />

obviates the necessity lor bias corrections, but the estiptor <strong>of</strong> h adopted<br />

for the simulatios, giyen ifi [4),<br />

n<br />

h = K = {hg. (R/S)] / [Log "/2 1 (14)<br />

does not allow sufficient variability in E{ ^h] between afferent ,sets <strong>of</strong> para-<br />

meter values to effect a reliable match.<br />

If the snail sample estimate <strong>of</strong> the variace is defined as io equation (51,<br />

then O'Connell 12.1 !ES &om that<br />

2<br />

E(s,) = 6<br />

where pl is the lag-oze autocorrelation defined as<br />

= (1 - $QI($ - 6)<br />

(1 + g2 - a)<br />

(15)<br />

(16)<br />

0'CoI;ileI.l [g] 0-r noted tbt vdues <strong>of</strong> $ in the rmge 2.50 < j? < 0.95 are <strong>of</strong><br />

interest i2 modelling lox te-ai._rersislezìce ; for suc3 values <strong>of</strong> $ m d for<br />

values <strong>of</strong> el us-:âïïy ercourtered for amua1 szreaflo*', the bias in s2 is<br />

gererqy h-ge. for L = 25, Q<br />

= 0.3 and #.= 0.85, ?(E, e:, $1 = 0.877,<br />

while, if $ = C.95, f(r, p?,$.> = 0.789. For fixed QI, sz ixrease in j?!<br />

reFGesezts ax +crease ia the iitersity <strong>of</strong> 10%-term persisterce, as eviderceà


386<br />

by higiler observed values <strong>of</strong> h, the Hurst coefficient [ 91.<br />

As for the kg-orie Yarkov orocess, zn =biased estinate <strong>of</strong> ci<br />

2<br />

,<br />

42<br />

6 , may be<br />

defined, a s d g that $ acd 8, or, equivdently, J?f azd QI, are boni<br />

However, in practice, o- estimates <strong>of</strong> e ard Ø will be available, and a<br />

sinilzr problem to that encountered for the la- one Ymkov process is met in<br />

attemptirg to defize an unbiased estimate <strong>of</strong> I?:<br />

-<br />

The variance <strong>of</strong> the sample mean, X for the ARIFA (l,O,l) process i$ given<br />

1253<br />

For el = !¿f, for u ~ c h the ARPIA (l,O,l) process reduces to the lag-one Markov<br />

process, equatiori (18) reduces to equation (11). Values <strong>of</strong> corresponding<br />

to large values oÏ j! reflect the low frequencies inherent in an approxiFtion<br />

For $ = c.85, PI = 0.3 and n = 25, Um2 = 0.15862 which compares<br />

to dfûn.<br />

trith equation (12) for dfGn <strong>with</strong> h = 0.7.<br />

Impact <strong>of</strong> Choice <strong>of</strong> Generatiig Process on System <strong>Design</strong><br />

In the abseme <strong>of</strong> sufficiently lo= streamflow sequences to determine<br />

whether or.not lozg term persistence exists for a particular stream, and,<br />

lacking =y sound -&ysical basis for the ctoice <strong>of</strong> a generating process, consideratior<br />

must be even to the influence <strong>of</strong> choice <strong>of</strong> generating process on<br />

water resource system design.<br />

Few studies to date have investigated the sersi-<br />

tivity <strong>of</strong> system äesip to choice <strong>of</strong> gereratirg process for zmud streanflow.<br />

Wallis and Matalas [: 211 have studied the effects <strong>of</strong> long tern persistence on<br />

reservoir desigri through assuming prior knowledge <strong>of</strong> p and 6 2nd assessing the<br />

impact <strong>of</strong> h on the äesign, W n g accomc <strong>of</strong> mall sample biases in estimates<br />

<strong>of</strong> p1 a d 18 in the' Lr analysis. The reservoir desigr: Y ~ S evolved using the<br />

sequent Fe& algorith, which was used to determine the minimum reservoir size<br />

necessary to meet 2 specified level <strong>of</strong> demd a expressed as a proportioli o€<br />

the observed averzge ITOU over the desi= period. For t'ûe desip considereä,<br />

the required reservo-ir capcity was fourd to depend on the mwitudes <strong>of</strong> h azd<br />

For equd e-cted vaues <strong>of</strong> the variance, E id), and the lag-one<br />

el.<br />

autocorreletion, E [e?), in desigr sequezces <strong>of</strong> length I?, and €or a > 0.80,<br />

approxicitions to 12-m <strong>with</strong> h > 0.5 yieloed reservoir sizes coxiderably in<br />

excess <strong>of</strong> those yielded by the lapone E%-kov process, thus e nmising the<br />

relative impact or^ long-term acd short-term persistence on the design.<br />

By consideri--6 the water resource -stem design process, a basis emerges<br />

for the ckoice <strong>of</strong> a ge3eratizg process. A ge-eratirg process cas be postulated<br />

as beiri; tbt <strong>of</strong> the real worlä,.ad an oFtimd desigz evolved on this basis.<br />

Assuri$iors may thei be made concerzing tìe ideitity <strong>of</strong> the real world, acd<br />

the ecected reFets accrui3g from each assmotion my be evaluated. The procedure<br />

w be repeated for each postulated gexeratiF4 process for the real


world, <strong>with</strong> the ssuaei? generztirg process yielding the ~~ici~~m overall regrets<br />

representkg the 251~ro~riite ckoice. A simil- strategr has Seen employed by<br />

P?t&s acd YaXis [26J for the selection <strong>of</strong> a frequency distribution for the<br />

evalmtion <strong>of</strong> a design flood magnitude.<br />

3 07<br />

A critical fictor in the choice <strong>of</strong> a gere-rating process concerrs the<br />

ercistexe azd the intersity <strong>of</strong> long-term persistence to be mocelìed in synthetic<br />

sequerces. Co-zequentLv, a set <strong>of</strong> si&tioz eqerimeris were evolved 25<br />

folious to dete,-mir;e strategies n th respect to long-term persistence, z ~ d<br />

to cetermine wke-her or rot, in the presexe <strong>of</strong> long-te,- persistence, bias<br />

corrections reed to be ap-lied to estimtes <strong>of</strong> the varizce azd lag-one auto-<br />

correlatisn measured in historic sequerces in o-der to obtaic realistic àesis<br />

results.<br />

Tuo generatkg processes uere adogted for the simulstion experiments,<br />

the lâg-oxe Markov process represexting short-term persistence and the ARPA<br />

(l,O,l) process represeztiq lorg-term persistelice. For the Latter process,<br />

the izterisity <strong>of</strong> long-ten persisterce may be cottrolled by the parameter 6,<br />

consequent-, a value OÏ Ø = 0.85 YES M e n as represeEzing a medium intensity<br />

<strong>of</strong> lo-g-term persistence uhile a value <strong>of</strong> ff = C.95 was selected to model a<br />

strozg intensity <strong>of</strong> 10%-te-m persistecce. Heme, the real uorid was assumed<br />

to be lag-one hrkov or ARIKA (l,O,l) <strong>with</strong> $ = 0.85 or f = 0.95 yielding 3<br />

possible choices for the real world, identified by indices r = l,2,3.<br />

An o ptid design is required for each world, and a proceckire had to be<br />

evolved for evaluating the desip, which was defined as the minimum reservoir<br />

size necessu'y to meet 2 set <strong>of</strong> tzrget demands over the i?esig period rid,<br />

which was taken as 100 gears. Rather than defire the tzrget demands relztive<br />

to the samole me= <strong>of</strong> the design sequence, the demar,ds uere defined BS percect-<br />

ages <strong>of</strong> the population meax <strong>of</strong> the r ed world so 2s to dlow the design to<br />

reflect more fully the varizbility <strong>of</strong> the =?ïe mean mong different uorlds.<br />

To permit a com-ison between optimal äesigr-s €or diÎferent worlds, each<br />

world was defined to hâve population parameters p and 6 such that<br />

and<br />

SES2] ,* = 9<br />

&e appro-priate values <strong>of</strong> 6 to be used i?l the gene=tiag *processes %v be<br />

defired fron eoiutions (9) iLld (17) for the lG-one Nzkov azà ARDA (l,O,l)<br />

processes, respeciively. The sequent ~3s.k algorithm u s use6 to evalute the<br />

reserroir size, xxch YS defired 2s the mir?iia size slick tbt the reservoir<br />

rum C-p at host oxe orer the Cesis, period 'cui; suc3 tkt =e target de-~ds are dwqs met [F]. %e de-d levels iàentiiied by izcices k = 1,2,3 ïere<br />

defeea 2s 75%, 85$ ana 955 <strong>of</strong> the populatioz cean = 70, which, in przctice,


388<br />

may redt in overdevelopmeat relative to the sample mean for a design sequexe.<br />

ñowever, the sequent algorithm 2s originzllg formillatea by Thomas<br />

and Errrdez 1281 czot hardle levels <strong>of</strong> develo~ent greater t h unity. In<br />

this sitiztion, the reservoir size was Bc-i-ic defined as for the case <strong>of</strong> urder-<br />

develo-ert usiLg 2 computer zlgorithm, <strong>with</strong> the initiâl reservoir storage<br />

neceesr-yy to zvoFd deficiercies beilig assiuned zvailable. For each world, o otid<br />

desi,--s sere defT2ed as the expected reoervoir size for design, sequesces <strong>of</strong><br />

lezgth "C-3 for kg-one autocorrelatiors e1 = 0.1, 0.3, 0.5 idectified by iräices<br />

j = l,í!,3 and de-ds 7.5, 8.5 ard 9.5 s m e d uniform over the ciesign period.<br />

The &!orite Carlo eweriments to be perfoned =y now be defined 2s follows.<br />

For each choice <strong>of</strong> real world the eqected reservoir size is denoted as<br />

E { (r, j,k)) for real world r <strong>with</strong> lag-one zutocorrelations j arid for level<br />

<strong>of</strong> äe~elopent k, {r,j,k = l,2,3] , and is defized through repetitive smplizg<br />

<strong>of</strong> desip sequences <strong>of</strong> lergth 100 for which equations (19) and (2û) hold for<br />

r,j = 1,2,3.<br />

In order to assess the effects <strong>of</strong> bias correctious on the regrets, a6 uelì<br />

as essmptions about long-term persistence, the following Monte Czrlo samplirg<br />

proceduzes were defked.<br />

(1) Generate a 'historic' sequence identified by index i and length n =<br />

50, 100 for world r <strong>with</strong> kg-one autocorrelation 2, decoted as {X I i,n,r,<br />

(2) hssirme the hi,storic sequence is gezerated by an assumed world <strong>with</strong> index<br />

1 = l,2,3, where the values <strong>of</strong> the index 1 refer to the same worlds as identical<br />

values <strong>of</strong> the index r. Estimates <strong>of</strong> the meari D, variance aí!, ard lag-one zutocorrelation<br />

PI are obtaired, at zhich juncture bias corrections may or may not<br />

be applied to #(i,D,r,j,l) and e (i,n,r,j,l). For 1 = 2,3, knowledge <strong>of</strong> the<br />

assumed world includes krowledge o$ the paranezer Ø(1).<br />

A 4 fi<br />

(3) Using p(i,n,r,j,l), 6 (i,n,r,j,l) ard el(i,n,r, j,l) (and $(i) for 1 = 2,3)<br />

a desim sequence oÎ length nd = 100 is generated, whereupon, for k = '1,2,3, a<br />

design reservoir size is evaluated, denoted as h (i,E,r,j,k,l), which is the<br />

reservoir size for a level <strong>of</strong> develoyezt k for desiga sequence i gecerated<br />

by a? asmed world 1. The pzraneters <strong>of</strong> the assumeä world are estimated from<br />

a historic sequecce <strong>of</strong> length n from a real world r <strong>with</strong> lag-one autocorrelation<br />

index j. An overciesigii or uaderdesign relative to the opti,d design for the<br />

real uorld may the2 be defked as<br />

Ah(i,n,r,j,k,l) = h(i,n,r,j,k,l) - E{>\ (r,j,k)] (21)<br />

which represents a simple lines loss fìzxtion. Different scales BI and B<br />

may be äo-ied to wsitive zzd neetive losses if necessary. A quadratic goss<br />

function nay be del'iried through scusrirg Ah.<br />

+ReFeat (I), (21, (3) a sufficiently lzrge number <strong>of</strong> times to enable<br />

A (i,n,r, j ,k,l) ] , the expected positive loss, axd E {A-(i,n,r, j ,k,1)3<br />

the absolute vdue <strong>of</strong> the eqected negaative loss, to be defined. The expected<br />

overall loss may tiien be defined as<br />

uhere (i,s,r,j,k,l) is abreviated to (*).


3 89<br />

ordzr to pro9erL;;- assess *&e effects 00 an =&?tion about long term<br />

persistence, desigs &oula be evo1;red nskg Cesign seyiecces for ïdch<br />

E f.2) :.g for all sained uorlc?~. Hocever, even i' the bias correctioï<br />

procedures orscussed eelier ere z3flied to +Le small -?le ectinzt-es <strong>of</strong> pl<br />

arid 8, it uLL1 gellerally rot be ooasible to roet the rosuLrezst E [s2} yy: = 9<br />

<strong>with</strong>in desigz seGuences, if oper&50%s (1) - (3) are fozoveo. However, the<br />

series <strong>of</strong> operztLo.oris outlir?ed .we pr-y designed to illust,rate the effect<br />

<strong>of</strong> as-lying bis correctiors, prticularly i- &e preserre <strong>of</strong> long term persiti<br />

terce, as wen as detercrg the impzct <strong>of</strong> Frsiatence itself on the resets.<br />

KO woblem is encountered k geEerati=g spthetic sequences <strong>of</strong> leogth n<br />

for a fixed value <strong>of</strong> el in<br />

fixed í! a d QI ix the a e<br />

process, the value <strong>of</strong> bS


390<br />

satisfy<br />

However, the estiaate <strong>of</strong> the variance satisfies<br />

E {s2(i,n2))<br />

vary <strong>with</strong> i and must therefore be considered as a random<br />

vci25le iikich satisfies<br />

"2 A<br />

which if 6 (i,<strong>nl</strong>) end f(n2, e(il<strong>nl</strong>) are assumed indepecdent,<br />

= E [$2(i,n,)) E [ f (n2, G(i,<strong>nl</strong>J<br />

However, in genera,<br />

A<br />

E {I(%, ê(i,<strong>nl</strong>)) # f(n2, E[@ (i,n,)I I<br />

as f(n2, @i,n ) is non-l+ezr. Howeveft, if Eff(n2..e (i,<strong>nl</strong>u is evaïEted<br />

at the expected vdue <strong>of</strong> e(i,nq), E {e (ilni) , which, if e (i,<strong>nl</strong>) is an<br />

unbiased estimate, equals E> , equation (2'7) reduces to<br />

E{E [s2(i,n2d] = 6 2 f(n,f')<br />

A<br />

=i E(S~],~ = 9 (28)<br />

which is what is required. However, neither <strong>of</strong> the two assumptions necessary<br />

to arrive at equation (28) are liable to hold ; nevertheless the departure from<br />

the required result may not be very serious. If, however @(i,<strong>nl</strong>) is biases,<br />

a larger discreparcy will occur which should accordingly manifest itself in<br />

the overall regets.<br />

The set <strong>of</strong> oserations (I) - (3) outlined above may be modified to study<br />

the effects <strong>of</strong> aosLying bias correctiocs separztely to estimtes <strong>of</strong> the varizce<br />

and the lag-one autocorrelatio2. For emple, a simplified set <strong>of</strong> experimezts<br />

may be cìefined where the variance for the desis seque-ces, E [s2] 1co is<br />

assumed *-OX?,. in this situation, for each es2imate <strong>of</strong> the lag-one autocorrelation<br />

@(i,<strong>nl</strong>), the estimate <strong>of</strong> the variace, c2(i,nq) used to drive the gererator<br />

is defined as<br />

4<br />

b(i,n,) = E Is2] ,oo/f(n2, p(i,n,)) (29) .<br />

r\<br />

where E {szj is nou a constant but f(n2, @i,<strong>nl</strong>) is a random variable then,<br />

A<br />

2<br />

E ( G2(i,?)] = E [$2(i,<strong>nl</strong>) f(n2,p(i,<strong>nl</strong>)j = E [s Loo= 9<br />

from (29)


Cozsequently, the reqired vcriúzce can be miztahed -2 the desiga sequemes,<br />

while t'le effects <strong>of</strong> bizs correctionzs ??flied io %-ore autocorrelztio~s q v<br />

more esiïy be zssessed; as caa the hpact <strong>of</strong> tde time de-perxielit structure <strong>of</strong><br />

the floäs.<br />

Cozclusions<br />

The problems associated <strong>with</strong> choosizg a gecerati=& ?rocees for generatixg<br />

synthetic streafo-is &-re been outlked, aid some <strong>of</strong> zLe problems miskg a<br />

parmeter estdtion discussed. k the preserce <strong>of</strong> lorg-tem oersistence,<br />

the sadl Foperrties <strong>of</strong> gererati-4 processes trey ~ffer markedy from<br />

corres?ordirg poplation guzrititi-es, a d a set <strong>of</strong> simuï.ztio.ori experime-ts &.ve<br />

bees desir-ed to illustrate the izfluerce <strong>of</strong> 55s correctiox on the ete er<br />

reso'xce system Cesign -roceSS, while also allowing the coase:xexes <strong>of</strong> the<br />

ixorrect moiellirg <strong>of</strong> persisteme to be assessed. €?ro?lerns are enco-tered<br />

in tzaixtaici3g a cozstzrt expecteà varicce ir desigri se-ences between differezt<br />

worlds, uhe- the vzzce is estiozted fyom hisroric sequexes, a=d oriy<br />

approxirate bis correctiozs m2y be ap?lied. Zowever, %te results <strong>of</strong> the sim-<br />

lâtio2 experineats whez 2vWlable &odd illustrate the effects <strong>of</strong> qplyirg<br />

bizs coxectiors to the variace ard lag-one zxocorrelfcion, ead provide a<br />

guide es to what choice <strong>of</strong> gezerati-g mecha5m 29pears to -se the o verd<br />

regrets accsilizg from 2 partich choice <strong>of</strong> ge'reraticg mec-sm. The o otid<br />

choice <strong>of</strong> gererzting mechanism wo-dd be conditiod on a particular design<br />

process.<br />

3 91


392<br />

-1 +I<br />

Q<br />

Figure la<br />

-1 +I<br />

QI<br />

Pipe Ib<br />

+I<br />

+I<br />

-1<br />

d<br />

e2


Reterir-ces<br />

I.<br />

2.<br />

3.<br />

4.<br />

5.<br />

6.<br />

7.<br />

8.<br />

9.<br />

10.<br />

II.<br />

12.<br />

13.<br />

14.<br />

15.<br />

16.<br />

17.<br />

&tBLas, W.C. (1967), Hathenaticel assesmerd <strong>of</strong> sy-thetic hyär~logy,<br />

&ter Resow. Res. f(4), 931-935.<br />

P!delbrot, %B., Udlis, J.R. (19681, No&,<br />

kydrology, Kzter Beso*c. Res. 4(5) , 909-918.<br />

Joseph, a d operatio-di.<br />

Pxst, H.E. (1951), Lozg-term storege capacity <strong>of</strong> reservoiI’S, Th.us. Am.<br />

SOC. Civ. Engrs., 116, 770-8080<br />

393<br />

”st, B.$. (19561, ?!ethods <strong>of</strong> using long term storzge h reservoirs,<br />

Proc. Inst. Civ. Fagrs., 1, 519-543.<br />

.<br />

Yadelbrot, 3.B. (1971 ), A fast fractiod G2ïssim noise generator,<br />

Kater Resoil-. Bes. 7(3), 543-5530<br />

Fmdelbrot, B.B., WiLlis, J.R. (1969 1, Computer experiments <strong>with</strong> fractional<br />

Gmssian noises. Part I - Averages m-d variaces, Viter Resoure Res. 5(l),<br />

228-241.<br />

Yatalas, Nec., Wallis, J.R. (191 1, Statistical properties <strong>of</strong> multivariate<br />

fractional Eoise processes, <strong>Water</strong> Resow. Res. 7(61 , 1460-1468.<br />

Box, G.E.P., Jenkins, 6.13. (‘JPO), Time series analysis : Forecasting and<br />

control, S a Francisco, Holden-Day Inc., pp.553=<br />

O’Connelì, P.E. (1971), A simple stochastic modellirg <strong>of</strong> Burst’s law,<br />

Proc. Interrztionaì Syqmsium on Mzthematjcd Models in Bydrology, Varszw,<br />

voi. I(I), 327-358, ïnt. Ass. Sci. ñydrol.<br />

Kejia, J.M., Rodriguez-Iturbe, I., Dawdy, D.R. (19721, Streamflow simulation.<br />

2 - !Che broke2 lice yocess as a potential mociel for hydrologic simulation,<br />

<strong>Water</strong> Resow. Res. 8(4), 931-941.<br />

Fadelbrot, B.B. (1972), Broken line process derived as ai- approximation<br />

to fractional noise, Yater Resour. Res. 86). 1354-1356.<br />

Kerdall, M.G. (1946), The advanced theory <strong>of</strong> statistics, v.2, London,<br />

Charles GriIfin a d Co. Ltd,, ?p. :24-125.<br />

Fisz, M. (7?63), Probability theory *and mathematical statistics, New York,<br />

John Wiley ard Som I~C., pp. 421-423.<br />

kderson, R.L. (1942), Distribution <strong>of</strong> the serial correlation coefficient,<br />

An. Math. Stat., 13, 1-13.<br />

Vdis, J.R. , Natds, N.C. (1971). Correlopm =absis revisited,<br />

Vzter Resow. Res. 7(6), 1w-1459.<br />

Y!talas, N.C. ‘Langbeir,? Y.B. (19621, Info-tion content <strong>of</strong> the mean,<br />

Join. Ge<strong>of</strong>ir. Res. 6 7(9), S I - H .<br />

Vdis, J.R., Natalas, S.C. (Ig”O>, Sm11 ==?le pro-perties <strong>of</strong> II a d K -<br />

Estimators oi the Ewst coefficient h, Uster Resour. Bes. 6(6), 1931594.


394<br />

18. Vais, Jog., O'CoTlieU., P.E. (1973), Fi-- reserroir yield - hou reli251e<br />

are historic ?;7drolop~c records? 1-ternatiod Sjmoosium on the ñydrolog7<br />

<strong>of</strong> Mes, Helsizki, Firland.<br />

19. Slack, J.R. (:972), Bi=, illusion arid derial as data mcerteicties,<br />

Interatiod Spoosium 01: Uzcert-ties fi Hydrologic er6 Vater Resource<br />

System, Tucsx, ArizoE.<br />

20.<br />

21.<br />

24.<br />

25<br />

26.<br />

a.<br />

28.<br />

Slack, J.R. (373), I uould if I could (Self-denid by conditiorial models),<br />

Vater Resour. 2es. 9(1), 247-249.<br />

Wallis, J.B., Ystdas, N.C. (19721, Secsitivitr <strong>of</strong> reservoir design to<br />

the generat- nechzcìisin <strong>of</strong> inflows, Yater Resou. Res. 8(3), 634-641.<br />

22. Uallis, J.R., O'Connell, P.E. (19721, Small samole estimation <strong>of</strong> Q<br />

Yater Resour. Res. 8(3), 707-712.<br />

23- Hatalas, N.C. (19671, Some aspects <strong>of</strong> time series dgsis in hydrologic<br />

studies, Proc. ñydzology Sym~osiuip ?io. 5 - 'Statistical Kethodc in <strong>Hydrology</strong>' -<br />

held at McGilì Univi. Kontreal, Feb. 1966, National Research Ccmcil <strong>of</strong><br />

Cmda, ppm 41-99.<br />

Brooks, C.E.P., Carruther6, N.C. (1953),<br />

in meteorologi, London, EPSO, pp. 412.<br />

Handbook <strong>of</strong> statistical methoàs<br />

O'Corsell, P.E. (19'731, The use <strong>of</strong> ARIMA models in the stochastic modellkng<br />

<strong>of</strong> long-term persistence, R.D. thesis (in preparation).<br />

Katalzs, N.C., Wallis, J.R. (19721, An approach to formulntina strategies<br />

for flood frequency -sis, Interratiorid Symposium on Uncertainties<br />

in ñydrologic a d <strong>Water</strong> Resource Systems, Tucson, hizona.<br />

Fierizg, M.B. (1967), Streanflow synthesis, London, NcMiUm, pp. 139.<br />

Thomss, H.A., &den, R.P. (19631, Statistical aadysis <strong>of</strong> the reservoir<br />

yield relatioo, report, chap. 1, pp. 1-21, Harvard <strong>Water</strong> Resour. Group,<br />

Cambridge, F!s.


AB ST RACT<br />

STOCHASTIC APPLICATION IN UNGAGED BASINS<br />

FOR PLANNING PURPOSES<br />

By Pedro Porras G. and Alfredo Flores E.<br />

<strong>Water</strong> resources development planning, being iterative and dy-<br />

namic, requires increasingly detailed basic information as each pla-<br />

nning level is surmounted. Successful planning is closely linked to<br />

the quality and quantity <strong>of</strong> the basic data. But when short periods<br />

are involved, the field <strong>of</strong> information is increasingly limited, as<br />

when dealing <strong>with</strong> monthly values instead <strong>of</strong> annual values. Moreover,<br />

methods and techniques are not as readily available, and besides,<br />

they are more laborious, as compared <strong>with</strong> those used in connexion<br />

<strong>with</strong> long periods. On the other hand, the use <strong>of</strong> sophisticated te-<br />

chniques, such as hydrologic simulation, is adequate at the project<br />

level but not at the planning stage, since it involves a more care-<br />

ful preparation <strong>of</strong> incoming data and its attendant remarkable effect<br />

on the cost structure. Besides, it is timeconsuming to the extent <strong>of</strong><br />

likely jeopardizing the requirement <strong>of</strong> keeping planning up-to-date,<br />

The method herein expounded deals <strong>with</strong> the attainment <strong>of</strong> average mon_<br />

thly values, covering a standard period <strong>of</strong> years, for precipitation,<br />

evaporation, net irrigation demands, and run<strong>of</strong>f, in the various<br />

stretches <strong>of</strong> the different rivers in a region, using transition pro-<br />

babilities (stochastic techniques], beginning wrth observed annual<br />

precipitation values, The method has been designed for computer solu-<br />

tion.<br />

El proceso de planificación hidráulica, por su carácter itera-<br />

tive y dinámico, requiere de una información básica cada vez mas de-<br />

tallada a medida que se van superando distintos niveles. El êxito de<br />

la planificación está íntimamente ligado a la calidad y cantidad de<br />

datos básicos; pero la consecución de esta información se hace mas<br />

limitada cuando se imponen consideraciones de períodos cada vez más<br />

cortos, como ocurre cuando se trata de valores mensuales en lugar<br />

de los anuales; a esta limitación habría que añadir la menor dispo<strong>nl</strong><br />

bilidad de mêtodos y técnicas que a su vez son m’as laboriosas que<br />

las usadas en periodos largos. Por otra parte, el empleo de técnicas<br />

s<strong>of</strong>isticadas, como las simulaciones hidrolagicas, son adecuadas a ni<br />

vel de proyecto y no de planificación e implican una preparacian más<br />

meticulosa de los datos de entrada incidiendo notablemente en costos<br />

y consumiendo un tiempo que podria poner en peligro la actualizaci’h<br />

que requiere la planificación. El método que aqui se expone trata de<br />

la consecuciön de valores medios mensuales, pa??a un perPodo tipico<br />

de años, de precipitación, evaporación, demandas netas de riego y es-<br />

currimiento, en los diversos tramos de los di‘stintos ribs ae una re-<br />

gión, haciendo uso de las probabilidades de transl’ción (96cnicas e ~ -<br />

tocásticas) partiendo de los valores anuales observados de precipita<br />

ción. El método ha sido diseñado para resolución por computadora.


396<br />

JUSTIFICATION<br />

For th elaboration f the first version <strong>of</strong> the National Plan <strong>of</strong><br />

Development <strong>of</strong> <strong>Water</strong> <strong>Resources</strong> it was necessary to make a national inventory<br />

<strong>of</strong> the surface run<strong>of</strong>f. The characteristics <strong>of</strong> this first version were sufficient<br />

to know the mean annual volumes which were estimated through run<strong>of</strong>f<br />

isolines given by Hydric Balance method. One <strong>of</strong> the factors which determined<br />

the simplicity <strong>of</strong> application <strong>of</strong> this method was the number <strong>of</strong> years <strong>of</strong> the<br />

chosen period- which allowed to accept the hypothesis that the lateral transmissibility<br />

is negligible.<br />

For the second version <strong>of</strong> the plan it was necessary to make an inventory<br />

<strong>of</strong> the surface run<strong>of</strong>f n mean monthly periods trying to reach a desirable<br />

level <strong>of</strong> detail but it was not possible to make it directly because<br />

<strong>of</strong> insufficient information ex sting. This situation compelled to make an<br />

investigation but unsuccessfully. Then it was necessary to change and follow<br />

other methodologies. From this emerged the idea <strong>of</strong>' making investigations<br />

through the application <strong>of</strong> stochastic methods to attain better results.<br />

CONSIDERATIONS FOR THE MODEL<br />

The proper characteristics <strong>of</strong> a region determine its own pluvial<br />

cycle specified by the quantity and distribution <strong>of</strong> the rainfall. Among these<br />

characteristics must be considered the latitude, longitude, proximity to the<br />

sea or lakes, the topography, land form and so forth. Some <strong>of</strong> them have<br />

greater influence on the quantity and others on the distribution in the year;<br />

determining dry and wet periods. In the annual rainfall distribution may be<br />

appreciated two essential particularities : one, the annual total percentages<br />

corresponding to each month (they represent similar figures for the different<br />

zones though it does not mean that the quantities <strong>of</strong> rainfall must be the same)<br />

the other, the sequence or the order <strong>of</strong> their presentation. The observations<br />

made have proved that in relatively small zones the variations <strong>of</strong> the rainfall<br />

may be important in quantity but not in its distribution.<br />

Generally the characteristics <strong>of</strong> the available data <strong>of</strong>fer the opportunity<br />

that a lot <strong>of</strong> factors allow the elaboration <strong>of</strong> mean annual isohyetal<br />

maps <strong>with</strong> better reliability than the monthly ones (which in some cases can<br />

not even be elaborated). Among these factors it is important to include the<br />

following: the zonal variations better determined from the precipitationelevation<br />

relation (topographic considerations); the complete annual totals<br />

series; the totalizer records;<br />

the comparison <strong>with</strong> mean annual run<strong>of</strong>f in<br />

gaged watershed; the simplicity in the estimation <strong>of</strong> lacking data through<br />

technical procedures like double mass curve, etc.


The most frequent difficulties in the elaboration <strong>of</strong> isohyetal monthly<br />

maps are: (a) the cluster <strong>of</strong> several months in succession since in many cases<br />

even having the annual totals <strong>of</strong> the complete measurement series makes difficult<br />

the assessment <strong>of</strong> monthly averages; (b) it does not exist clear relations<br />

between the altitude <strong>of</strong> the station and the monthly rainfalls; (c) not always<br />

exist definite relations betwe.en the monthly rainfalls measuredat near stations;<br />

(d) the zones <strong>with</strong> scattered stations where the mentioned considerations hamper<br />

drawing the monthly isohyetals. Here is then the need to generate the monthly<br />

data through adequate methods.<br />

ANALYSIS OF DATA<br />

397<br />

For the stochastic generation <strong>of</strong> monthly values <strong>of</strong> rainfall, Region 1<br />

was dected(Maracaibo Lake <strong>Water</strong>shed) where 141 stations <strong>with</strong> 10 years period<br />

recorded were estimated: 1961-70.<br />

In a practical manner, even if the monthly average could not be deter-<br />

mined directly from the records, due to clustering <strong>of</strong> monthly values, it was<br />

possible to determine more or less easily the monthly maximum and minimum that<br />

led to generate series <strong>with</strong> standard deviation and mean similar to registered<br />

series according to the checking made at stations <strong>with</strong> complete recording.<br />

The selected value for the analysis was the percentage <strong>of</strong> each month<br />

in connexion <strong>with</strong> the annual average for those 10 years period. A frequency<br />

analysis was made <strong>of</strong> the group <strong>of</strong> data gathered each month and by mean annual<br />

ranges <strong>of</strong> precipitation.<br />

The ranges <strong>of</strong> precipitation selected were the following: (a) from.<br />

50 mm to 1000 mm; (b) from 1000 mm to 1500 mm; (c) from 1500 mm to 2000 mm<br />

and (d) greater than 2000 mm. Then the following particularities appeared:<br />

(a)<br />

(b)<br />

(c)<br />

(d)<br />

In months <strong>of</strong> light precipitation ‘the interval <strong>of</strong> the percentages<br />

variation <strong>with</strong> respect to the annual average varied <strong>with</strong> the annual<br />

average.<br />

In months <strong>of</strong> heavy precipitation no relation was noticed.<br />

In all cases the Gumbel distribution function was the one which fits<br />

better on polygon frequency.<br />

The interval <strong>of</strong> the percentages variation, each month, is characteristic<br />

<strong>of</strong> each location. For instance: the interval in January in<br />

Paraguaipoa is permanent and is different to Machiques in the same<br />

month.


398<br />

DESCRIPTION OF THE MODEL<br />

It was determined to construct a stochastic model to generate (from<br />

the average values <strong>of</strong> annual rainfall) monthly series <strong>of</strong> 10 values which re-<br />

present a typical cycle <strong>of</strong> 10 years. This matter has the following purposes:<br />

(a)<br />

(b)<br />

(c)<br />

To use the averages <strong>of</strong> those series in the elaboration <strong>of</strong> the mean<br />

monthly isohyetic maps.<br />

To compute (from generated rainfall values) probable values <strong>of</strong><br />

evaporation which accompany each rainfall in order to obtain balances<br />

and determine the water requirements for irrigation.<br />

To determine mean monthly rainfall over the watersheds area in order<br />

to estimate mean monthly run<strong>of</strong>f and obtain average values.<br />

For the generation <strong>of</strong> rainfall values it was necessary to estimate<br />

the possibility to elaborate a matrix <strong>of</strong> transition probability to obtain<br />

monthly rainfall values for consecutive years. This was not possible because<br />

the monthly series (when are completed) o<strong>nl</strong>y consist <strong>of</strong> 10 terms and just like<br />

it was mentioned previously the number <strong>of</strong> them is very reduced - this being<br />

one <strong>of</strong> the reasons why the model was prepared.<br />

The matrix <strong>of</strong> probability <strong>of</strong> transition was elaborated then considerin!<br />

previous states equally likely that is to say, <strong>with</strong>out distinction in all<br />

months. It was found that among the polygons <strong>of</strong> "accumulated relative fre-<br />

quencies" corresponding to the same previous state, but <strong>of</strong> different matrix<br />

pertaining to nearby regions, there exists proportionality. That is, if we<br />

denominate F(x) the function that describes the best fit to the polygon corres.<br />

ponding to a previous state xi <strong>of</strong> a matrix [A and F, (x) that corresponding<br />

to the same previous state xi in the matrix zû] (Fig. 1) and if the functions<br />

take the same value for values x equal to s and t respectively that is to say<br />

if<br />

F (s)=F( ( t ) (1)<br />

and calling m and M the lower and upper limits <strong>of</strong> the interval variation <strong>of</strong><br />

the first function and m, and M,<br />

is verified:<br />

to the second one; an important relation<br />

-<br />

-<br />

s - m M - m<br />

t - m, M,- m l


This last expression gives a simple form to estimate the value <strong>of</strong> the<br />

rariable corresponding to a place when is knownitslimits <strong>of</strong> variation and a<br />

wilt matrix is valid for the region since the real value <strong>of</strong> x will be:<br />

x =<br />

s - m<br />

M - m<br />

(Mi - mi) + ml (2 1<br />

TO generate a cycle <strong>of</strong> 10 years <strong>of</strong> rainfall values, any value (XO) is<br />

:hosen among the interval <strong>of</strong> variation <strong>of</strong> the percentages observed for the<br />

nonth <strong>of</strong> December so as to begin the process. Boundaries for each month are<br />

the maximum and minimum limits where the percentages <strong>of</strong> each month change and<br />

the value <strong>of</strong> mean year rainfall in that place is determined. A random number<br />

is selected from O to 100; <strong>with</strong> this random number and <strong>with</strong> the initial value<br />

(xo) we come into the matrix <strong>of</strong> the transition probabilites and we read the<br />

dalue <strong>of</strong> x which is changed through the expression 2.<br />

This value <strong>of</strong> x obtained this way and multiplied by the<br />

,f precipitation and divided by 100, generate the first monthly<br />

dumerically is as follows:<br />

I<br />

xu P<br />

LL\ = J-<br />

-<br />

dhere P: mean year rainfall<br />

100<br />

x;: percentage corresponding to ( 'month) state<br />

i l<br />

With the value x: obtained and a new random number, the proced.ure is<br />

repeated so as to generate x2 and continually untili = 120 (10 years). The<br />

first 12 values correspond to each month <strong>of</strong> the first year generated; the next<br />

L2 correspond to the months <strong>of</strong> the second year and continually until the tenth<br />

rear.<br />

lbtainment <strong>of</strong> the Monthly Rainfall Over Area in a <strong>Water</strong>shed<br />

399<br />

mean year value<br />

rainfall value.<br />

In a watershed, as soon as the isohyets have been drawn <strong>with</strong> the mean<br />

mnual values <strong>of</strong> the available stations, the mean annual rainfall over area<br />

)btained <strong>with</strong> the average <strong>of</strong> all the point values inferred will be very close<br />

to the vaiue <strong>of</strong> the mean annual rainfall which has been obtained through the<br />

danimeter. Based on this it is possible to get the mean annual rainfall on a<br />

datershed, using the known mean annual totals or the generated mean annual<br />

lalues. Nevertheless, applying this procedure to the monthly value generated,<br />

leads to poor results, average excepted, since in two adjacent points it is<br />

impassible to guarantee beginning both series <strong>with</strong> the representative values<br />

if the same year.<br />

1 typical cycle <strong>of</strong> 10 years, not o<strong>nl</strong>y regarding the magnitude <strong>of</strong> the terms but<br />

regarding the order too.<br />

(3)<br />

In spite <strong>of</strong> this the values <strong>of</strong> the series obtained represent


400<br />

In order to attain the series <strong>of</strong> the monthly values corresponding to<br />

the rainfall over the area already mentioned, the same procedure has to be re-<br />

peated (as it has been explained) for getting the monthly values at a point,<br />

starting from an initial value which is the average value <strong>of</strong> the initio1<br />

volumes at each point extended uniformly from the mean annual rainfall obtained<br />

according to the precedent explanation and the monthly maximum and minimum<br />

limits also obtained just like averages at each point.<br />

Generation <strong>of</strong> Monthly Values <strong>of</strong> Evaporation<br />

The precipitation <strong>of</strong> the zone was divided in 10 mm intervals and in eoc<br />

one <strong>of</strong> them where the stations existed, the evaporation was studied and the<br />

polygon <strong>of</strong> frequence which correspond to each rainfall interval was determine<br />

The distribution <strong>of</strong> frequency <strong>of</strong> the evaporation was anolyhed in interv<br />

class <strong>of</strong> 10 mm. Without making a strict analysis it was observed that the distribution<br />

<strong>of</strong> evaporation for each rainfall interval is normal. The range <strong>of</strong><br />

the variation <strong>of</strong> the evaporation decrease while the mean value <strong>of</strong> the class <strong>of</strong><br />

rainfall increase. Thus, to generate anevaporation value, as soon as the rainfall<br />

value has been generated, a random number is chosen as well as the interva<br />

to which the rainfall generated pertains; the random number determines the<br />

corresponding evaporation value.<br />

With the pair <strong>of</strong> series obtained at each point, the accounting balance<br />

is made in order to determine the water requirements for irrigation.<br />

RESULTS<br />

With the aim <strong>of</strong> getting some indicator <strong>of</strong> the goodness <strong>of</strong> the results,<br />

the monthly rainfall values pertaining to places <strong>with</strong> measurements were generat<br />

and the series were compared through means and standard deviations.<br />

The linear correlation was calculated for each place among the twelve<br />

means generated (one for each month) and the measurements; the same also was<br />

made <strong>with</strong> the standard deviations.<br />

For illustration here are some results:<br />

!- Coefficient <strong>of</strong> cor;ela:ion between<br />

The Means Standard Deviations<br />

I<br />

O ,98<br />

o ,?2<br />

San José Bolivar<br />

Boroto<br />

Mochiques Gia.<br />

0,90<br />

O ,96<br />

O ,?3<br />

0,91<br />

0,81<br />

O ,96<br />

0,94<br />

0,89


JNOFF<br />

401<br />

The run<strong>of</strong>f is generated by the following equations explained in the<br />

irk "Analisis sobre las Relaciones Escurrimiento-Precipitation en Periodos<br />

! n s u a 1 e s 'I (An a 1 y s i s o f Run o f f -Pr e c i pit at i on Re 1 at i on s by Mont hl y Per i od s )<br />

Pedro Porras G.<br />

ere :<br />

Ei = Si-' -<br />

Y<br />

o<br />

a<br />

4- (Pi-si- 1 -)B.<br />

I-a I-a I<br />

si = s. - 1<br />

a<br />

i (Pi - - s. 1 -) (i-+)<br />

I I 1-a<br />

: Number <strong>of</strong> the period <strong>of</strong> time (month)<br />

: Run<strong>of</strong>f in the period<br />

: Storage to the period<br />

i<br />

,f Coefficients depending on the characteristic <strong>of</strong> the watershed.<br />

This method has been developed in order to be applied by means <strong>of</strong> the<br />

e <strong>of</strong> digital computers and to obtain ranges <strong>of</strong> mean monthly values which do<br />

t differ more than 10 per cent in general terms.<br />

For the application <strong>of</strong> this method it is convenient to use maps at<br />

100.000 scales <strong>with</strong> topography; on these maps previously squared (an adequate<br />

dth among the lines must be no more than 2 minutes) we draw the mean annual<br />

ohyets for a period <strong>of</strong> 10 years and we build the twelve pairs <strong>of</strong> maps<br />

rresponding to the isopercents<strong>of</strong>maximum and minimum for each month.<br />

In the region all watersheds have to be shown uptothe places <strong>of</strong> interest;<br />

e data must be prepared for each watershed.<br />

At the intersection point <strong>of</strong> the grid previously identified, we must<br />

ad the mean annual precipitation value as well as the maximum and minimum<br />

lues corresponding. This information plus the area <strong>of</strong> the watershed, initial<br />

lues <strong>of</strong> precipitation in percentage, the regional matrix <strong>of</strong> precipitation<br />

d evaporation and the values <strong>of</strong> alp, S establish the input data to the pro-<br />

O<br />

ss.<br />

(4)<br />

(5)


402<br />

The values <strong>of</strong> a,/, S must be obtained from nearby watersheds <strong>with</strong><br />

O<br />

measurements and similar characteristics. In the procedure to be applied to<br />

get this result and in the selection <strong>of</strong> these values, we must estimate the<br />

very important physiographic characteristics <strong>of</strong> the watershed.<br />

RESOLUTION BY COMPUTER<br />

The application <strong>of</strong> the model requires a lot <strong>of</strong> computing which is<br />

very time consuming by hand; therefore it was necessary to elaborate a progrc<br />

for digital computer.<br />

The program has been elaborated in the PL/1 Language and it consists<br />

<strong>of</strong> a main program and five subprograms whose functions are the following:<br />

MA1N PROGRAM<br />

This program consists <strong>of</strong> six main phases:<br />

It reads the data <strong>of</strong> the transition matrix <strong>of</strong> the precipitation and<br />

the evaporation, as well as the characteristic data <strong>of</strong> the points<br />

<strong>of</strong> the grid in which the watershed has been subdivided (mean annual<br />

precipitation, initial monthly precipitation, monthly maximum limit<br />

and monthly minimum limit).<br />

It generates stochastically for each point <strong>of</strong> the grid the precipita.<br />

tion month to month for the selected period through the transition<br />

matrix <strong>of</strong> the precipitation.<br />

From the monthly precipitation <strong>of</strong> the point and through the transitic<br />

matrix <strong>of</strong> the evaporation, it calculates the monthly evaporations at<br />

the point.<br />

If the water requirements for irrigation are required at the point,<br />

the program through a control apply the method "Accounting Balance<br />

<strong>of</strong> Thornthwaite" using the precipitations and evaporation calculated<br />

in the phases 2 and 3.<br />

It generates stochastically the monthly precipitation for the water-<br />

shed from the transition matrix <strong>of</strong> the precipitation and taking as<br />

mean annual value and initial value, the average <strong>of</strong> them already<br />

calculated for the points <strong>of</strong> the grid <strong>of</strong> the watershed.<br />

It calculates the run<strong>of</strong>f and monthly volumes for the watershed<br />

according to the work "Analysis <strong>of</strong> Run<strong>of</strong>f-Precipitation Relations<br />

by Monthly Periods" by Pedro Porras, Engineer.


SUBPROGRAMS<br />

Subprogram LENGTH:<br />

It calculates the length <strong>of</strong> the interval <strong>of</strong> the probability curves<br />

accumulated by the transition matrix <strong>of</strong> the precipitation.<br />

Subprogram INTER:<br />

It interpoles values in the transition matrix<br />

Subprogram ESTADI:<br />

It computes the mean and the standard deviation<br />

Subprogram DENERI:<br />

403<br />

It determines the water requirements for irrigation starting from the<br />

method <strong>of</strong> "Accounting Balance <strong>of</strong> Thornthwaite".<br />

Subprogram RANDU:<br />

It generates random numbers between O and 1 used in the stochastic<br />

process.<br />

In the Fig. No. 2 attached is presented the Flow Chart <strong>of</strong> the program.<br />

VERIFICATION OF THE MODEL<br />

For the verification <strong>of</strong> the model the Socuy River watershed was<br />

selected. The basin is located in the north-west region <strong>of</strong> the Maracaibo<br />

Lake in Venzuela.


404<br />

Fin) Former state: xi<br />

MATRIX [AI<br />

Fiix) Former state:Xi<br />

MATRIX [d<br />

F,(t)rF(i) ---------<br />

Comparison <strong>of</strong> distribution functions for equal prior<br />

states <strong>of</strong> the various matrices<br />

PIOURE A


0<br />

COMIENZO<br />

MATRICES DE<br />

PRECIPITACION Y<br />

EVAPORA CI ON<br />

NUMERO DE<br />

CUENCAS<br />

LECTURA DE<br />

DATOS DE LA<br />

CUENCA<br />

PUNTO<br />

LECTURA OE<br />

DATOS DE LO5<br />

PUNTOS DE LA<br />

CUENCA<br />

I A<br />

::::;-I<br />

PR EC I P ITACI ON<br />

EVAPORACION<br />

I<br />

FIGURA 2<br />

- 9<br />

FIN PUNTO<br />

DEMANDAS<br />

FIN<br />

1 CALCULA P R F<br />

PITACION MEDIA<br />

ANUALY MENSUAL<br />

PARA LACUENCA<br />

IMPRIME<br />

PRECIPI TACION<br />

LECTURA DE<br />

CALCULA<br />

VOLUMENEC<br />

MENSUALES<br />

0<br />

FINAL<br />

~~<br />

DIAGRAMA DE FLUJO


406<br />

6<br />

1<br />

8<br />

IC<br />

5<br />

11.11<br />

41.63<br />

154.31<br />

114.65<br />

it.31<br />

41-61<br />

?.II<br />

145.IC<br />

Il.5C<br />

C.15<br />

itit<<br />

13iGi<br />

I(C.51<br />

2t5.lt<br />

5f.13<br />

45.15<br />

13s.11<br />

?li.lf<br />

13.f<<br />

?(.i1<br />

?.'!<br />

42.21<br />

!liil<br />

5f .*i<br />

31.11<br />

41.25<br />

ii.12<br />

I.i< 1-61<br />

15.15<br />

12.15<br />

1e2.27<br />

il.0<br />

145.41<br />

SC.?<<br />

*;.i?<br />

Il5.1f<br />

(1.11<br />

1.51<br />

111.51<br />

lt.53<br />

ili.13<br />

5ct.14<br />

li?.?;<br />

I


ABSTRACT<br />

HOMOGENEISATION ET INTERPOLATION DES DONNES POUR<br />

UN MODELE DE SIMULATION<br />

par Marcel ROCHE<br />

When the topological schema <strong>of</strong> a project has been defined, it<br />

is necessary to establish data sets (in quantity and possibly in<br />

quality) wich are to be used for operating the simulation. This is<br />

all the more difficult as basic data are more seldom and <strong>of</strong> less good<br />

quality. It must 5e begun to gathei as completely as possible data<br />

directly observed at available stations and to severely criticize<br />

those data. The second operation consists ia choosing the period <strong>of</strong><br />

reference to be used Cas long as possible) and in establishing an<br />

homogeneous series, for this period, from the basic data Ccorrelations).<br />

Finally, from this homogeneous series at available statïons, an<br />

homogeneous series at the various input points <strong>of</strong> the model has to<br />

be computed (interpolation in space). The author taRes as an exemple<br />

monthly yields and their mean salinity.<br />

RESUME<br />

Lorsque le schema topologique d‘un aménqgement a étd arrêté,<br />

il convient d‘établir los séquences hj-drologTqnes Cqyantit& et<br />

éventuellement qualité] oui devront être utilisées pour proceder a<br />

la simulatlon. L‘opératinn est d’autant plus df3licate que les donnees<br />

de base sont plus payes et de moïns bonne qualite. On doi’t commencer<br />

par faire un bilan aussi complet quo possible des données directement<br />

observses aux stations disponibles et scumettrc ces donnges à une<br />

analyse critique ~6v’ere. La seconde opérntion consiste 3. choisir las<br />

période de référoncn qu‘on utilisera Cia plus 1Qngue possible), et a<br />

établir pour cette ?-riode une série homogène a partir des données de<br />

base (corréiatioris). Enfin, on doit calculer, à partir de cette série<br />

homogène aux stati~ris disponibles, une s&rie homogene aux différents<br />

points d’entrée di1 nodèlo (interpolation spatiale). L’auteur prend<br />

comme exemple les apports mensuels et leur salinité moyenne.


408<br />

Un modèle mathématique de simulation pour un aménagement intégré est<br />

construit 5 partir d'un plan topologique tel que celui de la figvre 1. Sur ce<br />

plan, les débits à injecter pour faire fonctionner le modèle sont représentés<br />

par les symboles An et ACn, suivant qu'ils sont produits en tête de bassin ou<br />

dans un bassin intermédiaire. On peut, s'il est besoin, leur associer les salures<br />

moyennes correspondantes SAn et SACn.<br />

I1 est donc nécessaire de fournir les valeurs de ces apports et éventuellement<br />

de ces salures sur la plus longue période possible. Les débits sont<br />

mesurés à des stations de jaugeage qui ne coïncident pas toujours et avec toutes<br />

les limites des unités hydrauliques. Par ailleurs, les périodes sur lesquelles<br />

portent le6 observations ne sont jamais les mêmes aux différentes<br />

stations. I1 en est de même pour les observations concernant la qualité des<br />

eaux, avec encore moins de stations, davantage de lacunes et des périodes<br />

plus courtes.<br />

Les opérations destinées à préparer l'échantillon des An et des ACn, et<br />

éventuellement celui des SAn et des SACn seront donc les suivantes (on supposera<br />

dans tout ce qui suit qu'on travaille à un pas de temps mensuel) :<br />

- mise au point des débits moyens mensuels observés aux stations,<br />

- mise au point des salures moyennes mensuelles observées aux stations,<br />

- choix d'une période de travail, dite historique, et homogénéisation<br />

des débits moyens mensuels sur cette période,<br />

- homogénéisation, sur la période historique, des données concernant<br />

la qualité,<br />

- calcul, sur la période historique, des An, ACn, SAn et SACn, par<br />

interpolation géographique, et quelquefois par analogie ; équilibrage<br />

des volumes et des poids de sei.<br />

1.- Débits et salures observds aux stations<br />

Les données provenant des réseaux sont traitdes par les services<br />

qui les contr&lent, de plus en plus par les procddds de l'informatique.<br />

Quand on commence une étude hydrologique pour un amdnagement,<br />

on doit, dans toute la mesure du possible, repartir des<br />

données originales non dlabordes,<br />

les critiquer et les traiter à no:<br />

veau, Pour les hauteurs limnimêtriques, on reprend tous les originaux<br />

des observateurs (lecteurs d'échelles) et les limnigrammes s'ils<br />

existent, On vérifie les calages des échelles en s'appuyant sur les<br />

comptes rendus, les contrôles de zéro, sur tout document disponible,<br />

on se livre au besoin 3 des enquetes sur le terrain; on essaye d'@va<br />

luer la qualitd des relev'es d'apr&s la forme des limnigrammes, la<br />

tenue des feuilles d'observations, en faisant des comparahons avec<br />

d'autres stations etc,<br />

Si on dispose des minutes des jaugeages, il n'est pas sans<br />

intérbt de controler quelques dépouillements; si on releve un purcep<br />

tage important d'erreurs il ne faut pas hésiter 3 les reprendre en<br />

totalité, I1 ne s'agit pas toujours 12 d'un polissage raffiné; nous<br />

pourrions citer un cas dans lequel un contrôle a montrd que 25% des<br />

jaugeages présentaient des erreurs de dépouillement supgrieures 3<br />

20%. I1 faut ensuite refaire la courbe d'étalonnage, ou les courbes<br />

si l'étalonnage a varié au cours de la période d'observation, ce qui<br />

est presque toujours le cas pour les basses eaux,<br />

On reprend alors le calcul des ddbits à l'ordinateur et on<br />

en sort la série chronologique des débits moyens mensuels observés<br />

chacune des stations dans le ou les bassins intéressant le projet,


Si l'on doit tenir compte de la qualité des eaux, notamment de la<br />

salinité, il faut faire sur les observations correspondantes une<br />

opération analogue 8 ,la précédente, mais avec une méthodologie de<br />

contrôle tr&s différente,<br />

409<br />

Les mesures de salinités, par exemple, portent généralement SUT des périodes<br />

beaucoup 21us courtes que celles des observations hydrométriques. Rles sont<br />

souvent disparates dans leurs méthodes dféchantillonnage (techniques de prélèvement)<br />

aussi bien que dans les méthodes d'analyses. Pour ces dernières, on procède<br />

soit par analyse chimique complète, en différenciant les sels dissous, soit par<br />

analyse sommaire : teneur globale en sels dissous mesurée le plus souvent par conductivimétrie,<br />

I1 faut homogénéiser tous ces résultats, après une étude critique<br />

aussi poussée que possible portant notamment sur la confiance qu'on peut attri-<br />

buer aux méthodes clsanalyse pratiquées<br />

et aux conditions dans lesquelles elles<br />

ont été appliquées .e lorsqu'on les connaît. On produit ainsi, pour les .besoins<br />

du modèle, un échantillon de salures moyennes mensuelles à un certain nombre de<br />

stations (l).,<br />

Si on a l'intention d'utiliser la pluviométrie disponible pour étendre la<br />

période d'observation des débits, il faudra procéder également à l'indispensable<br />

étude critique des précipitations. On s'attachera notamment à détecter et à cor-<br />

riger les erreurs systématiques, causes d'hétérogénéité dans les séries, en appli-<br />

quant la méthode des doubles cumuls (2). La encore, il ne s'agit nullement d'un<br />

débat académique ; les erreurs systématiques dans ce genre de relevés ne sont pas<br />

occasionnelles, elles constituent la règle générale. Pour éviter les erreurs de<br />

transcription qui risquent d'affecter les publications <strong>of</strong>ficielles, on recomman-<br />

de 15 aussi, dans toute la mesure du possible, de partir des relevés originaux.<br />

2.- Homogénéisation et extension des données I1débitsff<br />

Les opérations précédentes ont permis de constituer un échantillon de de-<br />

bits mensuels portant pour chaque station SUI' une période inférieure ou égale a<br />

n années. L'homogénéisation va consister à choisir une période de référence au<br />

plus égale à n années et, p y l'utilisation des regressions, à étendre les rele-<br />

vés de toutes les stations a ces n années, Les corrélations sont estimées mois<br />

par mois pour chaque couple de stations, afin d'éviter l'influence de l'effet<br />

saisonnier.<br />

I1 est très important, lors de ces estimations, de ne pas fausser les va-<br />

riances des échantillons calculés en utilisant sans autre précaution les vérita-<br />

bles équations de régression. Considérons pax exemple les stations i et j pour<br />

lesquelles on dispose, au mois m, d'une série d'observations communes portant sur<br />

p années, soit, pow: une année k donnée, q.m (k) et qj,m (k). On sait que pour<br />

utiliser aisément les corrélations, il faut que la régression de qj,* en qi,,,,<br />

par exemple, soit linéaire et, dans toute la mesure du possible, homoscédastique,<br />

-C-------C----------___I___L_LC_________-<br />

(7) On lira avec pr<strong>of</strong>it, à propos du traitement des mesures de salme, m article<br />

de J. CLAUDE, intitulé "une chaîne de programmes pour le traitement des données<br />

sur la salinitéf1, et publié dans les CAHIERS ORSTOM, série HYDROLOGIE, Vol.<br />

IX, no 2, 1972 -<br />

(2) Voir l'article de Y. BRUNET-MOm intitulé ffEtude de l'homogénéité des séries<br />

chronologiques de précipitations annuelles par la méthode des doubles masses",<br />

et publié dans les CAHIERS ORSTOM, série KYDROLOGIE, Vol. VïII, no 4, 1971 -


410<br />

I1 importe donc au départ de faire en sorte que, par anamorphose ou changement<br />

de variable, ces conditions soient réalisées ; soit x la transformée correspondant<br />

à ,(k)<br />

is<br />

et yk la transformée de q (k). On sait que la régression de y<br />

9 .i9m -.<br />

en x s'exprime par la relation :<br />

YX = Yp + r<br />

avec les notations habituelles.<br />

P Y<br />

p 7<br />

(x-Z)<br />

P<br />

Mais yx ainsi calculée correspond à la moyenne conditionnelle des valeurs<br />

possibles de y pour x donné et non pas à une valeur isolée. Une telle valeur se-<br />

rait donnée par la relation y = yx + € dans laquelle & est une variable aléatoire<br />

qui est souvent considérée comme étant normale de moyenne nulle ; elle est indé-<br />

pendante de x si la condition d'homoscédasticité est réalisée. Négliger E dans le<br />

calcul des débits non observés de la station conduit & diminuer artificiellement<br />

la variance de l'échantillon qu'on aura constitué, d'autant plus que le coeffi-<br />

cient de corrélation est plus faible.<br />

Pour atre correct, si on veut utiliser l'équation de régression à ces fins,<br />

il faudrait d'abord déterminer la distribution de E, puis, au moment de la reconstitution,<br />

calculer yx et lui ajouter une valeur € tirée au hasard dans la loi de<br />

distribution ainsi établie. Cela pose en fait un certain nombre de problèmes pratiques<br />

(apparition de débits négatifs) provenant du fait que les hypothèses de<br />

base ne sont pas vraiment respectées et que l'estimation de l'écart-type de E est<br />

peu précise par suite de la petite taille de l'échantillon qui sert à l'établir.,<br />

POW toutes ces raisons, il est finalement préférable de procéder d'une manière<br />

beaucoup plus simple, certes peu conforme à l'esthétique mathématique, mais qui<br />

respecte assez bien la variance initiale : prendre une droite passant par l'origine<br />

: y = Ax,<br />

I1 est parfois possible d'améliorer la corrélation en tenant compte de la<br />

pluviométrie locale par l'application d'une régression multiple ('IIo Supposons,<br />

pour fixer les idEtes, que la variable dépendante (celle qu'on veut estimer) soit<br />

(k). Le bassin de surface S. qui fournit ce débit peut<br />

'j,m J<br />

-&re inclus dans le bassin de surface Si qui fournit %,m(k), on a<br />

alors S. (si,<br />

J<br />

-Inclure si, on a aïors S. ) si,<br />

J<br />

-n'avoir pas de point commun avec S..<br />

Dans' le premier cas, les pluies tombant sur S. alimentent totalement S. et<br />

3 1<br />

on a peu de chance d'améliorer la régression en les prenant en compte. Par contre,<br />

il n'est pas impossible que la pluie tombant sur le bassin intermédiaire S exi-j<br />

plique une partie non négligeable de la variance de q (k). Dans le second cas,<br />

j,m<br />

les pluies sur Si expliquent au moins partiellement q.m(k) et ne peuvent expli-<br />

quer qj,m(k) que par l'intermédiaire de q<br />

i,m<br />

(k) : il est donc à priori inutile de<br />

--------------------_______c____________--<br />

(1) Pour le détail de l'application des régressions multiples à 1-'hydrologie, on<br />

peut se reporter par exemple à l'article de P. TOUCKEBEiJF DE LUSSIQ'E "Régressions<br />

et corrélations multiples en hydrologie", publié dans les CAHIERS ORSTOM, série<br />

HYDROLOGIE, Vol. VïII, ne 4, 1971 -


411<br />

les introduire. Par contre, qj est la somme de qi et de qj-i, variable expliquée<br />

au moins partiellement par les pluies qui tombent sur le bassin intermédiaire j-i,<br />

l'introduction de ces pluies dans la régression peut donc améliorer l'estimation.<br />

Dans le dernier cas il est évident que, si on dispose de pluies sur S il peut<br />

&tre utile de les introduire.<br />

j'<br />

I1 ne sera donc intéressant d'utiliser des régressions multiples portant<br />

sur les pluies que si les données s'appliquent à un bassin contrblé par i ou par<br />

j, mais pas par les deux à la fois. Il faut toutefois noter que, les bassins et<br />

sous-bassins étant voisins, les pluies, surtout à l'échelle du mois, ont des<br />

chances d'être assez fortement liées et on risque de vouloir faire expliquer à la<br />

variable pluviométrique choisie une partie de la variance déjà expliquée par sio<br />

Dans le temps, l'influence de la pluie tombée le mois m sera ßans doute<br />

prépondérante, mais les pluies des mois antérieurs peuvent avoir une influence<br />

non négligeable. On introduira donc, suivant les circonstances, soit les pluies<br />

du mois (pluie mensuelle à un pluviomètre ou moyenne des pluies mensuelles à plusieurs<br />

pluviomètres), soit un indice pluviométrique défini come une somme<br />

Pm + a P + a2 Pm-2 + ooo décroît quand i augmente, par exem-<br />

1<br />

OU a<br />

m-1<br />

+ a. P<br />

i m-i i<br />

ple en progression géométrique de raison i/2. Eh fait la plupart du temps on se<br />

limitera à la pluie du mois.<br />

Les relations ainsi établies, employées avec les précautions indiquées en<br />

ce qui concerne le respect de la variance, servent à établir une chronique de dé-<br />

bits mensuels sur une période de n années pour toutes les stations* On peut alors<br />

chercher à augmenter la durée de cette période avec le seul secours des données<br />

pluviométriques. Cette opération est préparée lors d.e 11 étude précédente d'homogé-<br />

néisation, mais l'absence de variables explicatives fld6bitsfl peut modifier assez<br />

considérablement l'influence relative des autres variables explicativeso<br />

On peut commencer à rechercher, pour chaque bassin, la relation entre le<br />

débit moyen annuel Qi (k) et la pluie moyenne annuelle Pi (k) estimée par la mé-<br />

thode de miessen si on a plusieurs pluviomètres. La relation Q (P) comporte un<br />

seuil physiquement explicable qui correspond en gros à la précipitation minimale<br />

annuelle nécessaire à l'apparition de llécoulement ; on la désignera par Poo A<br />

ce seuil se superpose une constante qui traduit la diminution de variance due à<br />

l'application de la régression. Comme P n'est pas connu à priori, on nia plus la<br />

O<br />

ressource de faire passer la droite de régression Q (P-PO) par l'origine (on suppose<br />

en effet que la régression est linéaire ;si elle ne l'est pas, il convient<br />

de faire les transformations convenables) o On peut appliquer l'équation de régression<br />

vraie Q = A (P-Po), rechercher la loi de distribution des résidus, et Procéder<br />

au calcul de l'échantillon étendu comme on l'a indiqué pour l'homogénéisation,<br />

avec les mgmes avantages et les mêmes inconvénients. ûn préfère souvent<br />

utiliser un expédient dénué, il faut le dire, de base statistique solide, Au lieu<br />

d'appliquer les moindres carrés aux résidus Q<br />

on les applique<br />

calculé - Qobservé'<br />

aux distances des points représentatifs des couples (&k,<br />

à la droite w(p-pO)<br />

qui ne sera plus alors une vraie droite de régression. On dit qu'on utilise une<br />

''pseudo-r égressio<strong>nl</strong>' .<br />

brsqulon a ainsi mis au point un échantillon étendu de débits moyens annuels,<br />

on reprend la m&me opération à Iféchelle mensuelle, en tenant compte au<br />

besoin de l'influence des pluies des mois antérieurs, ainsi qu'on l'a indiqué


41 2<br />

pour l'opération d'homogénéisation. Ces nouvelles régressions sont surtout des-<br />

tinées à fournir la forme de la répartition des débits dans l'année, car les dé-<br />

bits annuels déduits des débits mensuels ainsi reconstitub sont souvent moins<br />

valables que ceux qui sont obtenus par une regression à l'échelle de l'année ;<br />

il convient cependant de s'en assurer.,<br />

I1 reste à vérifier que les données mensuelles retenues pour les diffé-<br />

rentes stations sont compatibles entre elles, c'est-à-dire qu'en général un débit<br />

d'une station aval doit &tre supérieur ou au moins égal à celui de toute station<br />

amont, que si une station aval AV est placée SUT un cours principal alimenté par<br />

deux bras dont les débits sont contr81és par deux stations AM1 et AM2, les débits<br />

de AV doivent &tre au moins égaux aux sommes des débits de AM1 et AM2. Autrement<br />

dit, on ne doit pas admettre de débit négatif dans un bassin versant intermg-<br />

diaire, sauf éventuellement dans deux cas :<br />

- il y a des pertes physiquement reconnues, soit par infiltration,<br />

soit par évaporation (marais o.oetcooo),<br />

- il y a des stockages naturels importants (lacs .etc.).<br />

Ces cas particuliers mis .$ part, si on constate des débits négatifs ou ri-<br />

diculement faibles, et cela arrive malheureusement assez souvent, c'est que, mal-<br />

gré l'étude critique et la mise en ordre initiale des données, il y a des erreurs<br />

dans l'étalonnage et/ou des erreurs systématiques dans les relevés d'échelle et/<br />

ou une mauvaise répartition de ces relevés dans le temps (observations trop es-<br />

pacées compte tenu du régime), I1 faut revenir sur 1'8tude critique et essayer<br />

de déterminer quelles sont les stations auxquelles on peut faire le plus confian-<br />

ce ; il est nécessaire d'aboutir à un choix, meme si ,celui-ci est un peu arbi-<br />

traire. On considérera comme bons les débits des stations sélectionnées, qui<br />

doivent bien entendu &re compatibles entre elles, et on retouchera les débits<br />

incriminés des autres stations jusqu'à remplir les conditions de compatibilité.<br />

3. - Homogénéisat ion et extension des données Ilsalinit ésf1<br />

Les observations directes sur la salve des eaux sont presque toujours<br />

plus rares, dans le temps et dans l'espace, que pour les débits. On sera donc<br />

appelé à combler plus de lacunes que pour les débits et à procéder à une exten-<br />

sion plus importante des périodes.,<br />

Si les rivieres sont restées en l'état naturel, ou tout au moins au rn&me<br />

degré de rejets susceptibles de modifier la salure, les données recueillies récemment<br />

sont susceptibles d'&tre transposées dans le passé. Sinon la transposition<br />

n'est pas Ithistoriquement1l possible, mais c'est d'importance secondaire. Eh effet,<br />

on ne doit pas, pour la simulation, employer des échantillons lJévolutifslt, car<br />

les résultats qu'on en tirerait n'auraient pas de sens, Au contraire, si, par des<br />

tests quelconques, on s'apercevait que les conditions gbéralss de salure ont<br />

changé, on ne devrait conserver que les résultats les plus récents, meme si la<br />

taille de l'échantillon devait passablement s'en ressentir.<br />

h situation se présente de la façon suivante. Pour tout mois de la période<br />

irhomogènelt et éventuellement llétendue't de l'échantillon historique, on<br />

peut disposer :<br />

- d'une série continue de relevés de salure qui, passée dans une chaPne<br />

de traitements de salinité permet d'établir une série complète<br />

de valeurs des saliires journalières et mensuelles,


413<br />

- d'une sbrie incomplète mais pamqttant le caLcul d'un certain nombre<br />

de salures moyennes jourzi.alj.èrm9<br />

- de relevés sporadiques,<br />

- d'au.cm relevé,<br />

Soit une station pour laquelle on s., &mart toute la pér:ode homogène, la<br />

distribution d'observations journalières mivantes (ûuivant les mois de l'arde<br />

d'exploitation numérot8s Î à -121,<br />

pur les salinités moyennes journdi&rcs :<br />

nsjl nsj2 nsjj nsjg nsj5 nsj6 nsj7 nsj8 nnjq nsjI0 nsj II ns%2 y<br />

poi1.r les débits m,oyer,s journ.diers :<br />

pour les dé5its moyen..^ mensuels :<br />

Chaque terme nqmi est égal au nombre d.fann6es que comporte la serie homo-<br />

gène, mais u2 terme nqji p.fast pas forcément égd à nqmi .multiplié par le nombre<br />

de jours du mois i, puisqu'icn certain nonbre do débits moyens mensuels Ont pu<br />

8tre reccnstitués lars de l'opération dfhomogénéisation, sans qu'on possède au-<br />

cun relevé joiirmlier ,?our les mois corres2ondants. On cherchera dans une pre-<br />

mière étape à reconstiti;er, pour chaque qji à.isponible, le sji correspondant qui<br />

n.'auiait pas &té observ8. Dans une seconde Qtape, on fera la meme opération Szn"<br />

les qmi et les mio<br />

Pour un r6gtne hydr2roiogiqu.e donné, la concentration en sel dissous depend<br />

EU premier chef de la nEtu.re minéralogique du bassin concerné, de l'importance<br />

des nappes soutermines et de 13 vitesse GU transit de Ifeau dans ces nappes, Vi-<br />

.cesse qui intervient sux la durée du contact de cette eau avec la roche- On Peut<br />

aSouter comme paramètre l'agressivité des pr6cipitations mesurbe par leur teneur<br />

en CO2 libre et 1ev.ï degr6 de pureté. Le ph&niimène est donc complexe et il ne<br />

faut pas s'attendre 5 p'iwoir le représenter par des relations simples.<br />

I1 est toutefois logique ds penser que les eaux souterraines sont normale-<br />

men;: plus chargées f3n. sols dissous que les eaux de surface, par suite de leur<br />

contact prolone;& 2.vei les roches. I1 faut donc s'attendre 5 ce que les basses<br />

eaux soient plus chrnqkà cge les débits importants at il est logique qu'il exis-<br />

te m e relation, certes m n tcjnctiomei?-e, entre ia salurs et ïe débit, L'expé-<br />

riencs montre qu'il en est bien ainsi ; elle met. de pl.us en evidence une in-<br />

f?u.eiic? saisomiere sur cntte rels.tion.<br />

?oc? 1'6tabiir OB -pxèd.e mois par mois, ou tout au m.oins trimestre par<br />

trimestre. Pour chaque mais :<br />

- on raycrte tocs les sji obserTr8s en regard des qji qui lem cor-<br />

rnsporifimt ?<br />

- on oowtzte m e grande difipxioy, rnwie avec tendance tres nette<br />

5 i:.-ax aroissmc~ des sj.; avec les ?%$iq


La dispersion est souvent telle que l'utilisation sans précaution d'une ré-<br />

gression poserait des problèmes importants de réduction de variance, davantage<br />

que pour les débits. Pour éviter ces inconvénients, nous avons mis au point la<br />

technique suivante qui a au moins l'avantage de respecter intégralement les pro-<br />

priétés statistiques de l'échantillon.<br />

On détermine un certain nombre de classes de débits,<br />

Classe 1 O à ,qj<br />

Classe 2 lqj à ,qj<br />

------------------<br />

Classe k k-,qj à ,qj<br />

Classe k+l > ,qj ,<br />

de telle façon qu'à l'intérieur de chacune on puisse considérer que l'influence<br />

de la variation du débit sur la salinité est négligeable. Eh associant, à chaque<br />

qj de l~échantillon, la valeur s. correspondante, on constitue autant de 'Iréservoirstt<br />

de salures qu'il y a de classes de débits. Avec les précautions prises,<br />

dans chaque réservoir s est indépendant de qo Les différentes salinités contenues<br />

dans un, réservoir sont identifiées par un numéro.<br />

-<br />

A l'ORSTOM, l'opération est effectuée au moyen du programe 703 pour un<br />

découpage mensuel (comme ici) et par le programme 703 bis si le découpage est trimestriel.<br />

Le résultat est une matrice des salures à trois dimensions dont les<br />

indices représentent<br />

- le numéro d'ordre de la salure dans le réservoir,<br />

- le mois,<br />

- la classe de débit à laquelle appartient le débit associé à la<br />

salinit é.<br />

Cette matrice permet de reconstituer les salues correspondant à tous les<br />

débits moyens journaliers observés pour lesquels il n'y a pas eu de mesure de salinité.<br />

Le programme 704, qui fait cette opération pour un découpage mensuel,<br />

procède de la façon suivante :<br />

a - Wegistrement de la matrice des salures.<br />

- Lecture des débits limites de classeso<br />

- Lecture de la matrice des salures (aanS L'ordre : classe, mois,<br />

numéro de série de la salure) : ECHASA (NOCL, MOIS, K).<br />

b - Lecture des débits journaliers.<br />

- On lit les débits journaliers pour un mois et on les met dans<br />

un veateur à 31 positions DEB (JIo<br />

- Au fur et à mesure de la lecture par carte de quinzaine, on<br />

reperfore les données pour constituer un jeu définitif débits<br />

et salures.<br />

C - Lecture des salures moyennes journalières.<br />

- ~n lit les saïures moyennes pour un mois (ie méme que celui<br />

des débits qu'on vient de traiter) et on les range dans un vecteur<br />

SAL (J).<br />

d - Détermination des salures journalières manquantes.<br />

- Dans une boucle J = l,3l, on teste d'abord DEB (JIo S'il est<br />

négatif, c'est qu'il n'y a pas de débit observé pour le jour


415<br />

J ; il n'est donc pas possible de complèter la salinité et on<br />

passe. S'il est positif, on teste SAI; (J) ; si elle est positive,<br />

c'est qu'il y a observation de sdinité ; on passe,, S'il<br />

est négatif, on complète.<br />

- Pour compléter : on cherche dans quelle classe se trouve<br />

X æ DEE3 (j), soit NOCZ ; on tire au hasard un nombre inférieur<br />

ou égal à NC, nombre de salures classées dans NOCL, soit K,<br />

et on associe à DEB (J) une salure SAL (J) égale 2 ECHASA<br />

(NOCL, MOIS, K).<br />

e - Perforation des salinités sous la m&me forme que les débits observés.<br />

On revient alors à b- pour lire les débits du mois suivant, et<br />

on continue airisi jusqu'à épuisement des données.<br />

L'opération a permis de constituer un échmtillon pour lequel à<br />

chaque débit moyen journalier correspond une salme moyenne journalière. Pour les<br />

mois complets en débits observés, on peut alors calculer les salures moyennes mensuelles,<br />

Restent les mois pour lesquels on a pu reconstituer les débits moyenc<br />

mensuels, sans posséder les débits journaliers (homogénéisation) Pour leur attribuer<br />

une salme moyenne, on procede d'une façon analoge à ce qui précède,<br />

4,- Calcul de l'échantillon historique pour le modèle<br />

Lors du découpage géographique, on s'arrange pou que les stations du réseau<br />

tombent autant que possible à des limites d'unités hydrauliques, Mais cela<br />

n'est pas toujours possible dfune part, et d'autre part les unités hydrauliques<br />

sont toujours plus nombreuses que les stations de mesure, I1 est donc nécessaire<br />

de procéder à une interpolation géographique, et m&ne parfois d'utiliser l'analogie<br />

et la transposition pour calculer tous les An, SAn, ACn et SACn,<br />

Pour le calcul des An et ACn (apports), on comnence par dresser un tableau<br />

donnant, pour chaque unité n, sa superficie et la nat-.ne des apports, Lorsque<br />

l'unité est encadrée en amont et en aval, on fait simplement une répartition au<br />

prorata des superficies, au moins dans un premier stade (interpolation géographique).<br />

Lorsque l'unité est en dehors du réseau des stations, on cherche à lui<br />

attribuer un débit spécifique par comparaison avec d'autres parties mieux connues<br />

du bassin ou avec d'autres bassins que l'on suppose avoir le mbe régime (extrapolation<br />

ou transposition) Cette dernière opération provoque nécessairement une<br />

légère erreur systématique par défaut sur la variance de l'échantillon global<br />

constitué pour le modèle, mais cette influence est presque toujomnégligeable.<br />

Si l'unité hydraulique est confondue avec le bassin versant d'une station<br />

de base, on identifie les apports As à la station a u apports An sur l'unité.<br />

si la station de base est unique et son bassin versant différent de l'uni-<br />

té, les apports An sur l'unité sont obtenus à partir de ceux de la station de<br />

base As par calcul au prorata des superficies des bassins : An = As * Sn/Sso<br />

Si 2 stations de base encadrent la limite de l'mité hydraulique, les ap-<br />

ports An sur l'unité sont calculés par interpolation linéaire entre les apports<br />

As7 et As2 aux stations 7 et 2 : A ds1 -t (As2 - Asl) * (Sn - Ssl)/(Ss2 - Ss7)-<br />

Pour calculer des apports intermédiaires ACn avec 2 stations de base encadrant<br />

l'unité, on applique la relation : ACn = (As2 - AsII * Sn/(Ss2 - SSI)~<br />

Lors des calculs relatifs au 4ème cas, on rencontre parfois quelques difficultés<br />

: au pas de temps mensuel, la différence entre les apports observés à la<br />

station aval et ceux de la station amont peut &tre négative bien que le bilan


416<br />

annuel soit normalement positif. Ceci se produit en particulier lorsque les deux<br />

stations de base sont assez éloignées ou séparées par un bassin intermédiaire<br />

de grande surface comportant des affluents dont le régime hydrologique diffère,<br />

de celui du cours d'eau SUT lequel est située la station la plus amont. On peut<br />

alors procéder comme suit, pour différentes unités hydrauliques situées entre<br />

deux stations de base.<br />

- On calcule les apports intermédiaires mensuels et annuels entre les<br />

2 stations.<br />

- On détermine la distribution temporelle moyenne de cet écoulement<br />

intermédiaire pour la totalit 6 de la période disponible (période d'observations<br />

communes entre les deux stations). On obtient ainsi des coefficients mensuels de<br />

distribution exprimés en $ du module interannuel.<br />

- Pour chaque année de la période de reconstitution, on utilise ces<br />

coefficients pour le calcul de l'apport intermédiaire mensuel à partir de l'ap-<br />

port annuel observé.<br />

- On répartit cet apport intermédiaire mensuel sur chaque unité au<br />

prorata de sa superficie et de celle du bassin versant intermédiaire.<br />

Cette difficulté ne devrait du reste pas se présenter si les apports aux<br />

stations de base ont été soigneusement préparés.<br />

I1 y a de nombreuses façons de calculer les SAn et SACn. On pourrait par<br />

exemple passer par l'intermédiaire des poids de sel transités mois par mois aux<br />

stati'ons de base, et opérer de façon analogue à ce qui a été fait pour les ap-<br />

ports. Cela supposerait une certaine homogénéité dans la production de la salure<br />

pour l'ensemble du bassin, ou tout au moins pour des parties importantes du<br />

bassin facilement délitnitables. Cette condition n'est pas toujours r8alisée et<br />

l'origine de la salure des eaux est souvent localisée,<br />

L'interpolation géographique peut &tre sérieusement améliorée si on dispose,<br />

pour chaque bassin d'alimentation d'une unité, des surfaces des formations<br />

salines, et si on peut établir une relation entre cette surface et l'apport de<br />

sel, Ceci revient à définir pour un mois m donné une relation de la forme :<br />

Sape = fs (Qspe, pS) OU Supe est l'apport ,spécifique en sel, Q l'apport spéspe<br />

cifique en eau et pS le pourcentage de formation saline.<br />

Avec une bonne carte lithographique, on peut assez facilement déterminer<br />

pS pour tous les bassins fournisseurs des unités et pour les bassins contrbiés<br />

par des stations de réseau. Le problème serait alors résolu s'il était possible<br />

de déteminer fs avec une approximation convenable. Cette détermination ne peut<br />

se faire qu'en traçant un faisceau de courbes expérimentales à partir des résul-<br />

tats des stations du réseau. La précision dépend du nombre de mesures disponi-<br />

bles à chaque station, du nombre de stations et de la variabilité de pS, ce der-<br />

nier facteur étant particulièrement important.<br />

Si l'information disponible est insuffisante, ce qui est presque toujours<br />

le cas, il est préférable de procéder par analogie. Nous indiquerons la méthode<br />

utilisée par H. DOSSEUR (0,R.S.T.O.M.). On part de séries d'apports et de salures<br />

déjà constituées pour les stations de base.<br />

Si le bassin de l'unité est confondu avec celui d'une station, on iden-<br />

tifie les concentrations. Sinon, on affecte 5 chaque unité une station choisie<br />

de telle façon que son bassin soit le plus représentatif de celui de l'unité<br />

considérée, compte tenu de sa situation géographique et de sa nature galogique.<br />

Ce choix peut &tre précisé à partir de renseignements concernant la salinité<br />

dans un secteur déterminé (mesures ponctuelles, indications d'ordre qualitatif...).


41 7<br />

On associe à l'unité considérée les réservoirs de d ures élaborés pour la sta-<br />

tion @ lui a été affectée, Pour chaque débit ACn, on détermine une concentra-<br />

tion moyenne SACn par tirage au hasard dans ces réservoirs, suivant la méthode<br />

indiquée antérieurement, avec toutefois une transformation préalable des clas-<br />

ses de débits en classes de débits spécifiques pour tenir compte du rapport des<br />

superficies entre l'unité et le bassin de la station associ&,<br />

Du fait m&me de la méthode utilisée, l1échantillon des SACn présentera<br />

2 peu près sûrement des incompatibilités analogues à celles qui ont été signalées<br />

pour les débits liquides, I1 faudra donc contr8ler, au moyen d'un programme<br />

annexe, que les poids de sel P% = AG * SAC, obtenus pour chaque mois de chaque<br />

année de la période historique sont tels que le PS d'un point quelconque<br />

du réseau hydropaphique est au moins égal au PS de tout point situé à son<br />

amont, et que, si un point i limite à ï'avaï une unité limitée à ll~ont par<br />

des points 1, m r, Psi doit &tre au moins égal à Psi I- PS, I- oooooop PS, ,<br />

Pour tous les mois Ou ces conditions ne sont pas réalisées, il est indispensable<br />

de retoucher la répartition des salinités dans le bassin pour rétablir<br />

la compatibilit 6.<br />

* *<br />

*


41 8<br />

Fig:l - SCHEMA TOPOLOGIQUE


ABSTRACT<br />

THE USE OF SIMULATION TECHNIQUES FOR SEQUENTAL<br />

GENERATION OF SHORT-SIZED RAINFALL DATA AND ITS<br />

APPLICATION IN THE ESTIMATION OF DESIGN FLOOD<br />

H.D.Sharma*, Dr.A.P.Bhattacharya** and S.R.Jindal;t**<br />

The studies based on rainfall run<strong>of</strong>f data are considerably vi-<br />

tiated in the event <strong>of</strong> inadequate data, as the reliability o€ the<br />

probabilities <strong>of</strong> occurrence is reduced, It is, however, possible to<br />

get over the lacuna <strong>of</strong> inadequacy <strong>of</strong> data by creating bigger-sized<br />

artificial series <strong>of</strong> rainfall. The use <strong>of</strong> such a series gives grea-<br />

ter precision in the estimations or projections based on expected m a<br />

ximum rainfall <strong>with</strong> specified levels <strong>of</strong> occurrence and also provides<br />

better insight into possible patterns <strong>of</strong> behaviour. This is done by<br />

the procedure <strong>of</strong> sequential generation fo data by the use <strong>of</strong> simula-<br />

tion techniques. Making use <strong>of</strong> these, the technique has been applied<br />

for generating rainfall series <strong>of</strong> 100 nombers on the basis <strong>of</strong> recor-<br />

ded rainfall data for a period <strong>of</strong> ten years, The generated rainfall<br />

series was compared <strong>with</strong> the historical data which showed strong co-<br />

rrelation.<br />

These results have been used for the estimation <strong>of</strong> design<br />

flood for Yamuna river at Okhla (Delhi).<br />

Les procédés qui consistent à déduire les écoulements des pr5<br />

cipitations voient leur efficacité considérablement diminuée lorsque<br />

les observations concecnant celles-ci sont insuffisantes, par suite<br />

de l'imprécision qui regne alors sur l'estimation des probabilités<br />

de ces précipitations. On peut essayer de tourner la difficulté en<br />

créant artificiellement de longues séries d'observations pluviométri<br />

ques. L'utilisation de telles séries conduit a une meilleure préci-<br />

sion des estimations ou des prédéterminations basées sur la pluie ma<br />

ximale attendue avec une probabilité donnée; elle permet aussi une<br />

meilleure vue suc les schémas possibles du comportement des précipi-<br />

tations. On procede par génération séquentielle des données, en uti-<br />

lisant les techniques de simulation, On donne comme exemple la cons-<br />

titution d'une série de 100 ans à partir d'une période de 10 ans<br />

d'observations. La séries engendrée , comparée avec la sérìe histori<br />

que, met en 'evidence une forte corrélation.<br />

Ces résultats ont étd utilisés pour l'estimation d'une crue<br />

de projet à Okhla, sur le fleuve Yamuna [Delhi).<br />

* Director , Irrigation Research Institute , Roorkee, U .P,<br />

$:* Research Officer , Basic Research Division, Irrigation Research<br />

Institute, Roorkee, U.P.<br />

;'


420<br />

i. INTRODUCTION<br />

1.1 In all iqr-gothetical investigations, particularly in the estimation<br />

<strong>of</strong> design flood <strong>of</strong> river basins, it 1s essential to have an idea <strong>of</strong> the<br />

distribution <strong>of</strong> rainfall as also the relationship between rainfall a d<br />

run<strong>of</strong>f. This is, however, not always possible in case <strong>of</strong> small sized<br />

data, extending over 8ay 10 to 20 years as is usually met vit<br />

oractice, as these may not be representative <strong>of</strong> the vorst possible<br />

conditions prevaillng in the catchment. On account <strong>of</strong> such shortcomings,<br />

it is likely that the findings based thereon may not be realistic. This<br />

difficulty may be overcome by resorting to the technique <strong>of</strong> sequential<br />

generation <strong>with</strong> the aid <strong>of</strong> which it is possible to artificially create<br />

larger sized data series.<br />

2. CONCWT OF W?UENTIAL GEWERI'EION<br />

2.1 sequential generation is a statistical process usiag Monte Carlo<br />

methods to produce a random sequence <strong>of</strong> hydrologic or any other data<br />

on the basis <strong>of</strong> a stochastic model for the hydrologic process. Monte<br />

Carlo method is an experimental or merical probability method used<br />

for the statistical sampling <strong>of</strong> random variables. The sequence so<br />

generated makes possible detailed study <strong>of</strong> the performance <strong>of</strong> various<br />

hydrologic events, thus helping the development <strong>of</strong> well balanced hydo<br />

rologic designs.<br />

2.2 U<strong>nl</strong>ess the record is too meagre to be considered as a represento-<br />

tive sample, the statistical parameters derived from It should enable<br />

the hydrologist to construct a suitable model that wlll generate<br />

hydrologic information for as long a period <strong>of</strong> time as desired. Bnce<br />

the statistical parameters <strong>of</strong> the population <strong>of</strong> the generated data<br />

are necessarily the same as those estimated from the bistorical date,<br />

the new information is limited<br />

that are inherent in the observed record.<br />

3<br />

errors <strong>of</strong> measurement and sampling<br />

n


2.3 The procedure <strong>of</strong> sampling by shuffling; cards which waa among the<br />

srllest techniques can be simplified by the use <strong>of</strong> random number tables.<br />

naugh random number tables are available as punched cards, <strong>with</strong> Increase<br />

3g use <strong>of</strong> digital cornputor, mathematical methods for generating pseu-<br />

Fndom numbers <strong>with</strong>in the computing machine have been developed'in order<br />

2.4<br />

eliminate the need for extensive input <strong>of</strong> random numbers.<br />

3 the basis <strong>of</strong> required statistical levels <strong>of</strong> errors and confidence,<br />

Lthough the optimal size may be determined more realistically by compar-<br />

the cost <strong>of</strong> the Increased sample size <strong>with</strong> the benefits <strong>of</strong> the corres-<br />

4 21<br />

The size <strong>of</strong> the hydrological data to be generated may be estimated<br />

mding increase in accuracy, provided that the benefit and cost data<br />

:e available.<br />

, ANàLYSIS OF RAINFALL QATA<br />

3.1<br />

The rainfall data analyse8 herein pertain to 6 hour annual storms<br />

?corded at New Delhi for a period <strong>of</strong> 10 years from 1956 to 1965. They<br />

ive been arranged in such e manner that the storm starts <strong>with</strong> the first<br />

burly rainfall and ends at the 6th hourly rainfall, although in reality<br />

Le arrangement may be vitiated in some cases by the occurrence <strong>of</strong> a<br />

Bizzle before the recording <strong>of</strong> the main _portion <strong>of</strong> the storm or by<br />

beaks <strong>with</strong>in the duration <strong>of</strong> the storm. The recorded data may be seen<br />

I Table I.<br />

FORMULBTION OF THE MATHEMûTICAL MODEL<br />

:.1 To develop a suitable model to represent the time degendent<br />

ndom process <strong>of</strong> the hourly rginfalls, the following non-stationary<br />

rkov-chain niodel(l) was found to be consistently satisfactory.<br />

.) Ven Te Chow, Handbook <strong>of</strong> Applied <strong>Hydrology</strong>, pp. 8-93,<br />

McGraw Hill Book Co.


422<br />

......... (1)<br />

where xt x the hourly rainggll <strong>of</strong> any one <strong>of</strong> B annual<br />

storms at the t hour,<br />

xt-1 z the hgurly rainfall at the preceding or the<br />

(t-i) h hour,<br />

t = time in hour ranging from 1 to m,<br />

r = Markov Chain Coefficient,<br />

6~ = random component due to hourly rainfall xt ,<br />

For the first hour when t = 1, the trend component r Xt,l become<br />

zero and X1 may be taken to be equal to €1 . The Markov Chah Coeffi-<br />

cient r and the random component €G may be determined from the give1<br />

rainfall data by the method <strong>of</strong> least squares by fitting a straight<br />

line between Xt and Xt-1.<br />

4.2 For the rainfall data recorded at New Delhi Station, the storm<br />

duration m =6 hours and number <strong>of</strong> annual storms, Ns10. The distribi<br />

tion parameters, mean and standard deviation <strong>of</strong> the historical rain.<br />

fall data were determined for each hour and are given in column 2 ai<br />

3 <strong>of</strong> Table II. The values <strong>of</strong> the random component et and the Markov<br />

Chain Coefficient r were worked out by the method <strong>of</strong> least squares<br />

and are shown in columns 4 end 5 in Table II.<br />

4.3 In the present analysis based on sequential generation, the<br />

oractice followed has been to generate 100 pseudo-random numbers fo:<br />

uniform distribution <strong>of</strong> the first hourly rainfall by I.B.M. Compute:<br />

1401, whose programme is given in igpendix I. These 100 generated<br />

random mmbers <strong>of</strong> a uniform distribution have been taken as first<br />

hourly rainfalls <strong>of</strong> 100 storms and have been utilized for computing<br />

100 second hourly rainfalls by the Markov-chain model given in<br />

equation (1).


4.4 The rainfall data have been generated for each successive hour on<br />

the basis <strong>of</strong> the rainfall in tlx? previous hour according to the Markov<br />

chain model formulated. Knowing the Markov chain coefficient r and<br />

random component 6,for the second hour derived from the historical data<br />

(vide Table II) a random series <strong>of</strong> 100 second hourly rainfalls can be<br />

comouted by means <strong>of</strong> equation (i). These 100 generated second hourly<br />

rainfall were then utilized to compute 100 third hourly rainfalls <strong>with</strong><br />

the help <strong>of</strong> Markov chain coefficient r and random component (vide<br />

3<br />

Table II) by using equation (i). This procedure has been repeated for<br />

successive hourly rainfalls until serles <strong>of</strong> 100 hourly rainfalls for<br />

all the six hours were generated. The involved operations were carried<br />

out on IBM computer, 1620 as per programe given in Appendix II. The<br />

sequentially generated data has been shown in Table III.<br />

4.5 The cumulative probability function P(x) <strong>of</strong> the variate X may be<br />

obtained by the following equation;<br />

where ,.ho 5 Y & ,h~<br />

.o (2)<br />

fiois the lower limit <strong>of</strong> the variate X which may be assumed to be zero<br />

an8 is the upper limit <strong>of</strong> variaue X.<br />

4.5.1<br />

In the present analysis, the total hourly rainfall <strong>of</strong> annual<br />

storms have been worked out by adding all the six hourly rainfalls for<br />

each storm <strong>of</strong> historical data as well as generated data as per column 8<br />

<strong>of</strong> Tables I and III respectively. The cumulative probability per cents<br />

have been evaluated by the use <strong>of</strong> equation (a for ten storms <strong>of</strong> the<br />

historical data as ?er column (9) <strong>of</strong> Table I as also for 100 storms <strong>of</strong><br />

the generated data as per column (9) <strong>of</strong> Table III.<br />

423


424<br />

5. EsTIYVìTION OF DESIGN FLOOD WITH THE AID OF GENERATED RAINFALL S ~ I<br />

5.1<br />

It is possible to derive a series <strong>of</strong> run<strong>of</strong>fs from the generated<br />

rainfall series provided that the relationship between rainfall and<br />

<strong>of</strong>f for a particular basin is known. In the present Case, in which<br />

sequential generation techniques have been applied for o<strong>nl</strong>y on rainfall<br />

station in the Yamuna catchment, vie. New Delhi and for wNch 110 rain-<br />

fall-run<strong>of</strong>f relationship was available, an assum3tion has been made tha<br />

surface run<strong>of</strong>f from rain storm is 80 per cent <strong>of</strong> rainfall during the<br />

period <strong>of</strong> high floods when most <strong>of</strong> the catchment is saturated and in-<br />

filtration losses are <strong>of</strong> low order. Based on this preamble, a series<br />

<strong>of</strong> run<strong>of</strong>fs may be assumed to be generated. The abovezentioned series<br />

can be utilised to compute the peak floods <strong>with</strong> the help <strong>of</strong> unit<br />

hydrograph developed at the gauge site and other methods.<br />

5.2 The series <strong>of</strong> 100 peak floods comguted for the river Yamuna at<br />

Okhla (catchment area = 6811 sq. Kms.) shown in column 10 <strong>of</strong> Table<br />

III has been used to derive the following stochastic model on the<br />

Dasis <strong>of</strong> princi<strong>nl</strong>es <strong>of</strong> stochastic hydrology reported earlier for<br />

the estimation <strong>of</strong> design<br />

wnere yo is the design flood and Tk is the recurrence interval.<br />

5.3 From Mg. 4 based on above, the design flood <strong>with</strong> a recurrence<br />

interval <strong>of</strong> 500 years works out to 7794.5 cumec for the Yamuna river<br />

at Okhla (Delhi). It may however be 2ointed out that this should be<br />

talen to be more as an illustration <strong>of</strong> the application <strong>of</strong> the techn-<br />

ique <strong>of</strong> sequential generation for the estimation <strong>of</strong> the design flood<br />

in view <strong>of</strong> the limitations <strong>of</strong> the rainfall data for the entire catch-<br />

ent and - ilitv <strong>of</strong> a rainfall ru ela t i o =hi D<br />

(2) ,,ttZharya>A8P., Jindal, S.R. and RamJ%ff :Estimation <strong>of</strong> <strong>Design</strong>--<br />

Flood <strong>of</strong> the Ganga Fiver by processes <strong>of</strong> Stochastic hydrology",<br />

U. 2. Annual Besearch rieport, 1967 (Technical Memorandum No. 37) .<br />

1


5. DISCUSSION OF RLiSULTS<br />

6.1 Figure 1 gives a comparison between the worst possible raiaall<br />

;tarm <strong>of</strong> the historical data and the generated series an the basis <strong>of</strong><br />

I gra3hical plot between time in hours and hourly rainfall. It is<br />

.ndicated that there is close Conformity for the entire storm dura-<br />

,ion comorising six hours.<br />

6.2<br />

425<br />

Gra^hical comparison has been made bbtwecn historical and generated<br />

Iata <strong>with</strong> respect to cumulative probability distributian <strong>of</strong> rainfall at<br />

he third hour, at which the peak rainfall was rècorded in the observa-<br />

ional as well as seqtientially generated data as per Figure 2. Close<br />

ionformity is indicated between the two distributions.<br />

6.3 similar comlarison has also been made for the two series for total<br />

ix-hourly rainfall for the annual storms as shown in Figure 3. Close<br />

ionformitg is observed in this case as well, both for ehird hourly rain-<br />

'all and total six-hourly rainfall, which provides added evidence regard-<br />

ng the representativeness <strong>of</strong> the sequentially generated series.<br />

6.4 mom the generated rainfall series, it has been ,possible to derive<br />

cm?<br />

run<strong>of</strong>f serles which has been utilised toda series <strong>of</strong> 100 peak dischar-<br />

es. The latter orovide the background for the derivation <strong>of</strong> a stochastic<br />

ode1 wherefrom a hypothetical 500-year design flood for the Yamuna<br />

iver at okhla (Delhi) may be estimated.<br />

7.1<br />

COI;CLU~IOMS<br />

he size <strong>of</strong> the historical data, particularly in such investigations<br />

herein this may be a limiting factor for analytical studies.<br />

7.2<br />

The technique <strong>of</strong> sequentiaï generation may be adopted for increasing<br />

storm rainfall is a time dependent raridom series and may be treated<br />

y El finite duration discrete non-stationary process that is ameneble to<br />

athematical formlation and analysis. For rainfall at New Delhi, the<br />

istorical data <strong>of</strong> hourly rainfall in the annual storm has been regresented<br />

y nan-stationary Markov-chain model, the data consisting <strong>of</strong> ten .six-


426<br />

hourly storms.<br />

7.3 A compari n <strong>of</strong> the historical and generat LI 100 y ar data, both<br />

for third hourly rainfall and total six hourly rainfall, shows that the<br />

sequentially generated series is fairly representative <strong>of</strong> the charactei<br />

istics <strong>of</strong> the historical data.<br />

7.4 The generated hydrologic series <strong>of</strong> rainf'all has been utilised to<br />

estimate the design flood <strong>of</strong> the Yamuna river at Okhla(De1hi) <strong>with</strong> a<br />

recurrence, interval <strong>of</strong> 500 years.<br />

The authors wish to acknowledge the useful help extended by<br />

Messrs Ramjeet and D.C.Mltta1 in the analysis and computational work.<br />

APPENDIX I<br />

Fortran program for the generation <strong>of</strong> PseudÕrandom<br />

numbers in Uniform Mctribution. 4<br />

SE Q spm FORTUN STATENE2iT<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

C GEN-RATION OF 100 ?SEUDORANDUM Nuz.[BERS IN<br />

UNIFORM DI SJXtBUTION<br />

10 IALFA- 10**17 -C 3<br />

IRN1 = 10*(10**19-1) -b 7<br />

8% 0.0<br />

N=l<br />

91 READ 95,B<br />

95 FC-WAT (F4.2)<br />

Do 2 I = 1,100<br />

IRN IRNl*IALFA<br />

RSN= IRN<br />

RSJ!N= RUN* 10.0**(-20)<br />

SN = (B-A)* RSTN .) A<br />

R=N+1<br />

IRNI= Im<br />

2RIhT loo, SW<br />

100 FORMAT (2E 16 e 8)<br />

2 COICTIhUE<br />

IF (SENSE ShkTCS O) 92,3<br />

3 GO TO 91<br />

92 STOP 555<br />

END


10<br />

100<br />

APPENDIX II<br />

Fortran program for the generation <strong>of</strong> i00 slx hourly<br />

rainfall storms for New Delhi Station by Markov-chain<br />

Model.<br />

DIMEESIONS X(iOO),A(lOO) ,B(100) ,C(iOO) ,D(iOO) ,G(100),<br />

DIEIEKSI ONS Y ( 100 ,V ( 100 )<br />

READ 100, (X(I), I = 1,100)<br />

FORMAT (~oF7.4)<br />

cupi = 0.0<br />

SUMA = 0.0<br />

SUMB = 0.0<br />

SUlC = 0.0<br />

m!D = 0.0<br />

SUMG = 0.0<br />

smfl = 0.0<br />

DO 200 I = 1,100<br />

b(1)' 0.973 -k 1*551*X(I)<br />

B(1) 2 15.023 46.694*A(I)<br />

C(I) = 12.297- 0*036*B(I)<br />

D(1) z L.871 + O. 106*C(I)<br />

G(1) = 0.138 4 0.400*D(I)<br />

Y(1) = X(1) + A(1) t BU) t C(l) -k D(I)S G(1)<br />

V (I ) = 664.9 *Y (I )<br />

X(1)<br />

suMx= s w+<br />

SUMA = SUMA t A(1)<br />

SüMl3 = SUMB f B(I)<br />

swc SUMC -t C(I)<br />

SUMD = SUMD + D(1)<br />

SUMG = SUIVIG + G(1)<br />

SUMV = smn +V(I)<br />

PUNCH300, X(I ,A (I 1 , B(I 1 , C (I ) , D( I , G (I ,Y (1<br />

PUNCH350 ,V (I )<br />

350 FORMi1T (FS0.4)<br />

300 FORMAT (7F10.4)<br />

200 CGEJTI NUE<br />

PUNCH 400, SUMX, S W<br />

400 FORMAT (6F12.4)<br />

,"UI\+CH 500,SUMV<br />

500 FORMAT (F 25.4)<br />

STO?<br />

ENI)<br />

, SUME , SUMC, SUMD , SUMG<br />

42 7


428<br />

TABLE I<br />

Historical hourly rainfall data for annual storms for New Delhi Station<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

a<br />

9<br />

10<br />

20; 7.56<br />

13.9.57<br />

29-90 58<br />

6.9.59<br />

5.10.69<br />

24.9.61<br />

20.9062<br />

8.8.63<br />

14.7.64<br />

2.9.65<br />

0.25<br />

1. 80<br />

2.00<br />

‘O. 10<br />

O. #<br />

o. 10<br />

0.30<br />

1.50<br />

O. 40<br />

1.90<br />

O. 50<br />

2.10<br />

3.30<br />

4.60<br />

O. 80<br />

0.40<br />

O. 50<br />

le 80<br />

1.50<br />

7.80<br />

19.30<br />

22. so<br />

42.00<br />

54.20<br />

19.10<br />

8.50<br />

21.50<br />

new<br />

30.00<br />

61.20<br />

14.75<br />

8.10<br />

13. so<br />

3.50<br />

9000<br />

5.50<br />

9.10<br />

22.00<br />

17.20<br />

9.30<br />

4.06 1.02<br />

5030 3060<br />

11.90 5.60<br />

0.50 0.20<br />

2.00 0.40<br />

2.40 0.08<br />

0.10 0.10<br />

1.80 1.50<br />

1.80 0.90<br />

0.70 0.20<br />

39.88<br />

43.40<br />

78.30<br />

63.10<br />

31.70<br />

16.98<br />

31.60<br />

56. So<br />

51.80<br />

81.10<br />

49.2<br />

53.5<br />

96.5<br />

770 8<br />

39.1<br />

20.9<br />

39.0<br />

69.7<br />

63.9<br />

100 o<br />

TABLE II<br />

fa<br />

Parameters <strong>of</strong> the Markov-Chain Model(hour1y rainfall <strong>of</strong> annual storms<br />

<strong>of</strong> New mihi ‘Sation.<br />

Time í t 1 Mean (mm/hour) Stendard Random Markov-Chai n<br />

in hours devi at i on component coefficient<br />

(mmhour 1 et r<br />

1<br />

1 2 3 4<br />

-<br />

b<br />

o. 875 O 8122 .I<br />

2 2.330 2.3522 0.973 lo 551<br />

3 30.620 16o7600 15.023 6.694<br />

4<br />

5<br />

11.195 5.8190 12.297 -0 036<br />

3.056 3.4928 1.871 0.106<br />

6 l b 360 1.8311 0. 138 0.400<br />

II


429


Co<br />

I<br />

431


432<br />

FIG 1 - DISTRIBUTION OF WORST RAINFALL STORM<br />

FOR NEW DELHI<br />

10 30 50 80 90 95 99 99.8 999!<br />

CU M U L A T IV E PR OB AB ILtTY PERCE NT<br />

F IG.2 - CUMLILATIVE PROBABILITY DISTRIBUTION OF<br />

THIFiC 40URLY RAINFALL IN ANNUAL STORMS


E<br />

O<br />

I<br />

-I<br />

4<br />

I-<br />

O<br />

k- 20<br />

433<br />

40 60 80 90 95 98 99 99.8 99.99<br />

CU MU LAT IVE PROBABIL I TY PERCE NT<br />

RECURRENCE INTERVAL (Tk) IN YEARS<br />

FIG.4- STOCHASTIC MODEL FOR ESTIMATION OF<br />

DESIGN FLOOD (Yo1 FROM RECURRENCE<br />

INTERVAL ( TK)


ABSTRACT<br />

THE USE OF STOCHASTIC MODELS IN A HYDRO-AGRICULTURAL<br />

DEVELOPMENT PROJECT IN LEBANON"<br />

by<br />

J.H. Visser<br />

Stochastic modelling techniques were employed in order to<br />

provide long sequences <strong>of</strong> monthly streamflow and water demand needed<br />

for irrigation scheme design (the historic flow records being too<br />

short to serve this purpose).<br />

The water requirement calculations (<strong>with</strong> the Blaney Criddle<br />

formula) were based on generated series <strong>of</strong> monthly rainfall and<br />

monthly mean temperature. The generation "in phase" <strong>of</strong> these variables<br />

<strong>with</strong> streamflow, ensured that a dry year was characterised by high<br />

demand and low flow, This strategy <strong>of</strong> Ilin phase" generation was<br />

preferred to the more usual treatment <strong>of</strong> assuming a fixed annual<br />

cycle <strong>of</strong> demands and allowed for a better assessment <strong>of</strong> the design<br />

parameters and a better economic evaluation.<br />

The Ilin phaset1 series required the generation <strong>of</strong><br />

- monthly rainfall (simple model due to absence <strong>of</strong><br />

persistance)<br />

- monthly mean temperature (mixed model <strong>with</strong> auto regression<br />

and linear regression on monthly rainfall)<br />

- annual streamflow (<strong>with</strong> linear regression on annual<br />

rainfall )<br />

- monthly streamflow, related to the annual flow, using auto<br />

regression (for stations having a historic record <strong>of</strong> more<br />

than 10 years)<br />

- monthly streamflow, related to the annual flow, using auto<br />

regression <strong>of</strong> a deseasonalized variable and and linear<br />

regression on the same variable <strong>of</strong> another (better) station.<br />

(for stations having less than 10 years <strong>of</strong> record).<br />

Undertaken jointly by the Government <strong>of</strong> Lebanon and the Food and<br />

Agriculture Organ2sation <strong>of</strong> the United Nations.


436<br />

RESUME<br />

Des méthodes stochastiques ont été utilisées pour pouvoir<br />

disposer de séries longues dtapport et de demande mensuels, nscessaires<br />

pour Irétude dfun projet d'hrigation. CLes séries historiques<br />

d'apport étant trop courtes pour être utilisées).<br />

Les besoins en eau (calculés avec la formule de Blaney-<br />

-Griddle) ont été basés sur des séries générées de la pluie et de la<br />

température mensuelles. La génération "en phase" de ces variables<br />

avec les apports a fait que l'année sèche se caractérise par une<br />

demande élevée et des apports faibles.<br />

Cette stratégie de génération Ifen phase" a été préférge par<br />

rapport à la méthode plus habituelle dlun cycle annuel fixe de la<br />

demande, et a permis une meilleure &valuation de la gestion diun<br />

projet d'irrigation aïnsi quiune meilleure évaluation économique.<br />

' -<br />

Les séries "en phase" ont nécessité la génération de<br />

- pluie mensuelle (modèle simple vu l'absence de persistance)<br />

- température mensuelle (modèle mixte de régression sérielle<br />

et de régression linéaire par rapport ?i la pluie mensuelle<br />

- apport annuel (régression simpie par rapport à ia pluie<br />

annuelle)<br />

apport mensuel, par rapport à ifapport annuel, avec<br />

régression sérielle (pour les stations ayant au moins 10<br />

années d'observations)<br />

- apport mensuel, par rapport à ifapport annuel, avec<br />

régression sérielle diune variable désaisonnalisée et de<br />

régression linéaire par rapport à la même yariable drune<br />

autre (meilleure] station (pour les stations ayant moins de<br />

10 annges d'observations).


1 - INTRODUCTION<br />

43 7<br />

1.1. One <strong>of</strong> the objectives <strong>of</strong> the UNDP/FAO Project LEBANON 13,<br />

concerning the hydro-agricultural development <strong>of</strong> North Lebanon, was to study<br />

an irrigation scheme <strong>of</strong> about 7 O00 ha in the KOURA-ZGHARTA region. For the<br />

water supply <strong>of</strong> this scheme a dam has to be constructed on the Aasfour river.<br />

The reservoir inflow can be provided by the Aasfour discharges together <strong>with</strong><br />

part <strong>of</strong> the streamflow <strong>of</strong> an adjacent river.<br />

To assess the performance <strong>of</strong> the design reservoir long series <strong>of</strong><br />

streamflow are needed to be routed through such a reservoir, Such long series<br />

<strong>of</strong> historic records were missing and the presence <strong>of</strong> outliers (very wet and<br />

several consecutive dry years), made it virtually impossible to establish<br />

<strong>with</strong> any confidence a return period for these outliers.<br />

1.2. The hydrologic information available in the Project area was<br />

based mai<strong>nl</strong>y on the following data :<br />

- -<br />

two streamflow series <strong>with</strong> 14 years <strong>of</strong> record<br />

-<br />

thirteen streamflow series <strong>with</strong> 3 to 5 years <strong>of</strong> record<br />

several rainfall series <strong>of</strong> about 30 years <strong>of</strong> record<br />

some temperature series <strong>of</strong> about 15 years <strong>of</strong> record.<br />

A good correlation exists between annual rainfall and streamflow<br />

but low values are found <strong>of</strong> the correlation coefficient between monthly rainfall<br />

and streamflow. This can be explained by the fact that the response <strong>of</strong><br />

the catchments to rainfall has a delay factor <strong>of</strong> one to two months due to the<br />

presence <strong>of</strong> snow and / or springs. It was thus impossible to apply the conventional<br />

technique <strong>of</strong> extending the shorter streamflow records by correlating<br />

them <strong>with</strong> the longer rainfall records, Unfortunately monthly streamflow data<br />

are needed for reservoir analysis studies,<br />

As the conventional techniques were unable to provide these data,<br />

the use <strong>of</strong> hydrological modelling techniques became necessary.<br />

1.3. Two main categories <strong>of</strong> mathematical models can be used in<br />

principle for this kind <strong>of</strong> problems : Deterministic and stochastic. The first<br />

category permits to extend the length <strong>of</strong> the historic streamflow series to<br />

the same length as the (longer) historic rainfall record. The stochastic mo-<br />

delling however permits to generate synthetic events <strong>of</strong> any length adequate<br />

for certain design purposes.<br />

A mixt use <strong>of</strong> a stochastic input into a deterministic model could<br />

be useful in principle but unfortunately no such valuable generating models<br />

for daily rainfall existed.


43 8<br />

1.4. The statistics, such as the expected frequency <strong>of</strong> failure<br />

<strong>of</strong> the design system, depend largely on the variation <strong>of</strong> the streamflow, i.e.<br />

on the values <strong>of</strong> the variance <strong>of</strong> monthly and annual flow. The stochastic model-<br />

ling techniques can improve the estimate <strong>of</strong> the variances <strong>of</strong> the shorter<br />

records by using the infoption available in the longer series.<br />

It was for all these reasons that the Lebanon 13 Project decided<br />

to apply stochastic modelling techniques.<br />

1.5. In order to apply generated series <strong>of</strong> streamflow in the<br />

reservoir simulation studies it was necessary to generate also long series <strong>of</strong><br />

rainfall and temperature in order to calculate long series <strong>of</strong> water demand. To<br />

avoid generating series <strong>of</strong> streamflow, rainfall and temperature that were un-<br />

correlated, a method <strong>of</strong> "in phase" generation was adopted, This phasing will<br />

ensure, for example, that during a dry year the values <strong>of</strong> streamflow and rain-<br />

fall are both low, together <strong>with</strong> high temperature values resulting in high de-<br />

mand for the year.<br />

1.6. For the calculation <strong>of</strong> crop water needs the Blaney-Criddle<br />

formula was used in view <strong>of</strong> the insufficiency <strong>of</strong> data for the Penman method.<br />

However from the point <strong>of</strong> view <strong>of</strong> the methodology, there 2s no objection to<br />

replace the Blaney-Criddle formula by that <strong>of</strong> Penman or another. The methodo-<br />

logy for adjusting water resources and water demand as applied to North Lebanon<br />

is explained schematically in the attached flow chart.<br />

2 - CHOICE OF TYPE OF STOCHASTIC MODELS<br />

2.1. The stochastic models, described hereafter, for the gene-<br />

ration <strong>of</strong> long time series for different variables which are mutually in phase,<br />

were proposed by Mr. J. Bernier, Chief <strong>of</strong> the Statistics Group at the Labora-<br />

toire National d'Hydraulique, Chatou (France) and consultant to the North<br />

Lebanon Project for stochastic hydrology. The models chosen were in response to<br />

the availability <strong>of</strong> data and other local conditions as well as to the objecti-<br />

ves <strong>of</strong> the study in particularly to provide input data for the simulation<br />

studies, which explains the use <strong>of</strong> monthly values <strong>of</strong> the different variables.<br />

-<br />

2.2. The elements on which this choice was based were :<br />

-<br />

a caracteristics <strong>of</strong> available data :<br />

streamflow : the presence <strong>of</strong> 2 series <strong>of</strong> 14 years <strong>of</strong> record


-<br />

The<br />

439<br />

- temperature : the presence <strong>of</strong> some series <strong>of</strong> about 15 years <strong>of</strong><br />

record and a significant value for the corre-<br />

lation between monthly rainfall and temperature<br />

during spring and autumn.<br />

- rainfall : several series <strong>of</strong> 30 years <strong>of</strong> record and a good<br />

correlation between rainfall and streamflow on<br />

annual basis but a bad one an monthly basis<br />

(due to snowfall and / or karsticity)<br />

- perennial flow <strong>of</strong> the rivers.<br />

(the temperature and rainfall series together permit the use <strong>of</strong><br />

Blaney-Criddle's formula for the calculation <strong>of</strong> crop water needs)<br />

requirements imposed by the methodology used for adjusting water resour-<br />

ces and water demand :<br />

- the series <strong>of</strong> streamflow and demand have to be in phase<br />

- the "being in phase" <strong>of</strong> streamflow and demand requires automati-<br />

cally the' "in phase" generation <strong>of</strong> the series <strong>of</strong> rainfall, tem-<br />

perature and streamflow.<br />

2.3. The short streamflow series (3 to 5 years <strong>of</strong> record) can<br />

o<strong>nl</strong>y be used after "deseasonalisation" <strong>of</strong> the variable (3) resulting in series<br />

<strong>of</strong> 36 to 60 months <strong>of</strong> record in which the different characteristics <strong>of</strong> the par-<br />

ticular months have been neutralised,<br />

2.4. The following transformations <strong>of</strong> the variables were necessa-<br />

ry in order to be able to use the normal distribution :<br />

- the logarithm <strong>of</strong> the discharges instead <strong>of</strong> the discharges<br />

- the square root <strong>of</strong> the rainfall instead <strong>of</strong> the rainfall (the<br />

temperature is taken <strong>with</strong>out any transformation).<br />

2.5. The particular features described above led to the applica-<br />

tion <strong>of</strong> the following generating models :<br />

1) A simple model for monthly rainfall due to the absence <strong>of</strong><br />

persistance in the monthly rainfall series. This model uses<br />

o<strong>nl</strong>y mean and variance <strong>of</strong> the historic record together <strong>with</strong><br />

generated random numbers (eq.1).<br />

2) A mixed model for monthly temperature using autoregression<br />

plus regression on another variable (monthly rainfall) and<br />

a random number generator (eq.2).


44 O<br />

3 - DESCRIPTION OF MODELS USED<br />

3) A simple regression model for annual streamflow using re-<br />

gression o,n annual rainfall plus a random number generator<br />

(for stations <strong>with</strong> at least 10 years <strong>of</strong> record) (eq.3).<br />

4) An autoregression model for monthly streamflow using the<br />

relation monthly / annual streamflow to give monthly stream-<br />

flow plus a random number generator (eq.4).<br />

5) A mixed autoregression model for monthly streamflow <strong>of</strong> a sta-<br />

tionary ("deseasonalised") variable <strong>with</strong> regression on the<br />

same variable <strong>of</strong> another station plus random number generator<br />

(stations having less than 10 years <strong>of</strong> record) (eq.7).<br />

3.1. Generation <strong>of</strong> monthly rainfall<br />

Hypothesis : normal distribution <strong>of</strong><br />

(Pt = monthly rainfall).<br />

The statistical analysis <strong>of</strong> the historic series <strong>of</strong> monthly rainfall<br />

gives the values <strong>of</strong> mt = the mean <strong>of</strong> the fit <strong>of</strong> the month t (12 values)<br />

and the s2t = the variance <strong>of</strong> the fit <strong>of</strong> the month t (also 12 values),<br />

Generating model :<br />

fitemt -+ st . u (eq.1)<br />

( 6 = o for Pt = 0)<br />

where : u is the random normal deviate <strong>with</strong> zero mean and unit variance<br />

- u = o, s2(u) = 1<br />

The square root <strong>of</strong> the rainfall depends thus on mt, st and U.<br />

3.2. Generation <strong>of</strong> mean monthly temperatures<br />

Hypothesis : normal distribution <strong>of</strong> Tt (Tt = mean monthly tempe-<br />

rature <strong>of</strong> month t).<br />

The generator model uses a correlation <strong>of</strong> temperature <strong>with</strong>


ainfall and is as follows :<br />

Tt,i = mean monthly temperature <strong>of</strong> month t (t runs from 1 to 12 and i<br />

represents the ith month after the start generation, i = 1,2 .... ><br />

Ut<br />

K i =<br />

mt<br />

U<br />

vt<br />

al,t<br />

= the mean <strong>of</strong> the mean monthly temperatures <strong>of</strong> month t, in period<br />

<strong>of</strong> record (12 values)<br />

square root <strong>of</strong> the rainfall <strong>of</strong> month t,i<br />

= the mean <strong>of</strong> the square root <strong>of</strong> the rainfall <strong>of</strong> month t, in period <strong>of</strong><br />

record (12 \talues)<br />

= random nonual deviate <strong>with</strong> 3 = O and s2(u) = 1<br />

= the variance <strong>of</strong> the residuals <strong>of</strong> T in the month t, in period <strong>of</strong><br />

record (12 values)<br />

441<br />

and d2,t = partial regression coefficients (for method <strong>of</strong> calculation<br />

see standard works, e.g. Ven Te Chow "Applied <strong>Hydrology</strong>", page 8:6û)<br />

For the first value <strong>of</strong> Tt,l, ill the following fonuula is used :<br />

Tt-1 = M t-1 + G u'<br />

where M and v are known and a single value for the random normal deviate u'<br />

is sufficient to define the value <strong>of</strong> Ttml.<br />

Once the coefficients <strong>of</strong> the generator model for mean monthly tem-<br />

perature are known for each month, a sequence can be generated which will be in<br />

phase, at the monthly level, <strong>with</strong> rainfall.<br />

3.3. Generation <strong>of</strong> monthly streamflows for stations having at<br />

least 10 years <strong>of</strong> record<br />

The poor degree <strong>of</strong> correlation found in the study area between<br />

monthly streamflows and monthly rainfall, due to the effect <strong>of</strong> snow and karsti-<br />

city <strong>of</strong> the basin, necessitated first a correlation <strong>of</strong> the annual streamflows<br />

(14 years <strong>of</strong> record) and the annual rainfall (the same station as used in para<br />

3.1. above). This was achieved through the following equation based on the<br />

hypothesis <strong>of</strong> a normal distribution <strong>of</strong> log Q :


log ~a = M +e( q- m> + K u<br />

M = the mean <strong>of</strong> the logarithm <strong>of</strong> the annual flow Qa (14 values <strong>of</strong> Qa)<br />

m =<br />

u = random normal deviate<br />

íeq.3)<br />

the mean <strong>of</strong> a (Pa = annual rainfall for the rainfall station 32 years)<br />

v = variance <strong>of</strong> the residuals <strong>of</strong> log Qa<br />

In order to adjust to the long series <strong>of</strong> rainfall (32 years)<br />

the following correction to M was prepared. This type <strong>of</strong> correction is o<strong>nl</strong>y<br />

necessary when records <strong>of</strong> the period <strong>of</strong> M are not typical <strong>of</strong> the period <strong>of</strong> m.<br />

In fact, since the rainfall record (32 years) is longer than<br />

the streamflow record (14 years) and the two are correlated, the estimate M<br />

<strong>of</strong> the population mean <strong>of</strong> log Q and the estimate v <strong>of</strong> the variance <strong>of</strong> the<br />

residuals can be improved, leadtng to revised estimates M;! and v2 as follows :<br />

2 2<br />

s2 (log Qa> = s1 (log Qa) - r<br />

2<br />

where the suffixes 1 and 2 refer to the 14 and 32 year records respectively.<br />

2<br />

The value <strong>of</strong> 62 (log Qa) so obtained can be used to derive an<br />

improved estimate v from the relation :<br />

a<br />

(eq. 3b)<br />

2 2<br />

v 2 = (1 r s2 (log Q,) (eq.3~)<br />

All the coefficients <strong>of</strong> equation 3 being known, a long series<br />

<strong>of</strong> logarithms <strong>of</strong> annual flow Q, can be generated and will be in phase <strong>with</strong><br />

the annual rainfall.<br />

The next step is the generation <strong>of</strong> the variate Zt,i = log Qt,i - log Qa (eq.4)<br />

(eq.4)


443<br />

where :<br />

- - Zt = mean <strong>of</strong> (log Q<br />

t,i log Q a<br />

for period <strong>of</strong> recorii (12 values, t = 1,2,... 12)<br />

r = correlation coefficient <strong>of</strong> Zt on ZtWl (12 values)<br />

t<br />

s(Zt> = standard deviation <strong>of</strong> Zt (12 values)<br />

n<br />

vt = variance <strong>of</strong> the residuals = - . 2 2<br />

s<br />

n-2<br />

2<br />

u = random normal deviate <strong>with</strong> u = O, s (u) = 1.<br />

-<br />

(2,) . (1 C. rt)<br />

The application <strong>of</strong> equation (4) then gives a generated series<br />

<strong>of</strong> Qtai following.the transformation<br />

-<br />

Qt,i - Qa e ('t,i'<br />

íeq.4a)<br />

for each month. The annual totals <strong>of</strong> these Qtai should be equal to the values<br />

<strong>of</strong> Qa generated <strong>with</strong> equation (3) but this will not usually be so, in<br />

which case the following correction must be made for the generated Q<br />

. tai<br />

(eq. 4b)<br />

where :<br />

E 'a<br />

QL,i - ' Qt,i<br />

Q'a<br />

I<br />

Qt,i<br />

Qa<br />

QIa<br />

= revised value <strong>of</strong> Qtai (monthly generated flows)<br />

= annual flows generated by eq. (3)<br />

= annual sum <strong>of</strong> monthly flows Q generated by eq. (4)<br />

t,i<br />

The result <strong>of</strong> these processes is a generated series <strong>of</strong> monthly<br />

streamflows which are in phase annually <strong>with</strong> rainfall which is in turn in<br />

phase monthly <strong>with</strong> the mean monthly temperatures.<br />

3.4. Generation <strong>of</strong> monthly streamflows for stations having less<br />

than 10 years <strong>of</strong> record<br />

For short series equations (3) and (4) cannot be used because<br />

a short series does not permit a sufficiently precise calculation, month by<br />

month, <strong>of</strong> the mean, variance and correlation coefficient. To avoid this diffi-<br />

culty the observed series <strong>of</strong> the monthly streamflow Qt i can be "deseasonalized"<br />

to produce a new series Y giving, in the case <strong>of</strong> 4 yeah <strong>of</strong> observations, 48<br />

values <strong>of</strong> Y. To "deseasonalize" one <strong>of</strong> two transforms was used :


444<br />

Y = log Q - a cos (-<br />

t,i<br />

12<br />

(eq.5)<br />

where (eq.5) : the origin was taken as the month <strong>of</strong> November (t = 1)<br />

the phase determined in such a way as to place the mean<br />

e = maximum flow in the required month, which also determines<br />

the month <strong>of</strong> minimum flow which will be six months later.<br />

a<br />

= the amplitude <strong>of</strong> the variate (the logarithm <strong>of</strong> the monthly<br />

flows) chosen in such a way as to give the best fit to<br />

the observed maximum and minimum monthly values.<br />

The choice <strong>of</strong> the transform depends on the shapc <strong>of</strong> the hydro-<br />

graph. In the Lebanon project equation (5) was found to give less good re-<br />

sults and therefore equation (6) was used.<br />

Each <strong>of</strong> these equations gives a series <strong>of</strong> Y which combines all<br />

months. From this series the mean (i) can be calculated and also the variance<br />

(


-<br />

X<br />

=I mean <strong>of</strong> X (during period <strong>of</strong> record)<br />

u = randa normal deviate<br />

v = variance <strong>of</strong> the residuals <strong>of</strong> Y<br />

44 5<br />

When all the coefficients <strong>of</strong> equation (7) are known and data have<br />

been generated for the "long" record station as described in para. 3.3, the model<br />

can be used to generate the long series <strong>of</strong> Yi and so, using the transforms in<br />

equations (5) and (6) above, long series <strong>of</strong> monthly streamflows Q<br />

t,i'<br />

The resulting values <strong>of</strong> Qt,+ are related to the monthly generated<br />

flows <strong>of</strong> a station having a long record which are themselves in phase annually<br />

<strong>with</strong> the annual rainfall. The annual rainfalls are the sum <strong>of</strong> the monthly rainfalls<br />

which themselves are in phase <strong>with</strong> the mean monthly temperatures.<br />

- 4 CONCLUSIONS<br />

4.1. The checks used on the generated time series are the sta-<br />

tistical moments (mean, variance and coefficient <strong>of</strong> variation) and periodicity<br />

(winter - summer). It was found that the generated time series were in general<br />

<strong>of</strong> good quality but that the value for the coefficient <strong>of</strong> variation (i.c. the<br />

variance) was too high. This did not matter in the Lebanon case because the<br />

reservoir simulation studies done <strong>with</strong> these time series kept us on the safe<br />

side, but for the sake <strong>of</strong> completeness some kind <strong>of</strong> correction should be intro-<br />

duced in future.<br />

4.2. All the programmes have been written in Fortran IV for the<br />

IñM 1130 computer in such a way that they can be used separately or in series.<br />

In this latter case the calculation time is about one hour per run. To obtain<br />

as output in one run the results <strong>of</strong> system simulation (reservoir size, irrigable<br />

area, failures and effects on other water users) the following input data are<br />

needed :<br />

(a) a historic record <strong>of</strong> rainfall (monthly)<br />

(b) a historic record <strong>of</strong> mean temperature (monthly)<br />

(c) a "long" (12-14 years in North Lebanon) historic record <strong>of</strong> streamflow<br />

(monthly<br />

(d)<br />

a "short" (3 to 5 years) historic record <strong>of</strong> streamflow (monthly)


446<br />

the duration <strong>of</strong> sunshine as a percentage p <strong>of</strong> the maximum possible<br />

the monthly crop coefficient K (by crop)<br />

the maximum usable soil moisture storage (by ero;)<br />

the coefficient <strong>of</strong> growth <strong>of</strong> the plant (by crop)<br />

the phasing <strong>of</strong> irrigation development <strong>of</strong> the whole area, and the<br />

subdivision <strong>of</strong> the area by crop (in %)<br />

the rate <strong>of</strong> changedver from the present olive groves to the new crops<br />

coefficient <strong>of</strong> irrigation efficiency<br />

geometric characteristics <strong>of</strong> the reservoir<br />

P (e) and (f) are necessary for the application <strong>of</strong> the Blaneydriddle formula.<br />

e


I II I<br />

Il<br />

m<br />

P 00<br />

I I m<br />

FLOW CHART FOR DATA GENERATION AND SYSTEM ANALYSIS<br />

I 1. II ..... i ace -. 3.7.4 or t a North Ltibonon irriqaion scheme<br />

1-1 i<br />

o' indirti. Bencator<br />

Jaouory 1972 lidopied from Prqe~i Droir~ng AE-2513


RELATIVE IMPORTANCE OF DECISION VARIABLES<br />

IN FLOOD FREQUENCY ANALYSIS<br />

Wallis, J.R.<br />

IBM, Thomas J. Katson Research Center , Worktown Heights , N .Y, , USA<br />

ABSTRACT<br />

Matalas, N. C.<br />

U.S. Geological Survey, Washington, D. C., USA<br />

Monte Carlo simulations were used to assess flood and overde-<br />

sign losses that result from differing choices <strong>of</strong> assumed frequen-<br />

cy distribution, plotting position, criterion <strong>of</strong> best fit and<br />

length <strong>of</strong> record. Probabilities <strong>of</strong> best fit for an assumed world<br />

distribution, given a real world distribution, are given.<br />

RESUMEN<br />

El método de simulación de Monte Carlo se utiliza para eva-<br />

luar los daños producidos por máximas crecidas en funci’on de las<br />

leyes de distribución de frecuencias, de las estaciones utilizadas<br />

y de la calidad y extensión de las series hidrológicas. De la mues<br />

tra puede obtenerse el valor minimo teórico de los daños estimados.


450<br />

Introduction<br />

In many cases, the design <strong>of</strong> multipurpose water resource<br />

systems includes flood control as one <strong>of</strong> the purposes. While the<br />

design process may specify the sizing <strong>of</strong> flood control structures<br />

as a function <strong>of</strong> the T-year flood, the design process must cope<br />

<strong>with</strong> the uncertainty as to the magnitude <strong>of</strong> the T-year flood.<br />

Given that floods are a random phenomenon, the magnitude <strong>of</strong> the<br />

T-year flood depends upon the underlying probability distribution<br />

<strong>of</strong> flood events and the values <strong>of</strong> the distribution's parameters.<br />

Among the objectives <strong>of</strong> flood frequency analysis is that <strong>of</strong><br />

determining the magnitude <strong>of</strong> the T-year flood, referred to as the<br />

design flood. While the underlying distribution <strong>of</strong> floods is<br />

unknown, an estimate <strong>of</strong> the design flood can be provided. A dis-<br />

tribution may be assumed or chosen in accordance <strong>with</strong> some criter-<br />

ion <strong>of</strong> best fit to observed flood sequences. Given an observed<br />

flood sequence <strong>of</strong> length n, and an assumed or chosen distribution<br />

estimate <strong>of</strong> the distribution's parameter values, the design flood<br />

can be derived. These estimates are subject to sampling errors,<br />

the magnitudes <strong>of</strong> which depend upon n, and on uncertainties that<br />

are o<strong>nl</strong>y partially a function <strong>of</strong> n. To reduce sampling errors,<br />

longer flood sequences are needed. To acquire longer sequences<br />

through direct observation might necessitate the delays in the<br />

design <strong>of</strong> the water resource system. Delays would be economically<br />

feasible if over the period <strong>of</strong> data collection no benefits were<br />

foregone. In those cases where benefits would be foregone effec-<br />

tively longer sequences might be obtained through regional analyses.<br />

However, even <strong>with</strong> a very large but finite flood sequence,<br />

uncertainty would still exist in the estimate <strong>of</strong> the T-year flood.<br />

The Uncertainty arises because the assumed or chosen distribution<br />

used to estimate the T-year flood does not necessarily have to<br />

be the correct real world distribution, and in fact if a criter-<br />

ion <strong>of</strong> best fit is used, the chosen distribution might vary given<br />

another flood sequence <strong>of</strong> equal length.<br />

By using an estimate <strong>of</strong> the T-year flood as the design flood,<br />

either <strong>of</strong> two types <strong>of</strong> losses is likely to be incurred. The first<br />

type refers to overdesign costs <strong>of</strong> flood control structures which<br />

would be incurred if the estimated T-year flood exceeded the true<br />

value <strong>of</strong> the design flood. The second type refers to the down-<br />

stream damages which would be incurred from underdesign if the<br />

true value <strong>of</strong> the design flood exceeded the estimate <strong>of</strong> the T-year<br />

flood. In the design process, what is <strong>of</strong> concern is not how well<br />

.a particular distribution fits an observed flood sequence par se,<br />

but to what extent the two types <strong>of</strong> design losses are affected by<br />

the choice <strong>of</strong> a particular distribution. To the designer, the


451<br />

criterion <strong>of</strong> best fit refers to choosing a distribution to minimize<br />

design losses.<br />

To gain some insight as to the magnitudes and sensitivities<br />

<strong>of</strong> the design losses to uncertaintfes in the choice <strong>of</strong> a flood<br />

frequency distribution and estimates <strong>of</strong> the distribution's param-<br />

eter values, several computer-based experiments, employing Monte<br />

Carlo techniques, are currently being performed. In this paper<br />

the nature <strong>of</strong> these experiments is briefly discussed, and some<br />

experimental results as to the probabilities <strong>of</strong> fitting <strong>of</strong><br />

observed flood sequences <strong>with</strong> particular distributions are<br />

presented.<br />

Monte Carlo Experiments<br />

Two sets <strong>of</strong> distribution functions are considered. The first<br />

set, referred to as the real world set, consists <strong>of</strong> several dis-<br />

tributions, any one <strong>of</strong> which may be the underlying distribution<br />

<strong>of</strong> floods. From the real world set, a distribution function is<br />

chosen where the distribution's parameters values are related to<br />

the mean, u, the standard deviation, o, and the coefficient <strong>of</strong><br />

skewness, y. For this distribution, 18,000 flood sequences <strong>of</strong><br />

length n are generated.<br />

The second set <strong>of</strong> distribution functions, referred to as the<br />

imagined or assumed set, contains several distributions, any one<br />

<strong>of</strong> which may be fitted to observed flood sequences. Each element<br />

<strong>of</strong> the imagined set is fitted to each <strong>of</strong> the generated sequences,<br />

and on the basis <strong>of</strong> various methods for defining plotting positions<br />

and measuring goodness <strong>of</strong> fit, the particular distribution <strong>of</strong> best<br />

fit is determined for each generated sequence. From each <strong>of</strong> these<br />

distributions, the flood having an exceedance probability <strong>of</strong> 1/T<br />

is determined. These floods are estimates <strong>of</strong> the real world flood<br />

<strong>of</strong> exceedance probability 1/T.<br />

Initially, overdesign and underdesign linear loss functions<br />

in terms <strong>of</strong> the difference between the real world T-year flood<br />

and its estimate are assumed. No<strong>nl</strong>inear loss functions will be<br />

considered in subsequent experiments. Given the 18,000 values <strong>of</strong><br />

the differences between the real world T-year flood and its<br />

estimates, the probabilities <strong>of</strong> incurring overdesign and under-<br />

design losses and the expected values <strong>of</strong> the losses are estimated.<br />

Similarly, these values are estimated for each <strong>of</strong> the other dis-<br />

tributions belonging to the real world set.<br />

Three flood control design objectives are considered:<br />

1) minimizing the expected overdesign losses, 2) minimizing the<br />

expected underdesign losses, and 3) minimizing a weighted sum<br />

<strong>of</strong> the expected overdesign and expected underdesign losses. For


452<br />

the third objective, the weights, say CI and ß, where a > O, ß > O,<br />

and o: + ß = 1, are varied. Among the methods for defìning plotting<br />

positions and measuring goodness <strong>of</strong> fit, the particular method and<br />

measure by which the various design objectives are met were deter-<br />

mined. The sensitivities <strong>of</strong> the design losses to less than optimal<br />

choices <strong>of</strong> the plotting position method and measure <strong>of</strong> goodness<br />

<strong>of</strong> fit were assessed.<br />

The experiments were carrìèd out for every feasible point in<br />

the following experimental hyperspace:<br />

p = 2600<br />

u = $00<br />

y = O, 1/4, 1/2;*, 1, 1 . 1 4 K 2<br />

n = 10, 30, 50, 70, 90<br />

The results <strong>of</strong> these experiments are conditional on the distribu-<br />

tions belonging to the real world set. Subsequent experiments<br />

will consider prior information on the real world distribution<br />

function and regional estimates <strong>of</strong> the distribution's parameter<br />

values.<br />

Probabilities <strong>of</strong> Best Fit:<br />

Some preliminary results <strong>of</strong> these experiments are presented<br />

namely, the probabilities <strong>of</strong> best fit. Both the real world and<br />

imagined world sets consisted <strong>of</strong> three elements -- the normal<br />

distribution, the log-normal dìstribution, and the Type I extremai<br />

(Gumbel) distribution. For each distribution belonging- to the real<br />

woerfd sat) i8000 sequences were generated f o each ~ feasible<br />

point in the experimental hyperspace. Floods for each sequence<br />

<strong>of</strong> length n were ranked in order <strong>of</strong> magnitude from the largest,<br />

having rank m = 1, to smallest, having rank m = n. The flood <strong>of</strong><br />

rank m was assigned an exceedance probability, P[m,<strong>nl</strong> , by both<br />

the "Weibul method," defined as<br />

and by the "Hazen method," defined as<br />

(See Chow: 1964).<br />

P [m,<strong>nl</strong> = m/(n+l) (1)<br />

W<br />

P,[m,<strong>nl</strong> = (2m-i) / 2n (2)<br />

For a given element <strong>of</strong> the real world set and a given element<br />

<strong>of</strong> the imagined world set, two sets <strong>of</strong> differences <strong>of</strong> flood magni-<br />

tudes were formed for each generated sequence. The first set con-<br />

sisted <strong>of</strong> the differences between the observed, that is generated,


453<br />

floods and the corresponding imagined world floods having exceed-<br />

ance probabilities defined by Pw(m,nJ. Similarly, the second set<br />

<strong>of</strong> differences was based on exceedance probabilities defined by<br />

PH (m,n).<br />

Two measures <strong>of</strong> goodness <strong>of</strong> fit were considered -- the sum <strong>of</strong><br />

squares <strong>of</strong> the differences in flood magnitudes and the sum o€ the<br />

absolute differences in flood magnitudes. For each sequence based<br />

on an element <strong>of</strong> the real world set and relative to each method <strong>of</strong><br />

assigning exceedance probabilities, the element <strong>of</strong> the imagined<br />

set which provided the best fit to the sequence <strong>of</strong> floods was<br />

determined, where best fit was defined by each <strong>of</strong> two criteria --<br />

minimum sum <strong>of</strong> squares <strong>of</strong> differences in flood magnitudes and<br />

minimum sum <strong>of</strong> absolute differences in flood magnitudes.<br />

The probability <strong>of</strong> the event that a sequence, having a par-<br />

ticular element <strong>of</strong> the real world set as its underlying distribu-<br />

tion, is best fitted by a particular element <strong>of</strong> imagined world<br />

set, relative to a particular method <strong>of</strong> assigning exceedance<br />

probabilities and a particular criterion <strong>of</strong> best fit, was esti-<br />

mated by N/18,000, where N denotes the number <strong>of</strong> times the event<br />

occurred and 18,000, the total number <strong>of</strong> times the event could<br />

have occurred. The probabilities for each <strong>of</strong> the 36 points in<br />

the event space relative to each feasible point in the experi-<br />

mental hyperspace were determined.<br />

Remarks<br />

For the experimental hyperspace, the estimates <strong>of</strong> the probabil-<br />

ities <strong>of</strong> best fit multiplied by 1000 over the event space are given<br />

in Lahles 1 through 9, where MSS denotes minimum sum <strong>of</strong> squares,<br />

MSAD denotes minimum sum <strong>of</strong> absolute differences, N denotes the<br />

normal distribution, G denotes the GuInbel distribution, and L denotes<br />

the log-normal distribution. These estimates were based on the follow-<br />

ing additional experimental operating rule -- if the computed value<br />

<strong>of</strong> the coefficient <strong>of</strong> skewness, y, for a generated sequence was equal<br />

to or less than 0.007, then the sequence was considered to have been<br />

drawn from a normal distribution. While these probabilities give<br />

some indication as to the power for identifying the real world flood<br />

distribution from an observed sequence, they do not give any indica-<br />

tion <strong>of</strong> the optimum strategy to use for choosing a design distribu-<br />

tion. Interpretation <strong>of</strong> these experimental results in terms <strong>of</strong><br />

overdesign-underdesign strategies will be the subject <strong>of</strong> subsequent<br />

papers.<br />

Reference<br />

Chow, Ven T. (1964). Handbook <strong>of</strong> Applied <strong>Hydrology</strong>, McGraw-Hill.


454<br />

Table 1. -- Real World is normal<br />

Weibull Hazen<br />

MSS MSAD MSS MSAD<br />

n N L G N L G N L G N L G<br />

~~ ~~<br />

10 527 468 5 602 314 84 523 289 188 556 234 211<br />

30 531 432 36 608 341 51 530 432 38 579 364 58<br />

50 528 455 17 614 360 26 526 465 9 489 387 24<br />

70 526 468 6 613 377 io 526 473 2 595 397 8<br />

90 532 466 2 620 374 5 529 470 1 603 394 4<br />

Table 2. -- Real World is Gumbel <strong>with</strong> skew = 1.14<br />

Weibuil Hazen<br />

MSS MSAD MSS MSAD<br />

n N L G N L G N L G N L G<br />

10 216 766 i8 287 523 190 212 416 371 245 358 398<br />

30 40 646 314 78 624 299 40 658 303 57 590 352<br />

50 7 612 380 27 642 331 8 717 275 19 629 352<br />

70 2 596 402 10 625 364 2 756 242 7 641 352<br />

90 0 591 409 6 622 372 O 767 233 3 635 361<br />

Table 3 . -- Real World is log-normal <strong>with</strong> skew = i/4<br />

Weibull Hazen<br />

MSS MSAD MSS MSAD<br />

n N L G N L G N L G N L G<br />

10 441 551 8 521 370 109 436 323 241 474 261 265<br />

30 342 573 85 433 469 99 341 570 89 395 481 124<br />

50 279 659 62 382 550 68 279 683 38 347 583 70<br />

70 234 727 38 339 621 41 232 750 18 313 649 $8<br />

90 205 771 24 313 661 26 204 788 8 290 688 23


Table 4. -- Real World is log-normal <strong>with</strong> skew = 112<br />

Weibull Hazen<br />

MSS MSAD MSS MSAD<br />

n N L G N L G N L G N L G<br />

455<br />

10 359 630 11 442 421 i37 356 352 292 393 290 317<br />

30 197 643 161 281 554 165 196 641 163 240 556 204<br />

50 116 721 i63 202 655 143 116 780 i04 169 678 153<br />

70 71 789 i40 147 735 117 70 859 71 124 758 118<br />

90 46 837 i17 118 789 93 46 901 53 97 812 91<br />

Table 5. -- Real World is log-normal <strong>with</strong> skew = v1/2<br />

Weibull Hazen<br />

MSS MSAD MSS MSAD<br />

n N L G N L G N L G N L G<br />

10 302 684 i4 382 461 157 298 375 327 333 315 353<br />

30 i14 662 224 i86 597 218 i14 662 224 i50 582 268<br />

50 48 688 264 106 672 222 48 775 177 83 677 241<br />

70 22 712 266 64 719 217 21 832 i47 49 731 221<br />

90 11 737 253 43 756 201 11 865 125 32 765 203<br />

Table 6. -- Real World is log-normal <strong>with</strong> skew = 1<br />

Weibull Hazen<br />

MSS MSAD MSS MSAD<br />

n N L G N L G N L G N L G<br />

10 235 750 i5 309 508 183 231 406 362 260 350 390<br />

30 50 658 292 96 631 273 51 663 286 72 594 334<br />

50 13 625 363 39 649 312 13 736 251 27 640 333<br />

70 5 607 388 20 651 330 4 767 229 i4 653 334<br />

90 1 592 406 io 657 333 1 787 212 6 667 327


n<br />

Table 7 .-- Real World is log-normal <strong>with</strong> skew = 1.14<br />

Weibull Hazen<br />

MSS MSAD MSS MSAD<br />

N L G N L G N L G N L G<br />

10 209 775 17 281 528 192 205 418 376 234 364 403<br />

30 34 651 314 70 638 292 34 660 306 52 594 354<br />

50 7 606 386 24 638 338 7 721 272 i7 633 351<br />

70 2 586 412 9 635 356 2 755 243 6 641 353<br />

90 O 582 418 4 632 364 0 777 223 3 647 351<br />

n<br />

Table 8. -- Real World is log-normal <strong>with</strong> skew =<br />

Weibull Hazen<br />

MSS MSAD MSS MSAD<br />

N L G N L G N L G N L G<br />

10 169 814 16 231 565 204 166 438 396 193 387 421<br />

30 17 655 328 38 658 304 16 667 317 27 615 358<br />

50 2 620 378 11 657 332 2 727 271 6 648 346<br />

70 0 618 381 3 658 339 O 772 228 2 671 327<br />

90 O 629 371 1 664 335 o 804 196 1 685 314<br />

Table 9. -- Red World is log-normal <strong>with</strong> skew = 2<br />

Weibull Hazen<br />

MSS MSAD MSS MSAD<br />

n N L G N L G N L G N L G<br />

10 113 865 21 163 614 223 112 473 415 135 427 438<br />

30 4 696 300 11 710 279 4 710 286 8 679 313<br />

50 0 723 277 1 751 247 O 798 202 1 754 245<br />

70 O 770 230 0 795 205 0 860 i40 O 807 193<br />

90 o 810 190 O 826 174 O 903 97 0 842 158


AB STRA CT<br />

SHOT NOISE MODELS FOR SYNTHETIC GENERATION<br />

OF MULTISITE DAILY STREAMFLOK DATA<br />

bY<br />

G, WEISS<br />

Department <strong>of</strong> Mathematics Imperi'al College<br />

University <strong>of</strong> London<br />

While multisite models for generating synthetic streamflow da-<br />

ta on a monthly basis have been successfully used, adequate daily<br />

models are lacking, In particular, existing models based on Gau-<br />

ssian processes are unsuitable in reproducing the recessions which<br />

are clearly observable in daily data. The models currently being de<br />

veloped at Imperial College, London, under contract for the <strong>Water</strong><br />

<strong>Resources</strong> Board, England, are based on "Shot Noise" or filtered Poi<br />

sson processes. These processes consist <strong>of</strong> a series <strong>of</strong> Poisson<br />

events, each <strong>of</strong> which generates a pulse <strong>of</strong> random height and some<br />

fixed recession shape, In the simplest <strong>of</strong> these models the pulses<br />

consist <strong>of</strong> jumps which are exponentially distributed in magnitude,<br />

and which decay exponentially <strong>with</strong> a fixed decay rate. This is a<br />

continuous time first order autoregressive (Markovian) process, and<br />

its instantaneous values have a Gamma distribution. This model can<br />

be fitted to streamflow data so as to preserve the observed means,<br />

standard deviations, serial and cross correlations <strong>of</strong> daily data.<br />

Using a more complicated model consisting <strong>of</strong> two shot noise proce-<br />

sses, monthly statistics can be preserved in addition to the daily<br />

statistics. This model gave satisfactory results <strong>with</strong> data from SO-<br />

me East Anglia sites,<br />

-- RESUME<br />

Alors qu'on a réussi a construire des modgles capables de €OU:<br />

nir artific2ellement des sérri'es ae dé:its moyens mensuels en plusieurs<br />

sites, :n manque encore de modeles satisfaisants pour les.va<br />

leurs journalieres. I1 faut souligner en particulier que les modeles<br />

stochastiques actuels, basés sur des processus gaussiens, ne sont<br />

pas capables de reproduire les décrues qui sont faciles 2 mettre en<br />

évidence dans les relev6s.journaliers. Les modèles qu'on est en<br />

train de mettre au point a l'Imperia1 College (Londres), pour le<br />

compte du <strong>Water</strong> <strong>Resources</strong> Board (Angleterre) sont basés sur le<br />

"shot noise" ou processys de Poisson filtr'es. Ces processus se composent<br />

d'une série d'évenements obéissant a une loi de Poisson, dont<br />

chacun produit une impulsion d'amplitude aléatoire dêcroissant suivant<br />

une forme déterminée. Dans les plus simples de ces modèles,<br />

les impulsions consistente en des sauts dont les amplitudes aléatoA<br />

res sont distribuées de facon exponentielle et sont affectées, une<br />

fois produites, d'une décroissa?ce exponentielle dans le temps, la<br />

constante de temps étant fixée a l'avance. Ceci constitue un proce5<br />

sus (Markovien) autorégressif de premier ordre continu dans le temps,<br />

dont les valeurs insta2tannées sont distribuées suivant une loi<br />

Gamma. Le modèle peut etre ajusté aux données disponibles concernant<br />

l'écoulement de facon a respecter les moyennes, les écarts-types et<br />

les corrélations croisées des débits journaliers. En utilisant un<br />

modèle plus compliqué, formé de deux processus ltshot noi~e'~, il est<br />

possible2 en plus des caractéristiques statistiques des valeurs<br />

journalieres , de conserver celles des valeurs mensuelles. Ce-modèle<br />

a donné des résultats satisfaisants pour un ensemble de rivieres<br />

dans l'Est de l'Angleterre.


Introduction<br />

The present work is aimed at supplying multisite daily synthetic stream-<br />

flow data for the British <strong>Water</strong> <strong>Resources</strong> Board. The <strong>Water</strong> <strong>Resources</strong> Board<br />

is currently developing regional simulation programs to help in the planning<br />

and operation <strong>of</strong> water supply, and sensitivity tests have shown that at the<br />

level <strong>of</strong> detail used in these programs, monthly data are insufficient and<br />

daily data are indeed required.<br />

Generation <strong>of</strong> synthetic monthly data in <strong>Hydrology</strong> was apparently first<br />

attempted in the Harvard <strong>Water</strong> Program [I], and has been developed as a useful<br />

tool since ([2], [ 3J,[ 41). Basically, in the methods previously used, the<br />

data or a transformed series obtained from the data are assumed to follow a<br />

multivariate Gaussian 1st order autoregressive process. Some sophisticated<br />

transformations and some higher order regression models have also been used<br />

([5], [6])*<br />

Autoregressive models based on the Gaussian distribution have also been<br />

applied to daily data [7J, [SJ. Such models, however, are inadequate in the<br />

following sense : one <strong>of</strong> the prominent features <strong>of</strong> daily streamflows is the<br />

presence <strong>of</strong> peaks and recessions clearly observed in the data. Yet no model<br />

based on the Gaussian distribution can reproduce these recessions, no matter<br />

what transformation or what order <strong>of</strong> autoregression is used.<br />

In this paper a class <strong>of</strong> models which reproduce recessions is introduced.<br />

A simple model from this class, <strong>of</strong> the same degree <strong>of</strong> complexity as the<br />

Gaussian 1st order autoregressive process is developed, and its implementation<br />

for data generation described. The theoretical aspects <strong>of</strong> reproducing recessions<br />

are discussed. Finally, the application <strong>of</strong> the model to some British<br />

streamflows is illustrated.<br />

Filtered Poisson Processes<br />

Let N(t) be a P&isson process, let Y be a random variable, and let<br />

w(t,y) be some function. Let the sequence ..., 7-1, TO, 71, .O be the times<br />

<strong>of</strong> events <strong>of</strong> the process N(t), and let ..., y-1, yo, YI, ... be mutually<br />

independent random values having the same distribution as Y, and all <strong>of</strong> which<br />

are independefit <strong>of</strong> N(t). A filtered Poipson process X(t) is defined by :<br />

For further details <strong>of</strong> these processes refer to CS].<br />

A physical interpretation in hydrological terms can be given to the<br />

filtered Poisson process. The events at random times T ~, given by the Poisson<br />

process can be thought <strong>of</strong> as beginnings <strong>of</strong> rain storms. The random value ym<br />

associated <strong>with</strong> T; could correspond to the amount <strong>of</strong> water in the rainstorm.<br />

Finally, T and y , will produce a response in the flow given by w(t-.cm,ym)<br />

and thus w?t,y) represents the system transfer function.


459<br />

The foregoing interpretation is o<strong>nl</strong>y approximate, since rainstorms are<br />

not independent as the Ym'S are required to be in the definition. One can<br />

however imagine that an independent series <strong>of</strong> climatic events exists initially,<br />

and that w(t,y) is the transfer function which transforms such climatic events<br />

into streamflow.<br />

The Shot Noise Process<br />

A particular linear filtered Poisson process was adopted for modelling<br />

streamflow, which is referred to as the shot noise process. In a filtered<br />

Poisson process, let N(t) be a Poisson process <strong>with</strong> rate 3 . Let Y be a<br />

random variable <strong>with</strong> an exponential distribution and <strong>with</strong> mean 8, and let<br />

w(t,y) = ye-bt, for t > O. The shot noise process is defined as :<br />

The process has three parameters : 9 - the event rate, 8 - the average<br />

jump height, and b - the decay rate. !he process has the following properties<br />

(found by applying theorems in [9J) :<br />

X(t) has a Gamma (Pearson type 2) distribution <strong>with</strong> parameters (Q, q/b),<br />

and thus X(t) is nonnegative and positively skewed, and has probability density<br />

function :<br />

The moments <strong>of</strong> X(t) are given by :<br />

From eq. (2) the process at time t+s, X<br />

(s > o)<br />

t+s), can be written as :<br />

The two terms in (5) are independent. The first represents the effect<br />

<strong>of</strong> events previous to t, and is equal to e-bs X(t). The second includes the<br />

events in (t, C+s) and is the innovation term.<br />

~~(t+s) one has<br />

Denoting the innovation by


460<br />

Thus, the shot noise process is in fact a 1st order autoregressive process<br />

in continuous time. However, it differs from the Gaussian 1st order autoregressive<br />

process in that ES(t+s), instead <strong>of</strong> being Gaussian, has a skewed distribution<br />

<strong>with</strong> a positive probability <strong>of</strong> being exactly zero. This arises when<br />

no events occur in (t, t+s).<br />

Some Aspects <strong>of</strong> Modelling Recessions<br />

When modelling a stochastic process in hydrology one <strong>of</strong>ten makes the in-<br />

exact but not unrealistic assumption <strong>of</strong> a linear system. This amounts to<br />

assuming that the process X(t) is <strong>of</strong> the form :<br />

where dY(t) is a completely uncorrelated and independent process, which<br />

describes all the randomness in X(t), and h(t) is the system transfer function.<br />

A usual choice for dY(t) is a Gaussian white noise. The characteristic<br />

feature <strong>of</strong> the shot noise process is that dY(t) is chosen as zero almost every-<br />

where, except for a series <strong>of</strong> spikes. These spikes occur at random time<br />

instants determined by a Poisson process and each spike has some random mass.<br />

(Note that in eqns. (1) and (2) summation over the spikes replaces the integral<br />

in (7)).<br />

The choice <strong>of</strong> the transfer function h(t) determines the autocorrelation<br />

<strong>of</strong> X(t). In particular h(t) = e-bt gives a 1st order autoregressive process,<br />

and corresponds to a single linear reservoir. In addition h(t) must determine<br />

the shape <strong>of</strong> recessions in X(t).<br />

However, if dY(t) is chosen as Gaussian white noise, no recessions will<br />

appear in X(t). The absence <strong>of</strong> recessions may be explained intuitively by the<br />

fact that Gaussian white noise is changing by minute quantities very quickly ;<br />

hence the recession shape <strong>of</strong> h(t) appears in minute form and is immediately<br />

swamped by the next change in dY (t) . Thus linear Guassian processes cannot<br />

reproduce recessions, irrespective <strong>of</strong> the form <strong>of</strong> h(t), and the same will be<br />

true even if a non-linear transformation is used pointwise on X(t).<br />

The ability <strong>of</strong> the shot noise process to reproduce recessions prompted<br />

its use in the model1ing;<strong>of</strong> daily streamflows.<br />

Averaged Sampling <strong>of</strong> the Shot Noise Process<br />

Natural streamflow and the stochastic shot noise process are continuous<br />

time processes. Recorded daily streamflows and the synthetic data to be<br />

produced are on the other hand discrete time processes. The usual approach<br />

in the modelling <strong>of</strong> monthly data is to consider the data as a discrete sample<br />

<strong>of</strong> the process, i.e. the values <strong>of</strong> the continuous process at discrete time<br />

points. However, discrete sampling is inaccurate, since the data are actually<br />

obtained by averaging the flows over the period between the discrete sampling


time points.<br />

461<br />

The difference between the two approaches, <strong>of</strong> discrete sampling<br />

or <strong>of</strong> average sampling, is negligible for serial correlations <strong>of</strong> up to P = 0.5<br />

which are typical for monthly data.<br />

which is typical for daily data.<br />

It is however substantial for e= 0-8<br />

It is assumed here that streamflow follows a continuous time shot noise<br />

process X(t), and that the observed data (and the generated data), are averages<br />

<strong>of</strong> this process over a period <strong>of</strong> T = 1 day. The data X,, X2, ... are thus<br />

defined as :<br />

The moments <strong>of</strong> X. are slightly different from those <strong>of</strong> X(t), and are given<br />

by : J<br />

SQ<br />

E(X.1 =<br />

J<br />

Var (x.) = - 9 Q2 2 [b-(l-e-b))<br />

3 b (9)<br />

b2<br />

(s 1)<br />

In addition, the averaging changes the shape <strong>of</strong> the recessions. Whereas<br />

in the process X(t) recessions start from a vertical rising limb, for the<br />

averaged values X the transfer function is <strong>of</strong> the shape,<br />

j<br />

1 -bt)<br />

f; (1-e<br />

that is the rise is gradual over O \< t < 1.<br />

Fitting the Shot Noise Model to Daily Streamflow<br />

(o < t < 1)<br />

In fitting the shot noise model an approach similar to that employed by<br />

Matalas [3J is used. Values <strong>of</strong> 9 , 8, b are calculated which preserve the<br />

values <strong>of</strong> 1.1, o2 and p(l) obsezved in the data. Thus the sample mean, variance<br />

and first serial correlation, p, 82 and g(1) are calculated from the hietorica:<br />

data. These are substituted in equations (9), which are solved for 4,<br />

8, b. The estimated decay rate 6 is solved for from the thigd equation by<br />

numerical methods, and the other two equations yield 8 and 9.<br />

An alternative approach would be to estimate b directly from observed<br />

recessions or from the unit hydrograph <strong>of</strong> the basin, and to estimate 3 by


46 2<br />

observing times <strong>of</strong> peaks in the data. This latter approach was attempted for<br />

the British streamflow data at our disposal. However, preservation <strong>of</strong> observed<br />

p, o2 and (1) using this method did not ensue. A similar approach may<br />

however prove useful for different data, for instance, streams in semi-arid<br />

regions, where data may consist <strong>of</strong> short records <strong>of</strong> frequent observations.<br />

Synthetic Generation <strong>of</strong> Shot Noise Data<br />

Let 3, 8, b be the parameters estimated from historical data. The algo-<br />

rithm for generating synthetic data is as follows :<br />

Denoting by Xt, t = 1, 2, ..., the averaged shot noise to be generated,<br />

and by X(t), t = O, 1, 2, ..., the values <strong>of</strong> the continuous process, one<br />

obtains from (5) and (IO) :<br />

where the first term in eqns. 11 and 12 is the contribution from events<br />

preceding t , and the second is the contribution <strong>of</strong> events in (t, t+l).<br />

Starting <strong>with</strong> an initial value for X(O), XI and X(1) are generated.<br />

X(1) is then used to generate X and X(2) and so on. Assuming XI, ..., Xt<br />

and X(t) have been generated, tge following steps lead to Xt+l, X(t+l).<br />

1) The first terms <strong>of</strong> (11,121 are calculated, from X(t). X(t) can then be<br />

discarded.<br />

2) Time <strong>of</strong> last event preceding (t,t+l) need not be remembered.<br />

are initiated by putting m = O, .cm = O.<br />

Event times<br />

3) The next event .cm+l is generated as zm+l = T~+I, where I is a random<br />

number generated from an exponential distribution <strong>with</strong> mean (1/3 1.<br />

4) If T ~ > + 1 ~ all events in (t,t+l) have been exhausted and so generation<br />

<strong>of</strong> Xt+l and X(t+l) is complete.<br />

5) For T ~+I < 1, ya+-, is generated as a random number from an exponential<br />

distribution <strong>with</strong> mean 8.<br />

6) The contribution <strong>of</strong> y to (11, 12) is calculated as :<br />

m+ 1<br />

1 (l-e-b(l-Tm+l 1 ) and e -b(l-.cm+l), and added to the values<br />

;<br />

<strong>of</strong> Xt+l and X(t+l) respectively.<br />

7) m is set to m+l and steps 3 to 7 are repeated.<br />

Thus the generation requires o<strong>nl</strong>y random numbers from exponential distri-<br />

butions, which are easy to create.


Multisite Shot Noise Processes<br />

463<br />

The shot noise process already defined can be easily extended to a<br />

multisite process. Let Xl(t), ..., XM(t), be continuous shot noise processes<br />

at M sites, <strong>with</strong> parameters Sk, Qk, bk, k = 1, ..., M.<br />

A multisite process incorporating all <strong>of</strong> the parameters will be defined<br />

by assuming that some <strong>of</strong> the events occur simultaneously at several sites,<br />

and give rise to correlated jumps yk at these sites.<br />

For two <strong>of</strong> the sites, k and 1, let the events which occur simultaneously<br />

be at rate Jkl(<strong>with</strong> 3k1 < 3 k, 3 kl < 3 i), and let the jumps associated<br />

<strong>with</strong> a simultaneous event, y , yl, have a correlation coefficient ckl. Then<br />

the correlation between \(ty and X,(t) is :<br />

c + I<br />

kl<br />

.& . 2<br />

In this expression the first term shows the effect <strong>of</strong> the different decay<br />

rates on the cross correlation, (i.e. the effect <strong>of</strong> the two different recession<br />

shapes), and the other two terms arise from the correlation between the two<br />

series <strong>of</strong> events and jumps.<br />

By (13) Ski and Ckl can be chosen for each pair k,l, to preserve the<br />

observed cross correlation in the multisite data.<br />

The Double Shot Noise Process<br />

Some difficulties arose in fitting the shot noise process to average<br />

daily flows from some English streams. While the model did preserve the mean,<br />

standard deviation and lag one serial correlation coefficient <strong>of</strong> the daily<br />

data, when the synthetic data was averaged over months, the synthetic monthly<br />

data had much smaller standard deviations and lag one serial correlation<br />

coefficients than those observed in the historic data. Moreover, in the synthetic<br />

data the recessions decayed too fast towards zero, and too many rises<br />

and recessions were generated.<br />

Inspection <strong>of</strong> the historic daily ctreamflow hydrographs showed that the<br />

streams modelled have a pronounced base flow component which is not reproduced<br />

by the shot noise process.<br />

Therefore a more sophisticated model was proposed, which assumes X(t)<br />

to be the sum <strong>of</strong> two independent shot noise processes, Xq(t) <strong>with</strong> parameters<br />

+A, QI, bl and X2(t) <strong>with</strong> parameters $2, 82 and b2 (cf equation 2). In<br />

these two process $1, QI, bl are assumed to be larger than $2, 82, b2, so<br />

that Xl(t) has more recessions, higher jumps and a faster decay rate than<br />

X2(t). In physical terms, Xl(t) may be thought <strong>of</strong> as representing a surface<br />

run<strong>of</strong>f mechanism and X2(t) as representing a baseflow mechanism.


464<br />

In fitting the model, the six parameters can be calculated so as to<br />

preserve the observed mean, standard deviation and lag one serial correlation<br />

<strong>of</strong> the observed daily flows, and the standard deviation and lag one serial<br />

correlation <strong>of</strong> the observed averaged monthly flows.<br />

An Application <strong>of</strong> the Double Shot Noise Model<br />

Data from the river Nene in East Anglia and some <strong>of</strong> its tributaries, and<br />

<strong>of</strong> one tributary <strong>of</strong> the neighbouring Great Ouse was used to generate synthetic<br />

data. The Nene flows through East Anglia, and discharges into the Wash. It<br />

has a drainage area <strong>of</strong> 1630 km2, it receives an average annual rainfall <strong>of</strong><br />

623 mm, and has an annual run<strong>of</strong>f <strong>of</strong> 157 mm.<br />

The historic data consists <strong>of</strong> 11 years <strong>of</strong> average daily streamflows<br />

concurrent at 8 sites. !Che double shot noise model was fitted to the data so<br />

as to preserve at each site the overall mean, the standard deviation <strong>of</strong> the<br />

daily and <strong>of</strong> the monthly series, and the lag one serial correlation coefficient<br />

<strong>of</strong> the daily and the monthly series, and so as to preserve the daily cross<br />

correlations between the sites. Seasonality was accounted for through estima-<br />

ting the parameters separately for each calendar month.<br />

Twelve series <strong>of</strong> synthetic data, each <strong>of</strong> them equal in length to the<br />

historic record, were generated. Table 1 summarises some <strong>of</strong> the results from<br />

the historic and generated data. The table includes quantities calculated for<br />

the River Nene at Orton, close to the outflow point, and for the calendar month<br />

<strong>of</strong> January. Flows are listed in m3/s.<br />

The table gives a comparison between properties <strong>of</strong> the historic data,<br />

properties <strong>of</strong> the theoretical model calculated analytically, and properties<br />

<strong>of</strong> the synthetic data. Column 1 refers to the historic data. Columns 2-4<br />

refer to the theoretical model. Column 2 contains quantities calculated for<br />

the double shot noise model, and the decomposition <strong>of</strong> these quantities into<br />

the process modelling the surface run<strong>of</strong>f mechanism (fast process) and the<br />

process modelling the baseflow mechanism (slow process) are given in columns<br />

4 and 3 respectively. Columns 5-7 refer to the synthetic data. Column 5<br />

contains values which are averages <strong>of</strong> all the twelve synthetic series while<br />

columns 6 and 7 list the lowest and highest values obtained for each quantity<br />

out <strong>of</strong> the twelve series.<br />

The different rows <strong>of</strong> the table list the values <strong>of</strong> several quantities<br />

<strong>of</strong> interest. The quantities which are starred, are those used in fitting<br />

the model. For some <strong>of</strong> those quantities the model preserves the historical<br />

value exactly, while others were o<strong>nl</strong>y preserved approximately, due to numerical<br />

difficulties. e12 is the cross correlation between Nene at Orton and Great<br />

Ouse at Thornborough Mill.<br />

The rest <strong>of</strong> the quantities listed were not used in fitting the model,<br />

and success in preserving them can serve as a measure <strong>of</strong> the adequacy <strong>of</strong> the<br />

model. Of these quantities which were not fitted, the lag two and lag three<br />

daily serial correlation coefficients are extremely well preserved. On the<br />

other hand the skewness <strong>of</strong> the data was overestimated by the model. It is<br />

very encouraging that the model seems to yield reasonable values <strong>of</strong> high and<br />

low flows.


465<br />

Y<br />

u3<br />

“o.<br />

Co<br />

“o.<br />

o,<br />

M<br />

O<br />

?<br />

r<br />

Co<br />

u3<br />

O<br />

4-<br />

Ca<br />

O<br />

?<br />

?<br />

f<br />

r<br />

pr\<br />

O<br />

9<br />

P;<br />

-7<br />

c;.<br />

<strong>nl</strong><br />

h<br />

3<br />

e<br />

(d<br />

r,<br />

c<br />

O<br />

ci<br />

k<br />

O<br />

c><br />

(d<br />

al<br />

!2<br />

al<br />

z<br />

O<br />

ci<br />

W<br />

al<br />

o<br />

O<br />

k<br />

pi<br />

al<br />

*rl<br />

2<br />

.<br />

ci<br />

O<br />

-3<br />

2<br />

al<br />

rl<br />

P<br />

a<br />

w<br />

O<br />

e<br />

O<br />

.rl<br />

ci<br />

z.<br />

TI<br />

rl<br />

pi<br />

pi<br />

4<br />

I<br />

r<br />

al<br />

d<br />

P<br />

(d<br />

H


466<br />

Conclusions<br />

The shot noise model has been developed as a physically more realistic<br />

model <strong>of</strong> daily streamflow data than has heret<strong>of</strong>ore been proposed, and in<br />

particular models recession effects which are a prominent feature <strong>of</strong> daily<br />

streamflow data.<br />

In its basic form, the shot noise process in its conception, statistical<br />

properties and <strong>with</strong> the associated method <strong>of</strong> fitting and method <strong>of</strong> data gener-<br />

ation is as simple and easy to handle as the Gaussian 1st order autoregressive<br />

model.<br />

The use <strong>of</strong> the double shot noise model for some English streans gave<br />

satisfactory results, and illustrates the adaptibility <strong>of</strong> this class <strong>of</strong> models.<br />

It is felt that these mdels, <strong>with</strong> their emphasis on events and recessions,<br />

could <strong>with</strong> further research provide a link between deterministic and stochastic<br />

hydrology. Thus studies by deterministic methods <strong>of</strong> the instantaneous unit<br />

hydrograph and <strong>of</strong> the mechanism <strong>of</strong> base flow etc. could provide some <strong>of</strong> the<br />

parameters needed for a stochastic model based on shot noise processes.<br />

Acknowledgements<br />

This work is financed by the <strong>Water</strong> <strong>Resources</strong> Board <strong>of</strong> England and Wales,<br />

and is being carried out at Imperial College <strong>of</strong> Science and Technology in<br />

London under the supervision <strong>of</strong> Pr<strong>of</strong>essor D.R. Cox <strong>of</strong> the Department <strong>of</strong><br />

Mathematics and Mr. T. OIDonnell and Mr. P.E. O'Connel1 <strong>of</strong> the <strong>Hydrology</strong><br />

Section, Department <strong>of</strong> Civil Engineering, to whom I am deeply indebted for<br />

ideas and help.


References<br />

1.<br />

2.<br />

3.<br />

4.<br />

5.<br />

6.<br />

7.<br />

8.<br />

9.<br />

467<br />

Thomas, H.A. and Fiering, M.B. (19621, Mathematical synthesis <strong>of</strong> stream-<br />

flow sequences for the analysis <strong>of</strong> river basins by simulation, Ch. 12 in<br />

'<strong>Design</strong> <strong>of</strong> <strong>Water</strong> <strong>Resources</strong> Systems', by Maass, A., et al, London, Macmillan,<br />

pp. 459-493.<br />

Fiering, M.B. (19641, Multivariate techniques for synthetic hydrology,<br />

Proc. Am. Soc. Civ. Engrs., J. Hydraul. Div., Vol. 90, HY5, pp. 43-60.<br />

Matalas, N.C. (19671, Mathematical assessment <strong>of</strong> synthetic hydrology,<br />

<strong>Water</strong> <strong>Resources</strong> Research, Vol. 3, pp. 937-945.<br />

Young, G.K. and Pisano, W.C. (19681, Operational hydrology using residuals,<br />

Proc. Am. Soc. Civ. Engrs., J. Hydraul. Div. Vol. 94, HY4, ppe 909-923.<br />

Beard, L.R. (1965), Use <strong>of</strong> interrelated records to simulate streamflows,<br />

Proc. Am. Soc. Cive Engrs., J. Hydraul. Div., Vol. 91, Hy5, pp. 13-22.<br />

Moreau, D.H. and Fyatt, E.E. (19701, Weekly and monthly flows in synthetic<br />

hydrology, <strong>Water</strong> <strong>Resources</strong> Research, Vol. 6, pp. 53-61.<br />

Quimpo, R.G. (19681, Stochastic analysis <strong>of</strong> daily river flows, Proc. Am.<br />

Soc. Civ. Engrs., J. Hydraul. Div., Vol. 94, HYI, pp. 43-58.<br />

Payne, K., Newman, W.R. and Kerri, K.D. (19691, Daily streamflow simulation,<br />

Proc. Am. Soc. Cive Engrs., J. Hydraul. Div., Vol. 95, HY4, pp. 1163-1180.<br />

Parzen, E. (19641, Stochastic processes, San Francisco, Holden-Day,<br />

pp- 144-159.


ABSTRACT<br />

FLOOD CONTROL DESIGN WITH LIMITED DATA - A COMPARISON<br />

OF THE CLASSICAL AND BAYESIAN APPROACHES<br />

Eric F. Wood<br />

Department <strong>of</strong> Civil Engineering<br />

MASSACHUSETTS INSTITUTE OF TECHNOLOGY<br />

<strong>Water</strong> Resource planners usually design flood control structures<br />

by choosing an extreme value model. The model's parameters are esti-<br />

mated from the available streamflow data and design decisions are ma<br />

de by finding the discharge related to a particular level <strong>of</strong> risk.<br />

In most design problems the data on extreme events is severely limi-<br />

ted, making parameter estimation difficult. Two different parameter<br />

estimation approaches are investigated - classical and Bayesian -<br />

which are applied to a flood design problem for a nortkeastern U.S.<br />

river. The classical approach uses the maximum likelihood cri'terion<br />

for parameter estimation. The Bayesian approach is performed for 05-<br />

jective prior information based upon observations from other rivers<br />

and for subjective prior information derived by considering the<br />

effect <strong>of</strong> river basin development upon flood discharges. The results<br />

indicate that the classical and Bayesian approaches lead to diffe-<br />

rent design discharges for the same level <strong>of</strong> risk.<br />

Normalmente los Ingenieros Hidráulicos diseñan las estructuras<br />

para el control de crecidas eligiendo un modelo de valores extremos;<br />

los parámetros del mismo se estiman mediante los datos de aforo y<br />

se diseña mediante la determinación de la crecida asociada con un<br />

cierto nivel de riesgo. En la mayoria de los casos, la información<br />

disponible sobre los valores extremos es muy escasa, haciendo muy<br />

difícil la estimación de los parámetros. Se investigan dos métodos<br />

de estimación de pardmetros - el clásico y el Bayesiano - que se<br />

aplican a un problema de control de crecidas para un rio del nordes<br />

te de los Estados Unidos. El método cl'lsico utiliza el criterio de<br />

verosimilitud máxima para la estimación de parámetros. El enfoque<br />

Bayesiano se desarrolla con informaci8n priori" objetiva basada<br />

en observaciones realizadas en otros ríos, y con información "a<br />

priori" subjetiva obtenida al considerar el efecto del desarrollo<br />

de la cuenca sobre los caudales de crecida. Los resultados indican<br />

que los métodos clásico y Bayesiano llevan a diferentes valores de<br />

caudales de crecida para un mismo nivel de riesgo,


470<br />

INTRODUCTION<br />

In water resources planning the hydrologist's main function is analysis<br />

that lead to engineering decisions. The decision variable is not a hydrologic<br />

variable but a general engineering variable like the height <strong>of</strong> a dike or the<br />

size <strong>of</strong> a spillway. The separation <strong>of</strong> hydrologic analysis and economic<br />

analysis can not occur if efficient designs are to be obtained. In the<br />

decision process the design variables are related to the estimation <strong>of</strong> hydrologic<br />

variables through a loss function which reflects the different economic<br />

implications <strong>of</strong> the project.<br />

If one accepts this role for the hydrologist <strong>with</strong>in the planning process<br />

then a number <strong>of</strong> important qualitative implications follow.* It is useful to<br />

describe complex phenomena such as rainfall or run<strong>of</strong>f processes by the application<br />

<strong>of</strong> probability theory o<strong>nl</strong>y from the point <strong>of</strong> view that it produces a more<br />

economical design. If streamflows can be treated as random variables thep it<br />

is consistent to treat the unknown parameters <strong>of</strong> the distributions <strong>of</strong> streamflows<br />

as random variables. To treat the parameters <strong>of</strong> distribution <strong>of</strong> random<br />

variables as random variables is not "permitted" <strong>with</strong>in the framework <strong>of</strong><br />

classical statistics.<br />

The extension <strong>of</strong> this argument is that it is useful and pr<strong>of</strong>essionally<br />

sound to treat any uncertain factor as a random variable if it leads to better<br />

decisions. This includes variables such as the quality <strong>of</strong> workmanship in construction,<br />

cost and benefit adjustments due to inflation as well as the more<br />

traditional hydrologic variables.<br />

The designer should consider three types <strong>of</strong> uncertainty in his analysis -<br />

uncertainty <strong>of</strong> a probabilistic nature (i.e. frequency <strong>of</strong> occurrence), statistical<br />

uncertainty due to the limited number <strong>of</strong> observations from which parameters<br />

are to be estimated, and pr<strong>of</strong>essional uncertainty arising from incomplete information<br />

concerning the underlying process and its probabilistic representation<br />

(Cornell, 1972).<br />

The methodology <strong>of</strong> the decision process must be able to con-<br />

sider these forms <strong>of</strong> uncertainty as well as be able to utilize pr<strong>of</strong>essional<br />

judgement obtained from related experience <strong>with</strong> similar projects.<br />

Bayesian analysis <strong>with</strong>in the framework <strong>of</strong> statistical decision theory<br />

(ñaiffa, 1968) prescribes a methodology for making decisions under uncertainty.<br />

Decision theory allows the decision maker to consider together both the uncertainty<br />

<strong>of</strong> the modelled process, the quantifying <strong>of</strong> the decision outcomes and<br />

the preferences for these outcomes. Bayesian analysis is a probabilistic framework<br />

by which the uncertainty in any design variable and the knowledge about<br />

that variable can be considered. This paper is concerned <strong>with</strong> the latter aspect<br />

<strong>of</strong> the proposed methodology. The application <strong>of</strong> Bayesian analysis in water<br />

resources planning is gaining acceptance as decision makers recognize the<br />

* Parallel arguments have been used previously in support <strong>of</strong> a statistical<br />

decision approach to structural reliability analysis by Cornell (1972).


inherent advantages that combining information sources and treating uncertain<br />

parameters as random variables leads to better designs. In recent years many<br />

researchers have made significant contributions to this area. These include<br />

the work <strong>of</strong> Bernier (1967), Shane and Gaver (1970), Davis et al (1972a)<br />

Bogardi and Szidarovszky (1972) amongst others.*<br />

Probabilistic Model Formulation<br />

471<br />

One area <strong>of</strong> particular concern to water resource planners is the analysis<br />

<strong>of</strong> extreme events, mai<strong>nl</strong>y floods. This problem is especially applicable to the<br />

issues raised earlier since data is <strong>of</strong>ten scarce, <strong>with</strong> the consequences due to<br />

an inadequate design <strong>of</strong>ten severe.**<br />

The issues we wish to focus upon in this paper is a comparison <strong>of</strong> the<br />

classical approach and the Bayesian approach to flood analysis and design when<br />

direct observation <strong>of</strong> extreme events are either scarce, non-existant, or non-<br />

stationary. Substantial urbanization <strong>of</strong> a river basin introduces non-<br />

stationarity effects into the direct observations, thus decreasing their<br />

information content.<br />

The first step in any analysis, classical or Bayesian, is the construction<br />

(or assumption) <strong>of</strong> an underlying probabilistic model which represents the<br />

physical process. Consider the hypothetical streamflow trace presented in<br />

Figure 1. The flows <strong>of</strong> interest are those flows greater than Qo and it is<br />

assumed that flows larger than Qo can be described by a Poisson process (the<br />

time between events are exponentially distributed) <strong>with</strong> an average annual<br />

arrival rate and the probability distribution <strong>of</strong> the flows <strong>of</strong> interest (flows<br />

greater than Qo) can be represented by the exponential distribution<br />

where<br />

This is a fairly general form since the upper tails <strong>of</strong> many distributions<br />

may be represented as exponential. The proposed model has been used for<br />

extreme flows by Shane and Lynn (1964) and Todorovic and Zelenhasic (1970) and<br />

for rainfall events by (Davis et al (1972b)) and Grayman and Eagleson (1971).<br />

*The numerous papers at the International Symposium on Uncertainties in<br />

Hydrologic and <strong>Water</strong> Resource Systems, December 11-14, 1972, Tucson, Arizona,<br />

U.S.A. is pro<strong>of</strong> <strong>of</strong> the growing interest in this field.<br />

**The decision makers may also consider besides economic consequences social<br />

and pr<strong>of</strong>essional consequences due to failure <strong>of</strong> a flood control structure.<br />

These may be loss <strong>of</strong> life, disruption <strong>of</strong> community services and the loss <strong>of</strong><br />

pr<strong>of</strong>essional prestige. On the other hand, over design commits resources that<br />

could be used on other projects.


472<br />

A A<br />

The probability that, in any single occurrence, a discharge z (z = q -<br />

exceeds the discharge z is Pz, where<br />

-a2<br />

Pz = 1 - FZ(z) = e<br />

the process <strong>of</strong> these occurrences is Poisson <strong>with</strong> an average arrival<br />

rate VP and the probability that in time t n exceedances <strong>of</strong> level z will<br />

Z<br />

occur is<br />

n -UP t<br />

P[N = n 1 = (vP,) e<br />

n !<br />

No exceedances <strong>of</strong> z in time t is just<br />

probability function <strong>of</strong> z. Substituting<br />

[ -az<br />

F (z) = fvte z>o<br />

Z<br />

z< o<br />

The probability the z = O is equal to the probability that a peak discharge q<br />

is less than Q,. I If z is such that the probability <strong>of</strong> exceeding z is small<br />

and the arrival rate <strong>of</strong> such events is small then FZ (z) can be approximated by<br />

-a2<br />

FZ (z) 1 - vte<br />

(3)<br />

P [nz = O] = F (2); the cumulative<br />

P from (2) into<br />

Z FZ(z) gives<br />

The probabilistic model <strong>of</strong> the underlying physical process serves both the<br />

classical and Bayesian analyst but in slightly different ways.<br />

Assume that there is no uncertainty in the model itself but o<strong>nl</strong>y in its<br />

parameters CY and V . The classical analyst then obtains point estimators,<br />

V and a , (usually by the maximum likelihood criterion) from the observed<br />

streamflow record. His probabilistic model is<br />

The<br />

the<br />

Bayesian analyst, meanwhile, obtains probability density distributions on<br />

unknown parameters, v and a , from combining all sources <strong>of</strong> information.<br />

The Bayesian approach to the use <strong>of</strong> probabilistic methods recognizes that<br />

the subjective information <strong>of</strong> the analysis is inseparable from the objective<br />

aspects. Subjective infomation is incorporated into the analysis through a<br />

prior probability distribution which reflects the information content. This<br />

prior information is combined <strong>with</strong> objective information - direct data observations<br />

- to provide the analyst <strong>with</strong> a posterior distribution. This reflects<br />

all <strong>of</strong> his information. If the prior information is vague and the sample information<br />

is very good then the posterior distribution <strong>of</strong> the information will be<br />

(5)<br />

QO)


4'1 3<br />

negligibly affected by the prior. The opposite also holds. The prior information<br />

may be looked upon as that information an analyst wovld use if he had no<br />

observable data. In the design for floods a number <strong>of</strong> sources <strong>of</strong> information,<br />

are available. These include such sources as regression equations based on the<br />

physical characteristics <strong>of</strong> the basin (Benson, 1962) and analytical derivation<br />

<strong>of</strong> extreme flow dynamics (Eagleson, 1972) as well as engineering experience and<br />

expertise. To ignore these sources is to throw away potentially significant<br />

information which could lead to better designs. The use <strong>of</strong> diffuse or noninformation<br />

prior is in most cases wrong since it side steps this important<br />

aspect <strong>of</strong> Bayesian theory.<br />

The prior information and the direct observations are combined through<br />

Bayes theorem<br />

where<br />

f" (a) = t(aJUamp1e) f'(a) (7)<br />

f" (a) is the posterior probability distribution <strong>of</strong> parameter a<br />

&(alSampie) is the likelihood function <strong>of</strong> a given the observed<br />

samples.<br />

f'(a) is the prior probability distribution <strong>of</strong> parameter a.<br />

The posterior distribution, f'l(a), can be found analytically if the prior distribution<br />

is a natural conjugate. To obtain the posterior distribution from a<br />

prior which is not a natural conjugate usually requires the application <strong>of</strong><br />

numerical methods.<br />

jugate for both parameters Y and a.<br />

obtained from:<br />

The gamma-1 probability density function is the natural con-<br />

1 -<br />

FZ (2) = FZ<br />

all Y all a<br />

The Bayesian distribution <strong>of</strong> z, FZ (21, is<br />

(zIv,a) f"(v) f"(a) dvda (8)<br />

where FZ (zIv,a) = Fz (z) <strong>of</strong> equation (5)<br />

By assuming the posterior distribution on parameter v to be gamma - 1 <strong>with</strong><br />

parameters u" , SI' and parameter a to be gamma - 1 <strong>with</strong> parameters Y", E"<br />

(these aze obtained <strong>with</strong> natural conjugate priors) permits analytical evaluation<br />

<strong>of</strong> 1 - FZ (2).<br />

v a


474<br />

where<br />

L ""+1 J<br />

1 - F (2) = Ut 1 +E<br />

z<br />

cI=vII+1<br />

E''<br />

3 = - u"+l<br />

S "<br />

This is the probabilistic model for the Bayesian analysis. It is interesting<br />

to note that the form is completely different from classical analysis model<br />

(equation 6).<br />

<strong>Design</strong> Model Formulation<br />

The motivation for developing the probabilistic models <strong>of</strong> extreme events<br />

is to apply them in making decisions. Suppose we are interested in the damage<br />

associated <strong>with</strong> the exceedance flow z which is larger than the flood pro-<br />

tection flow level r . The total cost is comprised <strong>of</strong> a damage cost C,(z)<br />

and a protection cost C (r). For our example, let's assume that the damage<br />

cost can be expressed b!:<br />

C,(z) = C1 (z-r) (10)<br />

while the cost <strong>of</strong> protection can be expressed by:<br />

C,(r) = K + Co r (11)<br />

If the expected criterion is used to evaluate different protection levels then<br />

the expected cost, E[c], <strong>of</strong> protecting for a flow r is<br />

m<br />

z=r<br />

For the classical model f(z) is:<br />

from differentiating equation (6). Thus the annual exp,ected damage E[CZ] from<br />

flooding when flood protection r is provided is<br />

This assumes that r<br />

FZ(z) is valid.<br />

a<br />

is large enough that the upper tail approximation for


In the Bayesian framework equation (12) applies but <strong>with</strong> the Bayesian<br />

density function f(z) which is obtained from equation (9) as:<br />

The annual expected damages due to flooding is<br />

again assuming that<br />

Example Application<br />

the upper tail approximation <strong>of</strong> Fz (z) is valid.<br />

475<br />

The analytical formulations developed here are applied to a river in the<br />

Northeastern region <strong>of</strong> the United States. The mean <strong>of</strong> fhe maximum yearly flood<br />

is about 5800 cfs. Exceedance events were considered to be flows greater than<br />

10,500 cfs which is somewhere around the 10 year recurrence intervals. O<strong>nl</strong>y<br />

three flows in the 37 years <strong>of</strong> record (1929 through 1965) exceeded this base<br />

flow.<br />

Bayesian Parameter Estimation<br />

Estimation for a<br />

Prior information on a , the event magnitude distribution, was obtained<br />

from a regression on 36 other Northeastern United States basins. The regression<br />

related exceedance flows to physical characteristics found <strong>with</strong>in any drainage<br />

basin. The following regression was obtained:<br />

.153 o 2.87 A .81 .74 .54 .65<br />

Qm- St<br />

where*<br />

is mean exceedance flow, in cubic feet per second<br />

% is orographic factor<br />

A is drainage basin area, in square miles<br />

S<br />

T<br />

is main channel slope, in feet per mile<br />

is average January, degrees below freezing, in degrees Fahrenheit<br />

St<br />

is percent <strong>of</strong> surface storage area plus .5 percent<br />

Since partial duration series and annual flood series are virtually identi-<br />

cal above a frequency <strong>of</strong> about the 10 year flood (Langbein, 1949) the use <strong>of</strong> the<br />

annual series for the prior was considered to be adequate for this example.<br />

Research is presently being conducted by the author to study the problems <strong>of</strong><br />

appropriate prior information.<br />

*The physical characteristics are from Benson (1962) and the streamflow data<br />

from the U.S. Geological <strong>Water</strong> Supply Papers. (1301-A, 1721-A, 1901-A).<br />

J


From the regression an estimate <strong>of</strong> the mean exceedance flood, Q and an<br />

estimate <strong>of</strong> the variance <strong>of</strong> the mean flood were found to be:<br />

P9<br />

= 734 cfs<br />

QP<br />

5 2<br />

V[Q ] = 4.9 x 10 (cfs)<br />

P<br />

Due to the assumed distribution <strong>of</strong> the magnitude <strong>of</strong> exceedance events, the mean<br />

exceedance flood can be related to the event magnitude distribution parameter<br />

by Q = l/a. If Q is assumed to be distributed as an inverted gamma -1 distribetion<br />

<strong>with</strong> pargrneters v' and R' then a is distributed gamma -1 <strong>with</strong> parameters<br />

v', $' (biffa and Cchlaifer. 1961); that is<br />

<strong>with</strong><br />

V[Qp] = v'>1<br />

(v')2 (VI-i)<br />

This gave parameters v' = 2, R' = 1468. Thus the prior distribution on O! ,<br />

f' (a) is<br />

-1468a<br />

fgYl(a) = e a2 (i468I3<br />

r (3)<br />

The posterior <strong>of</strong> , f"(a) can now be evaluated by equation (7). Thus<br />

5 -33668a<br />

f" (a) = Ka e<br />

YI<br />

where<br />

(20)<br />

n<br />

The posterior <strong>of</strong> a is gamma -1 <strong>with</strong> parameters E' = + zi ; VI' = V I+ n<br />

Estimation for v .<br />

The estimation <strong>of</strong> prior information on u, the average arrival rate,<br />

involves, as a first step, the estimation <strong>of</strong> the first two central moments <strong>of</strong><br />

the distribution <strong>of</strong> the arrival rate <strong>of</strong> a peak flow that will exceed the base<br />

flow Qo. In our example, this base flow was 10,500 cfs. There are some<br />

probabilistic or statistical methods one may use to approach this problem or<br />

the engineer may have said simply "based upon my experience in the area, my<br />

best estimate <strong>of</strong> v<br />

minus .O25 <strong>of</strong> .l'I.<br />

is .1 and there is a 50-50 chance that v could be plus or<br />

The implication <strong>of</strong> that statement is that the standard


deviation is about ,033. If that is accepted for our example and if a g a m - 1<br />

distribution for the prior<br />

-<br />

<strong>of</strong> V is assumed then<br />

-0'V U'<br />

f' (v) e (s'v) s'<br />

YI<br />

-<br />

r (u'+i)<br />

<strong>with</strong> u' 8<br />

s' = 92<br />

(21)<br />

The posterior distribution <strong>of</strong> , fy1" (u) is just<br />

3 .-37 v8 .-92~<br />

f II (y) = v<br />

Y1<br />

-129~<br />

= v" e<br />

(22)<br />

- yhich is g a m - 1 distributed <strong>with</strong> parameters u" 11, si' = 129, and mean<br />

v= .O85 events per year.<br />

Substituting these into the Bayesian design model <strong>of</strong> Equation (9) yields<br />

- 1 - FZ (z) 5 .085t<br />

-<br />

Thus the Bayesian model, 1 - F (z), <strong>of</strong> equation (23) is shown in<br />

2<br />

Figure 2. The effect <strong>of</strong> considering diffuse prior information (no observations<br />

in no years <strong>of</strong> data) is also shown in Figure 2.<br />

Classical Proceedures<br />

Application <strong>of</strong> the classical estimation proceedures is straight forward.<br />

Estimators for both the average arrival rate, v , and the parameter <strong>of</strong> the<br />

event magnitude distr&bution, a can be obtained by applying the maximum likelihood<br />

criterion. For v , the estimator for v, the likelihood function is:<br />

and the maximum likelihood criterion; 2 = O yields<br />

Similarly for a ;<br />

a,<br />

j = 0 = 3 = .O81<br />

tr<br />

-<br />

37<br />

-5<br />

a = n = 9.3 x 10<br />

zi<br />

i=l


478<br />

A Kolmogorov-Smirnos test on the models using the derived estimators<br />

passed the .10 significance level <strong>with</strong> ease.<br />

Thus the classical estimator model for our example is<br />

-9.3 10-~~<br />

1 - FZ(z) .O811 e<br />

which is the probability <strong>of</strong> observing a peak flow z in the next interval <strong>of</strong><br />

time. The classical model, 1 - F<br />

Z<br />

(z) represented by equation (25), is compared<br />

to the Bayesian model in Figure 2.<br />

<strong>Design</strong> Application<br />

Using cost coefficients for Equations (10) and (11) as being:<br />

4<br />

c1 = $10 Icfs<br />

K = $25 x lo4 equivalent annual cost over a<br />

= $102/cfs proposed 50-year project life.<br />

for the classical design proceedures in Equation (16) utilizing the Bayesian<br />

design model and in Equation (14) for the classical design model.<br />

The expected annual cost <strong>of</strong> providing protection against the 100 year<br />

flood is presented in Table I.<br />

100 yr flood Expected Flood Equivalent Annual<br />

discharge Damages ($1 Protection Cost-50 Yr Life($)<br />

Bayesian Model 17500 7 105 20 105<br />

Classical Model 22500 10.76 lo5 25 105<br />

Table I - Comparisons <strong>of</strong> Costs and Damages for Bayesian<br />

and Classical Models<br />

For each model the flood which had the lowest expected total cost also was the<br />

100 year flood.<br />

Discussion<br />

Incorporating Non-Stationarity Effects<br />

The problems <strong>of</strong> flood analysis when non-stationarity has been introduced<br />

into the streamflow records due to increased development <strong>of</strong> the drainage basin<br />

have not been completely solved. Recent studies by Bras (1972) have shorn<br />

~~


479<br />

increases in flood peaks <strong>of</strong> developed catchments <strong>of</strong> between 30% to 115% depend-<br />

ing upon the particular size and shape <strong>of</strong> the storm. Basin development tends<br />

to remove natural stream storage areas as well as decrease impervious areas and<br />

holding ability <strong>of</strong> natural ground cover. The effects <strong>of</strong> changing these charac-<br />

teristics can best be investigated by a deterministic catchment run<strong>of</strong>f model<br />

that utilizes a stochastic rainfall generator (Harley, Wood and Schaake, 1973).<br />

The Bayesian analyst has a number <strong>of</strong> options open to him which include a<br />

rainfall analysis, a run<strong>of</strong>f analysis from the catchment analysis, and other<br />

approaches. He can either utilize the streamflow data or ignore it, applying<br />

his engineering judgment in many ways.<br />

The classical analysis has few, if any, options open to him. The strict<br />

application <strong>of</strong> his theory permits him o<strong>nl</strong>y to consider the historical record<br />

which will not apply to the developed basin. If the amount <strong>of</strong> development is<br />

small, then the historical record may still contain valuable information but if<br />

extensive modifications have taken place and the classical analyst still uses<br />

his historical record then he must be able to defend it.<br />

Conclusions<br />

The role <strong>of</strong> analysis is to aid decision making. The two approaches presented<br />

here lead to quite different design decisions.<br />

The classical approach restricts the analyst to the observable hydrologic<br />

data to which other information sources can not be added. Furthermore, it is<br />

not possible to include <strong>with</strong>in the analysis other uncertain parameters which<br />

may affect the design.<br />

Instead some other artifical mechanism is used such as<br />

adding a factor <strong>of</strong> safety to the design variable, designing for the largest<br />

possible event or using some other method which can not be related to a mean-<br />

ingful economic (or social) preference criterion.<br />

Too <strong>of</strong>ten too much weight is given to a few observable data points and too<br />

little weight to other available information. Lhe Bayesian analysis is a methodology<br />

which enables the combination <strong>of</strong> information sources as well as allows<br />

the explicit evaluation <strong>of</strong> the effect <strong>of</strong> all sources <strong>of</strong> uncertainty upon the<br />

decision variables. The application <strong>of</strong> the Bayesian approach will lead to<br />

better design than will a classical analysis which is restricted to a few observations<br />

and whose conclusions are difficult to interpret.<br />

Acknowledgments<br />

The work was supported by the Office <strong>of</strong> <strong>Water</strong> Resourc Research, Office<br />

<strong>of</strong> the Interior, United States Government under Grant No. 14-31-0001-9021.<br />

References<br />

1. Benson (1962). "Factors Influencing the Occurrence <strong>of</strong> Floods in a Humid<br />

Region <strong>of</strong> Diverse Terrain" U.S. Geological Survey <strong>Water</strong> Supply Paper 1580-B,<br />

Washington, D.C.


480<br />

2.<br />

3.<br />

4.<br />

5.<br />

6.<br />

7.<br />

8.<br />

9.<br />

10.<br />

11.<br />

12.<br />

13,<br />

Bernier (1967). "Les Methods Bayesiennes En Hydrologie Statistique"<br />

Proceedinvs <strong>of</strong> the Int. Hydro Symp., September 1967, Colorado State<br />

University, Fort Collins, Colorado, USA.<br />

Bogardi and Szidarovszky (1972)."The Margin <strong>of</strong> Safety for Compensating<br />

Losses due to Uncertainties in Hydrological Statistics" Proceedings <strong>of</strong><br />

the Int. Symp on Uncertainties in Hydrologic and <strong>Water</strong> Resource Systems.<br />

Dec. 1972, University <strong>of</strong> Arizona, Tucson, Arizona, USA.<br />

Bras (1972)."Effects <strong>of</strong> Urbanization on Run<strong>of</strong>f Characteristics <strong>of</strong> Small<br />

Basins in Puerto Rico" Unpublished Bachelor <strong>of</strong> Science thesis, Department<br />

<strong>of</strong> Civil Engineering, Massachusetts Institute <strong>of</strong> Technology, Cambridge,<br />

Massachusetts, U.S.A.<br />

Cornell (1972). "Bayesian Statistical Decision Theory and Reliability-<br />

Based <strong>Design</strong>" Structural Safety and Reliability, (A. Freudenthal, ed.),<br />

Pergamon Press, New York.<br />

Davis, Kisiel, and Duckstein (1972a)."Bayesian Decision Theory Applied to<br />

<strong>Design</strong> in <strong>Hydrology</strong>" <strong>Water</strong> <strong>Resources</strong> Research, Vol. 8 No. 1.<br />

Davis, Duckstein and Kisiel (1972b)."Uncertainty in the Return Period <strong>of</strong><br />

Maximum Events : A Bayesian Approach" Proceedings <strong>of</strong> the Int. Symp. on<br />

Uncertainties in Hydrologic and <strong>Water</strong> Resource Systems. December 1972,<br />

University <strong>of</strong> Arizona, Tucson, Arizona, U.S.A.<br />

Eagleson (1972). "Dynamics <strong>of</strong> Flood Frequency" <strong>Water</strong> Resource Research<br />

Vol. 8, No. 4.<br />

Grayman and Eagleson (1971). "Evaluation <strong>of</strong> Radar and Raingage Systems for<br />

Forcasting" Ralph M. Parsons for <strong>Water</strong> <strong>Resources</strong> and Hydrodynamics T.R. No.<br />

138, Department <strong>of</strong> Civil Engineering, M.I.T., Cambridge, Mass. U.S.A.<br />

Harley, Wood, and Schaake (1973). "The Application <strong>of</strong> Hydrologic Models to<br />

Urban Planning" Presented at 54th Annual Meeting, American Geophysical<br />

Union, Washington, D.C., April, 1973.<br />

Langbein a949). "Annual Floods and the Partial Duration Flood Series"<br />

American Geophysical Union Transaction, V. 30, pp. 879-881.<br />

Raiffa (1968). Decision Analysis, Addison-Wesley, Reading, Mass., U.S.A.<br />

Raiffa and Schlaijer (1961). Applied Statistical Decision Theory, M.I.T.<br />

Press, Cambridge, Mass., U.S.A.<br />

14. Shane and Gaver (1970). "Statistical Decision Theory Techniques for the<br />

Revision <strong>of</strong> Mean Flow Regression Estimates" <strong>Water</strong> <strong>Resources</strong> Research,<br />

Vol. 6, No. 6.


16. Todorovic and Felenhasic (1970). "A Stochastic Model for Flood Analysis"<br />

<strong>Water</strong> <strong>Resources</strong> Research, Vol. 6, No. 6.<br />

481<br />

17. United States Department <strong>of</strong> the Interior. "Surface <strong>Water</strong> <strong>of</strong> North Atlantic<br />

Slope Basins, throu$-11950", U.S.G.S.<br />

D.C., 1957.<br />

<strong>Water</strong> Supply Paper f301, Washington,<br />

18. . "Surface <strong>Water</strong> <strong>of</strong> North Atlantic<br />

Slope Basins, 1950-60", U.S.G.S. <strong>Water</strong> Supply Paper 1721, Washington, D.C.,<br />

1969.<br />

19. . "Surface <strong>Water</strong> Supply <strong>of</strong> the U.S.<br />

1961-65Jater Supply Paper 1901, Washington,<br />

D.C., 1969.


482<br />

4<br />

Q<br />

W<br />

TIME<br />

O. DISCHARGE Q I EXCEEDANCE DISCHARGE 2 = Q-Qo<br />

Figure 1: Typical Discharge Record Showing Exceedance Events and<br />

Showing the Probability Density Functions for both Discharges<br />

and Exceedance Events.<br />

Qo


O O<br />

rn<br />

O<br />

2<br />

O<br />

O<br />

O U1<br />

O<br />

O<br />

o<br />

O<br />

i<br />

O<br />

Lrl<br />

ri<br />

O<br />

01<br />

O<br />

O<br />

ln<br />

N<br />

483


Authors and Titles;<br />

axe:<br />

THE USE OF MATHEMATICAL (DETERMINISTIC) MODELS<br />

General Report<br />

bY<br />

J. E. Nash<br />

University College, Galway. Ireland.<br />

At the time <strong>of</strong> writing four papers have been received. These<br />

(1) "A Rainfall-Run<strong>of</strong>f Model Based on the <strong>Water</strong>shed Stream Network" by<br />

J.W. Deleur and N.T. Lee, <strong>of</strong> the School <strong>of</strong> Civil Engineering, Purdue<br />

University, and the Department <strong>of</strong> Agricultural l3conomics <strong>of</strong> the<br />

university <strong>of</strong> Illinois, respectively.<br />

(2) "Monthly Streamflow EstLnation from Limited Data" by C.T. Haan,<br />

<strong>of</strong> the Agricultural Engineering Department, University <strong>of</strong> Kentucky.<br />

(3) "Obtaining <strong>of</strong> Deficient Information by Solving Inverse Problems<br />

from Mathematical run<strong>of</strong>f models", by V.I. Koren and L.S. Kutchent,<br />

<strong>of</strong> the Hydrometeorological Centre <strong>of</strong> the U.S.S.R.<br />

(4) "The. Mathematical Model <strong>of</strong> <strong>Water</strong> Balance for Data Scarce Areas" by<br />

Nabil R<strong>of</strong>ail, <strong>Water</strong> <strong>Resources</strong> Department, Desert Institute <strong>of</strong> Cairo.<br />

Introduction: In view <strong>of</strong> the relatively small number <strong>of</strong> papers it had been<br />

suggested to me by the OrgGisers that I should include some introductory comment<br />

<strong>of</strong> my own,on the subject <strong>of</strong> catchment modelling.<br />

However, while the number <strong>of</strong><br />

Papers is indeed small, they are all interesting and two <strong>of</strong> them are <strong>of</strong> a


486<br />

mathematical nature and will require time to elucidate.<br />

interesting,in that it presents a practical tool developed and used in the<br />

Soviet Union but, as far as I am aware, not generally known in the West.<br />

paper also happens, understandably, to be very difficult to follow, and on<br />

these two accounts, I propose to devote a somewhat disproportionate part <strong>of</strong> the<br />

time available to its consideration. I feel sure that the other authors will<br />

not consider this in any way a slight and, as I am sure that this distinguished<br />

audience would prefer me to devote any time available to the consideration<br />

<strong>of</strong> khis interesting technique, I shall keep my own general comments on the<br />

subject <strong>of</strong> modelling as brief as possible.<br />

Hydrological Modelling:<br />

One <strong>of</strong> these is particular3<br />

This<br />

The variety <strong>of</strong> titles among the papers we are considering<br />

reflects the widely different senses in which the term modelling is understood.<br />

Nevertheless, there is a strong common link between them.<br />

that a natural phenomenon such as the conversion <strong>of</strong> rainfall into discharge, or<br />

the movement <strong>of</strong> water in a porous medium, is represented by an hypothesis or<br />

model, expressed as a series <strong>of</strong> operations which are,performed<br />

This would seem to be,<br />

on one<br />

function <strong>of</strong> time (the input) to convert it to another function <strong>of</strong> time (the<br />

output), or as a single mathematical relationship, a partial or ordinary<br />

differential equation which must be solved in terms <strong>of</strong> boundary CQnditions.<br />

The relationship between the three elements may be represented by<br />

Where the relationship is <strong>of</strong> a causal nature this may be indicated by<br />

6 f fe.c E-<br />

y ?)


I make this distinction because the mathematical solution <strong>of</strong> such problems is<br />

<strong>of</strong>ten against the direction ,<strong>of</strong> the arrow, which from the mathematical point <strong>of</strong><br />

view may,therefore,be considered irrelevant. I shall use the terms cause and<br />

487<br />

effect for emphasis, o<strong>nl</strong>y when the direction <strong>of</strong> the arrow is physically relevant<br />

Either diagram represents a relationship between three quantities one o<strong>nl</strong>y <strong>of</strong><br />

which may be unknown in any realistic problem.<br />

The solution sought may be the output, the input, or a description <strong>of</strong>,<br />

(or parameters <strong>of</strong>) the operation itself (e.g. a unit hydrograph or the coefficients<br />

<strong>of</strong> a differential equation).<br />

Generally speakingrit is true in the hydrological context that the operations,<br />

viewed in the direction from cause to effect are stablelin the sense that bounded<br />

causes produce bounded effects and small variations in the causes produce smaller<br />

variation in the effects.<br />

Precisely because <strong>of</strong> this fact, the inverse operation<br />

discussed by Koren and Kutchment, <strong>of</strong> the discovery <strong>of</strong> the cause <strong>of</strong> an observed<br />

effect, or the discovery <strong>of</strong> an operation itself, tends to be unstable and small<br />

variations oierrors in the observed output produce larger variations or errors<br />

in the computed cause,or the computed values <strong>of</strong> the parameters <strong>of</strong> the operation.<br />

Por this reason the solution <strong>of</strong> the inverse problem is usually very much more<br />

difficult than the solution <strong>of</strong> the direct problem.<br />

The Direct Problem:<br />

which arise usually involve questions <strong>of</strong> convergence <strong>of</strong> finite difference<br />

solutions <strong>of</strong> differential equations.<br />

This has at least a logical simplicity and the difficulties<br />

The paper by Nabill R<strong>of</strong>ail describes the<br />

solution <strong>of</strong> one such problem which we shall discuss in some deail later.


488<br />

Among the inverse problems it is useful to distinguish three types<br />

(a) The input is unknown<br />

(b) The values <strong>of</strong> the parameters <strong>of</strong> the operation are unknowr<br />

(c) The form and parameter values <strong>of</strong> the operation are unknowr<br />

In the particular case <strong>of</strong> a lumped linear system where the input, the<br />

operation and the output may be represented by<br />

L<br />

where x(t) is the input, y(t) is the output and h(t) the impulse response, the<br />

three classes collapse to one. For such systems the form <strong>of</strong> the operation may<br />

be described uniquely by the impulse response <strong>of</strong> the system and,theoretically at<br />

least,this may be found <strong>with</strong>out prior specification <strong>of</strong> its form. Therefore the<br />

second and third classes merge.<br />

Furthermore, because <strong>of</strong> the symmetry in h and<br />

x in the two equations, a symmetry which becomes more obvious when the relationshi1<br />

ià expressed in terms <strong>of</strong> Lapace transforms through the Faltung theorm,<br />

Ys) = X(sj HU) (3)<br />

the problems <strong>of</strong> discovering h and x are mathematically the same, so that all three<br />

distinctions vanish.<br />

in the no<strong>nl</strong>inear problem, however, or when recognition<br />

<strong>of</strong> the system implies discovery <strong>of</strong> the coefficients <strong>of</strong> a partial differential<br />

equation (a distributed system) the distinctions remain valid.<br />

The Lumped,Linear Model:<br />

For functions which are not simple expressions, it is<br />

usually easiest to deal <strong>with</strong> these models in discrete form.<br />

Eqs. 1 and 2 are<br />

replaced by €Y] = IhJ i4 (4 1<br />

and ius = PI €h3 c=>


where [x] and<br />

at equal time invervals.<br />

[y] are vectors <strong>of</strong> the input and output respectively, sampled<br />

ordina tes <strong>of</strong> the impulse response as<br />

h, O 0:<br />

[hJ is a rectangular matrix formed from the<br />

[h] =<br />

Similarly Lx] in eq. 5 is a rectangular matrix formed from the input<br />

ordinates in the same way.<br />

.<br />

The direct. problem <strong>of</strong> finding fy3 is trivial. The inverse problems <strong>of</strong><br />

finding 1.3 <strong>of</strong> eq. 4 or {XI from eq. 5 are mathematically the same.<br />

Because <strong>of</strong> the,great stability <strong>of</strong> the operation in the direct direction,<br />

solution <strong>of</strong> the inverse problems tends to be very unstable and therefore<br />

489<br />

difficult. Traditional means usually involve a least squares solution;(Snyder)<br />

or the imposition <strong>of</strong> constraints on the impulse response e.g. harmonic analysis<br />

<strong>with</strong> a limited number <strong>of</strong> terms (O’D~nnell). A new method <strong>of</strong> obtaining a least<br />

squares solution under a constraint is described in the paper by Koren and<br />

Kutchment.<br />

Distributed Linear Models: If the input is distributed in space in a<br />

constant manner the direct problem is essentially the same as that <strong>of</strong> the<br />

lumped linear system (Kraijenh<strong>of</strong>f van de Leur, Venetis). If however the<br />

input is arbitrarily distributed in space,the differential equation must be<br />

solved numerically for the direct problem, usually by reducing the problem<br />

to linear difference equations, which are solved at the node points <strong>of</strong> an xt<br />

plane. An example is provided in the paper by Nabil R<strong>of</strong>ail.


490<br />

Threatment <strong>of</strong> the inverse problem to discover the input or the coefficients<br />

in a known linear system expressed as a partial differential equation,are rare.<br />

An attempt to discover the characteristics <strong>of</strong> an aquifer is described in ref. 6 <strong>of</strong><br />

the paper by Koren and Kutchment, and the paper itself gives two examples <strong>of</strong> such ai<br />

attempt to determine values <strong>of</strong> the conveyances and cross sectional areas as<br />

functions <strong>of</strong> space and time in an open channel.<br />

The General No<strong>nl</strong>inear Problem: The direct problems are again relatively<br />

straightforward - the no<strong>nl</strong>inearity complicates the numerical solution <strong>of</strong> distribute(<br />

systems (partial differential equations) but .the lumped parameters systems are<br />

scarcely affected.<br />

The Inverse Problem involves, generally, postulation <strong>of</strong> the form <strong>of</strong> the<br />

operation (i.e. a conceptual model) and estimation <strong>of</strong> the parameters<br />

successive approximations. The first approximations are inserted in the model<br />

and the output computed.<br />

This is compared <strong>with</strong> the observed output and a<br />

single expression <strong>of</strong> the observed errors (the objective function) is systematically<br />

reduced by subsequent trial and error adjustments <strong>of</strong> the parameters values.<br />

Examples are provided in the papers by Deleur and Lee and Haan. The major'<br />

difficulties <strong>with</strong> this method are that the set <strong>of</strong> solutions obtained may not<br />

be unique and, particularly when two or more parameters represent similar<br />

operations,the optimised values are subject to very .high sampling variance.<br />

It would be interesting to speculate whether such problems could be made amenable<br />

to direct least squares approximations, as so <strong>of</strong>ten used in the corresponding<br />

linear case.<br />

Theorétically, this would seem possible, but it may be, as seems<br />

to be generally assumed, that the complexity. <strong>of</strong> the equation representing the<br />

by


dependence <strong>of</strong> the objective function On the parameters might render its formulation<br />

difficulty. I feel however that this possibility ought to be explored.<br />

Having thus classified the papers according to the nature <strong>of</strong> the problem discussed<br />

we corne to a consideration <strong>of</strong> the papers themselves in some detail. These I<br />

would like to take in the order <strong>of</strong> their classification above.<br />

491


492<br />

A Mathematical Model <strong>of</strong> <strong>Water</strong> Balance for Data Scarce Areas<br />

by R<strong>of</strong>ail<br />

The title <strong>of</strong> this paper is somewhat misleading.<br />

fact the numerical solution <strong>of</strong> the linearised equations <strong>of</strong> motion <strong>of</strong> groundwater<br />

in an unconfined aquifer.<br />

distributed linear system. Neglecting any vertical component <strong>of</strong> velocity, the<br />

horizontal components parallel to the x and y axis in a homogeneous aquifer are<br />

proportional to the gradients <strong>of</strong> the piezometric head (h+z). The constant <strong>of</strong><br />

proportionality (k) is known as the coefficient <strong>of</strong> permeability, (authors eqs.<br />

1 and 2).<br />

The subject matter is in<br />

It is therefore a case <strong>of</strong> a direct solution <strong>of</strong> a<br />

The continuity equation (aut4ors eq.3) expresses the fact that the rate<br />

<strong>of</strong> rise <strong>of</strong> the surface <strong>of</strong> saturation<br />

, at a’point in the aquifer, is<br />

proportional to the rate <strong>of</strong> percolation down to the aquifer at this point, plus<br />

the net rate <strong>of</strong> flow towards the point (the negative <strong>of</strong> the divergence). The<br />

constant <strong>of</strong> proportionality is known as the specific yield and is given the<br />

symbol/h in authors eq. 3. These two equations are combined in the authors eq.4<br />

by replacing the velocity terms by the corresponding gradients <strong>of</strong> the piezometri<br />

head, yielding an equation in the head o<strong>nl</strong>y.<br />

3Yhtz) k ukæl , a h<br />

3% b>c<br />

03 1


This equation contains first and second order derivatives <strong>of</strong> the depth h and<br />

the elevation <strong>of</strong> the aquifer bed z, and is non-linear due to the occurrence <strong>of</strong><br />

- By further assuming that the gradient <strong>of</strong> h is small relative to that <strong>of</strong> z,<br />

terms such as (&become ah small relative to s. 9s and are dropped,thus<br />

linearibing the equation (authors'eq. 5)<br />

9 8 - h $:jL- WZ. ah<br />

11<br />

az- - arc- E<br />

bLh hg?, ah .k-- -<br />

-h--, -<br />

bu<br />

DY ay k<br />

493<br />

N =o (Id<br />

This assumption is attributed to"Boussenzq" and is stated to be that the<br />

powers <strong>of</strong> derivatives <strong>of</strong> the first order are <strong>of</strong> a lesser order <strong>of</strong> magnitude<br />

than the derivatives themselves. This would, <strong>of</strong> course, be an acceptable assumption<br />

but it does not seem to be that which is in fact made by the author in obtaining<br />

his eq. 5 from eq. 4. Perhaps the authors would like to comment on this.<br />

To emphasise the linearity <strong>of</strong> eq. 5 in terms <strong>of</strong> the partial derivatives <strong>of</strong> h,<br />

the partial derivatives <strong>of</strong> z (assumed to be known) are written as 7, and fy<br />

and the second order derivatives (also assumed to be known as r, and fiv<br />

in eq. 10. (Note that in the text the quantities 7,, and Vy are incorrectly<br />

stated to be the partial derivatives <strong>of</strong> h; this in o<strong>nl</strong>y a printing errer).<br />

In order to advance the solution from time n'to the n+l the author<br />

replaces the equation <strong>of</strong> motion <strong>with</strong> two distinct finite difference approximations.


494<br />

The first is applied to the first half <strong>of</strong> the time interval and the second to<br />

the second half. For ease <strong>of</strong> comparison I reproduce here the equivalences as<br />

used in the two successive steps.<br />

j and k refer to the node point location in the x and y directions and n<br />

to the number <strong>of</strong> the time interval. approximation<br />

1st half 2nd half<br />

derivative step.<br />

step<br />

-<br />

These approximations have a certain symmetry, which when the finite differenc<br />

approximations are added for the two half time steps,make the results consistent<br />

<strong>with</strong> the original equation up to the second order. They have the additional merit<br />

that the finite difference<br />

written implicity in terms<br />

equation for the first half step in time, can be<br />

n 42<br />

<strong>of</strong> linear combination <strong>of</strong> (h,-l ., h, and hJ+l)<br />

<strong>with</strong> the coefficients all known (author's eq. il). Similarly the equation<br />

applied to the second<br />

rt'<br />

half step yields an implicit equation linear in<br />

h, and hrti ail the coefficients again being known (authors eq. 12).<br />

(LI<br />

These implicit equations can be solved as a linear set when the boundary condition8<br />

are provided to yield h for all node points at a single time.<br />

the solution through time.<br />

Repetition extends


"A rainfall run<strong>of</strong>f model based on the watershed and stream network"<br />

ßy Delleur and Lee<br />

The problem discussed, i.e. that <strong>of</strong> recognising a lumpedpon-linear model,<br />

is in the inverse category and the method used is that <strong>of</strong> postulating the form<br />

<strong>of</strong> the system and optimisation <strong>of</strong> the parameters.<br />

The authors begin by pointing out that even <strong>with</strong> forty years <strong>of</strong> record the<br />

errors in estimating the parameters <strong>of</strong> a stochastic model <strong>of</strong> annual flows<br />

may be quite high.<br />

rainfall-run<strong>of</strong>f process,likewise,require long term series <strong>of</strong> both the rainfall<br />

and run<strong>of</strong>f for their calibration. They conclude, therefore, that for regions<br />

<strong>with</strong> inadequate data one may have to resort to deterministic models either <strong>of</strong><br />

the "black box" or <strong>of</strong> the "physical" type.<br />

to whether the model form attempts to mirror the physical processes or is merely<br />

a linear regression. The authors point to the obvious deficiency <strong>of</strong> black<br />

box models,that they cannot be transferred from one location to another because<br />

there is an absense <strong>of</strong> a one to one relationship between the parameters <strong>of</strong> the<br />

model and the parameters<br />

They mention also that stochastic linear models <strong>of</strong> the<br />

This distinction is made according<br />

the watershed. They conclude, therefore, that a<br />

495<br />

physical model requiring o<strong>nl</strong>y a small number <strong>of</strong> identifiable parameters or a model<br />

based on data which can be obtained in a relatively short time is required.<br />

I am not sure what the authors mean by 'a stochastic linear model <strong>of</strong> the<br />

rainfall run<strong>of</strong>f process" nor am I sure that these several models are<br />

alternatives for the same piirpose.<br />

It seems to me that if one requires a<br />

stochastic model in order to generate a time series having the properties <strong>of</strong><br />

the observed sample it can scarcely be rubstituted for by a deterministic model<br />

(whether <strong>of</strong> a black box nature or otherwise) relating rainfall to discharge.


496<br />

Before such a model could be used to produce a synthetic discharge record the<br />

stochastic properties <strong>of</strong> the rainfall input would have to be computed and a<br />

synthetic rainfall record fed into the deterministic model.<br />

that the problem had merely been transferred rather than solved by the substitution<br />

<strong>of</strong> the deterministic model.<br />

Thus it would seem<br />

If <strong>of</strong> course a much longer ,rainfall record was<br />

available this might be useful. The authors intention is to provide a deterministi<br />

model <strong>with</strong> a small number <strong>of</strong> parameters preferably identifiable from the catchment<br />

characteristics. I don't .think there would be any argument about the usefulness<br />

<strong>of</strong> such a model even if it would not substitute for a stochastic model for a<br />

different purpose.<br />

The authors suggest that the availability <strong>of</strong> modern techniques <strong>of</strong> photography<br />

and general remote sensing technology make it possible to observe relevant<br />

catchment characteristics on a large scale and therefore to include these in the<br />

deterministic model.<br />

In the authors'model use,is made <strong>of</strong> the following catchment<br />

characteristics obtained by aerial photography - the plan form <strong>of</strong> the stream<br />

network, the topography, and the soil type. The model attempts to relate the<br />

areal mean <strong>of</strong> the rainfall to the discharge at the gauging site, both as functions<br />

<strong>of</strong> time.<br />

area which is the area contributing at any given instant to the flow at the<br />

gauging station i.e. the function <strong>of</strong> time representing that portion <strong>of</strong> the<br />

catchment from which run<strong>of</strong>f is currently passing the gauging station at the time<br />

in question.<br />

The structure <strong>of</strong> the model depends largely on the concept <strong>of</strong> a contributi<br />

Obviously the contributing area is a functi,on <strong>of</strong> the catchment<br />

wetness and the model for this quantity, described by the authors'eq. 1 is clearly<br />

dependent upon the antecedent rainfall.


The contribut?.ng area at timeibt is A (fdk) and the total catchment area is A,.<br />

I assume that in eq.11 the second negative sign from the right in the numerator<br />

should in fact be positive, and <strong>with</strong> this interpretation I understand the<br />

assumption <strong>of</strong> eq. 11 to be that the contributing area expressed as a proportion<br />

<strong>of</strong> the total catchment area varies <strong>with</strong> the Nth power <strong>of</strong> a wetness index, which<br />

is obtained by the sumation up to the time under consideration <strong>of</strong> the proportion<br />

<strong>of</strong> the net rainfall in each previous time interval, weighted in an exponential<br />

manner according to remoteness in time. Later it is stated that this equation<br />

is subject to a constraint <strong>of</strong> continuity, that is, that the total effective<br />

rainfall is equal to the total discharge. It is not explained how khis condition<br />

is fulfilled but if eq. 11 is taken as a statement <strong>of</strong> proportionality rather than<br />

<strong>of</strong> equality, giving, therefore, the relative valuaat ail times <strong>of</strong> the contributing<br />

areas, the constant <strong>of</strong> proportionality may be chosen to satisfy the requirement<br />

<strong>of</strong> continuity.<br />

This is my interpretation <strong>of</strong> the authors'intention. The quantity<br />

B would seem to be a constant loss rate existing throughout the storm. I think,<br />

perhaps, the authors might like to clarify these few points and explain what<br />

happens if the rainfall intensity is less han B.<br />

The next step is to distribute the total contributing area A(7At) along the<br />

channel. <strong>of</strong> the catchment. The contributing area per unit length <strong>of</strong> channel<br />

At> is obtained under the following assumptions.<br />

1. Constant velocity at a given time throughout the catchment.<br />

2. Uniform distribution <strong>of</strong> drainage density.<br />

3. Uniform distribution throughout the catchment <strong>of</strong> first order streams.<br />

497


498<br />

Under these assumptions the total contributing area at any given time<br />

is distributed according to the distance (or time <strong>of</strong> flow) from the gauging site,<br />

in th? same way as tli? number <strong>of</strong> channels is distributed according to distance<br />

from the gauging site. Thus it is possible,on an examination <strong>of</strong> the stream<br />

system,to define the function al2 6 k) in space and time.<br />

The input <strong>of</strong> each reach, in each time element, is obtained by multiplying<br />

the appropriate contributing area by the net rainfall intensity (i.e. the<br />

total rainfall intensity minus the loss rate) and this input is routed through<br />

the channel system by a 1inear.method (Dooge and Harley) to give the output<br />

at the gauging station as a function <strong>of</strong> time.<br />

Because the routing is linear the output due to the input on a given reach<br />

could be represented by a convolution integral (but the kernel may vary from<br />

reach to reach). The total output as a function <strong>of</strong> time is obtained as the<br />

spatial integral <strong>of</strong> this convolution integral. The kernels themselves vary<br />

<strong>with</strong> stream slope, a reference discharge, and a roughness parameter.<br />

To reduce the complexity it is proposed to replace the actual stream network<br />

by a "folded up" one in which (I believe) all stream elements lying the same<br />

distance from the gauging site would be assumed equal to one another in the<br />

properties <strong>of</strong> length, roughness, slope and reference discharge. They would<br />

also agree, <strong>of</strong> course, in the depth <strong>of</strong> contributing area. It is mentioned later<br />

that the roughness and slope parameters are obtained by actual observation but<br />

it is not clear to me how this can be done in the idealised or "folded up" model.


The parameters <strong>of</strong> the model are:<br />

A catchment area<br />

D and N numerical parameters in eq. 1.1<br />

B the constant loss rate<br />

CZ the roughness coefficient (one parameter o<strong>nl</strong>y)<br />

QR the reference discharge (one parameter)<br />

SL the main charnel slope (one parameter)<br />

Subsequently in the work, the parameter B was set to zero and the area<br />

49 9<br />

and slope parameters were obtained by physical measurement (I think the authors<br />

might like to explain this a little further) the remaining parameters D,N, CZ<br />

and QR were obtained by optimisation.<br />

Details <strong>of</strong> the method are not given,<br />

nor are we told what sampling variance <strong>of</strong> the optimum values was obtained.<br />

We are told,however,that the model was insensitive to D (when D exceeded 0.5)<br />

and a fixed value <strong>of</strong> D = 0.8 was chosen. QR was found to vary o<strong>nl</strong>y slightly<br />

between 1.1 and 1.4 cubic meters per second for rainfall values ranging from<br />

2.5. to 14 milimeters. Thus o<strong>nl</strong>y N and CZ are left as free parameters.<br />

The model was applied to 13 basins in the eastern haî€ <strong>of</strong> the United<br />

'States and when.the optimised values had been obtained, relations were sought<br />

between these and the catchment characteristics, so that these relations could<br />

be used to provide estima'tes <strong>of</strong> the parameters values for use subsequently<br />

on wigauged catchments.<br />

N was found to vary <strong>with</strong> the ratio <strong>of</strong> run<strong>of</strong>f to rainfall volumes for the<br />

storm according to authors eq. 8.<br />

# = esp (0.464- R,)/O.24L


500<br />

This ratio itself was found to vary between storms in accordance <strong>with</strong> the<br />

daily temperature, an index <strong>of</strong> soil permeability, rainfall volume, and maximum<br />

in t ens it y e<br />

CZ was significantly related to basin area, stream slope and the base<br />

flow value at the time <strong>of</strong> occurence <strong>of</strong> the storm.<br />

Using these relations between the model and the catchment to estimate<br />

the parameters <strong>of</strong> the former for insertion in the model which was subsequently<br />

fed <strong>with</strong>'the observed rainfall, good results were obtained, hydrograph peaks<br />

being reproduced <strong>with</strong> an error <strong>of</strong> the order <strong>of</strong> 20% in magnitude, and 10% in<br />

timing .


Monthly streamflow estimation from limited data<br />

by Haan.<br />

501<br />

The purpose <strong>of</strong> the exercise described in this paper is very similar to that<br />

in the paper by Deleur and Lee.<br />

monthly run<strong>of</strong>f from daily rainfall and the parameters are related to catchment<br />

characteristics by regression equations. The model is <strong>of</strong> the physical rather<br />

than the "black box" type according to the distinction <strong>of</strong> Deleur and Lee<br />

and according to the classification I have suggested, the problem is inverse<br />

non-linear lumped.<br />

A four parameter model is used to compute<br />

The structure <strong>of</strong> the model is not described but we are told that there<br />

are four parameters.<br />

fmax- maximum infiltration rate (cm-hr)<br />

-- maximum daily seepage loss (cm)<br />

'max<br />

c -- "the water holding capacity <strong>of</strong> that part <strong>of</strong> the soil, from<br />

which the evapo-transpiration rate is less than the potential<br />

rate, u<strong>nl</strong>ess this portion <strong>of</strong> the soil is saturated".<br />

F -- fraction <strong>of</strong> seepage that becomes run<strong>of</strong>f.<br />

s<br />

The input to the model is a series <strong>of</strong> daily rainfall values and average<br />

monthly values <strong>of</strong> potential evaporation (evapo-transpirat'ion).<br />

The optimisation is obtained by comparing computed and observed values<br />

<strong>of</strong> monthly discharges and summing the squares <strong>of</strong> the errors to obtain the<br />

objective function.<br />

in turn.<br />

The search is carried out along the axis <strong>of</strong> each parameter


502<br />

The model was.app1ied to 27 catchments in Kentucky and South Carolina and<br />

a four percent average error was found in the prediction <strong>of</strong> the annual discharge.<br />

This <strong>of</strong> course is not a very efficient test <strong>of</strong> the model. Details <strong>of</strong> the results<br />

obtained are not provided - in particular the estimates <strong>of</strong> the sampling variances<br />

<strong>of</strong> the optimum parameter values are not provided.<br />

To provide for ungauged catchments,regressions were sought for the optimum<br />

values <strong>of</strong> the parameters obtained from 17 catchments on certain characteristics<br />

<strong>of</strong> these catchments. The independent variables were 12 in number (see table 1<br />

<strong>of</strong> the paper) leaving, it would seem, o<strong>nl</strong>y 5 degrees <strong>of</strong> freedöm, though perhaps<br />

even this is an overestimate as covarience terms appear in the regression equations<br />

It would be interesting to learn how significant the coefficients in these<br />

equations appear to be.<br />

Having obtained the regression equation the model was applied to six<br />

catchments not used in obtaining the regressions. The model parameters were<br />

obtained from the regressions and the run<strong>of</strong>f simulated.<br />

the total run<strong>of</strong>f for the whole period varied from 1.8 to 11.8.<br />

do not indicate how the model performed over shorter periods, for example <strong>of</strong><br />

one year, one month, peak flows, etc.,etc..<br />

Percentage errors for<br />

These figures<br />

On a single catchment the effects <strong>of</strong> different methods <strong>of</strong> parameter<br />

estimation are explored.<br />

regression equations asd a percentage error (in the total flow?) <strong>of</strong> 8.64%<br />

observed.<br />

increased this figure to 10.13% and when 2 or 3 years <strong>of</strong> records were so used<br />

figures <strong>of</strong> 2.19 and 9.38 were found.<br />

one.<br />

Firstly, the parameters are estimated from the<br />

Optimisation <strong>of</strong> the parameters in the first year <strong>of</strong> record surprisingly<br />

The last optimisation was a rather curious<br />

The parameters were first obtained through optimisation in the first years


ecord and the remaining 21 years Of Output simulated. Next the worst two <strong>of</strong><br />

these years, from the point Of View Of agreement between computed and observed<br />

outputs, were noted and the parameters optimised.again,independently in the<br />

records <strong>of</strong> these two years.<br />

averages <strong>of</strong> the two sets weighted according to the sum <strong>of</strong> deviations <strong>of</strong><br />

observed and simulated flows.<br />

The final parameters were taken as weighted<br />

using these final values <strong>of</strong> the model parameters was made the observed<br />

error in the total discharge was o<strong>nl</strong>y 0.56%.<br />

503<br />

When the simulation for the full period <strong>of</strong> record


504<br />

"Obtaining <strong>of</strong> Deficient Information by solving inverse problems for Mathematics<br />

Run<strong>of</strong>f Models" by Koren and Kutchment.<br />

The authÒrs'definition <strong>of</strong> an inverse problem is in agreement <strong>with</strong> %hat which<br />

1 have been using.<br />

problems and mention the lack <strong>of</strong> uniqueness <strong>of</strong> the solutions obtained by<br />

postulating the form <strong>of</strong> the operation and adjusting the coefficient or parameters<br />

by trial and error.<br />

Tikonev which restores the proper posing <strong>of</strong> the problem and limits the possible<br />

variation <strong>of</strong> the solution in accordance <strong>with</strong> "a priori" information on the<br />

s o lu t ion.<br />

They explain the difficulty <strong>of</strong> obtaining solutions to such<br />

Instead they propose the application <strong>of</strong> an algorithm due to<br />

Unfortunately, I am not familiar <strong>with</strong> the sources quoted and my interpretatio<br />

<strong>of</strong> the method derives solely fromthe present paper.<br />

I would hope the authors<br />

would forgive me if I misinterpret their intention and I would hope that, if<br />

at all possible, time should be provided to allow them to correct me and explain<br />

sezral points <strong>of</strong> difficulty which I stil1,o<strong>nl</strong>y very imperfectly,understand.<br />

The method involves the algebraic minimisation <strong>of</strong> an objective funtion and<br />

is akin to Lagrange's method <strong>of</strong> undertermined multipliers.<br />

Consider a function F(h) where h is a vector .hl,h2...and suppose<br />

we wish to minimise F(h) subject to a constraint on h, e.g.T(h) = O.<br />

Lagrange's method states that the conditional minimum <strong>of</strong> F(h) occurs at the<br />

same h ao the unconditional minimum <strong>of</strong> G(h,a) where


G(h,oc) a F(h) +- 9th) (is 1<br />

A formal algebraic pro<strong>of</strong> is possible but scarcely necessary.<br />

constraint cp(i-i) = O the functions G(h,*) and F(h)<br />

Along the<br />

are identical and therefore<br />

their (conditional) minima agree. But the unconditional minimum <strong>of</strong> G(h,a)<br />

obtained by differentiating G(h,ch) <strong>with</strong> respect to h a ndu and simultaneously<br />

equating the derivatives to zero, implies q(h) = O or the general (unconditional)<br />

and conditional minima <strong>of</strong> G(h,a) agree.<br />

<strong>of</strong> C(h,5) gives the value <strong>of</strong> h which corresponds the conditional minimum <strong>of</strong> F(h).<br />

An optimum value for a is also found.<br />

to be an adaptation rather than the straightforward use <strong>of</strong> this method. A<br />

series <strong>of</strong> values <strong>of</strong> the vector h which minimise G(h,@) for a series <strong>of</strong> values<br />

<strong>of</strong> agradually increasing from zero toward the optimum (SC are found by<br />

opt<br />

differentiating. The first <strong>of</strong> these vectors h (corresponding to = O) corresponds<br />

505<br />

to the unconditional minimum <strong>of</strong> F(h). The last (corresponding toca*<br />

opt<br />

corresponds to the conditional minimum (i.e. to the constraint fully implemented)<br />

and the intermediate solutions correspond to the partial implementation <strong>of</strong> the<br />

constraint.<br />

Consequently the unconditional minimum<br />

The method used by the authors would seem<br />

in this way the investigator is enabled to seek about in the vicinity <strong>of</strong> the<br />

optimum h for one which provides a reasonable compromise between satisfying the<br />

constraints and minimising the function.<br />

in the three examples quoted in the paper the physical problem is reduced,<br />

in one case after the application <strong>of</strong> much ingenuity, to the solution <strong>of</strong> a set <strong>of</strong><br />

linear algebraic eqs.<br />

4<br />

Q =AZ (I 6)<br />

Where Q and h are vectors and A a rectangular matrix. Assuming redundancy among<br />

the equations a least squares solution could be found by minimising<br />

F(h) 5 /I Ph- all"<br />

(I 7J


506<br />

As shown by Snyder, the solution <strong>of</strong> this equation is<br />

A*Ah = A*Q (12)<br />

or h = (A*A)-l A*Q (1 9)<br />

In the inverse problem, in the hydrological context (e.g. h is the impulse<br />

response or the input to a linear system) this equation is <strong>of</strong>ten badly conditioned<br />

and the h obtained may be seriously distorted by small errors..in Q or A.<br />

In particular, h may fail to conform to some physical requirements (e.g. unit<br />

area or smoothness <strong>of</strong> the impulse response). The authors method is to minimise<br />

i.e., to find h from<br />

(A*A+ aE)h = A* Q (where i? is the unit matrix)<br />

<strong>with</strong> preselected values <strong>of</strong> e(presumab1y increasing from zero.<br />

Obviously the smaller the value <strong>of</strong> q the more /lh112 is permitted to increase<br />

and therefore increasing q corresponds to increasing the permissible fluctuation<br />

in h.<br />

Presumably a selection is then made between the several h, bearing in<br />

mind that the nearer oi is to zero the nearer h is to the least squares solution<br />

<strong>of</strong> the equation.<br />

It is clear that the constraint need not be precisely stated. It is sufficiei<br />

that the coefficient <strong>of</strong> arepresents some quantity which increases <strong>with</strong> the<br />

undesirable property <strong>of</strong> h.<br />

the Lagrangian method would probably be the better.<br />

If the constraint can be precisely stated,e.g.rh = 1,<br />

Of the three examples quoted by the authors, the first involves finding the<br />

effective rainfall input given the impulse response and the discharge.<br />

problem as we have seen is identical (even in the constraint) to that <strong>of</strong> finding<br />

the unit hydrograph given the input and output. The authors mentioned various<br />

The


constraints includkigrh = 1 which would yield<br />

9 =Ikh-QI\ + aZh<br />

and a smoothness constraint /h/ yielding<br />

=Ih-Q/I + ec )I hl<br />

Straightforward application <strong>of</strong> Lagrange s method would <strong>of</strong> course yield h = O<br />

which would be useless. The solutions for lesser values <strong>of</strong> &would permit h # O<br />

2<br />

while restraining /h// .<br />

The second problem discussed by the authors is that <strong>of</strong> discovering the<br />

coefficients <strong>of</strong> the Saint-Venant eqs. for flow-in open channels<br />

- .II<br />

;; = $+$*&(e)<br />

as +Fk<br />

+i&($)<br />

507<br />

(d<br />

= 0 )<br />

This problem arises in, for example, flood routing, where it is impracticable<br />

to measure the conveyance and areal relations K(z,x) and F(z,x) for each<br />

cross section.<br />

from observations made on the discharges and waterlevels as functions <strong>of</strong> space<br />

and time, Q=Q(x,t) and z=z(x,t), during the passage <strong>of</strong> a particular flood.<br />

ûnce.these relations have been established they may be used directly in subsequent<br />

routing operations.<br />

Instead, smoothed values <strong>of</strong> these functions may be obtained<br />

The continuity equation integrated <strong>with</strong> respect to x, provides<br />

Q(x, t >-Q(o, t 1 = & F (i,, t 1%<br />

where 7) is a dummy variable along the length x.<br />

In ?finite difference form,<br />

this equation applied to a reach <strong>of</strong> channel from K=O to K=i, becomes<br />

f$ (j+l, k 1 + F (j+l, k+l 1-F (j , k 1-F ( j , k+l)]<br />

I< :<br />

It.<br />

~~Q:q(j+l,o) + Q(j+i,i) - Q(j,il-Ki,od<br />

where j and k refer to time and space, respectively.


508<br />

The authors state that this eq. maybe arranged as<br />

-?+<br />

AF = Q<br />

one such equation existing for each discrete time and the vectors running, as it<br />

were, along the channel.<br />

It would seem that 2); has been omitted, but even allowing for this, I cannc<br />

express eq. 24 in this form. Nor does it seem to me that eq. 25 is redundant.<br />

It would certai<strong>nl</strong>y be interesting to have this point cleared up, but I think we<br />

can all accept that the finite difference equation can somehow be reduced to a<br />

set <strong>of</strong> linear equations between the changes in time in F(x) and in distance iii<br />

Q(>r). Such a set <strong>of</strong> equations would apply for one instant o<strong>nl</strong>y and would take<br />

the form <strong>of</strong><br />

The authors apply the algorithm already expiained,<strong>with</strong> the constraint that<br />

Ik-FOIr, where F is an initial estimate <strong>of</strong> F<br />

0-<br />

0)<br />

is minimised for<br />

With regard<br />

chosena's by solving<br />

Q@,F,) = //AF-Q 11 +a IIP-gI<br />

(A*A+aE )F=A*Q+ a EP<br />

is kept small,<br />

(27<br />

to choosinga the authors mention the "method <strong>of</strong> discrepancy" whit<br />

I don't quite understand, nor can I see how the smooth variation <strong>of</strong> P <strong>with</strong> time<br />

can be insured, as P(x) seems to De found independently for each time step.'<br />

Perhaps in calculating F the values <strong>of</strong> F obtained .in the previous time step may bc<br />

used in the algorithm for F and thus, by constraining //F-Fo1\2 the change in F<br />

O<br />

is distributed regularly over all x's.<br />

Having found, P(x,t), thus, from the continuity equation, and having z(x,t)<br />

C=


already, F(x,z) can be found.<br />

The dynamic equation is similarly used to find K(x,t) and hence K(x,z).<br />

Details are not given by the authors but the computation would seem to be<br />

quite independent <strong>of</strong> the Computation <strong>of</strong> P(x,t,).<br />

in their thikd and final exmple the authors deal <strong>with</strong> the same equations<br />

but Pith different boundary conditions.<br />

discharges are known as functions <strong>of</strong> time, o<strong>nl</strong>y at the beginning and the end<br />

<strong>of</strong> the channel reach, i.e. Q(o,t) and Q(L,t).are known.<br />

z(x,t) is known.<br />

case.<br />

This time they assume 'that the<br />

509<br />

They assume also that<br />

These conditions are more parsimonious than in the former<br />

The difference between the discharges at the ends <strong>of</strong> the channel reach<br />

is related to the rate afincrease in storage in the channel by the continuity<br />

The right hand side is a single known quantity for sach t he step and may<br />

thus be expressed as a vector in time.<br />

The left hand side, because <strong>of</strong> the<br />

integration <strong>with</strong> respect to x, is also a vector in th(unknown).<br />

Assume that P(x,t) can be expressed as a smooth function <strong>of</strong> space and<br />

time by a Chebishev polynomial.<br />

Ex;>anded, this would be an ordinary polynominal in x and z and in xz <strong>with</strong><br />

constant coefficients depending on Aks.


510<br />

To evaluate the coefficients, P(x,z) could be inserted in eq.29 but as this<br />

is a difference equation Li P, the solution would be underdetermined at least<br />

to the extent <strong>of</strong> the arbitrary constant. Instead <strong>of</strong> using F, the authors use<br />

the top width B(x,z) and.expand this in x and z as<br />

I€ there are m by n t e m in the expansion <strong>of</strong> B(x,z),there will be m by n<br />

unknown coefficients A and,therefore,at least this number <strong>of</strong> equations in<br />

ks<br />

the form <strong>of</strong> eq.29 must be found. This can be done by taking sufficient time<br />

intervals in the rising and falling hydrograph and evaluating the right hand<br />

side <strong>of</strong> eq.29 accordingly to yield xl,x2,X3, .<br />

For every k and s the quantity<br />

is known for every.x and t and the integral <strong>with</strong> respect to x can therefore be<br />

found.<br />

Hence the coefficients <strong>of</strong> every A in eq.29 after substitution<br />

k.9<br />

can be written down yielding.<br />

%st 'ks<br />

(3 21<br />

= Xt and this can be arranged in matrix form, if (33)<br />

necessary, and I think it would be necessary, <strong>with</strong> Akis written in vector form<br />

A,l, Ak2, Ak3, ............. Thus the linear equation in the unknown A would<br />

ks<br />

be obtained as<br />

0 Q =x 9<br />

where $ is the matrix <strong>of</strong> the coefficients Cks in eq. 33 and the solution for<br />

9<br />

8 the vector <strong>of</strong> unknown A,s found by application <strong>of</strong> the algorithm.<br />

(Sf 1<br />

(Q* FBI0 = 9*x @a<br />

In this case, the constraint imposed is 191 small. The choice afa(and<br />

therefore <strong>of</strong> e) seems to be made at the value <strong>of</strong>awhere a further change<br />

inawould produce o<strong>nl</strong>y a minhum change in 8 expressed by eq.36.


Y<br />

(c = 2 p(QP+,) -<br />

J- I<br />

Once F(x,z) has been determined, and remembering that we have already<br />

z(x,t), K(x,z) can be found from the dynamic equation simplified to<br />

and, thus, all the parameters <strong>of</strong> the equation are available. I cannot quite<br />

follow the authors explanation <strong>of</strong> this part <strong>of</strong> the project.<br />

511<br />

be some subtleties here which I am missing,but I can see no particular difficulty<br />

in solving it along the lines I have indicated.<br />

There may<br />

This is an extremely interesting though difficult paper and I hope the<br />

authors will be available to correct iy very inadequate exposition <strong>of</strong> it and<br />

perhaps resolve some <strong>of</strong> the difficulties which I have mentioned and others<br />

which may be tròuhling other colleagues.<br />

References<br />

(1) Snyder, W., Tennessee Valley Authority (1961)<br />

"Matrix operations in hydrograph computations"<br />

(2) O'Donnell T., (1960) 'Instantaneous unit hydrograph derivation by harmonic<br />

analysis'IASH (Helsinki) Pub No 51<br />

(3) Kraijenh<strong>of</strong> van de Leur, D.A., "A study <strong>of</strong> non-steady ground water flow <strong>with</strong><br />

special reference dto a reservoir coefficient"<br />

De Ingenieur , 70(19 1 (1 93 8 1.<br />

(4) Venetis C. "Estimating infiltration and/or the parameters <strong>of</strong> unconfined<br />

aquifers from ground water level observations" Jour Hyd. 12(1971)


ABSTRACT<br />

DONNEES INADEQUATES ET MODELES MATHEMATIQUES<br />

DE LA POLLUTION EN RIVIERE<br />

Par J.BERNIER<br />

Laboratoire National d'Hydraulique<br />

CHATOU - France<br />

The value <strong>of</strong> I'inadequate1l information must be judged<br />

relatively to the mathematical tools used and the practical problem<br />

to be solved, Concerning river pollution where the problem is to<br />

design projects as sewage treatment plants for instance, the<br />

limitation <strong>of</strong> the usual Information collected in situ is shown,<br />

These limitations do no appear <strong>with</strong> the standard math.ematjca1 model.<br />

Taking in account <strong>of</strong> more realistic stochastic model allows us to<br />

measure the value <strong>of</strong> this information and to design experiment for<br />

collecting acceptable data,<br />

RESUME<br />

La valeur de l'information inadequate doit être jugee en<br />

fonction des problèmes à rbsoudre et des outils mathématiques utili-<br />

sês pour cette résolution, En matière de pollution en rivière où il<br />

s'agit de dêfinir les caractdristiques des moyens de lutte comme<br />

celles des stations dlspuration par exemple, on montre les limita-<br />

tions de l'information usuellement recueillie in situ, Ces limita-<br />

tions n'apparaissent pas avec les modèles mathgrnatiques standard,<br />

La prise en compte de modèles stochastiques plus réalistes permet<br />

de mesurer la valeur de cette information et de definir les condi-<br />

tions de collecte de données acceptables,


51 4<br />

I - INTRODUCTION<br />

En matière d'aménagement des ressources en eau, l'insuffisance<br />

des données est souvent le premier écueil auquel on se heurte. Cependant<br />

pour mieux apprécier la validité et la précision des réponses aux questions<br />

posées à l'hydrologue ou l'ingénieur, il faut noter que cette insuffisance<br />

de données n'est en fait que le reflet de l'inadéquation des inhthodes uti-<br />

lisées pour résoudre les problèmes. Ces méthodes doivent etre adaptées ><br />

la nature de l'information disponible ou 2 recueillir. Certes dans bien<br />

des cas les données disponibles doivent être coiilplétées mais l'organisa-<br />

tion de la collecte des données complémentaires, le choix des conditions<br />

opératoires de mesures ne peuvent valablement être &finis qu'en fonction<br />

des méthodes iiiobilisant l'inforination recueillie. Dans ce contexte, certai-<br />

nes iitéthodes usuelles sont particulièreiiient inadéquates. On peut en trouver<br />

des exemples dans le domaine de la pollution en rivière notamment dans<br />

l'étude du inouverrient et des réactions auxquels sont soumises des matières<br />

polluantes en riviere 2 l'aval d'un point de rejet en vue d'apprécier la<br />

capacité d'autoépuration de la rivière compte tenu de ce rejet. Nous trai-<br />

terons ici du seul problème de la pollution biochiinique'caractbris6e par<br />

le bilan d'oxygène.<br />

II - LA METHODE USUELLE<br />

La méthode classique utilise le modèle de Streeter et Phelps<br />

décrivant le bilan dynamique d'oxygène sous la forme de deux équations<br />

différentielles (voir la liste de notations en fin de note).<br />

J


515<br />

Mises sous forme intégrale et en faisant apparaître l'abscisse<br />

longitudinale x prise le long de la rivière et liée au teiiips d'écouìe-<br />

2<br />

nient t et à la vitesse moyenne du courant u pa; t = - , les équa-<br />

tions donnent :<br />

L(x) = Lo e<br />

X<br />

-K3 u<br />

X<br />

- K -<br />

B (x) =ao e ~ ~ ( 2 u -e e<br />

OÙd (x) est le déficit en oxygène : 3 = Cs - C.<br />

U<br />

'J - Kg U)<br />

Ainsi peut-on mesurer l'incidence d'un rejet (spécifiant les<br />

concentrations initiales d'oxygène Co et de demande biologique en<br />

oxygène L ) sur l'autoépuration à l'aval.<br />

La mise en oeuvre courante de ce iiiodèle demande l'estimation<br />

préalable des coefficienb de reoxygénation K2 et de biodégradation K<br />

1<br />

et K3.<br />

On utilise généraleinent des formules empiriques ou quelques observations<br />

recueillies dans le tronçon de rivière étudié. Les multiples formules<br />

empiriques disponibles établies en laboratoire ou sur des rivières de<br />

caractéristiques biochimiques particulieres présentent des résultats<br />

extre'mement dispersés difficilement extrapolables hors des limites du<br />

doniaine où elles ont été établies. I1 reste l'inforniation recueillie<br />

dans chaque cas d'espèce. A la limite Kg et K2 peuvent ëtre calculés<br />

par l'intermédiaire des formules (2) en fonction d'un seul couple d'ob-<br />

servations amont (Lo, Co) et d'un seul couple aval ( L(x), C(x)). Une<br />

telle procédure, trop souvent utilisée pratiquement, est justifiée dans<br />

le contexte du modèle déterministe strict décrit par (2) mais ce carac-<br />

tère déterministe est extrêmement fallacieux come nous allons le voir.<br />

Par ailleurs il importe de se soucier de la cohérence spatiale des mesures,<br />

le décalage des époques d'observations a l'amont et à l'aval devraient<br />

tenir compte du temps d'écoulement t . En pratique cette condition iinpé-<br />

rative est rarement respectée et la non prise en compte de la menie masse<br />

d'eau 2 l'amont et à l'aval entrarne une dispersion notable des observations<br />

et des estimations erronées de KI, K2 et Ka.


516<br />

III - INSUFFISANCES DU MODELE DETERMINISTE DE STREETER ET PHELPS<br />

Le modèle (i), (2) schéiuatise l'hydraulique de l'écoulement :<br />

celui-ci est supposé permanent, uniforme ; de plus on néglige la disper-<br />

sion de polluants dissous ou en suspension dans l'eau imputable au phéno-<br />

mène de diffusion turbulente et aux fluctuations de vitesse dans chaque<br />

section. Cependant l'effet de cette dispersion est surtout notable en<br />

régime transitoire et devient négligeable en régime de pollution permanent<br />

ou lorsque cette pollution (caractérisée par L et CI présente une évo-<br />

lution lente, d ms le cas de rivière à coefficient de dispersion faible<br />

(cf. [i] et [2] ).<br />

L'inadéquation en nature du modèle de Streeter et Phelps provient<br />

surtout des hypothèses caractérisant les phénomènes biochimiques :<br />

- prise en compte de la seule phase carbonée des réactions de<br />

dégradation des matières organiques (non prise en compte de<br />

la phase azotée) ;<br />

- non prise en compte des effets de la photosynthèse de la respi-<br />

ration des boues de fonds, de la sédimentation des matières<br />

polluantes etc ...<br />

Certaines tentatives [a] ont été faites pour inventorier et<br />

modeliser plus completement les phénomènes mais la multiplicité des para-<br />

. .<br />

mètres et les difficultés pratiques d'estimation de ces paraniètres rendent<br />

illusoire l'apparente précision qui semblerait résulter d'un inventaire<br />

exhaustif des mécanismes biologiques et physico-chimiques.<br />

Par ailleurs si les concentrations en oxygène dissous peuvent<br />

être mesurées in situ avec une précision acceptable, il n'en est pas de<br />

même de la demande biologique en oxygène qui n'est pas estimée directement<br />

mais seulement par 1 l intermédiaire d'un test chiriiique, la DB05, effectué<br />

au laboratoire sur des échantillons prélevés en rivière. Des essais ont<br />

montré que l'imprécision de ce test est notable et que la chaîne complexe<br />

des conditions opératoires, depuis le prélèvement en riviere jusqu'a<br />

1 'analyse chimique en laboratoire introduit des erreurs systématiques et<br />

aléatoires importantes. On ne peut donc considérer cette DBO comme une<br />

5<br />

mesure exacte de la consommation d'oxygène in situ mais comme un index<br />

représentatif de cette consommation en plus ou moins bonne comélation<br />

statistique avec elle.


IV - UN MODELE STOCHASTIQUE<br />

517<br />

I1 est classique en statistique de prendre en compte globalement<br />

l'ensemble des phénomènes négligés dans un modèle déterministe schématique<br />

sous foriiie determes d'erreurs aléatoires. Cette conception permet d'intro-<br />

duire la souplesse nécessaire à une bonne adéquation du modèle aux données<br />

d'observations en nature. Les équations (1) sont remplacées pour un sys-<br />

teme différentiel stochastique :<br />

Les paramètres pl et p2 représentent les irioyennes, c'est-à-dire la<br />

2<br />

part systématique. des erreurs dues aux phénoiiiènes négligési o12 et u2<br />

représentent les variances des termes d'erreurs. E, et .C2 sont alors<br />

les erreurs centrées réduites (de moyenne nulle et de variances égales à 1).<br />

Dans ce contexte aléatoire, les paramètres K1, K2, K3 peuvent<br />

être interpréter coime les coefficients de la régression statistique des<br />

variations de concentrations en fonction des grandeurs<br />

L etd et ils<br />

ont une signification statistique plutôt que physique. On peut alors rem-<br />

placer l'index DB05 par tout autre index qui soit en corrélation avec<br />

la demande en oxygène (par exemple : demande chiiiiique en oxygène, carbone<br />

organique total, etc... indexes qui sont plus aisément mesurables que la<br />

DB05). I1 est possible d'intégrer le système ( 3) (cf. [ 41 1. En adinettant<br />

des conditions initiales fixées et go au point origine x = O, on<br />

LO<br />

peut montrer que L(t) et3 (t) sont des variables aléatoires quasi-<br />

gaussiennes dont les espérances niathémat iques et variances sont :<br />

E (L) =<br />

- P2 + (Lo - -) P2 e<br />

K2 Kg<br />

- K3 t<br />

E(d)=-t- Pi<br />

K1<br />

P2<br />

K2 Kg<br />

pci +- '1<br />

- K3-K2<br />

P2<br />

(Lo - -)I<br />

K2<br />

-Kpt<br />

e<br />

+-í-<br />

K1 P2<br />

- K3t<br />

-Lo) e<br />

K3-K2 K3<br />

(4)<br />

(5)


v -<br />

518<br />

Var (LI =<br />

- 2 K3t<br />

v22 (i - e 1<br />

2 2<br />

2 u2 t ui r,<br />

Var ($1 = ( u1 +<br />

2<br />

(K~-K~) K3-K2<br />

formules dans lesquelles<br />

erreurs Cl et E,.<br />

K3<br />

- 2 K t<br />

(i - e 3 )<br />

Kg<br />

- 2 K,t<br />

(i - e 1<br />

K2<br />

K1<br />

(u u r+-<br />

K3-K2 1 2 K3-K2<br />

(i - e 1<br />

Kg +<br />

K2<br />

(7)<br />

r est le coefficient de corrélation entre les<br />

LE MODELE STOCHASTIQUE AVEC ERREURS DE MESURES SUR L et d<br />

Connie nous l'avons déjà souligné, 1' inadéquation du iiiodèle aux<br />

données in situ est liée également aux erreurs de mesures importantes sur<br />

ces données. Pour analyser plus complèteinent le problèiiie, il importe de<br />

préciser les conditions d'observations. Nous ne traiterons ici que de la<br />

méthode usuelle OU l'on observe deux points amont x et aval distants<br />

de x = - xcI.<br />

écrit :<br />

Compte tenu des foririules (4) à (7) le modèle intégré peut être<br />

en regroupant sous forine des constantes a et b les termes indépendants<br />

des conditions initiales dans les espérances inathématiques et sous forme<br />

des constantes p1, p2, p3 les coefficients de Lo et do. Les variables<br />

aléatoires d'écart EL et I!& ont alors des variances u et u2 données<br />

L<br />

par les formules (6) et (7) et qui sont donc indépendantes de ces conditions<br />

2<br />

=2


initiales. En fait ce que l'on observe n'est pas directement<br />

mis deux grandeurs X et Y telles que :<br />

X=L+ 7)<br />

1<br />

Y =a + 7)<br />

2<br />

519<br />

L ou 3<br />

où Il e; 7)2 sont les erreurs de mesures aléatoires de variances respec-<br />

2<br />

tives VL et Va . L'estiiriation in situ des parainetres du modèle stochas-<br />

tique et notanunent des vitesses de reoxygénation et de biodégradation<br />

K2 '<br />

K et K3 , demande la connaissance préalable des variances d'erreurs de<br />

1<br />

mesures. De façon précise on supposera qu'ont été obtenus n ensembles<br />

de grandeurs observables (Xoy X1, Yo, Y<br />

1<br />

) aux deux points amont et aval<br />

du tronçon de rivière considérée. Les paramètres statistiques de ces cou-<br />

_ - - -<br />

2 2 2 2<br />

ples (moyennes Xo, XI' Yo YI , variances S x0, S x13 S yo, S y1 , et<br />

covariances<br />

S&xl3 Sx0y1, etc ... ) permettent l'estimation des coefficients<br />

du inodele au moyen des relations :<br />

P, = sxlxo<br />

2 2<br />

SX, - VL<br />

- -<br />

a = X1 - p 3 Xo<br />

(10)<br />

(12)


520<br />

VI - LE PROBLEME DES ERREURS D'ECHANTILLONNAGE<br />

Dans la plupartdes cas pratiques l'estimation des paramètres du<br />

modèle d'oxygène ne peut être effectuée que sur un nombre<br />

n de répéti-<br />

tions d'observations assez liiriité. I1 importe alors de iiiesurer la précision<br />

de ces estimations par leurs variances d'échantillonnage. Nous ne pouvons<br />

ici développer l'ensemble des formules, nous renvoyons le lecteur à [2]<br />

pour un aperçu sur le problème. En expriniant les divers paramètres comme<br />

des fonctions des variances et covariances<br />

les formules précédentes peuvent permettre le calcul approché de ces va-<br />

riances d'échantillonnages à partir de celles des variances et covariances<br />

estimées (cf. [ 51 ). En ce qui concerne notaniiiient les paramètres pi qui<br />

déterminent les vitesses des réactions biochiiriiques , on aura des formules<br />

de la foriiie :<br />

VI1 - VALEUR DE L'INFORMATION RECUEILLIE EN NATURE<br />

S2<br />

XO<br />

2<br />

S yl, Sxoxl, etc ...<br />

Pour la suite de la discussion il est conimode d'appeler variances<br />

2<br />

d'erreurs d'adéquation du inodele les paramètres uL , mg2 car leur valeur<br />

est liée à l'importance de l'explication des variations d'oxygène dissous<br />

par les paramètres<br />

C, DB05 ... pris en compte. L'interprétation des<br />

variances d'échantillonnages, perinet de préciser le noiiibre d'observations n<br />

nécessaires à l'obtention d'une précision d'estiniation donnée ; on pourra<br />

observer généralement la loi générale de l'augmentation de n en fonction :<br />

- des valeurs croissantes de l'erreur d'adéquation .<br />

- des valeurs croissantes de l'erreur de mesure.<br />

Quels que soient les paramètres de pollution pris en compte, quelles que<br />

soient les procédures opératoires de mesures, il restera toujours des<br />

erreurs d'adéquation et de mesure irréductibles. Dans de telles circons-<br />

tances, on ne peut utiliser les procédures classiques d'estimation des<br />

modèles d'oxygène supposés déterministes et qui n'utilisent que des infor-<br />

mations trop partielles. réduites trop souvent 2 un unique ensemble des<br />

4 valeurs Xo, Yo, XI, Y1. I1 est absolument indispensable de faire des<br />

mesures répétitives en nombre n suffisant. Le modèle stochastique est


alors un guide précieux pour la planification de la collecte de cette<br />

information et des procédures opératoires de mesures.<br />

521<br />

Placé devant un problème de décision, le gestionnaire de la qua-<br />

lité de l'eau d'une rivière aura donc a sa disposition des observations<br />

cohérentes recueillies in situ ; mais ce n'est pas la seule source d'in-<br />

formations disponible. Le gestionnaire dispose également de données plus<br />

ou moins qualitatives sur les vitesses de réactions, de forinules semiempiriques<br />

diverses [ 61 dont la dispersion des résultats est telle qu'elle<br />

ne peut. donner que des ordres de grandeurs assez grossiers. Une telle<br />

information est cependant précieuse si elle permet de réduire le nornbre<br />

d'observations in situ. La disposition d'un modèle stochastique permet<br />

l'utilisation des méthodes bayésiennes [7] , [a] dont le but est l'incor-<br />

poration des inforiiiations de diverses origines dans un modèle quantifié.<br />

Davis, Kisiel et Duckstein [E] ont montré tout l'intérêt de ces techniques<br />

appliquées ?i l'étude des risques,associées aux décisions en matière de<br />

gestion des ressources en eau et au calcul de la valeur économique de<br />

l'information hydrologique qui tend à réduire ces risques. Ia prise en<br />

compte d'un modèle stochastique est la première étape de l'approche déci-<br />

sionnelle dans les problèmes de qualité de l'eau.


522<br />

c :<br />

N O T A T I O N S<br />

concentration en oxygène dissous,<br />

concentration en oxygène dissous 2 la saturation<br />

Cs - C déficit en oxygène<br />

DB05 : demande biologique en oxygène mesurée au laboratoire sur 5 jours<br />

à la température de 2OoC sur un échantillon supposé représentatif<br />

de la rivière<br />

K1 : coefficient de consoinmation d'oxygène dans le modèle de Streeter -<br />

Phelps<br />

coefficient de réoxygénation<br />

K2 :<br />

K3 : coefficient de dégradation de la DBO restante<br />

L : deniande biologique en oxygène restante<br />

x : abscisse longitudinale de la rivière<br />

u : vitesse moyenne de l'écoulement.<br />

moyenne par section de rivière<br />

L


B I B L I O G R A P H I E<br />

[i ] W.E. DOBBINS : BOD and Oxygen relationships in streams<br />

Froc. ASCE Sanit Div. S A 3 - 1964<br />

[2]<br />

523<br />

J. BERNIER - P. LENCIONI : Utilisation d'un modèle stochastique pour<br />

organiser 13 collecte in situ des données de qualité<br />

de l'eau d'une rivière - 15ème Congrès de 1'A.I.R.H.<br />

Ictainboul 1973.<br />

[3] D. LEFORT : Modèles mathérriatiques de pollution en riviere -<br />

La Houille Blanche - nuiiiéro spécial 8/1971<br />

[4] D.R. COX - H.D. MILLER : The theory <strong>of</strong> stochastic processes<br />

Methuen - 1965<br />

[ 5 ] T.W. ANDERSON : An introduction to multivariate statistical analysis<br />

Wiley - 1958<br />

[6]<br />

M. NEGULESCU - V. ROJANSKI : Recent Research to determine reaeration<br />

[ 71 J. BERNIER<br />

[ 81<br />

coefficient - <strong>Water</strong> Research - Vol 3 no 3 - 1969<br />

: Les méthodes bayésiennes en hydrologie statistique.<br />

Froc. Intern. <strong>Hydrology</strong> Symp. Colorado State Univer-<br />

sity - Fort Collins - 1967<br />

D.R. DAVIS - C.C. KISIEL - L. DUCKSTEIN : Bayesian Decision Theory<br />

applied to design in <strong>Hydrology</strong> - <strong>Water</strong> <strong>Resources</strong><br />

Research - Vol 8 no 1 - 1972.


"REGIONAL GROUNDWATER RECHARGE ESTIMATES VIA METEOROLOGICAL DATA"<br />

ABSTRACT<br />

SAMUEL P.COOK AND SAMUEL G,MBURU<br />

In arid regions the planning <strong>of</strong> agricultural development<br />

requires estimates <strong>of</strong> the availability <strong>of</strong> groundwater, Adequate<br />

detailed data bases are u<strong>nl</strong>ikely to exist in most areas <strong>of</strong> interest<br />

in developing countries, We have attempted to compute the<br />

groundwater recharge potential for East Africa using primarily the<br />

available meteorological data, The procedure has been to generate<br />

a synthetic year by averaging the meteorological data for each<br />

month at each meteorological site over a period <strong>of</strong> years, Then from<br />

the monthly precipitation, the estimated evapotranspiration and the<br />

estimated run <strong>of</strong>f is subtracted, This computation proceeds according<br />

to an assumed soil moisture storage and transport model whose<br />

throughput constitutes the potential groundwater recharge, Contour<br />

lines <strong>of</strong> this cuantity are plotted and these can serve as a guide<br />

to rural planners for optimizing the selection <strong>of</strong> sites for new<br />

development,<br />

RESUME<br />

Aux regions arides quand on fait un plan du development agri-<br />

cole il faut evaluer l'eau souterraine desponible, I1 est tres peu<br />

probably qu'on trouve les donnees de base assez detaillees dans la<br />

plupart des regions en observation aux pays que son en train de se<br />

developper. On a essayé de computer le potentiel de la recharge des<br />

?aux souterraines pour les pays en Afrique de l'Est en utilisont,<br />

?rincipalement, les données meteorologique disponibles, On a produit<br />

sne ann&e des donnges synthetìques en faìsant la moyenne les<br />

ionnêes meteorologiqueo pour chaque mois a chaque hstallatlon meteo-<br />

nologique pendant une periode des annêes, Puis on a soustrait de la<br />

>recipitation mensuelle, l'evaluation de ltevapotranspirat2on et de<br />

L'ecoulement total, Cette computation continue suivant un modele<br />

;uppose de la capacité de l'eau et du transport de l'eau dans le sol<br />

lui evalue le potentiel de la recharge de l'eau souterraine. Les<br />

:ourbes de niveau de cette quantite sont tracées et les organisateurs<br />

lu developpement rural peuvent s'en regler pour optimiser la<br />

;election des situations pour des projets neufs.


526<br />

At the East African Agriculture and Forestry Research<br />

Organization we are interested in estimating regional groundwater<br />

recharge rates to provide basia information for agricultural<br />

planning. Our approach is based on a water balance calculation. The<br />

gmundwater recharge is the residual which reinains after subtracting<br />

from the precipitation the losses due to evaporation and surface and<br />

subsurface run-<strong>of</strong>f. The total precipitation can be computed reasonably<br />

well from the rainfall records. The remaining terms can be estimated.<br />

T. Woodhead, 1. Dagg and D.A. Rijks (1, 2, 3, 4) have<br />

studied extensively the computation <strong>of</strong> the Penman potential<br />

evapotranspiration from the data sources in Eaet Africa. The actual<br />

evaporative losses may be estimated <strong>with</strong> the use <strong>of</strong> a physioal model<br />

<strong>of</strong> the soil moisture storage and transport system. Por a regional<br />

computation in a predominently arid region the net surface and<br />

subsurface run-<strong>of</strong>f may be taken a8 aero to yield an upper bound on<br />

the potential groundwater recharge. The accuraoy <strong>of</strong> the final result<br />

will depend on the ohoice <strong>of</strong> the soil moisture storage and transport<br />

model. This must represent the average regional response to the<br />

stimuli <strong>of</strong> rain, wind and sun.<br />

<strong>Water</strong> Balanoe Oalculation 0.f Groundwater Beoharge<br />

GWFli Potential Groundwater Resharge<br />

Pa Precipitation<br />

Eo: Penman Potential Evapotranspiration<br />

E : Actual Evapotranspiration<br />

Q: Soil Moisture Storage<br />

AQ; Change in Soil Moisture Storage<br />

RO: Rn-<strong>of</strong>f<br />

GWR = P - E -.U) - RO<br />

In order to compute the actual evapotranspiration from the<br />

Penman potential evapotranepiration the dynamics <strong>of</strong> a soil moisture<br />

model m e invoked. Many such models arc possible and future studies<br />

may improve this phase <strong>of</strong> the work. For the present computation a<br />

nbucket model" has been chosen. This model allemes that moisture<br />

stored in the soil root sone is freely available for transpiration<br />

up to the Penman potential Eo demand. If the root zone soil moisture<br />

is exhausted no further evapotranspiration takes place regardless <strong>of</strong><br />

the Penman Eo demand. Furthermore, lhe root abne has a finite<br />

capacity, Qo, for moisture storage. In the event the monthly<br />

precipitation minus the monthly Penman Eo exceeds Qo, downward<br />

percolation <strong>of</strong> the excess moisture takes place and constitutes the<br />

potential groundwater recharge.


"Bucket Model" <strong>of</strong> Soil Moisture Stcrage ana Transport<br />

1. Root zone has a maximum moisture storage capacity, Qo.<br />

2. If QSQo, groundwater recharge i? cil.<br />

3. If monthly moisture input plus storage exceeds Qo, the<br />

excess is potential groundwater rechzrge.<br />

We have made use <strong>of</strong> meteorological data collected by<br />

T. Woodhead, M. Dagg, and D.A. Rijks (iq 2, 3, 4). This data is<br />

based on 80 stations in Kenya, 50 in Tanzaniz and 17 in Uganda, at<br />

ozly a few stations were oomplete records <strong>of</strong> precipitation, wind run,<br />

and insclation available. Several methods were devised by Wlcndhead to<br />

fill in the blanks. In order to eompute the Penman potential<br />

evapotranspiration, Eo, according to the method <strong>of</strong> McCullooh (5) the<br />

following inputs are needed:<br />

2<br />

R: insclation in cakories/cm /day<br />

n/N: =?io 3f observed to maximum possible number <strong>of</strong> daily<br />

smshine hours.<br />

Ta:<br />

zverage screened ambient temperature 'C.<br />

o<br />

Td: mean deily temperature <strong>of</strong> den point C.<br />

U: win& run in miles per day at 2 meter elevation.<br />

Eased cn fifteen stations a linear regression between R and<br />

n/N has been derived (6, 7). This regressior, was used to derive one<br />

<strong>of</strong> thene quantities when the other was available from the meteorological<br />

recnrds. When neither R nor n/N were recorded use was made <strong>of</strong> a,<br />

rehtionship esteblished (1, 2) between the monthly mean <strong>of</strong> daily<br />

sucshim duraticn and the tot21 cloud amount. Estimates <strong>of</strong> total<br />

cloud smount are made at most civil airfields. When records <strong>of</strong> wind<br />

run were not available use was made <strong>of</strong> e relation established<br />

betaeen Beaufort scale assessments <strong>of</strong> wind velocity and wind run (3).<br />

After these procedures had been applied to complete the<br />

recr-ds they were processed to construct a synthetic year. Por each<br />

site sverages over the length <strong>of</strong> the record were made for each given<br />

mocth <strong>of</strong> the year. Monthly values <strong>of</strong> precipitation and Penman<br />

potential evapotranspiration were obtained. At each site an estimate<br />

was also made <strong>of</strong> the model parameter, Qo, the maximum m il moisture<br />

storage capacity in the root zone.<br />

The soil moisture storage and transport system is conceived<br />

<strong>of</strong> E? a dynamic system whose output is the downward percolating groundwater<br />

recharge which is determined jointly by the system driving funation<br />

3n3 the system physical parameters. The present output depends on the<br />

whcle past behavior <strong>of</strong> the input. If the syetem ie 3inesr, the system<br />

oiityut is the convolution <strong>of</strong> the system unit impulse rnspcnse and<br />

tke system c?ri.ving function. If the system is non-licesr, given the<br />

527


528<br />

input we can compute the output ueing the system parameters.<br />

For our bucket model system we proceeded as follows.<br />

If the Penman Eo exceeded the precipitation for several months we<br />

tentatively assumed that the soil moisture was totally depleted at the<br />

end <strong>of</strong> the dry season. Starting at that month the bookeeping was<br />

begun arid carried out each month for the duration <strong>of</strong> the synthetic<br />

year. On the other hand, if the precipitation exceeded the Penman<br />

Eo for most <strong>of</strong> the year the assumption was made that the soil was<br />

saturated <strong>with</strong> moisture at the end <strong>of</strong> the wettest period. Then the<br />

oookeeping was completed for the synthetic year. One <strong>of</strong> these<br />

assumptions always led to a consiatent sat <strong>of</strong> bookeeping entries.<br />

The monthly groundwater recharge was summed at each site over all<br />

mrnths <strong>of</strong> the synthetic year. These totals were then noted on a<br />

map and contour lines <strong>of</strong> equal groundwater recharge were interpolated.<br />

After obtaining the meteorological data the single model<br />

payameter 20 determines the reault. Therefore, the sensitivity <strong>of</strong><br />

the cont Ars to a variation <strong>of</strong> Qo ia <strong>of</strong> interest. It is evident that<br />

If the soil moisture is not completely depleted at some time during<br />

7-e gear, a change in Qo alone will not affect the groundwater recharge.<br />

For this situation, o<strong>nl</strong>y the moisture in permanent storage will be<br />

changed. On the other hand, if the sril moiature is completely<br />

exhausted at one time during the year, a change in Qo will change<br />

the throughput by an equal and opposite amount. Therefore, in arid<br />

regions a low soil moisture storage capacity favors groundwater<br />

recharge. Low storage capacity implies that a short intense rain<br />

will rapidly fill up the soil moisture reservoir and the excess will<br />

quickly percolate downward beyond the root zone to the subsurface<br />

storage aquifer. In arid regions vegetative cover is generally less,<br />

which re8'uces the losses due to tranepiration. Deep rooted<br />

vegetation wnuld negata this advantage.<br />

In order to investigate the eensitivity <strong>of</strong> the potential<br />

groundwater reoharge contours to a change in the value <strong>of</strong> QG, the<br />

ac.mputations were carried out for two choices <strong>of</strong> this parameter at<br />

each site.<br />

Oritiaue <strong>of</strong> the Method<br />

le hare attempted to obtain same idea <strong>of</strong> the regional<br />

potential groundwater recharge ratea using the available data, mai<strong>nl</strong>y<br />

meteorological records. By the use <strong>of</strong> a simple aoil moisture<br />

storage and transport model we estimate the actual evapotranspiration<br />

from the Penman potential evapotranspiration. The residue from the<br />

precipitat irn after subtracting the evapotranspiration and the<br />

increment tc soil moisture storage we identify as the deep percelation<br />

or potential groundwater recharge. The model we used for the soil<br />

mt-isture is a one parameter model and we have studied the effect on<br />

tSe throughpiit <strong>of</strong> the choice <strong>of</strong> this parameter.


Several improvements are poserible in the treatment. A study<br />

co-ild be carried out to improve the accurary <strong>of</strong> the model. It is easy<br />

tri devise multi-psrameter models. These could be compared to field<br />

me-rsurements. Another refinement would incorporate sdditional input<br />

data. Neutron soil moisture probes are now fairly widely available.<br />

Fer future work such data should be incorporated in the computation.<br />

The use <strong>of</strong> this additional input can lighten the burden <strong>of</strong> the model<br />

in the determination <strong>of</strong> the actual evapotranspiration.<br />

The neutron moisture probe data could be used in the<br />

following way which modifies the present soil moisture model. Soil<br />

misture pr<strong>of</strong>iles could be taken at monthly or weekly intervals to a<br />

depth <strong>of</strong> five meters. The total soil moisture to a fixed depth will<br />

??e totaled fnr each measurement. During the interval between<br />

measurements the precipitation and the Penman potential<br />

zvspotranspiration will be totaled. If during that interval there<br />

i? soil moist*ire storage exceeding the wilting point in the roet zone<br />

than the amel evapctranspiration will be taken as the Penman Eo. If<br />

wt, the actual evap6transpiration will be taken as zero.<br />

With this accounting procedure we could compute the sum <strong>of</strong><br />

the deep percolation and the difference between surface and subsurface<br />

run on and run<strong>of</strong>f. If these last categories are in approximate<br />

halance, then we have the deep percolation or potential groundwater<br />

recharge as the residual, From measurements at a network <strong>of</strong> sites the<br />

regional maps msy be constructed.<br />

The authors wish to thank the Director <strong>of</strong> EBBFRO for<br />

aermission to present this paper at the Symposium on the <strong>Design</strong> 00<br />

Tater <strong>Resources</strong> <strong>Projects</strong> <strong>with</strong> <strong>Inadequate</strong> Data, Madrid, June 1973.<br />

REFERENCES<br />

I. . Woodhead, T. (1966). Empirical relations between cloud<br />

amount, insolation and sunshine duration in East Africa:<br />

i, E. Afr. Agric. For. J., 2, pp211.<br />

2.<br />

3.<br />

Woodhead, T. (1967) Empirical relations between cloud<br />

amount, insolation and sunshine duration jr? East Africa:<br />

II, E. Afr. Agric. For. J., 2, pp474.<br />

Woodhead, T. (1970) mapping potential evaporaticn for<br />

tropical East Africa; the accuracy <strong>of</strong> Penmen estimates irem<br />

indirect assessments <strong>of</strong> radiation and wind speed, Proc.<br />

Reuding Symposium World WgletgFi,B&lanCe I. A.C.H.<br />

. I._ I -<br />

Dagq, M. and Woodhead, T. and Rijks, D.A., Evapcmtirr<br />

jn Enst Africa, nul. I.A.S.H., XV, 1, pp61.<br />

529


530<br />

c .. .<br />

6.<br />

7.<br />

McCulloch, J .S .O. (1965), Tables for the rapid i:omputE+,i.on<br />

<strong>of</strong> the Penman estimate <strong>of</strong> evaporation, E. Aï'?. AgTjc. For.<br />

J., 22, pp.286.<br />

Woodhead, T. (1968), Studies <strong>of</strong> Potential Evaporaticn in<br />

Kenya, Government nf Kenp, Nairobi.<br />

Woodhead, T. (196R), Studies <strong>of</strong> Potertial Evapuration i.c<br />

Tarizania, Dar es Saham.


A RAINFALL-RUNOFF MODEL BASED ON THE WATERHED STREAM NETWORK<br />

A BS TRAC T<br />

by J.W. Delleur and M.T. Lee*<br />

School <strong>of</strong> Civil Engineering<br />

Purdue University '<br />

West Lafayette, Indiana 47907, USA<br />

Physical models <strong>of</strong> the rainfall-run<strong>of</strong>f process are better<br />

suited than either stochastic or black box models for areas <strong>with</strong><br />

limited data, The model parameters must have a physical signifi-<br />

cance, be convenient to obtain and their number should be small,<br />

The framework <strong>of</strong> a model meeting these objectives is proposed and<br />

is based primarily on the geomorphologic characteristics <strong>of</strong> the<br />

stream network obtainable from maps or from aerial photographs.<br />

There is analytical and experimental evidence that hydrographs are<br />

dominated by direct run<strong>of</strong>f from very short overland flow paths<br />

from precipitation on transient, near channel wetlands. This<br />

wetland area is dynamic in the sense that it varies in terms <strong>of</strong> the<br />

history <strong>of</strong> the excess <strong>of</strong> the precipitation over the "B" horizon<br />

permeability, The distribution <strong>of</strong> the dynamic contributing area<br />

along the main stream is obtained under the assumptions that the<br />

velocity <strong>of</strong> flow along the stream network is uniform, that the<br />

drainage density is a constant <strong>with</strong>in a given watershed and that the<br />

first order streams are uniformly distributed in the basin, The<br />

run<strong>of</strong>f from the dynamic contributing area is then routed through the<br />

synthesized stream network to obtain the direct run<strong>of</strong>f at the basin<br />

outlet,<br />

RESUME<br />

Les modèles physiques des transferts pluies-débits s'adaptent<br />

mieux que les modèles stochatiques ou que les "boîtes noires" aux<br />

régions où les donndes sont limitées, Les paramêtres de ces modeles<br />

doivent être pourvus d'un sens physique, faciles 2 obtenir et leur<br />

nombre doit être petit, Le cad~e du modèle proposé se conforme 2 ces<br />

objectifs et est basé principalement sur les caractéristiques gêomorphologiques<br />

du rlseaa fluvial que l'on peut obtenir de cartes ou<br />

de photographies aériennes, I1 a dtb démontrê analytiquement et<br />

expérimentalement que les hydrogrammes sont en general dominbs par<br />

le ruisellement sur de petits parcours situês dans les zones mouiliges<br />

près des cours d'eau, Ces zones mouillêes son dynamiques dans<br />

le sens qu'elles varient pendant la pluie et avec la saison, Un modèle<br />

mathêmat2que de ces zones est formule en fonction de Ifhistoire<br />

de la précipitation excédant la permsabilité de l'horizon iiB't. La<br />

distribution de ces zones le long du rdseau fluvial est obtenue en<br />

supposant que la vitesse de l'écoulement est uniforme dans le réseau<br />

fluvial, que la densitd de drainage est constante pour le bassin<br />

donne, et que les cours d'eau du premier ordre sont uniformdment<br />

distrlbuh dans le bassi'n, Les ruissellements des zones dynamiques<br />

sont achemint% au travers d'une synthèse du rdseau fluvial pour obtenir<br />

i'ëcouïement à l'exutoire.<br />

* Current Addres,s: Dept, <strong>of</strong> Agricultural Economics, Univ. <strong>of</strong><br />

Illinois, Urbana, 1llinoi.s y 61801 y USA,


532<br />

Stochastic models for the generation Of river flow sequences require long<br />

historical time series for the appropriate calibration <strong>of</strong>the parameters. In<br />

many parts <strong>of</strong> the world, actual streamflow records are not sufflciently long to<br />

attempt to deflne an elementary model such as a flrst order Markov process for<br />

annual streamflow series. According to Rodriguez-Xturbe [i] for serles shorter<br />

than 40 years the error in estimating the annual man might run from 2% to 20%.<br />

for the variance from 15% to 60%. and for the rank one serial correlation it<br />

might be as high as 200%. It may be fìatile to attempt to develop generating models<br />

which preserve parameters, the estimation <strong>of</strong> which carries such an uncertainty.<br />

The formulation <strong>of</strong> mnthly models requires shorter records, but <strong>with</strong> a<br />

record <strong>of</strong> i5 years, the error in the rank one serial correlation coefficient is<br />

still <strong>of</strong> the order <strong>of</strong> 40%. Btochastic linear models <strong>of</strong> the rainfall-run<strong>of</strong>f process<br />

likewise require long time serles <strong>of</strong> both the rainfall and run<strong>of</strong>f for their<br />

calibration. It would, therefore, appear that for regions <strong>with</strong> inadequate data,<br />

one may have to resort to deterministic models. At this point, the choice may<br />

be between a %lack box" type <strong>of</strong> model and a physical model. Black box models<br />

ceanot be transferred from one location to another as the meaning <strong>of</strong> the peu-8meters<br />

in terma <strong>of</strong> their representation <strong>of</strong> the components <strong>of</strong> the hydrologic<br />

cycle is usually undeflned. The proper choice appears to be a physical model<br />

which requires a small number <strong>of</strong> easily identifiable parameters, or a model<br />

based on data w-hich can be obtained in a relatively short time, perhaps by new<br />

techniques.<br />

These physical models could conceivably be formulate&, by making use <strong>of</strong> information<br />

that is becoming available through remote sensing from airCrart and<br />

from satellites. By means <strong>of</strong> these new techniques, large areas CBP be observed<br />

and analyzed in a short time, end require a small amount <strong>of</strong> observations on the<br />

ground. The recent developments in remote seneing technology thue seem to point<br />

to a new direction for hydrologic investigations in -(LB <strong>with</strong> inadequate data.<br />

Remote sensing from aircraft or from satellite is best applied to observing<br />

or monitoring fairly large area and thus lende itself to the hydrologic studies<br />

<strong>of</strong> complete watersheds. Images taken at different times cm show changes In the<br />

watershed, such as variations ia the land we.<br />

The potential <strong>of</strong> remote sensing<br />

for water resources stubies has been discussed by Kiefer and Scherz [2], but the<br />

principal application <strong>of</strong> remote sensing to hydrology has been through aerial<br />

photography.<br />

The eye can see light from about .4 to .7 microns, but photographscan sense<br />

from about 0.3 to 1.0 microns, thus extending the range to lower and higher wave<br />

lengths. Color end color infrared photography have been used <strong>with</strong> great success<br />

in forestry .and in agricultural crop identification. [3] Themai scanning op-<br />

erates in the heat emission part o? the energy spectrum in the wan length riPr<br />

3 to 20 mincrons. Pluhowski [4] shoved that <strong>with</strong> Infra-red Imagery in the 8 to<br />

14 micron range, it is possible to discern thermal contrasts <strong>of</strong> 1' or 2'C. Thin<br />

technique enables the hyarolo,5lSt to detect areas <strong>of</strong> &K>inid water dlacharge mad<br />

to identify circulation patternr in large vater bodies.


533<br />

More advanced techniques include mUitiSpeCtra1 scanning and side looking<br />

radar. Multispectral scanners produce as many as 20 separate images in wave<br />

lengths ranging from the reflected infrared region to the ultraviolet region.<br />

These images may then be analyzed by means <strong>of</strong> computer data processing programs<br />

which classi* the surface materials. This classification is accomplished by<br />

separating materials in a known area according to their spectral response characteristics<br />

and then applying these criteria to unknown areas. [3] The side<br />

looking airborne radar can operate through dense cloud covers. It has been used<br />

in mapping southeastern Pan- and northwestern Columbia, which could not be<br />

mapped by conventional aerial photography becauee <strong>of</strong> the cloud cover. As an example,<br />

Weaver [5] cites that the meandering pattern <strong>of</strong> the hiira river was revealed<br />

by this technique.<br />

Black and white, color and color infrared photography combined can be used<br />

to delineate water bodies, rivers and streams, the drainage structure <strong>of</strong> watersheds,<br />

to give indications on the underlying geology and on the soil types <strong>of</strong><br />

the region. Waltz and Myers [6] have shown that there exists a significant correlation<br />

between the optical density measured from an aerial film and soil water<br />

content measured by neutron probes and also between ground water temperatures as<br />

measured through infrared thermal scanner and the soil water content <strong>of</strong> fallow<br />

or bare soil. Zachary et.al. [7] has applied multispectral. remote sensing to<br />

soil survey research in Indiana.<br />

These techniques may also be used for enalysie<br />

<strong>of</strong> water quality and for monitoring water pollution. [a] A general review <strong>of</strong><br />

the application <strong>of</strong> remote sensing in the management <strong>of</strong> earth resources has been<br />

prepared by Colwell [9].<br />

It appears that at present, black and white, color and infrared aerial<br />

color photography, can be used to obtain the basic information regarding stream<br />

networks, water bodies, main geologic and soil features needed in hydrologic investigations.<br />

It also appears that in the near future, more dependable informa-<br />

tion on soil water will become available through remote sensing.<br />

The remote<br />

sensing techniques thus appear to be <strong>of</strong> particular interest in areas <strong>with</strong> inade-<br />

quate data, as a substantial area can be mapped in a relatively short time <strong>with</strong><br />

a minimum <strong>of</strong> ground observation.<br />

MODEL FRAMEWORK<br />

It is the purpose <strong>of</strong> this paper to explore the feasibility <strong>of</strong> developing<br />

rainfall-nin<strong>of</strong>i models based primarily on information that can be obtained from<br />

remote sensing aerial photography and to establish a framework for such models.<br />

The simpler observations obtainable f rm the aerial photography being the plan<br />

form <strong>of</strong> the stream network. the topography and the soil type. the proposed model<br />

is based on these three types <strong>of</strong> information and particularly on the stream net-<br />

work s<br />

Geomorphologists have developed parameters which describe the topology, the<br />

structure, the planform and the relief <strong>of</strong> stream networks. [lo] Some <strong>of</strong> these<br />

parameters can be used ae indices <strong>of</strong> the hydrologic behavior <strong>of</strong> the basins since<br />

scmral characterietics <strong>of</strong> the hydrograph depend upon the efficiency <strong>of</strong> the


534<br />

drainage networks. For example, the bifurcation ratio (ratio <strong>of</strong> number <strong>of</strong> streem<br />

segments <strong>of</strong> one order to number <strong>of</strong> stream segments <strong>of</strong> next higher order) is an<br />

important control over the peakedness <strong>of</strong> the run<strong>of</strong>f hydrograph. Another geomorphologic<br />

parameter which affects the m<strong>of</strong>f pattern is the drainage density (smmation<br />

<strong>of</strong> stream lengths divided by basin area) which is approximately one halr<br />

<strong>of</strong> the reciprocal <strong>of</strong> the overland flow length. A high drainage density indicates<br />

a rapid removal <strong>of</strong> the surface run<strong>of</strong>f, a decrease in the lag time and an<br />

increase in the peak <strong>of</strong> the hydrograph.<br />

A model based on the stream network also lends itself to the application or<br />

the dynamic source area concept rather than the application <strong>of</strong> classical Horton<br />

infiltration theory for the purpose <strong>of</strong> estimating the run<strong>of</strong>f-producing-rainfall.<br />

Freeze [li] has shown theoretically that on concave slopes <strong>with</strong> lower permeabilities<br />

and on all convex slopes, hydrographs are dominated by direct run<strong>of</strong>f <strong>with</strong><br />

a very short overland flow path from precipitation on transient, near channel<br />

wetlands which form the variable response area.<br />

DuMe and Black [12] reported<br />

that the area contributing to the overland flow ie dynamic in the sense that it<br />

varies seasonally and throughout a storm. Nutter and Hewlett 1131 have depicted<br />

the growth <strong>of</strong> the source area during a storm from areas adjacent to the lover<br />

order streems and gradual4 expanding to the main stream in one direction and to<br />

efflmeral stream in the other. It seems logical to assume that the response<br />

area will depend on the soil type adjacent to the stream and on the antecedent<br />

rainfall.<br />

In view <strong>of</strong> the complexity that would result from estimating and routing the<br />

run<strong>of</strong>f in each tributary, it is proposed to synthesize the stream network by<br />

folding it along the main stream in a manner similar to that mea by Lkwge [i41<br />

<strong>with</strong> the time-area diagram.<br />

Several routing procedures could be used, the %om-<br />

plete linear routing" method <strong>of</strong> Dooge and Harley [i51 was used because <strong>of</strong> its<br />

superior accuracy among other linearand emperical methods. It is in the appli-<br />

cation <strong>of</strong> the routing procedure that the slope <strong>of</strong> the main stream plays a major<br />

role. For full details the reader is directed to ref. 17.<br />

iVRMULàTION OF THE MDDEL<br />

The model <strong>of</strong> the contributing area A(iAt) is expressed by the relationship<br />

i;,<br />

i-1<br />

[R(kAt) - B]At + [R(iAt) - B]At<br />

A(iAt) = Ao I<br />

i<br />

T<br />

[R(kAt) - 1<br />

B]At<br />

k=O<br />

where A(iAt) is the contributing (response) ana at time iAt<br />

R(kAt) is the rainfall intensity at time kAt<br />

B is the "B" horizon permeability<br />

D is the fraction <strong>of</strong> the antecedent rainfall contributing to the<br />

response area<br />

N is a parameter<br />

T is the total nuniber <strong>of</strong> sampling points <strong>of</strong> the run<strong>of</strong>f -&-ogreph<br />

(1)


k<br />

i<br />

is an index to count the time <strong>of</strong> antecedent rainfall excess,<br />

k*i<br />

is an index indicating the current time<br />

Equation (1) is subject to the conetraint that the continuity equation must<br />

be satisfied, namely the volume <strong>of</strong> rainfall excess muet be equal to the volume<br />

<strong>of</strong> direct run<strong>of</strong>f:<br />

- T T<br />

1 QO(lAt)At 1 A(iAt) [R(iAt) - B]At<br />

i =o i=o<br />

where Q,(iAt) is the direct run<strong>of</strong>f at the outlet at time Ata<br />

535<br />

The synthesis <strong>of</strong> the stream network is based, in part, on the observation<br />

made,by Leopold [i61 that there is no definite tendency îor the flow velocity to<br />

have a great change along the length <strong>of</strong> the stream for a given retuni period or<br />

fkequency. It may thus be assumed that locations having equal distances measured<br />

along the stream network to the outlet, have the same run<strong>of</strong>f travel time to<br />

the outlet. If it may be further assumed that the drainage density is approximately<br />

uniform <strong>with</strong>in a watersheä, then the total stream length upstream <strong>of</strong> a<br />

particular point on a stream ia proportional to the tributary drainage area at<br />

that point. Thus the distribution <strong>of</strong> the travel times is proportional to the<br />

distribution <strong>of</strong> the drainage areas along the stream reaches, and o<strong>nl</strong>y the latter<br />

need to be considered. Fig. 1 shows the method <strong>of</strong> estimation <strong>of</strong> the distribution<br />

<strong>of</strong> the drainage arem s(JAL) along the main stream reaches for a idealized<br />

waters he d.<br />

The vol^ <strong>of</strong> run<strong>of</strong>f may be obtained by adding the run<strong>of</strong>fs from each <strong>of</strong> the<br />

elementary contributing areas. Calling a(jAL, IAt) the dynamic response area<br />

at stream reach jAL and at time iAt, the continuity equation may be written<br />

T T S<br />

1 Qo(iAt)At 1 1 a(JAL, iAt) [R(iAt) - BIAL At (3)<br />

is0 i=O, j=o<br />

where S is the total nimiber <strong>of</strong> stream reaches.<br />

Assuming further that the first order atreams or the atream Bources are plaiformly<br />

distributed over the watershed, then, at a given time iAts the ratio 0%<br />

the dynamic response area a(jAL, iAt) at stream reach jAL to the tributaPy<br />

drainage area at the same stream reach is equal to the ratio <strong>of</strong> the total pesponse<br />

area A(iAt) to the total watershed area Ao- Thus<br />

The continuity equation (3) thua becows


536<br />

The direct run<strong>of</strong>fs from the individual stream reaches are then routed<br />

through the stream network by means <strong>of</strong> a linear routing procedure. li- 2<br />

shows schematically the routing procedure for a stream reach.<br />

X(JAL, kAt), in reach j at time<br />

-<br />

The input,<br />

kAt is the direct run<strong>of</strong>f given by<br />

X(JAL, kAt) ao(jAL) A(kAt) [R(kAt) - BI (5)<br />

AO<br />

and the routed outflow from reach,j, at time iAt is Y(JAL, iAt), given by the<br />

convolution integral shown in pig. 2 which Is approximated by the convolution<br />

sum<br />

i<br />

Y(jAL, iAt) 2: Hu(JAL, (i-k)At) X(jAL, kAt)At (6)<br />

k=O<br />

where H (JAL, (i-k)At) is the kernel function or instantsneous unit hydrograph<br />

<strong>of</strong> the bear routing procedure used. The run<strong>of</strong>f at the outlet, Bo, is obtained<br />

by summation over the stream reaches<br />

S i<br />

2 (iAt) = 1 1 H,(jAL, (i-k)At) * Ia0(jAL) A(kAt) [R(kAt)-BI - At '<br />

C<br />

(7)<br />

j=O k=O AO<br />

where A(kAt) is given by equation (1). The kernel fbctions for 10 <strong>of</strong> the most<br />

common linear routing models have been listed by Toebes and Chang [la]. In this<br />

particuiar study the linear channel routing kernel function used is based on a<br />

linearization <strong>of</strong> the Saint Venant equations developed by Rwge and Harley [15].<br />

This kernel function has three parameters: the stream slope, a reference discharge,<br />

and a roughness parameter.<br />

IMPLEMENTATION OF THE MODEL<br />

The watersheds selected for testing the model are located in the state <strong>of</strong><br />

Indiana, near the center <strong>of</strong> the esstem half <strong>of</strong> the United States. Thirteen basins<br />

were used <strong>with</strong> areas ranging from 8 to 400 square kilometers. The drainage<br />

maps for these watersheds were prepared from aerial photographs at the scale <strong>of</strong><br />

1:20,000 by the staff <strong>of</strong> the Airphoto Interpretation Laboratory, School <strong>of</strong> Civil<br />

Engineering at -due University.<br />

The maps used were at the scale <strong>of</strong> 1:63,360<br />

(one inch equals one mile). The longitude and latitude <strong>of</strong> all stream junctions<br />

and stream sources <strong>with</strong>in the basins were digitized and stored on punched cards<br />

by means <strong>of</strong> an automatic digitizer. The details <strong>of</strong> assembly and <strong>of</strong> the storage<br />

<strong>of</strong> the hydrologic and geomorphologic data on magnetic tapes have been reported<br />

by Lee, Blank and Delleur [is]. Fig. 3 presents a CALCOMP restitution <strong>of</strong> the<br />

drainage network <strong>of</strong> a watershed from the data stored on magnetic tape. Also<br />

ahawn on Fig. 3 are the etream link m d the drainage eue8 distributions along


537<br />

the main stream. The rainfall imposed on the dynamic contributing areas is then<br />

used as the input into the linear routing procedure for each main stream link<br />

and then summed over all the stream links. Fig. 4 (right) shows the outflow hy-<br />

drograph obtained by the complete linear routing method using the parameter val-<br />

ue shown (QI3 = reference discharge in d/Sec, CZ = roughness coefficient in<br />

d2/sec, SL = main stream slope). With the exception <strong>of</strong> the slope, the parame-<br />

ter velues were obtained by an optimization procedure which minimized the differ-<br />

ence between observed and calculated peak discharges and observed and calculated<br />

timesto the peak discharge. The parameters so obtained were correlated <strong>with</strong><br />

climatological and geomorphological characteristics <strong>of</strong> the watersheds <strong>with</strong> the<br />

following results.<br />

For the watersheds used in this study it was found that the outflow hydrographs<br />

were not sensitive to the choice <strong>of</strong> D for D > 0.5. A value <strong>of</strong> D = 0.8<br />

was used. The value <strong>of</strong> B was taken as zero as the soils were generally impervious<br />

because <strong>of</strong> their clayey type and high permanent water table in the contributing<br />

areas adjacent to the streams. The value <strong>of</strong> N was found to be related t6<br />

the moPf ratio, R (ratio <strong>of</strong> measured run<strong>of</strong>f to measured rainfall):<br />

r'<br />

0.464 - Rr<br />

for = D = 0.8, B = O<br />

0.242<br />

(8)<br />

The run<strong>of</strong>f ratio was in turn related to the storm characteristics, the tempera-<br />

ture and an average soil permeability index <strong>of</strong> the basin by a regression equa-<br />

tion <strong>of</strong> the type<br />

a 8 6 ~<br />

Rr = Tmin 'I 'max<br />

where T+n is the minimum daily temperature when the storm occurs, Sf =: soil<br />

permeability index determined by assigning soil permeability VaEues to major<br />

soil types occurring in the basin, and calculating the weighted average for each<br />

basin, Pt is the rainfa-ll. volume and P- is the maximum rainfall intensity. The<br />

independent variables in the right hand side <strong>of</strong> Eq. (9) are listed from left to<br />

right in order <strong>of</strong> decrearkig significance. Al1 the exponente were negative and<br />

less than one (a = -0.42, f3 = -0.15, y = -0.18, 6 = -0.25). The multiple correlation<br />

coefficient was 0.91.<br />

The roughness coefficient C, was significantly correlated to the basin area,<br />

the stream slope, and the b me flow per unit area by a regression equation <strong>of</strong><br />

the t yp<br />

where Bf is the base flow per unit area when the storm occurs, 4 is the drain-<br />

age area and So is the slope <strong>of</strong> the main stream. The independent variables are<br />

listed in order <strong>of</strong> decreasing aignificance. The exponents p and v were positive<br />

(1.0 and 1.4 respectively) but A was negative (-0.21)* The multiple correlation<br />

coefficient was 0.64. The value <strong>of</strong> the reference discharge varied between nar-<br />

row limits, 1.1to 1.4 cubic meter per second for atom wlumas ranging from 2.5<br />

(9)


538<br />

to i4 mm. Making use o? equations 8 throua 10, the model regenerated well the<br />

shapes <strong>of</strong> the hydrographs; the peak discharges were in general, reproduced <strong>with</strong>in<br />

20% and the times to peak <strong>with</strong>in 10% <strong>of</strong> the observed values. It should be<br />

remembered that equations 8, 9 and 10 are u<strong>nl</strong>ikely to be vali8 outside <strong>of</strong> the<br />

geographical arca ?or which they were obtained. They indicate, however, the<br />

type <strong>of</strong> variables which influence the model parameters and their corresponding<br />

sensitivity.<br />

DISCUSSION AND CoNCurSIONS<br />

The framework has been developed for a model which makes it possible to es-<br />

timate the run<strong>of</strong>f from rainfall and from data obtainable from aerial photography<br />

and from remote sensing. As presented, aerial photograph is needed for the de-<br />

termination <strong>of</strong> the stream network, the main stream slope and the watershed a r e a n<br />

In addition infrared color photography and/or ground observations are needed to<br />

obtain the soil permeability index, the soil types for the estimation o? the 'B"<br />

horizon permeability and the base flow.<br />

<strong>with</strong> the rapid progress <strong>of</strong> the remote sensing technology, it is expected<br />

that, in the near future, the amount <strong>of</strong> field work necessary may be greatly re-<br />

duced and lidted to calibration areas to obtain the spectral response charac-<br />

teristics needed for the interpretation <strong>of</strong> the remote sensing scanning.<br />

The rainfall-run<strong>of</strong>f process in a watershed was simulated by three basic<br />

components: a dynamic contributing area model, a contributing area distribution<br />

curve which integrates the contributing areas along the stream network, and a<br />

linear routing technique. In the proposed dynamic contribution area model the<br />

exponent N, which quantifies the rate <strong>of</strong> expansion <strong>of</strong> the response area, Was<br />

found to be the dominant parameter, and was found to be correlated to the -<strong>of</strong>f<br />

ratio. The "B" horizon infiltration and the weight <strong>of</strong> the antecedent rainfd1 D<br />

were not the primary parameters. In the linear routing, the roughness Parameter<br />

was found to be correlated to geomorphologic parameters and to the baseflow Wr<br />

unit area. The reference discharge did not change significantly from Storm to<br />

storm or from watershed to watershed.<br />

ACKNOh'LEIKMENT<br />

The Work presented herein was supported by Lhe Office o? <strong>Water</strong> <strong>Resources</strong> Re search, U.S. Department <strong>of</strong> the Interior under grant OWRR-B-008-IliD, by the Purdue<br />

Research Foundation under grant XR 5869 and by PiPrdue University. m-<br />

thors wish to exprese their thanks to the sponsors,<br />

REFERENCES<br />

1. Rodriguez-Iturbe, I. (1969) Estimation <strong>of</strong> Statistical Parmeters for Annual<br />

River Flows, <strong>Water</strong> <strong>Resources</strong> Research, 5, pp. 1418-1421-<br />

2. Keifer, R. W. and J. A. Sherz (1971) Aerial photograph for <strong>Water</strong> reSomceS<br />

studies, Jour. o? Surveying and Mapping Div. , Am. Soc. civil Enva. vole 97,<br />

No- SU29 PP. 321-333.


3.<br />

4.<br />

5.<br />

6.<br />

7.<br />

539<br />

Laboratory for Agricultural Remote Sensing, Purdue University, Lafayette,<br />

Indiana (i968 and 1971) Remote Multispectral sensing in Agriculture, Vol.<br />

3 (Annual Rept., 1968) Res. Bull. No. 844, Agr. Exp. Station, also Vol. 4<br />

(Annual Rept., 1971) Res. Bull. NO. 873, Agr. Exp. Station.<br />

Pluhowski, E. J. (1972) Hydrologic interpretations based on infrared ima-<br />

gery <strong>of</strong> Long Island, New York, Geel. Surv. <strong>Water</strong> Supply Paper 2009, U.S.<br />

Govt. Print. Off.<br />

Weaver, K. F. (1969) Remote sensing: new eyes to see the world, Natl. Geo-<br />

graphic, Vol. 135, NO. 1, pp. 47-73.<br />

Waltz, F. A. and Y. I. mers (1970)<br />

Remote sensing <strong>of</strong> hydrologic resources<br />

in the Great Plains, Rept. #I, Remote Sensing Inst., Univ. <strong>of</strong> South Dakota.<br />

(Available from IVTIS, NO. PB 195 451)<br />

Zachary, A. L., J. E. Cipra, R. J. Diderickson, S. J. Krist<strong>of</strong>, and M. F.<br />

Baumgardner (1972) Application <strong>of</strong> multispectral remote sensing to soil<br />

survey research in Indiana, Lab. for Application <strong>of</strong> Remote Sensing, Purdue<br />

Univ., Lafayette, Indiana, Print 110972. '<br />

8. Scherz, J. P. (1971) Monitoring water pollution by remote sensing, Jour. ai'<br />

Survy. and Map. Div., Am. Soc. Civil Engr., Vol. 97, No. SU2, pp. 307-320.<br />

9. Colwell, R. N. (1973) Remote sensing in the management <strong>of</strong> earth resources,<br />

American Scientist, Vol. 61, NO. 2.<br />

10. Strahler, A. N. (1964) Quantitative geomorphology <strong>of</strong> drainage b&ns and<br />

channel networks, in Handbook <strong>of</strong> Applied <strong>Hydrology</strong>, V. T. Chow, Ed., McGraw-<br />

Hill Book Co., pp. 4-40, pp. 44-74.<br />

11. Freeze, R. A. (1972) Role <strong>of</strong> subsurface flow in generating surface run<strong>of</strong>f,<br />

2, Upstream Source Areas, <strong>Water</strong> <strong>Resources</strong> Res., 8. pp. 1272-1283.<br />

12. Dunne, T., Bnd Black, R. D. (1970) Partial area contributions to storm run<strong>of</strong>f<br />

in a s-1 New Englua watershed, <strong>Water</strong> <strong>Resources</strong> Res., 6, pp. 1296-1311.<br />

13. Nutter, W. J., and Hewlett (1971) Stream flow production from permeable upland<br />

basin, paper presented to the Third Internatl. Seminar for <strong>Hydrology</strong><br />

Pr<strong>of</strong>essors, Furdue Univ., Lafayette, Ind., USA, July 1971.<br />

14. Dooge, J. C. I. (1959) A general theory <strong>of</strong> the unit hydrograph, Jour. o?<br />

Geophys. Res., Vol. 64, NO. 2, pp. 241-256.<br />

15 Dooge, J. C. I. and B. M. Harley (1967) Linear routing in uniform chmela,<br />

Proc. inti. wdroïogy Symp., Sept. 1967, Fort Collins, Colorado, USA, 1, pp.<br />

57-63.<br />

16. kopold, L. E. (1953) Downstream change <strong>of</strong> velocity in rivers, Am. Jour. <strong>of</strong><br />

Science. 25. PP. 606-624.<br />

17. Lee, M.-T. t&d-J. W. Delleur (1972) A program for estimating mu<strong>of</strong>f from<br />

Indiana <strong>Water</strong>sheds, Part III, Analysis <strong>of</strong> geomorphologic data snd a dyndc contributing area model for run<strong>of</strong>f estimation, Purdue Univ. <strong>Water</strong> <strong>Resources</strong><br />

Res. Center, Lafayette, Ind. Tech. Rept. No. 24.<br />

18. Toebes, G. H. and T. P. Chang (1972) Simulation model for the Upper Wabash<br />

surface water system, Purdue Univ. <strong>Water</strong> <strong>Resources</strong> Res. Center, Lafayette,<br />

Ind. Tech. Rept. NO. 27.<br />

19. Lee, M. T., D. ~lank, J. W. Delleur<br />

(1972) A program for eetimting mori from Indiana watersheds , Part II , Assembly <strong>of</strong> hydroloaic euid geomorphologic<br />

data for small watershed0 in Indiana, Purdue Unio. <strong>Water</strong> Resource9 Ra#. Ccnter,<br />

Lafayette, Indiens, Tech. Rept. No. 23.


540<br />

a<br />

U<br />

O<br />

O<br />

STREAM REACH<br />

2 4 6 8<br />

STREAM REACH i<br />

FIGURE I DRAINAGE AREA DISTRIBUTION ALON<br />

THE STREAM REACHES


INPUT 5 q (0,t)<br />

INPUT - 1 SYSTEM1 OUTPUT -<br />

INPUT<br />

DE LTA<br />

FUNCTION<br />

q(0.t) = Xf0,t)<br />

-<br />

t<br />

t<br />

OUTPUT = q (L,t)<br />

OUTPUT<br />

2 PHYSICAL D?AGRAM OF UPSTREAM INFLOW<br />

INSTANTANEOUS UNIT HYDROGRAPH<br />

FOR SINGLE STREAM REACH<br />

t<br />

541


m (D U N<br />

542


8 N<br />

f d-<br />

(u<br />

d<br />

O<br />

8<br />

ï v)<br />

4<br />

O<br />

I-<br />

o<br />

W<br />

rr n<br />

âLL<br />

=IA<br />

o- 0<br />

"w z<br />

z3<br />

I-o-<br />

CJ<br />

O<br />

O.<br />

a<br />

œ<br />

œ<br />

n<br />

r<br />

><br />

I<br />

Q<br />

543


MONTHLY STREAMFLOW ESTIMATION FROM LIMITED DATA<br />

C.T. Haan<br />

-- ABSTRACT<br />

A four parameter, monthly water yield model has been developed<br />

and tested that makes it possible to estimate monthly streamflow<br />

volumes from daily rainfall information. The four parameters <strong>of</strong> the<br />

model can be determined from as little as two years <strong>of</strong> observed<br />

monthly streamflow data. This makes it possible to install<br />

temporary, short term stream gaging stations to collect two or<br />

three years <strong>of</strong> monthly streamflow data and from this data determine<br />

the four parameters <strong>of</strong> the water yield model. The model uses a<br />

self-optimizing procedure so that the user is not necessarily involved<br />

in the parameter estimation process. A study <strong>of</strong> 24 watersheds<br />

has also shown that the four model parameters can be related<br />

to soil, geomorphic, and geologic characteristics <strong>of</strong> the basin.<br />

In this way the parameters for an ungaged basin can be estimated<br />

<strong>with</strong>out requiring any data from that particular basin. Once the<br />

model parameters are determined, long traces <strong>of</strong> monthlv streamflow<br />

data cán be simulated us ng o<strong>nl</strong>y daiiy rainfa 1 as a model input.<br />

RESUME<br />

_ _ mis au point un mode<br />

On a développé et<br />

e à quatre paramètres,<br />

pour l'évaluation du rendement mensuel en eau, qui rend possible<br />

une estimation du volume de l'écoulement mensuel à partir de<br />

l'information que constituent les pluies journalières. Les quatre<br />

nnram5tres - - . - - - - - di1 - - mod31e . - - - - - n~iivent - - . - -- - P+PP - - - - d8tPvrninLs - - - - , , -. . - - > - na-etiv r-.- --- ~tin~nmrna-<br />

- ....I"L...tions<br />

aussi restreintes que les résultats de deux ans d'observation<br />

des débits. Cela permet d'installer des stations de jaugeage des<br />

débits, temporaires, à court terme, afin de réunir des informations<br />

portant sur deux ou trois ans, sur les débits mensuels, et, 2<br />

partir de ces informations deduire les quatre paramètres du modèle<br />

de rendement d'eau. Le modèle fait usage d'un procédé qui évalue<br />

automatiquement les informations et les dispose de la meilleure<br />

facon possible (self-optimizing procedure) de sorte que l'usager<br />

n'a pas nécessairement à se préoccuper de l'estimation des paramètres.<br />

Une étude de 24 bassins (watersheds) a aussi montré que<br />

les quatre paramètres du modèle peuvent être reliés aux caracteristiques<br />

géomorphiques et géologiques, ainsi qu'a celles du sol, pour<br />

un bassin (basin) donné. De cette facon, les paramètres pour un<br />

bassin non jauge peuvent être évalués sans que l'on ait besoin de<br />

faire appel a des renseignements sur ce bassin en question. Une<br />

fois que les paramètres du modèle sont déterminés, on peut produire<br />

artificieilement un tracé important (long traces) des débits<br />

mensuels en se servant seulement, pour alimenter le modèle, des<br />

précipitations j ournaïières .


546<br />

The design <strong>of</strong> surface water supply systems requires an<br />

estimate <strong>of</strong> streamflow volume characteristics. Ideally, the<br />

designer would like to have available long streamflow records.<br />

Generally, for the design <strong>of</strong> water supply reservoirs, a long<br />

record <strong>of</strong> monthly run<strong>of</strong>f volumes would be sufficient. Unfortunate-<br />

ly these streamflow records are not available for a vast majority<br />

<strong>of</strong> the streams draining watersheds <strong>of</strong> up to 1500 square kilometers.<br />

Thus, methods <strong>of</strong> estimating monthly run<strong>of</strong>f volumes for these un-<br />

gaged basins are needed.<br />

<strong>Water</strong>shed models that simulate continuous streamflow records<br />

<strong>of</strong> fer promise in this area. Several comprehensive watershed<br />

models are presently available [1,2,3]. These models may be<br />

categorized as parametric models in that they contain several<br />

parameters that must be estimated before they can be applied to a<br />

particular watershed. The parameters must be determined manually<br />

and are based on a comparison <strong>of</strong> observed streamflows <strong>with</strong><br />

simulated streamflows.<br />

Realizing the ability <strong>of</strong> computers to find parameter sets that<br />

satisfy certain objectives and the differences that occur when<br />

different people determine the values for model parameters, Liou<br />

141 attempted to develop a self-optimizing procedure for the<br />

Stanford <strong>Water</strong>shed Model [i]. Further work on the Stanford Model<br />

was done by Ross [SI in an attempt to relate the optimum model<br />

parameters to watershed characteristics.<br />

Haan [6] has developed a relatively simple run<strong>of</strong>f model that<br />

enables one to estimate monthly streamflow from daily precipitation<br />

and estimated average daily potential evapotranspiration. The<br />

model contains four parameters that must be determined for each<br />

basin. These parameters are :<br />

f<br />

Smax<br />

Cmax<br />

= maximum infiltration rate (cm/hr).<br />

= maximum daily seepage loss (cm) .<br />

= water holding capacity <strong>of</strong> that part <strong>of</strong><br />

the soil from which the evapotranspiration<br />

rate is less than the potential rate<br />

u<strong>nl</strong>ess this portion <strong>of</strong> the soil is<br />

saturated (cm) .<br />

'Associate Pr<strong>of</strong>essor, Agricultural Engineering Department ,<br />

University <strong>of</strong> Kentucky , Lexington , Kentucky, 40 506 , USA.


Fs = fraction <strong>of</strong> the seepage that becomes<br />

run<strong>of</strong>f (-1.<br />

The optimum values for these parameters are defined to be<br />

those that minimize the sum <strong>of</strong> squares between the observed and<br />

simulated monthly run<strong>of</strong>f volumes. Thus, to get the optimum<br />

parameter values , some observed streamflow data is required.<br />

Work <strong>with</strong> the model has shown that two years <strong>of</strong> monthly streamflow<br />

data are usually sufficient to obtain a satisfactory set <strong>of</strong><br />

optimum parameter values.<br />

The model has the capability <strong>of</strong> determining the optimum<br />

parameter values for a particular basin when provided <strong>with</strong> daily<br />

rainfall, average daily potential evapotranspiration by months,<br />

some observed monthly streamflowc for the basin, and a set <strong>of</strong><br />

initial estimates for the parameter values.<br />

The optimization procedure that is<br />

univariate technique. The value <strong>of</strong> the<br />

n<br />

c (Vo - Vs. ) is computed using the<br />

i=l i 1<br />

parameter value. in this expression, n<br />

flow and Vo is the observed volume and<br />

streamflow $or the ith month. Next the<br />

presently used is a simple<br />

objective function<br />

initial estimates for the<br />

is the number <strong>of</strong> monaths <strong>of</strong><br />

Vs. the simulated volume <strong>of</strong><br />

vatue <strong>of</strong> one <strong>of</strong> the parameters<br />

is chanued bv a fixed amount and the obiective function is<br />

recomputed. &e vaiue <strong>of</strong> this parameter contiAues to be changed<br />

as long as the objective function is improving (getting smaller).<br />

The other three parameters are adjusted in the same manner one at<br />

a time. Since these parameters are not independent, the entire<br />

process is then repeated one or two times. The result <strong>of</strong> this<br />

iterative process is taken as the optimum set <strong>of</strong> parameters.<br />

This model has been tested on 24 watersheds in Kentucky<br />

ranging in area from 1.74 to 1225 square kilometers and on 3 water-<br />

sheds in South Carolina ranging in area from O .ll to 2.27 square<br />

kilometers. The results <strong>of</strong> these evaluations are given in 161 ,<br />

[71 and [8]. Defining the average prediction error (%) as 100<br />

times the absolute value <strong>of</strong> the difference between the observed<br />

and simulated average annual streamf low divided by the observed<br />

average annual streamflow, the average prediction error for these<br />

27 watersheds is 4.0 percent. For these watersheds, the average<br />

annual run<strong>of</strong>f varied from 18.7 to 48.6 cm.<br />

For streams on which there are no records available, at least<br />

two procedures can be used to estimate the optimum parameter values.


548<br />

If sufficient time is available, a temporary stream gaging station<br />

can be established and operated for two or more years. This<br />

station would o<strong>nl</strong>y have to provide information on the monthly<br />

flows. The data from this short-term gaging program could then<br />

be used in the optimization scheme described earlier.<br />

Jarboe and Haan [7] have used a second technique for estimat-<br />

ing the four model parameters for ungaged basins. This method uses<br />

streamflow information from gaged basins in the vicinity <strong>of</strong> the<br />

ungaged basin <strong>of</strong> interest. The optimum model parameters for the<br />

gaged basins are determined and related to measureable character-<br />

istics <strong>of</strong> the gaged basins. These relationships are then used<br />

to estimate the model parameters for the ungaged basin.<br />

The basin characteristics used by Jarboe and Haan [7] are<br />

shown in Table 1. The four model parameters were related to these<br />

factors using multiple linear regression. Twenty-three watersheds<br />

were included in the study. Six <strong>of</strong> the watersheds were selected<br />

at random and treated as ungaged basins.<br />

The remaining 17 basins<br />

were used in developing the following prediction equations for the<br />

model parameters :<br />

fmx = 11.83 - 11.51 Smax - 0.0147 SdSb - 0.030 A H<br />

g<br />

- 0.334 PkFc + 0.692 VrPR<br />

= 0.073 + 0.0031 Wc + 0.00075 Iw L - 0.0021 P H<br />

nax a g<br />

+ 0.00011 FcL - 0.0057 V H<br />

r g<br />

C = 7.69 + 0.739 IwSb + 0.011 S H + 0.0243 FcIw<br />

d 9<br />

Fs = 0.325 + 0.0068 L + 0.444 PkSb + 0.00027 PsSd<br />

- 0.018 WcPk<br />

These equations should not be used on watersheds (1) greater<br />

than 100 square kilometers in area, (2) on urban watersheds, or<br />

(3) on watersheds that differ greatly in their hydrologic char-<br />

acteristics from the watersheds used to derive the equations.<br />

(1)<br />

(2)<br />

(3)<br />

(4)


Table 1. <strong>Water</strong>shed characteristics used by Jarboe and<br />

Haan [7] to estimate the water yield model<br />

parameters.<br />

Geomorphic Factors<br />

A Basin area (km')<br />

percent <strong>of</strong> basin under forest cover (%)<br />

Percent <strong>of</strong> basin in lakes and ponds (%)<br />

Slope <strong>of</strong> the main stream (%)<br />

Length <strong>of</strong> the main stream (km)<br />

%<br />

Soil Factors<br />

W Average available soil water capacity (cm)<br />

HC U. S. Departnuint <strong>of</strong> Agriculture, Soil<br />

Conservation Service hydrologic soil<br />

group converted to a numerical index<br />

from 1 to 4 (-1<br />

Sd Average soil depth (cm)<br />

P Average soil permeability (cm/hr)<br />

p:<br />

Average permeability <strong>of</strong> upper soil horizon<br />

(cm/hr)<br />

549<br />

Geologic Factors<br />

vr<br />

"Rock" volume = mean basin elevation above<br />

basin outlet times the basin area (krn3)<br />

I,<br />

<strong>Water</strong> availability index (an index ranging<br />

from 1 to 4 depending on the ability <strong>of</strong> the<br />

material underlying the basin to yield water<br />

to wells) (-)


5 50<br />

Table 2 presents a s-ry <strong>of</strong> the results <strong>of</strong> using the above<br />

4 equations to estimate the parameters <strong>of</strong> the model on the 6 basins<br />

that were taken as unqaged. The simulated run<strong>of</strong>f values were<br />

obtained by estimating the model parameters from equations 1<br />

through 4 and then using these estimated parameters in the water<br />

yield model to simulate monthly streamflows. The six watersheds<br />

listed in table 2, although actually gaged, were considered as<br />

ungaged and not used in developing equations 1 through 4. These<br />

results indicate that reasonably good estimates <strong>of</strong> run<strong>of</strong>f volumes<br />

can be made on watersheds for which no streamflow records are<br />

avai lab le.<br />

EXAMPLE APPLICATION<br />

The South Fork <strong>of</strong> the Little Barren River in Kentucky was<br />

used to illustrate the application <strong>of</strong> this model under various<br />

conditions. Streamflow records have been maintained by the U.S.<br />

Geological Survey for this watershed for the period October <strong>of</strong><br />

1948 through September <strong>of</strong> 1970. A U.S. Weather Bureau rain gage<br />

at Edmonton, Kentucky, about 6 1/2 kilometers from the watershed,<br />

was used to provide the needed precipitation input. Some <strong>of</strong> the<br />

watershed physical characteristics are given in table 3. This<br />

watershed was not selected because <strong>of</strong> the ability <strong>of</strong> the model to<br />

simulate its monthly flow, but because <strong>of</strong> the long gaging record<br />

for the stream that could be used to check the simulated results.<br />

Table 4 summarizes the various simulations made on the South<br />

Fork <strong>of</strong> the Little Barren River watershed. Methods a through d<br />

are examples <strong>of</strong> how the model might be used to simulate streamflow<br />

from a previously ungaqed area. Method a required no streamflow<br />

records in that the parameters were estimated from equation 1<br />

through 4. Methods b, c, and d illustrate how the model can be<br />

used if it is possible to initiate a stream gaging program and<br />

collect 1, 2, or 3 years <strong>of</strong> data respectively on monthly run<strong>of</strong>f<br />

volumes. In method e the entire 22 years were used in a procedure<br />

described by Haan 161 to obtain the parameter values. In table 4<br />

the percent error is as previously defined, the correlation<br />

coefficient is the simple correlation between the observed and<br />

simulated monthly flows for the entire 22 year period <strong>of</strong> record,<br />

and the slope is the slope <strong>of</strong> a simple regression line relating<br />

the observed and simulated flows.


Table 2. Comparison <strong>of</strong> observed and simulated average<br />

annual run<strong>of</strong>f for six Kentucky watersheds when<br />

the mode1 parameters are estimated by equations<br />

(1-4).<br />

Observed<br />

Average<br />

Annual<br />

<strong>Water</strong>shed Run<strong>of</strong>f<br />

Helton Branch 43.59 crn<br />

McGills Creek 41.50<br />

Perry Creek 34.16<br />

Stillwater Creek 48.59<br />

Little Plum Creek 46.74<br />

N. F. Nolin River 39.90<br />

Simulated<br />

Average<br />

Annual<br />

Run<strong>of</strong>f<br />

44.63 cm<br />

46.41<br />

33.55<br />

42.98<br />

48.01<br />

43.46<br />

551<br />

Percent <strong>Water</strong>shed<br />

Error Area<br />

2<br />

2.4 2.20 km<br />

11.8 5.54<br />

1.8 4.45<br />

11.5 62.16<br />

2.7 13.33<br />

8.9 94.28<br />

Table 3. Physical characteristics <strong>of</strong> South Fork <strong>of</strong> the<br />

Little Barren River watershed, Kentucky.<br />

Area<br />

Forest cover<br />

Lakes and ponds<br />

Slope <strong>of</strong> main stream<br />

Length <strong>of</strong> main stream<br />

Available soil water capacity<br />

Index <strong>of</strong> USDA hydrologic soil group<br />

Average soil depth<br />

Average soil permeability<br />

Average permeability <strong>of</strong> upper soil horizon<br />

II Rock I' volume<br />

<strong>Water</strong> availability index<br />

47.4 km2<br />

62 %<br />

0.11 %<br />

0.32 %<br />

15.96 km<br />

17.68 cm<br />

2.30<br />

84.84 cm<br />

3.02 cm/hr<br />

3.35 cm/hr<br />

2.25 km3<br />

2.0


552<br />

The mean annual run<strong>of</strong>f for the South Fork <strong>of</strong> the Little<br />

Barren River is 50.17 cm. Thus an error <strong>of</strong> 1 percent represents<br />

an average annual error in the simulated run<strong>of</strong>f <strong>of</strong> O .5 cm. When<br />

the model parameters were calculated from equations 1 through 4,<br />

the error in the average annual run<strong>of</strong>f was 4.3 cm. Figure 1 shows<br />

a portion <strong>of</strong> the simulated and observed streamflows for the watersheds.<br />

The simulated monthly run<strong>of</strong>f shown in this figure were<br />

obtained using parameters calculated from equations 1 through 4<br />

in Haan's [6] wateryield model.<br />

Again it is cautioned that these<br />

equations may not produce reliable parameter estimates for regions<br />

hydrologically different than Kentucky. The technique <strong>of</strong> deriving<br />

parameter prediction equations should, however, be valid else-<br />

where.<br />

Methods b, c, and d <strong>of</strong> table 4 illustrate how a few years <strong>of</strong><br />

streamflow data can be used to estimate model parameters which in<br />

turn can be used to simulate long traces <strong>of</strong> monthly flows. The<br />

variable nature <strong>of</strong> streamflow from year to year is apparent in<br />

the run<strong>of</strong>f records from this watershed. As an example the first<br />

three years <strong>of</strong> the 22 year record produced the highest, third<br />

highest, and sixth highest annual run<strong>of</strong>f. The average annual run-<br />

<strong>of</strong>f for the first three years was 75.79 cm as compared to 50.17 cm<br />

for the entire period <strong>of</strong> record. It was these three wet years<br />

that were used in determining the model parameters indicated in<br />

table 4 under methods b, c, and d. This indicates that even<br />

though the years used in obtaining the model parameters may not be<br />

representative, reasonable estimates <strong>of</strong> streamflow can still be<br />

obtained.<br />

Table 4 also indicates that the accuracy <strong>of</strong> the simulation<br />

depends on the years used in determining the model parameters.<br />

The fact that using two years <strong>of</strong> flow data to obtain the<br />

parameter values produced better simulated results for the entire<br />

22 year period than did the parameters obtained from three years<br />

<strong>of</strong> data is not unusual; however, in general the more years used<br />

to obtain the parameters, the better will be the simulated<br />

results.<br />

Method e consisted <strong>of</strong> (1) optimizing the model on the first<br />

year <strong>of</strong> record, (2) simulating the entire 22. years <strong>of</strong> flow <strong>with</strong><br />

these parameters, (3) reoptimizing the model on the 2 years from<br />

the entire 22 year record that produced the poorest fit, and<br />

(4) finally determining the final parameters as a weighted<br />

average <strong>of</strong> the resulting two optimum sets <strong>of</strong> parameters where the<br />

weighting factors are the sum <strong>of</strong> the deviations <strong>of</strong> observed flows<br />

from simulated flows. The parameters obtained in this manner


Table 4. Methods used to optimize parameters on S.F.L. Barren<br />

River and summary <strong>of</strong> simulation results.<br />

Method<br />

~<br />

Des cri D ti on<br />

(a)<br />

íb 1<br />

Parameters calculated from equations 1-4.<br />

Parameters determined by optimization on first year <strong>of</strong><br />

data.<br />

(Cl Parameters determined by optimization on first two years<br />

<strong>of</strong> data.<br />

(dl<br />

(e)<br />

Parameters determined by optimization on first three<br />

years <strong>of</strong> data.<br />

Parameters optimized by Jarboe 181.<br />

Percent Correlation<br />

C<br />

fmax 'ma,<br />

Method Error Coefficient Slope cm/hr cm/day cm<br />

(a) 8.64 0.91 0.93 3.58 0.21 13.33 0.49<br />

(b) 10.13 0.87 0.96 3.45 0.25 16.38 0.54<br />

(c) 2.19 O .92 0.91 3.58 0.20 . . 12.57 0.54<br />

(d) 9.38 O .92 0.89 5.61 0.22 11.81 0.69<br />

(e) O .56 o .91 0.92 3.30 0.22 12.45 0.58<br />

when used <strong>with</strong> the watershed model were able to simulate the 22<br />

years <strong>of</strong> record <strong>with</strong> an average annual error <strong>of</strong> o<strong>nl</strong>y 0.56 percent<br />

or 0.28 cm. Obviously this technique cannot be used on a data<br />

scarce watershed. It is included here o<strong>nl</strong>y to provide an<br />

indication <strong>of</strong> the ability <strong>of</strong> the model to simulate monthly stream-<br />

flows.<br />

This model like most parametric hydrologic models, is<br />

in a constant state <strong>of</strong> change as improvements are incorporated to<br />

make the model easier to use, to reduce computer processing time<br />

and to increase the accuracy <strong>of</strong> the simulations.<br />

FS<br />

553


554<br />

SUMMARY<br />

Two procedures for using a four parameter water yield<br />

model for simulating traces <strong>of</strong> monthly streamflaw from watersheds<br />

<strong>with</strong> either no or very limited streamflow information are<br />

presented. The two procedures are (1) to relate the model<br />

parameters to watershed physical characteristics using stream-<br />

flow data from watersheds located near the watershed <strong>of</strong> interest<br />

or (2) to establish a short term gaging program on the stream<br />

draining the watershed and use these streamflow records to<br />

determine the model parameters. Once the model parameters are<br />

determined, long streamflow traces can be generated using either<br />

measured or synthetic daily rainfall. These two procedures were<br />

illustrated on a watershed in Kentucky and demonstrated that<br />

reasonably accurate estimates <strong>of</strong> monthly streamflow can be<br />

obtained.<br />

Acknowledgements: The work in which this report is based was<br />

supported in part by the Kentucky Division <strong>of</strong> <strong>Water</strong> and in part<br />

by the Kentucky Agricultural Experiment Station as a contribution<br />

to Southern Regional Project S-53 "Factors Affecting <strong>Water</strong> Yields<br />

from Small <strong>Water</strong>sheds and Shallow Ground Aquifers". The paper<br />

is published <strong>with</strong> the approval <strong>of</strong> the Director <strong>of</strong> the Kentucky<br />

Agricultural Experiment Station.


1.<br />

2.<br />

3.<br />

4.<br />

5.<br />

6.<br />

7.<br />

8.<br />

BIBLIOGRAPHY<br />

555<br />

Crawford, N. H. and R. K. Linsley. (1966). Digital simul-<br />

ation in hydrology: Stanford watershed model IV. Technical<br />

Report 39 , Stanford University , Department <strong>of</strong> Civil<br />

Engineering, Stanford, California.<br />

Holtan, H. N. and N. C. Lopez. (1971). USDAHL-70 Model <strong>of</strong><br />

<strong>Water</strong>shed <strong>Hydrology</strong>. Technical Bulletin No. 1435, Agricultural<br />

Research Service, U. S. Department <strong>of</strong> Agriculture, Washington,<br />

D.C. 84 pp.<br />

Tennessee Valley Authority. (1972). Upper Bear Creek<br />

Experimental Project: A continuous daily streamflow model.<br />

Division <strong>of</strong> <strong>Water</strong> Control Planning, Hydraulic Data Branch,<br />

Knoxville, Tennessee. 99 pp.<br />

Liou, E. Y. (1970). OPSET: Program for computerized<br />

selection <strong>of</strong> watershed parameter values for the Stanford<br />

<strong>Water</strong>shed Model. University <strong>of</strong> Kentucky <strong>Water</strong> <strong>Resources</strong><br />

Research Report 34, Lexington, Kentucky.<br />

Ross, G. A. (1970). The Stanford <strong>Water</strong>shed Model: The<br />

correlation <strong>of</strong> parameter values selected by a computerized<br />

procedure <strong>with</strong> measureable physical characteristics <strong>of</strong> the<br />

watershed. University <strong>of</strong> Kentucky <strong>Water</strong> <strong>Resources</strong> Institute<br />

Research Report 35 , Lexington, Kentucky.<br />

Haan, C. T. (1972). A water yield model for small watersheds.<br />

<strong>Water</strong> <strong>Resources</strong> Research 8 (No. 1) , pp 58-69.<br />

Jarboe, J. E. and C. T. Haan. (1972). Calibration <strong>of</strong> a four-<br />

parameter water yield model to small ungaged watersheds in<br />

Kentucky. Paper No. 73-207 for presentation at the 1973<br />

Annual Meeting <strong>of</strong> the American Society <strong>of</strong> Agricultural<br />

Engineers, Lexington, Kentucky, June 17-20, 1973.<br />

Jarboe, J. E. (1972). Calibration <strong>of</strong> a four-parameter water<br />

yield model for use on small, ungaged watersheds in Kentucky.<br />

Unpublished M. S. Thesis in Civil Engineering Library , University<br />

<strong>of</strong> Kentucky, Lexington, Kentucky.


556<br />

20[ PART OF<br />

- S.F.L. BARREN R.<br />

- RUNOFF RECORD<br />

- -<br />

OBSERVED RO O<br />

SIMULATED RO -<br />

TIME<br />

Figure 1. Example <strong>of</strong> monthly streamflaw simulation<br />

results using calculated model parameters.


AB ST RACT<br />

OBTAINING DEFICIENT INFORMATION BY SOLVING<br />

INVERSE PROilLEMS FOR MATHEMATICAL RUNOFF MODELS<br />

V.I. Koren and L.S. Kutchment?:<br />

Possibilities are considered for increase <strong>of</strong> deficient<br />

information for extending observation series by solving the<br />

"inverse problemt1 for mathematical run<strong>of</strong>f models. The results<br />

<strong>of</strong> applying the theory <strong>of</strong> "improperly posed problems'' are<br />

presented. Examples are given for representing hydrological,<br />

geometrical and hydraulic characteristics <strong>of</strong> the basin by<br />

lumped and distributed parameter run<strong>of</strong>f models.<br />

RESUME<br />

Les auteurs examinent les possibilités de la resolution<br />

du problème inverse appliquée aux modèles mathématiques d'eco!<br />

lement, en vue de compléter les lacunes des séries d'observa-<br />

tions et d'étendre la période couverte par ces séries. Ils ex-<br />

posent les résultats qui ont été obtenus par l'application de<br />

la théorie des problèmes posés incorrectement. Ils citent des<br />

exemples de détermination des caractéristiques hydrologiques,<br />

topographiques et hydrauliques a l'aide de modèles d'ecoulement<br />

globaux ou matriciels.<br />

:k Hidrometeorological Centre <strong>of</strong> the USSR.


558<br />

Mathematical modelling <strong>of</strong> hydrological processes is increas-<br />

ingly used to provide for missing information and to extend hydrolo-<br />

gical time series. Mathematical models are predominantly used for<br />

the solution <strong>of</strong> the so-called 'direct problem', consisting <strong>of</strong> deriv-<br />

ation <strong>of</strong> unknown hydrological variables by solving respective differ-<br />

ential equations <strong>with</strong> known coefficients and known initial and bound-<br />

ary conditions, In a large number <strong>of</strong> cases it is necessary to solve<br />

the 'inverse problem' namely to find the coefficients and establish<br />

the initial and boundary conditions using observed values <strong>of</strong> the<br />

hydrological variables included in the equations. This approach has<br />

as yet gained relatively rare use due to the fact that the solution<br />

<strong>of</strong> the 'inverse problem' is more difficult than that <strong>of</strong> theldirect<br />

problem'. The solution <strong>of</strong> the 'inverse problem' may be circumvented<br />

by multiple solutions <strong>of</strong> the 'direct problem' for example by the<br />

methods <strong>of</strong> trial and error and subsequent optimization. Thia may<br />

lead however to a non-unique or inferior solution. The principal<br />

difficulty in the solution <strong>of</strong> the inverse problem consists in the<br />

fact that it may be incorrectly posed and thus leads to the non-<br />

existence <strong>of</strong> some or any initial conditions or leadsto a solution<br />

in which a small change <strong>of</strong> initial conditions (data) due for example<br />

to observational errors, results in major changes in the results.<br />

This has caused in the past a reluctance toward the use <strong>of</strong> this<br />

method, since the solution being <strong>of</strong> very low accuracy and high un-<br />

certainty casts doubt on its physical significance.<br />

A number <strong>of</strong> studies were made in recent years (particularly<br />

by A.N. Tikhonov and his school) aiming at the correct posing <strong>of</strong><br />

the problem by establishing the necessary conditions for it.<br />

A.N. Tikhonov has shown that it is possible to u13e a priori inform-<br />

ation on the solution to ensure a continuous dependance <strong>of</strong> the<br />

solution <strong>of</strong> an incorrectly posed problem on its initial conditions<br />

and to derive special algorithm:: which prevent bringing out the solution<br />

outside the limits <strong>of</strong> its uniqueness and <strong>of</strong> the existence <strong>of</strong> its initial<br />

conditions. In particular it made possible to solve <strong>with</strong> sufficient<br />

stability such classical incorrectly-posed problems as the integral<br />

equation <strong>of</strong> the first type, algebraic systems <strong>with</strong> improper initial<br />

conditions, the Cauchy problem c?f the Laplace equation and others.<br />

The theory <strong>of</strong> the 'inverse problem' has thus stimulated the formu-<br />

lation <strong>of</strong> algorithms used in many scientific and technical fields.<br />

The method was particularly useful in geophysics, where it permitted<br />

the solving, for example, <strong>of</strong> problems <strong>of</strong> determination <strong>of</strong> rock charac-<br />

teristics not accessible for direct measurement as well as restora-<br />

tion <strong>of</strong> missing information, to cite o<strong>nl</strong>y the most important points.<br />

The use <strong>of</strong> this method in hydrology appears also as most promising.<br />

Examples <strong>of</strong> such studies, used in hydrological practice, are given<br />

below. They illustrate also the principles and possibilities <strong>of</strong> the<br />

theory <strong>of</strong> incorrectly posed problems.<br />

1. Determination <strong>of</strong> the input functions <strong>of</strong> the models<br />

<strong>with</strong> lump parameters<br />

Let us suppose that the process <strong>of</strong> transforming an input h(t)<br />

in the catohment (effective rainfall or an inflow) into an output<br />

Q(t) can be described by the Duhamel integral:


559<br />

where P(t) is some known function <strong>of</strong> influence. Then having the observations<br />

on Q(t) and knowing the function P( t) (by historic observations or<br />

from physiographic and hydraulic data) it is possible using (1) to derive<br />

h(t). Thus an improperly posed problem is solved - consisting <strong>of</strong> an integral<br />

equation <strong>of</strong> the first type. It is possible to solve this problem<br />

on the basis <strong>of</strong> A.N. Tikhonov's algorithm. Integral (1) is replaced by<br />

a summation according to the method <strong>of</strong> rectangles and a smoothed functional<br />

curve is constructed:<br />

-b<br />

3<br />

where Q = a vector, designating the Ordinates <strong>of</strong> the given hydrograph Q(t);<br />

h = a vector <strong>of</strong> the unknown ordinates h A = a matrix <strong>with</strong> elements<br />

5'<br />

P ; d= a positive Constant. Finding the minimum <strong>of</strong> this functional<br />

mk&'it possible to receive a sequence <strong>of</strong> stable solutions %, which<br />

converge to the accurate solution providing there are no errors in the<br />

given data. However since there are always errors in these, changing<br />

the parameter &(called parameter <strong>of</strong> regularization) we select such<br />

solution which corresponds best to the a priori information about the<br />

function h(t). For exam e good results are obtained <strong>with</strong> the aid <strong>of</strong><br />

the condition Th(t)dt=$(t)dt.<br />

o<br />

Other kinds <strong>of</strong> a priori information, allowing the narrowing<br />

<strong>of</strong> the interval <strong>of</strong> unknown solutions, may be a suggestion on the smoothness<br />

<strong>of</strong> the solution, the non-negativeness <strong>of</strong> the ordinates, the closeness<br />

to some known function and so on. Naturally, the narrower the interval<br />

<strong>of</strong> the solution, the higher accuraoy will be obtained.<br />

Results in using<br />

functional (2) to determine the input functions <strong>of</strong> the run<strong>of</strong>f models,<br />

described by the Duhamel integral, are presented in greater detail<br />

in (3)' where examples <strong>of</strong> constnicting effective rainfall, hydropower<br />

station releases and snowmelt intensity are treated. Another approach<br />

to the solution <strong>of</strong> the inverse problems for models described by the<br />

Duhamel integral (linear models <strong>with</strong> lump parameters) are indicated in<br />

(6).<br />

2. Determination <strong>of</strong> geometric and hydraulic charactexistics<br />

<strong>of</strong> river channels using observations <strong>of</strong> flow<br />

To describe unstea9flow in a river channel Saint Venant<br />

equations may be used:<br />

(3)


560<br />

where 2 (x,t) = stage at point x at time t, Q(x,t) = discharge, K(x,z)<br />

forces <strong>of</strong> resistance1 g= acceleration <strong>of</strong> gravity. Because <strong>of</strong> great<br />

variability <strong>of</strong> geometry and roughness <strong>of</strong> the river channels the<br />

functions F(x,z) and K(x,z) determined by the observations in<br />

separate points are not quite representative for the whole river reach,<br />

even <strong>with</strong> large frequency <strong>of</strong> observations. Thus a problem <strong>of</strong> determining<br />

the averaged relations P(x,z) or B(x,z) = aF/aZ and K(x,z) by observations<br />

<strong>of</strong> flow (the determination <strong>of</strong> coefficients <strong>of</strong> the system (3))<br />

is <strong>of</strong> great significance for the establishment <strong>of</strong> the most characteristic<br />

geometry and hydraulic properties <strong>of</strong> the river channel as well as<br />

for ensuring sufficient accuracy <strong>of</strong> the calculationa. It can be shown<br />

that this problem is improperly posed and for its solution it is<br />

necessary to derive special calculating algorithms. We shall discuss<br />

below two <strong>of</strong> the approaches tried by us in solving this problem.<br />

(A) The discharges and <strong>Water</strong> levels are known in a rather large<br />

number <strong>of</strong> sites.<br />

Integration <strong>of</strong> the continuity equation (3) <strong>with</strong> respect to x,<br />

leads to:<br />

Finite differences are substituted for the derivatives and<br />

instead <strong>of</strong> an integral it is possible to construct for every time moment j<br />

the following system <strong>of</strong> equationst<br />

In order to solve this system it is necessary to have Q(x,t) F(x,o) and<br />

F(o,t). As the problem is improperly posed the solution <strong>of</strong> the<br />

system (5) is unstable. For its regularization the solution <strong>of</strong><br />

A.N. Tikhonov's functional is <strong>with</strong> introducing initial approximation.<br />

As a result for every time suchFarefoanä which correspond to the<br />

minimum <strong>of</strong> the functional.


561<br />

where 2 is the given initial approximation, d= positive parameters,<br />

thus a golution is found which not o<strong>nl</strong>y secures the minimum <strong>of</strong> square<br />

deviation <strong>of</strong> the right part <strong>of</strong> the system (5) from the left part, but<br />

at the same time it is least deviated from the initial approximation.<br />

The condition <strong>of</strong> functional extreme gives:<br />

To select the quantitydmethod <strong>of</strong> discrepancy has been used.<br />

The idea <strong>of</strong> this methori COnSiStS in conforming the accuracy <strong>of</strong> the<br />

problem's solution to the accuracy <strong>of</strong> observed data.<br />

It is supposed that the error0 <strong>of</strong> the given information forming<br />

discrepancy <strong>of</strong> the system (5) are known and an d is found which<br />

secures this discrepancy 8'. It is possible to prove that if the<br />

functional (6) is used the parameterdsecuring the given discrepancy<br />

is unique. The initial pproximation can be made in a rather crude<br />

mannerbarticularly for 9 = O), however giving a good initial approximation<br />

contributes toam-aocurate optimum d. Use <strong>of</strong> the initial<br />

approximations provides great possibilities for improvement <strong>of</strong> the<br />

solution by introduction <strong>of</strong> a priori information. Such a priori<br />

information can be an empirical relationship between geometrical and<br />

hydraulic characteristics, observed in separate sites, and different<br />

theoretical formulas (for example, we have used the equation <strong>of</strong> the<br />

typical form <strong>of</strong> river Otrinnel derived from the principle <strong>of</strong> minimum<br />

dissipation <strong>of</strong> energy).<br />

The values <strong>of</strong> F (x,t) found according to equation (4) have<br />

been used for determining the characteristics <strong>of</strong> the resistant forces.<br />

For this purpose the momentum equation has transcribed:<br />

Derivatives <strong>with</strong> respect to t have been replaced by forward directed<br />

finite differences and the integrals have been replaced by sums de-<br />

rived by the method <strong>of</strong> rectangles. The resulting algebraical systems<br />

have been solved for all time intervals <strong>with</strong> the help <strong>of</strong> the same<br />

algorithm as the system (5) (<strong>with</strong>out the initial approximation).<br />

Aa for determining F(x,t) and K(x,t) the discrepancy has been<br />

taken equal to 5 per cent <strong>of</strong> the average module from the left integral<br />

equation's part.<br />

This method has been tested on data obtained by special<br />

observations <strong>of</strong> unsteady movement in the merca river and it has<br />

given satiafactory results (a comparison ha8 been made between the<br />

relations F(x,z) and K(x,z) which have been derived by different<br />

floods by measurements in separate sites) (see figure 1).


562<br />

(B) The stages are known in a rather great number <strong>of</strong> sites and<br />

the discharges o<strong>nl</strong>y in the first and the last site.<br />

Let us integrate the continuity equation <strong>with</strong> respect to<br />

time (in the interval (Ti, Ti+l)) and to distance (in the interval<br />

(0, LI):<br />

to solve it in the form:<br />

where ‘y- the Chebishev polinomials. Let us put (10) in (9):<br />

No terms <strong>with</strong> zero polinomial are in the left part <strong>of</strong> the equation (li),<br />

because in this case the integral would be equal to zero. The equation<br />

(li) is therefore not sufficient for the full determination <strong>of</strong> the<br />

function (10). However it can be used for determining the function<br />

B(x,z), which can be presented:<br />

To find the coeffiaients we shall construct a system <strong>of</strong> equations<br />

(their number must not b e h w than Y=(n +l)m , and change the limita<br />

<strong>of</strong> the integration <strong>with</strong> respect to time in (dl so as to embrace the<br />

whole amplitude <strong>of</strong> variation <strong>of</strong> discharges and <strong>of</strong> stages on the rising<br />

as well as on the falling, part <strong>of</strong> the hydrograph. Let us write this<br />

system in the matrix forms<br />

Bere is the matrix <strong>of</strong> +th order, its elements are equal


563<br />

id- vector <strong>of</strong> the unknown coefficients $(B. x - right part <strong>with</strong> elements:<br />

Since the system (13) is unstable, ita solution is possible<br />

<strong>with</strong> A.N. Tikhonov's functional. AS a result the following system is<br />

found :<br />

where%'* - matrix transformed <strong>with</strong> relation top, E - the unit matrix.<br />

The parameter <strong>of</strong> regularization d has been determined from the<br />

conditions <strong>of</strong> minimum <strong>of</strong> the function<br />

where A.PP,,), A (dp) - j-th elements for the two successive<br />

values JO(. +or determining (ni + i) coefficients entering in (10)<br />

we shall replace in (9) discharge <strong>with</strong> the product <strong>of</strong> a cross section<br />

area and the velocity <strong>of</strong> the current U(x,t) and shall make the proper<br />

integration <strong>with</strong> respect to time and to distance. Putting in the<br />

resulting equation the relation (10) we shall find:<br />

Here C - matrix <strong>of</strong> (nI + I) x N-th order <strong>with</strong> elements<br />

The rest <strong>of</strong> symbols are the same. lystem (17) is solved by analogy<br />

<strong>with</strong> system (13). Having determined 3 and it is possible, asing<br />

relations (10) and (12) to find function B(x,z).<br />

This approach has<br />

been tested on the data <strong>of</strong> special observations in the Svir river.<br />

In figure 2 functions B(x,z) for some sites, calculated by relation (10)<br />

are shown: furthermore widths were determined aocording to topographic<br />

data. For controlling the results <strong>of</strong> these calculations the discharges<br />

in-the intermediate sites have been determined <strong>with</strong> the help <strong>of</strong> equation:


564<br />

These discharges have been found as very close to those observed.<br />

The coefficients received from the different floods have turned out<br />

to be quite simila % and this fact indicates their sufficient stability.<br />

Let vs see now a scheme for determining the hydraulic'characteristics<br />

<strong>of</strong> river channels. We use the dynamic St. Venant equation, assuming<br />

that the ineLtial terms are equal to zero<br />

Putting (18) into (19) and integrating <strong>with</strong> respect to distance in<br />

the interval (0,ï) we gett<br />

às earlier we shall find the solution in the form:<br />

Putting (21) into (20) and using Tikhonov's functional by analogy <strong>with</strong><br />

the previous one we construct the system <strong>of</strong> equations for determining<br />

the coefficients Dks:<br />

-b<br />

where D - vector <strong>of</strong> unknown coefficients, 3- vector <strong>with</strong> elements<br />

&=Z(t) - Z(t), - matrix <strong>of</strong> (n2+1).(m2+l) N-th order <strong>with</strong> elements<br />

The function B(t, t) hae been calculated according to relation<br />

(12) including the earlier determined coefficients Ilks. The found<br />

functions have been oompared <strong>with</strong> the functions determined by the method<br />

<strong>of</strong> optimization. It was found that a strong smoothing is observed.<br />

This can be eliminated by taking logarithms in equation (19).


References<br />

565


566<br />

I50<br />

SO<br />

/Iff<br />

96<br />

a 0<br />

e<br />

E<br />

a *'<br />

0<br />

8<br />

e<br />

O<br />

e<br />

8<br />

b


x r acm<br />

I l<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

15.0 250 2.50<br />

I I I<br />

200 390 4uu<br />

.x= 3.9cm<br />

I I I<br />

i50 250 350<br />

i<br />

/<br />

567


ABS TRACT<br />

THE MATHEMATICAL MODEL OF<br />

WATER BALANCE FOR DATA-SCARCE AREAS<br />

by<br />

Nabil R<strong>of</strong>ail<br />

The mathematical model <strong>of</strong> water balance for data-scarce areas<br />

is designed. The solution <strong>of</strong> this problem is considered <strong>of</strong> general<br />

type <strong>of</strong> boundary conditions.<br />

The equations <strong>of</strong> motion and mass conservation lead to the lin<br />

ear parabolic partial differential equation. The equation is solved<br />

by implicit scheme and the alternating direction procedure is appli<br />

ed for computation. The numerical procedure has second order accu-<br />

rracy and is unconditionally stable. As it contains no iterative --<br />

routines, it is also exceptionally economical in computing time and<br />

memory requiments. Therefore the procedure is recommended for areas<br />

<strong>of</strong> inadequate hydrological data.<br />

RESUME<br />

L'auteur décrit un modèle mathématique de bilan hydrologique<br />

destiné aux régions pour lesquelles on dispose de peu de données. -<br />

La solution du probleme est envisagée pour des conditions aux limi-<br />

tes générales.<br />

Les équations du mouvement et de la conservation de masse con<br />

duisent à une équation aux différentielles partielles linéaire para<br />

bolique. Cette équation constitue un système implicite qu'on résoud<br />

par approximations successives. Le mode de calcul numérique est in-<br />

conditionnellement stable et permet une précision du second ordre.<br />

Comme il ne contient pas de procédé itératif, il est aussi exception<br />

nellement économique en temps de calcul e; en dimension de mémoire.<br />

I1 est donc recommande pour les régions ou les données hydrologiques<br />

sont insuffisantes.<br />

~~ ~ ~<br />

* <strong>Water</strong> <strong>Resources</strong> Dept. Desert Institute, Mataria, Cairo, Egypt.<br />

-


570<br />

Introduction<br />

The system <strong>of</strong> equations <strong>of</strong> motion and equations <strong>of</strong> mass con-<br />

servation for the ground water flow leads to linear pzrabolic di-<br />

fferential equations. In the present work the impervious bed has<br />

been considered <strong>of</strong> any configuration and the recharge or dischar-<br />

ge from the aquifer has been introduced. Moreover the effect <strong>of</strong><br />

boundnries are considered either <strong>of</strong> a river or <strong>of</strong> a continuation<br />

<strong>of</strong> the aquifer <strong>of</strong> different parameters. The present aaterial deals<br />

<strong>with</strong> the solution <strong>of</strong> the balance equation that can be easily app-<br />

lied for areas <strong>of</strong> inadequate hydrologicd. data.<br />

Formulation <strong>of</strong> muation<br />

The aquifer is considered homogenous and the effect <strong>of</strong> the<br />

impervious bed is &%Ven. According to Dupuit assumption, the equ-<br />

ation <strong>of</strong> motion cam be written as followsj ( see Fig. i) ,<br />

v = - k 2 i h - t ~ ) = - k a h - k dz (2)<br />

"Y "Y<br />

The equation <strong>of</strong> mass conservation can be considered as follows;


!he dischuge or the recharge to the aquifer is considered as a<br />

:unction <strong>of</strong> time to the exposed area i.e. N = f ( x,y,t) equat-<br />

tons (1),(2) and (3) proYide the following equation system,<br />

- k d(h+z) ah<br />

- k h QQ(lZz'<br />

- kh --<br />

9X ax<br />

Q'íh+z) - k a(h+z) ah - N =a (4)<br />

9 Y* ay al/<br />

?or simplifying the solution <strong>of</strong> equation (4), Boussensq acsump-<br />

:ion ( the powers <strong>of</strong> derivatives <strong>of</strong> one order, SLTB <strong>of</strong> lower ma-<br />

pitude than the derivatives themselves ) is applied, therefore<br />

the system will be,<br />

kherefore equation (5) can be written in the alternate farm,<br />

571


512<br />

\A consistent imdicit difference scheme<br />

The three implicit difference scheme has been applied for equ-<br />

ations (6) and (7), considering the grid spacing <strong>of</strong> A5 and time<br />

intervai At, ( see fig. 2 >. Thus leads to;<br />

AS<br />

and (g), such that;<br />

Equation (10) is found by Taylor's series expansion, to be term<br />

by term consistent <strong>with</strong> equation (5). The von Neuinann method is<br />

used for examining the stability <strong>of</strong> the finite deference scheme.<br />

It has been found out that the amplification factor 5 1, that<br />

1mAS<br />

the original component e will not increase <strong>with</strong> time.<br />

Therefore the scheme can be considered absolutely consistent to<br />

second order accuracy, i.e. to O ( Asz, A tz), and absolutely


unconditionally stable. Thus it is not unexpected as the applied<br />

scheme is implicit.<br />

Alternating Direction Algorithon<br />

Equations (8) and (9) can be written respectiviely in the<br />

following form,<br />

@here, A,B,C and D are coefficients <strong>of</strong> known values,i.e.,<br />

573


574<br />

Each <strong>of</strong> equations <strong>of</strong> equation5 (11) a d (12) forms a tridiago1<br />

al vector system that may be solved using the aìternating directior<br />

algorithm (e.g. Richtmyer and Mooton,1967 1, by introducing auxili-<br />

ary variable E and P in the x sweep as follows:<br />

Introducing (11) in (131, that provides recurrence relations;<br />

)-I , ,$= Cq- A, $+,)(A,%+,+%)<br />

5<br />

= - CJ ( AJ El,, +B,<br />

Method <strong>of</strong> Computation:<br />

Thensgion <strong>of</strong> interest in the x-y plane in which the numurical<br />

solution <strong>of</strong> equation (5) is carried out, is divided by a mesh <strong>of</strong> g~<br />

id lines. The distance between grid lines need not be the same, ths<br />

is considered one <strong>of</strong> the reasons for recommending this metnod <strong>of</strong> cc<br />

putption for areas <strong>of</strong> inadequate hydrological data? Equation (8) is<br />

solved for the x sweep for the time level (9) to the time level<br />

( n + j$ 2, and equation (9) for y-sweep for the time level ( n +<br />

to the time level ( n 4 1 ). The recurrence can be initiated from<br />

boundpry conditions <strong>of</strong> any two - point type; two velocities ( con-<br />

tinuiation <strong>of</strong> the aquifer ), two depths ( bounded by rivers ), one<br />

velocity and one depth.<br />

If the boundary is a continuiation <strong>of</strong> the aquifer, this could<br />

be illustrated as follows;


.s the boundary point is situated at JJ A x, the equation (14) can<br />

expressed as follows,<br />

r the, case where the boundary is bounded by a river, therefore;<br />

575<br />

The comput.afbncan be applied for the x-sweep by determining the<br />

zfficients P and P from one bounary to the other bounduy and bet-<br />

3n them for all grid points. Thus the new values <strong>of</strong> the potentials<br />

the time level ( n + % ) can be determined from the recurrence re-<br />

-<br />

;ion (13). These new values <strong>of</strong> the time level ( n + M ) are used<br />

? the computation <strong>of</strong> the coefficients <strong>of</strong> y-sweep and the values <strong>of</strong><br />

;ential at the end <strong>of</strong> time level ( n + 1 ) have been found out ( see<br />

IW chart diagram ). This method is known as the multi - sweep method.


576<br />

Conclusions<br />

A program in AIGOL - 60 has been executed on ICL - 1900 machine<br />

for the water balance equation. The program was tested for different<br />

boundaries ( e.g. river, dyke, .*) <strong>of</strong> different parameters.<br />

As the method <strong>of</strong> solution is based mai<strong>nl</strong>y on the three implicit<br />

difference scheme that there is no conditions for choosing the dis-<br />

tance between the grid points and the time interval A t. Use this<br />

procedure contains no iterative routines and it has been found out<br />

that this method is exceptionally ecomomical ln computing time and<br />

memory requifements and the solution is considered <strong>of</strong> high accuracy<br />

Thus this method <strong>of</strong> computation is recommended for areas <strong>of</strong> in-<br />

adequate hydrological data.


BOR n = 1 STEP 1 UNTIL nn<br />

I<br />

[COMPUTATION i)F h AT n + $ 1<br />

1 -[h<br />

.y<br />

= Km h<br />

J.<br />

,COMPUTATION OF SWBE2 IN Y-DIHECTION<br />

FOR J = 1 STEP 1 UNTIL JJ<br />

\'<br />

i<br />

COU'UTATION OF SwIEE;p IN X-DIWTIÙN<br />

c<br />

[COMPUTATIUN FOR E & F FOB kk - 1 to i]<br />

1<br />

ICOMPUTAIION OF h AT n+l<br />

I<br />

FLOW CRART DIAGRAM<br />

577


570<br />

Symbo 1 e<br />

h : heigtit <strong>of</strong> water table above the impervious bed.<br />

u,v: the flow components. in x and y directions respectiv;aly.<br />

k : Coefficient <strong>of</strong> permeability.<br />

: Coefficient <strong>of</strong> specific yield.<br />

ïV t intensi- <strong>of</strong> infiltration to the ground water table.<br />

AS : the grid spacing.<br />

At : the grid spacing on t-axis.<br />

JJ : the number <strong>of</strong> grid points on x-axis.<br />

kk : the number <strong>of</strong> grid pointe on y-axis<br />

nn : the number <strong>of</strong> grid points on t-sis.<br />

3 : any grid point on the x-axis.<br />

k : any grid point on the y-axis.<br />

n : any grid point on the t-axis.<br />

AOKNOWLEDGWT<br />

This work is sponsored in part by the <strong>Water</strong> <strong>Resources</strong> Depart-<br />

ment <strong>of</strong> the Desert Institute, Cairo, Egypt, to which the author is<br />

gratef uì .


Literature<br />

1. Abbott M.B. ( 1967 ). Difference methods, Lecture note, Inter-<br />

national course <strong>of</strong> Hydraulic Engineering, Delft, Holland.<br />

2. Mitchell A.R. ( 1969 ). Computational methods in partial diff-<br />

erential equations, John Wiley.<br />

3. Nabil R<strong>of</strong>ail ( 1972 ). The numerical computation <strong>of</strong> parabolic<br />

equation using inplicit difference scheme and alternating<br />

direction methods, gth Conference on statistics and computat-<br />

ional science, Cairo, Egypt. pp. 572~- 593.<br />

4. Richtmyer R.D. and Mooton K.P. ( 1967 ). Difference mothods for<br />

ijlitial value problems, Interscience.<br />

5. Uri Shamir, (1967). The use Of computers in ground water hydrology,<br />

hydro dynamics Laboratory, Beport NQS. 105, Yasaachusetts.<br />

579


580<br />

t<br />

cr><br />

4<br />

t<br />

tn<br />

0<br />

r:<br />

3ig.l Diagramatic representation <strong>of</strong> unconfined aquifer<br />

Y<br />

a R U<br />

J+1 J J-1<br />

k-1 n+l<br />

k<br />

4 k-1 n<br />

a<br />

Fig.2 The three level Scheme<br />

,<br />

'COS- AS 3


ABS TRACT<br />

DATA ACQUISITION AND METHODOLOGY FOR A SIMULATION MODEL<br />

OF THE LLOBREGAT DELTA (BARCELONA, SPAIN)<br />

Francisco VilarÓ Rigo1 y Emilio Custodio Gimena<br />

The Llobregat Delta (Barcelona) is a 80 sqKm., area supplying up to<br />

150 million cubic meters per year <strong>of</strong> water for industrial, urban and<br />

agricultural uses, in order <strong>of</strong> decreasing importance. The construction<br />

<strong>of</strong> a exploitation simulation model has been necessary in order to study<br />

carefully the new problems concequence <strong>of</strong> a increasing rate <strong>of</strong><br />

abstraction, the conversion <strong>of</strong> extense irrigation lands in industrial<br />

areas, the dredging <strong>of</strong> a new harbor and the forcoming river regulation<br />

<strong>with</strong> dams. Historical data were initialy scarce. In one hand they were<br />

restricted to the rainfall and main river discharge knowledge and in<br />

the other hand to some disperse ground water level data and file <strong>of</strong><br />

well drillers logs <strong>with</strong>out interpretation. After the classification <strong>of</strong><br />

the existing data, some specific studies were iniciated in order to<br />

complete the knowledge <strong>of</strong> the system and finally the model was<br />

constructed, followed <strong>with</strong> an important stage <strong>of</strong> value adjustment,<br />

specially those related to intermediate aquitard properties. The<br />

ajusted model has been used in several stages to forecast the response<br />

to preestablished possible future situations.<br />

Key words: scarce data, model, adjustment, exploration.<br />

RESUMEN<br />

El delta del Llobregat (Barcelona) constituye una zona de 80 km2,<br />

que llega a proporcionar hasta 150 millones de m3 anuales de agua para<br />

usos industriales, urbanos y agrícolas, por orden decreciente de impor<br />

tancia. Ha sido necesaria la construcci6n de un modelo de simulacibn -<br />

de la explotaci6n a fin de estudiar con detalle los problemas apareci-<br />

dos a causa de la cada vez más intensa explotación, transformación de<br />

áreas agrícolas extensas en industriales, apagado de un nuevo puerto y<br />

próxima regulación del río mediante embalses. tos datos histbricos --<br />

existentes inicialmente eran escasos. Por un lado se reducían al cono-<br />

cimiento de la pluviometrla y del caudal del rio principal y por otro<br />

lado a algunos datos esporadicos de niveles del agua y un archivo de -<br />

perfiles de pozos sin elaborar. Se han realizado estudios detallados -<br />

orientados a complementar el conocimiento del sistema y finalmente se<br />

ha construido el modelo con una importante fase de ajuste de los valo-<br />

res estimados, en especial a los referentes al acuitardo intermedio. -<br />

El modelo ajustado ha sido utilizado en varias fases de previsión de -<br />

respuesta ante determinadas situaciones futuras posibles.<br />

Palabras clave: datos escasos, modelo, ajuste, explotación.<br />

( ) Comisaría de Aguas del Pirineo Oriental y Curso Internacional de -<br />

Hidrología Subterránea. Barcelona.<br />

I


582<br />

1.- LOCATION AND BACKGROUND<br />

The Bajo Llobregat is an area spreading from Barcelona<br />

Eastwards and the Garraf Limestone Massive Westwards and SW<br />

(Fig. 1). It is largly occupied by the valley <strong>of</strong> the Llobregat<br />

river and its delta, whose alluvial formations occupy around<br />

80 Km2., <strong>of</strong> which slightly over 50 Km2. correspond to the delta<br />

itself.<br />

The proximity to the important urban nucleus <strong>of</strong> Barcelona,<br />

the fertility <strong>of</strong> the land, the easy availability <strong>of</strong> water and<br />

the existence <strong>of</strong> a big market for its products, have given rise<br />

to and important agricultural and industrial development. Today,<br />

the industry is tending to take the place <strong>of</strong> farming and both<br />

are rejected by the expanding urban area <strong>of</strong> the town <strong>of</strong> Barce-<br />

lona. On the other hand,the current expansion <strong>of</strong> the Barcelona<br />

harbour, needs new service areas to be prepared, which the Bajo<br />

Llobregat easily <strong>of</strong>fers.<br />

The problems <strong>of</strong> important water extractions, <strong>of</strong> increasing<br />

interest in the sands and gravels <strong>of</strong> the delta and valley for<br />

construction, the additional communication lines, the prolifer-<br />

ation <strong>of</strong> discharges and tipping <strong>of</strong> all classes, etc., create a<br />

harmful and apprehensive climate, and leads to the destruction<br />

<strong>of</strong> the aquifers by emptying and contamination and it may produce<br />

a deep sea intrusion. Its rational administration requires a<br />

good knowledge <strong>of</strong> the characteristics and hydraulic operation<br />

<strong>of</strong> the aquifers in the area.<br />

In 1909 a detailed study was made on the groundwater<br />

hydrology <strong>of</strong> the delta (61, but the systematic and detailed<br />

studies started in 1964, which is the inicial point <strong>of</strong> a series<br />

<strong>of</strong> ‘mportant works and reports which are partly listed in the<br />

references. They have mostly been prepared by personnel <strong>of</strong> the<br />

General Hydraulic Works Board, through the East Pyrenees <strong>Water</strong><br />

Committee and the Delegation in Barcelona <strong>of</strong> the Public Works<br />

Geological Service.<br />

The complicated factors raised the need to have a simulation<br />

model <strong>of</strong> the aquifer systems available. The Public Works<br />

Geological Service built a R-C (resistors and capacities) model<br />

in 1970 as a first approximation, and almost simultaneously,<br />

the East Pyrenees Nater Board and the Public Works Geological<br />

Service prepared a digital mathematical model <strong>of</strong> the explotation,<br />

capable <strong>of</strong> further details and more flexible use (i). The main<br />

problem when building such models lies in the scanty historical<br />

data available, since the systematic control studies <strong>of</strong> the area<br />

were initiated sistematicaly after 1966.


2.- AQUIFERS IN THE AREA<br />

583<br />

Figure 2, shows the general features <strong>of</strong> the aquifers in<br />

the area, by means <strong>of</strong> three cross-sections. In the Llobregat<br />

valley, there is a single aquifer <strong>of</strong> coarse gravel which divides<br />

up in the delta entrance, into two superposed ones, separated<br />

by a silt-clayey intercalation, which increases in thickness<br />

towards the sea. Thus an upper aquifer, which is mostly a water<br />

table one,and a deep confined aquifer <strong>with</strong> a weakly semi-<br />

pervious ro<strong>of</strong> are separated. The silt intercalation narrows<br />

and becomes sandy towards the delta margins, and finally<br />

disappears, thus allowing both aquifers to lie directly above<br />

one another, and in easy hydraulic relation (8) (9) (14).<br />

The aquifer <strong>of</strong> the valley and the deep aquifer <strong>of</strong> the delta<br />

present areas <strong>of</strong> high transmissivity where there are important<br />

pumpings, whereas the upper aquifer <strong>of</strong> the delta support o<strong>nl</strong>y<br />

reduced explotation.<br />

Both the delta and the valley ape marginated by materials<br />

which may be considered as impervious.<br />

3.- EXTRACTIONS AND HYDRAULIC OPERATION<br />

In figure I, the main extractions and hydraulic conditions<br />

<strong>of</strong> the model area were shown. In the delta, the two largest<br />

pumping centres are found in Prat de Llobregat and the Free Port,<br />

and they gravitate on the deep aquifer; in the valley they lie<br />

alongside a lower end (Cornella-Sant Joan D'Espi) and neighbour-<br />

hood <strong>of</strong> Sant Feliu de Llobregat. Other extraction nuclei are<br />

found along the SU edge <strong>of</strong> the delta, besides other isolated<br />

points, served from both aquifers. The upper aquifer <strong>of</strong> the delta<br />

receives an excellent recharge from irrigation return flow and<br />

waste water discharge, and it is drained by the sea, the final<br />

stretch <strong>of</strong> the river, the drains <strong>of</strong> the airport and the marginal<br />

pumping areas. The aquifer <strong>of</strong> the valley receives its main<br />

recharge through river water infiltration and from the irrigation<br />

canals, but the permeability <strong>of</strong> the beds impedes the maintenance<br />

<strong>of</strong> a direct hydraulic connection, and a non-saturated mediun<br />

exists between water table and the bottom <strong>of</strong> the surface water.<br />

The deep aquifer <strong>of</strong> the delta receives the recharge direct from<br />

the valley or from the upper aquifer in the marginal areas or by<br />

vertical infiltration through the silt lens. These relations<br />

and actions can be seen in the double piezometric surface <strong>of</strong><br />

figure 3, and are reflected in some detailed studies based on<br />

balance criteria. (9) (10) (141, hydraulic computations (18) (19)<br />

and geohydrochemical evaluation (2) (3) (5) (8).<br />

4.- MOTIVATION OF THE MODEL<br />

Delta groundwater explotation for industrial uses has been<br />

increasing at a rapid pace during the last ten years, at the


5 84<br />

same time as normal extractions for the Barcelona supply have<br />

been dropping as a result <strong>of</strong> the direct utilization <strong>of</strong> the<br />

river water, after a suitable treatment. Total extraction<br />

however has gradually increased and it will rise possibly in<br />

the immediate future when it is necessary to reactivate the<br />

urban supply wells to meet growing âemand. The total capacity<br />

<strong>of</strong> water stored in the aquifer system and easily mobilizable,<br />

is between 100 and 150 million m3., a small figure compared<br />

<strong>with</strong> the annual extraction which non exceeds 140 million m3.,<br />

and can reach 200 <strong>with</strong> the present existing pumping capacity.<br />

This means that in the absence <strong>of</strong> recharge, in a few months,<br />

certain parts <strong>of</strong> the aquifer dry up or are left <strong>with</strong> an insuf-<br />

ficient saturated thickness to maintain vel1 discharges. The<br />

river infiltration does not increase when the extractions rise,<br />

as a result <strong>of</strong> its disconnection <strong>with</strong> the water table in the main<br />

recharge area (corresponds to the valley), and there is no other<br />

important recharge source except the sea, this inducing a<br />

steadily advancing sea water intrusion. (5) (20).<br />

The study <strong>of</strong> the effect <strong>of</strong> new extractions or <strong>of</strong> different<br />

natural or artificial hydrological, river situations, as a<br />

result <strong>of</strong> its dam regulation or water transportation to other<br />

areas and also the conversion <strong>of</strong> farming areas into industrial<br />

zones, is complex. Por this reason it was decided to built a<br />

simulation model to analyse the explotation <strong>of</strong> the ground waters,<br />

which would also help to assess the river recharge, the sea<br />

intrusion (by indirect evaluation) and the interferences.<br />

The different objectives and variables to be estimated may<br />

be summed up as follows: (4)<br />

Study <strong>of</strong> the effects <strong>of</strong> the explotation in certain places,<br />

<strong>with</strong> or <strong>with</strong>out disappearance <strong>of</strong> some <strong>of</strong> the present pumpings.<br />

Study <strong>of</strong> the artificial recharge effects by spreading and<br />

by wells, and analysis <strong>of</strong> their technical, economic and<br />

legal feasibility.<br />

Study <strong>of</strong> the effects and suitability <strong>of</strong> a recharge litoral<br />

barrier to reduce sea intrusion, in the upper aquifer, in<br />

the deep one, or in both, im selected areas.<br />

Study <strong>of</strong> the Llobregat river regulation effects and/or<br />

derivation <strong>of</strong> larger discharges for supply.<br />

Study <strong>of</strong> the suppression effects <strong>of</strong> irrigated areas or the<br />

modulation <strong>of</strong> the irrigation discharges.<br />

Study <strong>of</strong> the geotechnical problems derived from abandonment<br />

<strong>of</strong> the main current pumpings.<br />

Study <strong>of</strong> the operation <strong>of</strong> the aquifers as local reservoirs<br />

for the most adequate service <strong>of</strong> demand.


The study <strong>of</strong> these possibilities includes:<br />

1) Determination <strong>of</strong> the external balance,<br />

2) Determination <strong>of</strong> the internal balance.<br />

585<br />

3) Estimation <strong>of</strong> the fresh water discharges into the sea and<br />

river.<br />

4) Estimation <strong>of</strong> the sea water encroachment areas and their<br />

possible evolution.<br />

5) Estimation <strong>of</strong> the deficits which may turn up in the<br />

different zones.<br />

5.- MODEL NETWORK<br />

The shape <strong>of</strong> the piezometric surface, the distribution <strong>of</strong><br />

the pumpings, the plant <strong>of</strong> the aquifer system and present<br />

knowledge, advised an assymetric network, digital mathematical<br />

model, similar to the one established by the California <strong>Water</strong><br />

<strong>Resources</strong> Department (17) as being the best suited. In accordance<br />

<strong>with</strong> the already known estimation principles (12) were made the<br />

necessary adaptations for its programming and handling on the<br />

double memory IBM 1630 computer at the Computation Office <strong>of</strong> the<br />

Public Works Ministry in Madrid, and a series <strong>of</strong> special<br />

modifications in the boundary conditions. Its constructive and<br />

network details have been published on several occasions (1) (4)<br />

(15). In the delta, the two aquifers are simulated by means <strong>of</strong><br />

a double network <strong>of</strong> polygons (fig. 4) connected by a vertical<br />

conductor branch. The sea condition is established as a constant<br />

level directly for the upper aquifer and by means <strong>of</strong> a resistent<br />

element (the aquitard) for the deep aquifer. The condition <strong>of</strong> the<br />

draining river is imposed as om another constant level, and the<br />

river condition in recharge area is established giving a recharge-<br />

discharge set <strong>of</strong> figures by polygon in terms <strong>of</strong> the river discharge.<br />

6.- RESOLUTION OF INSUFFICIENCY OF DATA. ADJUSTMENT.<br />

At the time when the need for the model came about, the<br />

number <strong>of</strong> available data were small, especially regarding the<br />

length <strong>of</strong> the observation period.<br />

The number <strong>of</strong> data figures needed is very varied and com-<br />

prises those referring to the geometric form <strong>of</strong> the aquifers<br />

and their hydraulic parameters, up to those referring to the<br />

temporary and spacial distribution <strong>of</strong> the extractions, passing<br />

by the infiltration <strong>of</strong> the rainwater, the river and the irrigations<br />

(6) (7) and they should have a sufficient precision and represen-<br />

tative nature in accordance <strong>with</strong> the model network. A set <strong>of</strong> data<br />

should be available in each node and branch <strong>of</strong> the projected<br />

model.


586<br />

In this case, the geological structure was well known,<br />

owing to a high number <strong>of</strong> bore-holes (fig. 3) and wells <strong>with</strong><br />

filed lithological log, but not SO the hydraulic characteris-<br />

tics <strong>of</strong> the different formations. These values were fractionary<br />

and corresponded to some precise data <strong>of</strong> tests in piezometers<br />

and wells made very <strong>of</strong>er under difficult conditions, and some<br />

few prolonged pumping tests, <strong>with</strong> complicated interpretation<br />

due to the notable piezometric fluctuations that are produced,<br />

wich sometimes exceed a metre throughout the day.<br />

With the available data, a plan <strong>of</strong> isotransmissivities was<br />

completed and a distribution <strong>of</strong> the seepage coefficient <strong>of</strong> the<br />

aquitard (intermediary silts) was estimated, based on a few<br />

granulometric tests and geohydrochemical considerations, which<br />

o<strong>nl</strong>y gave the approximate magnitude.<br />

Clearly a model built under these circunstances,<strong>with</strong> a<br />

poorly known connection <strong>with</strong> the river, and for which there was<br />

o<strong>nl</strong>y a few partial semi-quantitive figures, mostly obtained by<br />

statistical analysis <strong>of</strong> the river discharges, supply extractions<br />

and levels in valley (131, is a long way from reproducing the<br />

reality, An adjustment process is necessary, based on comparison<br />

<strong>of</strong> its response to actions taken from the historic series and<br />

comparison <strong>with</strong> the effects observed in the aquifer. These<br />

actions are the extractions and recharges and the effects are<br />

the piezometric levels.<br />

The adjustment process requires a sufficiently long and<br />

complete set <strong>of</strong> historic data, in order to complete, correct and<br />

suit the imprecise data, or the estimated or non-existent data.<br />

This adjustment process allows some data to be corrected if<br />

other can be taken as sufficiently precise. Otherwise, no<br />

sole situation is reached, or there is no satisfactory solution<br />

nor one which responds to the real conditions <strong>of</strong> the prototype<br />

or real system. The set <strong>of</strong> historic data should be for each<br />

polygon, and this is difficult even in well known areas, and<br />

<strong>with</strong> a good systematic <strong>of</strong> measurements. In the case <strong>of</strong> the Llo-<br />

bregat delta, it was decided to take as "exact" data, despite<br />

certain uncertainties in their determination:<br />

a)<br />

b)<br />

The extractions by pumping anã the recharges by wells and<br />

drains, using as contrast criterion: for agricultural uses,<br />

the irrigated surface anã calculated water needs; for indus-<br />

trial uses, the type <strong>of</strong> production, number <strong>of</strong> workers and<br />

real production in those cases where it was known; and for<br />

supply uses, the urbanistic level and population served.<br />

The infiltrations <strong>of</strong> the rainwater, the irrigation water<br />

and run<strong>of</strong>f <strong>of</strong> the nearby areas obtained from water balances<br />

in the soil, and therefore <strong>of</strong> theoretic type. Nevertheless,<br />

as this is a mild climate area, flat and <strong>with</strong> classic<br />

irrigation crops, a small error is expected.


507<br />

c) The water losses <strong>of</strong> the canals by infiltration based on the<br />

i<strong>nl</strong>et and outlet measurements and the irrigation quantities.<br />

In winter, these irrigation quantities are almost non-existent,<br />

wich permits an acceptable estimation.<br />

d) The piezometric surfaces and hydrograms <strong>of</strong> available ground<br />

water. Most hydrograms have been obtained <strong>with</strong> eight water<br />

level recorders, plus daily measurements on another six<br />

piezometers, plus monthly readings on a few more points. The<br />

piezometric surfaces correspond to intense and periodical<br />

measurement campaigns <strong>of</strong> one or two days duration, but these<br />

may have errors due to variations in the measurement hour,<br />

or introduction <strong>of</strong> some dynamic data or tridimensional flow<br />

areas; nevertheless they are sufficiently valid.<br />

e) River discharges, obtained <strong>with</strong> certain guarantee at the<br />

upper valley i<strong>nl</strong>et, in Martorell.<br />

f) Geometric dimensions <strong>of</strong> the modelled units.<br />

The data to be adjusted are:<br />

1. on the model in itself, based on already mentioned<br />

previous values, and <strong>with</strong> a pre-established variation<br />

margin, taken from existing knowledge.<br />

- Transmissivities <strong>of</strong> the surface and deep aquifer, <strong>with</strong><br />

reduced variations.<br />

- Vertical permeability <strong>of</strong> the aquitard (intermediary<br />

silts) for which the previous data could be notably<br />

erroneous.<br />

- Porosity <strong>of</strong> the water table aquifer, o<strong>nl</strong>y admitting<br />

slight variations in accordance <strong>with</strong> the lithology.<br />

- Coefficient <strong>of</strong> elastic storage <strong>of</strong> the captive aquifers<br />

<strong>with</strong>in a logical margin according to the existing<br />

structure and figures on the interpretation <strong>of</strong> pumping<br />

tests and the response to sea tide in some water level<br />

recorders <strong>of</strong> ground waters.<br />

2. on the actions impossed on the aquifer in the adjustment<br />

period, not directly known.<br />

- River recharge, estimated previously from balances,<br />

simplified analysis <strong>of</strong> the piezometric surfaces <strong>of</strong> the<br />

valley and a statistical correlation betwen discharges<br />

<strong>of</strong> the river-supply extractions and levels in the<br />

valley (13).<br />

- Discharge to the river in the final stretch, estimated<br />

by partial balances and sumplified analysis <strong>of</strong> the<br />

piezometric surfaces. This is a relatively small value.


588<br />

- Discharge to the sea and sea water encroachment values,<br />

according to the aquifer and the coastline area con-<br />

sidered. Measured very roughly due to estimation dif-<br />

ficulties, excepting the central coastal stretch <strong>of</strong><br />

the water table aquifer.<br />

The distribution <strong>of</strong> the recharge between the upper and deep<br />

aquifer <strong>of</strong> the delta is a result <strong>of</strong> the adjustment, and also is<br />

the water discharge circulating through the aquitard.<br />

The chief difficulties regarding the adjustment are derived<br />

from insufficient data on levels and a need to account on the<br />

seasonal variations, owing to the great importance <strong>of</strong> extractions<br />

in relation <strong>with</strong> the quickly mobilizable ground storage volume<br />

<strong>of</strong> water. The first piezometric surface useable is at the begin-<br />

ning <strong>of</strong> 1966, and although another six complete ones and one<br />

partial one were available, their distribution was neither regular<br />

in time, nor covered each <strong>of</strong> the quarterly periods into which<br />

the year was to be divided up. It was therefore decided to use<br />

the available piezometric surfaces, <strong>with</strong> minor corrections to<br />

adopt them to the final moment <strong>of</strong> each quarterly interval,<br />

forming new interpolated piezometric surfaces, based on the data<br />

<strong>of</strong> the continuous piezometric measurements in some points, already<br />

discussed, trying to maintain the flow shape character.<br />

To complete the quarter figures, the water balance estimations<br />

were made in the soil, and the extractions were calculated from<br />

the inventory according to the annual rate <strong>of</strong> use and moment the<br />

wells went into operation in some cases, or based on the demand<br />

curves given by some users.<br />

In figure 5, a sample <strong>of</strong> the result <strong>of</strong> the final adjustment<br />

process can be seen, taking the 4 years <strong>of</strong> figures, distributed<br />

into 16 quarterly terms. This final adjustment need 13 stages<br />

<strong>with</strong> the definitive network. Some prior trials were made <strong>with</strong> a<br />

simplified network, to know the magnitude and convergence rates<br />

<strong>of</strong> the estimation process. This adjustment stage incorporated<br />

the modifications suggested by the previous one, mai<strong>nl</strong>y modifying<br />

the hydraulic characteristics <strong>of</strong> the units and the recharge <strong>of</strong> the<br />

river. Before making a modification, the results obtained were<br />

carefully studied, taking into account previous results <strong>with</strong> early<br />

stages, and in order to be in accordance <strong>with</strong> the physical charac-<br />

teristics <strong>of</strong> the system.<br />

An important result <strong>of</strong> the adjustment process is not o<strong>nl</strong>y the<br />

correction <strong>of</strong> the imprecise data, but obtaining other necessary<br />

data for the model explotation process, previously unknown. Such<br />

is the relation Qr (river discharge) versus IR, thus allowing<br />

the (river infiltration) computation <strong>of</strong> IR (not measurable) <strong>with</strong><br />

available data on QR. The adjustment obtained shows there is this<br />

relation <strong>with</strong> a sufficient statistical degree <strong>of</strong> significance.


589<br />

Figure 6 shows the inicial map <strong>of</strong> transmissivities <strong>of</strong> the<br />

deep aquifer and the valley gravels and the one obtained after<br />

the adjustment. The differences are not important and in many<br />

cases, the variations are not merely a correction <strong>of</strong> an erroneous<br />

value, but the adaptation <strong>of</strong> a precise value (test in bore hole<br />

or well) or <strong>of</strong> a regional value (pumping test or analysis <strong>of</strong><br />

piezometric oscillations) to the dimensions and forms <strong>of</strong> each<br />

polygon.<br />

7.- UTILIZATION OF THE MODEL<br />

The model has been built for use under different conditions<br />

as those prevailing during theadjustmen process. This creates<br />

various problems. For example, the validity <strong>of</strong> the model for<br />

other distributions <strong>of</strong> the pumping or recharge-disoharge, or<br />

those corresponding to piezometric surfaces notably different.<br />

Also, one must consider the validity <strong>of</strong> the Qr - 1, (river<br />

discharge - river recharge) relation, under different circumstances<br />

<strong>of</strong> the river system or after conditioning works in the bed. The<br />

adjustment period is rather short, but sufficient to insure<br />

credible results under conditions similar to the adjustment<br />

ones and in time periods not much greater. If one attempt to<br />

simulate 20 years or under pumping conditions <strong>with</strong> other centres<br />

<strong>of</strong> extraction, noticeably different as those existing now, the<br />

results would possibly o<strong>nl</strong>y be semi-quantitative.<br />

One <strong>of</strong> the recent processes <strong>of</strong> using the model arose to study<br />

the possibility <strong>of</strong> temporarily increasing the groundwater<br />

extractions for supply, in the event <strong>of</strong> a succession <strong>of</strong> dominatly<br />

dry year combined <strong>with</strong> a delay in the first service <strong>of</strong> the new<br />

surface water regulation works <strong>of</strong> the Llobregatriver (ll), taking<br />

into account the normal pumping increase forecastsfor other pur-<br />

poses. The injuries and needs <strong>of</strong> redistribution and conditioning<br />

<strong>of</strong> the pumpings under various foreseen hypothesis have been<br />

assessed, and the sea water encroachment and the later return to<br />

a "normal" situation after these regulation works have been<br />

finished. Some <strong>of</strong> the possible extraction situations have not<br />

been made as they produce excessive drops which prevent the<br />

pumping capacity <strong>of</strong> the wells to be maintained.<br />

The use <strong>of</strong> the model permits the aquifer system <strong>of</strong> the Bajo<br />

Llobregat to be handled as a regulating reservoir, analysing<br />

the guarantees <strong>of</strong> the different ground water demands in different<br />

natural or man-made hydrological situations, and a knowledge <strong>of</strong><br />

the rate and location <strong>of</strong> the progressive salinization process or<br />

the effectiveness <strong>of</strong> the measures adopted to reduce it. These<br />

eventualities were analysed by seven different hypothesis<br />

following the adjustment process (1) (15), including the analysis<br />

<strong>of</strong> the possible artificial recharge. The model, in its explotation<br />

phase, works <strong>with</strong> six monthly intervals instead <strong>of</strong> the quarterly<br />

intervals <strong>of</strong> the adjustment.


590<br />

8.- CONCLUSION<br />

The careful1 modelling <strong>of</strong> an aquifer permits a very useful<br />

work tool to be obtained, even though the initiai data is<br />

incomplete or non-existent in certain aspects, provided another<br />

series <strong>of</strong> sufficiently precise data, or <strong>with</strong> known error is<br />

available, and which is such that it permits an adjustment<br />

process <strong>with</strong> a sufficient number <strong>of</strong> steps.<br />

9. - REFERENCES<br />

1.<br />

2.<br />

3.<br />

4.<br />

5.<br />

6.<br />

7.<br />

Cuena, J. and Custodio, E. (1971) - Construction and adjustment<br />

<strong>of</strong> a two layer mathematical model <strong>of</strong> the Llobregat Delta.-<br />

International Symposium on Mathematical Models in <strong>Hydrology</strong>.-<br />

International Association <strong>of</strong> Scientific <strong>Hydrology</strong>.- Varsovia.<br />

Custodio, E. (1967) - Etudes geohydrochimiques dans le delta<br />

du Llobregat, Barcelone (Espagne) - Geochimie, Precipitations,<br />

Humidité du Sol, Hydrometrie. Assemblée Générale de Berne,<br />

1967. Association International d’Hydrologie Scientifique.-<br />

Gentbrugge - pp. 134/155.<br />

Custodio, E. (1969) - Ground water entries in the Llobregat<br />

river delta.- Hydrological Reasearch Documents No. 6, Barce-<br />

lona <strong>Water</strong> REsearch, Applications and Studies Centre. Speech<br />

in Pamplona 1967 - pp 205/237.<br />

Custodio, E., Cuena, J. and BayÓ, A. (1971) - Problem,<br />

execution and use <strong>of</strong> a two layer mathematical model for the<br />

Llobregat delta aquifers (Barcelona).- First Spanish - Por-<br />

tuguese - American Congress on Economic Geology.- Madrid-<br />

Lisbon. sep 1971. Section 3. pp 171/198.<br />

Custodio, E., Bayo, A. and Pelaez, M.D. (1971) - Geochemistry<br />

and water entries for study <strong>of</strong> the movement <strong>of</strong> ground water<br />

in the Llobregat river delta (Barcelona) - First Spanish-<br />

Portuguese-American Congress on Economic Geology.- Madrid-<br />

Lisbon. sep. 1971. Section 6 pp 51/80.<br />

Custodio, E. and López-Garcia, L. (1972) - Construction and<br />

utilization process <strong>of</strong> a model. Chapter 5 Basic Theory on<br />

Analogical and Digital Models <strong>of</strong> Aquifers. Informations and<br />

Sutides, Bulletin, 37, Geologicql Service <strong>of</strong> Public Works.<br />

Madrid.<br />

Custodio, E. (1973) - Basic data for building an aquifer<br />

simultation model. Chapter 16.1. on Subterranean <strong>Hydrology</strong><br />

Omega Editorial. Barcelona (at press).


591<br />

8. Custodio, E. and others (1973) - Compiling <strong>of</strong> works made<br />

during the period 1966/1972 in the Bajo Llobregat. <strong>Water</strong><br />

Board <strong>of</strong> the East Pyrenees and Public Works Geological<br />

Service. Barcelona (in preparation).<br />

9. Llamas, M.R. and Molist, J. (1967) - <strong>Hydrology</strong> <strong>of</strong> the Besos<br />

and Llobregat River deltas.- Hydrological Investigation<br />

Documents NQ 2 - <strong>Water</strong> Research, Applications and Studies<br />

Centre. Barcelona. Speech in Barcelona (1966).<br />

10. Llamas, M.R. and VilarÓ, F. (1967) - Die Rolle der Grund-<br />

wasserspeicher bei der Wasservorsorgung von Barcelona.-<br />

Das Gas-und-Wasserfach, Wasser Abwasser, Vol. 34. No. 15,<br />

August 1967. pp. 945/953.<br />

11. Martin-Arnaiz, M. (1972) - Report on the explotation<br />

possibilities <strong>of</strong> the Llobregat river delta aquifers. General<br />

Board <strong>of</strong> Hydraulic Works. East Pyrenees <strong>Water</strong> Board. Barce-<br />

lona (prior report).<br />

12. Mc Neal, R.M. (1958) - An asymetrical finite difference<br />

network - Quarterly <strong>of</strong> Applied Mathematics. Vol. XI. No. 3<br />

1958.<br />

13. Montalbán, F. (1969) - Factorial analysis <strong>of</strong> the oscillations<br />

<strong>of</strong> the deep aquifer <strong>of</strong> the Llobregat river. Hydrological<br />

Investigation Documents No. 6. <strong>Water</strong> Research, Applications,<br />

and Studies Centre. Barcelona, Pamplona speech (1967).<br />

14. Ministry <strong>of</strong> Public Works (1965).- Study <strong>of</strong> the Total Hydraulic<br />

resourcs <strong>of</strong> the East Pyrenees - Second Report East Pyrenees<br />

<strong>Water</strong> Board and Public Works Geological Service. Barcelona.<br />

15. Ministry <strong>of</strong> Public Works - Report on the construction and<br />

application <strong>of</strong> a mathematical simulation model <strong>of</strong> the Llo-<br />

bregat delta aquifers.- Study <strong>of</strong> the Total Hydraulic <strong>Resources</strong><br />

<strong>of</strong> the East Pyrenees. Central Area. Report CE-111.- East<br />

Pyrenees <strong>Water</strong> Board and Public Works Geological Service.<br />

Barcelona.<br />

16. Santa Maria, L. and Marin A. (1909) - Hydrological studies<br />

on the Llobregat river basin.- Bulletin <strong>of</strong> the Commission<br />

<strong>of</strong> the Geological Map <strong>of</strong> Spain LX 2nd Series.<br />

17. Tyson, H.N. and Weber, E.M. (1964).- Ground water management<br />

for the nations future computer simulation <strong>of</strong> ground-water<br />

basins - proceedings <strong>of</strong> the ASCE, Journal <strong>of</strong> the Hydraulics<br />

Division. New York. Jyly 1964.<br />

18. VilarÓ, F. (1967) - Balance <strong>of</strong> the present use <strong>of</strong> the Bajo<br />

Llobregat. Hydrological Investigation Papers No. 2. <strong>Water</strong><br />

Investigations, Applications and Studies Centre. Barcelona<br />

Speech in Barcelona, (1966) - pp 155/169.


592<br />

19. VilarÓ, F. and Martin Arnbiz, M. (1968) - Hydric Balance<br />

<strong>of</strong> the Bajo Llobregat - Hydric Balance Seminar - F.A.O. -<br />

Geology and Mining Institute <strong>of</strong> Spain. Madrid.<br />

20. VilarÓ, F. Custodio, E., and Bruington, A.E. (1970) - Sea<br />

<strong>Water</strong> intrusion and water pollution in the Pirineo Oriental<br />

(Spain) - ASCE National <strong>Water</strong> <strong>Resources</strong> Engineering Meeting,<br />

Memphis, Tennence. - Meeting Preprint 1122.


Fi g. 1 .- Plano general de situaci& y de extracciones.<br />

General location and pumping map.


O<br />

O 00 O O<br />

Yi<br />

sariaw - soiiaui S~JI~UI- soiiaw<br />

s '"" r<br />

O'' . I ' U<br />

594


-2-<br />

..2-.-<br />

595<br />

-<br />

Escal o-Scale<br />

O 1 2 3 L SKm.<br />

L ogunas pantanosas natural es<br />

Limite de los zonas permeables<br />

Limite del ocuifero<br />

pr<strong>of</strong>undo<br />

Isopieza del acuifero pr<strong>of</strong>undo I ml.<br />

Isapieza del acuifero suprficial [m 1.<br />

e Sondeo piezomctrico<br />

-.-.-<br />

Natural marshy lagoons<br />

Boundary <strong>of</strong> the permeable oreas<br />

Boundary <strong>of</strong> the deep aquifer<br />

A- Isopiestic line Of the drepoquifer(ml<br />

,-2--- Isopiestic line <strong>of</strong> the upperoquiferIm)<br />

Observation bore- hole<br />

Fi g. 3 - Superficies PiezornCtricas en Abril de 1.967 (s& Custodio) y<br />

situaci& de los sandeos.<br />

Piezometric surfaces in April 1.967 (after Custodio) and 10Cb<br />

tion <strong>of</strong> the boreholes.


I<br />

596


in<br />

c<br />

I in .e<br />

I - a<br />

I u<br />

I o 4<br />

I C<br />

/* :<br />

Y --<br />

597


598<br />

Tranrmirividad del aeuifero del<br />

valle y pr<strong>of</strong>undo del delta en m2/dia<br />

Transmissivity <strong>of</strong> valley and delta<br />

deep aquifers in sqml day<br />

-- id<br />

- - - - Dato inicial Preliminary figure<br />

1000 Valor ajustadocon Value mstchcd <strong>with</strong> the<br />

el modelo model<br />

Fig. 6.- Valores de la tranrrtirividaà del acuftero del valle y prohrado &l dal-<br />

ta del Llobregat.<br />

Values <strong>of</strong> the valley aad delta upper aquifers OP the Llobregat delta.


and in Etudes et rapports d ‘hydrataptie 16<br />

gn <strong>of</strong><br />

r- resou rces<br />

inadeq uate<br />

projects<br />

data<br />

Proceedings <strong>of</strong> the Madrid Syinposiurn<br />

June 1973<br />

Elaboration des projets<br />

d’utilisation des ressources en eau<br />

sans données suffisantes<br />

Volume 2<br />

Unesco - WMO - IAHS<br />

Unesco - OMM - AISH<br />

Actes du colloque de Madrid<br />

Juin 1973


Studies and reports in hydrology/Etudes et rapports d’hydrologie 16


TITLES IN THIS SERIES / DANS CETTE COLLECTION<br />

1.<br />

2.<br />

3.<br />

4.<br />

4.<br />

5.<br />

6.<br />

7.<br />

8.<br />

9.<br />

10.<br />

11.<br />

12.<br />

13.<br />

14.<br />

1s.<br />

16.<br />

The use <strong>of</strong> analog and digital computers in hydrology: Proceedings <strong>of</strong> the Tucson Symposium.<br />

June 1966 / L'utilisation des calculatrices analogiques et des ordinateurs en hydrologie: Actes du<br />

colloque de Tucson, juin 1966. Vol. 1 & 2. Co-edition IAHS-Unesco / Coédition AISU-Unesco.<br />

<strong>Water</strong> in the unsaturated zone: Proceedings <strong>of</strong> the Wageningen Symposium, June I967 / L'eau dans<br />

la zone non saturée: Actes du symposium de Wageningen, juin 1967. Edited by / Edité par P. E.<br />

Rijtema & H. Wassink. Vol. 1 & 2. Co-edition IAHS-Unesco / Coédition AISH-Unesco.<br />

Floods and their computation: Proceedings <strong>of</strong> the Leningrad Symposium, August 1967 / Les crues<br />

et leur évaluation: Actes du colloque de Leningrad, août 1967. Vol. 1 & 2. Co-edition IARS-Unesco-<br />

WMO / Coédition AISH-Unesco-OMM.<br />

Representative and experimental basins: An international guide for research and practice. Edited<br />

by C. Toebes and Y. Ouryvaev. Published by Unesco.<br />

Les bassins représentatifs et expérimentaux: Guide international des pratiques en matière de re-<br />

cherche. Publié sous la direction de C. Toebes et V. Ou-vaey. Publié par l'Unesco.<br />

'Discharge <strong>of</strong> selected rivers <strong>of</strong> the world / Débit de certain cours d'eau du monde. Published by<br />

Unesco / Publié par l'Unesco.<br />

Vol. I : General and régime characteristics <strong>of</strong> stations selected 1 Caractéristiques générales et<br />

caractéristiques du régime des stations choisies.<br />

Vol. II: Monthly and annual discharges recorded at various selected stations (from start <strong>of</strong> obser.<br />

vations up to 1964) / Débits mensuels et annuels enregistrés en diverses stations sélectionnées<br />

(de l'origine des observations à l'année 1964).<br />

'Vol. III: Mean monthly and extreme dlscharges (1%5-1969) / Débits mensuels moyens et débits<br />

extrêmes (19651969).<br />

List <strong>of</strong> International Hydrological Decade Stations <strong>of</strong> the world / Liste des stations de la Décennie<br />

hydrologique internationale existant dans le mmde. Published by Unesco 1 Publié par l'Unesco.<br />

Ground-water studies: An international guide for practice. Edited by R. Brown, I. Ineson. V. KO-<br />

noplyantsev and V. Kovalevski. (Will also appear in French, Russian gnd Spanish / Paraitrg<br />

également en espagnol, en français et en russe.)<br />

Land subsidence: Proceedings <strong>of</strong> the Tokyo Symposium, September 1969 / Affaisement du sol:<br />

Actes du colloque de Tokyo, septembre 1969. 'Vol. 1 & 2. Co-edition IAHS-Unesco / Coédition<br />

AISH-Unesco.<br />

<strong>Hydrology</strong> <strong>of</strong> deltas: Proceedings <strong>of</strong> the Bucharest Symposium, May 1969 / Hydrolaße des deltas:<br />

Actes du colloque de Bucarest, mai 1969. Vol. 1 & 2. Co-edition IAHS-Unesco / Coédirion AISH-<br />

Unesco.<br />

Status and trends <strong>of</strong> research in hydrology / Bilan et tendances de la recherche en hydrologic.<br />

Published by Unesco 1 Publié par l'Unesco.<br />

World water balance: Proceedings <strong>of</strong> the Reading Symposium, July 1970 / Bilan hydrique mondial:<br />

Actes du colloque de Reading, juillet 1970. Vol. 1-3. Co-edition ZAHS-Unesco-WhfO 1 Coédirion<br />

AISH-Unesco-OMM.<br />

Results <strong>of</strong> research on representative and experimental basins: Proceedings <strong>of</strong> the Wel1inp;ton<br />

Symposium, December 1970 / Résultats de recherches sur les bassins représentatifs et ex érimen-<br />

taux: Actes du cowoque de Wellington, décembre 1970. 'Vol. 1 & 2. Coedition IAHS-Jnesco /<br />

Coédition AISH-Unesco.<br />

Hydrometry: Proceedings <strong>of</strong> the Koblenz Symposium, September 1970 / Hydrométrie: Actes du<br />

colloque de Coblence, septembre 1970. Co-edition ZAHS-Unesco-WMO / Coédition AISH-Unesco-<br />

OMM.<br />

Hydrologic information systems. Co-edition Unesco-WMO.<br />

Mathematical models in hydrology: Proceedings <strong>of</strong> the Warsaw Symposium, July 1971 / Les mc-<br />

deles mathématiques en hydrologie Actes du colloque de Varsovie, juillet 1971. Vol. 1-3. Co-<br />

edition IAHS-Unesco-WMO / Coédit on AISH-Unesco-OMM.<br />

<strong>Design</strong> <strong>of</strong> water resources projects <strong>with</strong> inadequate data: Proceedings <strong>of</strong> the Madrid sym ,<br />

June 1973 / Elaboration des projets d'utilisation des ressources en eau sans données sufp:z:<br />

Actes du colloque de Madrid, juin 1973. Vol. 1-3. Co-edition Unesco-WMO-IAHS / Coéditiori Unesco-<br />

OMM-AISH.


<strong>Design</strong> <strong>of</strong><br />

water resources projects<br />

<strong>with</strong> inadequate data<br />

Proceedings <strong>of</strong> the Madrid Symposium<br />

June 1973<br />

Elaboration des projets<br />

d’utilisation des ressources en eau<br />

sans données suffisantes<br />

A contribution to the Lnternationat Hydrological Decade<br />

Une contribution a la Ecennie hydrologique internationale<br />

Con reshmenes en csuañol<br />

Volume 2<br />

Actes du colloque de Madrid<br />

Juin 1973<br />

Unesco - WMO - IAHS 1974<br />

Uiiesco - OMM - AISH


Published jointly by<br />

the United Nations Educational, Scientific<br />

and Cultural Organization,<br />

7, Place de Fontenoy, 75700 Paris, 3) ><br />

World Meteorological Organization,<br />

41 av. Giuseppe-Motta, Geneva, and<br />

the International Association <strong>of</strong> Hydrological Sciences (President: J.-A. Rodier),<br />

19, rue Eugène-Carrière, 75018 Paris<br />

Publié conjointement par<br />

l’organisation des Nations Unies pour<br />

l‘éducation, la science et la culture.<br />

7, place de Fontenoy, 75700 Paris.<br />

l’organisation météorologique mondiale,<br />

41, av. Giuseppe-Motta, Genève, et<br />

l’Association internationale des sciences hydrologiques (président: 3.-A. Rodier),<br />

19, rue Eugène-Carrière. 75018 Paris<br />

Impreso por el Centro de Estudios Hidrográficos, Madrid<br />

The selection and presentation <strong>of</strong> material and the’ opinions expressed in this publication<br />

are the responsibility <strong>of</strong> the authors concerned and do not necessarily reflect the<br />

views <strong>of</strong> the publishers.<br />

The designations employed and the presentation <strong>of</strong> the material do not imply the<br />

expression <strong>of</strong> any opinion whatsoever on the part <strong>of</strong> the publishers concerning the legal<br />

status <strong>of</strong> any country or territory, or <strong>of</strong> its authorities, or concerning the frontiers<br />

<strong>of</strong> any country or territory.<br />

Le choix et la présentation du contenu de cet ouvrage et les opinions qui s‘y<br />

expriment n’engagent que la responsabilité des auteurs et ne correspondent pas<br />

nécessairement aux vues des éditeurs.<br />

Les dénominations employées et la présentation des divers éléments n’impliquent<br />

de la part des éditeurs aucune prise de position à l’égard du statut juridique de l’un<br />

quelconque des pays et territoires en cause, de son régime politique ou du tracé<br />

de ses frontières.<br />

ISBN 92-3-001137-1<br />

0 Unescc-WMO-IAHS-1974<br />

Printed in Spain


PREFACE<br />

The International Hydrological Decade (IHD) 1965-74 was launched by<br />

the General Conference <strong>of</strong> Unesco at its thirteenth session to promote<br />

international co-operation in research and studies and the training <strong>of</strong> spe-<br />

cialists and technicians in scientific hydrology. Its purpose is to enable<br />

all countries to make a fuller assessment <strong>of</strong> their water resources and a<br />

more rational use <strong>of</strong> them as man’s demands for water constantly increase<br />

in face <strong>of</strong> developments in population, industry and agriculture. In 1974<br />

National Committees for the Decade had been formed in 108 <strong>of</strong> Unesco’s<br />

131 Member States to carry out national activities <strong>with</strong>in the programme<br />

<strong>of</strong> the Decade. The implementation <strong>of</strong> the programme is supervised by a<br />

Co-ordinating Council, composed <strong>of</strong> 30 Member States selected by thc Ge-<br />

neral Conference <strong>of</strong> Unesco, which studies proposals for developments<br />

<strong>of</strong> the programme, recommends projects <strong>of</strong> interest to all or a large<br />

number <strong>of</strong> countries, assists in the development <strong>of</strong> national and regional<br />

projects and co-ordinates international co-operation.<br />

Promotion <strong>of</strong> collaboration in developing hydrological research techni-<br />

ques, diffusing hydrological data and planning hydrological installations<br />

is a major feature <strong>of</strong> the programme <strong>of</strong> the IHD which encompasses all<br />

aspects <strong>of</strong> hydrological studies and research. Hydrological investigations<br />

are encouraged at the national, regional and international level to streng-<br />

then and to improve the u6e <strong>of</strong> natural resources from a local and a global<br />

perspective. The programme provides a means for countries well advanced<br />

in hydrological research to exchange scientific views and for developing<br />

countries to benefit from this exchange <strong>of</strong> information in elaborating re-<br />

search projects and in implementing recent developments in the planning<br />

<strong>of</strong> hydrological installations.<br />

As part <strong>of</strong> Unesco’s contribution to the achievement <strong>of</strong> the objectives<br />

<strong>of</strong> the IHD the General Conference authorized the Director-General to<br />

collect, exchange and disseminate information concerning research on<br />

scientific hydrology and to facilitate contacts between research workers<br />

in this field. To this end Unesco initiated two series <strong>of</strong> publications: Studies<br />

and Reports in <strong>Hydrology</strong> and Technical Papers in <strong>Hydrology</strong>.<br />

The Studies and Reports in <strong>Hydrology</strong> series, in which the present<br />

volume is published, is aimed at recording data collected and the main<br />

results <strong>of</strong> hydrological studies undertaken <strong>with</strong>in the framework <strong>of</strong> the<br />

Decade, as well as providing information on research techniques. Also<br />

included in the series are proceedings <strong>of</strong> symposia. Thus, the series com-<br />

prises the compilation <strong>of</strong> data, discussions <strong>of</strong> hydrological research techni-<br />

ques and findings, and guidance material for future scientific investigations.<br />

It is hopped that the volumes wil furnish material <strong>of</strong> both practical and<br />

theoretical interest to hydrologists and governments participating in the<br />

IHD and respond to the needs <strong>of</strong> technicians and scientists concerned<br />

<strong>with</strong> problems <strong>of</strong> water in all countries.<br />

A number <strong>of</strong> these volumes have been published jointly <strong>with</strong> the In-<br />

ternational Association <strong>of</strong> Hydrological Sciences and the World Meteoro-<br />

logical Organization which have co-operated <strong>with</strong> Unesco in the imple-<br />

mentation <strong>of</strong> several important projects <strong>of</strong> the IHD.


PRÉFACE<br />

La Conférence générale de l’Unesco, à sa treizième session, a décidé<br />

de lancer, pour la période s’étendant de 1965 à 1974, la Décennie hydrologique<br />

internationale (DHI), entreprise mondiale visant a faire progresser la con-<br />

naissance en matière d’hydrologie scientifique par un développement de<br />

la coopération internationale et par la formation de spécialistes et de<br />

techniciens. Au moment où l’expansion démographique et le développement<br />

industriel et agricole provoquent un accroissement constant des besoins<br />

en eau, la DHI permet à tous les pays de mieux évaluer leurs ressources<br />

hydrauliques et de les exploiter plus rationnellement.<br />

I1 existe actuellement dans i08 des 131 Etats membres de l’Unesco un<br />

comité national qui, pour tout ce qui a tratit au programme de la Décen-<br />

nie, impulse les activités nationales et assure la participation de son pays<br />

aux entreprises régionales et internationales. L’exécution du programme<br />

de la DHI se fait sous la direction d’un Conseil de coordination composé<br />

de 30 Etats membres désignés par la Conférence générale de l’Unesco; ce<br />

conseil étudie les propositions concernant le programme, recommande<br />

l’adoption de projets intéressant l’ensemble des pays ou un grand nombre<br />

d’entre eux, aide à la mise sur pied de projets nationaux et régionaux, et<br />

coordonne la coopération à l’échelon international.<br />

Le programme de la DHI qui porte sur tous les aspects des études et<br />

des recherches hydrologiques, vise essentiellement à développer la col-<br />

laboration dans la mise au point des techniques de recherches, dans la<br />

diffusion des données hydrologiques, dans l’organisation des installations<br />

hydrologiques. I1 encourage les enquêtes nationales, régionales et interna-<br />

tionales tendant à accroître et à améliorer l’utilisation des resources na-<br />

turelles, dans une perspective locale et générale. I1 permet aux pays avancés<br />

en matière de recherches hydrologiques d’échanger des informations; aux<br />

pays en voie de développement, il <strong>of</strong>fre la possibilité de pr<strong>of</strong>iter de ces<br />

échanges pour élaborer leurs projets de recherches et pour planifier leurs<br />

installations hydrologiques en tirant parti des acquisitions les plus récentes<br />

de l’hydrologie scientifique.<br />

Pour permettre a l’Unesco de contribuer au succès de la DHI, la Con-<br />

férence générale a autorisé le Directeur générale à rassembler, à échanger<br />

et à diffuser des informations sur les recherches d’hydrologie scientifique<br />

et à faciliter les contacts entre les chercheurs dans ce domaine. A cette<br />

fin, l’Unesco fait paraître deux nouvelles collections de publications:


tique que théorique, et qu’elle répondra aux besoins des techniciens et<br />

des hommes de science de tous pays qui s’occupent des problèmes de l’eau.<br />

Certains de ces ouvrages sont publiés en coopération avec l’Association<br />

internationale des sciences hydrologiques ou I’Organisatioii mMorologique<br />

mondiale dans le cadre de projets réalisés conjointement par ces orga-<br />

nisations et l’Unesco.


<strong>Design</strong> d water resources projecis <strong>with</strong> inadequate data: P-dings d the Madrid aympoaium,<br />

June 1973 / Elaboration des projeta d'utilisation dei resswTas en eau aona d onka auffluntes:<br />

Actea du wlloque de Madrid. juin 1973<br />

Volume II Contents Table des matidres<br />

Foreword/Avant-propos<br />

TOPIC II.1A . METHODS FOR STUDIES LN DATA-SCARCE AREAS AND<br />

THE INFLUENCE ON DESIGN OF THE INADEQUACY OF<br />

DATA FOR PURPOSES OF PLANIFICATION OF WATER<br />

RESOURCES (EXCLUDING FLOOD AND LOW FLOWS).<br />

METHODOLOGY FOR ASSESSING HYDROLOGICAL CHA-<br />

RACTERISTICS IN DATASCARCE AREAS.<br />

POINT II.1A . METHODES D'ETUDES UTILISEES DANS LES REGIONS OU<br />

LES DONNEES SûNT INSUFFISANTES ET INFLUENCE SUR<br />

LE CALCUL DU PROJET DU MANQUE DE DONNEES POUR<br />

L'ELABORATION DES PROJETS DE L'UTILISATION DES<br />

RESSOURCES EN EAU (A L'EXCLUSION DES CRUES ET<br />

DES DEBITS DE BASSES EAUX).<br />

METHODOLOGIE POUR L'EVALUATION DES CARACTE-<br />

RISTIQUES HYDROLOGIQUES DANS LES REGIONS OU<br />

LES DONNEES SûNT RARES.<br />

BASSO, EDUARDO. (UNDPMIMO) GENERAL REPORT<br />

ABIODUM, ADIGUN ADE. (NIGERIA)<br />

<strong>Water</strong> resources projects in Nigeria and the hydrological data employed in<br />

their planning and development ................................<br />

BASSO, E., ARRIAGADA, A., NEIRA, H., PEREZ DELGADO, M. (COSTA<br />

RICA)<br />

An example <strong>of</strong> regional co-operation for improving the hydrological and<br />

meteorological information ...................................<br />

CUBAS GRANADO, FRANCISCO. (SPAIN)<br />

Existing methodology for estimating free water surface evaporation ....<br />

CUSTODIO, EMILIO. (SPAIN)<br />

Geohydrological studies in small areas <strong>with</strong>out systematic data ........<br />

DALINSKY, JOSEPH S. (ISRAEL)<br />

Methods <strong>of</strong> analysing deficient discharge data in arid and semi-arid zones<br />

for the design <strong>of</strong> surface water utilization .......................<br />

D'OLIVEIRA, EMILIO EUGENIO. MIMOSO, JOAO JOSE. (PORTUGAL)<br />

Mapai river hydrological study (Limpopo's river) ...................<br />

D'OLIVEIRA, EMILIO EUGENIO. MIMOSO, JOAO JOSE. (PORTUGAL)<br />

Application <strong>of</strong> Coutagne's and Turc's formulas to southern Mozambique<br />

rivers ...................................................<br />

HERAS, R. (SPAIN)<br />

Report hydrological programa <strong>of</strong> the Center for Hydrographic Studies for<br />

the investigation <strong>of</strong> hydraulic resources <strong>with</strong> insufficient data .........<br />

1<br />

21<br />

35<br />

59<br />

77<br />

95<br />

141<br />

121<br />

155


KARAUSHEV, A.V., BOGOLIUBOVA, I.V. (U.S.S.R.)<br />

Computation <strong>of</strong> reservoin wdLnrntition .........................<br />

KLIGUE, R.K., MECHDI EL SACHOB (U.S.S.R.)<br />

Cilnilrition<strong>of</strong>run<strong>of</strong>finIraq ..................................<br />

KUZMIN, P.P., VERSHININ, A.P. (U.S.S.R.)<br />

Determination <strong>of</strong> evaporation in caw <strong>of</strong> the abmnce or inadequacy <strong>of</strong><br />

data .....................................................<br />

PENTA, A., ROSSI, F. (ITALY)<br />

Objective criteria to daclare a aerier <strong>of</strong> data sufficient for technical pur-<br />

poses ....................................................<br />

QUINTELA GOIS, CARLOS. (PORTUGAL)<br />

Objective criteria used in hydrology <strong>with</strong> inadequate data ............<br />

SMITH, ROBERT L. (U.S.A.)<br />

Utilizing climatic data to appraise potentiai water yields .............<br />

STANESCU, SILVIU. (COLOMBIA)<br />

Determination <strong>of</strong> hydrological characteristics in points <strong>with</strong>out direct<br />

hydrometricdata ...........................................<br />

TEMEZ, J.R. (SPAIN)<br />

New models <strong>of</strong> frequency law <strong>of</strong> run<strong>of</strong>f starting from precipitations ....<br />

TRENDEL, R., DER MEGREDITCHIAN, G., RULLIERE, MARIE CLAIRE.<br />

(FRANCE)<br />

Traitement opérationnel des données pluviométriques entachées d'erreurs<br />

ouinsuffisantes ............................................<br />

TOPIC II.1B . METHODS FOR STUDIES IN DATA SCARCE AREAS AND<br />

THE INFLUENCE ON DESIGN OF THE INADEQUACY OF<br />

DATA FOR PURPOSES OF PLANIFICATION OF WATER<br />

RESOURCES (EXCLUDING FLOOD AND LOW FLOWS).<br />

INFLUENCE OF INADEQUACY OF HYDROLOGICAL DATA<br />

ON PROJECT DESIGN AND FORMULATION.<br />

POINT II.1B - METHODES D'ETUDES UTILISEES DANS LES REGIONS OU<br />

LES DONNEES SONT INSUFFISANTES ET INFLUENCE SUR<br />

LE CALCUL DU PROJET DU MANQUE DE DONNEES POUR<br />

L'ELABORATION DES PROJETS DE L'UTILISATION DES<br />

RESSOURCES EN EAU (A L'EXCLUSION DES CRUES ET<br />

DES DEBITS DE BASSES EAUX). INFLUENCE DU MANQUE<br />

DE DONNEES HYDROLOGIQUES SUR LE CALCUL DU<br />

PROJET ET SA FORMULATION.<br />

BEARD, L.R. (U.S.A.) GENERAL REPORT<br />

BANERJI, S., LAL, V.B. (INDIA)<br />

<strong>Design</strong> <strong>of</strong> water resources projects <strong>with</strong> inadequate data in India. General<br />

& Particular Case Studies ................................... 323<br />

199<br />

207<br />

217<br />

221<br />

24 1<br />

253<br />

265<br />

287<br />

30 1<br />

315


JAMB, IVAN C. (U.S.A.)<br />

Data requirements for the optimization <strong>of</strong> reservoir dengn and operating<br />

dedetermination ..........................................<br />

REID, GEORGE W. (U.S.A.)<br />

The design <strong>of</strong> water quality management projecta <strong>with</strong> inadequate data<br />

SABHERWAL, R.K. (INDIA)<br />

<strong>Design</strong>ing projects for the development <strong>of</strong> ground water resources in the<br />

alluvial plains <strong>of</strong> northern India on the basis <strong>of</strong> inadequate data .......<br />

SEXTON, J.R., JAMIESON, D.G. (U.K.)<br />

Improved techniques for water resource systems design .........<br />

WEBER, J., KISIEL, CHESTER C., DUCKSTEIN, LUCIEN (U.S.A.)<br />

Maximum information obtainable from inadequate design data: from<br />

multivariate to Bayesian methods ..............................<br />

TOPIC 11.2 - CURRENT PRACTICES FOR ASSESSING DESIGN FLOODS<br />

AND DESIGN LOW FLOWS, INCLUDING THE USE OF<br />

SYNTHETIC UNIT HYDROGRAPH, WITH PARTICULAR<br />

EMPHASIS ON MAXIMALISATION AND MINIMALISATION.<br />

POINT 11.2 - PRATIQUES COURANTES POUR L'EVALUATION DES<br />

CRUES ET DES DEBITS D'ETIAGES PRIS EN COMPTE DANS<br />

LE PROJET, COMPRENANT L'EMPLOI D'HYDROGRAMMES<br />

UNITAIRES DE SYNTHESE, AVEC ETUDE PARTICULIERE<br />

DE LA MAXIMALISATION ET DE LA MINIMALISATION.<br />

ROCHE, MARCEL. (FRANCE) GENERAL REPORT<br />

BATLLE GIRONA, MODESTO. (SPAIN)<br />

Estimation <strong>of</strong> floods by means <strong>of</strong> their silt loads .................<br />

BERAN, M.A. (U.K.)<br />

Estimation <strong>of</strong> design floods and the problem <strong>of</strong> equating the probability<br />

<strong>of</strong>rainfailandrun<strong>of</strong>f ........................................<br />

DAVIS, DONALD R., DUCKSTEIN, L., KISIEL, CHESTER C., FOGEL, MAR-<br />

TIN M. (U.S.A.)<br />

A decision-theoretic approach to uncertainty in the return period <strong>of</strong><br />

maximum flow volumes using rainfall data .......................<br />

HALL, M.J. (U.K.)<br />

Synthetic unit hydrograph technique for the design <strong>of</strong> flood alleviation<br />

works in urban areas ......................................<br />

HELLIWELL, P.R., CHEN, T.Y. (U.K.)<br />

A dimensio<strong>nl</strong>ess unitgaph for Hong Kong ........................<br />

HERAS, R., LARA, A. (SPAIN)<br />

Study <strong>of</strong> maximum floods in small basins <strong>of</strong> torrential type ..........<br />

335<br />

349<br />

365<br />

383<br />

40 1<br />

419<br />

439<br />

459<br />

473<br />

485<br />

501<br />

517


HERBST, P.H., VAN BIWON, S., OLIVIER, J.P.J., HALL, J.M. (SOUTH<br />

AFRICA)<br />

Flood estimation by determination <strong>of</strong> regional parameten from limited<br />

data ....................................................<br />

JARASWATHANA, DAMRONG., PINKAYAN, SUBIN. (THAILAND)<br />

Practices <strong>of</strong> design flood frequency for small watersheds in Thailand ...<br />

KINOSITA, TAKEO., HASHIMOTO, TAKESHI. (JAPAN)<br />

<strong>Design</strong> discharge derived from design rainfall ..................<br />

LEESE, MORVEN N. (U.K.)<br />

The use <strong>of</strong> censored data in estimating t-year floods .........<br />

POGGI PEREIRA, PAULO. (BRAZIL)<br />

Assessment <strong>of</strong> design floods in Brazil ........................<br />

RENDON-HERRERO, OSWALD. (U.S.A.)<br />

A method for the prediction <strong>of</strong> washload in certain small watersheds ....<br />

RODIER, J.A. (FRANCE)<br />

Méthodes utilisées pour l'évaluation des débita de m e des petits com<br />

d'eau en régions tropicales ....................................<br />

SOKOLOV, A.A. (U.S.S.R.)<br />

Methods for the estimation <strong>of</strong> maximum dischargea <strong>of</strong> snow melt and<br />

rainfall water <strong>with</strong> inadequate observational data ..................<br />

VLADIMIROV,A.M.,CHEBOTAREV, A.I. (U.S.S.R.)<br />

Computation <strong>of</strong> probabiustic valuea <strong>of</strong> low flow for ungauged riven .<br />

WON, TAE SANG. (U.S.A.)<br />

A study on maximum flood discharge formulas ....................<br />

TOPIC III - RELATION BETWEEN PROJECT ECONOMICS AND HYDROLO-<br />

GICAL DATA<br />

POINT 111 - RELATION ENTRE LES DONNEES ECONOMIQUES DU PRO-<br />

JET ET LES DONNEES HYDROLOGIQUES<br />

BURAS, NATHAN. (ISRAEL)<br />

The cost-effectiveness <strong>of</strong> water resources systems considering inadequate<br />

hydrologiddata ...........................................<br />

FILOTTI, A., FRANK, G., PARVULESCU, C. (ROMANIA)<br />

Optimization <strong>of</strong> water resources development projects in case <strong>of</strong> inade-<br />

quate hydrologic data ....................................<br />

POBEDIMSKY, A. (ECE)<br />

Relation between project economics and hydrologicai data ...........<br />

54 1<br />

553<br />

551<br />

563<br />

517<br />

5 89<br />

603<br />

615<br />

625<br />

635<br />

649<br />

66 1<br />

683


INTRODUCTION<br />

The Symposium on the Development <strong>of</strong> <strong>Water</strong> <strong>Resources</strong> <strong>Projects</strong> <strong>with</strong><br />

<strong>Inadequate</strong> Data was held in Madrid from 4 to 8 June 1973 for the purpose<br />

<strong>of</strong> focusing on the methodology for hydrologic studies for water resources<br />

projects <strong>with</strong> inadequate data and on current practices for the assessment<br />

<strong>of</strong> design parameters.<br />

The Symposium was opened at the Palacio de Exposiciones on the<br />

morning <strong>of</strong> 4 June by Miniester <strong>of</strong> Public Workes <strong>of</strong> Spain Addresses were<br />

then given by Dr. Dumitrescu on behalf <strong>of</strong> the Director General <strong>of</strong> Unesco,<br />

Pr<strong>of</strong>essor Nevmec on behalf <strong>of</strong> the Secretary-General <strong>of</strong> WMO, Dr. Rodier<br />

as President <strong>of</strong> IAHS and by Dr. Briones, on behalf <strong>of</strong> the Spanish Na-<br />

tional Committee for the IHD.<br />

The Symposium was attended by 480 participants from 77 countries.<br />

The technical programme, detalled in the Table <strong>of</strong> Contents, included<br />

consideration <strong>of</strong> 3 major areas:<br />

1. Methodology for hydrological studies <strong>with</strong> inadequate data,<br />

2. Current practices in different countries,<br />

3. Relation between project economics and hydrological data.<br />

Each area was further sub-divided into topics for each <strong>of</strong> which the<br />

individually contributed papers were abstracted into a general report, orally<br />

presented by an invited expert, and followed by discussion.<br />

Since the individual papers were not presented at the Symposium orally<br />

by the authors, thery are reproduced here in the orden in which<br />

they were reported in each general report under each topic.


Contents<br />

Table des matières<br />

Volume II<br />

Foreword/Avant-propos ................................<br />

TOPIC II.1A - METHODS FOR STUDIES IN DATA-SCARCE AREAS AND<br />

THE INFLUENCE ON DESIGN OF THE INADEQUACY OF<br />

DATA FOR PURPOSES OF PLANIFICATION OF WATER<br />

RESOURCES (EXCLUDING FLOOD AND LOW FLOWS).<br />

METHODOLOGY FOR ASSESSING HYDROLOGICAL CHA-<br />

RACTERISTICS IN DATA-SCARCE AREAS.<br />

POINT II.1A - METHODES D’ETUDES UTILISEES DANS LES REGIONS OU<br />

LES DONNEES SONT INSUFFISANTES ET INFLUENCE SUR<br />

LE CALCUL DU PROJET DU MANQUE DE DONNEES POUR<br />

L’ELABORATION DES PROJETS DE L’UTILISATION DES<br />

RESSOURCES EN EAU (A L’EXCLUSION DES CRUES ET<br />

DES DEBITS DE BASSES EAUX).<br />

METHODOLOGIE POUR L’EVALUATION DES CARACTE-<br />

RISTIQUES HYDROLOGIQUES DANS LES REGIONS OU<br />

LES DONNEES SONT RARES.<br />

BASSO, EDUARDO. (UNDP/WMO) GENERAL REPORT<br />

ABIODUM, ADIGUN ADE. (NIGERIA)<br />

<strong>Water</strong> resources projects in Nigeria and the hydrological data employed in<br />

their planning and development ................................<br />

BASSO, E., ARRIAGADA, A., NEIRA, H., PEREZ DELGADO, M. (COSTA<br />

RICA)<br />

An example <strong>of</strong> regional co-operation for improving the hydrological and<br />

meteorological information ...................................<br />

CUBAS GRANADO, FRANCISCO. (SPAIN)<br />

Existing methodology for estimating free water surface evaporation ....<br />

CUSTODIO, EMILIO. (SPAIN)<br />

Geohydrological studies in small areas <strong>with</strong>out systematic data ........<br />

DALINSKY, JOSEPH S. (ISRAEL)<br />

Methods <strong>of</strong> analysing deficient discharge data in arid and semi-arid zones<br />

for the design <strong>of</strong> surface water utilization .......................


II<br />

D’OLIVEIRA, EMILIO EUGENIO. MIMOSO, JOAO JOSE. (PORTUGAL)<br />

Mapai river hydrological study (Limpopo’s river) ...................<br />

D’OLIVEIRA, EMILIO EUGENIO. MIMOSO, JOAO JOSE. (PORTUGAL)<br />

Application <strong>of</strong> Coutagne’s and Turc’s formulas to southern Mozambique<br />

rivers ....................................................<br />

HERAS, R. (SPAIN)<br />

Report hydrological programs <strong>of</strong> the Center for Hydrographic Studies for<br />

the investigation <strong>of</strong> hydraulic resources <strong>with</strong> insufficient data .........<br />

KARAUSHEV,A.V., BOGOLIUBOVA, I.V. (U.S.S.R.)<br />

Computation <strong>of</strong> reservoirs sedimentation .......................<br />

KLIGUE, R.K., MECHDI EL SACHOB (U.S.S.R.)<br />

Calculation <strong>of</strong> run<strong>of</strong>f in Iraq ..................................<br />

KUZMIN, P.P., VERSHININ, A.P. (U.S.S.R.)<br />

Determination <strong>of</strong> evaporation in case <strong>of</strong> the absence or inadequacy <strong>of</strong><br />

data .....................................................<br />

PENTA, A., ROSSI, F. (ITALY)<br />

Objective criteria to declare a series <strong>of</strong> data sufficient for technical pur-<br />

poses ....................................................<br />

QUINTELA GOIS, CARLOS. (PORTUGAL)<br />

Objective criteria used in hydrology <strong>with</strong> inadequate data ............<br />

SMITH, ROBERT L. (U.S.A.)<br />

Utilizing climatic data to appraise potential water yields .............<br />

STANESCU, SILVIU. (COLOMBIA)<br />

Determination <strong>of</strong> hydrological characteristics in points <strong>with</strong>out direct<br />

hydrometric data ...........................................<br />

TEMEZ, J.R. (SPAIN)<br />

New models <strong>of</strong> frequency law <strong>of</strong> run<strong>of</strong>f starting from precipitations ....<br />

TRENDEL, R., DER MEGREDITCHIAN, G., RULLIERE, MARIE CLAIRE.<br />

(FRANCE)<br />

Traitement opérationnel des données pluviornetriques entachées d’erreurs<br />

ou insuffisantes ............................................


TOPIC II.1B - METHODS FOR STUDIES IN DATA SCARCE AREAS AND<br />

THE INFLUENCE ON DESIGN OF THE INADEQUACY OF<br />

DATA FOR PURPOSES OF PLANIFICATION OF WATER<br />

RESOURCES (EXCLUDING FLOOD AND LOW FLOWS).<br />

INFLUENCE OF INADEQUACY OF HYDROLOGICAL DATA<br />

ON PROJECT DESIGN AND FORMULATION.<br />

POINT II.1B - METHODES D’ETUDES UTILISEES DANS LES REGIONS OU<br />

LES DONNEES SONT INSUFFISANTES ET INFLUENCE SUR<br />

LE CALCUL DU PROJET DU MANQUE DE DONNEES POUR<br />

L’ELABORATION DES PROJETS DE L’UTILISATION DES<br />

RESSOURCES EN EAU (A L’EXCLUSION DES CRUES ET<br />

DES DEBITS DE BASSES EAUX). INFLUENCE DU MANQUE<br />

DE DONNEES HYDROLOGIQUES SUR LE CALCUL DU<br />

PROJET ET SA FORMULATION.<br />

BEARD, L.R. (U.S.A.) GENERAL REPORT<br />

BANERJI, S., LAL, V.B. (INDIA)<br />

<strong>Design</strong> <strong>of</strong> water resources projects <strong>with</strong> inadequate data in India. General<br />

& Particular Case Studies ...................................<br />

JAMES, IVAN C. (U.S.A.)<br />

Data requirements for the optimization <strong>of</strong> reservoir design and operating<br />

rule determination ..........................................<br />

REID, GEORGE W. (U.S.A.)<br />

The design <strong>of</strong> water quality management projects <strong>with</strong> inadequate data .<br />

SABHERWAL, R.K. (INDIA)<br />

<strong>Design</strong>ing projects for the development <strong>of</strong> ground water resources in the<br />

alluvial plains <strong>of</strong> northern India on the basis <strong>of</strong> inadequate data .......<br />

SEXTON, J.R., JAMIESON, D.G. (U.K.)<br />

Improved techniques for water resource systems design ..............<br />

WEBER, J., KISIEL, CHESTER C., DUCKSTEIN, LUCIEN (U.S.A.)<br />

Maximum information obtainable from inadequate design data: from<br />

multivariate to Bayesian methods ..............................<br />

TOPIC 11.2 - CURRENT PRACTICES FOR ASSESSING DESIGN FLOODS<br />

AND DESIGN LOW FLOWS, INCLUDING THE USE OF<br />

SYNTHETIC UNIT HYDROGRAPH, WITH PARTICULAR<br />

EMPHASIS ON MAXIMALISATION AND MINIMALISATION.


IV<br />

POINT 11.2 - PRATIQUES COUFUNI"'I'S POUR L'EVALUATION DES<br />

CRUES ET DES DEBITS D'ETIAGES PRIS EN COMPTE DANS<br />

LE PROJET, COMPRENANT L'EMPLOI D'HYDROGRAMMES<br />

UNITAIRES DE SYNTHESE, AVEC ETUDE PARTICULIERE<br />

DE LA MAXIMALISATION ET DE LA MINIMALISATION.<br />

ROCHE, MARCEL. (FRANCE) GENERAL REPORT<br />

BATLLE GIRONA, MODESTO. (SPAIN)<br />

Estimation <strong>of</strong> floods by means <strong>of</strong> their silt loads ..............<br />

BERAN, M.A. (U.K.)<br />

Estimation <strong>of</strong> design floods and the problem <strong>of</strong> equating the probability<br />

<strong>of</strong> rainfall and run<strong>of</strong>f ........................................<br />

DAVIS, DONALD R., DUCKSTEIN, L., KISIEL, CHESTER C., FOGEL, MAR-<br />

TIN M. (U.S.A.)<br />

A decision-theoretic approach to uncertainty in the return period <strong>of</strong><br />

maximum flow volumes using rainfall data .......................<br />

HALL, M.J. (U.K.)<br />

Synthetic unit hydrograph technique for the design <strong>of</strong> flood alleviation<br />

works in urban areas ........................................<br />

HELLIWELL, P.R.,CHEN, T.Y. (U.K.)<br />

A dimensio<strong>nl</strong>ess unitgraph for Hong Kong ........................<br />

HERAS, R., LARA, A. (SPAIN)<br />

Study <strong>of</strong> maximum floods in small basins <strong>of</strong> torrential type ..........<br />

HERBST, P.H., VAN BILJON, S., OLIVIER, J.P.J., HALL, J.M. (SOUTH<br />

AFRICA)<br />

Flood estimation by determination <strong>of</strong> regional parameters from limited<br />

data .....................................................<br />

JARASWATHANA, DAMRONG., PINKAYAN, SUBIN. (THAILAND)<br />

Practices <strong>of</strong> design flood frequency for small watersheds in Thailand ...<br />

KINOSITA, TAKEO., HASHIMOTO, TAKESHI. (JAPAN)<br />

<strong>Design</strong> discharge derived from design rainfall ......................<br />

LEESE, MORVEN N. (U.K.)<br />

The use <strong>of</strong> censored data in estimating t-year floods ................


POGGI PEREIRA, PAULO. (BRAZIL)<br />

Assessment <strong>of</strong> design floods in Brazil .............................<br />

RENDON-HERRERO, OSWALD. (U.S.A.)<br />

A method for the prediction <strong>of</strong> washload in certain small watersheds ...<br />

RODIER, J.A. (FRANCE)<br />

Méthodes utilisées pour l’évaluation des débits de crue des petits cours<br />

d’eau eri régions tropicales ....................................<br />

SOKOLOV, A.A. (U.S.S.R.)<br />

Methods for the estimation <strong>of</strong> maximum discharges <strong>of</strong> snow melt and<br />

rainfall water <strong>with</strong> inadequate observational data ..................<br />

VLADIMIROV, A.M., CHEBOTAREV, A.I. (U.S.S.R.)<br />

Computation <strong>of</strong> probabilistic values <strong>of</strong> low flow for ungauged rivers ....<br />

WON, TAE SANG. (U.S.A.)<br />

A study on maximum flood discharge formulas ....................<br />

TOPIC III - RELATION BETWEEN PROJECT ECONOMICS AND HYDROLO-<br />

GICAL DATA<br />

POINT III - RELATION ENTRE LES DONNEES ECONOMIQUES DU PRO-<br />

JET ET LES DONNEES HYDROLOGIQUES<br />

BURAS, NATHAN. (ISRAEL)<br />

The cost-effectiveness <strong>of</strong> water resources systems considering inadequate<br />

hydrological data ...........................................<br />

FILOTTI, A., FRANK, G., PARVULESCU, C. (ROMANIA)<br />

Optimization <strong>of</strong> water resources development projects in case <strong>of</strong> inade-<br />

quate hydrologic data ....................................<br />

POBEDIMSKY, A. (ECE)<br />

Relation between project economics and hydrological data ...........


Foreword<br />

While the need for hydrological and meteorological data <strong>of</strong> many types<br />

for the design <strong>of</strong> water resources projects is obvious, it is <strong>of</strong>ten found,<br />

especially in many developing countries, that such data are either lacking<br />

or inadequate.<br />

Recognizing the existence <strong>of</strong> this problem, the Co-ordinating Counci.1 <strong>of</strong><br />

the IHD appointed a group <strong>of</strong> experts (third session, Paris, June 1967) to<br />

study the problem <strong>of</strong> design <strong>of</strong> water resources projects <strong>with</strong> inadequate<br />

data.<br />

Similarly, the Commission for <strong>Hydrology</strong> <strong>of</strong> WMO (third session, Geneva,<br />

September 1968) established a Working Group on Hydrological <strong>Design</strong><br />

Data for <strong>Water</strong> <strong>Resources</strong> <strong>Projects</strong> to prepare guidance material on this<br />

subject for the WMO Guide to Hydrological Practices and to maintain<br />

liaison <strong>with</strong> the IHD group <strong>of</strong> experts appointed by the Co-ordinating<br />

Council.<br />

As a means <strong>of</strong> taking stock <strong>of</strong> the work carried out by the hydrological<br />

community in coping <strong>with</strong> project design <strong>with</strong> scarce data, Unesco and<br />

WMO jointly convened a symposium on this subject. The Symposium was<br />

organized <strong>with</strong> the co-operation <strong>of</strong> the IAHS and the Spanish National<br />

Committee for the IHD and was held in Madrid from 4 to 8 June 1973 at<br />

the invitation <strong>of</strong> the Government <strong>of</strong> Spain.<br />

The Madrid Symposium concentrated on the methodology <strong>of</strong> hydro-<br />

logical studies for water resources projects <strong>with</strong> inadequate data and on<br />

current practices for the assessment <strong>of</strong> design parameters.<br />

The Minister <strong>of</strong> Public Works <strong>of</strong> Spain opened the Symposium at the<br />

Palacio de Exposiciones on the morning <strong>of</strong> 4 June. Addresses were given<br />

by Dr. Dumitrescu on behalf <strong>of</strong> the Director-General <strong>of</strong> Unesco, Pr<strong>of</strong>essor<br />

Nemec on benalf <strong>of</strong> the Secretary-General <strong>of</strong> WMO, Dr. Rodier as President<br />

<strong>of</strong> IAHS and by Dr. Briones, on behalf <strong>of</strong> the Spanish National Committee<br />

for the IHD.<br />

The Symposium was atteneded by 480 participants from 77 countries.<br />

The technical programme, detailed in the Table <strong>of</strong> Contents, included<br />

consideration <strong>of</strong> 3 major areas:<br />

1. Methodology for hydrological studies <strong>with</strong> inadequate data;<br />

2. Current practices in different countries;<br />

3. Relation between project economics and hydrological data.<br />

Each area was further sub-divided into topics for each <strong>of</strong> which the<br />

indivi,dually contributed papers were abstracted into a general report,<br />

orally presented by an invited expert, and followed by discussion.


This volume <strong>of</strong> proceedings was compiled by the Spanish National Com-<br />

mittee for the IHD; it includes all the general reports and individual<br />

papers presented at the Symposium, as well as the discussions. It is issued<br />

as a joint Unesco/WMO/IAHS pub,lication in the spirit in which the three<br />

Organizations have collaborated during the IHD.<br />

Since the individual authors did not present their papers orally at the<br />

Symposium, the papers are reproduced here in the order in which they<br />

are discussed in the general report for each topic.<br />

Unesco, WMO and IAHS wish to record their thanks to the Spanish<br />

National Committee for the IHD for the many contributions <strong>of</strong> its members<br />

towards the organization <strong>of</strong> the Symposium, and for the Committee’s as-<br />

sistance in the publication <strong>of</strong> these proceedings.


AVANT-PROPOS<br />

I1 est évident que, pour élaborer des projets d’utilisation des ressources<br />

en eau il est nécessaire de disposer de données hydrologiques et météoro-<br />

logiques de types très divers; or il apparaît que ces données sont souvent<br />

inexistantes ou insuffisantes, notamment dans beaucoup de pays en voie<br />

de développement.<br />

Conscient de ce problème, le Conseil de coordination de la DHI a créé,<br />

lors de sa troisième session (Paris, juin 1967) un groupe d’experts chargé<br />

d’étudier les moyens d’elaborer des projets d’utilisation des ressources<br />

en eau sans disposer de données suffisantes.<br />

De son côté, la Commission d’hydrologie de l’OMM a constitué à sa<br />

troisième session (Genève, septembre 1968) un groupe de travail sur les<br />

données hydrologiques nécessaires à l’élaboration des projets d’arnénagement<br />

des ressources hydrauliques; ce groupe de travail a été chargé de<br />

formuler des recommandations destinées à figurer dans le Guide OMM des<br />

pratiques hydrologiques, et d’assurer la liaison avec le groupe d’experts<br />

de la DHI créé par le Conseil de coordination.<br />

Afin de faire le point des travaux accomplis par la communité hydrologique<br />

en ce qui concerne l’élaboration de projets pour lesquels on ne<br />

dispose pas de données suffisantes, l’Unesco et l’OMM ont décidé de réunir<br />

conjointement un colloque consacré à cette question. Ce colloque, organisé<br />

avec la collaboration de I’AISH et du Comité national espagnol pour la<br />

DHI, s’est tenu à Madrid en juin 1973, à l’invitation du gouvernement espagnol.<br />

Le colloque de Madrid a traité en particulier de la méthodologie des<br />

études hydrologiques sans données suffisantes et des pratiques courantes<br />

utilisées pour l’évaluation des paramètres de calcul.<br />

Le colloque a été ouvert par le ministre espagnol des travaux publics,<br />

le matin du 4 juin, dans le cadre du Palais des expositions. Des allocutions<br />

furent prononcées par M. Dumitriscu, au nom du Directeur général de<br />

l’Unesco, par le pr<strong>of</strong>esseur Nemec, au nom du Secrétaire général de l’OMM,<br />

par M. Rodier, président de l’AISH, et par M. Briones, au nom du Comité<br />

national espagnol pour la DHI.<br />

480 participants, venant de 77 pays, participèrent au colloque.<br />

Le programme technique, dont le contenu détaillé figure dans la table<br />

des matières, portait sur trois domaines principaux:<br />

1. Méthodologie des études hydrologiques sans données suffisantes;<br />

2. Les pratiques courantes utilisées dans différents pays;<br />

3. Relation entre les données économiques du projet et les données<br />

hydrologiques.


Chacun de ces domaines était subdivisé en thèmes, et sur chaque thème<br />

un rapport général synthétisant les communications individuellles était pré-<br />

senté par un expert, puis suivi d’une discussion.<br />

Les Actes du colloque, établis par le Comité national espagnol pour<br />

la DHI, comprennent l’ensemble des communications individuelles et des<br />

rapports généraux, ainsi que le compte rendu des débats auxquels ils ont<br />

donné lieu. Ils constituent une publication conjointe de l’Unesco, de l’OMM<br />

et de I’AISH, reflétant l’esprit dans lequel les trois organisations ont col-<br />

laboré pendant la DHI.<br />

Comme les communications individuelles n’ont pas été présentées ora-<br />

lement par leurs auteurs, elles sont reproduites dans l’ordre où elles sont<br />

apparues dans le rapport les concernant.<br />

Unesco, l’OMM et I’AISH tiennent à remercier le Comité national es-<br />

pagnol pour la DHI du concours qu’il a apporté à l’organisation du colloque<br />

et à la publication de ses Actes.


METHODOLOGY FOR ASSESSING HYDROLOGICAL CHARACTERISTICS<br />

IN DATA SCARCE AREAS<br />

General Report<br />

bY<br />

Eduardo Basso*<br />

INTRODUCTION<br />

Three <strong>of</strong> the eight papers reviewed in this Report describe in general the form<br />

<strong>of</strong> assessing hydrological characteristics in data-scarce areas (Nigeria, Ango-<br />

la and the Central American Isthmus). The other five papers deal <strong>with</strong> the ap-<br />

Plication <strong>of</strong> certain particular methods, covering estimation <strong>of</strong> run<strong>of</strong>f, evapo-<br />

ration, sedimentation and other hydrological parameters. Therefore, the re-<br />

vision will be made in this order.<br />

The procedure to be followed in this summarizing report consists <strong>of</strong> present-<br />

ing summaries <strong>of</strong> the papers followed by a discussion <strong>of</strong> the main subjects and<br />

by some general comments on the whole subject.<br />

REVIEW OF THE PAPERS<br />

Okavango Basin in Angola. - The paper by Mr. Quintelag** presents the<br />

studies made in Angola and in particular those <strong>of</strong> the Okavango Basin, which<br />

is one <strong>of</strong> the big international rivers <strong>of</strong> the South <strong>of</strong> Angola. The basin is shown<br />

in Figure 1 <strong>of</strong> the paper. Its drainage area is about 150 O00 Km2 and most <strong>of</strong><br />

the rainfall occurs from October to April. Altitudes range from 1000 to 1800<br />

meters. For the rainfall studies, 28 stations could provide 20 years <strong>of</strong> records<br />

after completing some shortages by correlation. With these annual values, an<br />

isohyetical map was drawn taking into account altitudes and some climatical<br />

factors. From there, the mean annual rainfall was computed and analysed by<br />

applying the Foster-Hazen method. The result is shown in Figure 2 <strong>of</strong> the<br />

paper, from which a mean annual precipitation <strong>of</strong> 950 mm was debermined.<br />

19 flow measuring stations operate in the basin, but o<strong>nl</strong>y records for 7 years<br />

were available. As the mean rainfall <strong>of</strong> these seven years is near theaverage<br />

the author concludes that the mean annual flow can be estimated by averaging<br />

the flows <strong>of</strong> those seven years for every station.<br />

One station operatdby the<br />

South African Services had longer records (25 years) and for it the Foster-<br />

Hazen method was used (Figure 3 <strong>of</strong> the paper). Finally, Figure 4 shows a<br />

curve indicating the variation <strong>of</strong> the specific annual flow <strong>with</strong>in the drainage<br />

area.<br />

* Project Manager, Central American Hydrometeorological Project, (UNDP/<br />

WMO). Managua, Nicaragua.<br />

** See list <strong>of</strong> references at the end <strong>of</strong> this Report,


2<br />

Niveria's Case. Abiodun's paperg deals first <strong>with</strong> Nigeria's water policy and<br />

<strong>with</strong> the institutional arrangements in relation 90 water resources studies.<br />

It later presents some examples <strong>of</strong> utilization <strong>of</strong> hydrological data in existing<br />

projects.<br />

The Kainji multipurpose scheme is located on River Niger (Figure 1 <strong>of</strong> the<br />

paper). Although construction was started in 1964, no water levels were observed<br />

prior to 1959. The precipitation network was also insufficient until in<br />

1953 when new stations were installed allowing a seven year record (1953-59)<br />

from which the rainfall over the catchment area was calculated for this period.<br />

A relatively long record at Jebba, upstream <strong>of</strong> the dam, could not be used<br />

because <strong>of</strong> lack <strong>of</strong> adequate datum information. A correlation between monthly<br />

rainfall and runn<strong>of</strong>f at Jebba was obtained using the newly observated discharges<br />

at Jebba for seven years and w e -ed for ccmp&ing the discharge from the basin<br />

between Niamey (upstream <strong>of</strong> the dam site at Kianzi) and Jebba Cbserved and<br />

computed flows for two years are shown in Figure 2 <strong>of</strong> the paper.<br />

The &ect <strong>of</strong> lage up to one month were considered in the correlation (equation<br />

1 <strong>of</strong> the paper). Finally, the discharge at the damsite was obtained substracting<br />

the eetimated run<strong>of</strong>f on two areas, estimating run<strong>of</strong>f coefficients <strong>of</strong> O. 1 and<br />

O. 2 (equation 2 <strong>of</strong> the paper).<br />

The paper refers them to the problems produced by the lack<br />

cal data in Midwestern Nigeria.<br />

<strong>of</strong> hydrogeologi-<br />

in Western Nigeria many long and reliable evaporation and rainfall data are<br />

available, but river discharges are very scarce. According to the author, the<br />

standard practice is to base the water scheme design in a conservative form<br />

using a monthly evaporation <strong>of</strong> 127 mm and computing run<strong>of</strong>f <strong>with</strong> the formula<br />

in which Q, is the catchment annual run<strong>of</strong>f, A the basin drainage area, Rpsn<br />

the basin rainfall value corresponding to correspondjng the probability <strong>of</strong> -Urtaace.in<br />

5ûy~are Co;'Coefficient <strong>of</strong> run<strong>of</strong>f for the basin, estimated at 4%. Abig<br />

dun indicates that variations <strong>of</strong> this formula are widely used in western Nigeria.<br />

and the uee <strong>of</strong> a form <strong>of</strong> it was not used for computing the flood for the<br />

spillway for Asejire Project because <strong>of</strong> the advice <strong>of</strong> a foreign consultant. Ins<br />

tead, a run<strong>of</strong>f <strong>of</strong> 490 l/sec was used. basedan similar occurrences in other<br />

West African dtreams.<br />

The paper refers also briefly to the Lake Chad basin studies which count <strong>with</strong><br />

cooperation from the United States Geological Survey, FAO and UNESCO. In<br />

this case FAO'e efforts have been directed to the harmonization and evaluation<br />

<strong>of</strong> the data. infra-red aerial photography has been used in connection <strong>with</strong><br />

thee e tas ka.<br />

The paper concludes <strong>with</strong> an appraisal <strong>of</strong> the studies used and <strong>with</strong> a brief des-<br />

cription <strong>of</strong> the future activities in the field <strong>of</strong> water resources investigations in<br />

Nigeria. Here, the use <strong>of</strong> new techniques such as rsmote sensing is recom-<br />

mended.<br />

The Central American Hydrometeorological Proiec<br />

The paper by Basso. Arriagada, Neira and Pérez 13. describes the activities<br />

<strong>of</strong> the Central American Hydrometeorological Project, a co-operative effort<br />

-


etween the countries <strong>of</strong> the Central American Istbmis and the United Nations<br />

Development Programme acting as executive agency the World Meteorological<br />

Organization. The main objectives <strong>of</strong> the Project are: (i) Installation <strong>of</strong> a basic<br />

network <strong>of</strong> meteorological and hydrological station; (ii) Collection, processing<br />

and publication <strong>of</strong> the data; (iii) training <strong>of</strong> personnel by means <strong>of</strong> courses,<br />

fellowships or through technical publication and manuals; and (iv) The institutional<br />

strengthening <strong>of</strong> the meteorological and hydrological services <strong>of</strong> the<br />

area.<br />

At the beginning <strong>of</strong> the Project (1966) the conditions in the area varied widely<br />

from country to country. In the average the few river discharge measuring<br />

stations had short and sometimes unreliable data, the meteorological network<br />

was poorly distributed and bore no connection <strong>with</strong> the hydrological network, a<br />

defect that has been also reported in other <strong>of</strong> the papers under review; ra-<br />

diation, evaporation and rainfall intensity information was completely insuf-<br />

ficient, and --except for one or two countries-- no sediment or water quality<br />

measurements were made at all. A few capable technicians were available,<br />

but extensive training was a pressing need.<br />

The paper describes in some detail the steps taken by the Project, as result<br />

<strong>of</strong> which the present situation is quite satisfactory for developing conditions.<br />

Of particular interest for the subject <strong>of</strong> this meeting is the description <strong>of</strong> some<br />

methods proposed by the project for assessing hydrological characteristics<br />

<strong>with</strong> insufficient data.<br />

The use <strong>of</strong> the sediment rating curve, Figure 7 <strong>of</strong> the paper. has been used for<br />

computing sediment transportation. The remarks on the variation <strong>of</strong> the coe&<br />

ficient n <strong>of</strong> the equation C SA Qn <strong>with</strong> annual precipitation (G:sediment dis-<br />

charge, Q: Discharge; A, n coefficients) are <strong>of</strong> interest in aMlyZing scarce se-<br />

diment information. Figure 8 <strong>of</strong> the paper shows the results <strong>of</strong> some measure-<br />

ments made by the Project, indicating the effect <strong>of</strong> rainfall and vegetation cover<br />

in the sediment yield. The effect <strong>of</strong> the destruction <strong>of</strong> the vegetable cover by a<br />

volcanic eruption should be noticed as a quite particular case.<br />

Flood and rainfall envelopes (Figure 9 and 10 <strong>of</strong> the paper) have been used as<br />

a first estimate <strong>of</strong> maximum discharges and precipitation studies. Studies <strong>of</strong><br />

regionalized flood frequency analysis are now under way.<br />

Other achievements <strong>of</strong> the Project include etudies for determining evapotrans -<br />

piration and water requirements for irrigation, studies on run<strong>of</strong>f forecasting<br />

groundwater studies using a regional analog computer, etc.<br />

The report refers also to the problem <strong>of</strong> network implementation in areas <strong>with</strong><br />

access problems, and the use <strong>of</strong> prefabricated elements Éhould be noted<br />

(Figures 3 and 4 <strong>of</strong> the Report). Figures 5 and 6 shows the change in areal<br />

coverage as result <strong>of</strong> the action <strong>of</strong> the project. The successful use <strong>of</strong> modern<br />

mechanical methods for processing meteorological and hydrological information<br />

should encourage other developing countries in the use <strong>of</strong> these methods.<br />

The report concludes <strong>with</strong> a remark on the importance <strong>of</strong> adequate institu-<br />

tional support for these activities, which< imitia1Ly requi res the creation <strong>of</strong><br />

concern <strong>of</strong> the Governments on the importance <strong>of</strong> meteorology and hydrology.<br />

3


4<br />

Est i mat i ng <strong>Water</strong> Yiel ds<br />

Smith's9 paper presents an interesting example <strong>of</strong> estimating water yields<br />

using o<strong>nl</strong>y precipitation and temperature measurements.<br />

The basic water balance equation applied to a catchment area may by expressed<br />

as:<br />

P R+E+ AS<br />

P precipitation; R total basin outflow, E evapotranspiration and AS<br />

change in storage. For a long period AS becomes negligible, and making<br />

some transformations in equation (1) it is possible to rewrite it as:<br />

Thus, in the long term, the run<strong>of</strong>f oefficient C is governed by climatic consider-<br />

ations. ln 1967 Guisti and López$ proposed that the mean stream discharge<br />

could be determined as a function <strong>of</strong> the mean annual precipitation and the basin<br />

climatic index, BCI, defined as:<br />

where P: average monthly precipitation in centimeters and T: average monthly<br />

temperature in degrees centigrade. A relation between C and BCI based in 250<br />

catchments in the United States and Puerto Rico is shown in Figure 1 <strong>of</strong> the paper.<br />

The use <strong>of</strong> regional relations between BCI and P as those shown in Figure 2 <strong>of</strong><br />

the paper allows to derive C o<strong>nl</strong>y from precipitation data. The basic C versus<br />

BCI relationship was tested <strong>with</strong> satisfactory results as those shown in Figure 3<br />

<strong>of</strong> the paper.<br />

The basic relationships can also be used to appraise the effect <strong>of</strong> changes <strong>of</strong> the<br />

precipitation, If subscript 1 represents natural conditions and 2 represented<br />

augmented conditions (in the case <strong>of</strong> an increase in rainfall) then the gain in run<strong>of</strong>f<br />

can be written as:<br />

Where, PM L P2/Pi<br />

Jn table 1 the author compares the results <strong>of</strong> using this method <strong>with</strong> the results<br />

<strong>of</strong> ueing hydrologic simulation as reported by several investigators <strong>with</strong> good<br />

agreement..<br />

Using a reasonable amount <strong>of</strong> judgment it is possible to determine flow characteristics<br />

other than the mean. Figure 4 shows a comparison <strong>of</strong> calculated and<br />

observed annual run<strong>of</strong>f distributions for the Marias de Cygnes River, Kansas,<br />

USA. However, the limitation <strong>of</strong> this method, as clearly indicated in the text<br />

<strong>of</strong> the paper, should be considered before using it.<br />

estimation <strong>of</strong> monthly yields allocating them in proportion to their contribution<br />

to the BCI (a two month running average should be used due to tag problems).<br />

(1)<br />

This also applies to the


The use <strong>of</strong> the basic relation can also be extended <strong>with</strong> the help <strong>of</strong> certain flow<br />

and miscellaneous field measurements.<br />

The paper closes showing the application <strong>of</strong> the method for appraising the po-<br />

tential yield characteristics <strong>of</strong> coastal aquifers in southern Puerto Rico and<br />

presenting one example <strong>of</strong> the adjustments required when the natural conditions<br />

have been changed by man's activities.<br />

Application <strong>of</strong> Coutagne's and Turc's Formulas<br />

The paper by D'Oliveira and Mip~so6J applies Coutagne's and Turc formulas<br />

for the southern Mozambique rivers.<br />

Coutagne's general rule states:<br />

D-H-KH2<br />

D: Run<strong>of</strong>f deficit = H - E; H: Mean rainfall height; K! Coutagne's constant<br />

Also C = KH where C: Run<strong>of</strong>f Coefficient ; &<br />

H<br />

The most probable value <strong>of</strong> K is obtained by equating to zero the first derivative<br />

<strong>of</strong> E(C - KH)2, which results in:<br />

Turc's general rule can be expressed as:<br />

P.<br />

H<br />

/.z-g-<br />

Where L: Turc's constant = A t 25T t O. 05T3,<br />

P: Evaporation plus percolation looses ( run<strong>of</strong>f deficit), H: Precipitation,<br />

A: Constant; T: Mean temperature (In degrees centigrade)<br />

Turc applied his rule for 254 basins, using A 300, finding that in 53% <strong>of</strong> the<br />

cases the difference between the real and computed D was lees than 40 mm; in<br />

43% <strong>of</strong> the cases this difference was less than O. 1 <strong>of</strong> measured D and in 65% the<br />

difference was less than O. 2 measured D.<br />

The application <strong>of</strong> both formulas to seven basins was divided nto two groups; the<br />

Limpopo River group (Rainfall 450-650 nun; temperatures 18' C-20' C) and the<br />

Incomati, Sabie, Umbeluzi and Usoto Group (Rainfall 800 mm; temperatures<br />

higher than 20').<br />

Detailed results are presented, which can be sumarized as follows:<br />

5


6<br />

Limpopo area<br />

Elephants River<br />

Beit Bridge<br />

Trigo de Morais<br />

All group<br />

C ontanne' s Turc relation<br />

K A = 300<br />

Per cent <strong>of</strong> D -Dcalc<br />

greater than O. 1 Dcalc<br />

o. O00055<br />

O. 000031<br />

O. 000047<br />

o. 000050<br />

Incomati, Sabie. Umbeluzi and Usoto area<br />

Incomati River O. 0001 50<br />

Sabie River<br />

O. 000131<br />

Umbeluzi River<br />

O. 000145<br />

Usuto River<br />

O. 000162<br />

All group<br />

O. 000140<br />

-the use <strong>of</strong> Turc's relation <strong>with</strong> A 300 produces poor results, the authors<br />

present a nomograph (Figure 2 <strong>of</strong> the paper) to compute the value <strong>of</strong> A. Using<br />

these new values <strong>of</strong> the constants the difference between calculated and measured<br />

D is reduced to acceptables levels.<br />

Estimati on <strong>of</strong> Lvapotranspiration<br />

The paper by Kuzmin and Vershininu deals <strong>with</strong> the determination <strong>of</strong> evapora-<br />

tion in case <strong>of</strong> the absence or inadequacy <strong>of</strong> data.<br />

Since methods for direct evaporation measurements are still being developed,<br />

computations are the main source <strong>of</strong> information. These can be divided into<br />

three groups: (i) methods based in the physical analysis <strong>of</strong> the process, (ii)<br />

methods combining the physical analysis <strong>with</strong> semi-empirical constants deter -<br />

mined from actual evaporation in representative regions and (iii) purely statistical<br />

methods.<br />

The first group includes methods using heat balance equation. water balance<br />

equation and turbulent diffusion. In the USSR equation (1) which has been<br />

deduced from the simplified equation <strong>of</strong> the heat balance <strong>of</strong> the land surface <strong>with</strong><br />

the account <strong>of</strong> Bowen ratio is widely applied.<br />

where: E: Evapotranspiration, R is the measured value <strong>of</strong> the radiation balance<br />

<strong>of</strong> the surface, B is the heat income into the soil, L is the latent heat <strong>of</strong> evapor-<br />

ation, Cp is the heat capacity under constant pressure, H is the atmospheric<br />

pressure, t and e are respectively the differences in temperature and water<br />

pressure measured at two levels above the ground.<br />

Equation (1) should rather belong to the second group than to the first one, since<br />

it does not represent all physical factors that affect the phenomena.<br />

Full water balance is not applied in the practice but in the case <strong>of</strong> deep water<br />

table. in this case, the fobwing equation is used in the USSR for estimating-<br />

evapotranspiration from non-irrigated fields;<br />

64%<br />

16%


E = X +(W1 . W2) (2)<br />

X: Precipitation; W1 and W2 are the moieture storage in soil at the beginning<br />

and at the end <strong>of</strong> the design period. Some conditions for using this relation<br />

are indicated by the author. Another partial solution <strong>of</strong> water balance equation<br />

is the estimation <strong>of</strong> mean annual sums <strong>of</strong> evapotranspiration as the dif -<br />

ference between precipitation and run<strong>of</strong>f. After indicating the possibilities <strong>of</strong><br />

methods based on turbulent diffusion problems in deriving a universal equation<br />

are also stated. Therefore, the convenience <strong>of</strong> equations using non-specialized<br />

observations is evident. One <strong>of</strong> these for regions - <strong>of</strong> natural moistening is due<br />

to Budyko:<br />

-Ro XL<br />

;h Ro (cm year-1 ) (3)<br />

4<br />

equation (3) includes o<strong>nl</strong>y one observational parameter, X: long term average<br />

precipitation (cm/year) R o is the average annual radiation balan e <strong>of</strong> the undey<br />

lying surface which can be obtained from the m ap <strong>of</strong> Referenced. L is the<br />

latent heat <strong>of</strong> evaporation, A method for distributing the mean annual sums<br />

estimated from equation (3) is explained by the ,authors.<br />

Monthly evapotranspiration from irrigated fields are estimated <strong>with</strong> the help<br />

<strong>of</strong> simplified heat balance equations. The standard error is about 15% when<br />

special observations are available or about 30% <strong>with</strong> standard observations.<br />

The use <strong>of</strong> em+ical relations similar to that <strong>of</strong> Blaney and Criddle can be<br />

used o<strong>nl</strong>y if the empirical coefficients are tested and corrected for each point<br />

<strong>of</strong> their application.<br />

The most simple equations allowing the estimation <strong>of</strong> evaporation from water,<br />

snow and ice surfaces by means <strong>of</strong> standard observational data, are the<br />

following binomial and monomial equations:<br />

and<br />

E (a t ab&) (es - e2)<br />

E = A U2 (es - e2)<br />

being: E; evaporation -/day; U, wind speed at the height z above the surface<br />

in misec; es and e2 are the maximum water vapor pressure estimated<br />

from surface temperature and water pressure at 2 meters in mb; A, a and b<br />

are experimental constants. For estimating evaporation from snow the values<br />

<strong>of</strong> a -0.18 ab=O. 098 z=lOm should be used in equation (8). For lake evaporation<br />

a=O. 14 b=O. 72 and 9m should be used in equation (8). Other cases are also<br />

discussed in the paper.<br />

RESERVOIR SEDIMENTATION<br />

The paper by Karaushev and Bogeliubevag presents a method for estimating<br />

reservoir sedimentation based on the equation <strong>of</strong> sediment balance as applied to<br />

the whole reservoir or its parts.<br />

The inflow <strong>of</strong> sediments is computed by observational data or by indirect<br />

methods. The outflow <strong>of</strong> sediments is computed based in hydraulic and sediment<br />

characteristics. The determination <strong>of</strong> sedimentation during one year is<br />

reduced to estimating tha portion <strong>of</strong> the sediment inflow that is accumulated in<br />

the reservoir.<br />

7


8<br />

Equation (1) <strong>of</strong> the paper shows the computation <strong>of</strong> sedimentation for any si ze<br />

fraction in a design interval:<br />

m -6<br />

Paj = Z Pi in j - Qter j A tj 10 ils si terj (1)<br />

is1<br />

P aj is the amount <strong>of</strong> sediments <strong>of</strong> all size fractions trapped by the reservoir<br />

during k tj; Pi in j is the inflow <strong>of</strong> sediment for each i-th fraction; Q ter j is<br />

the mean water outflow (m3/s) and Si ter j is the mean turbidity (concentration)<br />

for the time 4 tj and for the i-th fraction <strong>of</strong> size. Equation (2) to (9) are used<br />

for computing si ter j and are based in hydrod namic considerations and the<br />

reservoir characteristics such as length and depth. The amount <strong>of</strong> bed load in<br />

the reservoir is computed by equation (10):<br />

Pa bed j = lom3 (R bed in j - R bed ter j) A tj (1 0)<br />

Pa bed j is the weight <strong>of</strong> bed load in the reservoir (Tons), R bed in j and R bed<br />

ter ' indicate bed load discharge at the initial and terminal discharge sites<br />

(Kgjsec), A tj is the time interval, Bed load, R bed, is computed <strong>with</strong> Shamovls<br />

equation (equations 11 to 14 the text).<br />

The annual accumulation <strong>of</strong> all sediment fractions for the first year <strong>of</strong> reser-<br />

voir operation is obtained by adding the suspended and bed sediments as indicated<br />

in equation (15) <strong>of</strong> the paper. The value Pai (tons) so obtained is transformed<br />

into volumetric units Wai:<br />

- Ys is the specific weight <strong>of</strong> the sediment (T/m3). After the first<br />

duced volume W Wa is used for the computations <strong>of</strong> next year.<br />

For the computation <strong>of</strong> the chronological variations <strong>of</strong> sedimentation the Shamov<br />

method is recommended:<br />

Where Wat is the sediment volume in t years; Wal is the sedimentation volume<br />

during the first year, computed as explained before, W a ext is the extreme<br />

volume <strong>of</strong> sediments in the reservoir, approximately computed by:<br />

Where W is the initial volume <strong>of</strong> the reservoir, Ur is the area <strong>of</strong> river cross<br />

section when discharge is close to maximum and up is the maximum cross<br />

section area <strong>of</strong> the upper pool near the dam.<br />

Surface <strong>Water</strong> Utilization in Arid and Semi Arid Zones. - The paper by Dalinskyly<br />

shows *e experience <strong>of</strong> Tahal-<strong>Water</strong> Planning for Israel Ltd. in various methods<br />

<strong>of</strong> analyzing stream flows. For planning <strong>of</strong> utilization the following information<br />

is required: (a) the average volume <strong>of</strong> annual flows (P.ave),. representing the<br />

stream water resources potential; the average annual feasible utilizable flows<br />

is a portion <strong>of</strong> this value; (b) the stream's flow regime including flood frequency;<br />

(c) the stream variability <strong>with</strong>in a season, a year, or from one year to another.


For determining the annual flood return periods the author proposes the use <strong>of</strong><br />

the well known T = formula; for longer return periods the estimates <strong>of</strong><br />

m<br />

order <strong>of</strong> magnitude <strong>of</strong> annual flows for longer return periods can be obtained<br />

by extrapolation on probability paper.<br />

The next section deals <strong>with</strong> the well known flow-durati on curves,<br />

The concept <strong>of</strong> Ilhorizontal cut" <strong>of</strong> the stream hydrograph is useful in the case<br />

<strong>of</strong> a diversion <strong>of</strong> a stream, as indicated in sketchs 2 and 3 <strong>of</strong> the paper. The<br />

"horizontal cut1' can be expressed mathematically as:<br />

Qd = Qi when<br />

Qd (ad) max when<br />

mix<br />

Qi 3 Qd) m ax<br />

Where: Q: atreamflow discharge<br />

Qd diverted discharge<br />

(Qd) max: maximum diverted discharge<br />

... (2)<br />

For a period <strong>of</strong> n years, a series <strong>of</strong> n annual diverted volumes can be obtained<br />

and the average diverte&annual flow (va) can be calculated for each value <strong>of</strong><br />

(Qd) max. The funtion Ud = f (ad) max has the form indicat& in sketch 4.<br />

Three zones can be distinguished in this curve; in zone I Ud is<br />

'mmax<br />

relatively large and almost constant; in zone II the derivative decrease quickly<br />

as (Qd) max increases; in zone III the derivative trends to eeru, when (Qd)max+ Q<br />

Most <strong>of</strong> diversions will be economically justified in_zone i, and unfeasible in<br />

Zone IU. Formula (3) can be used for calculating Ud from the flow-duration<br />

curve.<br />

Adjustments for baseflows or minimum diverted discharges can be made easily<br />

changing the origin <strong>of</strong> coordinates.<br />

When there are limitations to the diversion <strong>of</strong> baseflow discharges, a "double<br />

cuttt is required as indicated in sketch 5. This case will arise when baseflow<br />

is undesirable due to high salinity or other reasons for diversion. A maximum<br />

desirabledischarge is determined generally by sedimentation conditions. The<br />

value <strong>of</strong> UA, average diverted flow can be computed as:<br />

where ÜB is established by means <strong>of</strong> a horizontal cut and E by means <strong>of</strong> a<br />

vertical cut. Funtions Ug and Uc can be easily calculatfi by computer, An<br />

example is shown in Fig. 2, App A. Using equation (5) UG can be calculated<br />

from the flow-duration curve <strong>with</strong>out use <strong>of</strong> a computer.<br />

Another uae <strong>of</strong> the vertical cut is presented for planning <strong>of</strong> diversiom<strong>with</strong> limitations<br />

<strong>of</strong> maximum discharges due to sedimentation:<br />

Qd m Q<br />

for Q 4 Qdmax Qd = O for Q > IQdmax l<br />

The resulting discharge curve is combined <strong>with</strong> the sediment concentration<br />

flow discharge curve shown in Figure 4, App. A for computing the sediment<br />

transport as detailed in App. B. <strong>of</strong> the paper.<br />

9


10<br />

Next section deals <strong>with</strong> the determination <strong>of</strong> annual storable flows as a .function<br />

<strong>of</strong> reservoir capacity. Assuming that losses during the rainy season can be<br />

neglected, the following equation applies:<br />

- UR: is the n years' averageannual amount <strong>of</strong> water stored in the reservoir<br />

(Net average capacity'RN)<br />

UR)^ is the amount <strong>of</strong> water stored in the i th year;<br />

UR)i Ui when Ui 4 RN<br />

Iud.<br />

i: (RN)i when Ui P (RN)i<br />

Ui: is the annual streamflow<br />

(Rn)i represents the net reservoir capacity in the ith year<br />

Limitations <strong>of</strong> these relations arc indicated in the text (Neglecting losses, etc. )<br />

Relations between K a n d the reservoir efficiencyhs function <strong>of</strong> average<br />

Uave<br />

net reservoir capacity are shown schematically in sketch 6. (The meaning <strong>of</strong><br />

the three zones is the same as in sketch 4). This analysis is important for<br />

preliminary estimates and/or feasibility calculations. Recent investigations<br />

reported in the paper prove that these relations can be approximately estimated<br />

on a regional basis using as a parameter the dimensio<strong>nl</strong>ess standard deviatio-<br />

Formulae for computing RN and RN. based in the decrease <strong>of</strong> the capacity <strong>of</strong><br />

the reservoir due to sedimentation are given in other section <strong>of</strong> the paper. The<br />

paper concludes recommending hydrological investigations to find, on a regional<br />

basis,parameters allowing to represent the main functions discus sed in the<br />

article.<br />

ASSESSING mROLOCICAL CHARACTERISTICS IN DATA -SCARCE AREAS<br />

Estimating flow regime when no data are available. - The first problem <strong>with</strong><br />

which the hydrologist has to deal in data-scarce areas consists <strong>of</strong> obtaining<br />

the hydrological characteristics <strong>of</strong> the region. First <strong>of</strong> all, the average discharge<br />

has to be estimated. For this, a wide variation <strong>of</strong> methods can be used<br />

depending in the availability <strong>of</strong> information<br />

The worst case consists in a complete lack <strong>of</strong> information Here the estimates<br />

should be based in observations in similar gauged zones. The estimations made<br />

for Asejire Project seem to belong to this case. However, even in this extreme<br />

case, the scarce available information should not be neglected. Topography,<br />

altitude, shape, orientation, geology and ve@aHecover <strong>of</strong> the basin are easily<br />

obtained and should be always used.<br />

The most elementary equation is the surface relation:<br />

A<br />

Q=- Qb<br />

Ab<br />

where: Q : Flow at the site under study; Qb : Flow at a base station; A: Surface<br />

<strong>of</strong> the basin under study and Ab: Surface <strong>of</strong> the basin <strong>of</strong> the base station.<br />

This equation, ii obviaidya wrypoor representation <strong>of</strong> the +noniena, and sbculd be used


o<strong>nl</strong>y for gross estimates.<br />

When precipitation data is available,this mdhod can be improved by introducing the<br />

precipitation data for the basin under study. (P) and for the basin <strong>of</strong> the -base<br />

station (Pb). The relation in this case is:<br />

A P<br />

Q a-<br />

A b pb Q b (b)<br />

If the yield <strong>of</strong> the basin is defined as K e 2, equation (b) becomes:<br />

PA<br />

Q-KbPA (4<br />

A variation <strong>of</strong> this method, used sucessfully in Chile and Central America" J<br />

consists 8f analyzing the variation <strong>of</strong> K <strong>with</strong> the basin conditions, topography,<br />

elevation, vegetation, geology, orientation, etc.. . Figure 1 shows an example<br />

<strong>of</strong> this method.<br />

Abiodun uses this method in his paper. No explanations, however, are given<br />

for the criteria in selecting K = O. 04 and for the use <strong>of</strong> a 1:50 years precipitation.<br />

This seems an exaggerately pesimistic estimation and should result<br />

in underestimation <strong>of</strong> the water resources. However, since as the paper explains<br />

that efforts are been made for e<strong>nl</strong>arging the scope <strong>of</strong> the hydrological investigations<br />

in Nigeria, it is hoped that soon it will be possible to revise these computations<br />

<strong>with</strong> more accurata methods.<br />

When the Economic Comission for Latin America decided to make a preliminary<br />

survey <strong>of</strong> the water resources in the Central American Isthmus, the UNbP/<br />

@Mo project prepared the maps <strong>of</strong> curves <strong>of</strong> run<strong>of</strong>f deficit shown in Figure 2,<br />

wnich allowed first estimates for ungauged areas. The trace <strong>of</strong> the curves<br />

should take into account the already mentioned physical factors.<br />

A further improvement consists <strong>of</strong> the introduction <strong>of</strong> climatic factors. such as<br />

temperature. Examples <strong>of</strong> these methods are those <strong>of</strong> Khosla, Langbein,<br />

Coutagne, Turc and the one propeed by Smith in his paper. Application <strong>of</strong><br />

these methods <strong>with</strong> universal constants produce, sometimes, large errors, so<br />

they should be limited to regional use, previously determining their constants<br />

in gauged areas <strong>of</strong> similar characteristics.<br />

in D'Olivieria's case, the use <strong>of</strong> Coutagne's rule <strong>with</strong> the original constants<br />

would hata introduced very large errors in the estimates. The same occures<br />

when A = 300 Le used in Turc's formula.<br />

As Smith shows in his pa er a good relation between precipitation and tempe-<br />

rature (or Flimatic indexf can be found in a Fegionalized basis. The reporter<br />

has added entra1 American values to Smiths relations for Puerto Rico and<br />

Kansas <strong>with</strong> good results (Figure 3). However, the Constants used in thesb<br />

rnethds elaould be verified-on a regional basis.<br />

A check has been made to all these methods using them to estimate the mean<br />

annual discharge (in mm) <strong>of</strong> eleven CentralAmerican streams <strong>of</strong> quite different<br />

conditions. The following methods have been used: Equations a. b and c,<br />

Coutagne, Turc and Smith, and the results are summarized in table i.<br />

11


12<br />

Table L - Comparison <strong>of</strong> the use <strong>of</strong> several methods for estimating mean annual<br />

run<strong>of</strong>f (mm) <strong>of</strong> Central American streams.<br />

Country Drainage Estimates <strong>of</strong> mean annual run<strong>of</strong>f Obserx<br />

and Basin ed<br />

Station sq Km. Eq.a Eq, b Eq, c Coutagne Turc Smith run<strong>of</strong>f<br />

Guatemala<br />

Candelaria<br />

Honduras<br />

Re. Pimienta<br />

El Salvador<br />

Bande ras<br />

San Marcos<br />

Nicaragua<br />

Dar $0<br />

Tamarindo<br />

Costa Rica<br />

Cachi<br />

El Humo<br />

Palmar<br />

Panamá<br />

David<br />

Majk<br />

849. 5<br />

883.8<br />

432.8<br />

180. O<br />

91 5<br />

165<br />

904.1<br />

135<br />

486 3<br />

1392<br />

321 8<br />

470<br />

720<br />

89 0<br />

560<br />

160<br />

280<br />

2280<br />

26 50<br />

1590<br />

1970<br />

1370<br />

480 550<br />

720 750<br />

840 800<br />

590 620<br />

160 200<br />

250 480<br />

2000 2160<br />

5700 6000<br />

2300 2350<br />

2150 2200<br />

1520 1550<br />

1550<br />

540<br />

7 50<br />

81 O<br />

50<br />

340<br />

21 O0<br />

(6 500)<br />

2270<br />

2880<br />

880<br />

1830 1190 440<br />

1250 320 740<br />

1500 660 500<br />

1500 1000 590<br />

670 50 110<br />

1040 230 500<br />

2250 1700 2000<br />

(5240) (6100) 6270<br />

2420 1800 1970<br />

2620 2150 2650<br />

1670 800 1560<br />

Average<br />

error ‘já 35 21 15 40 39 60<br />

( ) Extrapolations.<br />

Equation (c) gives the best results, followed by the simple areal relation corrected<br />

for taking into account the change in precipitation (Equation b). However, these<br />

are the results for a particular area, Central America, and there is no assurance<br />

that similar results should apply to other regions <strong>of</strong> the world. The best advice<br />

could be to try several <strong>of</strong> these methods and check as soon as possible the results<br />

<strong>with</strong> measurements at the site under study.<br />

Extending short or incomplete records, - The most commo<strong>nl</strong>y used method for<br />

extending short or incomplete records is to correlate the records <strong>of</strong> the station<br />

<strong>with</strong> the records <strong>of</strong> a station <strong>with</strong> longer records. The correlation can be done<br />

<strong>with</strong> mean annual, mean monthly, mean daily or instantaneous discharges: the<br />

quality <strong>of</strong> the correlation decreasing in this order. For daily or instantaneous<br />

dischargestlag effects have to be taken into account. in larger basins --as in<br />

the case reported by Abiodun-- lag effects apply also to monthly discharges.<br />

The quality <strong>of</strong> the correlation can be determined easily by means <strong>of</strong> simple<br />

statistical tests. This quality depende on the physical and meteorological<br />

characteristics <strong>of</strong> the basins being compared. in general, correiations between<br />

two stations nearly located over the same river give good results. The fol1 w-<br />

ing results should be expected when the basins <strong>of</strong> Figure 4 are comparedld:


Basins compared Quality <strong>of</strong> correlation<br />

1 and 2<br />

2 and 3<br />

3 and 4<br />

2 and 5<br />

4 and 6<br />

5 and 6<br />

Good : Basins <strong>of</strong> similar form,<br />

size and orientat i on .<br />

Fair : The orientation <strong>of</strong> the<br />

valley is different.<br />

Poor: Different altitude and<br />

orientation.<br />

Fair : Same form but different<br />

a It it ude.<br />

Poor : Different characteristics<br />

Poor : Different orientation and<br />

altitude.<br />

When no hydrometric information is available, correlation can be tried <strong>with</strong><br />

longer precipitation series.<br />

A long time average can be obtained assuming a constant yield <strong>of</strong> the basin, or:<br />

In this case, long (n year) precipitation records are available, Pt and Qt are<br />

the rainfall and discharge averages over the t years for which discharge data<br />

are available. This method, after checking that Pn = P was used by Quintela<br />

in his paper. However, an interesting verification in that case would had been<br />

correlating the seven year's records <strong>with</strong> the South African station<br />

Studies made in Chile and in the Central American Isthmus show that the results<br />

<strong>of</strong> correlation studies are far more reliable than the methods explained<br />

in the preceeding section. However, extreme caution has to be exercised when<br />

records are too short, carefully avoiding to be too influenced by some statistical<br />

indicators. In this case comparison <strong>with</strong> other methods is an useful auxiliary<br />

tool. Complete verification <strong>of</strong> the base information should be the starting point<br />

<strong>of</strong> any extension <strong>of</strong> hydrological records.<br />

Estimating evaporation and evapotranspiration. - The estimation <strong>of</strong> evaporation<br />

and evapotranspiration has several important implications in hydrological<br />

studies, such as computations <strong>of</strong> reservoir evaporation, water balances and <strong>of</strong><br />

requirements for agriculture.<br />

Direct measurements are difficult; the U. S. Weather Bureau type A pan, the<br />

mQst frequently used instrument in developing countri es, is not always correctly<br />

read and the relation from pan to lake evaporation remains in doubt . The<br />

development <strong>of</strong> a simple formula for computing potential evaporation, is therefore<br />

<strong>of</strong> great importance.<br />

Kuzmin and Vershinin give an excellent summary <strong>of</strong> formulas used in the USSR..<br />

For data-scarce areas, however, formulas based in the physical interpretation<br />

<strong>of</strong> tFe fenomena are quite difficult to apply. Equations (2) and (3) are certai<strong>nl</strong>y<br />

promising and it would be interesting to have more details on them Binomial<br />

formulas are widely used. Equation (9) lightly different coefficients has<br />

been used in Chile and in Central America wit&<br />

<strong>with</strong> unsatisfactory results.<br />

13


14<br />

Equation (9), as reported by Kuemin and Vershinin, ly been compared <strong>with</strong><br />

Blaney -Griddle, Penman, Hargreaves -Christiansen and Meyer formulas<br />

for five locations in the Central American I sthmus <strong>with</strong> the following results:<br />

Table II<br />

Evaporation computed <strong>with</strong> several formulas<br />

Station Madden San José Chorrera Guija G ua t emala<br />

Panamá Costa El El Guatemala Average<br />

Formula Rica Salvador Salvador<br />

USSR, Binomial<br />

lake evaporation 79 8 488 1293 1133 765 89 5<br />

Blaney-Criddle 2062 1749 2041 1910 1647 1882<br />

Penman 1328 1077 1345 1530 1350 1326<br />

Hargreaves-<br />

Christians en 1400 1 O00 1340 1280 1070 1218<br />

Meyer 1394 1227 2147 1577 1628 1594<br />

Potential<br />

Evaporation<br />

(Measured in<br />

pan x O. 77) 1020 1145 1760 1460 1050 1287<br />

in average, the best agreement ie reached Penman formula. However, as the<br />

Hargreaves-Chrintiansen equation was a plied using o<strong>nl</strong>y temperature, humidity<br />

and precipitation (wind was estimated7 it provides a simple alternative, Blaney-<br />

Criddle and Meyer (a simple binomial formula) give excessive values. The USSR<br />

binomial formula gives very low values, which is probably due to the obvious<br />

differences in climate <strong>with</strong> respect to the conditions from which the formula was<br />

de rived.<br />

Sediment studies. - Three <strong>of</strong> the papers show examples <strong>of</strong> sediment determinations,<br />

which quite frequently have to be made <strong>with</strong> insufficient information,<br />

The first problem refers to estimating sediment yields from streams <strong>with</strong>out<br />

sediment measurements. Figure 8 <strong>of</strong> the paper on the Central American Hydro<br />

meteorological Project shows the wide variation, <strong>with</strong>in a regiun, <strong>of</strong> sediment<br />

yields. Thus, determining sediment transportation loads <strong>with</strong>out field measur -<br />

menta is quite unreliable. Hydrologic and hydraulic information from the<br />

gauging stations "somehow improves these estimates. However, very simple sq<br />

diment measurements allow a relatively acc rat estimate <strong>of</strong> suspended sediment<br />

loads. A good correlation has been found18)1 between the concentration <strong>of</strong> a<br />

sample taken <strong>with</strong> a bottle by U n d <strong>of</strong> unskilled obskrvers and the mean concen-<br />

tration obtained <strong>with</strong> conventional sampling.<br />

The sediment rating curves (two examples presented in the papers) allow to<br />

compute the total suspended load in a quite simple form, The points <strong>of</strong> the curve<br />

relating the solid and liquid discharges have a large dispersion (due to errors


in measurements, differences in the raising and decreasing stages <strong>of</strong> a flood,<br />

variations in the availability <strong>of</strong> sediment supply, etc. ), but its mean trend has<br />

been found to be relatively stable, which allows estimates <strong>of</strong> suspended loads<br />

<strong>with</strong> series <strong>of</strong> observations as short as one year.<br />

Determination <strong>of</strong> bed load presents just the opposite problem. Direct measurements<br />

are difficult and provide in most <strong>of</strong> the cases non-meaningful results.<br />

Use <strong>of</strong> well-known formulas is thus encouraged, in spite <strong>of</strong> the fact that they<br />

give enormous differences. Therefore, the use <strong>of</strong> several methods is suggested<br />

including, if possible, methods, such as modified Einstein, which use the available<br />

suspended sediment measurements. It is also quite useful to observe the<br />

'!critical discharge", i. e. discharge at which the bed movement starts, which<br />

in some cases can be determined by detection. <strong>of</strong> stone noise by the stream<br />

gaugers.<br />

Karaushev and Bogeliuva's paper deals <strong>with</strong> the important problem <strong>of</strong> predicting<br />

the chronology <strong>of</strong> the filling <strong>of</strong> a dam, and esents a new interesting approach<br />

to the problem also studied by Brow<strong>nl</strong>v. However, the main difficulty<br />

as seen by this reporter, is the estimation <strong>of</strong> "in situ" specific weight <strong>of</strong> the<br />

settled suspended sediment.<br />

very fine its settlement is very slow and subject to relatively complicate laws.<br />

For this the formula <strong>of</strong> Reference 14/ can be used:<br />

yT : -k k( T-l T Log T - 1 )<br />

15<br />

The problem here is that when the sediment is<br />

k is a constant depending on the size and mechanical distribution <strong>of</strong> the material;<br />

YT the specific weight after T years and y1 the s ecific weight <strong>of</strong> the sediment<br />

("in situ") after one year <strong>of</strong> settling. Referencelggives values <strong>of</strong> k and Y<br />

but to the reporteis knowledge, no check <strong>of</strong> these values have been made for<br />

1,<br />

most <strong>of</strong> the world. These "in situ" determinations are difficult, since it is<br />

practically impossible to obtain indisturbed samples <strong>of</strong> submerged clay or lime.<br />

The use <strong>of</strong> y Ray diffusion probes can be usefull, but they require careful<br />

laboratory calibrations and expensive equipment.<br />

<strong>Water</strong> <strong>Resources</strong> Studies. - Dalinsky's paper present an interesting and simple<br />

method for preliminary studies <strong>of</strong> water resources projects, and should be con-<br />

sidered a preliminary approach to those exposed in other sections <strong>of</strong> this Sym-<br />

posium.<br />

CONCLUSIONS<br />

Assessing hydrological characteristics in data-scarce areas is indeed a difficult<br />

problem The difficulties in the studies increase inversely <strong>with</strong> the amount <strong>of</strong><br />

information. available, not because <strong>of</strong> the intrins ic mathematical and operational<br />

problems, but because extremely good judgement is required. Unfortunately<br />

good hydrological judgement depends on the knowledge <strong>of</strong> the meteorological,<br />

physical and hydrological characteristics <strong>of</strong> the region under study.<br />

Several excellent examples have been shown <strong>of</strong> what can be done <strong>with</strong> scarce<br />

information, but the possibilities <strong>of</strong> big mistakes appeared also evident. These<br />

can be avoided either <strong>with</strong> excellent judgement or <strong>with</strong> the help <strong>of</strong> a few, but<br />

adequate data. These data do not need to be long term series or sophisticated<br />

measurements, thus can be collected at a relatively low cost. This cost represents<br />

o<strong>nl</strong>y a small fraction <strong>of</strong> the eventual overexpenditures or losses from<br />

poorly designed schemes.


16<br />

The ideal, obviously, would be to undertake in each data-scarce area a com-<br />

prehensive meteorological and hydrological survey, as the U DP/WMO projects<br />

in several parts <strong>of</strong> the world. Evaluation <strong>of</strong> these projectslg allows to show<br />

several concrete examples where a small investment in these basic surveys has<br />

resulted in economic benefits several times larger than the expenditures in me-<br />

teorology and hydrology.<br />

REFERENCES<br />

Quintela Gois, C. - Some Criteria Used in Hydrologic Studies <strong>with</strong> <strong>Inadequate</strong><br />

Data. Symposium on the <strong>Design</strong> <strong>of</strong> <strong>Water</strong> <strong>Resources</strong> <strong>Projects</strong><br />

<strong>with</strong> <strong>Inadequate</strong> Data. Madrid 1973.<br />

Abiodun, A. A. - <strong>Water</strong> <strong>Resources</strong> <strong>Projects</strong> in Nigeria and the Hydrological<br />

Data Employed in their Planning and Development. Symposium on the<br />

<strong>Design</strong> <strong>of</strong> <strong>Water</strong> <strong>Resources</strong> <strong>Projects</strong> <strong>with</strong> <strong>Inadequate</strong> Data. Madrid 1973.<br />

Basso, E., Arriagada, A., Neira H. and Pérez Delgado, M. - An Example<br />

<strong>of</strong> Co-operation for Improving the Hydrological and Meteorological Information.<br />

Symposium on the <strong>Design</strong> <strong>of</strong> <strong>Water</strong> <strong>Resources</strong> <strong>Projects</strong> <strong>with</strong> <strong>Inadequate</strong><br />

Data. Madrid 1973.<br />

Smith, R. - Utilizing Climatic Data to appraise Potential <strong>Water</strong> Yields.<br />

Simposium on the <strong>Design</strong> <strong>of</strong> <strong>Water</strong> <strong>Resources</strong> <strong>Projects</strong> <strong>with</strong> <strong>Inadequate</strong><br />

Data. Madrid 1973.<br />

Giusti, E. V. and López M. A. - Climate and streamflow <strong>of</strong> Puerto Rico,<br />

Caribbean Journal <strong>of</strong> Science, Vol. 7, pp 87-93, 1967.<br />

D'Oliveira Martens, E. E. and Mimoso Loureira, J. J. - Application <strong>of</strong><br />

Coutagne's and Turc formulas to the Southern Mozambique rivers. Sym-<br />

posium on the <strong>Design</strong> <strong>of</strong> <strong>Water</strong> <strong>Resources</strong> <strong>Projects</strong> <strong>with</strong>-<strong>Inadequate</strong> Data.<br />

Madrid 1973.<br />

Kuzmin, P. P. and Vershinin, A. P. - Determination <strong>of</strong> Evaporation in<br />

case <strong>of</strong> the Absence or Inadequacy <strong>of</strong> Data. Symposium on the <strong>Design</strong><br />

<strong>of</strong> <strong>Water</strong> <strong>Resources</strong> <strong>Projects</strong>-<strong>with</strong> <strong>Inadequate</strong> Daia. Madrid 1973.<br />

Materialy Mezhduvedomstvennogo Sovetchchania PO probleme Izuchenia<br />

i Obosnovania Metodov Rasheta Isparenia s vodnoi Poverkhnosti i Suchi.<br />

(Materials <strong>of</strong> Interagency Meetings on the Problem <strong>of</strong> Study and Substantiation<br />

<strong>of</strong> Methods for the Computation <strong>of</strong> Evaporation from <strong>Water</strong> and<br />

Land Surfaces). Edited by CGI, Valdai 1966.<br />

Karaushev, A. V. and Bogeliulova L V. - Computation <strong>of</strong> Reservoir Sedi-<br />

mentation. Symposium on the <strong>Design</strong> <strong>of</strong> <strong>Water</strong> <strong>Resources</strong> <strong>Projects</strong> <strong>with</strong><br />

<strong>Inadequate</strong> Data. Madrid 1973.<br />

Dalinsky, J S. - Methods <strong>of</strong> Analysing Defficient Discharge Data in Arid<br />

and Semi-arid zones for the <strong>Design</strong> <strong>of</strong> Surface <strong>Water</strong> Utilization Symposium<br />

on the <strong>Design</strong> <strong>of</strong> <strong>Water</strong> <strong>Resources</strong> <strong>Projects</strong> <strong>with</strong> <strong>Inadequate</strong> Data.<br />

Madrid 1973.<br />

Central American Hydrometeorological Pro.iect. - Manual de Instrucciones:<br />

Estudios Hidrológicos (Manual <strong>of</strong> Instructions: Hydrological -<br />

Studies)<br />

Publicación No, 70, San José, Costa Rica 1972.


Central American Hydrometeorological Proiect. - Medida de la Evaporación<br />

(Measurement <strong>of</strong> Evaporation) Publicación No. 19, San José, Costa<br />

Rica,. 19 68.<br />

Brown, C. B. - Discussion <strong>of</strong> "Sedimentation in Reservoirs" by B. J.<br />

Witzig" transactions ASCE Vol. 109, 1944, pp 1080-1086.<br />

Office <strong>of</strong> Indian Affairs, Bureau <strong>of</strong> Reclamation, Tennessee VaBey Authority<br />

Corps <strong>of</strong> Engineers, Geological Survey, Department <strong>of</strong> Agriculture and<br />

Iowa institute <strong>of</strong> Hydraulic Research. - A Study <strong>of</strong> Methods Used in Measurment<br />

and Analysis <strong>of</strong> Sediment Loads in Streams. Report 9 "Density <strong>of</strong><br />

Sediments Deposited in Reservoirs", St. PBul District Sub-Office, Corps<br />

<strong>of</strong> Engineers, Hydraulic Laboratory University <strong>of</strong> Iowa, Iowa City, Iowa<br />

194.<br />

Central American Hydrometeorological Project. - Estimación Preliminar<br />

del Balance de Aguas en el Istmo Centroamericano (Preliminary estimat-<br />

ion <strong>of</strong> the water Balance in the Central American Isthmus) Pubiicación<br />

No. 18, San José, Costa Rica 1968.<br />

World Meteorological Organization. - Twenty Years <strong>of</strong> WMO Assistance.<br />

WMO-No. 338, Geneva, Switzerland 1972.<br />

Central American Hydrometeorological Project. - Deficiendas de Agua<br />

en Centro América B Panamá (<strong>Water</strong> Defficiencies in Central America<br />

and Panad) Repodprepared by G. Hargreaves as a consultant to the<br />

Central American Hydrometeorological Project. Publication No. 88,<br />

Managua, Nicaragua, 1973.<br />

Central American Hydrometeorological Project. - Empleo de la Muestra<br />

Puntual para la Determinación del Sedimento en Suspensión (Use <strong>of</strong> the<br />

Puricbial Sample for the determination <strong>of</strong> Suspended Sediment) Publica -<br />

ciÓn No. 1, San José, Costa Rica, 1967.<br />

Central American Hydrometeorological Project. - Manuel de Instruccio-<br />

nes: Hidrometría (Manual <strong>of</strong> Instructions: Hydrometry) Publicación No.<br />

47, Segunda Edición, San José, Costa Rica, 1972.<br />

17


18<br />

Figure 1. -<br />

Method for estimating<br />

hydrologic yield <strong>of</strong><br />

u ngauged areas<br />

(From Reference lu)<br />

Figure 4. -<br />

Basins used for<br />

checking results <strong>of</strong><br />

correlation<br />

(From Reference ,l#


x<br />

20<br />

300<br />

200<br />

Kansas<br />

L<br />

5u<br />

tra1 America<br />

1 I I<br />

1 O0 200 500<br />

P MEAN ANNUAL PRECIPITATION CENTIMETERS<br />

Figure 3. - Central American Values plotted into Smith's BCI f(P)


ABSTRACT<br />

WATER RESOURCES PROJECTS IN NIGERIA AND<br />

THE HYDROLOGICAL DATA EMPLOYED IN THEIR<br />

PLANNING AND DEVELOPMENT<br />

Adigun Ade Abioduna<br />

The need for adequate water supply to meet the demands <strong>of</strong><br />

Nigeria's growing population is well known. However, the technical<br />

adviser is seriously handicapped in his planning efforts by the<br />

lack <strong>of</strong> sufficient information. As a result, different kinds <strong>of</strong><br />

data and different levels <strong>of</strong> efficiency have been employed by the<br />

various agencies which have planned the existing major water related<br />

projects un Nigeria. This investigation shows and intensity <strong>of</strong><br />

rainfalls and the attendant floods, small scale project modelling,<br />

projections based on hydrologic data from other but climatologically<br />

similar places, provision <strong>of</strong> missing data by statistical correlation,<br />

and intensive surveys over short periods to obtain rapid and exten-<br />

sive information. These schemes have been reviewed and the hydrologic<br />

information employed in designing them has been appraised. This study<br />

also shows that Nigeria must intensify her efforts to provide exten-<br />

sive basic data on her surface and groundwater resources if costly<br />

mistakes are to be avoided in the future. A case is also made for the<br />

use <strong>of</strong> new techniques such as Remote Sensing for rapid identification<br />

and appraisal <strong>of</strong> these resources.<br />

RES UME<br />

On sait quels sont les besoins du Nigbria pour un approvision-<br />

nement en eau capable de satisfaire les demandes de sa population<br />

croissante. Or il se trouve que le conseiller technique y est sérieu-<br />

sement handicapé, dans son effort de planification, par l'insuffi-<br />

sance de l'information. Les diverses agences qui sont chargées, au<br />

Nigeria, des grands projets d'aménagement des eaux, doivent utiliser<br />

des données disparates ayant des niveaux d'efficacité différents.<br />

L'analyse des problèmes montre que l'gtude de ces projets doit faire<br />

appel -3 l'information locale sur la fréquence et l'intensité des<br />

pluies, et les crues qui en sont la conséquence (petits aménagements),-<br />

aux évaluations tirées des donnés hydrologiques recueillies dans de<br />

régions climatiques semblables, -à l'utilisation des corrélations<br />

pour boucher les lacunes,- a l'observation intensive sur de courtes<br />

périodes pour étendre rapidement l'observation. Des efforts ont été<br />

faits dans ce sens, mais il reste que le Nigeria doit les intensifier<br />

pour rassembler une masse importante de données de bases sur les<br />

ressources en eaux de surfaces et en eaux souterraines, afin d'éviter<br />

dans l'avenir de coûteuses erreurs. On ne néglige pas non plus<br />

l'utilisation des techniques nouvelles, telles que la détection 'a<br />

distance, pour améliorer lainventaire de ces ressources.<br />

* Lecturer, Dept. <strong>of</strong> Agric. Engineering, University <strong>of</strong> Ife, Ile-Ife,<br />

Nigeria.


22<br />

1. IBTRODUCTIOH<br />

The developat <strong>of</strong> water reaiources miithin the pat deeade, in Nigeria,<br />

has concentrated moetly on the prorieion <strong>of</strong> adequate pipe-borne water for<br />

domeetic and institutional supplies. The trend, however, ia changiiig, and<br />

it is now realieed that water resource8 developent, a8 a ipa$Or economlo<br />

revolutionary tool, ihould Qiphaeise ita total harnesaing, control and<br />

utilization to provide in addition to watar supply, such other benefits 88<br />

hydro-power, irrigation water, flood control, water transportation into and<br />

from the hinterled, fish and wild-life, recreation and pollution abatarsient.<br />

The awaxenees <strong>of</strong> these needa has provoked riome dee Unking and has,<br />

in part, precipitated the putting together <strong>of</strong> the Färat ]81962-68) and the<br />

Second (1970-74) National Developent Plans. The objective <strong>of</strong> the latter,<br />

according to the National Economic Counail, being<br />

"the achievement and mainteamce <strong>of</strong> the highest poeaible rate<br />

<strong>of</strong> increase in the standard <strong>of</strong> living and the creation <strong>of</strong> the<br />

neceieary conditions to this end, inoluding public support<br />

and awareness <strong>of</strong> both the potaiti&le that exist and the sac-<br />

rificee that will be required."<br />

The implementation <strong>of</strong> the variow schemes coatained in them pl- have<br />

experienced sime hardship especially where technical man-power and information<br />

were needed. In many inatances, the technPlogist is <strong>of</strong>ten called upon to<br />

make far reaahing pr<strong>of</strong>essional deaisiona, and quite <strong>of</strong>ten, he ia seriouelg<br />

handicapped in hie $Lanning efforts by the lack <strong>of</strong> scientific information.<br />

This problem <strong>of</strong> planning dthout facta waa amply stated by Andu (1) about<br />

bore hole drilling (for water) in Yeatern Nigeria:<br />

"1 have emphasised the handicap due to ecantinesa <strong>of</strong> hydrolo-<br />

gical data; and eince the gigantia Five Year Developnent<br />

Programme cannot be held up becaune <strong>of</strong> this, the practice<br />

now is to confine drilling to areas <strong>with</strong> favourable geolo-<br />

gical formations. Time facbr has made any exploratory<br />

test drilling virtually impoaaible. The location <strong>of</strong> a bore<br />

hole wen in a geologically favourable area is chancy -<br />

and there ia no sufficient guarantee that water <strong>of</strong> adequate<br />

quantity ehall be etruck. It ie not uncomon to drill far<br />

deeper than expected where the exhibited geological patterme<br />

indieate otherwise...."


In order to achieve thd goals spelled out in the National Dwelopent<br />

Plane, expertise are <strong>of</strong>ten imported to analyae our local data or to use<br />

their "ingenuityn to generate needed scientific information on which our<br />

planning and development programmes could rely.<br />

rical data are either scanty, unreliable or absent, and the synthesized<br />

data can o<strong>nl</strong>y be 88 reliable as the historical but scanty data available.<br />

For many foreign experts, handling the problwie <strong>of</strong> the tropics is a new<br />

educational experience and most <strong>of</strong> these techniml consultants, who are<br />

<strong>of</strong>ten from temperate climates can o<strong>nl</strong>y draw on their bowledge and ewe-<br />

rience <strong>of</strong> their own temperate environment and adapt them to plan for the<br />

needs <strong>of</strong> the tropical zones.<br />

23<br />

More <strong>of</strong>ten than not, histo-<br />

Most <strong>of</strong> the existing water resources sehemes have been handled in the<br />

nanner enunciated above, and sane <strong>of</strong> these techniques can in some caees be<br />

referred to as "educated guesen work by the experts. Hence, this paper<br />

examinea, in closer details, a few <strong>of</strong> the existing water resources projecte<br />

in Higeria <strong>with</strong> a view to high-lighting the kinds <strong>of</strong> hydrologic data, analysis,<br />

and the different levels <strong>of</strong> efficiency that have characterized their planning<br />

and developeat. Such an evaluation should <strong>of</strong>fes some guide-lines for<br />

systematic planning in the future.<br />

2. HYDROLOGICAL DATA COLLECTION<br />

The hydrological data needed to effeat adequate study <strong>of</strong> water resou~.ces<br />

inolude data on precipitation, evaporation, stream-flou and groundwater.<br />

In Nigeria, the sole responsibility for collecting rainfall data<br />

reste on the Federal Meteorological Service (IPPS).<br />

over lux) rain gauging stations throughout the country, utilizing the<br />

recorded data Rom these statione for water resources planning would require<br />

further interpretation and analyeis. This is so because these stations<br />

uere not established in relation to river basins.<br />

Although M!CS maintains<br />

Furthermore, those co-<br />

llecting the rainfall data such as the local school teachers and looal post<br />

<strong>of</strong>fice personnel owe no allegiance to the WITS since the latter never rewards<br />

them in any way or form for their services. Hence, the accuracy and relia-<br />

bility <strong>of</strong> data collected under the aforeaentioned condition are <strong>of</strong>ten in<br />

grave doubt.<br />

The measurement <strong>of</strong> evaporation data acroas the nation is also done by<br />

the employing some 68 clans A evaporation pans in an area almost 590,000<br />

square kilometres. In additiop, there are three lysimeter statione in Nigeria<br />

- two at Ibadan and one in Zaria. Although reservoirs are being built on 8<br />

continuing baais, and evaporation acrose the land v miw between 102 to 204<br />

eentimetrea a year, the impact <strong>of</strong> evaporation on the yields <strong>of</strong> these reservoirs<br />

is probably still not fully realised.


24<br />

Stream flow data are collected by auch ageucies as the IpLand <strong>Water</strong>ways<br />

Department (IWD) and the Ministries <strong>of</strong> Work. The former maintains over 100<br />

gauging stations along the major rivers <strong>of</strong> Higeria for the expresseu purpose<br />

<strong>of</strong> recardiiig stage heights which are used to determine navigable waterways.<br />

The Ministries <strong>of</strong> Work on the other hand are mom interested in potential<br />

areas for the location <strong>of</strong> highway bridges, hence, most <strong>of</strong> their hydrological<br />

stations are non-self recording. The unavailability <strong>of</strong> diacharge measurements<br />

or proper rating curves that could be used to interprete the recorded<br />

stage heights has rendered most <strong>of</strong> the date available unworkable.<br />

In the<br />

Northern States, where there were ZIO reel hydrological net-rrodf until after<br />

1960, most <strong>of</strong> the rivers are non-perennial and shifting; the latter situatinn<br />

makes it mandatory to provide more than one ratirig curve per Station per<br />

seaBon thus rendering most <strong>of</strong> the available record difficult to interprete.<br />

The Geological Survey <strong>of</strong> Nigeria (GSN) is totally responsible for collecting<br />

data on the groundwater resourceB <strong>of</strong> the nation. Most <strong>of</strong> GSl's<br />

efforts have been concentrated in the Northern States where there is abundant<br />

supply <strong>of</strong> grounawater and very little surface water supply. The GSü<br />

in collaboration <strong>with</strong> the United States Geological Survey, haa carried out<br />

some investigation in the Chad Basin complex, and estimates have been made<br />

<strong>of</strong> the life <strong>of</strong> the aquifers in the basin as a result <strong>of</strong> groundwater mining.<br />

However, no attempt has been made to quantify the annual natural groundwater<br />

recharge or the contribution <strong>of</strong> the groundwater to river discharge. Information<br />

is also not available on the groundwater flou conditions.<br />

Although the agencies cited above collect vast quantities <strong>of</strong> data<br />

annually, the fact ia that until very recently, the data collected have been<br />

piecemeal and the hgdrologicd records were never checked nor analyred. In<br />

many cases, the records have no duplicate8 and hence distribution is <strong>of</strong>ten<br />

impomsible. This state <strong>of</strong> affairs is <strong>of</strong>ten due to two major factors - lack<br />

<strong>of</strong> funds and lack <strong>of</strong> badly needed technical mawpower. This dearth <strong>of</strong><br />

adequate hydrological information has not however precluded the planning and<br />

the actual developent <strong>of</strong> a -ber <strong>of</strong> major water schemes in Nigeria euch as<br />

the Kainji Dam and Lake Project on River Niger.


30 HYDBOLOCICAL DATA USED IN EXISTING PROJECTS<br />

Sequential generation <strong>of</strong> hydrological data has been a tool the hydro-<br />

logist haa <strong>of</strong>ten used to create synthetic records, in the absence <strong>of</strong> very<br />

long hiebrical records, that could be used in hia water reaourcea planning<br />

efforts. Since the generated set <strong>of</strong> data is o<strong>nl</strong>y as good as the historiaal<br />

set employed in such a synthesis, the historical set should not be too ahort.<br />

In the absenoe <strong>of</strong> such a hiatorical information, the planning anã derelopent<br />

<strong>of</strong> the existing water resources schemes in Nigeria have relied on such tech-<br />

niques <strong>of</strong> hydrological data derivation as - local information, eduaateä<br />

gueas method, projection based on hydcological data from other but climatolo-<br />

gically similar places, provision <strong>of</strong> missing data by correlation and intenaive<br />

surveya over short periods. A few significant schemes are examined below.<br />

A. KAINJI W B ND D q<br />

The moat wide-ranging water reeourcee project undertaken to date in<br />

Nigeria is the Kainji Dam and kke Saheie on River Niger (Fig.1.). The scheme<br />

was conceived to provide hydro-eleckic pwer, flood control, regulated water<br />

for navigation, and fishery benefits. Although actìml construction started<br />

at the Kainji site in 1964, water levels were never observed there prior to<br />

1959. The two nearest statitma where ologic data were observed on the<br />

Niger prior to 1959 vere Jebba (Nigeria Y and Niamey (Niger), both <strong>of</strong> which<br />

sandwich the Kainji site and are 906 anä 1630 kilometres respectively amy<br />

from the Atlantic mouth <strong>of</strong> Xivex Niger.<br />

The pre-construction density <strong>of</strong> rainfall net work <strong>with</strong>in the catchment<br />

area <strong>of</strong> the Keinji project was too low to serve as the baais for any reliable<br />

hydrological interpretation. Conaequently, new rainfall uging stations<br />

were established for the project and a seva year record K955f959) was<br />

obtained by the consulting f im (2).<br />

method, the total amount <strong>of</strong> rainfall on the catchment area was calculated<br />

for the seven year period.<br />

25<br />

Through the application <strong>of</strong> the Thieasen<br />

Although records <strong>of</strong> water levels at Jebba were available for the years<br />

1915-24 and 1947-64, the ahiftirig positions <strong>of</strong> the gauges during those years<br />

&e it impossible to oorrelate the datum points <strong>of</strong> all the gauges used.<br />

Consequently, a decieim was made to correlate the rainfall <strong>with</strong> the nia-<strong>of</strong>f<br />

<strong>with</strong>in the Niamey-Jebba catchment, using the newly observϊ atage discharges<br />

at Jebba for seven years, and to employ this correlation curve <strong>with</strong> the cal-<br />

culated rainfall data to establish a 1939-59 discharge reaord for Jebba.<br />

Owing to the relative insignificant average value <strong>of</strong> the inflou between<br />

Jebba and KainJi, the obaei-red and the generated discharge data for Jebba<br />

were aaaumed to be the same for linin31 - which ie upstream <strong>of</strong> Jebba - and<br />

were analyzed accordingly. In establishing a satisfactory correlation between<br />

the rainfall and run<strong>of</strong>f data, two steps were taken:


26<br />

Because <strong>of</strong> the wide variation in both the rainfall and the discharge<br />

data betueen gauging stations, o<strong>nl</strong>y monthly totale were uaed in the<br />

dYSi8. This approach was found to produce smoother oorrelation<br />

curves than thore obtained from daily or 54ay records.<br />

The Jebba-Niamey catchment area i8 extensive, and the run<strong>of</strong>f contri-<br />

bution to the Niger flow from the Dahomey catchment area takes a<br />

longer time to reach Jebba than the othr catchent6 downstream.<br />

Hence, a sequence <strong>of</strong> lag time wa8 introduced into the data analysis<br />

to yield an expression heeeby derived as<br />

where<br />

QA,P+= CU~,.O + CP Re&- Ah),$ + C3Rr.n ( 1)<br />

BA,,.,, = Run<strong>of</strong>f <strong>of</strong> the month <strong>of</strong> August from the Jebba-Biamey<br />

catchment srea;<br />

R4.~ U Bainiail <strong>of</strong> the month <strong>of</strong> July on the Dahomey catchment<br />

area;<br />

R($-k),s= Bainfall <strong>of</strong> second-half <strong>of</strong> July plus that <strong>of</strong> firsthalf<br />

<strong>of</strong> August on the Sokoto basin;<br />

e,,. = Rainfall <strong>of</strong> the month <strong>of</strong> August for the rest cf the<br />

Jebba-Niamey catchent area; and<br />

'<br />

C,, C2, C are nui<strong>of</strong>f coefficients far Dahomey, Sokoto and the<br />

rest <strong>of</strong> Jebba-Niamey catchment area respectively.<br />

The introduction <strong>of</strong> the coefficients <strong>of</strong> run<strong>of</strong>f in the above equation<br />

became necessary as a result <strong>of</strong> the wide variation in the geographioal<br />

nature <strong>of</strong> the catchment area.<br />

Through the step enumerated above, the m 4 f f data from debba-iainey<br />

catchment area were deduced for the period 193959, and th6Se w8re added to<br />

the Niamey observed record. The net result is w.2, the hydrograph <strong>of</strong> the<br />

Niger discharge at Jebba. This figure was in turn used to develop the maas<br />

inflow curve info bke I[a;Lnji. The most important atreaai between gaiaji and<br />

Jebba is River Oïi <strong>with</strong> an estimted aiktchment correlation ooefficient <strong>of</strong><br />

0.2 The remainder <strong>of</strong> the drainage basin had an estimated run<strong>of</strong>f coefficient<br />

<strong>of</strong> 0.1 These coefficients were used by the oonaultants in the equation<br />

wwe<br />

Q,,,,,<br />

= QJebh - -e,, - O.'F?, (2)<br />

Q E river discharge in eubic metres/ulrit <strong>of</strong> time<br />

P = rainfall in cubia metres/unit <strong>of</strong> time<br />

to arrive at the mass inflow curve for Lake Kainji.


The daily discharges used in the hydrologfcal analysis are very<br />

interrelated and the peaks are interdependent. Sime these daily discharges<br />

exhibited a tendency towards persistence in succeasive stream flows, the<br />

Goodrich dietributiona were used in the frequency calculations; the latter<br />

were <strong>of</strong> the exponential type and were similar to the exponential Gabel<br />

distributions.<br />

B. WATER SUPPLY II MIDWESTERN NIGERIA<br />

<strong>Water</strong> resources activities in the lid-West are centred mostly on<br />

water supply. The latter is tapped, in general, from the various aquifere<br />

which underlie 9% <strong>of</strong> the State. The Benin sand aquifer has the greatest<br />

potential - about 333 metres thick extending laterally to an appreciable<br />

distance - but the hydrological studies from which the aquifer chacterietics<br />

could be obtained are etill in the planning stage. m y <strong>of</strong> the ;aquifers,<br />

such as the Benin sand (3) and the Coastal Plain aquifers oan be described<br />

o<strong>nl</strong>y in the moat general tarma because <strong>of</strong> the lack <strong>of</strong> recorded data. There<br />

i8 also no information on the hundreds <strong>of</strong> veils tht tap water daily from<br />

these aquifers.<br />

C. UTER SUPPLY II WESTERN NIGWIA<br />

The Western Nigeria <strong>Water</strong> Corporation is entirely responsible for the<br />

planning and the developinent <strong>of</strong> <strong>Water</strong> supply in the State. The Corporation<br />

obtains the necessary evaporation and rainfall data, m y <strong>of</strong> which are very<br />

long and reliable, from the Federal Baeteerological Service in Lagoa. However,<br />

because <strong>of</strong> the scantiness <strong>of</strong> data on river discharges, the standard praotice<br />

in those parts <strong>of</strong> the West, where surface uater has been developed, is to<br />

base the rater scheme design on the following hydrological assumptions in<br />

addition to a very liberal monthly evaporation <strong>of</strong> 127 mm:<br />

(i) A conservative run<strong>of</strong>f coefficient <strong>of</strong> 4s<br />

(ii) A once-in-50 years recurrence probability in rainfall <strong>with</strong><br />

where P = Percentage probability W rainfall being equal to or<br />

lesa than a given talue;<br />

m = rank <strong>of</strong> the year; and<br />

n = number <strong>of</strong> years <strong>of</strong> record<br />

The catchment annual rua<strong>of</strong>f, Q, which is based on these assumptiom<br />

can be computed from the expreseion<br />

where A = Basing drainage mea:<br />

27


28<br />

= Baein rainfall value correspnâing to the probability <strong>of</strong><br />

orne-in-% yeare oocurenae.<br />

Co = Coefficient <strong>of</strong> m f f for the basin.<br />

]Equation (3) or a forin <strong>of</strong> it hae been widely applied on the numerous eurfaae<br />

water apply eohetmee in the West. Eowvwr, bey%$ <strong>of</strong> the vast arai- area<br />

<strong>of</strong> 7,500 sq. kilometres that is governed by the,project, a form <strong>of</strong> the equation<br />

(3) shown above was not employed to predict the maximm probable flood.<br />

Instead, Pr<strong>of</strong>essor M. Parde <strong>of</strong> the University <strong>of</strong> Grenoble in France, a<br />

speciaìiet in the field <strong>of</strong> flood studies, advised the consultants that a<br />

run<strong>of</strong>f in the order <strong>of</strong> 490 litres per second per square kilometre is known<br />

to hava occured <strong>with</strong>in West African strema <strong>of</strong> similar importance ae the<br />

Oehun river on which the achenie is estsb1ished.b Sapply Ibadan aith water.<br />

Hence thb value was used in caltuleting the project's spillway<br />

deeign flood <strong>of</strong> 3680 cmbic metres per second.<br />

The developaenf <strong>of</strong> groundwater resonroes in the West has encountered<br />

a number <strong>of</strong> difficulties. When the existing wells were been developed, the<br />

areal extent <strong>of</strong> the bed-rock formation was not fully known, and the lithographic<br />

characterietics <strong>of</strong> the water bearing formations, in many cases, were<br />

etill to be studied. Absence <strong>of</strong> perfonaance data on the wells has o<strong>nl</strong>y<br />

aggravated the situation, and in most cases, local informtion on dug weU, was <strong>of</strong>ten obtained from the inhabitanto.<br />

The Geological Survey <strong>of</strong> Nigeria (WN) in collaboration <strong>with</strong> the United<br />

States Geological Survey haa undertaken aome imestigativ6 work which had led<br />

them to edict a 30 year yielding life for the Lake Chad Baain middle eone<br />

aquifer Kg.3) at a <strong>with</strong>drawal rate <strong>of</strong> 5000 gph <strong>with</strong> wells placed at 16 kilometres<br />

apart. Huiidred8 <strong>of</strong> bore holes have been drilled but co-ordinated dayto-day<br />

performance data on these bore-holes are lacking. Most <strong>of</strong> the information<br />

that can be readily obtained on the basin's aquifere are available o<strong>nl</strong>y<br />

in special reports. It is also irapossible to undertake a meaninghil study<br />

-<br />

<strong>of</strong> the basin's aquifere <strong>with</strong>in Bigeria along since four countries share the<br />

bain area. The FAQarpd' -@are assisting the Lake Chad Basin Commiedon<br />

a regional organization <strong>of</strong> the countries that have territorial claims over<br />

parts <strong>of</strong> the basin, to<br />

(i) Compile all the available date in the baain;<br />

(ii) melop an analme compu4er model that would miwilate au. the<br />

activities that affect the quantity <strong>of</strong> water in the basin; and<br />

(iii) Define the various aquifers in the Chad bydro-geological basin and<br />

erdeavour to arrim at a synthesie or composite picture covering<br />

the correlations between the atmospheric, emrface and groundwater<br />

ae well as between individual aquifera.


From hydrological stand point, the Kainji project has been more intenaively<br />

studied than any other water scheme in Nigeria. A number <strong>of</strong> houn<br />

standard methods were used to develop some reasonable results such as the<br />

correlation established between run<strong>of</strong>f and rainfall <strong>of</strong> the Jebba-Niamey<br />

catchment area. Since the project design flows were in prt derived from the<br />

discharge data obtaineä at Niamey, the accuracy <strong>of</strong> the rating curve used to<br />

determine the Niamey discharges sho<strong>nl</strong>d have been verified. The importance<br />

<strong>of</strong> this project also warranted a longer hydrological record than the 20 year<br />

reconstituted record used. This could have been sequentially generated.<br />

In order to emure enough water supply, coneervative estimates <strong>of</strong> rainfall,<br />

run<strong>of</strong>f and liberal estimater <strong>of</strong> evaporation have been the 8taRdard<br />

practice in the West. But such educated guesaes have not prevented water<br />

shortages resulting froa both drought and under-design for the needs <strong>of</strong> the<br />

communities served. It appears that these educated guess teahniques haye<br />

never taken into consideration that moat <strong>of</strong> these watershetie would be opened<br />

up in the near future ae a result <strong>of</strong> extensive and medhanised farming practices.<br />

The occurence <strong>of</strong> %aximam possible rain-stOmR vouìd also yield higher peak<br />

flow than most <strong>of</strong> the existing achemea, except the Aaejire project, have<br />

been designed to handle. And the eubsequent floafiing resulting from the<br />

faracing practices or the maximum rainstorm would not o<strong>nl</strong>y wipe aut these<br />

water schemes but would also endangaz lives and property.<br />

Groundwater develogaent based on inadequate or scanty data has been<br />

found to be both unecoaoioic<strong>nl</strong> and frustrating. Typical examples include<br />

bore hole failures at Agbor and Warri owing to the mollapse <strong>of</strong> cui-,<br />

and poor yield as a result <strong>of</strong> drilling for water in granite aone at Ijebu-<br />

Ode. The problame <strong>of</strong> grodwater developaent in the Hid-Vest are eubatan-<br />

tial, and o<strong>nl</strong>y a through analysis can fore-stall more problema in the<br />

future. And the efforts <strong>of</strong> Mo <strong>with</strong>in the chad Baain has aided and aacele-<br />

rated not o<strong>nl</strong>y the haraonizatim <strong>of</strong> the existing data, but aiso the evaluation<br />

<strong>of</strong> data concerning evaporation and temperature meaeurenent by infra-red<br />

aerie1 photography.<br />

5. HPDBOLOOIcbL RESS(XIRCE<br />

Planning <strong>with</strong>out facts ehould na longer plague the water resource8<br />

program <strong>of</strong> the nation, mre especially, as we shift our emphiusis from<br />

single giirpose water supply to multi-purpose schemes such aa the Kainji and<br />

Kano river schemes. The latter, also a victim <strong>of</strong> hydrological data scarcity<br />

ia enviaaged to pride barrefita in such areas ae irrigation, hydro-pouer and<br />

flood control.<br />

In order to enmare systematic planning in the future, the<br />

newly created <strong>Water</strong> Resoaaraoa btitute.8haeld eatablieh a Hydrological<br />

resource^ Centre whoee primary hction uill firet be the aollecting and<br />

compiling <strong>of</strong> the existing piecemeal data and nates that are scattered all over<br />

29


30<br />

the nation. This responsibility should be a continuow one and the inforaur-<br />

tion so collected ahould be published annually and made available to the<br />

public on eale. The centre should also standardice, nation wide, the inetru-<br />

mentation and hyàrological data collecting and recording procedures.<br />

The information available to the centre can be upgraded both in quality<br />

and in quantity through the application <strong>of</strong> Remote Sensing Technique (RST).<br />

The latter ia currently available through participation in the United Stateet<br />

urth ~esourcea ~echnology Satellites program (EE~TSP). The data ana imegery<br />

obtaiasd though such a pmg~am can be utilised in sweral ways including<br />

the rapid identification and appraisal <strong>of</strong> our water resource^. The immediate<br />

hydrological investigation required in Nigeria, uuder the EELTSP, includes:<br />

The overall delienation <strong>of</strong> the aquifers <strong>of</strong> the Chad Basin and the<br />

pattern <strong>of</strong> the groundwater movsment in the basin. Such information<br />

can be integrated into the basin'e existing analogne model;<br />

the monitoring <strong>of</strong> changes in reservoira' levels resulting from<br />

evaporation and changes in rater courses resulting Rom erosibn and<br />

siltation;<br />

%he identification and quantification <strong>of</strong> the groundwater resources<br />

<strong>of</strong> Southern Nigeria including the location <strong>of</strong> the position and<br />

evaluation <strong>of</strong> the extent <strong>of</strong> salbwater intrusion along the coastal<br />

aquifers. Data obtained from ERTSP would generate more awareness<br />

<strong>of</strong> the problem in surface water developeat and would provide<br />

needed information on which conjunctive ground and surface water<br />

programa oould be baed.<br />

6. CoáIcLusIOB<br />

Within the past decade, a =ber <strong>of</strong> water resources schemes have been<br />

developed, ard in genSral, these schemes hare been plaaned <strong>with</strong> very limited<br />

hydrological data tbat were <strong>of</strong>ten extended through the applicaticm <strong>of</strong><br />

statistical techiqueo to provide rational design parameters. In others,<br />

"educated guess" technique wan subatitnted. The net resuit <strong>of</strong> auch methode<br />

haa been the failure <strong>of</strong> many water supply schemes to meet demands eapeoially<br />

aurfng the dry seaeon ana the location <strong>of</strong> unproductive bore-hoiea which had<br />

to b abaadoned.<br />

The future <strong>of</strong> io~iiy <strong>of</strong> these a ches osnnot be accurately preàicted at<br />

this point. bwever, there is the urgent need to upgrade the scanty data,<br />

through a contirmoire qioiritoring proc688, on which them schemee were built.<br />

such a step WOUM provide a sound baeie for ature schemer, and would e mme<br />

the propat execution <strong>of</strong> any modification on existing sc@nms when warranted.


The scarcity <strong>of</strong> reliable data is mostly due to the acute shortage <strong>of</strong><br />

hydrologists and middle-level techniciana in this diecipline. Herne, it<br />

will be necessary for the <strong>Water</strong> <strong>Resources</strong> IMtitUte in collaboration dth<br />

some <strong>of</strong> the eriating Universities to develop and execute achenes uhereby<br />

a large number <strong>of</strong> such teohnologiate and techniciana might be trained<br />

locally to meet the urgent needs <strong>of</strong> the nation.<br />

In order to eneure systematic planning in the futare, the power to<br />

collect, compile and hairnonise all the hydrological data in the country<br />

should be vested in a Hydrological Resource Centre. The hydrological<br />

information available to such a centre could include data and imagery<br />

obtained through the use <strong>of</strong> Remote Sensing Technique.<br />

The information<br />

obtained will enable the nation to accelerate the pace <strong>of</strong> ita natural<br />

resources developneat.<br />

31


32<br />

1.<br />

2.<br />

3.<br />

4.<br />

5.<br />

6.<br />

7.<br />

8.<br />

9.<br />

BIBLIOGWHY<br />

Andu, J. A. (1965). Exploitation and Developent <strong>of</strong> Groundvater in<br />

Western Nigeriay Ministry <strong>of</strong> Works and Trsmeport, Ibadan, Nigaria.<br />

IJEDECO (1961). Niger Dame Project, Vol. 2, <strong>Hydrology</strong> and Beilervoir<br />

Operation, Report auhitted to the Fedaral Ooverment <strong>of</strong> Nigeria,<br />

Lagoa<br />

Tahal (<strong>Water</strong> Planning) Ltd. (1965). Master Plan for Urban and Rural<br />

<strong>Water</strong> Supply, Report submitted to the Hid-West Ministry <strong>of</strong> Works and<br />

l!rsnsport, Benin, Nigeria.<br />

Tahal Consulting Ebgineers Ltd. (1969). Akungba-Shapureka-Ido&<br />

<strong>Water</strong> Supply Sahane, Plauning Report suinuitte8 to the Western Nigeria<br />

<strong>Water</strong> Corporation, Ibadan.<br />

Tahal and Motor Columbus Ltd. (1961). Ibadan <strong>Water</strong> Supply - hejire<br />

Daia, Final <strong>Design</strong> Report submitted to the Western Nigeria Hinietry <strong>of</strong><br />

Works and Tranpport.<br />

Miller, B. E., R. E. Johnaton, J. A. Oloni, and J. A. Umma (1968).<br />

Groundwater ñyärology <strong>of</strong> the Chad Baein in B om and Dikwa Emiratem,<br />

N.E. Mgeria, <strong>with</strong> special Eaphasis on the Flow Life <strong>of</strong> the Artmian<br />

System. USGS <strong>Water</strong> Supply Paper 1757-1, U.S. Govt. Printing Oîîïce,<br />

Washington, D.C.<br />

üHESC0 (1970). Study <strong>of</strong> <strong>Water</strong> <strong>Resources</strong> in the Chad Basin, Report<br />

on the resulta <strong>of</strong> the hoject, Conclueionis and Recamendatione, PSriS,<br />

fiFrance.<br />

HEDECO (1970). Feasibility Study-gan0 River Project: Report eubdtted<br />

to the %o State Winistriea <strong>of</strong> Agriculture sad Iaatursl Besotarcea, and<br />

Worka and Sumeye, b o , Isigeria.<br />

Federal Ministry <strong>of</strong> Infonuation, Iagos (1970). Second Hationel<br />

Developent Plan, Fed. Govt. Printer, Lagos, Hgeria.


3G1 Ma2 <strong>of</strong> W Africa showing R Niger and its tributaries<br />

---_ -~~drograph<br />

I<br />

I L -<br />

derived Smm rom<br />

4dL<br />

- N+ogTh<br />

derived From &sei<br />

. ved. w* -.rat5<br />

FIG 2 Hydrogragh <strong>of</strong> R Niger at bbba (1955-571 (Reference 2)<br />

33<br />

..


ABSTRACT<br />

AN EXAMPLE OF REGIONAL CO-OPERATION FOR IMPROVING<br />

THE HYDROLOGICAL AND METEOROLOGICAL INFORMATION<br />

Eduardo Basso*<br />

Andrés Arriagadann<br />

Hcsrnando Neira**<br />

Manuel PBrez Delgado***<br />

T&e Centra8 A ~s~ican Hydrometeorological Project initiat ed<br />

in September 1961 rapresents & co-operative effort among the countries<br />

<strong>of</strong> the Central Amsricea Isthmus (Costa Rica. El Salvador, Guatemala,<br />

Honduras, Hiceragua and Panam%) and the United Nations Development<br />

Programme, acting aar executivo agency the World Meteorological<br />

Organizatioa. Its objectives are the following: (i) installation <strong>of</strong> a<br />

basic netW6Pk <strong>of</strong> meteorological and hydrological stations, (ii)<br />

collection, preceesing and publication <strong>of</strong> the data, (iii) training<br />

<strong>of</strong> personnel by neans <strong>of</strong> course.%, fellowships or through technical<br />

publications end manuals and (iv) the institutional strenghtening <strong>of</strong><br />

the meteorological and hydpalogical services in the area. Important<br />

Project activities have been the Paeting <strong>of</strong> new equipment used in<br />

developed countries in order to study their application to the<br />

characteristics and tropical climate <strong>of</strong> the area, and the development<br />

and application <strong>of</strong> methods for meteorology, hydrology and sediment<br />

studies <strong>with</strong> limited information. It is concluded that their use in<br />

other areas <strong>with</strong> similar conditions can be useful and that regional<br />

cooperation can be one effective means for coping <strong>with</strong> inadequate<br />

data through the pooling <strong>of</strong> individual countries efforts.<br />

RES UMEW<br />

El Proyecto Hidrometeorológico Centroamericano iniciado en -<br />

Setiembre de 1967 constituye un esfuerzo cooperativo entre los paí-<br />

ses del Istmo Centroamericano (Costa Rica, El Salvador, Guatemala,<br />

Honduras, Nicaragua y Panamá) y el Programa de las Naciones Unidas<br />

para el Desarrollo, actuando como agencia ejecutora la Organización<br />

Meteorolögica Mundial. Sus objetivoe principales los constituyen: -<br />

(i) la instalación de una red básica de estaciones meteorológicas e<br />

hidrolbgicas, (ii) la recolecciön, proceso y publicación de los da-<br />

tos, (iii) el adiestramiento del personal ya sea con becas y cursos<br />

o mediante publicaciones y manuales tgcnicos, y (iv) el robusteci--<br />

miento institucioaal de los servicios meteorolbgiccs e hidrológicos<br />

en el área. Actividades importantes del Proyecto han sido la prueba<br />

de nuevos equipos utilizados an países desarrollados para estudiar<br />

su adaptación a lae características y clima tropical del area, y el<br />

desarrollo y aplicacids de métodos para la ejecución de estudios mo<br />

teorológicos, hidrol6gicas y de sedimentación con información limi-<br />

tada. Se concluye estimando que su uso en otras áreas COQ condicio-<br />

nes similares puede ser de utilidad.<br />

* Project Manager, Central American Hydrometeorological Project<br />

** Hydrologist Expert., Central American Hydrometeorological Project<br />

*** Hydrometeorological Expert, Central American Hydrometsorological<br />

Pro j ect


36<br />

INTRODUCTION<br />

The Central American Hydrometeorological Project is a joint effort betweenthe<br />

Governments <strong>of</strong> the Central American Isthmus ( Costa Rica, El Salvador, Guate<br />

mala, Honduras, Nicaragua and Panamá) and the United Nations Development<br />

Programme. The World Meteorological Organization acts as Executing Agency<br />

The Project started in September 1967, at a cost <strong>of</strong> 9. 2 millions dollars (3.3<br />

millions UNDP and 5.9 millions Governments), which makes this Project one<br />

<strong>of</strong> the largest in this field. in March 1973 a second phase <strong>of</strong> the Project was<br />

started devoted mostly to the Coordination and Consolidation <strong>of</strong> the activities in<br />

Meteorology and <strong>Hydrology</strong>. This second phase has a duration <strong>of</strong> three years<br />

and the global contribution <strong>of</strong> UNDP adds to 1.3 millions dollars.<br />

PROJECT OBJECTIVES<br />

The main objectives <strong>of</strong> the first phase <strong>of</strong> the Project, already completed were<br />

the following:<br />

Installation <strong>of</strong> 290 hydrometric stations in the six countries.<br />

Installation <strong>of</strong> 830 climatological stations (60 main, 240 secondary and 530<br />

pluviomet ric).<br />

c) Institutional strenghtening <strong>of</strong> the Meteorological and or Hydrological Services<br />

and the collection, preparation and publication <strong>of</strong> the data in both the new<br />

and old stations.<br />

d) Training <strong>of</strong> the personnel, by means <strong>of</strong> fellowships, seminars, courses,<br />

publications and on-the-job training.<br />

At the end <strong>of</strong> the project the number <strong>of</strong> stations constructed surpassed by far the<br />

goals; more than 350 hydrological and more than 950 <strong>of</strong> all kinds<br />

<strong>of</strong> meteorological stations were completed. The achievements in the activities<br />

<strong>of</strong> data processing and publication as in personnel training were most remarkable.<br />

In some countries, meaningful results were obtained in the important task <strong>of</strong><br />

institutional building. In others the present condition is not yet adequate for the<br />

needs <strong>of</strong> their development, but it is expected that during the Second Phase it<br />

will be possible to complete the necessary arrangements for this. For Co-ordinating<br />

at a regional level the activities in Meteorology and <strong>Water</strong> <strong>Resources</strong> Investigations,<br />

a Regional Committee was created. This Cornmiittee, formed by<br />

the presidents <strong>of</strong> the National Coordinating Committees <strong>of</strong> the six countries, has<br />

proved to be an excellent arrangement and can be considered a good example <strong>of</strong><br />

regional Co-or dination.<br />

PRE-PROJECT CONDITIONS<br />

The conditions before the beginning <strong>of</strong> the project varied widely from country to<br />

country. However, in some countries it was practically inexistent. Although<br />

about 180 hydrometric stations were in operation in 1966, o<strong>nl</strong>y a few provided<br />

reliable data. Even these had a very short period <strong>of</strong> records, normally less.<br />

than five years. In some countries the stations consisted o<strong>nl</strong>y <strong>of</strong> a staff gauge,<br />

<strong>with</strong>out bridge or cable for flood measurements, in other cases limnigraplis were<br />

installed <strong>with</strong>out a device for checking the river levels, Sediment measurements<br />

were made in o<strong>nl</strong>y one country and water quality determinations were made. How<br />

ever, the main deficiencies arised from the methods <strong>of</strong> collecting and processing


the data. The O. 6 depth method <strong>of</strong> velocity measurement was used in some cases<br />

introducing errors in the stream gauging data. The discharge rating curves were,<br />

generally extrapolated graphically, and no checks were made for the consistency<br />

<strong>of</strong> the resulting information. Even though most <strong>of</strong> these defects were recognized<br />

the counterpart pcrsonnel lacked the means and the influence for improving the<br />

situation.<br />

The situation in Meteorology was similar. Even considering that some countries<br />

had fairly well organized cervices, the network was absolutely insufficient for<br />

the needs <strong>of</strong> the region. Several Services had o<strong>nl</strong>y one main meteorological<br />

station, in the principal airport. The number <strong>of</strong> secondary stations in good work<br />

ing standard were less than 20. The rainfall observation network comprised o<strong>nl</strong>y<br />

the.main inhabited areas, and even there, o<strong>nl</strong>y a few recording instruments were<br />

available. Some countries showed a complete lack <strong>of</strong> rain recorders and others<br />

<strong>of</strong> evaporation stations. The processing <strong>of</strong> the data was quite rudimentary, and<br />

their publication <strong>with</strong> a few exceptions, inexistent. O<strong>nl</strong>y five meteorologist <strong>with</strong><br />

university degree were available, and all five worked in one country. Practically,<br />

no co-ordination between meteorological and hydrological services existed.<br />

TRAINING<br />

The activities <strong>of</strong> personnel training at all levels were considered fundamental<br />

and received a preferential treatment from the project.<br />

Training in the Region. Training in the region was done <strong>with</strong> courses --in-<br />

cluding cour s e s by correspondence - -, seminar s, on-the - job training, confer ence s<br />

and publications. Without including on the job training, approximately 500 people<br />

received formal or informal courses. This does not include the personnel<br />

trained by other WMO projects, such as the Chair <strong>of</strong> Meteorology at the University<br />

<strong>of</strong> Costa Rica or the Mobile Center for Training <strong>of</strong> Meteorological Personnel.<br />

Practically all the graduates <strong>of</strong> these courses are engaged in activities connected<br />

<strong>with</strong> the Project.<br />

Fellowships. 37 fellowships <strong>with</strong> a total <strong>of</strong> 324 men-month were made available<br />

to the Project, for the preparation <strong>of</strong> new personnel or for the improvement<br />

<strong>of</strong> the training <strong>of</strong> the existing ones. These fellowships were a fundameotal<br />

completement for the local training which was devoted mai<strong>nl</strong>y to a large number<br />

<strong>of</strong> low level technicians. Most <strong>of</strong> the fellows completed successfully their<br />

studies, and some obtained higher degrees in well known Universities. The importance<br />

given to the practical training must be noted; the course for preparing<br />

technicians in meteorological instruments--Buenos Aires-- must be specially<br />

remarked. Unfortunately, some <strong>of</strong> the fellows ieft their jobs <strong>with</strong> the Government<br />

sometime after the completion <strong>of</strong> their studies, which means that their<br />

and UNDP's effort was wasted. However, the percentage <strong>of</strong> fellows in this<br />

case was relatively low, 13%. in addition, the Project co-operated actively<br />

to obtain fellowships from national and multilateral sources. in such a way,<br />

64 more fellowships were obtained, <strong>with</strong>out including the ones used for the<br />

courses already mentioned. As a consequence, the total <strong>of</strong> trained personnel<br />

has been significantly higher than the quantity that should have resulted o<strong>nl</strong>y<br />

from the fellowships assigned to the Project. Even so, the shortage <strong>of</strong> capable<br />

personnel can still be noticed, specially in the Meteorological Services.<br />

31


38<br />

Publications. The Project considered that one the most effective forms <strong>of</strong><br />

training in a dispersed regional project was the intensive use <strong>of</strong> technical<br />

publications. in general, the reaction to these publications were encouraging.<br />

and resulted in a large demand <strong>of</strong> them, both from the countries <strong>of</strong> the area<br />

and from outside. Their main merit aves to the fact that bibliography in<br />

Spanish was made a.vailable to all counterpart levels.<br />

pared, about 100 technical publications and 60 reports had been released, .To<br />

make the diffusion <strong>of</strong> Project activities more available a by-mounthly newsletter<br />

was edited, Over 500 copies <strong>of</strong> each issue were printed, making possible for<br />

all members <strong>of</strong> the Committee to know the activities <strong>of</strong> the others. The editorial<br />

activity <strong>of</strong> the Project stimulated also the publications <strong>of</strong> the counterpart, increasing<br />

their technical reports and data publication. By far the most important<br />

publication <strong>of</strong> the Project is the "Manual <strong>of</strong> Instructions". which has been plan-<br />

ned in four volumes.<br />

three chapters: (1) Field measurements and installations, (2) Data processing<br />

and (3) Sediments. Standards are set for the installations, field measurement<br />

and methods for processiqg the information. The second volume is devoted to<br />

IIHydrological Studies" comprising: (1) Verification and Correction <strong>of</strong> Hydrolo -<br />

gical Records, (2) Extension <strong>of</strong> Hydrological Records, (3) Duration and Variation<br />

Studies, (4) Hydrometeorological Studies, (5) Floods. (6) Draughts, (7) Hydrological<br />

Forecasts (8) Hydrological Studies for Power Developments (9) Agricuitural<br />

<strong>Hydrology</strong> (10) Economic Aspects in <strong>Hydrology</strong> (11) Use <strong>of</strong> Mechanical Data<br />

Processing. The third volume refers to "Meteorological Observations" and has<br />

been edited o<strong>nl</strong>y in a preliminary form. The last volume "Ground <strong>Water</strong> Hydro-<br />

logy" will be prepared -h the future.<br />

When this paper was prg<br />

The first one deals <strong>with</strong> "Hydrometry" and comprises<br />

The Manual is aimed to the medium level<br />

technicians and includes several numerican examples, <strong>with</strong> information <strong>of</strong> the<br />

area. Special emphasis has been given to the specific problems arising from<br />

the lack <strong>of</strong> long and reliable records. (1) (2).<br />

EQUIPMENT<br />

. The equipment component, formed the major part <strong>of</strong> UNDP's contribution,<br />

adding to a total <strong>of</strong> about 1,9 million dollars.<br />

Meteorological Equipment. The main meteorological stations (type A) were<br />

in general provided <strong>with</strong> universal wind recorder, mercury barometer, microbarograph,<br />

psychrometer, maximum and minimum thermometers. thermohydrograph,<br />

set <strong>of</strong> geothermometers, Robitzch actinograph, Campbell-Stokers heliograph,<br />

Piche and tank evaporimeter, tank level anemometer, water thermometer,<br />

raingauge and rain recorder (Figure 1).<br />

The ordinary climatological stations were provided <strong>with</strong> psychrometer, maximum<br />

and minimum thermometers, raingauge, rain recorder and Piche evaporimeter.<br />

in most <strong>of</strong> the station <strong>of</strong> this type evaporation tank, pan level anemometer, and<br />

thermohydrograph were installed and in several, anemograph, heliograph, actinograph<br />

and or soil thermometers were also included. (Figure 2). Some stations<br />

included also agrometeorological instruments. such as soil-moisture gauges,<br />

dew recorders, lysimeters, extrasoil thermometers. etc. Several pre-Project<br />

stations were reinstalled and or completed <strong>with</strong> new instruments.<br />

The meteoro<br />

logical equipment included also six standard barometers, which were included<br />

in the principal station <strong>of</strong> each country, replacement parts for the period <strong>of</strong> the<br />

project and for some time after its completion and equipment for inspection and<br />

maintenance. Also included were equipment for part <strong>of</strong> a regional laboratory<br />

for calibration <strong>of</strong> meteorological equipment. The equipment provided was, in


general, <strong>of</strong> good quality, and adequate for the needs <strong>of</strong> the Project. As far as<br />

possible equipment <strong>of</strong> complicated operation or maintenance was avoided, preferring<br />

simple and sturdy ones suitable for tropical conditions. In some cases<br />

'defects were detected, but they were satisfactorily corrected by the manufacturers,<br />

by introducing several changes in the design <strong>of</strong> the instruments.<br />

Hydrological Equipment. The stations installed included the total or part<br />

<strong>of</strong> the following elements provided by UNDP: limnigraph --<strong>of</strong> the float type or<br />

bubble gauge type (manometric) --damping pipe, housings, connections and pack<br />

ings <strong>of</strong> the limnigraph, sets <strong>of</strong> staff gauges, cables and accessories (Cable caq for the cableway instailation plus a reasonable quantity <strong>of</strong> spare parts.<br />

portant to note the fact that the standardized prefabrication <strong>of</strong> the construction<br />

elements, especially the cableway towers, which were designed for 3, 6 and 9<br />

meters height, allowed a simplification <strong>of</strong> the construction <strong>of</strong> the stations, making<br />

easier its transportation and mounting;a fact that was <strong>of</strong> fundamental importance<br />

to reach isolated and difficult zones (Figure 3). The equipment was designed in<br />

order to ensure a maximum <strong>of</strong> safety during construction and operation, providing<br />

the cable cars <strong>with</strong> safety brakes, the towers <strong>with</strong> stairways protected <strong>with</strong><br />

safety rings, etc.. . In addition the publication <strong>of</strong> standards <strong>of</strong> construction and<br />

operation aimed to ensure this objective. As a consequence <strong>of</strong> this, and reversing<br />

the pre-project conditions, serious accidents happened neither during the<br />

constructionnor during the operation <strong>of</strong> the stations. (Figure 4) The equipment<br />

included a current-meter calibrating tan!!, which was installed at the Universidad<br />

Centroamericana in Managua. Probably due to the careful supervision <strong>of</strong><br />

the design and construction <strong>of</strong> the building, the installations remained undamaged<br />

by the earthquake <strong>of</strong> December 1972.<br />

instruments for level recordings, three digital limnigraphs were qperated expe-<br />

rimentally for some years. The results <strong>of</strong> their operation was, in general, LUISA<br />

tisfactory, because <strong>of</strong> extreme humidity and lack '<strong>of</strong> adequate maintenance. This lias<br />

proved that the selection <strong>of</strong> mechanical equipment was a wise one, and that the<br />

gradual introduction <strong>of</strong> digital equipment should wait for more development to<br />

solve the observed defects and to allow training <strong>of</strong> specialized personnel.<br />

39<br />

It is im-<br />

in order to gain experience <strong>with</strong> modern<br />

Equipment for flow and Sediment Measurement. The Hydrological services<br />

were provided <strong>with</strong> flow meters, counterweights, winches and cranes, etc. to<br />

ensure the adequate operation <strong>of</strong> the hydrometric network. Selecting the type <strong>of</strong><br />

current meters was also subject <strong>of</strong> detailed studies, and it was decided to use<br />

both the axial and the Price current meter. after a consideration <strong>of</strong> their relative<br />

merits. The manual <strong>of</strong> Instructions (1) <strong>of</strong> the Project contains instructions regarding<br />

the criteria to be used in selecting one or other instrument. in addition,<br />

measurements made in Costa Rica and El Salvador proved that the difference<br />

between the measurements made <strong>with</strong> both kinds <strong>of</strong> current meters is very small.<br />

The Project started and intensive programme <strong>of</strong> sediment sampling, for which<br />

the acquisition <strong>of</strong> standardized D49 and DH-48 samplers has been fundamental<br />

for the successful achievement <strong>of</strong> this goal. In addition the Project provided<br />

construction,laboratory, navigation and transportation equipment.<br />

Data Processing Equipment. This comprises fundamentally two groups: e-<br />

lectronic calculators and peripherical comnutation equipment. The first group<br />

cornprises conventional and programmable calculators, which have been used<br />

preferentialy in the computation <strong>of</strong> streamflow measurements, hydrograms and


discharge rating curves. The second group includes mai<strong>nl</strong>y card perforators<br />

for imput to conventional electronic computers. This equipment will be used as<br />

a base for the future data processing centers planned in the second stage <strong>of</strong> the<br />

Project.<br />

DESIGN AND CONSTRUCTION OF THE NETWORK<br />

The design <strong>of</strong> the climatological network was based upon the following crite<br />

ria:<br />

a. The first priority for the main mateorological stations was given to the irriplementation<br />

<strong>of</strong> the basic synoptic network, which had been planned before the<br />

Project. The remaining main stations were located in intermediate points,<br />

trying to obtain a relative uniform density and a good representation <strong>of</strong> the different<br />

climates <strong>of</strong> the area. Preference was given to installation in the main<br />

airports.<br />

b. When possible, an ordinary station was installed in each mayor agricultural<br />

area. In isolated valleys <strong>with</strong> characteristic microclimates, an effort was made<br />

to asign a station to each <strong>of</strong> them.<br />

c. To obtain the necessary interrelation between the hydrological and the me- teorological network, at least an ordinary st,ation was assigned to each mayor basin<br />

or sub-basin <strong>with</strong> co-ordinated operation <strong>of</strong> the meteorological and hydrdogical<br />

networks.<br />

d. in scarcely populated areas the main consideration was the availability <strong>of</strong><br />

observers.<br />

e. Finally, the availability <strong>of</strong> air, land or water access was a limiting factor<br />

in some jungle, mountainous or isolated areas. The pluviometric network was<br />

planned following the recommendations <strong>of</strong> the Guide for Hidrometeorological<br />

Practices <strong>of</strong> WO, <strong>with</strong> the limitations imposed iy the lack <strong>of</strong> observers and<br />

the inaccessibility <strong>of</strong> some regions. Regarding the design <strong>of</strong> the hydrological<br />

stations, these were located in the following places:<br />

i Near the mouth <strong>of</strong> the principal rivers and or their main tributaries. ii. in<br />

each main lake. iii. At the outlet <strong>of</strong> each main lake. iv. Where dams <strong>of</strong> major<br />

hydraulic works were planned. v. At the entrance <strong>of</strong> a river to a mayor<br />

valley.<br />

vi. At the crossing <strong>of</strong> a major river <strong>of</strong> an international boundary. in<br />

addition, some stations were located in urban and minor basins, based mai<strong>nl</strong>y<br />

on utility criteria or, in some cases, for use as representative basins. it<br />

was planned to make sediment measurements in part <strong>of</strong> the network mai<strong>nl</strong>y at<br />

the stations listed under i and iv. The complete plan was co-ordinated at a<br />

regional level and approved by the Regional Committees (3).<br />

The impact <strong>of</strong> the<br />

Project in the meteorological network coverage can be appreciated in Figure 5<br />

which shows the situation before and after <strong>of</strong> the Project. A similar compari-<br />

son has been made for the hydrological network in Figure 6.<br />

Sediment Measurements. (4) One <strong>of</strong> the subjects <strong>of</strong> main interest for the<br />

Project was measurement <strong>of</strong> the sediment loads <strong>of</strong> the rivers, since --<strong>with</strong> the<br />

exception <strong>of</strong> Costa Rica-- practically no information was available at the begin.<br />

ning <strong>of</strong> the Project.<br />

At present., systematic samplings are made in 136 <strong>of</strong> the<br />

gauging stations in the area. Samplings are made in accordance <strong>with</strong> the usual<br />

techniques and are later analized in the laboratories established in the six


countries to derive the sediment load. When access problems limit the number<br />

<strong>of</strong> measurements, some local observers take a point daily sample it was found<br />

that in most <strong>of</strong> the cases the concentration <strong>of</strong> this sample correlate well <strong>with</strong> the<br />

average <strong>of</strong> the compusite samples. The use <strong>of</strong> the sedbent rating curve, relating<br />

the solid discharge (G) <strong>with</strong> the liquid discharge (Q) has been used for completing<br />

the records. Figure 7 shows one typical sediment rating curve and<br />

Figure 8 summarizes some <strong>of</strong> the first results obtained by the project.<br />

The bed load is computed using several <strong>of</strong> the usual formulas, and several examples<br />

have been published in arder ta explain the procedure to the counterpart<br />

technicians (12). An interesting result concerning the sediment rating curve is<br />

that the coefficient <strong>of</strong> the equation G = A an, varies between 1.4 ad 4. O. The<br />

lower values <strong>of</strong> n (1.4 to 2. O) are associated <strong>with</strong> rivers crossing arid areas,<br />

and the .value <strong>of</strong> n in general increases as the rainfall also increases. A theory<br />

for explaining this has been developed by the project (20) and will be the object<br />

<strong>of</strong> further publications.<br />

'<br />

<strong>Water</strong> Quality. Although this objective was not originally though <strong>of</strong>, the<br />

Project has started a minimum programme <strong>of</strong> measurements <strong>of</strong> water quality.<br />

At present systematic samplings are made in o<strong>nl</strong>y 48 stations <strong>of</strong> Costa Rica,<br />

El Salvador and Guatemala, but it is expected that in the future this programme<br />

will be expanded.<br />

STUDIES AND APPLIED RESEARCH<br />

Most <strong>of</strong> the problems in hydrology and meteorology in Central America<br />

arise from the lack <strong>of</strong> appropriate information, therefore this subject falls<br />

directly in the main theme <strong>of</strong> this Seminar. Although in the area <strong>of</strong> the Project<br />

a few, very few, meteorological stations existed <strong>with</strong> information up to the begin<br />

ning <strong>of</strong> the century, this fact did not help much in the evaluation <strong>of</strong> water re-<br />

sources and much less for the feasibility studies.<br />

the Project provides the necessary coverage so in most <strong>of</strong> the cases the problem<br />

is now<strong>of</strong> "insufficient data" and not <strong>of</strong> complete "lack <strong>of</strong> Information1I. In Central<br />

America it is now possible to undertake the study <strong>of</strong> the potential resources <strong>of</strong> a<br />

basin or for estimating the maximum design flow, even considering that the<br />

stations giving an adequate coverage have o<strong>nl</strong>y two or three years record. With<br />

this information, a model <strong>of</strong> the weather responsible for the major floods can be<br />

prepared.<br />

model which CaA%e transposed in time to the most intensive storms, knowing<br />

o<strong>nl</strong>y data at a few rainfall stations and very iimited hydrological information; the<br />

maximum historical gauge levels par example. The above mentioned method is<br />

now being used for the design flood <strong>of</strong> a large hydroelectrical dam in southern<br />

Costa Rica, and will be published in a future report <strong>of</strong> the Project.<br />

wind, present weather, meteorological phenomena, temperature and humidit y<br />

obtained at two possible sites for the new airport for Tegucigalpa for short<br />

periods <strong>of</strong> observation, have established the need <strong>of</strong> further information for a<br />

meaninful decision. in this case the lack <strong>of</strong> information on cloud cover and vi-<br />

sibility made impossible a decision as in the previous case. Therefore, it can<br />

be seen that the problems <strong>of</strong> evaluation <strong>with</strong> insufficient data differ substantially<br />

from one case to another, and it is impossible to propose fixed solution methods.<br />

The first case shows how the action <strong>of</strong> the Central American Hydrometeorological<br />

Project has made possible the evaluation <strong>of</strong> water resources <strong>with</strong> insufficient in-<br />

formation by means <strong>of</strong> a closed and co-ordinated work between the meteorologist<br />

41<br />

The network established by<br />

Based in this weather model it is possible to develop an isohyetical<br />

Data on


42<br />

and the hydrologist. in the Symposium, it would be important to recognize this<br />

fact. Special enphasis has to be placed in the fact that in the area <strong>of</strong> evaluation<br />

<strong>of</strong> natural resources <strong>with</strong> limited information, the problems will be solved best<br />

wtth a close collaboration between hydrologists and meteorologists, since it is<br />

impossible to separate the aerial and terrestial phase <strong>of</strong> the hydrologic cycle.<br />

The lack <strong>of</strong> hydrological information can be compensated <strong>with</strong> meteorological<br />

information and viceversa. "Elastic relations" which allow to extrapolate the<br />

few observed data, based on some knowledge <strong>of</strong> the mechanics <strong>of</strong> the phenomena,<br />

should be used as far as possible. The fact that the hydrometric data are<br />

based on pluviometric information must not be forgotten, since it provides the<br />

most effective tool for the evaluation <strong>of</strong> water resources.<br />

The scope <strong>of</strong> this<br />

paper makes impossible to detail all the studies <strong>of</strong> the Project. A list <strong>of</strong> some<br />

<strong>of</strong> them <strong>of</strong> which most were published is the following: - Studies for determining<br />

water requirements for irrigation (5) (6) (7) (8). - Studies on run<strong>of</strong>f forecasting<br />

(9) (10). (Already being used for forecasting the operation <strong>of</strong> several reservoirs<br />

in the area). Effect <strong>of</strong> the eruptions <strong>of</strong> the Irazú Volcano on the sediment discharge<br />

<strong>of</strong> the Reventazón River (11) (12). - Sediment computations, specially<br />

bed load, for several projects.<br />

for several projects. -<br />

- Assistance for the computation <strong>of</strong> design flood<br />

Development <strong>of</strong> methods for estimating floods in the<br />

area. Figure 9 shows some flood envelopes for all the Central American area.<br />

Figure 1 O shows some rainfall envelopes for the area (1 3) (14). -Groundwater<br />

studies <strong>with</strong> the analog computer were made for the Project at El Salvador (1 5).<br />

- - <strong>Water</strong> balance studies (16) (17) (18). Figure 11 shows schematically the results<br />

<strong>of</strong> a preliminary study for all the Central American area. Effect <strong>of</strong> the<br />

temperature on the sediment load (19) Figure 12 summarizes the result <strong>of</strong> this<br />

study.<br />

STUDIES WITH INADEQUATE DATA<br />

The inadequacies <strong>of</strong> data arise from (i) incorrect data and (ii) short or insuf<br />

ficient records. Although coping <strong>with</strong> this is one <strong>of</strong> the tasks <strong>of</strong> the Second<br />

Phase <strong>of</strong> the Project, efforts for correcting and extending the available data have<br />

been made up to now. The Manual <strong>of</strong>Instructions <strong>of</strong> the Project (2) details the<br />

techniques suggested for this.<br />

Double mass curves are used for a first check <strong>of</strong> the quality <strong>of</strong> the data.<br />

When errors are found in the hydrological records they are generally due to incorrect<br />

extrapolation <strong>of</strong> the stage-discharge curve. Jn this case several methods<br />

for determining this curve are proposed, some based in hydraulic relations and<br />

other in the hydrological balance <strong>of</strong> the basis.<br />

The filling or extension <strong>of</strong> these records is made either using simple or mgl<br />

tiple corelation andfor estimating the run<strong>of</strong>f based in the meteorological data<br />

and basic characteristics.<br />

Up to now, the checking and extension <strong>of</strong> meteorological and hydrological<br />

records has been made following specific needs, but it is planned to undertake<br />

thin task in a co-ordinated and comprehensive form for all Central American<br />

Isthmus during the Second Pahse <strong>of</strong> the Project.<br />

DATA PROCESSING AND PUBLICATION<br />

One <strong>of</strong> the main Project activities has been to ensure the prompt and adequate


processing <strong>of</strong> the information. This has been achieved, both in meteorology and<br />

hydrology, by means <strong>of</strong> modern systems based in the use <strong>of</strong> electronic computers.<br />

Meteorology. The data collected at the stations are directly written in the<br />

computer entrance forms, except where, due to limitations <strong>of</strong> the observer, this<br />

has to be done in the central <strong>of</strong>fice <strong>of</strong> the meteorological services. The detail <strong>of</strong><br />

the forms and instructions for filling them are indicated in Publication No 84 <strong>of</strong><br />

the Project (20). The results <strong>of</strong> reading the graphs <strong>of</strong> the recording instruments<br />

are also filed on the form. At this stage, the adjustment <strong>of</strong> the graphs by cornpa<br />

rison <strong>with</strong> the direct reading instruments has to be made. Finally, before<br />

punching these data on IBM cards, the consistency <strong>of</strong> the data is checked. This<br />

system allowed the publication <strong>of</strong> the first meteorological yearbook (21) using<br />

services <strong>of</strong> a rented computer. In the future, this system will be changed for<br />

one that.wil1 requiere a minimum <strong>of</strong> services <strong>of</strong> commercial firms. Plans for<br />

mechanizing the reading <strong>of</strong> bands and for preparing some secondary processing<br />

are also being taken into account. Each country will prepare its part <strong>of</strong> the<br />

yearbook on uniform format, so that the preparation <strong>of</strong> a regional yearbook wili<br />

consist <strong>of</strong> joining the national parts o<strong>nl</strong>y.<br />

<strong>Hydrology</strong>. The action <strong>of</strong> the Project has allowed the standarization <strong>of</strong> data<br />

processing, following the usual recommendations in this kind <strong>of</strong> work Therefore<br />

it is now possible to ensure the reliability <strong>of</strong> most <strong>of</strong> the records that are<br />

published. At the same time the deficiencies <strong>of</strong> the previous data are now evident.<br />

Therefore, the revision <strong>of</strong> these old data constitutes a fundamental activity<br />

<strong>of</strong> the second phase <strong>of</strong> the Project. The Project has proposed a complete niechanized<br />

processing, as indicated in the instructions (2) (22), but for the lack <strong>of</strong><br />

computing facilities this objective could be achieved o<strong>nl</strong>y partially. In practice,<br />

the computation <strong>of</strong> stream gauging is made mechanically, either by means <strong>of</strong><br />

programmable calculators or by conventional computers. The use <strong>of</strong> small programmable<br />

calculâtors or mini-computers will be extended to the second phase<br />

<strong>of</strong> the Project. The translation <strong>of</strong> the graphs <strong>of</strong> the limnigraphs has been made<br />

up to now by manually, but the rest <strong>of</strong> the process from there on is more or less<br />

mechanized up to the tables for publication. Mechanization <strong>of</strong> all this process<br />

is contemplated in the second phase <strong>of</strong> the Pr'oject. The rest <strong>of</strong> the processes,<br />

i. e. : rating curves, sediment computations, duration curves, etc.. . , is made<br />

manually or <strong>with</strong> the use <strong>of</strong> the few programmable calculators provided up to<br />

date, but the trend is towards to a complete mechanizations <strong>of</strong> these computations.<br />

The Project has published four regional yearbooks (23). <strong>of</strong> which the last three<br />

have been prepared <strong>with</strong> the help <strong>of</strong> electronic computers. These publications<br />

have received excellent comments by the users <strong>of</strong> the information. The yearbooks<br />

contain in addition to streamflow records, lake levels, sediment discharges,<br />

water quality, duration curves and flood envelopes.<br />

OUTLOOKFORTHEFUTURE<br />

The impact <strong>of</strong> the Project on the meteorological and hydrological activities<br />

in the Central American Isthmus has been impressive not o<strong>nl</strong>y in the amount <strong>of</strong><br />

available information, but in the increase <strong>of</strong> the public concern <strong>with</strong> the importance<br />

*<br />

<strong>of</strong> these. The second phase <strong>of</strong> the project is aimed maidy to completing the<br />

institutional strenghtening necessary to ensure the continuity <strong>of</strong> the activities re -<br />

quired for providing the basic information needed for the social and economical<br />

43


44<br />

development <strong>of</strong> the Central American Isthmus. The Project will have at that<br />

time prepared the local Services for providing all necessary information for pr2<br />

ject design Where this information is insufficient, tools will be available for<br />

mbking a reasonable good estimate which will avoid delaying the implementation<br />

<strong>of</strong>, the Project. When the information is inexistent, criteria for obtaining a mini<br />

mum set <strong>of</strong> data will be well known to the local technicians. Finally, the mete2<br />

rological and hydrological services will be in a good position for influencing national<br />

polices on natural resources, ensuring a rational and efficient use <strong>of</strong> them.<br />

1.<br />

2.<br />

3.<br />

4.<br />

5.<br />

6.<br />

7.<br />

8.<br />

9.<br />

1 o.<br />

11.<br />

12.<br />

13.<br />

14.<br />

-<br />

REFERENCES<br />

PHCA. Manual de Instrucciones; Hidrometría, Publicación No 49<br />

PHCA. Manual de Instrucciones; Estaciones Meteorológicas, Publication<br />

No 70.<br />

-<br />

PHCA. Programa Regional de Instalaciones; Publication No 20<br />

- PHCA. Medida de<br />

Publication N"79.<br />

Sedimento s en Algunos Ríos del Istmo Centroamericano<br />

PHCA. El cálculo de los requerimientos de agua en Costa Rica.<br />

tion No 39.<br />

Publica-<br />

Hargreaves, G. Requerimientos de Irrigación y Balance de Agua; Proyec-<br />

to propuesto Arenal, Costa Rica, Publication No 87 del PHCA.<br />

Hargreaves, G. Necesidades y Requerimientos para Irrigación; Comayagua<br />

y Vecindades, Hondruas. Publication No 86 del PHCA.<br />

Hargreaves, G. Deficiencias de Agua en Centroamérica y Panamá. Publication<br />

No 88 del PHCA.<br />

- PHCA. Previsiones de Escorrentía. Publication N"46.<br />

PHCA. Pronósticos Hidrológicos para la Operación de Plantas Hidroeléctr-<br />

'=&tas del Seminario de Managua) Publication N091.<br />

Basso, E. Sediment measurements in several rivers <strong>of</strong> the Central Ameri-<br />

can Isthmus. Fall meeting <strong>of</strong> the American Geophysical Unnion, San Fran-<br />

cisco 1971.<br />

- Se dimento en algunos rfos del istmo Centroamericano,<br />

PHCA. Medidas de<br />

Publication No 79.<br />

Basso, E. Some Methods for Estimation <strong>of</strong> Floods <strong>with</strong> Limited Information<br />

in One Tropical Area. Second international <strong>Hydrology</strong> Symposium Fort<br />

Collins, Colorado 1972.<br />

-<br />

PHCA. Envolvente de Precipitaciones en el Istmo Centroamericano, Publication<br />

No 81.


15. PHCA. Factibilidad del Riego con pozos en el Proyecto Usulután<br />

dor, Publication No 25.<br />

16. PHCA. Estimación Preliminar del Balance de Aguas en el Istmo Centroa-<br />

mericano; Publication No 18.<br />

45<br />

El Salva<br />

17. Alghren, L. ; Basso, E; Jovel R. Preliminary Evaluation <strong>of</strong> the <strong>Water</strong><br />

Balance in the Central American Isthmus. Symposium on the <strong>Water</strong> Balance<br />

in North America; Banff 1970.<br />

18. PHCA. Estimación preliminar gel Balance de Agdas del Lago de Managua.<br />

Publication No 7 5.<br />

19. PHCA. Efecto de la Temperatura en el Transporte de Sedimentos. Publi-<br />

cation No 6 1.<br />

20. PHCA. Curva de Descarga de Sedimentos. Publication No 8.


46<br />

Figure 1<br />

Main Met e or olog ica 1 Stat i on.


Figure 2<br />

O r dina ry Meteor olog ical Sta tion.<br />

A_....<br />

47


48<br />

Figure 3<br />

Typical Hydrometric Installation.


Figure 4<br />

Prefabricated Cableway Tower.<br />

49


50<br />

Figure 5<br />

Meteorological coverage, before and after<br />

the Project.


Figure 6<br />

Hydrological coverage after the PFoject.<br />

51


52<br />

Figure 7<br />

Sediment rating curve.


AVERAGE ANNUAL PREC/P/TAT/ON MM<br />

Figure 8<br />

Results <strong>of</strong> the Sediment measurements<br />

53


54<br />

Figure 9<br />

Flood Envelopes.


Figure 10<br />

Maximum Rainfall Envelopes.<br />

55


56<br />

Figure 11<br />

<strong>Water</strong> Balance in Central America


StZE OF PARTlCLES MM<br />

Figure 12<br />

Effect <strong>of</strong> Temperature in sediment transportation.<br />

57


ABS TRACT<br />

METHODOLOGY EXISTING FOR ESTIMATING<br />

FREE SURFACE WATER EVAPORATION<br />

by<br />

Francisco Cubas Granado<br />

The purpose <strong>of</strong> this paper is to recount the metodology<br />

for estimating free surface water evaporation and particulary<br />

in the case <strong>of</strong> a reservoir when studing the regulation curves<br />

thece<strong>of</strong> or the regulation-exploitation system, for estatistics<br />

and empirical methods.<br />

RESUMEN<br />

El objetivo de este artículo es recopilar los distintos<br />

métodos para estimar la evaporación en lámina libre y particu-<br />

larmente en el caso de un embalse en función de la regulación<br />

que efectue y del sistema regulación-explotación utilizando m5<br />

todos empíricos y estadlsticos.


60<br />

Al1 water returning to the atmospherd due solely to evaporation<br />

procosoen is an important element in the hydrologic cyole. Moreover,<br />

it io a limitin;? factor for the effecient utilisation o9 free surface<br />

mtor (reservoira, lnken, rivers, etc.).<br />

In vie# <strong>of</strong> its big influonce in the water cycle, wvapqration has<br />

beon the subject <strong>of</strong> innumerable surveys which, because <strong>of</strong> the diversity<br />

<strong>of</strong> sndc pursued in enmh one there<strong>of</strong>, have not given rise to R homopmaour<br />

theory that could be accepted unanirnoualy.<br />

pronent papar io to recount the methoùology exinting for estimating<br />

I'rso rJurfaoo MttCr evaporo.tion.<br />

The sole purpose <strong>of</strong> this<br />

l~nrticularly in the oose <strong>of</strong> a reßervoir,<br />

vhen studgin,? the re$Tlation curve8 there<strong>of</strong> or the re~lation-exploitation<br />

riyntern, formulan are required which nay enable the mapomtion ocourring<br />

to be cotimnted ox evaluated when it occurs on J. large sc¿ile or must<br />

lie taken into account for r.orkinL; out these calculations.<br />

oithcr empirical or on n phgBica.1 basis, may <strong>of</strong>ten mitipte the lack <strong>of</strong><br />

"in nitu" data.<br />

1.2. %ctoro affectinp: the atmomhere's evaporating Dower<br />

Suah formulas,<br />

The a.tmoephore's evaporating power in tho avapoxation rate, ex-<br />

prossed in millimetres <strong>of</strong> water, for tho period determined (mm. <strong>of</strong><br />

uistor per day, for example).<br />

The atmoaphere'o evaporating povier faotors are: the hypometrio<br />

deficit, temperaature <strong>of</strong> the water, temepraturo <strong>of</strong> the air, insolation,<br />

fiperd and turbulence <strong>of</strong> the wind, barornotrio pressure, the quality Of<br />

Lhc irntar and u1ti tude.<br />

In fact, moct <strong>of</strong> these po.ra,metere are corelatecl to each other and<br />

th@ nractica.1 formulae used Tor eva.luntinf: evaporation gfily use8 those<br />

:mmmnotera which ame the moot important or easiest to measure.<br />

1.3. b'actorr, afrectinn wa.-aorcr.tion <strong>of</strong> Tree viater surfacea.<br />

¡?ret? wa.tc,r r:iirfn.cr rv&porntion, ,Tiven that th'e atmosphere's<br />

~wl)n~*it~tj.n,~~ :>oi:e:r ir: cox:t:.i.nt, dencnds on ita ri.rea..l+and dapth. The I?I~.SS


OF imter acto as P. regqlator so that if it is not R large area and<br />

in aliallow, t!ir ternpcrn.tnre <strong>of</strong> thp whole eanilg follovrs the law <strong>of</strong><br />

thermal variation as np1)lied to itr, surfo.ce.<br />

Iprne imter nurfri.ce evaporation in all the less in hot seaaona m a<br />

pentrr in cold venther, the bi,:ger in area and in 'depth the water<br />

napne ie.<br />

It can bo considered that, ba.nically, free surface water evaporation<br />

dc:)enda<br />

-<br />

on:<br />

'ih enorgy availabla from uo1n.r rr.diation.<br />

- The perceptible heat traiiomitted throunh the air.<br />

- 'l'ho airari cnpncity to trianoport imter vapour.<br />

Tlir diff~rent methods propozcd for estimating waporation may be<br />

poiipod into tiro ccitr:;orieo:<br />

EL) Empirioal methods giving rise to Yormulae baaed, mostly, on<br />

BEI lton,a law <strong>with</strong> modi í.'icationo to Che fmtors affeating evaporntion.<br />

b) VathodB <strong>with</strong> n rational basis <strong>of</strong> physicaï theories that may ha<br />

aummrd up ant<br />

- Ilcthotln baned on vater evaluation, consisting in performing<br />

EL water input and output LaLance <strong>with</strong> evaporation being<br />

calculated as an unknown in the balnnoe equation.<br />

- ilethocin harad on the ev<strong>nl</strong>uation <strong>of</strong> energy where the b<strong>nl</strong>ence<br />

mnde io a,n energy enterinc and leaving brzlanoe. The cslculation<br />

<strong>of</strong> evaporation io aimilar to the foregoing g~oup.<br />

- Methodo bnaad on the rnnßri trnnuaort theory vihere cvaporation<br />

in evaluated from the wind cpeed and the vapour preoouro<br />

61<br />

,ymdient between lhe surface i!ntPr and the supwinounbent<br />

lnyerc <strong>of</strong> air.<br />

The irater or cner.3 bo.l:i.nce methods are theoretically suitable for u88<br />

in cn1culntin:y evaporation in 1a.k~~ and reservoirs. Nevertheless, it is


62<br />

difficult to a.p<strong>nl</strong>y tham in prnotice because <strong>of</strong> the error committed<br />

in msaaurin(: some terms in the balance.<br />

Nore rocent renenrch hno drmonstratod that over relatively long<br />

prriodo, >t Icaat one month, the potential ovapo-transp'iration is<br />

conota,nt Pnd o<strong>nl</strong>y depends on climatic factors. This has led the<br />

researchers to Geek empiric formulae depending on these factors.<br />

In pmrcr!.l, empiric rorm<strong>nl</strong>ae Iinvc. been nought after by oo-relating<br />

eva n o r-, t i on wit li t ti e Po 1 lowi n,n met oo ro logica 1 fa0 t c w i<br />

-<br />

The temperature <strong>of</strong> tho air<br />

Incident SOIR.T ro.dia,tion<br />

- Air humidity<br />

- A combination <strong>of</strong> tho foresing<br />

Howover, many <strong>of</strong> these îormulno hnvo to be checked in practice<br />

b(?îore using them on uurfnces or areas which are not thoee where<br />

they were first obtained. Their contrast is obtained by oelibrating them<br />

by actual measurements <strong>of</strong> evapora.tion on the basis <strong>of</strong> ihatruments al-<br />

ren4dy exintin,? (rafte, tanice, evmorimeters, ato.). Xn fact, the o<strong>nl</strong>y<br />

prccodure fox direot meanurement <strong>of</strong> evaporation lies in solving a water<br />

bn lance.<br />

Let uö romnmber that:<br />

. The hycrornetric deficit or atmosphere saturation deficit,<br />

obtained ao n difference between saturating vapour tenaioh Fe lo the<br />

irater nurfme tompera,turr T and the actual vapour tension pa in the<br />

ri.mbisnt air, ir, the main ;,pa.rameter <strong>of</strong> the atmoophere avnpomting QOWBF.<br />

- 'The hyqrometric condition or r3eiFee E <strong>of</strong> thc air<br />

rcTrm5.n:: to tho viater nurfoce temperature T is the quotient betmen the


the tencione 1%. 8.nd Pe ( f.<br />

= Fan/fe) and represents the relative<br />

humidity or -tha air.<br />

- The psiahrnmetric diffarence, obta.ined an a difference<br />

b


64<br />

it in not p017::ii~i.e to expect a,nythin!y rno:t*e Lhm an a.pproririo,tioii froin<br />

this typo OP rrtimnte, a.ü IJC? have u.lreedy mid.<br />

The rooults obta.ir.eci in the evapora.tion tanka must be multiplied<br />

by tho trin!c coefficient, which will be peculiar to ench type, in order<br />

to oritir!ia.-tc! the actual evawration.<br />

ïri addition, the pa.rn.meter va.luec wc h3.w to consider are those<br />

exia Lin:: in the air-water surface intoqhase which<br />

to rdiwniire wit1 iro Iin,vo to observo them at the inost ncceosibla points where<br />

i.1; il: niipponcd that their values Co-rrlíite well <strong>with</strong> those which would<br />

h:i.vr beon obt:iiiiccl in tho micl intarphase.<br />

2.3.1.-n0s forrnula<br />

are generally impoccible<br />

In 1802, I):i.lton deduced that , just likc! other parameters, evaporation<br />

on a. free mter surface is proportioria.1 to the hygrometric deficit.<br />

hi2 cvo.por:i t ion forrnula:<br />

E = (Pc? - Fa) = o( (Fe - Fa.), depending on the hygrometric<br />

or, what ir: tho ao.rne8<br />

II<br />

deficit<br />

= d :pe (i-€), drprndin,y on tho saturatinC;<br />

vapour t enci i on and hjr$romet ri c<br />

de I;r ea,<br />

IIence,


In thc Pirat expression <strong>of</strong> Uaiton’s forinuls, II represents the total<br />

:)resnurc! (,pm plus water vapour) above the evaporatine ourface. H’s<br />

i<strong>nl</strong>.‘lirence o<strong>nl</strong>y intervenes ac a corrective term in evaporation problem0<br />

riml m;ry br tiiccanxlsd in R. rirst approximation.<br />

‘i’hc cocPPioicnt 4 in cha.racteri::tic <strong>of</strong> the meterological station under<br />

o o iin i rl erat i on.<br />

‘J!hi:i formula civon very vRria.ble evo.poration valuos Prom one plme to<br />

i’i.notJior, uhioh limite iti; une.<br />

in irhiolri:<br />

- i3 i: the water evaporated in o. month <strong>of</strong> n days.<br />

- Po (in mrn. <strong>of</strong> r.lg.) ir: tho nvera,p saturz,tin,s water vapour<br />

tension nt temnoraturs T. This in obtained from hygrometric<br />

tnbles.<br />

- Fn. (in min. <strong>of</strong> JIg) in the actual a.verage monthly water vapour<br />

ttrnoion <strong>of</strong>‘ tho fiar nt the tima <strong>of</strong> tho T readings. Thin ia<br />

obtained by multiplying Fe by the hypometrio deGree.<br />

- I3 (in min. o.€ !!go) in the Lx1,roniotric axerage monthly pressure.<br />

- T (in QG) ia the a,vora.ge monthly tomporature.<br />

65


66<br />

vhore:<br />

- E (in mrn.) io tho evn7oration in 24 houm.<br />

- U, the :i.riiìnesn. 'Phi:: is calculated by tha equation D=lO@-humidity<br />

at u ntmocphereo.<br />

- V (in miles/hour) io the :i,vera,ye wincl opeed over 24 hours.<br />

- 'I' (in QB), .the ::.vcrnp temperature over 24 hours.<br />

3) Tiorton's eqiiation:<br />

i - p + r Y - i<br />

W-h<br />

<strong>with</strong> P i o for n inrater ahcet irith 2. crflall ßurfaoe.<br />

4) Rohwer' a equation:<br />

E=O.7'(1 (1./16s-0.01:36 n1.Y. (Fda)


D = averaee barometric pressure.<br />

C numerioal coefficient<br />

1% = prenent vapour pressure<br />

Be sotimating vapour pressure<br />

h m lblative humidity <strong>of</strong> tho air<br />

P = fraction <strong>of</strong> time during which the wind is turbulent.<br />

t = nurnber cf days.<br />

Ta = average tempwature cf the air<br />

Tw = average temporature <strong>of</strong> surfaoe water.<br />

N P monthly wind speed average<br />

'y wind factor,<br />

&3.6. ûbnarvation<br />

The dií'ïiculty in applying these formulae lies in that the<br />

mnjoiity <strong>of</strong> the vnrisbles appear as nn average vsluo and it is possible<br />

io2 their valueci not to represent their total VQlUe well.<br />

'1.1. Critime on the mothods<br />

Tho methods based on the enerm balance enter more into the<br />

field <strong>of</strong> research than in that <strong>of</strong> praoti-1 usage.<br />

contrant or chock purposes.<br />

or tima which are nufficiently long.<br />

67<br />

Yhey can be usied for<br />

They can give evaporation Values over periods<br />

Tho methodo based on the water balonce or OR ,th0 mass twnspcrt<br />

ihoory 1i.m likawins mur@ suitable for uoinc 81 ohecke than fa2 graatioal<br />

utla~a. ThePie are, however, more recomendable for invsetigating svapomticn<br />

over ohort periorln <strong>of</strong> timo ( a few hours).<br />

'Pheee nothaaa also always hitve to be chaoked &na contrasted, as<br />

hnppene <strong>with</strong> tho ampirio mothods, on the basis <strong>of</strong> direot eveporntion mean-<br />

iiromonto, bccnuee <strong>with</strong>out these contTaStB and the modifications resulting<br />

thor<strong>of</strong>rom, oounte-active resulto may be given.


68<br />

In view oi the faet thRt in the imter or energy balance<br />

rn(>thods it is difficult to measure the terms appearing for evaporation<br />

ctiidy on free inter eurfaccs, the use <strong>of</strong> methods based on the mass<br />

transport theory is more otxongly recomnendad.<br />

3.2. :mos trmmort methods<br />

In masE tmnsport methods, the value <strong>of</strong> evaporation is entimated<br />

ïroin the wind opeod aiid the vapour pressure ,?radient between the surface<br />

water cind the laysra <strong>of</strong> air, bu wing a formula <strong>of</strong> the typez<br />

R = ri fl (u) f 2 (ao - 1%)<br />

iilioro II ir. the pronortionality constant commo<strong>nl</strong>y known as the 'ImaSB<br />

tmmiport coePí'iciontlt, 21 and f2 nre knovm functions <strong>of</strong> the wind apeed<br />

anti vapour prop nure {yadi snt res? cct ively.<br />

The í'o.re{:oin,y formu1t-c ir: rrritten, in its more uma1 forrnt<br />

iihioh enn.bleii E to be calculnted if i:e know the value <strong>of</strong> H beforehand.<br />

3.7.1. Cp.lcula.tin,s !I<br />

N'E: value in obtained in two waynr<br />

1) Dy catirnntiny: the evaporation by other methods and dividing<br />

i I; by ths product U.(Fe-Fa)<br />

2) Dy obtaining n linear c.clyreocion arqmtion betwnn the chango<br />

[)I' tlio r:tnto OP the wa.tcrl\lI md. thr product U(l%-%), in the following<br />

i.!ayg<br />

A 11 fl.IT. (F'c?-~) 5 C<br />

iiherr bhc coii:;to,rit C giver. the avcrn,Te loss from filtration in the free<br />

1I:l:LPr ::iii..l'n.cc.


69<br />

Thr ficrr t pro.-,edure for i”ind,inf; the mass transport coefficient<br />

mtriiirec n. qrncise water balance crhich forces exact measuring o€ the input<br />

and output or the surface wa.t,or unùer study to be ca,rried out.<br />

not; bc prn.ctica.l in till CRDBB.<br />

This may<br />

The nocond. procedure in cntisfmtory if the losses not due to<br />

rva.pora,tion do not vary to any ,great extent or are not the most part <strong>of</strong><br />

tho mtnr loet from thc surface in question.<br />

It ia interesting to look into the aeroAynarnic formula, here,<br />

that cnnbloo T7 to bc calouliited RB n function <strong>of</strong> the shape (perimeter) and<br />

six0 (nroa) <strong>of</strong> the free irater nurface, i+moncFt other variables.<br />

3.%.2. The rnntooroloaia<strong>nl</strong> .station rrcruirod Eor viorking out the<br />

a ero dynnmi c met hod<br />

The fo11owin:y rnateriii.1 iu necesnsry for the typical station:<br />

- A Ch:::: A raft on the edge <strong>of</strong> the water surface.<br />

- ‘l‘wo CUD type wind Buceo<br />

- %io limnigrnphs<br />

- A water tempersture recordar.<br />

- A hy,irothermograph and a pyrmometro.<br />

- Several plqvioTra.phs cet out all around the perimeter <strong>of</strong> the<br />

ourfnco in question.<br />

J.?. 3. kiorkinrt out the evanore,tion esuation<br />

Ilvnpomtion ia, <strong>with</strong> rajytrd to i’aorkinc out the formula mentioned<br />

in 3.2.1., ri. diffunion proceso in which the water vapour is transported<br />

froin the tinter nurface to thn Fi.tmocnherc.<br />

Vrrtichl trn.nni)orta.tlon <strong>of</strong> tho vo.nour depends on thn effective-<br />

naon <strong>of</strong> the tur.hiilent mixture in the lor:er layers <strong>of</strong> air, r.nd the main<br />

i<strong>nl</strong>.‘liisnce tharcin in tho wind npcred and ro1ir;hnaon OP the surfa.ce. A turb<br />

ii1an.t coefficinnt ban be found which varies rrith the vind cpeeù Por each


70<br />

tlotcrininotl niirfnco, ir1 thc caso whcrrby the narodynarnio characteristics <strong>of</strong><br />

tlic 1::tter romain conntant.<br />

The tramsport <strong>of</strong> the vapour takes place under the vapour<br />

~)recsure {:radient cet up between thc vapour saturation pressure' at the<br />

curlno


) It iu accci>tcri thnt the laminar sublnyer ia <strong>of</strong> a negligible<br />

thicknsnn nntl thnt tho turbulent boundary layer extondB below the<br />

wrfaca water.<br />

c) The riincl cpeed pr<strong>of</strong>ile is given by the law:<br />

m<br />

u(z) = aZ<br />

tihere t h conntc?.nto 2 and fi depend on the etability nnd roghness <strong>of</strong> the<br />

: : iirf ace.<br />

Combini'iig the equations given for E ana T, we havez<br />

From $ho wind pr<strong>of</strong>ile i: found:<br />

irliioh a.lloi~n us to irrite:<br />

m-1<br />

dz. E. z<br />

Integrating for<br />

E = <<br />

u2<br />

Throou,yh a,nalap;y trith the fluid flow through & unifom tube,<br />

it c m be shotrn thnt:<br />

(2m+l) (di)<br />

O,:! Q.2 0.4, 1,8<br />

U<br />

<strong>nl</strong>iich civer: rice to tho followinc expreesion for E:<br />

71


72<br />

where: - -<br />

Tho a.vern.go speed value U is equa.1 to the product<br />

(K2. IJ2)<br />

- K1 and 1 2 aro numerical constants.<br />

- V ic the kinetic viscosity.<br />

- e,<br />

X in riven by X <strong>with</strong> A and P being the area and the<br />

perimeter <strong>of</strong> the surface under study.<br />

139 expresein,y the aaecific humidities as a function <strong>of</strong> the<br />

vapour t en0 iam, the evnpora.tion equation becomes t<br />

if 6 is tho thickncco <strong>of</strong> the turbulent layer, it is easy to show that:<br />

and thon:<br />

ii,o-rotlyrinmic rnet hod.<br />

Kl=m+l;K2= 1 .<br />

m 4 3<br />

Tho ciluationn (1) ; ml (7’) aro the formuin proposed by thio<br />

In order to facililate the calculation <strong>of</strong> evaporation in small<br />

. ux’hcrs, lhe Col loiri<strong>nl</strong>: hypoihcocs can Uc rnnde:


3.2.5. Conclusiono<br />

a) Give the wind pr<strong>of</strong>ilo exponent the valus<br />

1<br />

m=s<br />

b) Take a, value <strong>of</strong> 6 metren a6 the thickness <strong>of</strong> the turbulent<br />

boundary layerr<br />

Thon, tho mass tranoport coeffioient ie given by2<br />

-4 p<br />

N = (2.62 x 10 ) (A)<br />

o1 2<br />

Thena fortnulno ara vary useful when, st al1 times, tho area<br />

nnd perimeter <strong>of</strong> the \ranter surface under survey are known. They are very<br />

important, then, for applying to tho study <strong>of</strong> the evaporation change that<br />

would OCOUT in n re~ervoir in every situation there<strong>of</strong>.<br />

In order to oalculate the value <strong>of</strong> N, th4 values for U, Fe and Fa<br />

obtained at R meteorological station near the zone under survey can be<br />

UCoa.<br />

The inclusion <strong>of</strong> the perimeter and area in the formula for<br />

c<strong>nl</strong>cutnting I compenses the variability OS this mass transport co<strong>of</strong>fioient.<br />

The application <strong>of</strong> this formula to very irregular ehapad water<br />

ririrfiloao may lead to an excaesiva ca.lculation <strong>of</strong> evaporation because <strong>of</strong><br />

the effect <strong>of</strong> tho perimeter in the formula. In such caees, to mitigate<br />

.thio exoesn, we c ~ maker n<br />

u. Thort hw&t WIo3 t zmanOo formula<br />

‘Phis expraeoeo evaporation by<br />

(in inches/hour)<br />

73


74<br />

EJ h ere:<br />

- F1 ana B'2 are the vapour pressures (in inchee <strong>of</strong> Hg) at<br />

<strong>nl</strong>titudeo hl and hp.<br />

- U1 and U2 are the winü speeds (in m/h) at the said altitudes.<br />

- iri thc nvertrn,Te temperature (inop) <strong>of</strong> the air between altitudee<br />

hl n.nd h2<br />

3.4. PItnmnn's formula<br />

'Chio haCj tho expresoion:<br />

E I 0.4 (1 4 0.17 U) (Fe - Fa)<br />

whore E io civen in mm/day and the wind veloaity U, at 2 m. height, in<br />

mile5 per hour.


UT i3LIOGRAPlIY<br />

tl;dodon en uso y DU empleo para cdlculo de la eva,potranspira~idn~~,<br />

by Paustino Lonnno Cnrcfa.- February 1964.- Publication no. 23 <strong>of</strong> the<br />

C.E.11. OP tiio Xiriistry <strong>of</strong> Public Blorks.<br />

" L'hytl xo loei e d R 1 ' ingeni eur", by C. ii6rn6ni &$as. -Publishad by Eyro 1 l es.<br />

'llI:indbaok <strong>of</strong> applied i!:;ciro1.ogyW, by Van Te Chon.-Published by Elei.c-Graw Hill.<br />

"Netodos prdcticoo PRM. el estudio hidrologico completo de una cuenca",<br />

by R. fieran.- Published by the C.F.H. <strong>of</strong> the Ministry <strong>of</strong> Publio Works.<br />

75


ABSTRACT<br />

GEOHYDROLOGICAL STUDIES IN<br />

SMALL AREAS WITHOUT SYSTEMATIC DATA<br />

Emilio Custodio Gimenan<br />

Frequently are needed studies to pr<strong>of</strong>it ground water resources by<br />

means <strong>of</strong> wells or galleries in areas <strong>with</strong> non existing data on river<br />

and spring flows and on recharge, but in which injuries may be imposed<br />

on pre-existing water uses. One begins looking for available data in<br />

several kinds <strong>of</strong> files and inquiring local people. Moreover, the size<br />

<strong>of</strong> the existing water concessions and their specific use allows the<br />

appraisal <strong>of</strong> mean and base discharge. The pluviometry is obtained though<br />

the closest stations, and some corrections on judgement. The key problem<br />

is the effective ground water recharge calculation, beeing solved<br />

through the consideration <strong>of</strong> three independent points <strong>of</strong> view:<br />

1) modified hydrometeorological balance<br />

2) ground water flow calculation based on existing or estimated data<br />

3) salt balance, specially chloride, based on water - table chemical<br />

analysis and rain water composition<br />

Generally is possible to get coherent results. As an illustration,<br />

three cases are presented:<br />

a) Montroig Area (Tarragona). It is a coastal plain<br />

b) Riera de Carme Basin (Barcelona). It is a limestone formation<br />

c) Famara Massive (Lanzarote, Canary Islands). It is a basaltic<br />

formation in an arid clima<br />

Key words: scarce data, ground water, chemical balance, perameter<br />

estimation, subterranean flow, case histories.<br />

RESUMEN<br />

Con frecuencia deben realizarse estudios para aprovechamiento de -<br />

aguas subterráneas mediante pozos o galerías en zonas en las que exis-<br />

ten datos sobre caudales de ríos y fuentes, ni sobre la recarga, pero<br />

en las que se esperan afecciones a usos ya establecidos. Se procede a<br />

la búsqueda de los posibles datos en los archivos y al interrogatorio<br />

de los habitantes. Por otro lado la importancia de las concesiones --<br />

existentes y su destino permite apreciar los caudales y los caudales -<br />

de base. La pluviometría se interpola a partir de las estaciones más -<br />

próximas efectuando correciones estimativas. El problema clave es el -<br />

cálculo de la recarga eficaz a los acuíferos y se ataca bajo tres pun-<br />

tos de vista:<br />

1) balance hidrometeorológico modificado<br />

2) cálculo del flujo de agua subterránea a partir de datos disponibles<br />

o estimativos<br />

3) balance en sales, en especial en cloruros, a partir de los análisis<br />

del agua freática y de la composición del agua de lluvia.<br />

En general se obtienen resultados coherentes. A título de ilustración<br />

se comentan tres casos prácticos:<br />

1) área de Montroig (Tarragona). Es un llano costero<br />

b) cuenca de la Riera de Carme (Barcelona). Es un macizo calcareo<br />

c) macizo de Famara (Lanzarote, Islas Canarias). Es un macizo basálti-<br />

CO en clima arido.<br />

Palabras clave: datos escasos, agua subterránea, balance químico, esti<br />

mación de parámetros, flujo su,bterráneo, casos reales.<br />

9; Comisaria de Aguas del Pirineo Oriental y Curso Internacional de Hidrología<br />

Subterránea. Barcelona.


78<br />

1. INTRODUCTION -<br />

Frequently, geohydrological studies are made in small basins<br />

where problems <strong>of</strong> water use exist or are foreseen. To solve<br />

these problems, data is required which has not usually been<br />

compiled or taken down. Usually, there are o<strong>nl</strong>y a few<br />

pluviometers in the area, and are <strong>of</strong> dubious reliability; there<br />

are have no measurements <strong>of</strong> the water courses as they are small<br />

or ephernerous, and the springs or sources have not been<br />

controlled. On the contrary, the exploitations established may<br />

be <strong>of</strong> a the same order <strong>of</strong> magnitude <strong>of</strong> the total available water<br />

resources.<br />

It is not possible to give general working norms, since<br />

there is a very wide range <strong>of</strong> climatic, geological structural<br />

conditions etc. After setting out some general rules, three<br />

cases will consequently be discussed, showing notable differ-<br />

ences in conditions, discussing the form <strong>of</strong> operation and the<br />

guarantee <strong>of</strong> the estimations made.<br />

The main objectives <strong>of</strong> the work to be carried out may be<br />

summarized as follows:<br />

a) Knowledge <strong>of</strong> the groundwater flow pattern, including<br />

recharge, circulation and discharge. The identification<br />

<strong>of</strong> the main aquifers is one <strong>of</strong> the stages to be covered.<br />

b) Obtain a reasonable hydraulic balance, if possible<br />

coherent <strong>with</strong> the results <strong>of</strong> various independent<br />

estimation processes.<br />

c) Analysis <strong>of</strong> the existing and projected water up-taking<br />

ernphasing the possible interferences between them and<br />

<strong>with</strong> the water courses and springs, and also, if possible,<br />

obtaining the foreseen user's extraction programme.<br />

It is important to remember that one is obliged to cany ont<br />

these studies should be during certain months along or at the<br />

most <strong>with</strong>in a year; consequently the o<strong>nl</strong>y data available to<br />

compute the components <strong>of</strong> the mean hydrological cycle are<br />

those existing at the time. The hydrological data taken during<br />

the study are not mean values, but depend on the climatic<br />

conditions during the study and past actions, and they should<br />

consequently be corrected to obtain a mean or pre-established<br />

situation.<br />

One needs to solve the problem by various channels as<br />

independently as possible. In principle, they may be included<br />

in any <strong>of</strong> the following three large groups:<br />

a) Hydrometeorological methods.<br />

b) Geohydrochemical methods.<br />

c) Hydrodynamic methods.


Details <strong>of</strong> these methods will not be discussed in this<br />

paper as their general lines are well known. For further<br />

details, the reader may consult the two volume text:<br />

"Hidrologia Subterránea" coordinated by M. R. Llamas and E.<br />

Custodio, at present being printed by Ediciones Omega, Barce-<br />

lona.<br />

The investigation and special methods are expressly<br />

excluded, since this is not the right place to discuss them,<br />

but the studies to solve the real problems raised and which<br />

require a prompt answer and an order <strong>of</strong> magnitude <strong>of</strong> their<br />

confidence. More delicate works can later be set up to find<br />

or affirm the basic estimations and hypothesis.<br />

2.- DATA COMPILATION AND SYNTHESIS<br />

The data compilation and synthesis work is necessary in<br />

any hydrological study, but in small basins <strong>with</strong> insufficient<br />

data, it assumes peculiar features, since it is frequently<br />

necessary to test all possibilities in various aspects.<br />

First, it should be defined the sort <strong>of</strong> is necessary data,<br />

to later define the search places where data can be found and<br />

finally establish the methodology <strong>of</strong> compilation and elaboration.<br />

When discussing the three factors defined in the introduction,<br />

will be specified what data is necessary, if they already exist.<br />

The places where the data can be found vary from one country to<br />

another, and from one place to another and a list <strong>of</strong> them would<br />

prove very tedious. The <strong>of</strong>ficial centres <strong>of</strong>ficially in charge <strong>of</strong><br />

filing and compiling certain types <strong>of</strong> data, and their publications<br />

should be permanently in mind. The consultation and help <strong>of</strong> local<br />

experts may prove essential, and also the water-well companies;<br />

furthermore one should not forget the local people as well,<br />

<strong>with</strong>out whose collaboration many important aspects may pass<br />

unnoticed, and even essential data or also some time the main<br />

pr<strong>of</strong>ited sources and wells.<br />

Except perhaps for very little developed areas, <strong>with</strong> abundant<br />

water resources, the local people have a noticeable, <strong>of</strong>ten<br />

unconcious, knowledge <strong>of</strong> the local hydrology, <strong>of</strong> a qualitative<br />

nature, but which may be quantized and built up <strong>with</strong> adequate<br />

surveys. This method <strong>of</strong> obtaining data not o<strong>nl</strong>y saves a lot <strong>of</strong><br />

work and time, but perhaps is the o<strong>nl</strong>y way <strong>of</strong> obtaining historic<br />

knowledge and erroneous conclusions, by building a logical<br />

structure on not well foundes basis.<br />

A good knowledge <strong>of</strong> the local idiosyncrasy and people<br />

customs is needed for these tasks, and they should not be given to<br />

under-qualified people who raise suspicions and are not capable<br />

<strong>of</strong> handling, screening and correcting the information received.<br />

Generally speaking, the local inhabitants are not very<br />

willing in principle to reveal their knowledge, out <strong>of</strong> fear<br />

79


80<br />

it may prejudice them. The interviewer should be prepared<br />

to “waste time” in winning over their confidence and present<br />

the survey <strong>with</strong>out them noticing it, making notes discreetly.<br />

One should try to get the information to flow out on its<br />

own, just channelling it and loocking for the interesting<br />

details.<br />

It is generally difficult to pass judgement on the data<br />

obtained in this way and it requires a great critical sense,<br />

a good knowledge <strong>of</strong> the area and a continuous contrasting.<br />

The collaboration <strong>of</strong> the local inhabitants is most<br />

important in locating springs, bore-holes, wells, etc., and<br />

to establish the most important characteristics <strong>of</strong> them. On<br />

the other hand, the local corporations and Town Councils are<br />

usually important sources <strong>of</strong> information.<br />

3.- - OBTAINING THE OBJECTIVES<br />

To obtain the objectives listed in the introduction, it<br />

is frequently necessary to set up a general water balance in<br />

homogeneous part ia1 areas , bearing in mind the limitations<br />

and inevitable errors they contain. One should not o<strong>nl</strong>y see<br />

an equation between mean values in the word ”balance”, but<br />

also the possible variations in the different values<br />

intervening and their interconnection (SC). This is specially<br />

important when the ground-water reservoir capacities available<br />

are small in relation <strong>with</strong> the water volumes to be exploited<br />

annually, giving rise to accentuated seasonal effects.<br />

This raises the problem that in one <strong>of</strong> these small areas<br />

where data is scarce and not very reliable, an elaboration<br />

and definition is necessary, <strong>with</strong> a depth not common in the<br />

case <strong>of</strong> large basins.<br />

One <strong>of</strong> the greatest unknown factors is usually the<br />

infiltration and recharge to the aquifers , which should be<br />

estimated using the best methods available.<br />

4.- -- HYDROMETEOROLOGICAL METHODS<br />

The hydrometerological methods to establish water balance<br />

and define deep infiltration are the classical ones, except<br />

in arid or semi-arid areas, where a daily computation (10)<br />

must be made to avoid excessive errors in monthly data handling.<br />

(*) The autor is conscious <strong>of</strong> the limitations <strong>of</strong> the water<br />

balance but feels it is a very useful tool if the person<br />

handling it is aware <strong>of</strong> its restrictions and errors, and<br />

the variability <strong>of</strong> the involved magnitudes.


The pluviometry must be obtained through the usually<br />

scant stations available, which generally do not cover the<br />

mountainous parts where the pluviometry is usually greater<br />

than in the lowlands.<br />

A first measure is to correlate the different stations<br />

and complete the series, trying to obtain a definition <strong>of</strong><br />

areas <strong>with</strong> the same rainfall (quantity, distribution and<br />

intensity), making estimated altimetric and topographic<br />

corrections.<br />

Next, the graphs <strong>of</strong> accumulated deviations <strong>of</strong> the<br />

pluviometry should be drawn, and these will be the basis <strong>of</strong><br />

the study on the springs and water courses discharge and<br />

water-level in the wells. With these relations hips, the<br />

conditions observed during the study will be changed into<br />

mean conditions or those conditions <strong>of</strong> particular interest<br />

in order to ascertain extent the pluviometric variations<br />

influence the ground waters.<br />

When estimating the surface run<strong>of</strong>f, the knowledge <strong>of</strong><br />

the local people may provide interesting data helping the<br />

morphological appreciations made. Frequently, local people<br />

can tell the heights and frequences <strong>of</strong> water in the river<br />

beds under various circumstances, and thus draw an initial<br />

scheme <strong>of</strong> the system. When there are permanent waters is<br />

frequent the presence <strong>of</strong> manufacturing or irrigation<br />

installations which use them, and in this case they are usually<br />

dimensioned for the base discharge or some figure slightly<br />

higher. A knowledge <strong>of</strong> this discharge and the user's remarks<br />

are <strong>of</strong> great importance, as it permits the characteristics<br />

<strong>of</strong> the surface hydrology to be reconstructed approximately,<br />

based on one or various river flow measurement campaigns in<br />

selected points. The absence <strong>of</strong> noticeable surface uses by<br />

means <strong>of</strong> simple derivations, may be a clear sign <strong>of</strong> temporary<br />

discharges.<br />

Rarely are there homogeneous and well defined crops in<br />

these basins, and frequently there is forest, brush, bare<br />

rock areas and great slopes, and consequently the classic<br />

evapotranspiration estimations are not applicable. Added to<br />

this is the rare availability <strong>of</strong> the necessary meteorological<br />

data, excepting some thermometric station. Thorntwaite's<br />

method (9) may give an initial idea <strong>of</strong> the potential value.<br />

Successive balances based on an estimated field capacity,<br />

enable the real evapotranspiration to be calculated by<br />

difference. In low pluviosity areas, <strong>with</strong> a high evapotrans-<br />

piration capacity, the errors may be very important and a<br />

value <strong>of</strong> the infiltration plus surface run<strong>of</strong>f below 10 or 20<br />

per cent <strong>of</strong> the annual mean pluviometry, may o<strong>nl</strong>y give a mere<br />

indicative figure. In this case, other balance methods should<br />

be established.<br />

81


82<br />

5. GEOCHEMICAL METHODS<br />

In studies where there is insufficient data, the chernical<br />

characteristics <strong>of</strong> the ground water may be extremely useful,<br />

if they are correctly interpreted.0ne <strong>of</strong> the chief advantages<br />

<strong>of</strong> the geochemical methods lies in the low variability <strong>of</strong> the<br />

chemical composition <strong>of</strong> the ground waters, averaging the<br />

annual and seasonal variations, and in the low cost <strong>of</strong> an<br />

overall indicative analysis if there are sufficient points for<br />

the sampling. The interpretation however, is a delicate affair<br />

and should be made by an experienced person <strong>with</strong> sufficient<br />

knowledge <strong>of</strong> the local hydrogeology and geology.<br />

On the one hand, the geohydrochemical methods may help<br />

to establish the patern<strong>of</strong> the groundwater .flow, comparing the<br />

analysis <strong>of</strong> various points <strong>of</strong> water, using graphs (mai<strong>nl</strong>y<br />

those <strong>of</strong> logarithmic vertical columns or Schoeller's;<br />

triangular <strong>with</strong> three fields, or Piper's; and Stiff's modified<br />

polygonals) (8) and ionic indexes, helped if necessary by dis-<br />

persion diagrams (correlation between two chemical charac-<br />

teristics (8).<br />

From another point <strong>of</strong> view, the chemical composition <strong>of</strong><br />

the ground water may further information on the recharge. For<br />

this, it should be admitted that the aquifer does not notably<br />

modify the salt contents <strong>of</strong> the infiltered water. To remove<br />

the possible influence <strong>of</strong> solution and modifying phenomena<br />

such as ionic exchange, redox reaction aggressiveness to<br />

carbonates, precipitation etc., the chloride ion is taken as<br />

reference, which can o<strong>nl</strong>y be changed by an addition <strong>of</strong> a new<br />

chloride ion by the aquifer. In alluvial aquifers, limestone,<br />

dolomite, etc., no important additions are expected if for<br />

from the sea.<br />

In this case, all the chloride <strong>of</strong> the ground water would<br />

come from rain, and therefore we can state: (2) (4) (5) (8):<br />

(P - E) . Ca I . Cs<br />

Where:<br />

lr<br />

P annual mean pluviometry<br />

E = annual mean surface run<strong>of</strong>f<br />

I = annual mean deep infiltration<br />

Ca mean concentration in rain water chloride<br />

C, = concentration in ground water chloride<br />

It can be easily deduced that:<br />

I (F - E) cs


Some care is required when applying the method. One is<br />

that the activities on ground surface should not modify the<br />

chloride contribution. The method therefore has a dubious<br />

application in intensive crop areas <strong>with</strong> irrigation or in<br />

areas <strong>with</strong> disposal and infiltration <strong>of</strong> important amounts <strong>of</strong><br />

direc.t residual waters or though tippers, etc., and also in<br />

immediate coastal areas <strong>with</strong> direct sea influence.<br />

The Cs value may easily be obtained from the ground<br />

water analysis provided this is stable. If not, the method<br />

should not be applied. The value <strong>of</strong> Ca is not normally known,<br />

as it is rare to find systematic analysis <strong>of</strong> the rainwater;<br />

during the study some analysis <strong>of</strong> this rainwater may be made,<br />

but before taking a content as the mean value, various deter-<br />

minations must be compared, since this content varies each<br />

season according to the origin <strong>of</strong> the clouds and even <strong>with</strong>in<br />

a same rainfall. During initial estimation attempts, it may<br />

be considered that in areas several dozen km. away from the<br />

sea, the chloride content is generally less than 10 ppm, and<br />

that in areas some hundred kms from the sea, it is less than<br />

1 ppm (8).<br />

In areas near the coast, the variations and contents may<br />

be higher. Close to populated areas, in particular if these<br />

are industrial, high values may also occur.<br />

The soluble salts brought along by the infiltrated water,<br />

may not o<strong>nl</strong>y come from the rain, but also from the atmospheric<br />

dust and this is another reason for doubt. In principle, the<br />

rainwater collector units should also collect the atmospheric<br />

dust, but at a sufficient height to avoid the local particle<br />

movement at low level.<br />

Experience shows that the method is good in arid areas,<br />

where the rain concentration due to evaporation is high and<br />

the surface run<strong>of</strong>f is scarce. The result is more problematic<br />

in the more humid areas where the infiltration is an important<br />

fraction <strong>of</strong> the pluviometry and where the surface run<strong>of</strong>f is<br />

notable and errors in estimation greatly influence the P - E<br />

value. However, in these areas it is possible to apply the<br />

salt balance in order to separate the components <strong>of</strong> the<br />

hydrogram <strong>of</strong> a gauging station, if a sufficient chemical<br />

analysis series is available during a rainfall and the later<br />

period, but the author has no direct experience in such cases<br />

(12) (15).<br />

6. HYDRODYNAMIC METHODS<br />

The hydrodynamic methods try to determine the infiltration<br />

based on the hydraulic characteristics <strong>of</strong> the aquifer and the<br />

piezometric surface. The most correct way <strong>of</strong> making the balance<br />

is using a simulation model, but this is generally a detailed<br />

study phase and requires a notable amount <strong>of</strong> data (13).<br />

83


The methods given herein refer to simple situations <strong>with</strong>in<br />

the study area <strong>with</strong> a well defined piezometric surface and<br />

<strong>with</strong> a pattern and slope which scarcely varies throughout the<br />

year, so that an almost stationary situation can be imagined,<br />

<strong>with</strong> a well differentiated recharge and drainage area. The<br />

method means that the flow <strong>of</strong> water per unit <strong>of</strong> transversal<br />

width is equal to the mean recharge upwards. The application<br />

means having the mean transmissivity <strong>of</strong> the aquifer in the<br />

analysis area obtained by means <strong>of</strong> some pumping tests and<br />

bore-holes and that the piezometric surface has been observed<br />

in a sufficient number <strong>of</strong> points to precisely know the mean<br />

gradients. The estimation is a mere application <strong>of</strong> Darcy's law.<br />

q T. i.<br />

where q = discharge per unit width<br />

T = transmissivity<br />

i = piezometric gradient<br />

Darcy's law is generally valid in most normal circumstances.<br />

7. EXAMPLES<br />

To illustrate the above, three examples have been chosen,<br />

corresponding to studies in areas <strong>of</strong> less than 100 Km2, one in<br />

a semi-humid area, another in a semi-dry area and the other in<br />

a sub-desert climate. To better locate the data, the example<br />

has been broken down into multiple paragraphs:<br />

7.1 Montroig Area<br />

Location.- S.W. <strong>of</strong> Tarragona, in the Baix Camp (fig. 1)<br />

Physiographic characteristics.- Flat coastal strip, 4 km<br />

wide, bordered by the mountain range. The water divide line<br />

is 12 km from the sea (1) (3) (5).<br />

Geological characteristics.- Plain <strong>of</strong> detritic materials<br />

resting on clay formations. Mountain range materials are <strong>of</strong><br />

low permeability (1) (11).<br />

<strong>Water</strong> exploitation.- Traditional use for irrigation. Near<br />

the coast, pumping <strong>of</strong> 10 m3/year approximately, for supply <strong>of</strong><br />

the Vandellos Nuclear Station. New extractions for Tarragona<br />

are ready to start in a short time (3) (5).<br />

Basic problem.- Find out the resources and sea intrusion<br />

process when new well will start pumping.<br />

Existing data.- Scarce, reduced and partial hydro-<br />

meteorological data. Mean pluviometry 400-500 mm in the plain,<br />

higher in the mountain range (1). Almost non-existant hydrological<br />

data; there are no permanent water courses. The existing ones


are short-lived dry creeks. Contributions are estimated be<br />

means <strong>of</strong> local surveys. Almost non-existant hydrogeological data<br />

prior to the studies for the Vandellós Nuclear Station; later,<br />

values <strong>of</strong> the transmissivity <strong>of</strong> the piezometric gradients in a<br />

reduced area were available. The aquifers drain directly into<br />

the sea (1) (5) (11).<br />

Hydrometeorological balance.- Of dubious value owing to<br />

incertitude <strong>of</strong> data and low infiltration (2).<br />

Geohydrochemical balance.- Good application conditions in<br />

non-irrigable land areas. There is no direct data on the<br />

chloride content <strong>of</strong> the rain water, but this can be obtained<br />

by comparison <strong>with</strong> similar areas <strong>with</strong> data (2).<br />

Hydrodynamic balance.- Ideal conditions for application,<br />

but the interpretation <strong>of</strong> the pumping tests becomes complex (5).<br />

Results.- The mean recharge obtained by each <strong>of</strong> the three<br />

methods was as follows, in thousands <strong>of</strong> m3 per year, per km<br />

<strong>of</strong> coastline$: ( 2).<br />

a) Hydrometeorological method ....... 600<br />

b) Geohydrochemical method .......... 900<br />

c) Hydrodynamic method .............. 1.100<br />

Method a) foresees a progressive marine intrusion; method<br />

b) foresees a critical situation and method c) a certain<br />

residual flow to the sea, which would stabilize the salt water-<br />

fresh water interfacies in a new position.<br />

Check-ups.- Two lines <strong>of</strong> piezometers were installed to<br />

control the sea intrusion and three water table elevation<br />

recorders to control the levels were installed. After over<br />

three years exploitation, the interphase movement is more in<br />

accordance <strong>with</strong> result c) than <strong>with</strong> the other two. The<br />

hydrometeorological method is excessively pessimistic. The<br />

geohydrochemical method is acceptable in a first approximation,<br />

and the hydrodynamic method is the closest to reality (5).<br />

7.2. Riera de Carme Basin<br />

Location.- S. <strong>of</strong> the town <strong>of</strong> Igualada (Barcelona) (fig. 2).<br />

Physiographic characteristics.- It spreads over 100 km2<br />

betwen 250 and 900 m <strong>of</strong> altitude. The length <strong>of</strong> the small river<br />

is 25 km.<br />

Geological characteristics.- The materials are clay, silt<br />

and limestone Eocene formations, resting on clay and chalk <strong>of</strong><br />

the Keuper formation. The tectonic alteration is important.<br />

There are important travertine and calctuff formations (6).<br />

* In reality, a maximum and a minimum value was calculated.<br />

85


86<br />

<strong>Water</strong> exploitation.- The discharge <strong>of</strong> the Riera de Carme<br />

is notably regular. The main ground regulating reservoir are<br />

the alveoline limestones, discharging relatively important<br />

springs. The main spring discharges in Capellades, outside the<br />

basin. There is an intense industrial use.<br />

Basic problem.- Some wells have been chilled from which<br />

100 l/sec., are going to be pumped continuously. Find out<br />

whether it is possible to obtain this discharge in dry seasons<br />

and what type <strong>of</strong> injuries will be produced to springs and water<br />

courses. The tests have been made in an extraordinarily humid<br />

season, and it is therefore essential to obtain the probable<br />

situation under other conditions.<br />

Existing data.- Various peripherical pluviometric stations,<br />

and o<strong>nl</strong>y one interior one, at present out <strong>of</strong> service. Spacial<br />

distribution <strong>of</strong> the pluviometry relatively regular, around<br />

600 mm/year.<br />

The hydrological data is very scarce. With o<strong>nl</strong>y one gauging<br />

station operating since 3 years ago. The run<strong>of</strong>f characteristics<br />

have been reconstructed, based on a inventory, survey <strong>of</strong> the<br />

canals, seried gauging and comparison <strong>with</strong> other,basins. The<br />

normal basic discharge <strong>of</strong> the river is 400 l/sec., which should<br />

rise to 500 ì/sec., if the ground discharge to a nearby basin<br />

is considered. The hydrogeological data are almost non-existant,<br />

except a prolonged pumping test lasting for two months, and '<br />

various tests on bore-holes (6). Various springs have been<br />

regularly gauged and the data has been apparently satisfactorily<br />

completed, by means <strong>of</strong> local surveys on the field and in<br />

factories.<br />

Hydrometeorological balance.- Not very reliable since most<br />

<strong>of</strong> the basin has high slopes, <strong>with</strong> wood or brush, and <strong>with</strong><br />

sometimes very permeable materials.<br />

Geohydrochemical balance.-In the main springs area, ground<br />

water has 15 to 24 ppm in Cl-. The scarce rain water samples<br />

show chloride content betwen 5 and 10 ppm. The accuracy is<br />

very low. Direct surface run<strong>of</strong>f is not known <strong>with</strong> an adequate<br />

degree <strong>of</strong> confidence. Data is o<strong>nl</strong>y indicative. Possibly the<br />

chemical conditions for hydrogram components separation by<br />

means <strong>of</strong> salt balance discharges are optimum, but has not been<br />

made as the influence <strong>of</strong> the industrial discharges is not very<br />

well known. .<br />

Hydrodynamic balance.- The important variability <strong>of</strong><br />

transmissivity conditions, <strong>of</strong> the main fractured aquifer and<br />

its complex arrangement, make estimations difficult. The best<br />

way is by a study <strong>of</strong> discharge recession curves in selected<br />

points.<br />

Results.- Estimation <strong>of</strong> the total infiltration in millions<br />

<strong>of</strong> m3/year, including the groundwater discharge outside the<br />

basin (6):<br />

a) Hydrometeorological method ........ 10<br />

b) Geohydrochemical method ........... 18


c) Hydrodynamic method ........ ?<br />

d) Separation <strong>of</strong> hydrogram<br />

components ................. 15<br />

Check-ups.- No direct check-ups are made, but they will be<br />

obtained after completion <strong>of</strong> the study wiht the 2-month pumping<br />

test, and related observations.<br />

7.3. Famara M,assive<br />

Location.- N. <strong>of</strong> the Island <strong>of</strong> Lanzarote, Canary Islands<br />

(fig. -3).<br />

Physiographic characteristics.- Massive <strong>of</strong> over 600 m. in<br />

altitude, which forms a notable cliff over the W. coastline.<br />

Spreads over 80 km2. Very scanty vegetation, almost sub-desert<br />

climat e.<br />

Geological charact.eristics.- Tahular hsalts, <strong>of</strong> more than<br />

1.000 m. thickness, buried cinder cones, very continuous and very<br />

little permeable subhorizontal clay-like levels (almagre].<br />

<strong>Water</strong> exploitation.- Reserve area <strong>of</strong> ground waters for<br />

supplying the capital. Collections by means <strong>of</strong> galleries which<br />

penetrate deep into the massive, <strong>with</strong> horizontal drills and at<br />

present also some vertical ones, to increase the drainage. Discharge<br />

obtained 2 to 3 l/sec., at present temporarily increased to 20<br />

l/sec. (4)<br />

Basic problem.- Get to know the reserves <strong>of</strong> the massive and<br />

determine the exploitable discharges, their rate and recession<br />

curves, Assess the possible resources.<br />

Hydrometeorological data.- Sufficient rainfall network, except<br />

in the highest areas, where most <strong>of</strong> the low infiltration mus-t be<br />

produced. Compiling <strong>of</strong> data and detailed elaboration by the<br />

Hydrographic Study Centre In Madrid c"]. Mean rainfall below 200 &year.<br />

Hydrological data.- Absence <strong>of</strong> surface run<strong>of</strong>f except in<br />

strong storms. There are no direct available.<br />

Hydrogeological data.- Almost non-existent, except in the<br />

galleries where there is a data record and several deep exploration<br />

bore-holes. There are various small springs and oozes, <strong>of</strong> very<br />

fine or inappreciable discharge, inventoried by the Public Works<br />

Geological Service, and <strong>with</strong> some chemical analysis.<br />

Hydrometeorological balance.- Of dubious Worth, due to the<br />

highly arid climate and because many suppositions have had to be<br />

made. A daily balance calculates a mean infiltration <strong>of</strong> 3 mmLyear.<br />

There is possibly no recharge if the daily rainfall does not exceed<br />

20 to 40 mm., which o<strong>nl</strong>y occurs a few times in a period <strong>of</strong> several<br />

years.<br />

By reason <strong>of</strong> the Scientific Study <strong>of</strong> <strong>Water</strong> <strong>Resources</strong> <strong>of</strong> the Canary<br />

Islands, made by the General Board <strong>of</strong> Hydraulic Florks <strong>of</strong> the<br />

Spanish Government, and UNESCO.<br />

a7


88<br />

Hydrogeochemical balance.- Chloride content <strong>of</strong> the<br />

infiltration water obtained from the analysis <strong>of</strong> the small water<br />

oozes on the almagres at high altitude (around 300 to 700 ppm.)<br />

and surface wells in Haría (900 ppm). The water <strong>of</strong> the galleries<br />

is more salty possibly due to basalt contributions by the high<br />

holding time. There are no direct data on chloride content in the<br />

rainwater, but it can be estimated from the data <strong>of</strong> the island <strong>of</strong><br />

Gran Canaria (4).<br />

Hydrodynamic balance.- Made <strong>with</strong> precautions from the<br />

freatic surface obtained by a careful study <strong>of</strong> the data on the<br />

bore-holes and galleries, and the hydraulic characteristics <strong>of</strong><br />

the basalts obtained by various procedures (4). The hydraulic<br />

gradients at times exceed 10% per cent in a plane at O elevation.<br />

Results.- The rechar e obtained by each <strong>of</strong> the three<br />

methods in thousands <strong>of</strong> m 5 /year, are (4):<br />

- Mean<br />

Min.<br />

Max.<br />

-<br />

-<br />

Famara Heights (19 Km2) .... 225 28 5 190<br />

Famara Lows (28 Km2) .... 140 224 84<br />

Marginal plains (25 Km2) . . , 50 75 25<br />

Total (72 Km2) ,. .. 415 584 299<br />

In this case, the best method would appear to be the<br />

geohydrochemical one. There is no direct verification, but<br />

additional information is obtained by means <strong>of</strong> isotopes and<br />

ambient radioisotopes, apart from a study <strong>of</strong> the salinity <strong>of</strong> the<br />

soil and dust, in elaboration,<br />

Co'plementary,- Since the explotation is mai<strong>nl</strong>y <strong>of</strong><br />

reserves, it has been computed by hidrodynamic study methods <strong>of</strong><br />

the recession curves <strong>of</strong> the gallery discharges, that the water<br />

yield should vary between 0,03 and 0,05. This figures, jointly<br />

<strong>with</strong> the other data allow to estimate exploitable reserves in the<br />

gallery area, betwen 20 to 60 million m3, The overall transmissi-<br />

vity is 100 m'/day, <strong>with</strong> a thickness between 200 and 500 m.<br />

8. CONCLUSIONS<br />

In areas <strong>with</strong> small infiltration in relation to the<br />

pluviometry, the geohydrochemical method applied <strong>with</strong><br />

precautions, is a very useful tool which can improve the<br />

hydrometeorological balance method. In more humid areas, the<br />

results are not so clear. The hydrodynamic balance is the best<br />

method but in some cases it needs appropriate conditions for<br />

application, and in any case, it requires numerous reconnoisance<br />

tests to determine the hidrodynamic characteristics <strong>of</strong> the aquifer.<br />

9. REFERENCES


1. Custodio, E., Molist J., and Martin Arnaiz, M. (1968).<br />

First Report on the works for supply <strong>of</strong> the Vandellós<br />

Nuclear Station. Geoteclinics Geokgists Consultants.<br />

Barcelona.<br />

2. Custodio, E. (1969). Report on the present state <strong>of</strong><br />

the possibilities <strong>of</strong> the Montroig collections to- supply<br />

water to the Vandellós Nuclear Station (internal report).<br />

3. Custodio, E., Bayo, A., and Orti, F., (1971). Geological,<br />

Hydrogeological and geochemical characteristics <strong>of</strong> the<br />

coastal aquifers between Cambrils and L'Ametlla de Mar<br />

(Tarrag ona)i. -<br />

on Economic Geology, Madrid-Lisbon. Section 3. pp 1471170.<br />

4. Custodio, E., and Saénz de Oiza, J., (1972) Geohydrological<br />

study on the Famara Massive, Lanzarote. General Board <strong>of</strong><br />

Ilydraulic Works. Las Palmas - Barcelona. 2U4 pp.<br />

5,<br />

6.<br />

7.<br />

8.<br />

9.<br />

10.<br />

11.<br />

12.<br />

13.<br />

89<br />

Fi rs t Span i s h - Portuguese -Amer i can Congr es s<br />

Custodio, E., and others (1973). Final Report on the<br />

works to supply the Vandellós Nuclear Station. Geotechnics<br />

Geologist Consultants, Barcelona (being elaborated).<br />

Custodio, E., and others (1973). Geohydrological study <strong>of</strong><br />

the Carme Basin. Barcelona. East Pyrenees <strong>Water</strong> Board<br />

and Public Works Geological Service. Barcelona.<br />

Custodio, E. (1973). Hydraulics <strong>of</strong> water collections.<br />

Section 9 <strong>of</strong> Subterranean liydrology. Vol, 1.- Omega<br />

Editorial. Uarcelona (at printers).<br />

Custodio, E. (1973). Geo1iydrocliemistry.- Section 10 <strong>of</strong><br />

Sub terruiieanz liydrology , Vol, 2, - Omega Editorial, Barcelona<br />

(at printers),<br />

Martin Arnaiz, M. (1973). Components <strong>of</strong> the Hydrological<br />

Cycle, Section 6 <strong>of</strong> SUBterranean Iiydrology, Vol. 1.- Omega<br />

Editorial. Barcelona (at printers).<br />

Mero F. (1969). Approach to daily hydro-meteorological water<br />

balance computations for surface and groundwater basins.-<br />

Proceedings ITC - UNESCO Seminar on Integrated Surveys for<br />

River Basin Development.- Delft. pp 89/116.<br />

Orti , F. (1970). Notes on the hydrogeological prospecting<br />

made for supply <strong>of</strong> the Vandellós Nuclear Station (Tarragona)<br />

Geological Research Institute <strong>of</strong> the Provincial Delegation.<br />

Vol. XXIV, pp 75/88 Barcelona.<br />

Pinder, G.F. and Jones, J.F. (1909) Determination <strong>of</strong> the<br />

ground water component <strong>of</strong> peak discharge from the chemistry<br />

<strong>of</strong> total run<strong>of</strong>f.- <strong>Water</strong> <strong>Resources</strong> Research, Vol 5. No 2<br />

April 1969 pp 438/445.<br />

Public Works Geological Service (1972). Basic Tiieory on<br />

analogical digital models <strong>of</strong> aquifers. (See especially<br />

chapter 5, Process <strong>of</strong> construction and use <strong>of</strong> a model<br />

by E. Custodio and L. Lopez-Garcia), Information and<br />

Studies, Bulletin No. 37 - Public Works Geological Service,<br />

Madrid, October 1972. 178 pp.


90<br />

14. VilarÓ, F., Custodio, E., aiid Bruington, A.E., (1970)<br />

Sea <strong>Water</strong> intrusion and water pollution in the Pirineo<br />

Oriental (Spain). ASCE National <strong>Water</strong> Kesources Engineering<br />

Meeting, Memphis, Tennesse. Meeting Preprint 112.<br />

15. Visocky, A.P. (1970). Estimating the groundwater con-<br />

tribution to storm run<strong>of</strong>f by the electrical Conductance<br />

method.- Ground water, Vo. 8. No. 2, March-April 1970.<br />

pp 5/10.


Fig.1 - Situdción del Area de Montroig<br />

Locat i on map <strong>of</strong> Fdontroi g Area<br />

91


92<br />

Fig. 2 - Sitiiacibri de la Cuenca del Carme<br />

Locat i on <strong>of</strong> Carme Has i n


Q Al cgranza<br />

93


METHODS OF ANALYSING DEFICIENT DISCHARGE DATA<br />

IN ARID AND SEMI-ARID ZONES FOR THE DESIGN OF SURFACE WATER UTILIZATION<br />

-____ ABSTRACT<br />

bY<br />

Joseph S. Dalinsky<br />

TAHAL - <strong>Water</strong> Planning for Israel Ltd., Tel Aviv, Israel<br />

Technion, Israel Institute <strong>of</strong> Technology, Haifa, Israel<br />

This paper surveys various methods <strong>of</strong> analysing stream flows:<br />

frequency <strong>of</strong> annual volumes, discharge-volume relationship <strong>with</strong><br />

horizontal, vertical and double hydrograph cutting, and calcula-<br />

tion <strong>of</strong> the storage volumes available as a function <strong>of</strong> reservoir<br />

capacity.<br />

Application <strong>of</strong> these methods, which have been successfully<br />

applied by Tahal-<strong>Water</strong> Planning for Israel Ltd. over the past '<br />

ten years, can generate data for the design <strong>of</strong> surface water<br />

utilization schemes when flow records are available for o<strong>nl</strong>y<br />

a few years.<br />

The understanding and application <strong>of</strong> the general design<br />

aspects, even if o<strong>nl</strong>y qualitative, enables the planning engineer<br />

to reduce his basic hydrological requirements to less than 10<br />

years duration.<br />

It is proposed that applied hydrological research be di<br />

rected towards evaluation <strong>of</strong> a number <strong>of</strong> important hydrologi-<br />

cal design parameters on a regional basis to enable nondimen-<br />

sional curves to be established.<br />

RESUME<br />

L'auteur examine différentes méthodes pour l'analyse du<br />

débit des riviére: fréquence des volumes annuels-relation entre<br />

ces volumes et les débits dérivés pour l'utilisation par tronca<br />

ture'des hydrogrammes, cette troncature pouvant etre verticale,<br />

horizontale, ou les deux à la fois- calcul des volumes stockés<br />

disponibles en fonction de la capacité du réservoir.<br />

Ces méthodes ont été utilisées avec SUCC~S par Tahal-<strong>Water</strong><br />

Planning, pour Israël Ltd, au cours des dix derni2res années.<br />

Leur application permet de fournir des donnérs pour l'aménagement<br />

des eaux, lorsqu'on ne dispose de données di'éculement que<br />

pour un'petit nombre d'années.<br />

Une mise en oeuvre intelligenye des aspects généraux d'un<br />

projet, même sous une forme purement qualitative, permet à l'i2<br />

génieur de planification de se contenter, pour les données hy-<br />

drologiques de base, de moins de 10 ans d'observation.<br />

L'auteur propose que la recherche hydrologique appliquée<br />

soit orientée vers l'estimation des parametres hydrologiques -<br />

important à la réalisation des projets. Une telle étude doit<br />

être menée sur une base régionale et déboucher sur l'établisse-<br />

ment d'abaques adimensionnels.


96<br />

INTRODUCTION<br />

The need for water in the arid and semi-arid zones is in most cases<br />

greater than the water resource potential, since there are generally<br />

large areas <strong>of</strong> good soils that cannot be cultivated as a result <strong>of</strong> the<br />

scarcity <strong>of</strong> water for irrigation.<br />

utilization is directed toward maximum exploitation <strong>of</strong> the lfmited re-<br />

sources at reasonable cost.<br />

Hence, the planning <strong>of</strong> surface water<br />

The annual yield <strong>of</strong> surface water resources varies considerably as<br />

a result <strong>of</strong> the extremely non-uniform climatic conditions that prevail in<br />

arid and semi-arid zones. In many cases, the available source cannot by<br />

itself provide an adequate supply and other solution& must be found,<br />

Possible solutioqs are as follows:<br />

(1) To recharge surface water to suitable groundwater aquifers which<br />

would serve as long-term reservoirs.<br />

will be the varying annual volumes <strong>of</strong> surface water, in addition<br />

to the natural replenishment, while the output will be an ap-<br />

proximately constant annual rate.<br />

In this case the input<br />

(2) In the case <strong>of</strong> supply from surface reservoirs fed from intercep-<br />

tion <strong>of</strong> stream flows, this source can be integrated <strong>with</strong> some<br />

other certain or steady but limited source. In this case, in<br />

years <strong>of</strong> adequate flow from the less reliable or variable<br />

source, the yield <strong>of</strong> the steady source is retained €or use in<br />

those years in which the yield <strong>of</strong> the variable source is in-<br />

adequate or non-existent.


In such cases, planning should be based on the average flow which<br />

can be diverted and recharged, or stored in the surface reservoir under<br />

dif fereniconditions.<br />

The techniques proposed in the following are aimed at calculating<br />

these average values as a function <strong>of</strong> planning parameters such as maximum<br />

diverted flow or maximum net capacity <strong>of</strong> the surface reservoir.<br />

Acquaintance <strong>with</strong> streamflow regimes is best acquired by study <strong>of</strong><br />

hydrographs.<br />

ledge it provides.<br />

although detailed time dependence <strong>of</strong> discharges (instantaneous discharges)<br />

are the subject <strong>of</strong> greatest interest; where daily discharges do not under-<br />

go rapid changes (e.g. in rivers, springs, and baseflows), monthly data<br />

may be sufficient.<br />

The more detailed the information, the more exact the ùnow-<br />

Data <strong>of</strong> hourly or daily flow rates are important,<br />

Hydrograph study provides valuable information on the flow regime<br />

and can lead to diversified techniques <strong>of</strong> analysis.<br />

The following information on streamflows is essential for the plan-<br />

ning <strong>of</strong> utilization:<br />

- The average volume <strong>of</strong> annual flows (U 1, which represent the<br />

ave<br />

stream water resources potential; the average annual feasible<br />

utilizable flows is a portion <strong>of</strong> this value.<br />

- The stream's flow regime: Is the stream perennial, intermittent,<br />

or ephemeral?<br />

Does it have a significant base flow or o<strong>nl</strong>y dis-<br />

continuous floods? What is the duration <strong>of</strong> flow or floods, the<br />

yearly number <strong>of</strong> floods, and the interval between successive<br />

floods?<br />

97


98<br />

- Streamf low variability, which comprises variability <strong>with</strong>in a season<br />

or a year and variability from one year to another.<br />

Hydrograph analysis can provide the required information s&h as:<br />

monthly and annual flows and their frequencies; flow-duration curves;<br />

annual average flows in relation to diverted discharges - represented by<br />

horizontal and vertical hydrograph cuts; and annual average flows in rela-<br />

tion to possible reservoir capacities.<br />

In many cases the planning has to be done while insufficient hydro-<br />

logical data are available.<br />

the limited data available to be used efficiently and therefore reduce to<br />

a minimum the period <strong>of</strong> records needed for planning purposes - very <strong>of</strong>ten<br />

to less than 10 years, if the period for which records are available can<br />

be taken as representative <strong>of</strong> climatic conditions.<br />

A. ANNUAL FLOOD BETURN PERIODS<br />

The techniques presented in this paper enable<br />

For practical purposes <strong>of</strong> surface water utilization planning, annual<br />

flood return periods can be computed by using the established formula:<br />

n + l<br />

TE- m<br />

where: T is the return period (in years);<br />

n is the number <strong>of</strong> annual flow data;<br />

... (1)<br />

m is the serial number <strong>of</strong> annual flow data arranged in descending<br />

order, by size.<br />

By using the above formula, return periods approximately equal to<br />

the period for which data are available can be reasonably evaluated.<br />

estimates <strong>of</strong> annual flows (order <strong>of</strong> magnitude) for longer return periode<br />

can be obtained by extrapolation on probability paper by using the points<br />

The


which were calculated according to formula (1) as plotting points; though,<br />

for practical purposes, rare annual flows are <strong>of</strong> little importance, if any,<br />

since in most cases, a project based on rare flows will not be economic,<br />

B. FLOW-DURATION CURVES<br />

Flow-duration curves express the average duration <strong>of</strong> occurring die-<br />

charges equal to or greater than given values (Q > Q ); or dischargea<br />

i- 1<br />

equal to or smaller than given values (Qi 5 Q21e Schematic representation<br />

<strong>of</strong> flow-duration curv<br />

is given in Sketch 1.<br />

Sketch 1: Flow-Duration Curve - Schematic Representation<br />

The duration can be expressed as the average number <strong>of</strong> days per year<br />

on which the said discharges occur, or as the total number <strong>of</strong> days in n<br />

years (see illustration <strong>of</strong> flow-duration curves ‘for the Qishon stream in<br />

Fig. 1 in App. A), or as the relative duration (which is similar to<br />

relative frequency ) .<br />

The computed discharges can be hourly or daily averages, or averages<br />

for any period - in accordance <strong>with</strong> the aims <strong>of</strong> the analysis and the<br />

nature <strong>of</strong> the data, In general, average daily discharges will be used<br />

when the daily discharge fluctuations are not appreciable, or wnen the<br />

representative changes are daily changes. For streams characterized by<br />

99<br />

,


100<br />

a flood flow regime - where the flows are <strong>of</strong> short duration and there is<br />

no significant baseflow - average hourly discharge or averages for even<br />

shorter periods can be chosen. It is customary to express the relative<br />

duration in percentages (p).<br />

The area delimited by Lhe curve Q = f(p), when /Qdp or Z(Q x Ap), is<br />

equal to the average discharge <strong>of</strong> the stream.<br />

The relations can be easily and economically established when calcu-<br />

lations are made by computer, in many cases as by-product <strong>of</strong> the computer<br />

analysis <strong>of</strong> streamflow data. For planning purposes, the direct use <strong>of</strong><br />

flow-duration relations or curves is not convenient and their use is limi-<br />

ted to assisting the computation <strong>of</strong> data needed for drawing<br />

represent the horizontal and vertical hydrograph cuts (as shown in the<br />

following sections <strong>of</strong> this paper). It should be stressed that: (1) The<br />

flow-duration relations can represent the streamflow character; (2) These<br />

relations can be achieved <strong>with</strong> satisfactory accuracy in the zone <strong>of</strong> the<br />

practical importance (the zone where relatively small or medium size dis-<br />

charges occur) using data <strong>of</strong> a relatively short period (few years, mostly<br />

less than 10 years).<br />

curves which<br />

C. AVERAGE ANIUAL FLOW IN RELATION TO MAXIMUM DIVERTED DISC-GE -<br />

HORIZONTAL CUT<br />

When stream diversion i8 considered, whether by gravity flow or<br />

pumping, the dependence <strong>of</strong> annual diverted flows on the maximum diverted<br />

discharge is computed using the historical data. The curve representing<br />

the dependence <strong>of</strong> the average annual diverted flows on the maximum diver-<br />

ted discharges can be considered as the stream's "visiting card".<br />

meaning <strong>of</strong> the diversion, from the hydraulic aspect, is that all the<br />

The


discharges which are equal to or smaller than a certain magnitude, (Q,),<br />

are being diverted (see Skbtch 2).<br />

the diffeTence [(Q,) - (Qd)max I will overspill, while the diverted dis-<br />

charge, Q, will be approximately constant, at the magnitude <strong>of</strong> about<br />

(Qd)maxg<br />

Qd i Diversion<br />

discharge<br />

When the discharge (Q,) exceeds (Q,),<br />

Sketch 2: Schematic Layout <strong>of</strong> Diverdion Sketch 3: Hydrograph Horiaontal Cut<br />

Q<br />

I<br />

From a hydrological point <strong>of</strong> view this means a "horizontal cut"'<strong>of</strong><br />

the streamflow hydrographs (see Sketch 3).<br />

where:<br />

The "horizontai cut" can be expressed mathematically as:<br />

Qi<br />

Qd<br />

(Qä'rnax<br />

is the streamflow discharge;<br />

is the diverted discharge;<br />

is the maximum diverted discharge.<br />

101


102<br />

For every maximum diverted discharge a certain volume can be diverted<br />

every year; for a period <strong>of</strong> n years - a series <strong>of</strong> n annual diverted volmes<br />

can be obtained, out <strong>of</strong> which the average annual diverted flow (Ud) can be<br />

calculated for each value <strong>of</strong> (Q )<br />

d max'<br />

Sketch 4.<br />

The function cd = f (Qdlmx has the shape illustrated schematically in<br />

When Qd -+ œ, then * U e where U represents the stream poten-<br />

d ave' ave<br />

tia1 (average annual flows).<br />

The curve representing the dependence <strong>of</strong> Ü on (Q )<br />

d d max<br />

into three m in zones according to the tangent slopes:<br />

Zone I: AÜd/A(Qd)mx is relatively<br />

large and almost constant. The<br />

diversion will be most justified<br />

economically<br />

-<br />

Zone II: AUd/A(Qd)max quickly de-<br />

creases as (Q ) increases.<br />

d max<br />

This is a transition zone.between<br />

Zones I and III.<br />

-<br />

Zone III: AUd/A(Qd),, diminishes<br />

as (Qd)mx increases, and tends<br />

towards zero when (Q ) * m, In<br />

d max<br />

this zone, diversions are usually<br />

not worthwhile o<br />

A<br />

5<br />

CI<br />

v<br />

-<br />

Sketch 4: Ud -<br />

can be divided<br />

I<br />

-H I<br />

Uave<br />

f [(Qd)max]


- Note:<br />

(i) The above relations can be easily obtained from the computer<br />

at small cost.<br />

They can also be calculated <strong>with</strong>out a computer,<br />

in some cases easily (depending on the data).<br />

(ii) If the flow-duration curve is used, expressed by relative<br />

durations (p), and the average nupiber <strong>of</strong> flow days per year<br />

(ta) are given, then üd = f [ (Qd),] can be calculated by<br />

the formula:<br />

-<br />

- -<br />

where:<br />

t is the average number <strong>of</strong> flow days per year;<br />

. . . (3)<br />

p is the relative duration (expressed as a fraction) <strong>of</strong><br />

discharges equal to or greater than the appropriate Q.<br />

(iii) Althmgh the historical streamflow data will not be repeated<br />

in the future, the calculated diverted volumes represent<br />

fairi,y satisfactorily the amounts and distribution <strong>of</strong> the<br />

expected volumes for practical purposes <strong>of</strong> planning.<br />

In planning streamflow utilization by diversion <strong>of</strong> flows up to a<br />

certain maximum diversion discharge, the above relations, based on a<br />

simple "horizontal cut" <strong>of</strong> hydrographs, are widely used (see illustration<br />

<strong>of</strong> horizontal, vertical and double cuts <strong>of</strong> hydrographs in App. A, Fig. 2).<br />

The maximum diverted discharge is determined according to direct or in-<br />

direct economic considerations (for instance - the limitation <strong>of</strong> the<br />

diverted discharges in order to minimize the inflow <strong>of</strong> sedimentary<br />

materials).<br />

When limitations exist <strong>with</strong> regard to small discharges,<br />

this method cannot be applied (see Section D).<br />

103


1 o4<br />

When water rignts refer to baseflows and/or discharges up to a minimm<br />

diverted discharge, Qo, (when Q > Q o<strong>nl</strong>y Q is utilized), the computation<br />

O<br />

can be made by translating the pivot <strong>of</strong> the axes to a new starting point<br />

- - *<br />

(Q0; U >. In this case, new scales will Óe used: Qd (Qd - Qo) and<br />

O - U: = Üd - -<br />

Üo. If the point (Qo; U ) lies outside <strong>of</strong> Zone I, or at its<br />

edge - the best flows are already utilized, .even though this does not mean<br />

a priori that the proposed scheme will not De feasible.<br />

O<br />

D. AVELUGE ANHUAI., FLOW IN RELATION TO DIVERTED DISCURGES - DOUBLE CUT<br />

When there are limitations to the diversion <strong>of</strong> baseflow discharges,<br />

or any definite discharges less than a certain magnitude, the relation <strong>of</strong><br />

average annual flows to diverted discharges cannot be computed by means <strong>of</strong><br />

a simple "horizontal cut",<br />

and horizontal cut, is required (see Sketch 5).<br />

In these casesp a "double cut", i.e. a vertical<br />

Double Cut Horizontal Cut Vertical Cut<br />

Sketch 5: Schematic Representation <strong>of</strong> Double Cut<br />

Such a case will arise when baseflow is <strong>of</strong> undesirable quality for<br />

diversion purposes - generally too saline; conversely, during flood flows<br />

tne water is <strong>of</strong> good quality and can be diverted up to a certain maximum<br />

value, (Qd)max*<br />

In this case the double cut - shown in Sketch 5-A - ie


105<br />

used, When from a certain discharge onwards tiie sediment concentration is<br />

undesirable for artificial recharge or from the aspect <strong>of</strong> reservoir capa-<br />

city losses, and it is decided not to divert those discharges - a vertical<br />

cut for Q = (Qd)mx is used (see Sketch 5-C).<br />

Since during planning it is still unknown which Q and which (Q )<br />

d max<br />

will be selected, different combinations have to be examined. Tiiis can be<br />

done by establishing a series <strong>of</strong> curves which describe the relations be-<br />

tween annual average flows to maximum diverted discharges for different<br />

values <strong>of</strong> Q<br />

[Qo = constant]. This analysis has the disadvantage <strong>of</strong> being<br />

related to discontinuous values <strong>of</strong> Qo and the need for repeating the calcu-<br />

lations for each value <strong>of</strong> Q<br />

involved, many sets <strong>of</strong> curves'will be required).<br />

O<br />

(when the storage capacity <strong>of</strong> a reservoir is<br />

Such work is superfluous<br />

and can be limited to the calculation <strong>of</strong> o<strong>nl</strong>y two curves - the horizontal<br />

cut curve and the vertical cut curve - if the following equation is used:<br />

- - -<br />

UA = UB - uc<br />

where:<br />

-<br />

UA = fl<br />

- UB = f2<br />

-<br />

... (4)<br />

Qo; (Qd)mxl, represent the double cut';<br />

(Q,),] o is established by means <strong>of</strong> a horizontal cut;<br />

U = f [Q ] , is established by means <strong>of</strong> a vertical cut.<br />

c 3 0<br />

It is possible to calculate Ü<br />

A<br />

for any desired combination <strong>of</strong> (Q<br />

d<br />

)<br />

max<br />

and Qo by the use <strong>of</strong> the two curves (see Sketch 5-B and C).<br />

Each <strong>of</strong> the<br />

functions Ü and Û can easily be calculated by computer. These functions,<br />

B C<br />

as calculated for the Qishon stream in Israel, are illustrated in App.&<br />

'pig. 2.


1 O b<br />

-<br />

Function Ü can easily be calculated from U*, <strong>with</strong>out use <strong>of</strong> a compu-<br />

C<br />

ter, on the basis <strong>of</strong> a flow-duration curve, when the duration indicates<br />

the average number <strong>of</strong> days per year <strong>of</strong> any given discharge or discharges<br />

exceeding the given value.<br />

be expressed by:<br />

-<br />

where:<br />

In this case the relation between the two will<br />

ta and p as in equation (3)<br />

t* is the average number <strong>of</strong> days per year <strong>of</strong> a discharge <strong>of</strong> Qo or<br />

-<br />

more (see Sketch 3); t* = ta x (P)~,.<br />

E. THE USE OF THE VERTICAZ. CUT<br />

In addition to the contribution <strong>of</strong> the vertical cut curve for<br />

simplifying the double cut technique and its use for planning <strong>of</strong> di-<br />

versions <strong>with</strong> constraints <strong>of</strong> maximum discharges owing to sedimentation<br />

IQ0 (QdImxi Qd Q for Q 5 (Qd1-i Qd = 0 for Q ’ (Qd)maxla the<br />

curves are used for calculating the average annual sediment concentra-<br />

tion or load.<br />

The average annual sediment load can be calculated using simul-<br />

taneously the vertical cut curve and the curve describing the relation<br />

<strong>of</strong> the sediment concentrations to flow discharges (mostly log-log rela-<br />

tions). The computation is carried out as demonstrated in Appendix B.<br />

The average annual volume <strong>of</strong> sediment load, (Us)ave, <strong>of</strong> the stream<br />

is calculated as:<br />

m<br />

... (6)


Accordingly, the average annual sediment concentration, ave(Cv), is<br />

calculated as:<br />

where :<br />

(AUVIj<br />

-<br />

i- (Uslave<br />

ave('v) 'ave<br />

.. (7)<br />

107<br />

-<br />

(ÜVli - (Uv)i-l, indicates the contribution <strong>of</strong> the discharges<br />

<strong>with</strong>in the limits <strong>of</strong> Qi-i to Q, to the average annual flow;<br />

-<br />

(U<br />

v<br />

)<br />

i<br />

indicates the average annual flow from the vertical cut<br />

curve [for Q 2 Qil.<br />

[(Cv)avel, is the mean volumetric sediment concentration <strong>of</strong> the dis-<br />

charges <strong>with</strong>in the limits <strong>of</strong> Qi-i to Q,.<br />

j indicates the intervals <strong>of</strong> the discharges (AQ), chosen for<br />

the calculation.<br />

It should be noted that since the significant reduction in reservoir<br />

storage capacity resulting from sedimentation in arid and semi-arid zones<br />

is mostly due to rare high rate floods, there is a need for data <strong>of</strong> a<br />

relatively long period. In such cases, it is therefore recommended to<br />

use probability analysis in the evaluation <strong>of</strong> the frequencies. However,<br />

regional analysis supported by analysis <strong>of</strong> historical flood water marks<br />

for rough estimates <strong>of</strong> the "maximum historical floods" enables relatively<br />

short period data to be used for evaluating the expected average annual<br />

sediment load order <strong>of</strong> magnitude (in this case - channel sections <strong>with</strong><br />

a stable bed should be chosen; otherwise large mistakes may occur as a<br />

result <strong>of</strong> marked changes in the channel bed).<br />

F. ANNUAL STORABLE FLOW AS A FUNCTION OF RESERVOIR CAPACITY<br />

The quantities <strong>of</strong> reservoir-stored streamflows which can be<br />

utilized depend on flows, net reservoir capacity, reservoir operation,<br />

and seepage and evaporation losses.<br />

When the reservoir is to be emptied every year (e.g. there is<br />

a rainy season in which the flows are stored and a dry season when the<br />

stored water is used), it is possible to estimate the annual stored


108<br />

quantities according to annual flows and net reservoir capacity, as long<br />

as losses, at least during the rainy season, are small. When the expected<br />

losses are large, the possible losses must be known or estimated before<br />

calculations can be made; however,this information is <strong>of</strong>ten not available.<br />

When losses during the rainy season can be disregarded, the reservoir<br />

can every year store quantities smaller than or equal to its net capacity:<br />

in which<br />

Here:<br />

iL<br />

UR = - n<br />

i-1<br />

(URIi = ui when Ui 2 RN<br />

(UR)i = (%li when Ui - ' (%)i<br />

Ui<br />

indicates the annual streamflow in the ith year - when the<br />

reservoir is on the channe1,and annual diverted flow - when<br />

the reservoir is <strong>of</strong>f the channel;<br />

(%)i representing net reservoir capacity in the ith year;<br />

(U<br />

R<br />

)<br />

i<br />

is the amount <strong>of</strong> water stored in the ith year;<br />

-<br />

UR<br />

is the n years' average annual amount <strong>of</strong> water stored in the<br />

-<br />

reservoir (whose average net capacity is %)<br />

n is the number <strong>of</strong> annual data (calculated by the use <strong>of</strong> either<br />

observed, historical, or <strong>of</strong> reconstructed synthetic data).<br />

The quantity ÜR is always smaller than Uave, when Uave designates<br />

the average possible annual inflows into the reservoir, such as average<br />

diverted streamflow or average streamflow.


Annual net reservoir capacity is defined as freel,,annual capacity<br />

up to maximum operational height (e.g. up to the spillway crest). When<br />

the reservoir is operated in consideration <strong>of</strong> a planned dead storage, net<br />

operational capacity is constant until the dead storage is replete <strong>with</strong><br />

-<br />

sediment; i.e. (%Ii = RN = constant. Storage losses are dependent on<br />

two major factors: the volume <strong>of</strong> annually deposited sediment, and the<br />

volume <strong>of</strong> water remaining in the reservoir at the end <strong>of</strong> each year (the<br />

"remaining volume" is generally constant, owing to the reluctance to pump<br />

mud, except in reservoirs which store water for more than one year; the<br />

case <strong>of</strong> such reservoirs 'is not dealt <strong>with</strong> in this article).<br />

The following should be noted:<br />

(a) The computations as described give approximate solutions.<br />

If losses (by seepage and/or evaporation) are relatively<br />

large, at least monthly water balances are required in order<br />

to calculate the stored inflows <strong>with</strong> reasonable accuracy.<br />

(b) The amount,,<strong>of</strong> water which can be annually utilized also depends<br />

in each case on the operational regime <strong>of</strong> the reservoir and on<br />

the losses (there is a difference between the utilized and the<br />

stored amounts, since losses occur while the stored water is<br />

being utilized).<br />

(c) In arid and semi-arid zones - in many cases, due to the limited<br />

potential <strong>of</strong> the stream and the considerable seepage and evapora-<br />

tion losses - surface water utilization is based on artificial<br />

recharge <strong>of</strong> aquifers. In such cases the reservoirs are used<br />

for regulating and silting purposes; therefore (UR)i can exceed<br />

the net reservoir storage capacity, as it is a product <strong>of</strong> a<br />

109


number <strong>of</strong> floods which entered the reservoir after it was<br />

emptied or partly emptied (after every flood the stored water<br />

is transferred to spreading grounds for artificial recharge).<br />

Principally, the calculations, the character, and the analysis<br />

<strong>of</strong> the relations between FR and RN are the same as dealt <strong>with</strong><br />

in this Section.<br />

The average annual volume <strong>of</strong> stored water (uR) and the reservoir<br />

efficiency (ÜR/uaVe) as functions <strong>of</strong> average net reservoir capacity (i$)<br />

are shown schematically in Sketch 6. (The meaning <strong>of</strong> the different zones<br />

is as explained in Section C for Sketch 4)<br />

d<br />

Zond Zonelzone (UR/Uave><br />

A Zonalzone I Zone<br />

2-<br />

Rd -<br />

Sketch 6: Schematic Representation <strong>of</strong> U R = f (s) and (ÜR/UaVe) = F (s)<br />

The curves, which summarize the aforementioned influences, illus-<br />

trate the contribution <strong>of</strong> average net reservoir capacity (Q).<br />

-<br />

Here too,<br />

as in the analysis <strong>of</strong> the relations illustrated in Sketch 4, different<br />

zones <strong>of</strong> the curves can be discerned, characterized by the magnitude <strong>of</strong><br />

the slopes <strong>of</strong> the tangents to the curves (AÜR/A% or A(ÛR/Uave)/A$).<br />

These slopes represent the marginal additions <strong>of</strong> the average annual<br />

quantity <strong>of</strong> storable water for the addition <strong>of</strong> a unit <strong>of</strong> net reservoir<br />

capacity .


-<br />

It is characteristic that as % increases, AÜR/AQ decreases. For<br />

111<br />

high values <strong>of</strong> RN the value AÜR/A$ is small, as it represents rare flood<br />

flows; its reliability is therefore limited.<br />

An analysis <strong>of</strong> this kind is <strong>of</strong> great importance for preliminary<br />

estimates and/or feasibility calculations, since it makes it possible<br />

to find easily the approximate economic solution.<br />

Recent investigations made by the Surface <strong>Water</strong> Utilization Depart-<br />

ment <strong>of</strong> Tahal - <strong>Water</strong> Planning for Israel Ltd. prove that the relationship<br />

- -<br />

between UR and % can be approximately estimated on a regional basis using<br />

as a parameter the dimensio<strong>nl</strong>ess standard deviation (the ratio u /U<br />

u ave’<br />

where U is the standard deviation, and U is the average annual flow).<br />

U ave<br />

It was found that the ratio ouIU is, in many cases, <strong>of</strong> regional<br />

ave<br />

character. (The above-mentioned investigations have not yet been con-<br />

cluded and hence cannot yet be summarized).<br />

The function described above is illustrated in App. A, Fig. 3.<br />

G. THE COMPUTATION OF RN AND RN<br />

where :<br />

Annual net reservoir capacity can be computed from the equation:<br />

(%li = - ... (9)<br />

($>i<br />

is the net reservoir capacity at the end <strong>of</strong> the<br />

ith year;<br />

(%)i-1 is the net reservoir capacity at the end <strong>of</strong> the<br />

(i-i) th year;<br />

(Rs)i is the volume <strong>of</strong> the sediment trapped in the<br />

reservoir during the ith year.


112<br />

The volume <strong>of</strong> the sediment deposits trapped in the reservoir during<br />

a certain year can be calculated from the equation:<br />

where :<br />

(CS) i<br />

(RsIi = (EVIi x Uix(T.E.Ii = - x Ui x (T.Ea)i ... (10)<br />

YS<br />

is the average concentration <strong>of</strong> the transported sediment<br />

during the ith year, by volume;<br />

(C ) is the average concentration <strong>of</strong> the transported sediment<br />

s i<br />

th<br />

during the i year, by weight (e.g. in p.p.m);<br />

YS<br />

ui<br />

is the average specific weight <strong>of</strong> the trapped sediment<br />

(generally approximately constant, depending on sediment<br />

qualities and reservoir operation);<br />

represents the reservoir inflow in the ith year;<br />

(T.E.Ii is the trap efficiency in the ith year - the portion <strong>of</strong> the<br />

sediment which remains in the reservoir (if there is any<br />

overspill, part <strong>of</strong> the sediment leaves the reservoir <strong>with</strong><br />

the overspill).<br />

For a design period <strong>of</strong> n years, especially when the value <strong>of</strong> n is<br />

high (tens <strong>of</strong> Years), the total loss in reservoir storage capacity re-<br />

sulting from sedimentation can be calculated as:<br />

will be<br />

Therefore, the average annual loss in reservoir storage capacity<br />

-<br />

Rs = - (Rs)i = Uave x (T.E.1 x [ave(Cv)l ."a (11)<br />

n i=l


where :<br />

ave('v)<br />

is the average concentration, by volume,<strong>of</strong> the sediment<br />

deposited by the transported water at the reservoir<br />

location;<br />

(T.E.) ,the average trap efficiency.<br />

The average net reservoir capacity for a period <strong>of</strong> n years will be<br />

estimated as:<br />

where :<br />

Ro<br />

is the initial reservoir capacity.<br />

... (12)<br />

11 3<br />

It should be noted that since it is impossible to predict the future<br />

annual flows, there is no other practical possibility <strong>of</strong> evaluating the<br />

net reservoir storage capacity. For practical purposes, the use <strong>of</strong> average<br />

net storage capacity (%) is sufficient.<br />

H. RECOMMENDED HYDROLOGICAL INVESTIGATIONS<br />

Hydrological investigations directed towards finding parameters<br />

which enable non-dimensional curves to be established which represent<br />

the main functions discussed in this article, are recommended, especially<br />

on a regional basis.<br />

The reconstruction <strong>of</strong> such a regional synthetic curve, even though<br />

not "scientifically accurate", will be <strong>of</strong> great assistance in planning<br />

surface water utilization schemes, and especially in planning the first<br />

stage <strong>of</strong> such schemes.


114<br />

BIBLIOGRAPHY<br />

This article is based on the experience gained in Tahal - <strong>Water</strong><br />

Planning for Israel Ltd., in the last 20 years, &.on the Technical<br />

Reports published by Tahal in Hebr’ew, as also on the foliowing works.<br />

1. Kuiper, E., <strong>Water</strong> <strong>Resources</strong> Development, Buttexworths,<br />

London, 1965<br />

2. Linsley, Ray K. and J. B. Franzini, <strong>Water</strong> <strong>Resources</strong><br />

Engineering, McGraw-Hill Book Co., London, 1964<br />

3. Searcy, J. K., Flow-Duration Curves, Manual <strong>of</strong> <strong>Hydrology</strong>,<br />

Geological Survey <strong>Water</strong> Supply Paper 1542-A, Washington D.C.,<br />

1959


APPENDIX 13: CALCULATION OF AVERAGE ANNUAL SEDIMENT. VOLUME<br />

TRANSPORTED BY LOWER QISHON FLOWS<br />

li 5<br />

1. Streamflow hydrographs were used for preparing a %cirtical cut curve"<br />

representing the average annual values <strong>of</strong> flow (Uc) contributed by<br />

discharges up to any value <strong>of</strong> QI as explained in Sections D and E,<br />

and illustrated in Fig. 2 <strong>of</strong> App. A.<br />

2. Simultaneous data <strong>of</strong> sediment concentrations and instantaneous dis-<br />

charges, supplied by the Israel Jydrological Service, drawn on a<br />

log-log paper enable the construction <strong>of</strong> a correlation line between<br />

the average sediment concentration and the instantaneous discharges.<br />

In order to be on the safe side, the line was removed toward the<br />

higher concentrations (<strong>of</strong> each discharge) - see Fig. 4 <strong>of</strong> App. A.<br />

3.. The calculations are shown in detail in the following table.<br />

-


11 6.<br />

CALCULATION OF AVERAGE ANNUAL SEDIMENT LOAD<br />

EXAMPLE: LOWER QISHON STREAM (ISRAEL)<br />

-<br />

uc<br />

cs<br />

L CU. mf s ec<br />

-<br />

5<br />

O<br />

1<br />

3<br />

5<br />

1 .20<br />

10<br />

15<br />

--<br />

Total<br />

LEGElID:<br />

-<br />

MCMIY r<br />

3.0<br />

6.0<br />

8. O<br />

10.4<br />

II..<br />

12.0<br />

13. O<br />

Q = diccnarge<br />

3,O<br />

3.0<br />

2. o<br />

2.4<br />

1.0<br />

O. 6<br />

1.0<br />

13.0<br />

PPm<br />

400<br />

800<br />

1 , 200<br />

1,700<br />

2,300<br />

2,700<br />

-<br />

300<br />

600<br />

1 , O00<br />

1 , 450<br />

2,000<br />

2,500<br />

4,000<br />

5 x AÜc<br />

ave<br />

to<strong>nl</strong>year<br />

APP.<br />

Sneet 2<br />

900<br />

1 , 800<br />

2,000<br />

3 , 480<br />

2,000<br />

1,500<br />

4,000<br />

15,680<br />

U2 = average annual flow volume related to Q calculated by<br />

vertical cut <strong>of</strong> hydrographc (from Fig. 2 <strong>of</strong> App. A)<br />

I -<br />

AUc = the interval <strong>of</strong> Uc contributed by discharge interval<br />

-<br />

Cs = average sediment concentration, by weight (from Fig. 4<br />

<strong>of</strong> App. A) , high values<br />

- -<br />

(Cs)ave = average CS for discharge interval<br />

4. The result obtained from the calculations shown in the above table,<br />

is that average annual sediment load transported by the Qishon stream-<br />

ilows amounts to about 16,000 ton. Assuming an average trap efficiency<br />

<strong>of</strong> 90 percent and sediment deposits specific weight <strong>of</strong> 1.5 ton per cu.m -<br />

the average annual value <strong>of</strong> sediment trapped and deposited in the planned<br />

reservoir will be about 10,000 cu.m per year ( 16~000x0'9 9,600<br />

1.5<br />

i0,OOO cu.m per year).


Rainy yerre - average: t* > 40 daye I<br />

---Ueriium reinfall years - averaec:<br />

20 1 t* 40 daye<br />

Dry year# - average: t* < 20 daye<br />

dischargee exceeding Q<br />

t* - Number OP daye <strong>with</strong> discharges cxceeding<br />

1.5 m3Jeec<br />

.,...u. Average for 1940141 to 1964165<br />

FIG. 1: FLOW-DURATION CURVES FOR QISHON<br />

- STREAM (ISUAEL)<br />

FIG. 2: HORIZûNTAL, VERTICAL AND DOUBLE<br />

CUTS OF HYDROGRAPHS OF QISHON<br />

STREAM (ISRAEL)<br />

117<br />

Appendìx A


118<br />

FLG. 3: THE DEPENDENCE OF THE AVERAGE STORABLE<br />

FLOWS AND THE STORAGE EFFICIENCY ON<br />

THE NET AVERAGE RESERVOIR CAPACITY AT<br />

THE UPPER QISHON (UPSTREAM THE HYDRO-<br />

METRIC STATION TO WHICH THE DATA OF<br />

FIG. 1 AND 2 REFER), ISML<br />

Amendix A


Appendix A<br />

11 9


ABSTRACT<br />

APPLICATION OF COUTAGNE'S AND TURC FORMULAS<br />

TO THE SOUTHERN MOZAMBIQUE RIVERS<br />

Emilio Eugénio D'Oliveira Mertens<br />

Joäo José Mimoso Loureiro<br />

Checking <strong>of</strong> Coutagne's and Turc formulas, was purposed to<br />

obtain values, though approximated, for the annual mean run<strong>of</strong>f<br />

<strong>of</strong> the several rivers at southern Mozambique where few gauging<br />

stations exist. Therefore, measured rainfall and temperature<br />

values were collected from the meteorological and gauging stations,<br />

as well as the run<strong>of</strong>f values observed in the locations.<br />

We conclude from the results obtained that the application<br />

<strong>of</strong> these rules has given us, <strong>with</strong> relative guarantee, the annual<br />

mean run<strong>of</strong>f values, <strong>with</strong> deviations inferior to 10% which can be<br />

considered as satisfactory.<br />

RESUME<br />

Les formules de Coutagne et Turc ont été utilisées pour<br />

obtenir des valeurs, même approximatives, de l'écoulement moyen<br />

annuel pour les différents fleuves de la région sud de Mozambique<br />

dans laquelle on ne dispose que d'un nombre très limité de<br />

stations de jaugeage.<br />

Les calculs ont St6 effectués à partir des valeurs des<br />

précipitations et des températures mesurées aux stations météorologiques<br />

et pluviométriques, ainsi que des valeurs des écoulements<br />

observées à différentes stations.<br />

Les résultats obtenus montrent que l'application de ces<br />

deux formules donne, avec une précision relative, des valeurs de<br />

l'écoulement moyen annuel. Les écarts sont inférieurs à lo%, ce<br />

qui peut être considéré comme satisfaisant.


The hidrological phenomenons o- greater interest, relating to the hidro-<br />

logical studies <strong>of</strong> a catchment area under consideration, are namely:-<br />

Rainfall<br />

Air temperature<br />

Relative humidity<br />

Evaporation<br />

Hidrometical records<br />

Flow discharges <strong>of</strong> streams and run<strong>of</strong>f<br />

Sediment discharges<br />

The main purpose <strong>of</strong> a certain hidrological study, consists on the deter-<br />

mination for each one <strong>of</strong> the observed actions, <strong>of</strong> the variability principles<br />

there<strong>of</strong> at distinguished intervals, analogy principles <strong>of</strong> the phenomenon itself<br />

from site to site and <strong>of</strong> the correlation principles amongst the several pheno-<br />

menons.<br />

One <strong>of</strong> the basilar elements necessary for the planning <strong>of</strong> an economical<br />

development program is the knowledge <strong>of</strong> the value and distribution <strong>of</strong> its hidrg<br />

logical resources.<br />

In Mozambique, registration <strong>of</strong> the hydric resources has been facing<br />

great difficulties not o<strong>nl</strong>y in what refers to the extension <strong>of</strong> the territory but<br />

also, and essentially, by lack <strong>of</strong> observations <strong>of</strong> the hidrological phenomenons,<br />

namely the run<strong>of</strong>f and flow discharges <strong>of</strong> rivers and water-sources.<br />

From a report presented by Dr. L. Turc on the 3rd.iiidrological Ehgeneer-<br />

ing Congress organized by the 'Societé iiidrologique de France', which took<br />

place in Argel, in 1954, we were suggested to follow the idea <strong>of</strong> verifying the<br />

possibility in the application <strong>of</strong> Coutagne's and Rirc general rules, related to<br />

the Southern Mozambique water-sources.<br />

2 - COUTAGNE'S AND TURC GENERAL RULES<br />

These general rules allow us to estimate, by simple calculation, the<br />

value <strong>of</strong> a catchment area's run<strong>of</strong>f deficit, provided that rainfall and tempe-<br />

rature are known.


2.<br />

Run<strong>of</strong>f deficit - is the difference between mean rainfall height<br />

123<br />

pertinent to a certain site in the water-source and the corresponding height<br />

to the flow discharge estimated at the referred site.<br />

2.1 - COUTAGNE'S GENERAL RULE<br />

Being :<br />

H = Mean rainfall height<br />

general rule is<br />

E = Hficient rainfall height, that is, the height which transform<br />

itself theoretically, in the whole, to run<strong>of</strong>f.<br />

D = Run<strong>of</strong>f deficit = H - E<br />

C = Run<strong>of</strong>f coefficient = 2<br />

H<br />

K = Coutape's constant<br />

2<br />

D = H - KH2 being E = KH<br />

and since C = E and D=H-E<br />

H<br />

Now as:<br />

C,D-H or C = KH<br />

H<br />

2<br />

(C - KH)2 = (c 1 - KH + (c 2 - KH 2)2 + (c 3 - KH 3) + ....**<br />

to minimize this sum, it will do equalizing zero to the first derivative:<br />

wherefore:<br />

(C 1 - KH 1) H 1 + (C 2 - KH 2) H 2 + .......= O<br />

CH<br />

CH-KH2 = O K = -<br />

H2<br />

From the above determination it is given the most probable value for K.


124<br />

/3.<br />

2.2 - TURC'S GENERAL RULE<br />

L = Turc's constant<br />

P = Evaporation plus lost by percolation<br />

T =Mean temperature<br />

A = Constant<br />

being<br />

wherefore<br />

H<br />

'dFtJ2<br />

L2<br />

L = A + 25 T + 0,05 T3<br />

The author still precises that applying his general rule in 254<br />

Catchment areas, considering A = 300, distributed towards every climate in the<br />

world, it has been reckmed that values <strong>of</strong> 0 observed and calculated from the<br />

referred general rule, came out as to the undermentioned results:-<br />

or<br />

or rather<br />

in 53% the cal. D - me86 D < 40 mni<br />

in 43% the cal. D - meas. D < 0,l meas. D<br />

i,n 65% the cal. D - meas.D < 0,2 meas. D


4.<br />

3- REPORT ûF THE CONSIDERED LOCATIONS<br />

125<br />

Described hereyder are the considered locations at the Limpopo's<br />

(incl. Elephant's River), Incomati, Umbeluzi, Sabie and Usuto Rivers (D. 1)<br />

3.1 - ELEPHANT'S RIVER<br />

Location: Maçuço - Mozambique<br />

2<br />

Catchment area: 66.600 Km<br />

Mean rainfall height: 636 mm<br />

Mean temperature: 18,9OC.<br />

Observation years : 1944/45 to 1970/71.<br />

3.2 - LIMPOPO'S RIVER<br />

Location:Beit bridge - R.A.S.<br />

2<br />

Catchment area: i88.000 Km<br />

Mean rainfall height: 481 mm<br />

Mean temperature : 2OoC.<br />

Observation years : 1955/56 to 1963/64<br />

3.3 - LIMPOPO'S AND ELEPHANTS RIVERS<br />

Location: Vila Trigo de Morais - Mozambique<br />

2<br />

Catchment area: 340.000 Km<br />

Mean rainfall height: 541 mm<br />

Mean temperature: 20,2OC<br />

Observation years: 1951/52 to 1969/70<br />

3.4 - INCOMATI'S RIVER<br />

Location: Ressano Garcia - Mozambique<br />

2<br />

Catchment area: 21.600 Km<br />

Mean rainfall height: 832,2 mm<br />

Mean temperature: 18,8OC<br />

Observation years : 1955/56 to 1969/70<br />

./.


126<br />

3.5 - SABIfl'S RIVER<br />

Location: Machatuine - Mozambique<br />

Catchment area: 6.200 Km2<br />

Mean rainfall height: 766,4 mm<br />

Mean temperature: 20,7OC<br />

Observation years: 1955/56 to 1969/70<br />

3.6 - UMBELUZI 1 s RIVER<br />

Location: Goba - Mozambique<br />

Catchment area: 3.100 Km<br />

2<br />

Mean rainfall height: 820,3 mm<br />

Mean temperature: 21,6OC<br />

Observation years : 1955/56 to 1970/7i<br />

3.7 - MAPUTO'S RIVER<br />

Location: Sip<strong>of</strong>aneni - Swaziland<br />

2<br />

Catchment area: 12.903 Km<br />

Mean rainfall height: 83i,7 mm.<br />

Mean temperature : 22OC<br />

Observation years : 1958/59 to 1964/65<br />

3.8 - Therefore we get two distinguished groups in regarding to pluviosity<br />

and temperature:-<br />

- Limpop<strong>of</strong>s River Groue - <strong>with</strong> mean rainfalls between 450 and 650 mm<br />

and temperatures from 18OC to 2OoC;<br />

- Incomati's, Sabie, Umbeluziaid Usuto Group <strong>with</strong> mean rainfall<br />

values <strong>of</strong> 800 m. and temperatures higher than 2OoC.<br />

4 - APPLICATION OF COUTAGW'S GENERAL RULE<br />

We have tried Coutagne's general rule for each one <strong>of</strong> the above<br />

groups and locations therein.


4.1 - LIMPOPO'S RIVER CATCHMENT AREA<br />

127<br />

2<br />

The 340.000 Km <strong>of</strong> the Limpopo's River Catchment Area relating to<br />

2<br />

Vila Trigo de Morais' gauging station, include the 66.600 Km <strong>of</strong> Maçuço's<br />

gauging station at Elephants' River and the 188.000<br />

2<br />

Km pertinent to Beit<br />

Bridge location.<br />

4.1.1 - For the 27 observation years at Elephants' River we have reached to<br />

the following type <strong>of</strong> Coutagne's rule:-<br />

D = H - 0,000055 H (1)<br />

The most probable values for the measured run<strong>of</strong>f deficits (612,9 mm)<br />

and calculated ones (613,3 mm) differ in 4 mm to a mean deviation <strong>of</strong> _+ 8,7 mm<br />

and a mean observation error <strong>of</strong> 7,4 mm.<br />

Extension <strong>of</strong> this rule for the available 66 rainfall observation<br />

years would be plai<strong>nl</strong>y acceptable in view <strong>of</strong> the fact that for a period <strong>of</strong> 34<br />

years <strong>of</strong> which we own the closest possible run<strong>of</strong>f estimatives, difference is<br />

kept for the measured and calculated deficit.<br />

4.1.2 - For the 9 observation years in Limpopo's River area at Beit Bridge we<br />

reached to the results hereunder, to Coutagne's rule:<br />

2<br />

D = H - OJ00O031 H<br />

(II)<br />

recording the most probable values <strong>of</strong> the measured run<strong>of</strong>f deficits (472,7 mm)<br />

and calculated ones (473,7 mm) being the mean deviation and each observation<br />

error <strong>of</strong> _+ 6,2 mm and 3,7 mm respectively.<br />

4.1.3 - Finally for the i9 observation years in Vila Trigo de Morais, situated<br />

after the confluence <strong>with</strong> Limpopo's and Elephants Rivers, Coutagne's rule<br />

presents us the following result:-<br />

2<br />

D = H - 0,000047 H<br />

(III)<br />

Measured and calculated run<strong>of</strong>f deficits have a similar probablest<br />

value, but the mean deviation is increased in ,+ 10,l mm and mean observation<br />

error amounts to f 7,6 mm.<br />

./.


128<br />

/7.<br />

4.1.4 - It is left to determinate now an available Coutagne's general rule<br />

to the entire group <strong>of</strong> 55 observations, as the principal elements taken to<br />

its calculation - run<strong>of</strong>f coefficient (C) and mean rainfall (H) - are not<br />

dependent values on those <strong>of</strong> the referring catchment areas, same being consi-<br />

dered to the run<strong>of</strong>f deficit.<br />

Ordering the values <strong>of</strong> the observed mean rainfall, the undermentioned<br />

rule is calculated (Q1):-<br />

2<br />

D = H - 0,000050 H (IV)<br />

Through the same comparative system, it was obtained to the measured<br />

run<strong>of</strong>f deficits, the value <strong>of</strong> 560,3 mm and for the calculated ones through<br />

the same rule (IV) 56O,6 mm being 0,3 mm the difference there<strong>of</strong>.<br />

Mean deviation <strong>of</strong> the measured and calculated values amounts to<br />

+ 9,l mm <strong>with</strong> a mean observation error for each one <strong>of</strong> 7,2 mm.<br />

-<br />

Seing that the values <strong>of</strong> medium rainfalls, relating to the observa-<br />

tion periods, are respectively <strong>of</strong> 636, 481 and 541 mm <strong>with</strong> a short difference<br />

from the medium normal rainfall, we may conclude that Coutagne's rule <strong>of</strong><br />

which coefficient is equal to 0,000050, can be applied to every catchment<br />

area <strong>of</strong> which medium rainfall is comprehended between 450 and 650 mm. However<br />

it is necessary to point out that its application, in view <strong>of</strong> the great ex-<br />

tensions that they comprehend, cannot be considered as absolutely precise,<br />

except for mean values.<br />

Application <strong>of</strong> this rule every year may lead us to<br />

mistake, since it calculates a regular correlation amongst run<strong>of</strong>f and rainfall<br />

which is not precised in the practice because <strong>of</strong> the powerful stream <strong>of</strong> Lim-<br />

popo's River, namely before the confluence <strong>with</strong> Elephants' River.<br />

4.2 - CATCHMENT AREA'S GROUP OF INCOMATIIS, SABIE, UMBELUZI AND USUTO RIVERS<br />

2<br />

The 43,803 Km <strong>of</strong> this group comprehend all the rivers which drain<br />

<strong>of</strong>f in Lourenqo Marques' Bay and are located in an area, mean altitudes <strong>of</strong><br />

which excede the 800 m. and mean rainfall is estimated between 750 mm and<br />

850 mm.<br />

All the above catchment areas are neighbouring.<br />

4.2.1 - For the 15 observation years <strong>of</strong> the Incomati's River at Ressano<br />

Garcia rainfall station, we conclude from Coutagne's general rule the next:<br />

2<br />

D = H - 0,000150 H (V)<br />

./.


129<br />

The mean deviation value amounts to 19,7 mm and the mean observation<br />

error to i5 mm for the measured and calculated run<strong>of</strong>f deficits <strong>of</strong> 737,3 and<br />

739,O mm respectively.<br />

4.2.2 - For the Machatuinels rainfall station <strong>of</strong> Sabie's River and Goba's<br />

rainfall station <strong>of</strong> Umbeluzi's River, respectively <strong>with</strong> 15 and 16 observation<br />

years pertinent to an identical period, Coutagne's general rule figures like:<br />

D = H - 0,000131 H<br />

2<br />

2 (VI)<br />

D = H - 0,000145 H<br />

To the first location, measured and calculated run<strong>of</strong>f deficits are<br />

similar (684,7 mm) and mean deviation amounts to _+ 20,4 mm.<br />

At Umbeluzi's River, mean deviation amounts to the decreasing value <strong>of</strong><br />

+ 181 mm and difference between the measured and calculated deficits amounts<br />

-<br />

to 718,s and 719,O.<br />

4.3.3 - For the 7 observation years at the Sip<strong>of</strong>aneni's rainfall station in<br />

Swaziland, the main confluent <strong>of</strong> Maputo's River, Coutagne's general rule is<br />

as follows:-<br />

D = H - 0,000162 (VI1 )<br />

Measured values (717,3 mm) and calculated ones (717,O) differ from<br />

O,3 mm and mean deviation amounts to &17,3.<br />

4.3.4 - Similary to what has been done in Limpopo, it was arranged the group<br />

<strong>of</strong> 53 observation years (Q2) in regard to mean rainfall, which alters from<br />

500 mm to 1.540 mm and the exposed Coukagne's rule is:-<br />

D = H - 0,000140 H2 (VIII)<br />

Difference from the results determined by measuring and obtained from<br />

this ru1.e (VIII) is <strong>of</strong> 1,2 mm <strong>with</strong> a mean deviation <strong>of</strong> f 19,3 mm and _+ 15,8 mm<br />

for the medium error <strong>of</strong> each observation.<br />

To this catchment area's group mean rainfall wherein exceeding 800 mm<br />

and mean small deviations qualifying same as <strong>of</strong> minor torrentiality, and,<br />

consequently, higher stream regularity, application <strong>of</strong> Coutagne's general rule<br />

more than granting us accurate values for the annual run<strong>of</strong>f deficits yet allow<br />

./.


130<br />

/9.<br />

us its application year after year.<br />

5. - APPLICATION OF TURC'S GENERAL RUlE<br />

Application <strong>of</strong> this rule, such as formed by Turc, that is, considering<br />

A=300, could not be used but running the risk <strong>of</strong> forming gross estimate errors<br />

seing that in Mozambique, the catchment areas in study have great extensions,<br />

usually.<br />

5.1 - We have tried to both <strong>of</strong> the groups the application <strong>of</strong> the general rule<br />

formed by Turc, and have found the next following results:-<br />

5.1.1 - IJMPOW'S CATCHMENT AREA<br />

Difference calc. D - meas. D L<br />

II II L<br />

II II A<br />

II II L<br />

II 11 <<br />

II II L<br />

II II<br />

II II<br />

1<br />

Ls<br />

20 mm -<br />

40 mm -<br />

40 ~UW -<br />

0,Ol m.D -<br />

0,05 m.D -<br />

0,l m. D -<br />

0,l m. D -<br />

0,2 m. D -<br />

5.1.2 - INCOMATI'S, SABIE, UMBELUZI AND USUTO GROUP-(Q2)<br />

Difference calc. D - meas. D c 20 m -<br />

11 Il < 40mm -<br />

II II<br />

> 40 ìüiìì -<br />

11 II < 0,Ol m.D -<br />

II II < 0,05 m.D -<br />

11 II < 0,l m.D -<br />

II 11 > 0,l m.D -<br />

11 Il > 0,2 m.D -<br />

53%<br />

76%<br />

24%<br />

14%<br />

22%<br />

36%<br />

64%<br />

O<br />

3%<br />

66%<br />

34%<br />

1 5%<br />

50%<br />

84%<br />

16%<br />

5.2 - Percentages differ from the obtained values by Turc for his Group <strong>of</strong><br />

254 catchment areas and considering the 64% (Limpopols Group) <strong>of</strong> events<br />

superior to 0,l <strong>of</strong> measured D, we are not abled to consider the rule as<br />

applicable.<br />

10%


lo.<br />

131<br />

Therefore it was tried to find a rectifying solution <strong>of</strong> the constants<br />

in function <strong>of</strong> the mean rainfall and annual mean temperature for every catch-<br />

ment area.<br />

Thus we have traced the graphic shown in D.2, consequence <strong>of</strong><br />

succeeding considerations on the measured values.<br />

5.3 - Upon the above application <strong>of</strong> Turc's general rule, established the<br />

constant A from the graphic, we reached to the following results:<br />

5.3.1 - LIMPOPO'S CATCHMENT AREA (Q3)<br />

Difference calc. D - meas. D < 20 mm<br />

II 11 < 40 mm<br />

II II<br />

40mm<br />

11 II<br />

d 0,Ol m.D<br />

II II < 0,05 m.D<br />

11<br />

II<br />

11<br />

II<br />

II<br />

11<br />

< 0,l m. D<br />

> o,1 m. D<br />

> 0,2 m. D<br />

88%<br />

95%<br />

5%<br />

33%<br />

io%<br />

5.3.2 - INCOMATI'S, SABIE, UMBELUZI AND USUTO CATCHMENT AREAS (a)<br />

Difference calc. D -<br />

II II<br />

II<br />

II<br />

II<br />

II<br />

Il<br />

11<br />

II<br />

11<br />

II<br />

11<br />

11<br />

II<br />

10%<br />

O<br />

O<br />

meas. D < 20 mm - 43%<br />

< 40 iiìüi - 87%<br />

> 40 ïìüü - 13%<br />

¿ 0,Ol m.D - 25%<br />

< 0,05 m.D - 8%<br />

< 0,l m.D - 96%<br />

> 0,l m.D - 4%<br />

> 0,2 m.D - O<br />

5.4 - From the whole <strong>of</strong> the 108 compared values, we conclude that in 87% <strong>of</strong><br />

the cases the difference among the calculated and observed values does not<br />

exceed 40 mm and in 96% the difference does not exceed 0,l from the measured<br />

run<strong>of</strong>f deficit. Nevertheless, the most relevant results are that in 2% <strong>of</strong> the<br />

cases the deviation does not exceed 0,Ol meas.D and 53% does not amount to<br />

O,O5 <strong>of</strong> the observed run<strong>of</strong>f deficit.<br />

. /*


132<br />

/li.<br />

6 - CONCLUSIONS<br />

In the water-sources situated at the South <strong>of</strong> Save's River, there<br />

might be applied the Coutagne's and Turc general rules on the following way:<br />

and 700 nun.<br />

COüTAGNE'S GENERAL RULE:<br />

Catchment areas <strong>with</strong> annual medium rainfalls coaiprehend between 450<br />

2<br />

D = H - 0,000050 H<br />

for mean rainfall superior to 700 nun.<br />

TURC'S GENERAL RULE<br />

2<br />

D = H - o,000140 H<br />

Determining constant A from the graphic<br />

Utility in the application <strong>of</strong> these rules becomes evident in view<br />

<strong>of</strong> the non-existence <strong>of</strong> gauging stations along the multiple water-sources in<br />

the area under consideration, meteorologic and rainfall stations taking their<br />

place instead.<br />

But, seing that for the inventorying <strong>of</strong> the hidrological resources<br />

is matter <strong>of</strong> extreme necessity the knowledge, though approximated, <strong>of</strong> the<br />

annual mean rainfall, and yet because it has become evident through the appli-<br />

cation <strong>of</strong> the aforesaid rules that precise values amount to less than i%, we<br />

may say that have succeed <strong>with</strong> the reaching <strong>of</strong> our main purposes.


133<br />

D1


850<br />

800<br />

750<br />

700<br />

650<br />

6 O0<br />

55 o<br />

500<br />

450<br />

\<br />

\<br />

\<br />

\<br />

\<br />

\<br />

\ '<br />

\ i<br />

\ v<br />

35 O<br />

400<br />

C5 O<br />

500<br />

ln<br />

U<br />

L<br />

C<br />

m .-<br />

U - W<br />

u<br />

O<br />

P<br />

a<br />

.- E<br />

-I<br />

VI<br />

O<br />

.-<br />

a<br />

A (TURC2<br />

ABACO PARA A DEIERMINAFAO<br />

DA CON5fANTE DE TURC


DETERMINAÇ~O<br />

DO COEFICIENTE DE COUTAGNE<br />

Rios Limpopo e Elefantes


DEIERMIN4ÇÁO DO COEFICIENTE DE COUTPGNE<br />

Rios Limpopo e Elefantes<br />

1


DETERMINPÇÃO DO COEFICIENTE O€ COüTAGNE<br />

Rios Incomati, Sabié, ümùeltízi e Maputo<br />

OEFIC E NI<br />

e E SCGAIAI<br />

C<br />

-__<br />

Q tu<br />

-Qm<br />

AQ6<br />

Q,lQ<br />

All-<br />

Q,05<br />

n ,u-<br />

9,08<br />

4.05<br />

-0,l3<br />

0,16<br />

0,11<br />

0,08<br />

0,lQ<br />

0,07<br />

0,08<br />

Li1<br />

0.10<br />

o, 11<br />

0.11<br />

O ,O8<br />

O, 14<br />

0,13<br />

0.09<br />

0,OI<br />

O, 08<br />

o ,oa<br />

0,13<br />

0,15<br />

Od3<br />

o, 09.<br />

0.11<br />

0,12<br />

O ,O9<br />

0,13<br />

Q,16<br />

0,12<br />

0,11<br />

0,l.l<br />

0,12<br />

O J 5<br />

-<br />

-e*-<br />

-<br />

HZ<br />

259d81 - -.<br />

392.599<br />

3 1 W P - .<br />

605.284 ~<br />

606 .a41 -~<br />

624.00<br />

628 -849<br />

649.636<br />

6 22.400<br />

685 584 .<br />

687.241<br />

714.025 .<br />

734.449<br />

736 16 4<br />

17O.8134<br />

774.40Q<br />

7 84.996<br />

792.100 -<br />

792.100<br />

793.881<br />

195.664<br />

802.816<br />

846.400 -.<br />

81.9_41<br />

.<br />

-<br />

C H<br />

-<br />

93L776<br />

25,99<br />

@+5Q -<br />

XL§Q __<br />

5Z,60<br />

34kUlQO- - .- - 6430<br />

3áL O M .. in,oo -<br />

381924 67.98<br />

38 4.400 .- 49,6Q_<br />

419,881<br />

32.01<br />

412.164<br />

83,46<br />

448.900 107.20<br />

A98 329<br />

462.40Q<br />

74,47<br />

1>4,40<br />

463,761 48 ,LO<br />

467,856<br />

485,809<br />

504.100<br />

. 47.88<br />

55 I 76<br />

78.10<br />

132.9QO<br />

73,OO<br />

547.600 . 81.40<br />

549.061<br />

81.51<br />

599-076 -<br />

61,92<br />

. 108,92<br />

101.27<br />

71110<br />

55,SI<br />

64,4t?<br />

65,60<br />

107,64<br />

124,35<br />

109.85<br />

77,13<br />

94.38<br />

105 ,ih<br />

79 120<br />

115,lß<br />

142.40<br />

106,80<br />

9h,01<br />

96,l'<br />

107,~J<br />

138.00<br />

17c,77<br />

-<br />

:EPICI1 drESCOAUEN1<br />

-<br />

O CALCULA<br />

45 2<br />

502<br />

.I 29<br />

5 13<br />

524<br />

16 i)<br />

547<br />

57 1<br />

610<br />

56 0<br />

562<br />

603<br />

622<br />

6Q7<br />

630<br />

6 40<br />

634<br />

655<br />

66 2<br />

6 56<br />

708<br />

56 7<br />

676<br />

713<br />

737<br />

739<br />

749<br />

721<br />

704<br />

738<br />

780<br />

76 2<br />

777<br />

799<br />

77 1<br />

744<br />

785<br />

792<br />

797<br />

79 1<br />

780<br />

813<br />

-<br />

A<br />

OM- o<br />

- 21<br />

- -6<br />

+-L3<br />

-<br />

2<br />

-<br />

lî*<br />

-<br />

-12<br />

-18 -<br />

441<br />

- 36<br />

269<br />

144<br />

324<br />

i18 . 324<br />

-1 8 324<br />

+4 - IL<br />

i26 -6 36<br />

-24 57t<br />

-46 211C<br />

-10 -100<br />

+6 36<br />

-1 O 101<br />

+19 36 1<br />

+LI 171<br />

-6 36<br />

-1 1<br />

-2 4<br />

-9 bl<br />

i17 289<br />

-2 7 729<br />

-19 36 i<br />

+10 100<br />

+ 32 1074<br />

+2 3 520<br />

*23<br />

-12<br />

529<br />

144<br />

-29 8 41<br />

-8 6 1"<br />

+?5 625<br />

+ 7 49<br />

+ 2 4<br />

+2 7<br />

-6<br />

- 36<br />

+ 5<br />

729<br />

36<br />

1296<br />

2 c><br />

+12 __ 144<br />

+11 121<br />

+7 49<br />

-22 484<br />

+.4 16<br />

- -<br />

-


38<br />

DETERMIN4C$O DO COEFICIENTE DE COUT4GNE<br />

2


QUADRO COMPARATIVO DOS RESULTADOS OBTIDOS<br />

PELA FORMULA DE TURC E DA CONSTANTE TI,<br />

RADA DOÁBACO<br />

ZONA Bios Limpopo e Elefantes mor<br />

3


140<br />

QUADRO COMPARATIVO DOS RESULTADOS OBTIDOS<br />

PELA FORMULA DE TURC E DACONSTANTE TI-<br />

RADA DO ÁBACO<br />

ZONA Incomati, Sabi6, Umùelilzi e Naputo<br />

4


ABSTRACT<br />

MAPA1 HI DROLOGI CAL STUDY ( LIMPOPO ' S RI VER)<br />

EMILIO EUGENIO D'OLIVEIRA MERTENS<br />

JOÃO JOSE MIMOSO LOUREIRO<br />

Lack <strong>of</strong> observations in the flow discharges and run<strong>of</strong>f,<br />

taken at the future location <strong>of</strong> mapai's dam, have compelled<br />

us to the essaying <strong>of</strong> diversed methodology viewing its<br />

obtention.<br />

It was selected the method <strong>of</strong> the specifica1 run<strong>of</strong>f<br />

technic which has conducted us to most consistant and<br />

significant results in conjunction <strong>with</strong> those observed and<br />

calculated for other locations at the catchment area.<br />

RESUME<br />

L'abscence des observations relatives aux débits et<br />

écoulements measurables au futur lieu du barrage du mapai,<br />

nous a forcé d'essayer diverse méthodologie pour en obtenir.<br />

I1 a ;te choisie la method: de la technique dés débits<br />

specifiques que nous a conduit a des resultats tres concordants<br />

et significatives en conjunction avec ceux observés<br />

et calculés pour les autres lieu du bassin versant.


142<br />

1 - CATCHMENT AREA<br />

1.1 - Site, area, relief and hydrography:<br />

The hidrographic basin <strong>of</strong> the Limpopo River has its major part in the<br />

territories <strong>of</strong> South Africa, Rhodesia and Botswana, its area <strong>of</strong> 412 O00 km2<br />

being devided in the following manner (Drawing 1):<br />

South African Republic .................... 193 500 km2<br />

Rhodesia .................................. 66 O00 km2<br />

Botswana .................................. 73 O00 km2<br />

Mozambique ................................ 79 500 km2<br />

Rounded <strong>of</strong>f, the catchment area is situated beyween 220 and 260<br />

South and 269 and 350 East, its highest altitude being 2.300 metres near the<br />

city <strong>of</strong> Lydenburg.<br />

In National territory, situated between parallels 210 and 250 South and<br />

meridians 310 and 359 East, the basin has to the North, that <strong>of</strong> the River Save,<br />

to the South, that <strong>of</strong> the River Incomati and to the East, that <strong>of</strong> the River<br />

Govuro, and a coastal strip where a few closed catchment areas are found from<br />

which the water-sources accumulate in lakes.<br />

In Mozambique there is no noticeable irregularity, this occurring o<strong>nl</strong>y<br />

in the limiting zone to the south <strong>of</strong> the Limpopo, in a reduced area <strong>with</strong> eleva-<br />

tions <strong>of</strong> 400 metres.<br />

In its total length the average height is <strong>of</strong> 840 metres, its being 977,<br />

964 and 950 metres, respectively in Beitbridge, Mapai and Trigo de Morais.<br />

The average slopes <strong>of</strong> the course <strong>of</strong> the water are:<br />

Upper stream ....................................... 2, 50 dlan<br />

Central stream ..................................... 1,80 m/km<br />

Lower stream ....................................... 0,Og m/km<br />

The Limpopo is one <strong>of</strong> the most important rivers <strong>of</strong> South Africa and<br />

Mozambique and, as happens <strong>with</strong> the Incomati River, it is contained in the<br />

lower part <strong>of</strong> the great drainage area, which includes more than half <strong>of</strong> the<br />

Transvaal and a considerable part <strong>of</strong> South Rhodesia.<br />

./.


143<br />

The Limpopo is a strange river, very changeable and capricious, perhaps<br />

due to the influence <strong>of</strong> the dissimilarity <strong>of</strong> its hydrographical basin; its vol5<br />

me <strong>of</strong> water is extremely variable as in dry weather it is very reduced and during<br />

the rainy season, reaches heights <strong>of</strong> 7 metres which flood large areas <strong>of</strong> ground<br />

in the central and lower courses. The Limpopo River, when it enters our territory,<br />

has already a definite bed, where it has three large tributaires: on the<br />

right bank, the Elephants River, and on the left bank, the Nuanetzi and the<br />

Changane; it is to these that it owes its permanent volume <strong>of</strong> water for the<br />

flow from those joining it, its principal supplier being the Elephants River, a<br />

water-source which crosses a region <strong>of</strong> high rains, its hydrographic basin having<br />

a somewhat impermeable geological configuration.<br />

It belongs to the hydrographical system <strong>of</strong> the African Continent and it<br />

is <strong>of</strong> the torrential rate <strong>of</strong> permanent volume.<br />

The course <strong>of</strong> the water which takes the name <strong>of</strong> Limpopo River, is formed<br />

by the junction <strong>of</strong> the Marico and Crocodile Rivers which have their sources at<br />

an altitude <strong>of</strong> 1.500 metres to the west <strong>of</strong> the city <strong>of</strong> Pretoria.<br />

The principal tributaries <strong>of</strong> the right bank, all <strong>with</strong> their sources in<br />

the Transvaal, from the source to the mouth <strong>of</strong> the Limpopo River are as follow:<br />

River Matablas , Pongola, Palala, Sand, Pafuri (flowing in close to Pafuri,<br />

already in Portuguese territory) and the Elephants River, the largest and most<br />

important which joins it <strong>with</strong>in Mozambique after some 110 kms. On its left bank,<br />

the Limpopo receives large courses <strong>of</strong> water all <strong>with</strong> their sources in Rhodesia,<br />

the principal ones being:<br />

River Notwani, Macloutsie, Tuli, Umtzingwane, Bubye, Nuanetzi (which has<br />

already flown about 50 kms in Mozambique) and the River Changane.<br />

1.2 - Geological Aspect, Soils and Vegetation:<br />

In the Limpopo basin, formations are found which belong to different<br />

systems, such as Karroo, <strong>Water</strong>berg, Primitive System.<br />

The basin in South African and Rhodesian territory seems to be constituted<br />

<strong>of</strong> basaltic lava, Serie Ecca, siliceous detrital rocks (sandstone) <strong>of</strong> brown<br />

red and purple colours, formations <strong>of</strong> conglomerates, graphite and gneiss.<br />

In Mozambique, the basin is mai<strong>nl</strong>y constituted <strong>of</strong> sedimentary formations.<br />

In a narrow area near the border, volcanic rocks are found, in the upper<br />

course <strong>of</strong> the Limpopo River and Elephants River formations <strong>of</strong> the Cretaceous Era,<br />

in the rest, Quaternary formations <strong>with</strong> alluvium, sandstone, calcarium and sand<br />

deposits.<br />

./.


144<br />

The vegetation in foreign territory is mai<strong>nl</strong>y constituted <strong>of</strong> bush and<br />

grass, <strong>of</strong> great density in the highlands, and mixed bush and grass plains. In<br />

Mozambique, the vegetation is <strong>of</strong> the bushy type and plains <strong>with</strong> some trees,<br />

level grass plains and large stretches <strong>of</strong> grassy land.<br />

The predominant soils in our territory are: sandy in the coastal area,<br />

salty in the river vales, soils <strong>of</strong> mananga in the lower Changane and conglome-<br />

rates.<br />

1.3 - Climate:<br />

In respect to the area situated in Mozambique, it appears that the<br />

average annual temperatures are practically the same in almost all the basin,<br />

being 240 C <strong>with</strong> the exception <strong>of</strong> the north eastern side, where it goes as low<br />

as 220 C.<br />

On the coastal and north-eastern areas, the average maximum daily tem-<br />

peratures are 300 and 320. C and in the central area 34Q.C.<br />

The average temperature in the hottest month is 280 C. and the lowest<br />

260.c., the annual variation <strong>of</strong> these averages being between 60 and 9Q.C.<br />

The average temperature in the coldest month is 20% in the central<br />

area, and 18% in thê rest, while the coastal area has an average minimum in<br />

the coldest month <strong>of</strong> 12%.<br />

The annual average relative humidity in the central area is 65%, increa2<br />

ing to the north and south to reach the highest rate <strong>of</strong> 75%.<br />

According to the classification <strong>of</strong> Koppen, the climate <strong>of</strong> the basin is<br />

in general the dryness <strong>of</strong> steppes <strong>with</strong> a dry season in winter, dryness <strong>of</strong> the<br />

desert in the area <strong>of</strong> Pafuri, dryness <strong>of</strong> the steppes in the south <strong>of</strong> the basin,<br />

and in the coastal area, tropical raininess <strong>of</strong> a savanna.<br />

The predominant winds in the months <strong>of</strong> September to February are those<br />

from the East and, during the other months, almost entirely <strong>with</strong> predominance<br />

from the West.<br />

In the whole basin, one finds that it is situated between the isothermics<br />

<strong>of</strong> 240 and 170 <strong>with</strong> the average temperatures <strong>of</strong> 200, 2003 and 2002 respectively<br />

for the areas <strong>of</strong> Beitbridge, Mapai and Trigo de Morais.<br />

1.4 - Hydrological Occupation:<br />

Both the South African Republic and Rhodesia have a network <strong>of</strong> udometric<br />

and hydrometric stations which, for the African Continent, can be considered<br />

dense: one pluviometer for 200 km2 and one hydrometric station for 4 o00 h2.


145<br />

There are readings from 31 Rhodesian udometric stations and from 90<br />

South African posts, the majority <strong>of</strong> which <strong>with</strong> more than 30 years <strong>of</strong> existence.<br />

The more significant hydrometric stations in Rhodesia and South African<br />

not o<strong>nl</strong>y for the area they cover and their locality, but for the extension <strong>of</strong><br />

their records, are:<br />

Rhodes ia :<br />

South Africa:<br />

- River Tuli - 4 144 km2<br />

- Unzimgwane River - 2 533 km2<br />

- Bubye River - 8 029 lan2<br />

A3 MO7 - Eerste Poor - Groot Marico Rivier<br />

A2 M25 - Hardekool Bulti - Crocodile River<br />

A5 MO2 - Vischgat - Palala River<br />

A5 MO3 - Oxenham Ranch - Limpopo River<br />

A7 MO4 - Beitbridge - Limpopo River<br />

A7 MO3 - Zamenkomst - Sand River<br />

A9 MO1 - Schuinshoogte - Luvuhu River<br />

- Liverpool - Olifants Rivier<br />

- (354) - Olifants Rivier<br />

- Manorvlei - Letaba River<br />

- Letaba Ranch - LetkaRiver<br />

- Driehoek - Blyde River<br />

- 8 588 h2 - 21 i09 lan2<br />

- 2 341 h2 - 97 850 km2<br />

-180 O00 h 2<br />

- 6 900 km2<br />

- 912 lan2<br />

- 42 352 km2<br />

- 27 928 km2<br />

- 668 km2<br />

- 4 716 h2 - 2 199 km2<br />

In Mozambique, there are 33 udometric stations, some <strong>with</strong> a significant<br />

period <strong>of</strong> regular readings, and 12 stations for the measurement <strong>of</strong> water volu-<br />

me, some equipped <strong>with</strong> linmographs, the most significant <strong>of</strong> those <strong>with</strong> regular<br />

readings being those <strong>of</strong> Maçuço (66 O00 km2) and Tiobine (68 450 km2) on the<br />

Elephants River; Vila Trigo de Morais (340 O00 km2), Pafuri (235 930 km2),<br />

Mapai (246 O00 km2), Mohambe (342 780 h2), João Belo (407 970 km2) on the<br />

Limpopo River, and Chibuto (43 200 km2) on the Changane River.<br />

As regards evaporation, there are 6 U.S. Class A Tina evaporemeters in<br />

Rhodesia, 20 Standard Symons in South Africa, and 5 U.S. Class A Tina evapore-<br />

meters and 7 Piche atmometers in Mozambique.<br />

./.


146<br />

Also in the Portuguese part <strong>of</strong> the basin are 3 lysimetric stations, 3 cli<br />

matological stations, 2 agronomic-climatological posts and 4 climatological posts.<br />

2 - RAINS<br />

2.1 - Introduction:<br />

From the analysis <strong>of</strong> the normal isohyetal map, it is noted that the basin<br />

is <strong>with</strong>in the ishoyetal extremes <strong>of</strong> 400 and 1.500 mm., the monthly distribution<br />

<strong>of</strong> rainfall being divided in a deficient way throughout the year,<strong>with</strong> a concentrg<br />

tion <strong>of</strong> about 85% <strong>of</strong> the total during the months from October to March inclusive.<br />

To determine the average annual rainfall in the Limpopo basin as far as<br />

Mapai, three methods were used:- <strong>of</strong> the rainy districts; <strong>of</strong> the area <strong>of</strong> influes<br />

ce and the isohyetal figures.<br />

2.2 - The method <strong>of</strong> the rainy districts<br />

The South African Republic is divided into restricted zones by rains <strong>of</strong><br />

average equality, certain rainy districts under the same principle also dividing<br />

the areas <strong>of</strong> Rhodesia.<br />

In accordance <strong>with</strong> the udometric records for the period 1914/15 to 1963/<br />

/64 (50 years), the average annual rainfall figures were determined in respect<br />

to the basin, taking into account the fall in each district.<br />

From the period <strong>of</strong> 50 years, the average annual rainfall arrived at was<br />

579 mm, its having been 582, 566 and 560 mm respectively during the past 10, 15<br />

and 25 years.<br />

2.3 - Method <strong>of</strong> Area <strong>of</strong> Influence<br />

In accordance <strong>with</strong> the records existing for the period 1954/55 to 1963/<br />

/64 (10 years) and using the 71 udometric posts, the average annual rainfall was<br />

determined, the figure obtained being 514 mm.<br />

2.4 - Isohyetal Method<br />

With the normal figures - 30 years - recorded at the udometric posts,.<br />

isohyetal curves were interpolated, the areas between the adjacent isohyetal<br />

figures being thereafter measured.<br />

The average figure for the rainfall in the basin thus obtained was 504m.


2.5 - Correlation <strong>of</strong> the methods:<br />

147<br />

For the common period <strong>of</strong> 1954/55 to 1963/64 and 1955/56 to 1963/64 <strong>of</strong><br />

which the average annual rainfall figures are available, the correlation between<br />

the two methods was determined, the following equations having been obtained:<br />

1954/55 to 1963/64 - x = 0,94y + 99<br />

1955/56 to 1963/64 - x = 1,02y + 62<br />

which give a lineal relation between them, the rates <strong>of</strong> the correlation being<br />

very significant (0,98 and 0,96) the figures arrived at showing o<strong>nl</strong>y small dif-<br />

f erences .<br />

2.6 - Resumé:<br />

ANNUAL RAINFfiLL<br />

Averages :<br />

3 - RUNOFF<br />

Period <strong>of</strong> 50 years ........... 579 mm<br />

Period <strong>of</strong> 25 years ........... 560 mm<br />

Period <strong>of</strong> 15 years ........... 566 mm<br />

Period <strong>of</strong> 10 years ........... 582 mm<br />

Rainiest year ................ 971 mm (1924/25)<br />

Rainiest year w/lOO year occrence<br />

........................ 1 101 mm<br />

Driest year .................. 355 mm (1963/64)<br />

Driest year w/lOO year OCCUT-<br />

rence ........................ 290 mm<br />

3.1 - Elementary Principles:<br />

In view <strong>of</strong> there not being any measurements <strong>of</strong> the volume <strong>of</strong> the Limpopo<br />

River in Portuguese territory, it was necessary to resort to comparative studies,<br />

taking as a basis the specific flowage in the various hydrometric stations,<br />

existing upstream in the region <strong>of</strong> Mapai.<br />

./*


148<br />

3.2 - Details <strong>of</strong> the Study<br />

Barrows, in his book "<strong>Water</strong> Power Ehgeneering" stated that "it is <strong>of</strong>ten<br />

possible to consider, <strong>with</strong>out serious error, that the specific volume <strong>of</strong> a river<br />

is similar to the successive contours along the same river".<br />

also advises that, whenever possible, comparisons and corrections should be esta<br />

blished, not o<strong>nl</strong>y in respect to the rainfall, but also to the altitude, slopes,<br />

constitution and the rock formations <strong>of</strong> the soil.<br />

The same author<br />

Based on the measurements made at the Hydrometric stations <strong>of</strong> the Repu-<br />

blic <strong>of</strong> South Africa and Rhodesia which cover 195 841 km2, 79,6% <strong>of</strong> the respective<br />

basin in the area <strong>of</strong> the barrage <strong>of</strong> Mapai, we took into account the specific run-<br />

<strong>of</strong>f year by year and we calculated the specific run<strong>of</strong>f <strong>of</strong> the locality under<br />

study.<br />

Since 1963, efforts have been made to estimate the average annual run<strong>of</strong>f<br />

always using the methods <strong>of</strong> the specific volume but adopting various criteria.<br />

The average annual figure obtained for the period <strong>of</strong> 12 years was 3 095<br />

million cubic metres, which corresponds to the specific run<strong>of</strong>f <strong>of</strong> 12 580 m3<br />

k2 - 1 (chart attached).<br />

Thus we have:<br />

Study in 1963 ( 6 years) specific run<strong>of</strong>f 13 700 m<br />

3<br />

(k2)-1<br />

Study in 1965 ( 7 years) specific run<strong>of</strong>f 13 658 m3 (k2)-1<br />

Present study (12 years) specific run<strong>of</strong>f 12 583 m 3 (k2)-1<br />

If we observe the sequence <strong>of</strong> the years in which measurements existed<br />

for the 3 studies realised, it will be noted that the period <strong>of</strong> 12 years includes<br />

an excessively dry year (1963-1964) and one high run<strong>of</strong>f (1966-67) while there<br />

were no measurements taken in 1965-66 at the fundamental station <strong>of</strong> study (Beit-<br />

bridge) due to the hydrometric station having been under water (floods in Februa-<br />

ry, 1966) and as a result <strong>of</strong> which, the figure now obtained is necessarily defec-<br />

tive.<br />

The 1970 study covering a period <strong>of</strong> 15 years, places the specific average<br />

3 2<br />

run<strong>of</strong>f as 13 O00 m (k )-l.<br />

For the 246 O00 km2 <strong>of</strong> the river basin, the figures obtained for the<br />

average annual run<strong>of</strong>f in the region <strong>of</strong> Mapai are respectively as follow:<br />

1963 study .............. 3 370 million m 3<br />

1965 study .............. 3 360 million m 3<br />

1970 study .............. 3 200 million m 3<br />

Present study ........... 3 095 million m<br />

3<br />

./.


149<br />

Any <strong>of</strong> these figures fall <strong>with</strong>in the admissible limits based on the rate<br />

<strong>of</strong> the run<strong>of</strong>f observed at the stations <strong>of</strong> Beitbridge and Vila Trigo de Morais,<br />

the average <strong>of</strong> which is respectively 0,015 and 0,026.<br />

Thus for a figure <strong>of</strong> 3 O00 million m3 and for the average rainfall <strong>of</strong><br />

579 nun., run<strong>of</strong>f coefficient is 0,021, which is <strong>with</strong>in the observed limits.<br />

Using the method <strong>of</strong> Coutagne o<strong>nl</strong>y for the average annual figures, for<br />

a rainfall <strong>of</strong> 579 mm as the average over 50 years, we arrive at a run<strong>of</strong>f <strong>of</strong><br />

2 969 10 6 m 3 and for 582 nun as the average for the past 10 years, the figure<br />

<strong>of</strong> 2 999,7 10<br />

6<br />

m<br />

3 .<br />

Observing and trying all these ways and means, we shall adopt chart<br />

attached hereto for the annual run<strong>of</strong>f because, as they arise from direct mea-<br />

surements, they fall <strong>with</strong>in all the estimated figures.<br />

3.3 - Monthly Distribution<br />

The monthly distribution is based on a hydrometric station in the Repu-<br />

blic <strong>of</strong> South Africa (Beitbridge), which already has years <strong>of</strong> sufficient read-<br />

ings, its area being much like that <strong>of</strong> Mapai.<br />

Thus we haïe:<br />

4 - FLOODS<br />

October ................ 0,5%<br />

November ................ 0,6%<br />

December ................ 4,6%<br />

January ................ 25,%<br />

February ................ 33,8%<br />

March ................ i8,i%<br />

April ................ 8,s<br />

May ................ 4,3%<br />

June ................ i,%<br />

July ................ 1,1%<br />

August ................ o, 9%<br />

-<br />

September ................ 0,3% 10%<br />

The River Limpopo is typically torrential and as such, not o<strong>nl</strong>y dries<br />

during consecutive months as it is susceptible to exceptional floods.<br />

Many records <strong>of</strong> the volume <strong>of</strong> floods have been compiled in the Republic<br />

<strong>of</strong> South Africa since 1915, always based on specific volumes and they obtained<br />

. /.


150<br />

measured details which extended to the area <strong>of</strong> Mapai, gave us the figures <strong>of</strong><br />

16 925 m3/s (1933) and 12 792 m3/s (1966).<br />

Thus, using various formulas, one can estimate the volume <strong>of</strong> floods for<br />

return periods <strong>of</strong> 100 and 200 years.<br />

100 years 200 years<br />

<strong>Water</strong> affairs formula ............ 13 243 14 963 m3/s<br />

Mimoso Loureiro formula ........ 14 304<br />

18 375 II<br />

Fuller formula ................. 19 763 21 284 11<br />

(Period 34 years and specific<br />

volumes measured)<br />

Larivaille formula ............... - 15 375 'I<br />

The estimate is thus very difficult and depends a great deal on the<br />

type <strong>of</strong> barrage to be adopted.<br />

The hydrograph <strong>of</strong> a maximum flood was also determined, based on the<br />

formula <strong>of</strong> Giandotti in the calculation <strong>of</strong> the times <strong>of</strong> concentration <strong>of</strong> the<br />

peak and <strong>of</strong> the swell <strong>of</strong> the flood, and on the hydrographs <strong>of</strong> the floods record-<br />

ed at the border (Pafuri) during the years 1955, 1958, 1959, 1966 and 1967.<br />

It was verified that, in the flood <strong>of</strong> 1966, there was agreement in the<br />

calculated and observed times, because the calculation placed the figure at<br />

153 hours and from observation, at 150 hours for the time <strong>of</strong> concentration,<br />

there being, however, a difference in the time <strong>of</strong> the swell <strong>of</strong> 600 <strong>with</strong> 724<br />

hours (sketch attached).<br />

5- Evaporation and Solid flows<br />

Using the details measured in Rhodesia, South Africa and Mozambique,<br />

we can place the resulting evaporation at Mapi as 1 344 mm. As to solid volumes,<br />

the figures are few and vary greatly; as for the rest, definitely, confix<br />

med by the complex composition <strong>of</strong> the hydrographic basin, as for the same volu -<br />

me one obtain 21,8 kg/s and 97,l kg/s, <strong>with</strong>out any meaning.


0<br />

N<br />

o<br />

n<br />

N<br />

151


-I<br />

4<br />

3<br />

z<br />

4<br />

U<br />

2 n<br />

r<br />

u<br />

o<br />

a<br />

W<br />

s<br />

I<br />

I<br />

1


Relation <strong>of</strong> hydrological programs <strong>of</strong> the Center <strong>of</strong> Hydrographic Studies<br />

for complete studies <strong>of</strong> hydraulic resources <strong>with</strong> insufficient data<br />

Dr. Rafael HERAS<br />

1 LIS TA Lista las ochenta columnas de las fichas.<br />

The programme lists the eighty columns <strong>of</strong> the cards.<br />

2 LIS 65 Lista las ochenta columnas de las fichas, poniendo en la<br />

cabecera de la pagina las columnas numeradas y saltan-<br />

do página cada 65 fichas.<br />

It lists eighty columns <strong>of</strong> the card, putting on the heading<br />

<strong>of</strong> the page the numered colum and skipping a page after<br />

every 65 cards.<br />

3 LIFLA Lista fichas con flags.<br />

It lists carde <strong>with</strong> flags.


156<br />

4 LIMO1 Lista cinta de papel del limni'grafo.<br />

It lists ribbon <strong>of</strong> the limnigraphe.<br />

5 LICAN Listado de longitudinales.<br />

Longitudinal listing.<br />

6 LIGUI Listado de transversales.<br />

Transversal listing.<br />

7 LGMET Listado de datos geográficos.<br />

Listing <strong>of</strong> geographical data.<br />

8 LPMET Lista la cuenca, número de estación, aflo y datos de prg<br />

cipitaciones mensuales.<br />

It lists the basin, number <strong>of</strong> station, year and monthly<br />

rainfall data.<br />

9 LFRNT Lista cinta de papel perforada en código FERRANTI.<br />

It lists perforated ribbon in FERRANTI code.


10 LI-C-CA Lista cabeceras de los canales de aforos.<br />

It lists the headings <strong>of</strong> the channels <strong>of</strong> valuation.<br />

11 L-NI-24H Lista precipitaciones máximas en 24 horas.<br />

It lists the maximum rainfall in 24 hours.<br />

12 LTVP Lista tablas de vertidos probables,<br />

It lists tables <strong>of</strong> probable downpour.<br />

13 LTAC Lista las tablas de alturas-caudales.<br />

It lists tables <strong>of</strong> altitudes-flows.<br />

157<br />

14 TAVAL Lista los valores de las curvas alturas-caudales y está<br />

preparado para obtener valores que no figuren en las ta<br />

blas, interpolando linealmente entre los dos puntos más<br />

próximos.<br />

It lists the values <strong>of</strong> altitudes-flows lines and it is<br />

prepared to obtain values not appearing in the tables,<br />

by linear interpolation between the closest points.


158<br />

15<br />

16<br />

TAB- 1<br />

TAB-2<br />

17 TAB- 3<br />

18 TAB- 4<br />

Este programa lista, de las cinco fichas de que consta<br />

la información de cada pozo, lo siguiente: número de pg<br />

zo, fechas de muestreo, número de muestras (laborato-<br />

rio), latitud, longitud, nivel de agua/l, columna de agua,<br />

horas de bombeo, caudal en Ils., procedencia, número<br />

de laboratorio, fecha del análisis, temperatura del aire,<br />

temperatura del agua e indicador.<br />

This programme lists the five cards which contains the<br />

information <strong>of</strong> each well, as the following: number <strong>of</strong><br />

well, dates <strong>of</strong> sampling, number <strong>of</strong> samples (laboratory),<br />

latitude, longitude, level <strong>of</strong> water/l, column <strong>of</strong> water,<br />

hours <strong>of</strong> pumping, flow in Ils., origin, laboratory number,<br />

date <strong>of</strong> analysis, temperature <strong>of</strong> the air, temperature <strong>of</strong><br />

water and indicator.<br />

Lista: número de pozo, fecha de muestreo, calcio, mag-<br />

nesio, manganeso, sodio, potasio, cloruro, sulfato, fluo<br />

ruro, silice, fosfato y carbonato.<br />

It lists: number <strong>of</strong> well, date <strong>of</strong> sampling, calcium,<br />

manganese, sodium, potassium, chloride, sulphate,<br />

fluoride, silica, phosphate and carbonate.<br />

Lista: número de pozo, fecha de muestreo, bicarbonato,<br />

nitrito, nitrato, amoniaco, boro, hierro, pH, resistivi-<br />

dad, gravedad especifica, sólidos disueltos, litio, estrog<br />

cio, ni’quel.<br />

It lists: number <strong>of</strong> well, date <strong>of</strong> sampling, bicarbonate,<br />

nitrite, nitrate, boron, ammonia, iron, pH, resistivity,<br />

gravity/m, solid in dissolution, lithium, strontium, -<br />

nickel.<br />

Lista: nimero de pozo, fecha de muestreo, cobalto, iodo,<br />

bromo, molibdeno, zinc, plomo, cromo, cobre, vanadio,<br />

mer curio, ar sé nico.


159<br />

It lists: number <strong>of</strong> well, date <strong>of</strong> sampling, cobalt, iodine,<br />

bromine, molibdenum, zinc, plumbum, chromium, cop-<br />

per, vanadium, mercury and arsenic.<br />

19 TAB-5 Lista: número de pozo, fecha de muestreo, pH, resisti-<br />

vidad, gas carbónico libre, oxigeno disuelto, dureza, dg<br />

reza (sin carbonatos), alcalinidad, T. A., HC03.<br />

It lists: number <strong>of</strong> well, date <strong>of</strong> sampling, pH, resistivity,<br />

free carbonic gas, oxygen disolved, hardness (<strong>with</strong>out<br />

carbonates), alkalinity, T. A., HC03.<br />

20 TNFAG Tablas de interpolación polinómica de cuarto grado.<br />

Tables <strong>of</strong> polynomical interpolation <strong>of</strong> the fourth grade.<br />

21 TANG Tablas de senos, cosenos y tangentes.<br />

Tables <strong>of</strong> sine, cosine, tangents.<br />

22 TNUA Mete en disco tablas de números aleatorios.<br />

It puts in the disk tables <strong>of</strong> fortuitous numbers.<br />

23 T-V-P Mete en disco tablas de datos hidrológicos.<br />

It puts in the disk tables <strong>of</strong> hydrological data.


160<br />

24 T-EVA<br />

25 EN-PRT<br />

26 SAPRI<br />

27 PDPRC<br />

28 PC 128<br />

Mete en disco tablas de evaporaciones.<br />

It puts in the disk tables <strong>of</strong> evaporation.<br />

Dada una serie de estaciones, almacena en disco dichas<br />

estaciones.<br />

It stores in the disk stations which are previously given.<br />

Obtiene un listado de las estaciones almacenadas en disco.<br />

It obtains a listing <strong>of</strong> stations stored in the disk.<br />

Perfora datos con anos consecutivos para los diversos<br />

programas de regulaciones.<br />

It perforates data <strong>with</strong> consecutive years for the different<br />

programs <strong>of</strong> regulations.<br />

Dada una serie de caudales diarios con formato 12 F 6.2,<br />

los perfora con formato 9 F 8.3, para ser utilizados por<br />

el programa I~TCDAP".<br />

Given a series <strong>of</strong> daily flows <strong>with</strong> format 12 F 6. 2, it<br />

perforates them <strong>with</strong> format 9 F 8. 3, to be used by the<br />

program I'TDFAF~~.


29 PRD-I Ordena un máximo de 1.000 datos, de mayor a menor,<br />

con formato 12 F 6.2.<br />

161<br />

It puts in order a maximum <strong>of</strong> 1.000 data, in descendent<br />

order, <strong>with</strong> format 12 F 6. 2.<br />

30 PRD-2 Igual que el anterior, pero con formato 9 F 8.3.<br />

The same as above, but <strong>with</strong> format 9 F 8.3.<br />

31 PRD-3 Ordena números en coma fija, de mayor a menor.<br />

It puts in order numbers <strong>with</strong> fixed point, in descendent<br />

order.<br />

32 DUPLP Duplica las ochenta columnas de las fichas.<br />

It duplicates the eighty columns <strong>of</strong> the cards.<br />

33 DUP-Mp Duplica las ochenta columnas, modificando la columna<br />

que se desee.<br />

It duplicates the eighty columns, modifying the column<br />

that is wished.<br />

34 SUMNU Suma o resta un número a una serie de datos mensuales.<br />

It adds or deducts a number from a series <strong>of</strong> monthly data.


162<br />

35 SUMRE Dadas dos series de datos mensuales, las suma o las<br />

resta.<br />

it adds or deducts two series <strong>of</strong> monthly data which are<br />

given.<br />

36 SUMAR Suma series de datos hidrológicos.<br />

37 MULTI<br />

38 MULTA<br />

39 MUL 12<br />

It adds series <strong>of</strong> hydrological data.<br />

Multiplica series de datos por un número fijo y obtiene<br />

el listado, así como las fichas perforadas, con estos nue<br />

vos valores.<br />

It multiplies series <strong>of</strong> data by a fixed number and it<br />

obtains the listing, in the same way as the perforated<br />

cards, <strong>with</strong> this new values.<br />

Multiplica los 12 números de la primera fila por cada<br />

uno de los datos, los pone en orden decreciente y los lis<br />

ta en 12 columnas.<br />

It multiplies the 12 numbers <strong>of</strong> the first row by each one<br />

<strong>of</strong> the data, it puts them decreasing order and it lists -<br />

them in 12 columns.<br />

Multiplica los datos mensuales por el número que ocupa<br />

el lugar correspondiente a ese mes en la primera ficha,<br />

lista y perfora.<br />

It multiplies the monthly data by the number that occupies<br />

the corresponding place <strong>of</strong> that month in the first card, it<br />

lists and Derforates.


40 MULAN<br />

41 MRS 12<br />

42 MA TEN<br />

43 SECUA<br />

44 DIS -KM<br />

163<br />

Multiplica los datos mensuales de cada ano por el &me-<br />

ro que ocupa el lugar correspondiente a ese ano en las<br />

primeras fichas que lee.<br />

It multiplies the monthly data <strong>of</strong> each year by the number<br />

that occupies the corresponding place to that year in the<br />

first cards that is read.<br />

Multiplica, suma o resta dos o una series de datos sin<br />

limitación.<br />

It multiplies, adds or deducts two or one series <strong>of</strong> data<br />

<strong>with</strong>out limitation.<br />

Eleva una matriz a la potencia enésima.<br />

It elevates a matrix to the n power.<br />

Resuelve un sistema de ecuaciones (40 como máximo).<br />

It solves a system <strong>of</strong> equations (40 as maximum).<br />

Dada la situación geográfica de una serie de estaciones<br />

por su latitud y longitud, este programa selecciona los<br />

grupos de estaciones a comparar con el criterio de que<br />

las distancias entre las estaciones sean menores de una<br />

cantidad fija.<br />

Given the geographical position <strong>of</strong> a series Of stations by<br />

their latitude and longitude, this programme chooses the<br />

group <strong>of</strong> stations to be compared <strong>with</strong> the criterium that<br />

the distance among the stations be smaller than a fixed<br />

quantity.


164<br />

45 LISDA Lista series de datos mensuales (sin limitación de exten<br />

sión), imprime cabecera y calcula la suma anual y las -<br />

medias mensuales.<br />

It lists series <strong>of</strong> monthly data (<strong>with</strong>out limitation in its<br />

scope), prints heading and computes the yearly sum and<br />

the monthly averages.<br />

46 MAXLL Dados los valores de precipitación total mensual, dias<br />

de lluvia y los valores máximos en 24 horas, obtiene los<br />

máximos en 24 horas y los dilas de lluvia a escala anual.<br />

Given the values <strong>of</strong> total monthly rainfall, days <strong>of</strong> rain<br />

and the maximum values in 24 hours, it obtains the -<br />

maximum in 24 hours and the days <strong>of</strong> rain in a yearly<br />

s cale.<br />

47 INT-ES Dados los caudales medios mensuales y anuales, la apoy<br />

tación media de los años precedentes y el caudal máximo<br />

(medios diarios e instantáneo y la fecha), obtiene cauda-<br />

les medios anual y mensual, caudal y aportación mensual.<br />

Deduce la aportación y caudal anual, caudal medio y apor<br />

tación media de la serie anual.<br />

Given the monthly and annual average flows, the average<br />

afford <strong>of</strong> the preceding years and the maximlim flow (daily<br />

and instantaneous averages and the date), it obtains year<br />

ly and monthly average flows, monthly flow and afford. It<br />

deducts yearly afford and flow, average flow and the aver<br />

age afford <strong>of</strong> the yearly series.<br />

48 INT-EM Dado el volumen embalsado, aportación de salida y media<br />

precedente, obtiene entradas y salidas, reserva, aporta-<br />

ción del año, aportación de entrada y salida, media de e;<br />

trada y salida (aportación y caudal).


49<br />

50<br />

51<br />

INT -CA<br />

ADfDB- 1<br />

ADfDB-2<br />

165<br />

Given the stored volume, afford <strong>of</strong> exit and the preceding<br />

average, it obtains entries and exits, reserve, yearly -<br />

afford, afford <strong>of</strong> entry and exit, average <strong>of</strong> entry and -<br />

exit (afford and flow).<br />

Realiza la misma función, pero sin el caudal máximo<br />

instantáneo.<br />

It performs the same function, but <strong>with</strong>out the maximum<br />

instantaneous flow.<br />

Dadas las series de datos hidrológicos de un conjunto de<br />

estaciones a escala anual, mensual, etc., forma "esta-<br />

ción tipo" (media aritmética de las estaciones de cada<br />

grupo) y a continuación compara cada una de las estacio<br />

nes con su "estación tipo", acumulando las series y dag<br />

do, además de las sumas acumuladas, la relación entre<br />

las acumulaciones de cada estación con las acumulacio-<br />

nes de la "estación tipo".<br />

Given the series <strong>of</strong> hydrological data <strong>of</strong> an assembly <strong>of</strong><br />

stations at yearly scale, monthly scale, etc., it forms<br />

''type station!' (arithmetical mean <strong>of</strong> the stations in each<br />

group) and afterwards compares each stations <strong>with</strong> its<br />

'hype station", accumulating the series and giving besides<br />

the accumulated sums, the relation among the accumula-<br />

tion <strong>of</strong> each station <strong>with</strong> those <strong>of</strong> "type station".<br />

Este programa es análogo al anterior, pero no utiliza -<br />

estación tipo, haciendo todas las comparaciones posibles<br />

en cada grupo.<br />

This programme is analogous to the preceding one, but<br />

it does not use type station, performing all the possible<br />

comparisons in each group.


166<br />

52 A-AC-96 Acumula datos hidrológicos mensuales (de 1 en 1 hasta<br />

96 en 96 meses). Imprime 96 cuadros.<br />

It accumulates hydrological monthly data (from 1 to 1 up<br />

to 96 in 96 months). It prints 96 charts.<br />

53 AC-96-P Este programa es análogo al anterior, pero perfora los<br />

resultados en ficha.<br />

This programme is analogous to the preceding one, but<br />

it perforates the results in card.<br />

54 AM-AC 1 Acumula aportaciones mensuales y ordena de menor a<br />

mayor .<br />

It accumulates monthly affords putting in ascendent order.<br />

55 AM-C 96 Dada una serie de datos hidrológicos mensuales, acumu-<br />

la de 1 a 96 meses consecutivos, y los ordena de menor<br />

a mayor.<br />

Given a series <strong>of</strong> hydrological monthly data, it accum;I-<br />

lates from 1 to 96 consecutive months, and putting them<br />

in ascendent order.<br />

56 AC-T~D Acumula todos los valores de una serie.<br />

It accumulates all the values <strong>of</strong> a series.


57 AD~BP Dibuja en el Plotter los diagramas de las acumulaciones<br />

dobles.<br />

167<br />

It designs in the Plotter the diagrams <strong>of</strong> the double - -<br />

accumula tion.<br />

58 ALAOA Dadas las aportaciones diarias, las lista, ordena de mg<br />

nor a mayor y las acumula.<br />

Given the daily affords, it lists, puts in ascendent order<br />

and accumulates them.<br />

59 TCDAP Dada una serie de caudales diarios, la transforma en -<br />

aportaciones diarias.<br />

Given a series <strong>of</strong> daily flow, this programme transforms<br />

them in daily affords.<br />

60 TCAP~ Dada una serie de caudales mensuales, la transforma en<br />

aportaciones mensuales.<br />

Given a series <strong>of</strong> monthly flows, this series is transform<br />

ed in monthly affords.<br />

61 TAPPC Dada una serie de aportaciones mensuales, la transforma<br />

en caudales mensuales.<br />

Given a series <strong>of</strong> monthly affords, it transforms them in<br />

monthly flows.


168<br />

62 TANAD Dada una serie de aportaciones naturales diarias, la -<br />

transforma en aportaciones derivables diarias.<br />

Given a serles <strong>of</strong> daily natural affords, the programme<br />

transforms them into daily derivable affords.<br />

63 C-C-D-ES Dada una serie de caudales diarios, obtiene los caudales<br />

derivados diarios en m3/s., medias y aportaciones men_<br />

suales, caudales clasificados, aportación y caudal total<br />

del año.<br />

Given a series <strong>of</strong> daily flows, the programme obtains the<br />

daily derivable flows in CU. m/s., averages and monthly<br />

affords, classified flows, afford and total flow <strong>of</strong> the year.<br />

64 C -C -D-CA Realiza la misma función que el programa anterior, pero<br />

con caudales mensuales.<br />

It performs the same function as the preceding programme,<br />

but <strong>with</strong> monthly flows.<br />

65 C-C-D-EM Dados los volúmenes y salidas diarias de un embalse, ob<br />

tiene las reservas diarias (Hm3), caudales diarios (sali-<br />

das en m3/s. ), media mensual, salida y entrada mensual,<br />

evaporacion y un resumen anual (caudales medios, salida,<br />

entrada, evaporación).<br />

Given the volumes and the daily exits <strong>of</strong> a reservoir, the<br />

programme obtains the daily reserves (CU. Hm), daily<br />

flows (exits in CU. m/s), monthly average, monthly entry<br />

and exit, evaporation and an annual summary (averages<br />

flows, entry, exit, evaporation).


169<br />

66 C-C-D-E1 Dados los datos de alturas de escala diaria y los valores<br />

de las curvas alturas-caudales de una estación, calcula<br />

los caudales diarios de dicha estación. Los caudales que<br />

no figuran en las tablas se calculan interpolando lineal-<br />

mente entre los dos más próximos.<br />

Además del caudal diario, este programa obtiene los cag<br />

dales máximos y mínimos, los caudales medios mensua-<br />

les y las aportaciones mensuales.<br />

Given the daily scale heights and the values <strong>of</strong> the height-<br />

flow charts <strong>of</strong> a station, the programme computes the --<br />

daily flows <strong>of</strong> said station. The flows that are not appear-<br />

ing in the tables, are calculated by linear interpolation -<br />

between the closest points.<br />

In addition to the daily flow, this programme obtains the<br />

maximum and minimum flows, the monthly average flows<br />

and the monthly affords.<br />

67 C-C-D-E2 Dados los datos de alturas de escala diaria y los valores<br />

de las curvas alturas-caudales de una estación, calcula<br />

los niveles diarios en metros, los caudales diarios en<br />

m3 /s. , medias mensuales, máxima instantánea, aporta<br />

ci& mensual en Hm3, caudales clasificados y un resu--<br />

men de los datos del año (aportación y caudal total y es-<br />

pecifico y caudales caracteristicos).<br />

Given the daily scale heights data and the values <strong>of</strong> height-<br />

flow lines <strong>of</strong> a station, the programme computes the daily<br />

levels in meters, the daily flows in CU. m/s., monthly -<br />

averages, instantaneous maximum, monthly afford in --<br />

CU. Hm, classified flows and an annual summary data --<br />

(afford and total flow, specific flow and caracteristic --<br />

flows).<br />

68 C-C-D-ES Dados los datos de alturas de escala diaria y los valores<br />

de alturas-caudales de una estación, calcula los caudales<br />

diarios y el caudal medio anual.<br />

Los datos son los obtenidos en limnigrafo.


170<br />

69<br />

71<br />

72<br />

CURGA<br />

Given the daily scale heights data and the values <strong>of</strong> height-<br />

flow lines <strong>of</strong> a station, the programme computes the daily<br />

flows and the yearly average flow.<br />

Data are obtained by the limnigraphe.<br />

A partir de unos puntos base tabula una tabla de gastos.<br />

Lista y dibuja los diagramas de las curvas de gastos.<br />

From a basic point, it tabulates a tables <strong>of</strong> expenses.<br />

It lists and designes the diagram <strong>of</strong> the expense lines.<br />

ME Y ME Dadas las aportaciones mensuales de una serie de esta-<br />

ciones de una cuenca, calcula e imprime las medias mec<br />

suales de cada estación y la media de las medias de todas.<br />

MEDIP<br />

Given the monthly affords <strong>of</strong> a series <strong>of</strong> stations <strong>of</strong> a basin,<br />

it computes and prints the monthly average <strong>of</strong> each station<br />

and the average <strong>of</strong> all means.<br />

Dados los datos diarios de años de una estación, los<br />

imprime y calcula las sumas y medias mensuales de ca<br />

da ailo y las medias de las medias (mediorum).<br />

Given the daily data <strong>of</strong> c years <strong>of</strong> a station, the programme<br />

prints them and computes the sums and monthly averages<br />

<strong>of</strong> each year and the average <strong>of</strong> the n_ means (mediorum).<br />

MET, ME Dada una serie de datos mensuales, calcula ias medias<br />

para cualquier periodo.<br />

It calculates the average for any period <strong>of</strong> a series <strong>of</strong><br />

monthly data, which are given.


73<br />

74<br />

75<br />

76<br />

CIC LJD<br />

MED -AN<br />

A-ESP<br />

INF - 1<br />

171<br />

Calcula las medias acumuladas en periodos de n años y<br />

sus relaciones con la media del periodo total.<br />

It calculates the accumulated averages in periods <strong>of</strong> E<br />

years and their relations <strong>with</strong> the average <strong>of</strong> the total<br />

period.<br />

Dada una serie de datos anuales, calculala media para<br />

cualquier pedodo.<br />

Given a series <strong>of</strong> yearly data, the programme calculates<br />

the average for any period.<br />

Dadas unas series pluviométricas reales, obtiene una se<br />

rie real, media de las anteriores, a partir de la cual ob-<br />

tiene otra de precipitaciones efectivas, de la que se con-<br />

siguen las aportaciones especificas y los caudales en una<br />

cuenca.<br />

Given an actual pluviometrical series, the programme<br />

obtains an actual series, average <strong>of</strong> the preceding, from<br />

which it obtains another series <strong>of</strong> effective rainfalls, -<br />

from which it gets specific affords and the flows in a basin.<br />

Dadas las precipitaciones mensuales de una cueBca y los<br />

coeficientes de capacidad de infiltración mensual en mm.,<br />

de humedad inicial del suelo y de superficie en Has., ob-<br />

tiene las aportaciones especificas, infiltración y evapora<br />

cion.<br />

Given the monthly rainfall <strong>of</strong> a basin and the coefficients<br />

<strong>of</strong> monthly infiltration capacity in mm., initial humidity<br />

from the earth and from surface in Has., it gets the --<br />

specific affords, infiltration and evaporation.


172<br />

77 INF - 2 Realiza la misma función que el programa anterior, pe-<br />

ro a nivel diario.<br />

It performs the same function as the preceding one, but<br />

in a daily level.<br />

78 EVAP- 1 Dados los volúmenes, superficies y reserva, halla las<br />

evaporaciones.<br />

The programme computes the evaporations, knowing the<br />

volume, area and stock.<br />

79 EVAPT Dado el número de estaciones, superficie de la cuenca<br />

(kmz), aportación media (media de una serie) y precip'<br />

tación media, obtiene la aportación en Hm3, coeficiente<br />

de escorrentia y déficit de escorrentía.<br />

It obtains the afford in CU. Hm., run<strong>of</strong>f coefficient and<br />

deficit <strong>of</strong> run<strong>of</strong>f, knowing the number <strong>of</strong> stations, area<br />

<strong>of</strong> the basin (sq. Km. ), average <strong>of</strong> the afford (average<br />

<strong>of</strong> a serie) and the average rainfall.<br />

80 REST-l Lista: número total de muestras, media aritmética, va-<br />

lor máximo, valor minimo, desviación tipica, tempera-<br />

tura del agua.<br />

The programme lists: total number <strong>of</strong> samples, arithmeg<br />

cal mean, maximum and minimum value, standard desvia<br />

tion. temperatura <strong>of</strong> the water.<br />

81 REST-2 Lista los mismos parámetros para calcio, magnesio, mall<br />

ganeso, sodio, potasio, cloruro, sulfato, fluoruro, silice,<br />

fosfato y carbonato.


82 REST-3<br />

83 REST-4<br />

84 D-FLSI<br />

85 GE~NE<br />

It lists the same parameters for calcium, magnesium,<br />

manganese, sodium, potassium, chloride, sulphate, -<br />

fluoride, silica, phosphate and carbonate.<br />

173<br />

Lista los mismos parámetros para bicarbonato, nitrito,<br />

nitrato, amoniaco, hierro, resistividad y sólidos disuel<br />

tos.<br />

It lists the same parameters for bicarbonate, nitrite,<br />

nitrate, ammonia, iron, resistivity, solid in dissolution.<br />

Lista los mismos parámetros para pH, resistividad, gas<br />

carbónico libre, oxígeno disuelto, dureza, dureza (sin -<br />

carbonatos), alcalinidad, T. A. , HC03.<br />

It lists the same parameters for pH, resistivity, free<br />

carbonic gas, oxygen dissolved, hardness, hardness -<br />

(<strong>with</strong>out carbonates), alkalinity, T. A., HC03.<br />

Dado el perimetro y la superficie por encima de cada co-<br />

ta de una cuenca, obtiene el rectángulo equivalent e, coe-<br />

ficiente de Gravelius, indice de pendiente, pendiente m e-<br />

dia y altitud media de la cuenca.<br />

Given the perimeter and the area above each elevation <strong>of</strong><br />

a basin, the programme obtains the equivalent rectangle,<br />

Gravelius factor, pendant index, average <strong>of</strong> the pendant<br />

and average altitude <strong>of</strong> the basin.<br />

A partir de coordenadas de puntos fijos dados, de medi-<br />

ciones, direcciones y distancias para una conexión de pu9<br />

tos aislados o múltiples, el programa obtiene las coorde-<br />

nadas de los nuevos puntos.


86<br />

87<br />

88<br />

DIS-2P<br />

HELME<br />

REPPU<br />

89 ARCES<br />

From coordinates <strong>of</strong> fixed given points, <strong>of</strong> measuring,<br />

directions and distances to a connection <strong>of</strong> isolated or<br />

multiples points, the programme gets the coordinates<br />

<strong>of</strong> the new points.<br />

Dadas las coordenadas de dos puntos, calcula su dis-<br />

tancia.<br />

Given the coordinates <strong>of</strong> two points, it calculates their<br />

distance.<br />

Convierte coordenadas instrumentales en terrestres<br />

(Helme rt ).<br />

It converts from instrumentais coordinates to terrestrial<br />

(Helmert).<br />

En función de las coordenadas de los puntos calcula azi-<br />

mutes y distancias para replanteo.<br />

In function <strong>of</strong> coordinates <strong>of</strong> the points, it calculates azi-<br />

muths and distances to be reconsidered.<br />

Calcula la superficie en planta que abarca cada curva en<br />

un embalse.<br />

It calculates the area which comprises each line in a<br />

reservoir.


90 EAKIN Dada la superficie del tramo máximo de un embalse, su<br />

longitud y la superficie del perfil de sondeo, obtiene el<br />

volumen de esas superficies.<br />

Given the area <strong>of</strong> the maximum stretch <strong>of</strong> a reservoir,<br />

their longitude and the area <strong>of</strong> the pr<strong>of</strong>ile <strong>of</strong> sounding,<br />

it obtains the volumes <strong>of</strong> those surfaces.<br />

91 RAPEM Cubica un embalse según la fórmula RAPEM.<br />

It cubes a reservoir according to formula RAPEM.<br />

92 C~R-AM Dada una serie mensual de datos hidrológicos, calcula<br />

la correlación ortogonal, los momentos de la serie reg<br />

pecto al origen y el coeficiente de correlación.<br />

175<br />

Given a monthly series <strong>of</strong> hydrological data, it calculates<br />

the ortogonal correlation, the moments <strong>of</strong> the series <strong>with</strong><br />

regards to the origin and the correlation factor.<br />

93 CPR-LM Calcula la correlación lineal mensual, obteniendo el cog<br />

ficiente de correlación, las medias, varianzas, disper--<br />

si&, coeficiente angular y ordenada en el origen de la<br />

recta de regresión.<br />

The programme calculates the monthly linear correlation,<br />

obtaining the correlation factor, the averages, variances,<br />

dispersion, grade angle coefficient and ordinate at the -<br />

origin <strong>of</strong> the regression straight.<br />

94 CPR-AN Este programa se diferencia del anterior Únicamente en<br />

que, partiendo de los datos mensuales, utiliza solamente


176<br />

los anuales, efectuando la correlación entre ellos con -<br />

arreglo al esquema ya reseñado.<br />

This programme differs from the previous one o<strong>nl</strong>y in<br />

that starting from the monthly data, it uses o<strong>nl</strong>y the -<br />

annual ones and performing the correlation among them,<br />

in accordante <strong>with</strong> the indicated scheme.<br />

95 C~R-DM Con los datos hidrológicos mensuales de tres estaciones,<br />

z, x e y, realiza la correlación doble de x e y con z, ob-<br />

teniendo la ecuación del plano de correlación.<br />

With the monthly hydrological data <strong>of</strong> the three stations,<br />

z, c and y, it performs the double correlation <strong>of</strong> x and y<br />

<strong>with</strong> z, obtaining the equation <strong>of</strong> the plane <strong>of</strong> correlation.<br />

96 CPR-PA El esquema es igual al de los anteriores que realizan cg<br />

rrelaciones, dando éste la ecuación de la parábola de re<br />

gresión de y sobre x.<br />

The scheme is identical to the previous one which performs<br />

correlations, , the equation <strong>of</strong> the parabola <strong>of</strong> regression<br />

<strong>of</strong> y on x is given by the scheme.<br />

97 C ~ R - ~ R Dadas dos series mensuales de datos hidrológicos, calcg<br />

la la correlación ortogonal obteniendo la recta cuya suma<br />

de cuadrados de distancias a los puntos es minima.<br />

Given two monthly series <strong>of</strong> hydrological data, the pro-<br />

gramme calculates the ortogonal correlation, obtaining<br />

the straight whose sum <strong>of</strong> squares to the points in min-<br />

imum.


98 CfbR-A-p Dada una serie mensual de datos hidrológicos, realiza<br />

la correlación anual ortogonal.<br />

Given a monthly series <strong>of</strong> hydrological data, it performs<br />

the yearly ortogonal correlation.<br />

99 CPR-48 Realiza la correlación ortogonal para los meses de estia<br />

je (4) y el resto de los meses (8).<br />

It performs the ortogonal correlation for the summer<br />

months (4) and to the balance <strong>of</strong> the months (8).<br />

100 CPR-LP Dadas dos series de datos hidrológicos, obtiene la recta<br />

de correlación ortogonal entre sus logaritmos.<br />

Given two series <strong>of</strong> hydrological data, it gets the straight<br />

<strong>of</strong> ortogonal correlation among their logarithms.<br />

10 1 COR-O-P El esquema es igual al del propama "CqR-qR" y, ade-<br />

más, dibuja la nube de puntos en el Plotter.<br />

The scheme is identical to "COR-OR" programme, in<br />

addition it draws the clouds <strong>of</strong> points in the Plotter.<br />

102 cpycfb Completa y corrige una serie de datos hidrológicos dan-<br />

do las ecuaciones de las rectas de regresión (y=ai x - bi)<br />

entre las dos series (se puede hacer con una ecuación o<br />

con dos simultáneamente).<br />

It completes and corrects a series <strong>of</strong> hydrological data,<br />

giving the equation <strong>of</strong> the regression straights (x=ai x - bi)<br />

between the two series (it can be done <strong>with</strong> an equation or<br />

two simultaneously).


178<br />

io3 ~p-DRR Completa los datos hidrológicos según la recta de regre-<br />

sión.<br />

It completes the hydrological data according to the reg-<br />

sion straight.<br />

104 IN-D-M1 Inventa datos mensuales de una estación con datos anua-<br />

les, a partir de los datos mensuales de otras dos esta--<br />

ciones.<br />

It creates monthly data <strong>of</strong> a station <strong>with</strong> yearly data, star<br />

ting from the monthly data <strong>of</strong> other two .stations.<br />

105 IN-D-M2 Inventa datos mensuales de una estación con datos anua-<br />

les, a partir de los datos mensuales de otra según la fÓ'<br />

mula B (I) = [A (I) * (SUMB (I) / SUMA (I) 1.<br />

It creates monthly data <strong>of</strong> a station <strong>with</strong> yearly data,<br />

starting from monthly data <strong>of</strong> other station, according<br />

to formula: B (I) = I A (I) * (SUMB (I) / SUMA (I) 1 .<br />

106 COQUI Calcula 20 correlaciones ortogonales, entre elementos<br />

quhnicos, pintando por Plotter los puntos y la recta de<br />

regresión y dos paralelas a una distancia igual a la dis-<br />

persion.<br />

The programme calculates 20 ortogonal correlations,<br />

among chemical elements, drawing in Plotter the points<br />

and the regression straight and two parallel lines to a<br />

distance identical to the dispersion.


179<br />

107 BERKA Dibuja el diagrama de Berkal<strong>of</strong>f-Scholler por el Plotter,<br />

uno por cada pozo, en una escala logaritmica. Pinta los<br />

puntos de los siguientes elementos: CA, MG, ALC, CL,<br />

SO4, HCOQ + CO3, NO3. y une con segmentos dichos -<br />

puntos.<br />

It designs the diagram <strong>of</strong> Berkal<strong>of</strong>f-Scholler by means <strong>of</strong><br />

Plotter, one diagram to each well, in logarithmical scale.<br />

It draws the points <strong>of</strong> the following elements: CA, MG, -<br />

ALC, CL, SO4, HC03 t COQ, NO3, and it joins the - -<br />

mentioned points <strong>with</strong> the segments.<br />

108 STIF Dibuja el diagrama de Stif.<br />

The programme draws the Stif diagram.<br />

109 PIPER Dibuja el diagrama de Piper. Consta de dos triángulos<br />

equivalentes; en la base del primero se marca en 70 el va<br />

lor CA, en mgl/l, y en los otros dos lados, MG y NA+K,<br />

y mediante paralelas a 10s lados opuestos obtenemos un<br />

punt o.<br />

De la misma forma, en el segundo triángulo pintan en el<br />

lado base, CL, y en los otros dos CO3 t HCH03 y so4 t<br />

t NOP en 70 y mediante paralelas obtenemos otro punto.<br />

Esta operación se repite para cada pozo y para las ocho<br />

zonas.<br />

It draws the Piper diagram. It is composed <strong>of</strong> two equiva<br />

lent triangles; in the base <strong>of</strong> the first one, it marks in 70<br />

the value CA, in mgl/l, and in the other two sides, MG<br />

and NA t K, and by means <strong>of</strong> parallel lines to the opposite<br />

sides obtaining a point.<br />

In the same way, in the second triangle, it marks in the<br />

sidebase, CL and in the other two sides, Co3 + HCHO<br />

and SO4 + NOP in 70 and by parallel lines obtaining another<br />

point. This execution is repeated for each well and for the<br />

eight bands.


180<br />

i10 G ~ K A los valores de una serie de datos hidrológicos, le ajug<br />

ta una ley de Goodrich y contrasta la bondad del ajuste -<br />

mediante el test de Kolmogor<strong>of</strong>f.<br />

Given a series <strong>of</strong> values <strong>of</strong> hydrological data, it fits <strong>with</strong><br />

Goodrich’s law and contrasts the perfection <strong>of</strong> the fitting<br />

by Kolmogor<strong>of</strong>f’ test.<br />

111 GPK~L A partir de una serie de datos hidrológicos anuales, se<br />

ajusta una ley de Goodrich y se contrasta la bondad del<br />

ajuste mediante el test de Kolmogor<strong>of</strong>f.<br />

Los datos de entrada son series mensuales. El programa<br />

obtiene las series anuales mensuales, la media, los mo-<br />

mentos respecto al origen de orden 2 y 3, los momentos<br />

centrales de segundo (varianza) y de tercer orden, as( -<br />

como los parámetros de la ley de distribución de Goodrich.<br />

Starting from a series <strong>of</strong> hydrological annual data, Good-<br />

rich’s law is adjusted and the perfection is contrasted by<br />

Kolmogor<strong>of</strong>f’test.<br />

The entry data are monthly series. The programme - -<br />

obtains, annual series, monthly series, the average, the<br />

moments <strong>with</strong> regard to the origin <strong>of</strong> order 2 and 3, the<br />

central moments <strong>of</strong> second (variance) and third order, -<br />

the programme obtains also the parameters <strong>of</strong> the Good-<br />

rich distribution law.<br />

112 GPKAF Dada una serie de datos hidrológicos, ajusta la ley de dig<br />

tribución de Goodrich.<br />

Given a series <strong>of</strong> hydrological data, the Goodrich distri-<br />

bution law is adjusted by the programme.


113 GPKPL Realiza la misma función que el programa IIGQKOLII y<br />

dibuja las curvas.<br />

It performs the same function that the "GOKOL"<br />

programme and draws the curves.<br />

114 GPK 70 Dada una serie de datos hidrológicos, ajusta una ley de<br />

Goodrich y contrasta la bondad del ajuste mediante el<br />

test de Kolmogor<strong>of</strong>f.<br />

181<br />

Given a series <strong>of</strong> hydrological data, it fits <strong>with</strong> Goodrich's<br />

law and contrasts the perfection <strong>of</strong> the fitting by Kolmogo<br />

r<strong>of</strong>f ' s tes t.<br />

115 GUMB 1 Ajusta una ley de Gumbel a una serie de datos hidrológi-<br />

cos. El programa nos da los diversos valores que resul-<br />

tan de la ley de Gumbel, ajustada para tiempos de recu-<br />

rrencia de 5, 10, 25, 50, 100, 500 y 1000 anos ylista --<br />

los datos originales clasificados de menor a mayor, asig<br />

nándoles a cada uno la frecuencia 2n-1 / 2 N, donde n es<br />

el número de orden y N el total de datos.<br />

Datos de entrada (12 F. 6. 2). Anuales.<br />

This programme fits the Gumbel's law to a series <strong>of</strong> --<br />

hydrological data. The programme gives us several values<br />

according to the Gumbel's adjusted law, for time <strong>of</strong> --<br />

recurrences 5, 10, 25, 50, 100, 500, 1000 years and it<br />

lists the original data classified in a crecent order assign-<br />

ing to each one a frecuency equal to 2n- 1 / 2 N, where n is<br />

the number <strong>of</strong> order and N the total number <strong>of</strong> data.<br />

Entry data (12 F 6. 2). Yearly.<br />

116 GUMB 2 Realiza la misma función que el programa "GUMB l", pg<br />

ro los datos de entrada son (9 F 8.3).<br />

It performs the same function as "GUMB l", but the entry<br />

data are (9 F 8. 3).


182<br />

117 GUMB 3<br />

118 GUMB 4<br />

119 GUMB-P<br />

Realiza la misma función que el programa "GUMB 1".<br />

pero los datos de entrada son mensuales.<br />

It performs the same function as the "GUMB l", but the<br />

entry data are monthly data.<br />

Ajusta una ley de Gumbel a una serie de datos mensua-<br />

les. Obtiene mensuales y máximos anuales.<br />

This programme fits the Gumbel's law to a series <strong>of</strong><br />

monthly data. It obtains also monthly and maximum<br />

annual series.<br />

Realiza la misma función que el programa "GUMB 1"<br />

y además dibuja la nube en el Plotter.<br />

It performs the same function as the programme "GUMB 1"<br />

and draws the clouds <strong>of</strong> points in the Plotter.<br />

120 C-C-D Dados los datos diarios de aportaciones naturales, se ob<br />

tienen datos diarios de aportaciones derivadas para dis-<br />

tintos caudales de derivación, con los que se obtienen ds<br />

tos mensuales de aportaciones naturales y derivadas. Con<br />

estas parejas de datos se ajustan unas curvas, que sirven<br />

para obtener datos mensuales de aportaciones derivadas<br />

cuando sólo se tengan datos mensuales de aportaciones -<br />

naturales.<br />

Given the daily data <strong>of</strong> natural affords, the programme -<br />

obtains daily data <strong>of</strong> derived affords for different flows -<br />

<strong>of</strong> derivation by which are obtained monthly data <strong>of</strong> natural<br />

and derived affords; <strong>with</strong> these pairs <strong>of</strong> data, some lines<br />

are adjusted, which are used to obtain monthly data <strong>of</strong><br />

derived affords, when o<strong>nl</strong>y monthly data <strong>of</strong> natural affords<br />

are had.


183<br />

1 .21 GAMMA Dada una selección de 10 valores equidistantes de la fun_<br />

ciÓn g amma de X (con 16 cifras significativas) y sus seis<br />

primeras diferencias en el intervalo (1, 2), obtiene por<br />

interpelación cualquier g amma de X.<br />

Given a selection <strong>of</strong> 10 equidistant values <strong>with</strong> the func-<br />

tion g amma <strong>of</strong> X (<strong>with</strong> 16 significative digits) and their<br />

six first differences in the interval (1. 2), the programme<br />

obtains by interpolation any gamma <strong>of</strong> X.<br />

122 NUMRE Dada una selección de 10 valores equidistantes de n y<br />

sus seis primeras diferencias en el intervalo (-0. 75,<br />

4.25), obtiene la función inversa de la función de Good-<br />

rich.<br />

Given a selection <strong>of</strong> 10 equidistant values <strong>of</strong> n and their<br />

six first differences in the interval (-0. 75, .4. 25), the<br />

programme obtains the inverse function <strong>of</strong> the Goodrich<br />

function.<br />

123 AM-C 4P Ajusta una ley de frecuencias parabólicas a los diez m e-<br />

nores valores de una serie de aportaciones clasificadas,<br />

sacando el valor de la aportación correspondiente a una<br />

garantía dada.<br />

The programme fits a law <strong>of</strong> parabolic frecuency to the<br />

ten least values <strong>of</strong> a series <strong>of</strong> classified affords, obtain-<br />

ing the value <strong>of</strong> the afford corresponding to a given - -<br />

guarantee.<br />

124 CD SOO Calcula las aportaciones acumuladas correspondientes a<br />

una garantía dada, obteniendo la curva de seguridad.<br />

It evaluates the accumulated affords corresponding to a<br />

given guarantee, obtaining the safety lines.


184<br />

125 CD SO1<br />

126 CD 502<br />

Calcula las aportaciones acumuladas durante un afio,<br />

obteniendo la curva de seguridad.<br />

It calculates the accumulated affords during a year,<br />

obtaining the safety line.<br />

Calcula las aportaciones acumuladas, después las clasi-<br />

fica considerando los siguientes periodos:<br />

Oct Nov Set<br />

Oct + 1 Nov + 1 Set + 1<br />

_ _ _ _ - - - - - - - - - - -<br />

Ott + k NO~ + k Set + k<br />

y obtiene después las aportaciones acumuladas corres -<br />

pondientes a una garantia determinada. Posteriormente,<br />

calcula las demandas acumuladas para los mismos peri2<br />

dos y seguidamente las superficies evaporantes corres-<br />

pondientes a un volumen cualquiera vi, tomando como sg<br />

perficie evaporante en un mes la media aritmética de las<br />

correspondientes al estado inicial y final, y aplicándolo<br />

a la evaporación unitaria mensual.<br />

A partir de estas pérdidas obtiene, para la curva de ga-<br />

rantia dada, las pérdidas totales para cada periodo.<br />

Finalmente, calcula por iteración la curva de seguridad<br />

por meses, según la ecuación<br />

siendo :<br />

Ei (G) = volumen embalsado al principio del mes (i)<br />

para las curvas de garantia G.<br />

Dik<br />

Pik<br />

= demanda real acumulada desde el principio<br />

del mes (i) durante k meses sucesivos.<br />

= pérdidas del embalse acumuladas desde el<br />

principio del mes (i) durante k meses suce-<br />

sivos.<br />

Aik (G) = aportación del embalse acumulada desde el<br />

principio del mes (i) durante k meses suce-<br />

sivos, que tiene una probabilidad G de ser<br />

superada.


185<br />

It evaluates the accumulated affords, and afterwards it<br />

classifies them considering the following periods:<br />

Oct Nov Set<br />

Oct t 1 Nov + 1 Set + 1<br />

_ _ _ _ _ _ _ - - - - - - - -<br />

Ott t k NO~ t k Set + k<br />

computing afterwards the accumulated affords corresponcj<br />

ing to a determined guarantee. Lately, it evaluates the -<br />

accumulated demands for the same periods and thereafter<br />

the evaporating areas corresponding to a given volume vi,<br />

taking as the evaporating areas in one month, the arithm-<br />

etical mean corresponding to the initial and final state -<br />

and applying this to the unitary monthly evaporation.<br />

Starting from this losses, the programme obtains for the<br />

given line <strong>of</strong> guarantee, the total losses to each period.<br />

Finally, it evaluates iteratively the safety line by months,<br />

according to the equation<br />

where:<br />

Ei (G) = stored volume at the beginning <strong>of</strong> the month (i)<br />

for the guarantee line G.<br />

Dik<br />

'ik<br />

= actual accumulated demand since the begin-<br />

ning <strong>of</strong> the month (i) during k consecutive -<br />

months.<br />

losses in the reservoir accumulated, since<br />

the beginning <strong>of</strong> the month (i) during k conse-<br />

cutive months.<br />

Aik (G) = accumulated afford in the reservoir since the<br />

beginning <strong>of</strong> the month (i) during k consecutive<br />

months, that has a G probability <strong>of</strong> being over<br />

pas sed.


186<br />

127 CDSSE<br />

128 REGCV<br />

Calcula las curvas de seguridad de un embalse, para -<br />

cualquier nivel de garantía de suministro de una deman<br />

da dada en función de la serie histórica de aportaciones<br />

de hasta 60 anos de duración.<br />

It evaluates the safety lines <strong>of</strong> a reservoir, to any level<br />

<strong>of</strong> giiarantee <strong>of</strong> supply <strong>of</strong> a given demand in function <strong>of</strong><br />

the teorica1 series <strong>of</strong> affords up to 60 years <strong>of</strong> duration.<br />

A partir de la serie de aportaciones mensuales en un pun<br />

to, calcula las capacidades de embalse estricto mediante<br />

el método de las diferencias acumuladas, por la expresión<br />

c = q - Aki.<br />

El mismo programa distingue dos casos:<br />

a) Regulación a caudal constante<br />

Mediante el programa obtenemos el principio y la<br />

duración del período de vaciado del embalse, del<br />

intervalo de meses sucesivos que da el máximo VE<br />

lor positivo a la suma de las diferencias ni q - Aki,<br />

siendo qi el caudal minimo continuo garantizado -<br />

durante el periodo considerado. Calcula también el<br />

volumen medio regulado en % de la aportación m e-<br />

dia y en Hm3, el caudal regulado y las capacidades<br />

de embalse estrictas para asegurar estos caudales<br />

en tanto por ciento de la aportación media y en Hm3.<br />

b) Regulación con caudal variable<br />

En este caso el caudal para hacer el cálculo de la -<br />

regulación es variable en cada uno de los meses. -<br />

El programa nos da el principio y la duración del -<br />

periodo de vaciado del embalse, volumen medio re<br />

gulado en 70 de A m y en Hm3, capacidades de embF2<br />

se estricto en 7' de A m y en Hm3 y, además, el nu-<br />

mero de Has. regables con los volúmenes medios -<br />

regulables.<br />

Starting from the series <strong>of</strong> monthly affords in a point, the<br />

programme calculates the capacities <strong>of</strong> strict reservoir<br />

according to the method <strong>of</strong> the accumulated differences, -<br />

by the expression C z ni q - Aki.<br />

The same programme distinguishes two cases :


a)<br />

Regulation at a constant flow<br />

187<br />

By means <strong>of</strong> the programme we obtain the beginning<br />

and the duration <strong>of</strong> the period <strong>of</strong> emptying the resec<br />

voir, the interval <strong>of</strong> following months which gives<br />

the maximum positive value <strong>of</strong> the sum od differen_<br />

ces ni qi - Aki, being qi the minimum continuos -<br />

flow guaranteed during the period under consider-<br />

ation. It calculates also the average regulated - -<br />

volume in 70 <strong>of</strong> the average afford and in CU. Hm,<br />

the regulated flow and the strict capacities <strong>of</strong> --<br />

reservoir to assure these flows in percentage <strong>of</strong><br />

the average afford and in CU. Hm.<br />

b) Regulation <strong>with</strong> variable flow<br />

In this case the flow to perform the calculation <strong>of</strong><br />

the regulation is variable in each month. The pro-<br />

gramme gives us the beginning and the duration <strong>of</strong><br />

the emptying period <strong>of</strong> the reservoir, averages -<br />

regulated volume in 70 <strong>of</strong> A m and in CU. Hm, capa<br />

cities <strong>of</strong> the strict reservoir in 70 <strong>of</strong> Am and in CU.<br />

Hm in addition, the number <strong>of</strong> Has irrigables <strong>with</strong><br />

the average regulable volumes.<br />

129 REG25 Realiza la misma función que el programa "REGCV",<br />

pero la entrada de datos está calculada para que regule<br />

estaciones durante 25 horas.<br />

The programme performs the same function as the pro-<br />

gramme "REGVF", but the entry data is evaluated to<br />

regulate stations during 25 hours.<br />

130 REGVA Dada una serie histórica de aportaciones mensuales, unos<br />

consumos, una serie de precipitaciones mensuales sobre<br />

el cultivo, unas capacidades de embalse máximo muerto<br />

y dando distintos porcentajes del consumo, calcula las -<br />

variaciones de volumen embalsado, los dé€icits y verti-<br />

dos, después de abastecer los regadios con unos consu-<br />

mos determinados, a los que descuenta la precipitación<br />

sobre el cultivo. El programa tiene en cuenta la evapora<br />

ciÓn mensual del embalse.


188<br />

Given an historical series <strong>of</strong> monthly affords, some -<br />

consumptions, a series <strong>of</strong> monthly rainfall over the crop,<br />

a capacities <strong>of</strong> maximum dead reservoir and giving dif-<br />

ferent porcentages <strong>of</strong> the consumption, this programme<br />

calculates the variations <strong>of</strong> volume <strong>of</strong> the reservoir, the<br />

deficits and emptying, them to supply the irrigated land<br />

<strong>with</strong> a determined consumptions, deducting the rainfall<br />

on the cultivation. It has in consideration also the month-<br />

ly evaporation <strong>of</strong> the reservoir.<br />

131 REG-RA Estudia la regulación para riegos y abastecimientos de<br />

forma análoga al REGVA.<br />

This programme studies the regulation for irrigation<br />

and supply in the same way to the REGVA programme.<br />

132 REG-K2 Estudia la regulación conjunta de un sistema de embal-<br />

ses considerando evaporación, para lo que utiliza los -<br />

siguientes datos:<br />

a)<br />

Las series de aportaciones en uno, dos tres o c u ~<br />

tro embalses de los que se trata de efectuar una -<br />

regulación conjunta.<br />

3<br />

b) Los consumos mensuales en Hm , suponiendo que<br />

se consume anualmente el 100% de la aportación -<br />

media de cada embalse.<br />

c)<br />

d)<br />

La evaporación mensual en cms.<br />

Las caracteristicas de los embalses, ecuaciones<br />

de las curvas alturas -volúmenes, superficies -voli<br />

menes, capacidad total y volumen de embalse - -<br />

muer to.<br />

El programa realiza entre las aportaciones de cada em-<br />

balse sorteos equiprobables de 5 en 5 años, hasta 1000<br />

años, y a las series de 50, 100, 150 - 1000 les aplica el<br />

proceso de regulación conjunta, en hipótesis de consumo<br />

de diversos % de la aportación media, dando como res-<br />

tado el 70 de fallos en cada serie de anos para cada uno -<br />

de los embalses considerados.


133 REG-SU<br />

189<br />

It studies the compound regulation <strong>of</strong> a system <strong>of</strong> reser-<br />

voirs considering evaporation, usind the following data:<br />

a)<br />

The series <strong>of</strong> affords in one, two, three or four<br />

reservoirs <strong>of</strong> which it treats to realize a compound<br />

regulation.<br />

b) The monthly consumption in CU. Hm, supposing -<br />

that one hundred per cent <strong>of</strong> the average afford is<br />

used yearly in each reservoir.<br />

c) Monthly evaporation in cms.<br />

d)<br />

The characteristics <strong>of</strong> the reservoirs, equations<br />

<strong>of</strong> the height-volume lines, area-volumes, total<br />

capacity and volume <strong>of</strong> the dead reservoir.<br />

The programme performs among the affords <strong>of</strong> each<br />

reservoirs equi-probable casting lots every 5 years<br />

until 1000 years, and to the series.50, 100, 150, 1000<br />

the programme uses the compound regulation process,<br />

in the hypothesis <strong>of</strong> different 70 <strong>of</strong> consumption <strong>of</strong> the<br />

average afford, given as a result the percentage <strong>of</strong> -<br />

failures in each series <strong>of</strong> years for each reservoir under<br />

consideration.<br />

Este programa estudia la regulación sucesiva de una se-<br />

rie de embalses, sin limitación de número, utilizando las<br />

curvas de regulación del programa anterior y en la hipó-<br />

tesis de que la capacidad de embalse se utiliza para reg5<br />

lar la aportación de la cuenca propia y los caudales no re<br />

gulados aguas arriba, obteniéndose como resultado los -<br />

volúmenes regulados por cuencas parciales y totales.<br />

This programme studies the sequential regulation <strong>of</strong> a<br />

series <strong>of</strong> reservoir, <strong>with</strong>out limitation <strong>of</strong> number, using<br />

the regulation lines <strong>of</strong> the preceding programme and -<br />

under the hypothesis that the capacity <strong>of</strong> reservoir is -<br />

used to regulate the afford <strong>of</strong> its own basin and the non<br />

regulated upstream flows, obtaining as a result the regu<br />

lated volumes by partial and total basins.


190<br />

134 REG-KI<br />

135 REG-K3<br />

EAM<br />

RYPJU<br />

RELLO<br />

RESE<br />

EBBE<br />

136 CMAR<br />

137 EAM<br />

Igual que el REG-KI sin embalse muerto.<br />

The same as REG-KI, but <strong>with</strong>out dead reservoir.<br />

Realiza la misma función que el programa "REG-KI",<br />

calculando directamente varias hipótesis.<br />

It performs the same function as the programme "REG-<br />

K2", evaluating directly several hypothesis.<br />

Dados los valores de abastecimiento, riegos en valor<br />

absoluto y 70, calcula los consumos mensuales.<br />

Given the values <strong>of</strong> supply, irrigations in absolute value<br />

and percentage, it calculates the monthly consumption.<br />

Estudia la explotación de hasta seis embalses, interco-<br />

nectados entre ellos por una red principal de canales de<br />

conducción, que se simula mediante una malla de 24 nu<br />

dos.<br />

Utiliza una serie de aportaciones generadas por sorteo<br />

aleatorio teniendo en cuenta o no la autocorrelación de<br />

las aportaciones anuales.<br />

Los Órdenes de desembalse se establecen en función de<br />

los vertidos probables de cada uno de los embalses y de<br />

la demanda a satisfacer. Se tiene en cuenta las pérdidas<br />

por evaporación en los embalses y la capacidad de las -<br />

conducciones.


191<br />

EAM It studies the development <strong>of</strong> up to six reservoirs, inter<br />

connected among them by a principal net <strong>of</strong> channels <strong>of</strong><br />

conduction, which are simulated by a mesh <strong>of</strong> 24 knots.<br />

The programme uses a series <strong>of</strong> generated affords by<br />

fortuitous casting lots having present or no the self-cor<br />

relation <strong>of</strong> yearly affords.<br />

The orders <strong>of</strong> emptying are established in relation to the<br />

probable emptying <strong>of</strong> each reservoir and <strong>of</strong> the demand<br />

to satisfy. Having present the losses by evaporation in<br />

the reservoir and the capacity <strong>of</strong> the conductions.<br />

138 RYPJU Este modelo simula la explotación y la producción ener-<br />

gética de un conjunto de aprovechamientos.<br />

Se aplica a un sistema de aprovechamientos (embalses y<br />

saltos hidroeléctricos) situados sobre dos rios en forma<br />

de Y, al cual se pueden añadir caudales regulados en --<br />

otras cuencas o detraer caudales regulados por el sist:<br />

ma.<br />

A partir de una serie de aportaciones generada por sor-<br />

teo aleatorio y teniendo en cuenta la autocorrelación, se<br />

establecen los Órdenes de desembalse en función de las<br />

demandas y de los vertidos probables en cada embalse.<br />

El modelo calcula las producciones en todos los saltos<br />

y la garantia de suministro de la demanda prevista.<br />

This model pretends the exploitation and energetic pro-<br />

duction <strong>of</strong> an assembly <strong>of</strong> utilizations.<br />

It is applied to a system <strong>of</strong> utilizations (reservoirs and<br />

hydroelectric waterfall) located on two rivers in the form<br />

<strong>of</strong> Y, to which it could be added regulated flows in other<br />

basins or take away flows regulated by a system.<br />

Starting from a series <strong>of</strong> affords, generated by fortuitous<br />

casting lots and having present the self-correlation, the<br />

order <strong>of</strong> emptying in relation to the demand and the pro-<br />

bable emptying in each reservoir is established.<br />

The model calculates the productions in all waterfalls<br />

and the guarantee <strong>of</strong> supply <strong>of</strong> the calculated request.


192<br />

139 RELLO<br />

140 RESE<br />

Este modelo simula la explotación coordinada de los re-<br />

cursos superficiales y subterráneos.<br />

Supone la existencia de un embalse subterráneo del que<br />

se puede extraer un caudal uniforme prefijado, en fun-<br />

ción de los estados de los embalses del sistema.<br />

Utiliza una serie de aportaciones generadas por sorteo<br />

aleatorio, teniendo en cuenta la autocorrelación de las<br />

aportaciones anuales y las curvas de seguridad de un -<br />

embalse equivalente a la suma de los embalses del sis-<br />

tema, determinadas mediante el programa CDSSE.<br />

La explotación se simula teniendo en cuenta las pérdidas<br />

por evaporación en los embalses y obtiene la garanda de<br />

suministro de la demanda de abastecimiento junto con -<br />

los valores de la extracción anual media del acuifero y<br />

del periodo de máxima duración de la extracción máxi-<br />

ma prevista.<br />

This model pretends the coordinated exploitation <strong>of</strong> su-<br />

perficial and underground resources.<br />

It assumes the existence <strong>of</strong> an underground reservoir<br />

from which a uniform flow can be extracted fixed in ad-<br />

vance, depending on the state <strong>of</strong> the system <strong>of</strong> the resec<br />

voir.<br />

It uses a series <strong>of</strong> generated affords by fortuitous casting<br />

lots, having present the self-correlation <strong>of</strong> the yearly<br />

affords and the safety lines <strong>of</strong> a reservoir equivalent to<br />

the sum <strong>of</strong> the system, which is determined by the pro-<br />

gramme SAFLI.<br />

The exploitation is simulated, having present the losses<br />

by evaporation in the reservoir, the guarantee <strong>of</strong> supply<br />

<strong>of</strong> the demand, together <strong>with</strong> the values <strong>of</strong> the annual -<br />

average extraction and <strong>of</strong> the period <strong>of</strong> maximum calcu-<br />

lated extraction.<br />

Este modelo simula un sistema de explotación con varios<br />

embalses situados sobre una misma corriente, uno de -<br />

los cuales puede ser el origen de un aprovechamiento -<br />

hidroeléctrico.<br />

La explotación se establece a partir de una serie de apor<br />

taciones generadas por sorteo aleatorio y teniendo en -


141 EBBE<br />

193<br />

cuenta la autocorrelación de las aportaciones anuales,<br />

en función de las curvas de seguridad de un embalse tg<br />

tal equivalente para atender a una demanda de usos cog<br />

suntivos. Al mismo tiempo que calcula la garantía de su<br />

ministro de la demanda prevista obtiene las produccio-<br />

nes históricas en todos los saltos, distinguiendo la enec<br />

gi’a de puntas y la energía producible en horas llenas en<br />

el periodo critico (nov. a feb. ) de máxima demanda ener<br />

gética. Ordena los valores de la energía optenidos y as{<br />

puede suministrar los valores de la energia de distinta<br />

calidad garantizada en el per


194<br />

<strong>of</strong> the calculated reservoirs. It calculates the values <strong>of</strong><br />

the possible overflows at the same time that it calculates<br />

the guarantee <strong>of</strong> supply <strong>of</strong> the calculated demands and the<br />

energetic productions and consumptions in the hydroelec<br />

trical utilizations <strong>of</strong> the basin.<br />

142 LAMI 1 Estudia la laminación de un embalse, supuesto un nivel<br />

inicial determinado y pudiendo utilizar uno o varios si-<br />

temas de desagües, en función de las caracteristicas -<br />

del embalse y de la crecida.<br />

It studies the lamination <strong>of</strong> a reservoir, supposing an<br />

initial level determined in advance and being possible<br />

the use <strong>of</strong> one or several drainage systems, in function<br />

<strong>of</strong> the characteristics <strong>of</strong> the reservoir and the flood.<br />

143 HIDR 1 Calcula el hidrograma para diversas hipótesis de inten-<br />

sidad horaria de precipitación, coeficiente de escorren-<br />

tia y duración de la tormenta.<br />

It evaluates the hydrogram for different hypothesis <strong>of</strong><br />

hourly intensity <strong>of</strong> rainfall, run<strong>of</strong>f coefficient and the<br />

duration <strong>of</strong> the storm.<br />

144 HIDR 2 Calcula el hidrograma con intensidad y coeficiente de<br />

escorrenti’a corriente.<br />

It computes the hydrogram <strong>with</strong> normal intensity and<br />

usual run<strong>of</strong>f coefficient.<br />

145 ABC Realiza el estudio económico (análisis, beneficio y cos -<br />

to), expresándolo en forme de corrientes monetarias as


tualizadas en función de la tasa de descuento y obtiene<br />

la ratio<br />

Beneficio - Gastos<br />

costos<br />

195<br />

It performs the economic study (analysis, pr<strong>of</strong>it and<br />

price) expressing it in actual monetary currency in func-<br />

tion <strong>of</strong> the standard rate <strong>of</strong> deduction and it obtains the<br />

ratio<br />

Pr<strong>of</strong>it - Expenses<br />

Prices<br />

146 ABC 10 Programa ABC para estudio económico de varias cen-<br />

trales.<br />

It programmes ABC for an economical study <strong>of</strong> several<br />

centrals.<br />

147 ABC TV Programa ABC para estudio económico, con tasa varia-<br />

ble.<br />

It programmes ABC for an economical study, <strong>with</strong> varia<br />

ble standard rate.<br />

148 BNZ Dado el número de muestra, tiempo de lectura y número<br />

de desintegración, obtiene la concentración de Tritio pa-<br />

ra muestras de agua.<br />

Given the number <strong>of</strong> the sample, lecture time and num-<br />

ber <strong>of</strong> disintegration, it obatains the concentration <strong>of</strong> -<br />

Tritium for sample <strong>of</strong> water.


196<br />

149 PARAM Calcula los siguientes indices : RMG/RCA, RNA/RK,<br />

RNA/RCA, ANA/RMG, (RCA-RMG), RALC, BR/CL,<br />

RCL/RHCO3, RHCO3/RCL, RS04/RCL, (RCA + RHCOQ)/<br />

/ (RCH + RS04), RHC03/RHC03 t RS04 t RCL, RALC/RCL,<br />

RCA/RALC, SAR, ICB, ID, FI, Tipo de agua. Además,<br />

lista los elementos en meq/l. y en 70.<br />

It calculates the following indexes: RMG/RCA, RNA/RK,<br />

RNA/RCA, ANA/RMG, (RCA-RMG), RALC, BR/CL,<br />

RCL/RHC03, RHC03/RCL, RSOq/RCL, (RCA t RHCOS)/<br />

/ (RCH t RS04), RHC03/RHC03 + RSO4 + RCL, RALC/<br />

/ RCL, RCA/RALC, SAR, ICB, ID, FI, Type <strong>of</strong> water.<br />

Besides, it lists the elements in meq/l. and in %.<br />

150 HISTO Calcula los histogramas de las siguientes relaciones,<br />

clasificándolos en clases y valores fuera de clase:<br />

RCL/RS04, RCL/RHCO3, RALC/RCL, RNAIRCA, RCL,<br />

RSO4, RHC03, RN03, RALC, Res. seco, T.D.S., Dureza<br />

total. El histograma lo dibuja por impresora.<br />

It calculates the hystogram <strong>of</strong> the following relations,<br />

classifying them in classes and values out <strong>of</strong> class:<br />

RCL/RS04, RCL/RHCO3, RALC/RCL, RNA/RCA, RCL,<br />

RSO4, RHC03, RN03, RALC, Res. (dry), T.D.S., total<br />

hardness. The hystogram is designed by the printer.<br />

151 TUBEC Dado un muestrario de tubedas de diferentes diámetros,<br />

con sus precios y caracteristicas hidráulicas,, determi-<br />

na para una configuración topológica y topografica de la<br />

red y para diversas hipótesis, la combinación de distri-<br />

bución de tubos más económica que permita el suminis-<br />

tro solicitado con la minima pérdida de carga.<br />

Given a sample book <strong>of</strong> pipes <strong>of</strong> differents diameters,<br />

<strong>with</strong> their prices and hydraulical characteristics, it<br />

determines for a topological and topographical form <strong>of</strong><br />

the system and for several hypothesis, the combination<br />

<strong>of</strong> distribution <strong>of</strong> pipes more economical, that allow the<br />

solicited supply <strong>with</strong> the minimum loss <strong>of</strong> loading.


197<br />

152 CANAL Definido un canal por sus secciones y pendientes en difg<br />

rentes tramos, as: como por distintos tipos de cornpuer_<br />

tas, el programa determina la evolución de los caudales<br />

transportados en el curso del tiempo, as: como los cala<br />

dos alcanzados en los distintos tramos del canal.<br />

Permite estudiar las maniobras de apertura y cierre de<br />

compuertas más convenientes para la explotación del cg<br />

na1 .<br />

Defined a canal by its sections and pendants in different<br />

stretchs, as well as by different types <strong>of</strong> floodgates, -<br />

this programme determines the evolution <strong>of</strong> the flows<br />

carried in the course <strong>of</strong> time, as well as soakage reach-<br />

ed in the different stretchs <strong>of</strong> the canal.<br />

It allows also to study the process <strong>of</strong> opening and closing<br />

<strong>of</strong> floodgates more convenient to exploitation to the canal.<br />

153 SER-EL Depura los datos suministrados por las empresas hidro-<br />

eléctricas relativos a la producción mensual de energi'a<br />

de los diferentes saltos de cada una, recogidos en tarje<br />

tas perforadas. La depuración se hace verificando la -<br />

concordancia de los datos geográficos, número de horas<br />

de utilización de los controles en función de la potencia<br />

instalada y producción.<br />

Una vez corregidos todos los errores detectados, pre-<br />

para unos cuadros resúmenes estadisticos de producción<br />

de energTa, clasificados por diferentes conceptos :<br />

Producciones globales por cuencas hidrográficas en ca-<br />

da mes.<br />

Producciones globales UNESA, IN1 y otr os en cada mes.<br />

Producciones anuales clasificadas por:<br />

Empresa o concesionario.<br />

Centrales por magnitud de su producción.<br />

Centrales y cuencas por magnitud de su produc-<br />

cion.<br />

Centrales y rios por magnitud de su producción.<br />

Centrales y provincias por magnitud de su produc-<br />

ción.


198<br />

It purifies the supplied data by hydroelectrical companies<br />

relatives to monthly productions <strong>of</strong> energy <strong>of</strong> the diffe--<br />

rents waterfalls <strong>of</strong> each one, collected in perforated cards.<br />

The cleansing is done verifying the harmony <strong>of</strong> geographi-<br />

cal data, number <strong>of</strong> hours <strong>of</strong> utilization <strong>of</strong> controls in -<br />

function <strong>of</strong> installed power and production.<br />

Once corrected all the detected errors, it prepares a<br />

summary <strong>of</strong> statistical charts <strong>of</strong> production <strong>of</strong> energy,<br />

classified by different ideas :<br />

Total productions for hydrographical basin in each month.<br />

Total productions UNESA, INI, and others in each month.<br />

Annual production classified by:<br />

Company or dealer.<br />

Centrals by magnitude <strong>of</strong> production.<br />

Centrals and basins by magnitude <strong>of</strong> production.<br />

Centrals and rivers by magnitude <strong>of</strong> production.<br />

Centrals and provinces by magnitude <strong>of</strong> production.


COMPUTATION OF RESERVOIRS SEDIMENTATION<br />

A.V. Karaushev, I.V. Bogoliubova<br />

State Hydrologic a 1 Institut e<br />

Leningrad, USSR<br />

-- ABSTRACT<br />

Methods for the computation <strong>of</strong> sedimentation by suspended<br />

sediments and bed load <strong>of</strong> the projected reservoirs are given,<br />

or the first year Of the reservoir operation computation is<br />

made according to the balance <strong>of</strong> sediments computed by the<br />

difference between the transport capacity and the hydraulic<br />

parameters <strong>of</strong> the current at the upper pool (transient region)<br />

and at the dan <strong>of</strong> the reservoir. The subsequent attenuation <strong>of</strong><br />

the process as well as the total duration <strong>of</strong> sedimentation is<br />

evaluated by empirical relations obtained from the observational<br />

data on reservoirs under operation.<br />

RESUME<br />

Les auteurs exposent des méthodes pour le calcul de<br />

l'envasement des barrages par les matériaux transportés en<br />

charriage ou en suspensión. On fait, pour la première année<br />

d'exploitation, le bilan des matériaux déposés dans la retenue<br />

par différence entre ce qui entre à l'amont (station de mesure<br />

dar,s la zo~e du remous) et ce qui sort par le barrage; ces<br />

mesures sort reliées aux paramètres hydrauliques du cours d'eau.<br />

u', extrapole les résultats dans le futur en utilisant des<br />

relations empiriques obtenues pour d'autres réservoirs en cours<br />

! 1 exploit at ion.


200<br />

The construction <strong>of</strong> reservoirs in mountain areas and at the<br />

foothills on rivers <strong>with</strong> a considerable sediment concentration<br />

inevitably faces <strong>with</strong> the necessitg to remove or to impede sediments<br />

transported by the river to keep the projected capacity<br />

<strong>of</strong> the reservoir. The present paper gives methods accepted in<br />

the USSR providing the evaluation <strong>of</strong> possible sedimentation rate<br />

for the whole reservoir or for its individual parts during the<br />

first year <strong>of</strong> its operation and for subsequent years.<br />

Methods for the computation <strong>of</strong> re semoirs sedimentat ion are<br />

based on the equation <strong>of</strong> sediments balance applied to the whole<br />

reservoir or its parts, to the gross composition <strong>of</strong> the transported<br />

sediments or its particular fractions. The use <strong>of</strong> this equation<br />

makes it possible to compute the difference between sediments inflow<br />

and its discharge out <strong>of</strong> the reservoir i.e. sediments<br />

accumulation. The inflow <strong>of</strong> sediments is computed by observational<br />

out <strong>of</strong> the reservoir<br />

data or by indirect methods. The discharge <strong>of</strong> sediments is estimated<br />

by equations <strong>of</strong> the transporting capacitg <strong>of</strong> the current at<br />

the specified values <strong>of</strong> water discharge Q, mean depth Hm, mean<br />

current velocity Vm, and granulometaAc sediment composition.<br />

The computation <strong>of</strong> sedimentation during one year is reduced<br />

by the determination <strong>of</strong> that portion <strong>of</strong> sediment discharge<br />

which is accumulated in the reservoir. When starting computation<br />

it is essential to establish design values <strong>of</strong> annual water<br />

discharge, <strong>of</strong> suspended sediments and bed load, as well as typical<br />

chronological graphs <strong>of</strong> these values for the inflow site <strong>of</strong><br />

the reservoir. It is recommended to divide the hydrograph <strong>of</strong> the<br />

typical year into 3 or 4 design time intervals& and to compute<br />

sediments accumulation according to the values o $ Q, Vm Hm, etc.,<br />

averaged for every time interval. The computation <strong>of</strong> se Aimentation<br />

rate is made by individual fractions i, in this case it is<br />

sufficient to subdivide all the transported fractions into 3 or<br />

5 categories. Then sediments are summarized according to all<br />

categories <strong>of</strong> the fractions.<br />

The computation <strong>of</strong> sedimentation by suspended fractions for<br />

a design interval A tj is niade by equation:<br />

where: Pa j is the amount <strong>of</strong> sediments <strong>of</strong> all the fractions<br />

(tons) in the reservoir or in the design area dur A t ;<br />

*i in J is inflow <strong>of</strong> sediments <strong>of</strong> the i-th fractio3tonsg<br />

durmg time ~t through the initial (upper) discharge site <strong>of</strong><br />

the reservoir $ or its part)determined by the chronological<br />

graph or by computation das made for the upstream area; Qter<br />

is mean water discharge (<br />

sec) for time at through the<br />

terminal (downstream) discharge site <strong>of</strong> the Jeservoir ( at the<br />

dam) or the design area; Si t is mean particular turbidity<br />

for time At. <strong>of</strong> the i-th fractfoi at the terminal discharge site<br />

<strong>of</strong> the resehoir (certain area) (g/m3); ~ t is j time interval<br />

(sec).


202<br />

Turbidity <strong>of</strong> the i-th fraction at the terminal discharge<br />

site Si ter j is computed by equation <strong>of</strong> A.T. Karaushev:<br />

- G"AL<br />

(2)<br />

where: Si 4" J Ois particular turbidity at the initial discharge<br />

site mean or time interval B ta; S? is the turbidity<br />

corresponding to a particular thins$<strong>of</strong>%idg capacity <strong>of</strong> the current<br />

computed by equation (6) given below; e is the base <strong>of</strong> natural<br />

l2gar ith;<br />

G is dimensio<strong>nl</strong>ess value determined by equation<br />

where: ui is fall velocity <strong>of</strong> fraction i under consideration;<br />

kg is a parameter having a dimensionality <strong>of</strong> velocity and which<br />

is computed by equation<br />

LL; ri<br />

(4)<br />

The value <strong>of</strong> r is the value <strong>of</strong> hydroneclnanic param?.t;er<br />

<strong>of</strong> sediments whichi= be obtained by graphs according to the<br />

Chezygs coefficient C and ratio <strong>of</strong> *i (Fig. 1 ). In equation (3)<br />

AL indicates the length<br />

-<br />

<strong>of</strong> the reservoir (or it8 part) given<br />

In relative units:<br />

A L<br />

AL =----<br />

Hm (5)<br />

where: AL is the length <strong>of</strong> the reservoir (or design area (m);<br />

IL, is mean depth <strong>of</strong> the reservoir ( or some area), (m) for time<br />

iIltel?ral A t*o<br />

A particulAr transporting aapacj. <strong>of</strong> the current S: tr -<br />

(for the i-th fraction <strong>of</strong> i8 CO uted <strong>with</strong> the %se <strong>of</strong><br />

data on bed load composition. The value <strong>of</strong> 8 tr j is computed<br />

<strong>with</strong> the use <strong>of</strong> hydraulic elements <strong>of</strong> the current mean for time<br />

interval A tj related to the whole reservoir or its desim area:<br />

Here a<br />

actual<br />

indicates a correcting factor estimated by the ratio <strong>of</strong><br />

and computed turbidity at the initial discharge site:<br />

SS4. r a= --<br />

s cokvlvip (7)


2 02<br />

d is composition ( in per cent) <strong>of</strong> the i-th weighted<br />

f&&&o& in the roiling portion <strong>of</strong> bed load.<br />

The value 0% droil i is determined by the ratio<br />

--<br />

IC0 , (8)<br />

roil i - t CL bed i<br />

where A is the portion (per cent) <strong>of</strong> the i-th fraction in<br />

bed load &&&sition; r is gross portion ( in per cent) <strong>of</strong> the<br />

weighted fraction in bed load composition. In this case sediments<br />

wPth fall velocity corresponding to the condition u 4 1- are<br />

regarded as weighted fractions, and Vi indicates maxmum value<br />

<strong>of</strong> the vertical component <strong>of</strong> the puls%on velocitg. The latter<br />

salue is computed by a special equation according to mean velocity<br />

<strong>of</strong> the current and Chew's coefficient. Gross turbidity <strong>of</strong> roiling<br />

(Sroil) is obtained by equation:<br />

where: N is characteristic dimensio<strong>nl</strong>ess number depending on<br />

Chew's eoefficient C; is the ratio <strong>of</strong> velocity at the bottom<br />

go mean veloci%y; the ! est <strong>of</strong> the symbols are given in previous<br />

equations, *<br />

When comguting.Si tr for the first time interval the composition<br />

<strong>of</strong> bed load xn the reservoir is accepted according to the<br />

averaged conposition <strong>of</strong> river alluvium in the cñannel and in the<br />

f lood-plain; for subsequent intervals it is essential to consider<br />

the composition <strong>of</strong> sediments obtained by computations.<br />

If sedimentation is computed for certaih areas, then Si 8' j<br />

estimated by equation (2) for the first (upper) area 1s use as<br />

Si in j for the second area domstream, etc.<br />

The computation <strong>of</strong> reservoir sedimentation by bed load is made<br />

according to the same design intemals a8 by suspended sediments.<br />

For an approximate evaluation it i8 possible to be confined to<br />

the computation for flood periods when the major portion <strong>of</strong> coarse<br />

fractions flows into the reservoir.<br />

The amount <strong>of</strong> bed load in the reservoir is determined by the<br />

difference:<br />

(10)<br />

where: Pa bed is the weight <strong>of</strong> bed load in the reservoir (tons);<br />

n t. is time interval (sec); Rbed in<br />

J<br />

and Rbed ter jindicate<br />

bed load discharge at the initial and termi.mil discharge sites<br />

(kg/sec) nean for design time intervalat.. For bed load discharge<br />

computation it is reasonable to recommed $he equations<strong>of</strong> G.I.<br />

Shamov, VaNe Gomharov, I.V. Egiaearov, K.I. Rossinski, et al. The<br />

equation <strong>of</strong> G.I. Shamov is the most simple one providing a suffici-


203<br />

ent coincidence <strong>of</strong> computation results <strong>with</strong> the data <strong>of</strong> measure-<br />

ments at a wide range <strong>of</strong> fractions dimensions:<br />

where: Rbed is bed load discharge (kg/sec); B is current width<br />

(m); Hm is mean depth (m); a, is mean diameter <strong>of</strong> mobile particles<br />

<strong>of</strong> bed load (m); Vm is mean velocity <strong>of</strong> the current (m/sec); vsed<br />

is mean velocitg <strong>of</strong> the current (m/sec) when fractions<strong>with</strong> Q<br />

in diameter stop moving; K is coefficient consider- non-homo-<br />

geneitg <strong>of</strong> bed load composition.<br />

The value <strong>of</strong> is computed by equation:<br />

WL (12)<br />

d =c~oíz.i.ul!<br />

i=/ L '<br />

WL<br />

where: d, and d. res ectively indicate percentage and mean<br />

diameter o) a certain ?i-th) fraction; summation is made accord-<br />

ing to all the mobile fractions, the number <strong>of</strong> these fractions<br />

is-indicated as<br />

Separation <strong>of</strong><br />

equation:<br />

m.<br />

immobile (coarse) fraction is made by<br />

3<br />

9,o 12 'yl<br />

-<br />

4,t -<br />

i-<br />

L H,<br />

-<br />

The value <strong>of</strong> Vsed is obtained by equation:<br />

fis<br />

= 3,) d, H ~<br />

(13)<br />

( 14)<br />

All the computations <strong>of</strong> bed load transport are made accord-<br />

ing to hydraulic elements mean for time interval A tj.<br />

Annual accumulation <strong>of</strong> all the sediment fractions for the<br />

first year <strong>of</strong> reservoir operation is determined by equation:<br />

where: Pai is gross sediment weight for the 1st year (tons);<br />

and Pa bed j respeCtiVely indicate the Wight <strong>of</strong> suspend-<br />

88 g%hde.ents and bed load for the 1st year (tons)j j is the number<br />

<strong>of</strong> design internali n is the number <strong>of</strong> intervals during a year.<br />

If computation 1s made according to certain areas, then<br />

summation is made for all the areas to obtain gross sedimentation<br />

<strong>of</strong> the reservoir. The obtained value for the whole <strong>of</strong> the reservoir<br />

is transformed into volumetric units:


204<br />

where: Wai is the volume <strong>of</strong> sediments during the 1st ear (m 3 );<br />

P is the weight <strong>of</strong> sediments for the 1 t year (tons5; fs is<br />

&e volumetric weight <strong>of</strong> sediments ( t/m 3 ). After the computation<br />

being done the initial volume <strong>of</strong> the reservoir W is corrected.<br />

The obtained volume <strong>of</strong> the reservoir at the end <strong>of</strong> the 1st year<br />

W, = W - Wa<br />

is used for the computation <strong>of</strong> sedimentation for the<br />

next year. $he computation <strong>of</strong> sedimentation for subsequent years<br />

may be performed in the same way as for the 1st year or by<br />

extrapolation equations considering time attenuation <strong>of</strong> sedimenta-<br />

tion.<br />

It is recommended to use the equation <strong>of</strong> G.I. Shamov for the<br />

computation <strong>of</strong> chronological variations <strong>of</strong> sedimentation:<br />

where: Wa t is the volume <strong>of</strong> Sedimentation (m3) in t years;<br />

M'ad is sedimentation volume during the 1st year (m3) computed<br />

by the methods described above; Wa ext is the extreme volume<br />

<strong>of</strong> sediments in reservoir (m3) approximately computed by<br />

e quat - ion:<br />

3<br />

where: W is the initial volume <strong>of</strong> the reservoir (m ); Wtis<br />

area <strong>of</strong> river cross section (m2) when dischar e is close to<br />

maximm;Ldp is the maximum cross section area fm2) <strong>of</strong> the upper<br />

pool near the dam.<br />

The method is applicable to the reservoir as a whole.<br />

One year should be accepted as a design time interval. In<br />

case <strong>of</strong> correct initial values the method provides variations<br />

<strong>of</strong> reservoir sedimentation close to actual.<br />

REFERENCES<br />

1. Bogoliubova I.V. Resultam polevykh issledovaniy i rascheta<br />

stoka vlekomykh nanosov r. Mzymty (The results <strong>of</strong> field<br />

investigations and bed load discharge computation for the<br />

Mzymta river) Trans. <strong>of</strong> the State Hydrological Inst.,<br />

1968, ~01. 156, PP* 3943.<br />

2. Karauschev A .V . Rechnaya gidravlika (River hydraulic 8) .<br />

Leningrad, ñydrometeorological Publishing House, 1969,<br />

PP. 303-778.<br />

36 Razumikhina K.V . Primenenie formuly transportiruyushchei<br />

sposobnosti dlia rascheta godovogo stoka vzveshennykh<br />

nanosov (Application <strong>of</strong> transporting capacity equation<br />

for the computation <strong>of</strong> annual discharge <strong>of</strong> suspended<br />

sediments). Trans. <strong>of</strong> the State Hydrological Inst., 1969,<br />

vol. 175, ppe 137-154.<br />

4. Ukasania PO raschetu eailenia vodokhranilishch pri str<strong>of</strong>.t;elnom<br />

proektirovanii (Instructions for the computation<br />

<strong>of</strong> reservoirs sedimentation for engineering projects).<br />

Leningrad, Qdrometeorological Publishing House, 1968,<br />

54 PP.<br />

5. Shamov G.I. Recbnye nanoqy (River sediments). Leningrad,<br />

Hydrometeorological Publishing House, 1959, pp. 2-282.


c<br />

Figure 1. - Computation <strong>of</strong> reservoirs sedimentation<br />

205


ABSTRACT<br />

CALCULATION OF RUNOFF IN IRAQ<br />

R.K. KLIGUE, MECHDI EL SACHOB<br />

There given a general characteristic <strong>of</strong> run<strong>of</strong>f in<br />

Iraq and its distribution <strong>with</strong>in the area <strong>of</strong> the country.<br />

The authots analyse correlation <strong>of</strong> run<strong>of</strong>f <strong>with</strong> elevation<br />

<strong>of</strong> the territory, river basin area and other factors <strong>with</strong><br />

the aim <strong>of</strong> using these relationships for regions <strong>with</strong>out<br />

run<strong>of</strong>f data. Hydrologic time series analysis <strong>of</strong> run<strong>of</strong>f<br />

and analysis <strong>of</strong> run<strong>of</strong>f fluctuations through the territory<br />

are cited.<br />

RES UME<br />

On donne la caractéristique générale d'écoulement<br />

fluvial en Irak et sa distribution par la territoire. Sont<br />

analisdes les relations entre écoulement fluvial, l'altitude<br />

de lieu, l'aire de surface réceptrice et d'autres facteurs.<br />

L'objectif de cette analyse d'est utilisation de ces<br />

relations pour les régions avec l'absence des données<br />

d'écoulement. On fait l'analyse des séries hydrologiques<br />

et des variations de débits par la territoire.


208<br />

The investigation <strong>of</strong> river flows in Iraq is <strong>of</strong> great<br />

importance keeping in view the constantly increasing water<br />

balance stress in the country that arouses the necessity to<br />

design special rnultipurpose projects as well as projects<br />

aimed at more complete use <strong>of</strong> water resources by construct-<br />

ing irrigation systems, overyear storage reservoirs, by im-<br />

proving crop management under irrigation and by wider use<br />

<strong>of</strong> groundwaters.<br />

The main rivem<strong>of</strong> Iraq - the Tigris and Euphrates -<br />

cross the oountry by their middle and lower reaches. Con-<br />

fluencing they form a river called Shatt-al-Arab flowing<br />

into the Perbian Gulf. The main tributaries <strong>of</strong> the Tigris<br />

<strong>with</strong>in Iraq are the Greater Zab, Lesser Zab, Adhaim and<br />

Diyala. The Euphrates river have no tributaries on the ter-<br />

ritory <strong>of</strong> the country. The arid regions are characterized<br />

by the existence <strong>of</strong> "wadi".<br />

<strong>Water</strong> resources <strong>of</strong> Iraq are mai<strong>nl</strong>y determined by the<br />

flow <strong>of</strong> the Tigris and Euphrates rivers making about 77.7 km 3<br />

3 3<br />

a year - about 22.2 km flows into the sea and 55.5 km<br />

(71.4%) is used for irrigation, municipal and industrial<br />

water supply and power generation. A considerable part <strong>of</strong><br />

flow is lost due to evaporation, transpiration and filtra-<br />

tion.<br />

The mean annual flow <strong>of</strong> the Euphrates on entering the<br />

territory <strong>of</strong> Iraq is 928 cumecs decreasing downstream (Na -<br />

\I<br />

siriya) to 454 cumecs. Thus, the rate <strong>of</strong> flow changes along<br />

the river length from 3.52 to 1.57 1/s. km'.<br />

The Tigris river on the territory <strong>of</strong> Iraq has several


ig tributaries, which increase its flow from 587 cumecs<br />

209<br />

at Tusan to 1534 cumecs at Salman-Pak. Downstream the flow<br />

decreases due to intensive <strong>with</strong>drawal for irrigation and<br />

makes 49.6 cumecs.at Qalat-Saleh. The mean annual rate <strong>of</strong><br />

flow in the Tigris basin changes from 12.7 l/s.km<br />

2<br />

in the<br />

upper part to 0.26 l/s.km<br />

2<br />

(Qalat-Saleh) in the lower<br />

part .<br />

The coefficient <strong>of</strong> annual flow variation (C,) for the<br />

Tigris and Euphrates changes from 0.26 to 0.31 decreasing<br />

<strong>with</strong> the altitude <strong>of</strong> watershed (Haam, m). It can be ex -<br />

pressed by a correlation:<br />

The flow <strong>of</strong> the Tigris and Euphrates is distributed<br />

very uneven through a yew' - the greater part <strong>of</strong> it falls on<br />

the flood period (April-May), making about eo"/4 in the upper<br />

reaches and 5% - in the lower reaches.<br />

The beginning <strong>of</strong> flood period is closely dependent on<br />

the mean altitude <strong>of</strong> watershed m) and may occur in<br />

January-April. The mean duration <strong>of</strong> flood period in the<br />

piedmont regions is 45 days, in the middle mountain regions -<br />

90 days and in high mountain - 135 days. The more is the<br />

water availability through the year, the longer is the flood<br />

period. Por the year <strong>with</strong> mean water availability the<br />

duration <strong>of</strong> the flood period (I, days) may be calculated<br />

by the equation:<br />

T = Hmean - 20.6<br />

14.4


210<br />

In Icaq the maximum flow <strong>of</strong> rivers occurs due to snow<br />

melting and rain. The rates <strong>of</strong> maximum daily flows <strong>of</strong> the<br />

Tigris river and its tributaries vary from 220 l/s.km2 (the<br />

2<br />

Khaair) and 135 l/s.km (the Greater Zab) in the mountain<br />

2<br />

regions to 1.6 l/s.hm2 (the Tigris-Amara) and 0.71 l/s.hm<br />

(the Qalat-Saleh). in the south <strong>of</strong> the Mesopotamian lowland.<br />

The rates <strong>of</strong> maximum daily flow <strong>of</strong> the Euphrates river vary<br />

from 13.3 l/s.km2 (Hit) to 8.5 l/s.km<br />

2<br />

(downstream the dam<br />

Hindiya). The rates <strong>of</strong> maximum monthly flow <strong>of</strong> the Tigris ri-<br />

2<br />

ver and its tributaries vary from 48 l/a.km (the Greater<br />

2<br />

Zab river at Eski-Kalek) in mountain regions to 0.6 l/s,km<br />

(the Tigris river at Qalat-Saleh) in the south lowlands. For<br />

the Euphrates river the rate <strong>of</strong> maximum monthly flow fluc -<br />

tuate from 8.6 l/s.km<br />

2<br />

(Hit) to 4.0 l/s.km<br />

2<br />

(Nasiriya). As<br />

I rule there is observed an increase in the maximum rates <strong>of</strong><br />

flow throughout the mountain regions a<br />

In the mountain regions <strong>of</strong> Iraq,above 2000 m (the Tigris,<br />

Greater Zab and Euphzlates river basins) the rate <strong>of</strong> maximum<br />

daily river flow increase from 8.5 to 136 l/s.km2, making<br />

the mean about 35 l/e.km<br />

2<br />

for every 100 m. For this region<br />

a certain dependence between maximum rates <strong>of</strong> flow (%ax)<br />

and mean annual rates (Mme= an. ) is traced.


211<br />

In the middle mountain region <strong>with</strong> the altitudes 1000-<br />

2000 m (the Lesser Zab and Diyala basins) the rates <strong>of</strong> maxi-<br />

2<br />

mum daily flow fluctuate <strong>with</strong>in the limits 48-112 l/s.km ,<br />

increasing averagely by 38 l/c,km2 on every 100 m <strong>of</strong> alti-<br />

tude* The dependence <strong>of</strong> maximum and mean annual flows for<br />

this region is expressed by the correlation<br />

- 45.8<br />

%ax äaiïy 0.138<br />

In piedmont regions, lower than 1000 m (AdhaFm and<br />

Khazir river basins) the rates <strong>of</strong> maximum daily flow being<br />

inversely proportional to the altitude <strong>of</strong> watershed increase<br />

from 48 to 220 l/s.km2. The phenomenon is observed in the<br />

case <strong>of</strong> the maximum monthly flow. This can be explained by<br />

the fact that the Khazir river has the lesser, compared to<br />

the Adhaim basin, area <strong>of</strong> watershed but receives greater<br />

rainfall. The dependence between the maximum and mean annual<br />

flows is expressed by the correlation.<br />

%ax monthly = 2.5 %ea* an.<br />

The coefficients <strong>of</strong> maximum daily flow variation for<br />

the rivers <strong>of</strong> Iraq fluctuate <strong>with</strong>in the limits from 0.14<br />

(the Tigris-Amara) to 0.74 (the Adhaim-Injana). The coeffi-<br />

cients <strong>of</strong> maximum monthly flow are limited by 0.18-0.29. There<br />

observed the inverse proportion between coefficients <strong>of</strong> va-<br />

riation and the altitude <strong>of</strong> watershed. The correlation <strong>of</strong><br />

coefficients <strong>of</strong> maximum monthly flow variations (Cv max 1 and<br />

the coefficients <strong>of</strong> annual flow variations (Cv an. ) can be<br />

put as:<br />

'v max monthly =(2*1 'v an. ) - 0.21


212<br />

For the rivers <strong>of</strong> Iraq it is characteristic the increase<br />

<strong>of</strong> maximum flow <strong>with</strong> the decrease <strong>of</strong> the watershed area<br />

(F b2),<br />

Barnax daily = 62 - 0.2 F + -9<br />

Minimum flow usually occurs in autumn (September-Octo-<br />

ber) and is caused by the groundwater depletion by the end<br />

<strong>of</strong> the hot and dry period. Small rivers in piedmont regions<br />

dried up as early as the beginning <strong>of</strong> summer and till the<br />

winter rains they have no flow.<br />

One <strong>of</strong> the most important factors <strong>of</strong> the Iraq rivers<br />

regime is the low-water period, when the river flow is cha-<br />

racterized by stable low levels and discharges and when the<br />

rivers under the condition <strong>of</strong> great reduction <strong>of</strong> surface flow<br />

or its complete cessation are recharged through groundwaters.<br />

Low-water period usually occur in summer or autumn (<strong>of</strong>tener<br />

from June to December). Its beginning (t days from the begin-<br />

ning <strong>of</strong> the year) has a certain dependence on altitude,<br />

OSI75 +<br />

days = 64.6 (jy,ean-lOOO) - K<br />

where, K - coefficient <strong>of</strong> water availability <strong>of</strong> the designed<br />

period. It can vary from + 20 (for high-water period) to -20<br />

(for low-water period). At the mean level it approaches zero.<br />

As a rule the greater is the altitude <strong>of</strong> a watersheii, the<br />

shorter is the period <strong>of</strong> low water. In piedmont zones it<br />

makes averagely 171 days, in middle mountain zones - 159 days<br />

and in high mountain - 153 days. The latter is mai<strong>nl</strong>y due<br />

to more favourable conditions <strong>of</strong> humidification in the moun-<br />

tains where the rainfall reaches 1000 mm than in piedmont re-<br />

gions where the rainfall makes 200-300 m.


213<br />

The rates <strong>of</strong> minimum flows <strong>of</strong> Iraq rivers have a wide<br />

range <strong>of</strong> variations from 0.04 (daily) and O.Oí'(monthly) for<br />

the river Adhaim (Injana) to 5,56 (daily) and 5.71 (monthly)<br />

l/s.km2 for the Greater Zab river (Bekhma). Usually the<br />

rates <strong>of</strong> minimum daily and monthly flows increase <strong>with</strong> the<br />

altitude and this relationship can be expressed ass<br />

10 3 J<br />

'L$in = 5.8 IO-.<br />

On the territory <strong>of</strong> Iraq there observed quite a defi-<br />

nite reduction <strong>of</strong> the minimum flow rates <strong>with</strong> the increase<br />

<strong>of</strong> a watershed area. For example, on the Tigris river at<br />

2<br />

Al-Fatha the minimum monthly flow equals 2.95 l/s.km , the<br />

2<br />

watershed area being 1076b0 km and downstream the Kut bar-<br />

2<br />

rage the flow - 1.35 l/s.km and the watershed area -<br />

177540 b2. For the Greater Zab and Tigris river basins<br />

(high mountain zone) the relationship will be similar,<br />

%in monthly = 6.35 - 3.14 IÕ7F<br />

%in daily = 6.14 - 3.08<br />

The decrease <strong>of</strong> the minimum flow rates <strong>with</strong> the in -<br />

crease <strong>of</strong> a watershed area can be explained mai<strong>nl</strong>y by great<br />

<strong>with</strong>drawals <strong>of</strong> water for irrigation and due to considerable<br />

evaporation.<br />

The mean annual flow <strong>of</strong> Iraq being studied better than<br />

the minimum one their interrelation may arouse certain in-<br />

terest<br />

'min monthly = 'Os4 'mean an.<br />

%in daily = O*** mean an. 0.15


214<br />

These relationships do not reflect the conditions<br />

in the lower reaches where the regime <strong>of</strong> the rivers is great-<br />

ly distorted under the influence <strong>of</strong> anthropogenic factors.<br />

The variations in the flow <strong>of</strong> Iraq rivers (mean, mini-<br />

mum and maximum) occur principally at the same time. For the<br />

investigation <strong>of</strong> the minimum flow variation <strong>of</strong> the Tigris<br />

river (at Mosul, 1920-1970), the Euphrates river (at Hit,<br />

1932-1970) and the Greater Zab river (1938-1970) they used<br />

the method <strong>of</strong> the differential integral curves permitting<br />

to bring out the succession <strong>of</strong> low-water and high-water<br />

groups <strong>of</strong> years in the considered period. The duration <strong>of</strong><br />

low-water periods <strong>with</strong> minimum flow (mean coefficient <strong>of</strong> wa-<br />

ter availability 0.78) can change <strong>with</strong>in 1-18 years (the Tig-<br />

ris river at Mosul) and high-water periods (mean coefficient<br />

<strong>of</strong> water availability 1.24) - <strong>with</strong>in 1-11 years. The coeffi-<br />

cients <strong>of</strong> variation (C,) for minimum monthly and daily river<br />

flows fluctuate from 0.18 (monthly, the Tigris river at Al-<br />

Fatha) and 0.17 (daily, the Euphrates river at Hit) to 1.27<br />

(monthly,the Aähaim river at Injana) and 2.03 (daily, the<br />

Adhaim river at Injana). The value <strong>of</strong> the coefficient <strong>of</strong> va-<br />

riation is inversely proportional to the altitude which is<br />

explainable by a considerable aridity <strong>of</strong> lowland territories<br />

in Iraq.<br />

The values <strong>of</strong> Cv for minimum flow, definitely correlate<br />

to Cv for mean annual flow. For the watersheds where the<br />

<strong>with</strong>drawal <strong>of</strong> water for irrigation is low this relationship<br />

can be expressed by the following empirical equation,<br />

'v min daily = 1 0 ~ 'v ~ mean 5 an.<br />

- 0.16


In Iraq because <strong>of</strong> the drying up many rivers have no<br />

215<br />

flow for a considerable period (the Adhaim, Al-Wend, Galal-<br />

Bedrah, Wadi-river, etc.). The watershed areas <strong>of</strong> drying-up<br />

2<br />

rivers may reach 13000 km (the Aàhaim river) and the dura-<br />

tion <strong>of</strong> a drai<strong>nl</strong>ess period exceed 250 days. In Iraq, especialare<br />

ly, in its south-western part there a numerous strema <strong>of</strong><br />

temporal nature, "wadi", which have flow o<strong>nl</strong>y several days<br />

a year. The length <strong>of</strong> some <strong>of</strong> them reach many tens <strong>of</strong> kilo-<br />

meters. This phenomena is a result <strong>of</strong> the extreme aridiky <strong>of</strong><br />

the region where they are met (the rainfall is less than<br />

100 mm and evaporation - over 2500 mm).<br />

It should be noted that the given relationships <strong>of</strong> &if-<br />

ferent flow characteristics on the territory <strong>of</strong> Iraq despite<br />

their approximate nature and the necessity <strong>of</strong> further preci-<br />

sion, permit to give duly evaluation <strong>of</strong> a number <strong>of</strong> flow pa-<br />

rameters for the insufficiently studied regions <strong>of</strong> the consi-<br />

dered territory.


ABSTRACT<br />

DETERMINATION OF EVAPORATION IN CASE OF THE<br />

ABSENCE OR INADEQUACY OF DATA<br />

P.P. Kuzmin, A.P. Vershinin<br />

State Hydrological Institute<br />

Leningrad, USSR<br />

The possibilities for the determination <strong>of</strong> evaporation<br />

from water surface and land are given in case <strong>of</strong> the absence<br />

<strong>of</strong> data <strong>of</strong> direct evaporation measurements. The analysis and<br />

classificatiqn <strong>of</strong> methods for the computation <strong>of</strong> evaporation<br />

are presented. Practical recommendation for the determination<br />

<strong>of</strong> evaporation by means <strong>of</strong> standard observational data from<br />

hydrometeorological stations are given.<br />

Les auteurs examinent les possibilités d'évaluation de<br />

l'évaporation des surfaces d'eau libre lorsqu'il n'existe pas<br />

d'observation directe. Ils analysent les différentes méthodes<br />

utilisées et en proposent une classification. Ils font des<br />

recommandations pour l'évaluation de l'évaporation 'a partir<br />

des observations standards effectuées dans les stations<br />

hydrométéorologiques.


218<br />

The determination <strong>of</strong> evaporation under natural conditions<br />

is <strong>of</strong> great importance for the ewtimation <strong>of</strong> the present and<br />

future water resources, Por water resources management and<br />

for the solution <strong>of</strong> various theoretical problems in the field<br />

<strong>of</strong> hydrology and meteorology. Methods <strong>of</strong> direct evaporation<br />

measurements under natural conditions are still being developed,<br />

therefore computations are the main source <strong>of</strong> information.<br />

The existing computation methods might be subdivided into<br />

three groups. The first group comprises the methods based on<br />

the physical analysis <strong>of</strong> the evaporation process. The second<br />

group (combined ox complex methods) includes methods based on<br />

physical principles combined <strong>with</strong> semi-empirical constants which<br />

can be determined <strong>with</strong> the help <strong>of</strong> accurate measurements <strong>of</strong><br />

actual evaporation in representative regions.<br />

Methods based on the statistical analysis using o<strong>nl</strong>y<br />

empirical relations, where empirical constants and coefficients<br />

are h igw variable and depend on meteorological conditions,<br />

make the third group.<br />

Besides, according to the basic data (factors) included i-nto<br />

the design schemes, it should be noted that computation methods<br />

may be complex and simple as well as difficult and easy to be<br />

applied in practice. In this respect the most simple and<br />

practicable methods are those <strong>of</strong> the third and some <strong>of</strong> the second<br />

groups, while the methods <strong>of</strong> the first group which are based<br />

on the physical analysis, are most inconvenient in practice.<br />

The first group includes the well-known methods <strong>of</strong> estima-<br />

tion <strong>of</strong> evaporation from heat balance eqqtion, water balance<br />

equation and turbulent diffusion method /ll/; the accurate<br />

solution <strong>of</strong> these equations cannot be obtained because it is<br />

impossible to estimate <strong>with</strong> sufficient degree <strong>of</strong> accuracy some<br />

individual components <strong>of</strong> the above equations.<br />

The estimation <strong>of</strong> the turbulent heat exchange between the<br />

underlying surface (water or land) and the atmosphere is one<br />

<strong>of</strong> the difficultiee <strong>of</strong> the solution <strong>of</strong> heat balance equation.<br />

This component can be estimated approximately <strong>with</strong>out conside-<br />

ration <strong>of</strong> temperature stratification and horizontal gradients<br />

<strong>of</strong> turbulent heat exchange (advection).<br />

In particular, in the course <strong>of</strong> estimating evaporation from<br />

the reservoir surface it is difficult to determine time<br />

variation8 <strong>of</strong> the heat accumulated by the reservoir (heat<br />

content) as well as heat income and losses due to all kind8<br />

<strong>of</strong> water inflow and outflow (both surface and subsurface).<br />

Therefore this method is applied o<strong>nl</strong>y in research studies.<br />

Heat b8Lance equation <strong>of</strong> the land surface is more complicated<br />

than that <strong>of</strong> the water surface /U/#<br />

In the 'USSR, however, 8 method <strong>of</strong> estimating evapotranspira-<br />

tion has been developed and is widely applied,from thefollowing<br />

equation /14/:<br />

ß-B<br />

( 1)


which is deduced <strong>of</strong> the heat<br />

balance <strong>of</strong> the land <strong>with</strong> the<br />

account <strong>of</strong> Bowen ratio:<br />

219<br />

Here: E is evapotranspiration, R is the measured value <strong>of</strong> the<br />

radiation balance <strong>of</strong> the surface, B is heat income into %he<br />

soil, II is the atmospheric pressure, P is turbulent heat<br />

exchange <strong>with</strong> the atmosphere, C is heat capacity under<br />

constat pressure, L is the latgnt heat <strong>of</strong> evaporation;<br />

at and ai are respectively the differences in temperature<br />

and water vapour pressure measured at two levels above the<br />

ground.<br />

Equation (l), naturally, would rather belong to the second<br />

group <strong>of</strong> methods than to the first one; it does not include<br />

horizontal gradients <strong>of</strong> turbulent heat exchange (advection)<br />

and temperature stratification. It can be applied for homogeneous<br />

areas large enough to ensure wind r u over homogeneous<br />

top cover over plain area at the distance <strong>of</strong> 300-400 m.<br />

The relative standard error <strong>of</strong> 10-day and monthly evapotranspiration<br />

sums estimated from equation (1) for the re ions <strong>of</strong><br />

natural moistening and for irrigated fields makes f 1%.<br />

Equation (1) cannot be recommended for the estimation <strong>of</strong><br />

evapotranspiration in very dry regions (semi-deserts, deserts) .<br />

Full water balance equation is not applied in practice<br />

since it is both difficult to determine water exchange <strong>with</strong><br />

the bed <strong>of</strong> reservoir (the difference between underground<br />

water inflow and outflow in a reservoir) while estimating<br />

evaporation from the water surface and to determine water<br />

exchange between the upper layer <strong>of</strong> the aeration zone and the<br />

underlying ground (upward and downward streams <strong>of</strong> moisture in<br />

the ground) while estimating evapotranspiration from the land<br />

surface in a river basin.<br />

In case <strong>of</strong> deep water table ( no lesa than 3-5 m) the<br />

simplified water balance equation is used in the USSR to<br />

estimate evapotranspiration from non-irrigated agricultural<br />

fields; according to this equation evaporation is estimated<br />

from precipitation (x) and the change <strong>of</strong> moisture storage in<br />

the upper soil layer:<br />

E =K+(L4pW.) (2)<br />

where8 W and W are moisture storage in soil at the<br />

beginnid and a? the end <strong>of</strong> the design period.<br />

Equation (2) can be used o<strong>nl</strong>y under the condition that all<br />

precipitation is absorbed by the soil and no surface run<strong>of</strong>f<br />

is formed and besides that the depth <strong>of</strong> rainfall water per-<br />

colation should not exceed the depth up to which soil moisture<br />

content was measured and moisture content was determined. Such<br />

conditions usually exist during the vegetation period. The


220<br />

depth <strong>of</strong> the upper layer <strong>of</strong> soil in which soil moisture storage<br />

should be determined is 1 m in wet areas and up to 3 m in<br />

arid zones. In case <strong>of</strong> reliable estimation <strong>of</strong> precipitation<br />

and moisture storage the standard error <strong>of</strong> the estimation <strong>of</strong><br />

monthly sums <strong>of</strong> evapotranspiration by this method makes<br />

approximately l5-2m. Another example <strong>of</strong> a partial solution<br />

<strong>of</strong> water balance equation is the estimation <strong>of</strong> mean annual<br />

sum8 <strong>of</strong> evapotranspiration as the difference between precipitation<br />

and run<strong>of</strong>f /3/.<br />

Theore tical and experimental development <strong>of</strong> the turbulent<br />

diffusion method which is also known as the gradient or<br />

aerodynamic method, has not yet reached the stage which would<br />

allow its wide application in practice /1,2,9,12,15,16/. However,<br />

this method :is promising. Being universal, this method is<br />

based on gradient measurements <strong>of</strong> wind speed and air humidity<br />

and provides estimation <strong>of</strong> evaporation from any land or sea<br />

surface irrespective <strong>of</strong> the state and character <strong>of</strong> the latter.<br />

Accurate enough (universal) solutions <strong>of</strong> the equations<br />

<strong>of</strong> the first group require a consideration <strong>of</strong> a great number<br />

<strong>of</strong> factors and special observations to be made. The development<br />

<strong>of</strong> simplified semi-empirical and empirical design schemes<br />

will provide possibilities for the estimation <strong>of</strong> evaporation<br />

<strong>with</strong>out the data <strong>of</strong> specialized observations. At present it<br />

seems possible that standard observational data from hydrometeorological<br />

stations are enough far the estimation <strong>of</strong><br />

long term average annual and monthly evaporation sums for<br />

a given territory and monthly evaporation sums for individual<br />

years, as well as for the estimation <strong>of</strong> evaporation from<br />

different surfaces - snow cover, swamps, forests, irrigated<br />

and non-irrigated agricultural fields /1,4,5,10,17/.<br />

Most convenient are the methods <strong>of</strong> computation <strong>of</strong> mean<br />

annual evapotranspiration sums for the regions <strong>of</strong> natural<br />

moistening based on the equation developed by Y.I. Puàyko /IO/.<br />

The right part <strong>of</strong> equation /3/ includes o<strong>nl</strong>y one parameter<br />

taken from standard observational data, i.e. long term average<br />

precipitation X ( cm year'l) which reflects the natural moisture<br />

content <strong>of</strong> a region. Another parameter, reflecting the heat<br />

regime and the character <strong>of</strong> the underlying surface - averag<br />

annual adiation balance <strong>of</strong> moistened surface Ro (kcal cm -2<br />

year - $ is $&en from the map prepared by N . Efimova /IO/.<br />

L is the latent heat <strong>of</strong> evaporation (kcal, $*). The standard<br />

error <strong>of</strong> evaporation estimated from equation (3) makes about<br />

17% /6/0<br />

Mean annual sums estimated from equation /3/ can be<br />

easily distributed by months because long term mean monthly<br />

'


221<br />

evaporation sums given as percenta e <strong>of</strong> the annual sum, change<br />

regularly according to geobotanic ?soil-climatic) zones. This<br />

method is called the method <strong>of</strong> percentage ratios /7/. The<br />

percentage ratios by months are given in tables, developed<br />

by experimental or design ways. Table I, for Instance, presents<br />

monthly evapotranspiration values as percentage <strong>of</strong> annual sums<br />

for the main geobotanic zones <strong>of</strong> the European territory <strong>of</strong> the<br />

USSR .<br />

Table I<br />

C onif mous<br />

forests O 0,5 2 6 17 25 22 15 8 4 O,5 C<br />

Mixed and<br />

decideous forests,<br />

fore st-steppe s 0,5 I 3 9 18 20 ia i3 9 5 3 05<br />

Steppes 1 I 3 1 1 1 9 2 0 1 6 12 8 5 3 I<br />

M.I. Budyko suggested a combined method for the computation<br />

<strong>of</strong> monthly evapotranspiration sums <strong>with</strong> the use <strong>of</strong> the main<br />

elements <strong>of</strong> heat and water balances /1/. This method can be<br />

applied in practice since it is based on the use <strong>of</strong> the standard<br />

observational data, i.e. precipitation (x), run<strong>of</strong>f c y), air<br />

temperature and humiditg.<br />

In this case it is assumed that, when soil moisture content<br />

is less than its water holding capacitg, monthly evapotranspira-<br />

tion ( E ) is proportional to th8 monthly sum <strong>of</strong> potential<br />

evapora8on ( E ) and to the average monthly storage <strong>of</strong><br />

productive moisgure in 1-metre layer <strong>of</strong> soil WI + W2<br />

2<br />

( WI and W2 are moisture storage at the beginning and at the<br />

end <strong>of</strong> the month), that is:


222<br />

where: W is critical storage <strong>of</strong> productive moisture in<br />

soil lay& 1 m deep at which and above which<br />

to Eo. Equations (4) and (5) are applied to<br />

the year. WI at the beginning <strong>of</strong> the first warn month ( Fa<br />

spring) is estimated approximately, and later it is assumed<br />

to be equal to W estimated for the end <strong>of</strong> each previous<br />

month from equatzon:<br />

or from equation:<br />

where: y indicated run<strong>of</strong>f.<br />

Eo and WO are taken from graphs and tables included in<br />

publication /IO/. The value <strong>of</strong> E depends on the conventional<br />

humkdkty deficit <strong>of</strong> the air whicf: is determined as the<br />

difference between maximum water vapour pressure estimated<br />

from mean monthly air temperature, and vapour pressure <strong>of</strong> the<br />

air at the altitude <strong>of</strong> 2 metres.<br />

This method was developed in two variants and is applied<br />

for the estimation <strong>of</strong> long term average monthly evapotranspiration<br />

sums <strong>of</strong> individual months <strong>of</strong> certqin years /4/.<br />

Aver<br />

ed areal evapotranspiration values (areas to 1000 -<br />

3000 km2y are determined from equations (3) and (4) - (7).<br />

<strong>Design</strong> schemes for the determination <strong>of</strong> evapotranspiration<br />

from different kinds <strong>of</strong> surfaces include parameters which are<br />

seldom measured at observational stations. For instance, in<br />

the scheme developed by V.V. Romanov /13/ evapotranspiration<br />

from a swamp is assumed to be proportional to the radiation<br />

balance <strong>of</strong> the swamp surface ( Q =dR ); in the scheme<br />

developed by S.F. Fedorov /18/ evapotranspiration from forests<br />

is proportional to the potential evaporation and the proportion<br />

coefficient is presented as the function <strong>of</strong> the radiation<br />

index <strong>of</strong> dryness ( R/LX).<br />

Monthly sums <strong>of</strong> evapotranspiration from irrigated fields are<br />

estimated <strong>with</strong> the help <strong>of</strong> simplified heat balance equation /i/


223<br />

using special observational data, the standard error bei%<br />

l5%, or <strong>with</strong> the help <strong>of</strong> modified formulae <strong>of</strong> the complex<br />

method /ïg/ usiq standard observational data, the standard<br />

error being 3%. To estimate evapotranspiration from irrigated<br />

agricultural fields empirical design schemes similar to that<br />

<strong>of</strong> Blaney and Criddle /li/ can be used if o<strong>nl</strong>y empirical<br />

coefficients are tested and corrected for each point <strong>of</strong> their<br />

application,<br />

Most simple design schemes allowing estimation <strong>of</strong> evapora-<br />

tion from water, snow and ice surfaces by means <strong>of</strong> standard<br />

observational data, are the following binomial and monomial<br />

equations :<br />

and<br />

(9)<br />

where E is evaporation in mm/day, U, is the wind speed at<br />

the height 2, above the surface in m/sec; es and e2 axe th<br />

maximum water vapour pressure estimated from the surface<br />

temperature and water vapour pressure at the height <strong>of</strong> 2 m<br />

in mb; A, a and b are coefficients estimated from experiments.<br />

Substituting a = 0.18 ab = 0.098 in equation (8) and<br />

assuming z = IO m one can obtain the formula for the estima-<br />

tion <strong>of</strong> evaporation from the snow surface /8,11/,<br />

When a L 0.14, b = 0.72 and z = 2 m, equation /8/ can<br />

be used for the estimation <strong>of</strong> evaporation from lake (reservoir)<br />

surface. In this case in equation (8) parameters uz , e and<br />

e2 shouid be substituted by correspondent values measure8 at<br />

different points above the reservoir and averaged for a month<br />

<strong>with</strong> respect to the whole water area <strong>of</strong> the reservoir,<br />

In case <strong>of</strong> the absence <strong>of</strong> such obsemrational data one can<br />

use the data from land meteorological stations situated in the<br />

same climatic zone. T9e transition <strong>of</strong> the obeained above-land<br />

coefficients &z/ ef and 4; to the corresponding above<br />

reservoir values h ou d be carried out <strong>with</strong> respect to the<br />

transformation <strong>of</strong> the air flux affected by the underlying SUT-<br />

face, the topography <strong>of</strong> the environment, the rate <strong>of</strong> wind<br />

protection <strong>of</strong> the reservoir and the average length <strong>of</strong> wind<br />

run above the reservoir /l7/.<br />

In conclusion it should be mentioned that the present paper


224<br />

deals <strong>with</strong> the methods which can be used in practice and produce<br />

relatively reliable estimates <strong>of</strong> evaporation on the basis <strong>of</strong><br />

standard observational data from meteorological stations.<br />

Therefore more complicated methods <strong>of</strong> the first group<br />

which cause difficulties being applied in practice, and<br />

numerous empirical design schemes which produce unreliable<br />

results, are not treated here. Penman and Turc methods are<br />

not mentioned since they are known well enough. It should be<br />

mentioned as well that the above classification <strong>of</strong> methods<br />

is conventional.<br />

All methods are closely interrelated, and their develop-<br />

ment, particularly the improvement <strong>of</strong> methods <strong>of</strong> computation<br />

in case <strong>of</strong> inadequate data, depends greatly on further<br />

experimental and theore tical research on the evaporation<br />

problem .<br />

R E F E R E N C E S<br />

1. Qudyko Y.I., 1956. Teplovoi balans zemnoi poverkhnosti<br />

(Heat balance <strong>of</strong> the Earth's surface). Hydrometeorological<br />

Publishing House, Leningrad.<br />

2, Buãyko M.I., 1948, Isparenie v estestwenoykh usloviakh<br />

(Evaporation under natural conditions). Hydrometeorological<br />

Publishing House, Leningrad.<br />

3. Wodnye resuray i wodny balans territorii Sovetskogo Sojuza<br />

(<strong>Water</strong> resources and water budget <strong>of</strong> the USSR area).<br />

Hydrometeorological Publishing House, Leningrad, 1967.<br />

4. Zubenok L.I., 1968, Ob opredelenii sumaiarnogo isparenia za<br />

otdelnye godg (On estimation <strong>of</strong> evapotranspiration<br />

during particular years). Trans. <strong>of</strong> GGO, vol. 233,<br />

Leningrad.<br />

5. Konstantinov A.R., Astakhova N.I., Levenko B.A., 1971,<br />

Metoày rascheta isparenia s selskokhoziaystvennykh<br />

polei (Methods for the computation <strong>of</strong> evaporation<br />

from agricultural fields), Hydrometeorological<br />

Publishing House, Leningrad.<br />

6. Kuzmin P.P., 1966. Teoreticheskaya skhema otsenki oshibok<br />

rascheta isparenia s poverkhnosti sushi (Theoretical<br />

scheme <strong>of</strong> evaluation <strong>of</strong> estimation errors <strong>of</strong><br />

evaporation from land). Materials <strong>of</strong> Interagency<br />

meeting on the problem <strong>of</strong> study and substantiation<br />

<strong>of</strong> methods <strong>of</strong> evaporation computations from water<br />

and land. Ed. GGI, Valdai.<br />

7. Kuzmin P.P., Zubenok L.I. Konstantinov A.R., Astakhova N.I.,<br />

Vinogradov V .V . , 1968 . Vnutrigidivie rasprede lenie sumsuschi<br />

na territorii SSSII (Annual distribution <strong>of</strong><br />

evapotranspiration from land over the USSR territon),<br />

Trans. <strong>of</strong> GGI, vol. 151.


225<br />

8. Kuzmin P.P., 1953. K metodike issledovania i zascheta<br />

isparenia s poverkhnosti snezhnogo pokrova. (On<br />

methodology <strong>of</strong> research and computation <strong>of</strong> evaporation<br />

from snow pack surface) Trana. <strong>of</strong> GI, vol.<br />

41 (95).<br />

9. Leichtmap D.L., l9W. Pr<strong>of</strong>il vetra i obmen v prizemnom<br />

sloe atmosfery (Wind pr<strong>of</strong>ile and exchange in the<br />

lowest atmosphere). Izv. AN SSSR, ser. ge<strong>of</strong>is.,<br />

No.1.<br />

IO . Materialy mezhduvedomstvennogo sovetchchania PO probleme<br />

izuchenia i obosnovania metodov rascheta isparenia s<br />

vodnoi poverkhnosti i suchi. (Materials <strong>of</strong> Interagency<br />

meeting on the problem <strong>of</strong> study and substantiation<br />

<strong>of</strong> methods for the computation <strong>of</strong><br />

evaporation from water and land surfaces). Ed.<br />

by GGI, Valdai, 1966.<br />

11. Measurement and estimation <strong>of</strong> evaporation and evapotranspiration.<br />

Technical Note No. 83, WO-N0.201. TP.<br />

105, 1966, Geneva.<br />

12. Monin A.S., Obukhov A.M., 1954. Osnovnye xakonomernosti<br />

turbulentno o peremeshivania v prizemnom sloe<br />

atmospgery $Principal laws <strong>of</strong> turbulent mixing in<br />

the lowest atmosphere) . Trans. <strong>of</strong> Geophysical Inst.,<br />

AN SSR, vol. 24 (151).<br />

13. Romanov V.V., 1962. Isparenie s bolot Xvropeiakoi territorii<br />

SSSR (Evaporation from swamps from the USSR<br />

European territory). Hydromet. Publ. House, Leningrad;<br />

14. Rukovodstvo PO gradientnym nabliudeniam i opredeleniu sostavlia<br />

jushchikh teplovogo balansa (Guide on gradient<br />

observations and determination <strong>of</strong> heat balance components)<br />

* Hydromet. Publ. House, Leningrad, 1962.<br />

15. Rusin N.P., 1959, Gradientny metod opredelenia isparenia<br />

s sushi i ego ispolzovanoe na seti stantsiy (Gradient<br />

method <strong>of</strong> estimation <strong>of</strong> evaporation from land and its<br />

use on the network <strong>of</strong> stations). Trans. <strong>of</strong> III-rd<br />

All-ünion Hydrological Congress, vol. III, Hydromet.<br />

Publ. House , Leningrad.<br />

16. Tbornthwaite C.W. and Holtzman B., 1942. Measurements<br />

<strong>of</strong> evaporation from land and water surfaces. U.S.<br />

Dept. Agr. Technical Bul. 817.<br />

17. Ukazania PO raschetu isparenia s poverkhnosti vodoemov<br />

(Instructions for the computation <strong>of</strong> evaporation from<br />

reservoir surface). Hydromet. Publ. House, Leningrad,<br />

1969<br />

18. Fedorov S.F., 1969. O reaultatakh issledovania digrologicheskoi<br />

roli lesa. (On the research results <strong>of</strong> hydrological<br />

role <strong>of</strong> forest). Trans. <strong>of</strong> GGI, vol. 176.<br />

19. Kharchenko S.I., 1968. Gidrologia oroshaemykh zemel<br />

(Hydroìogy <strong>of</strong> irrigated areas). Hydromet. Publ.<br />

House, Leningrad.


ABSTRACT<br />

OBJECTIVE CRITERIA TO DECLARE A SERIES OF<br />

DATA SUFFICIENT FOR TECHNICAL PURPOSES<br />

by<br />

Penta A., Rossi F.<br />

It is supposed: that for technical purposes it is<br />

necessary to estimate the values xo that an hydrological<br />

variable x may assume <strong>with</strong> a given probability 6; that x can<br />

be measured directly and that its n values have been recorded.<br />

The series <strong>of</strong> the n values <strong>of</strong> x is'defined sufficient<br />

if it consents to estimate xo <strong>with</strong> a reliability adequate for<br />

technical purposes.<br />

By referring to the usual statistical methodologies,<br />

the authors present objective criteria to recognize whether<br />

the series <strong>of</strong> n values is sufficient. The authors furnish some<br />

diagrams that indicate which minimum values <strong>of</strong> n are necessary<br />

for the series to be considered sufficient.<br />

From the diagrams it is evident that for the same values<br />

<strong>of</strong> n the series sufficiency is strictly linked to the variability<br />

<strong>of</strong> x.<br />

Particularly, the authors considere the normal, the lognormal<br />

and the double exponential (Gumbel) distributions, the<br />

m.ost applied laws <strong>of</strong> hydrology.<br />

-- RESUME<br />

On suppose qu'à l'égard du problème technique il faut<br />

estimer les valeurs XQ qu'une variable hydrologique x peut<br />

assumer avec la probabilité 0, que x peut être mesurée et que<br />

n valeurs de x ont été enregistrées.<br />

La série des n valeurs de x est définie suffisante si<br />

par elle on peut estimer xa avec une confiance adéquate au but<br />

du technicien.<br />

En se rapportant aux méthodologies statistiques usuelles<br />

on donne des criteriums objectifs pour reconnaitre si la série<br />

des n valeurs est suffisante.<br />

On donne des diagrammes par lesquelles on indique les<br />

valeurs minima du nombre n qui son necessaires afin que la série<br />

soit suffisante.<br />

D'après les diagrammes il apparait évident que, n ayant<br />

la même valeur, la suffisance de la série dépend de la variabilité<br />

de x.<br />

En particulier, les auteurs considèrent la loi normale,<br />

la loi log-normale e la loi de Gumbel, qui sont plus fréquemment<br />

employées en hydrologie.


228<br />

Symbols and definitions<br />

1: Let us indicate by I<br />

- x , a generic hydrological variable3<br />

-E , ax and y, respectively the mean, the standard deviation<br />

and the coefficient <strong>of</strong> variation <strong>of</strong> the x population;<br />

- @(XI, the distribution function <strong>of</strong> x ;<br />

- xQ, , the value <strong>of</strong> x corresponding to the cumulated probability<br />

@ e<br />

Moreover, let us also indicate by :<br />

- x , <strong>with</strong> 14isn , the n values <strong>of</strong> x registered, in each<br />

single year,iduring the observation period i<br />

- - x and ax, respectively the estimates <strong>of</strong> [ and a ;<br />

- Pix) , the estimate <strong>of</strong> the distribution function (Dix);<br />

- xppa,, the estimate <strong>of</strong><br />

xa ;<br />

- y(xP,@), the sampling coefficient <strong>of</strong> variation <strong>of</strong> 5 E@<br />

2: If x is normally distributed,the best estimate xpsio, <strong>of</strong> x<br />

is obtained [ 1 1 by t<br />

X pn(D = Z + u<br />

@<br />

where u is the value <strong>of</strong> the variable u, that in equation:<br />

@<br />

1 2<br />

2<br />

1<br />

@(U) E -<br />

du (2)<br />

corresponds to the fixed value <strong>of</strong> @ .<br />

The sampling coefficient <strong>of</strong> variation <strong>of</strong> xp could be obtained<br />

approximately [2] by<br />

-@<br />

I<br />

or whenever n is sufficiently high, the equation (3) becomes :<br />

1 +u$/*<br />

i i n<br />

(1)<br />

(3')<br />

(D


3: If x is distributed according to the log-normal function,<br />

having established that y = log x , we indicate by :<br />

- Yi 9 the value <strong>of</strong> y corresponding to the generic value xi ;<br />

I - y and s respectively the mean and the standard .deviation <strong>of</strong><br />

the n values <strong>of</strong> Yi.<br />

Y'<br />

Therefore, the best estimate x <strong>of</strong> x is obtained [a] by<br />

P=UJ 0<br />

(4)<br />

log xp' E y. + U@ 8<br />

=a><br />

Y<br />

229<br />

where the value <strong>of</strong> uUJ is deduced by means <strong>of</strong> equation (2) while the values<br />

<strong>of</strong> y and s are deduced respectively by the equations :<br />

' n<br />

log xi<br />

- 13.1<br />

Y" n<br />

and<br />

r n<br />

s =<br />

Y<br />

n-1<br />

The sampling coefficient <strong>of</strong> variation <strong>of</strong> xPIUJ could be obtained<br />

approximately [ 21 by :<br />

2<br />

1 + u0/2<br />

or, whenever y* is sufficiently mall, the<br />

I 2<br />

- 1 (7)<br />

equation (7) becomes :<br />

4: If x is distributed according to the double exponentlal,namely<br />

@umbel function, an almost correct and efficient estimate xP=@ <strong>of</strong> x UJ is<br />

obtained [4] by :<br />

xppUJ= + K UJ<br />

(8)<br />

where Ka, is the value <strong>of</strong> the variable K that'in the equation :<br />

-- 6<br />

1<br />

K = (0,5772 + In In -<br />

(9)<br />

x a,<br />

corresponde to the fixed vaïue <strong>of</strong>


230<br />

The sampling coefficient <strong>of</strong> variation <strong>of</strong> x could be obtained<br />

approximately [ 21 by :<br />

5: When the variable x is measured in k gaging stations, lying<br />

in a detertnined zone, there exists an hydroloRica1 similitude between the k<br />

stations if the parameters, or some parameters al , z2 , ..... <strong>of</strong> the x<br />

diatribution assume the same value or if they vary from one to another <strong>with</strong> a<br />

known regression relation in function <strong>of</strong> a certain number <strong>of</strong> parameters<br />

y1<br />

y2 ..... '<br />

[5].<br />

The inter-station correlation is the correlation which exists, in<br />

such cases, among the values <strong>of</strong> x registered in them contemporaneously (e.g.<br />

in the same year if maximum and minimum annual values are considered).<br />

Therefore, the information that can be derived from the k stations,<br />

considered all together, in regard to the x distribution parameters al, a2,..<br />

..... is the same as the information furnished by a number k <strong>of</strong> independent<br />

stations. Such a number, known as the equivalent number, depegds both on k<br />

and on the mean interstation correlation coefficient F , thus becoming so<br />

smaller than k, the higher the value <strong>of</strong> F is.<br />

So, e.g. if in the k stations the mean 6 <strong>of</strong> x would assume the<br />

same value, the information that the complex <strong>of</strong> the data registered in the k<br />

etatiomwould furnish in regard to would. be equal 16) to the information<br />

furnished by an equivalent number <strong>of</strong> independent stationsequal to :<br />

k<br />

keE l+F(k-1)<br />

Basic Risk. Uncertainty and Effective Risk<br />

6: Normally, for design purposes, by referring to a given hydrolog&<br />

cal variable x,we indicate by :<br />

xd , the value <strong>of</strong><br />

(deBiRn Value) ;<br />

N , the desinn duration.<br />

x that Is assumed as the basis for the design<br />

Particularly, in a flood problem, we select a value Of so that<br />

there exists a probability <strong>of</strong> failure W that xd will be exceeded<br />

xd<br />

at least<br />

once in N years.<br />

Consêquently, xd coincides <strong>with</strong> the value xD <strong>of</strong> x whlch corre<br />

sponda to a value <strong>of</strong> D <strong>of</strong> the cumulated probability furnished by :


E.g. when N = 25 years and W=0,025, @ is equal to 0,999.<br />

Likewise, in a drought problem, we select a value <strong>of</strong> so<br />

xd<br />

that<br />

there exists a probability <strong>of</strong> failure W that xd will not be exceeded at least<br />

once in N years.<br />

Consequently, instead <strong>of</strong> using equation (121, we must apply the<br />

following equation :<br />

E.g.<br />

1<br />

@ = l -<br />

/N<br />

(1 - w)<br />

when N = 25 years and W = 0,025, @ is equal to 0,001 .<br />

The basic risk is defined [ 71 as the risk that would be encountered<br />

if, by knowing the probability distribution <strong>of</strong> x,we would assume x EX@ .Such<br />

d<br />

risk is measured by means <strong>of</strong> the probability <strong>of</strong> failure<br />

In reality, however, the distribution <strong>of</strong> x is not known. Consequently,<br />

having fixed the basic risk W and having calculated @ by means <strong>of</strong> eqpations<br />

(12) or (131, <strong>with</strong> the use <strong>of</strong> a series <strong>of</strong> n values <strong>of</strong> x,o<strong>nl</strong>y an estimate<br />

x <strong>of</strong> x could be had, aiid, therefore, to assume x = xQ an error<br />

equal toP =?x - xD ) would be made. In reality the effective risk that is<br />

encountered ?;treater than the basic risk due to the uncertainty <strong>with</strong> which<br />

the value <strong>of</strong> x could be estimated.<br />

0<br />

Sufficiency <strong>of</strong> a Single Series <strong>of</strong> Data<br />

7: Once the basic risk W has been determined, to judge whether a<br />

single series <strong>of</strong> data is sufficient for technical purpose4,i.t is necessary to<br />

take into account the uncertainty <strong>with</strong> which x@ could be estimated.<br />

Generally, by considering also the observation periods which are usually<br />

available, a series <strong>of</strong> at least 30+40 data is defined IIlonP and it is<br />

implicitly retained sufficient; a series <strong>with</strong> less than 30+40 data is defined - Vshort1I and is considered insufficient.<br />

In reality, however, such criterion might be erroneous. In fact, if<br />

the uncertainty, <strong>with</strong> which x0 could be estimate, is measured by means <strong>of</strong><br />

y{xp } , from<br />

eq. (31, or eq. (7) or eq. (101, we recognize Immediately that<br />

the sad uncertainty, beside n , depends also on :<br />

i) the variability <strong>of</strong> the hydrological magnitude x being considered,<br />

which can be measured by y ;<br />

w.<br />

231<br />

ii) the probability Q <strong>of</strong> the design value xd , which is a function<br />

<strong>of</strong> the basic risk W and the design duration N.<br />

In particular, let us consider e.g. the annual rainfall depth xuh distributed generally according to the log-normal function [ 81, <strong>with</strong> a coefficient<br />

<strong>of</strong> variation y, which varies from 0,l to 0,9 as we progressively move from<br />

sub-humid zones to semi-arid and arid zones, the mean annual rainfall changes<br />

from vaïues <strong>of</strong> circa i 500 mm to values <strong>of</strong> circa 50 mm [ 9 J .


232<br />

As it could be noticed from the diagram (a) <strong>of</strong> fig. 1, if it were nec<br />

essary to estimate the median value x 5o <strong>of</strong> x,a long series could be retained<br />

sufficient from a technical point <strong>of</strong> v hw for each <strong>of</strong> the possible values <strong>of</strong> yx,<br />

since in no case y{xp, would be greater than 15%.<br />

However, wheh we fix the duration N equal to 25 years and the basic<br />

risk equal to 2,5%, by applying eq. (12) or eq. (13) we notice that we must refer<br />

to values <strong>of</strong> @ equal to 0,999 or 0,001. In this case, from the diagram (b)<br />

<strong>of</strong> fig. 1 it ie evident that a long series <strong>of</strong> data would be sufficient from a<br />

technical point <strong>of</strong> view o<strong>nl</strong>y if y were rather low.<br />

In fact, even for values <strong>of</strong> y, greater than 0,5, Y{X~,~) could<br />

s be greater than 20%.<br />

On the other hand, from the same diagrams (a) and (b) <strong>of</strong> fig. 1 ,it<br />

can be derived that a short series <strong>of</strong> data, which is certai<strong>nl</strong>y insufficient<br />

for values greater than y , could be sufficient if y, would assume too<br />

small values.<br />

Analagoue considerations could be made if x follows the double<br />

exponential distribution by examining the diagrams (a) and (b) <strong>of</strong> fig. 2 in<br />

which are represented the function <strong>of</strong> y{xp, 1 as n and<br />

(corresponding to the distribution mode) -and fi? CD = Y,<br />

0,999.<br />

the Data Registered in Other Stations<br />

for @ P 0,368<br />

9: The regions where regular hydrological measurements have been<br />

taken for a short period <strong>of</strong> observation, have <strong>of</strong>ten arid or semi-arid climate,<br />

therefore, it becomes practically impossible to estimate from a single series<br />

<strong>of</strong> data the values that, <strong>with</strong> a given probability, those magnitudes might assume.<br />

It becomes therefore necessary to recognize if it is possible to improve the<br />

estimate <strong>of</strong> xrp in a given station by using the data obtained in others. As<br />

it is known, to render this possible, it is necessary that the different stations<br />

considered be hydrologically similar (see pgr.5). For this to happen, it is<br />

necessary that the values taken by x in the &d stations depend on common<br />

meteorological and hydrological factors. Consequently, this implies that there<br />

exists an inter-station correlation.<br />

It is udeful to point out that from this point <strong>of</strong> view it is very<br />

important to consider either one <strong>of</strong> the hydrological magnitude. In fact, the<br />

mean inter-station correlation coefficient P is amaller when the daily or<br />

weekly rainfall is considered, while it is greater when we take into account<br />

annual rainfall [ 101 . In the case <strong>of</strong> annual rainfall, in a research conducted<br />

from the information furnished by 1141 pluviometers installed in the Western<br />

D.S. and in the South-West California [lOl, Caffey has shown that the mean<br />

inter-station correlation coefficient F situated in a zone meteorologically<br />

homogeneous varies from Q,30 to 0,SO. In a recent research on pluviometers<br />

installed in Basilicata and in Southern Italy, we have found fn0,5 t 0,6 and


in a research on the Morocco pluviometers, being conducted at the time <strong>of</strong> this<br />

report, r = 0,90 which is still higher.<br />

233<br />

10: By referring to the mean value 6 <strong>of</strong> x, in the diagram <strong>of</strong>.<br />

fig.3, ne have repreeented equation (11) which formulates the law according which<br />

the equivalent number ke <strong>of</strong> independent stations, defined in pgr.5, varies as<br />

a function <strong>of</strong> r' and the number k , <strong>of</strong> statione installed in the zone.<br />

As it can be observed from fig.3, for each value <strong>of</strong> F, ke increasel<br />

at each increase in k ,tending asymptotically toward a maximum value<br />

kernax= F<br />

Consequently, the maximum increase <strong>of</strong> information that is obtained in<br />

regard to 5 by applying the hydrological similitude criteria is inversely<br />

proportional to F . E.g. when F = 0,5 , the information, at the most, could be<br />

doubled; for still greater values <strong>of</strong> ? , which are <strong>of</strong>ten encountered in hydrology,<br />

the advantage obtained could be almost negligible.<br />

On the other hand, no real benefit is obtained by increasing the number<br />

<strong>of</strong> k stations above a certain limit strictly connected to F . To prove this,<br />

we have represented in the diaáram <strong>of</strong> fig.4 the law <strong>with</strong> which - ke<br />

varies as<br />

k<br />

a function <strong>of</strong> k for different values <strong>of</strong> r. As it can be noti$eyxif we are<br />

satisfied <strong>with</strong> the 90% <strong>of</strong> the maximum information that can be obtained, by<br />

ke<br />

accepting that - = 0,9, this objective could be reached <strong>with</strong> o<strong>nl</strong>y 9<br />

k<br />

stations, for F = <strong>with</strong> o<strong>nl</strong>y 4 stations for r 5 0,7.<br />

CONCLUSIONS<br />

11: In eome countries, systematic, reliable, homogenous measurements<br />

have been taken for o<strong>nl</strong>y few years and in few stations. Moreover, to render the<br />

problem more severe, such regions have an arid, or semi-arid climate. Therefore,<br />

due to the extreme variability <strong>of</strong> the hydrological magnitudes, <strong>with</strong> the same<br />

number <strong>of</strong> data, the uncertainty <strong>with</strong> which the probability distribution <strong>of</strong> them<br />

could be estimated, is greater.<br />

Consequently, in the said regions it is particularly important to<br />

utilize all the information that the few available data could furnish, by applying<br />

either correct statistical methods to interpret each single series <strong>of</strong> data and/or<br />

by defining objectively some hydrological similitude criteria that would consent<br />

the interpretation on how the magnitude varies from one station to another.<br />

Particularly, for a reference magnitude x , by applying the hydrolog-<br />

ical similitude criteria, it is possible :<br />

a) to obtain a reliable estimate <strong>of</strong> xo even for points where no<br />

direct measurements <strong>of</strong> x were even taken ;


2 34<br />

b) to improve the estimate <strong>of</strong> x in points where o<strong>nl</strong>y few data<br />

are available.<br />

Q,<br />

The advantages obtained in regard to point b) could be noticeably<br />

limited by the inter-station correlation located <strong>with</strong>in an hydrologically<br />

homogeneous zone.<br />

In any case, o<strong>nl</strong>y when all the information available has been uti-<br />

lized, it is possible to establish whether the data available are sufficient<br />

or not to be used in practical applications.<br />

12: If the available data in the region should be insufficient, a<br />

supplementary research program would be necessary. Even in this case, it is<br />

absolutely necessary to take into account the information furnished by all the<br />

data available so that the research program is carried out in an adequate manner.<br />

On the other hand, we must be well aware <strong>of</strong> the results <strong>of</strong> a short<br />

research program.<br />

In fact, if an appropriate localization <strong>of</strong> the stations is made, it<br />

is useful :<br />

i) to individualize and improve the delimitation <strong>of</strong> the region in<br />

hydrologically homogeneous zones ;<br />

ii) to determine the regression law <strong>of</strong> a variable x as function <strong>of</strong><br />

some parameters which characterize the point or the basin (e.g. the regression<br />

relation <strong>of</strong> the mean rainfall depth vs the level <strong>of</strong> the point or the regression<br />

relation <strong>of</strong> the mean annual run<strong>of</strong>f vs mean annual rainfall).<br />

On the other hand, when both aims have been attained, the research<br />

program could be useful also to estimate the probability distribution <strong>of</strong> x<br />

in different points (or basins) o<strong>nl</strong>y if in the region there are one or more<br />

gaging stations functioning for a long time.


1.<br />

2.<br />

3.<br />

4.<br />

5.<br />

6.<br />

7.<br />

8.<br />

9.<br />

10.<br />

KENDALL M.G. and STUART A., (1967). The Advanced Theory <strong>of</strong> Statistics.<br />

London, Griffin, Vol. 2, 2nd Ed., p.54.<br />

ROSSI F., (1 972) Distribuzione di campionatura di alcune grandezze stg<br />

tistiche. Fac. di Ing. delltllniv. di Napoli, 1st. di Costr. Idr.,<br />

Quad. no 5 .<br />

AITCUISQM J. and BROWN J.A.C., (1957). The Lognormal Distribution.<br />

Cambridge University heas.<br />

235<br />

LOWRaY N.D. and NASH J.E., (1970). Methods <strong>of</strong> Fitting Double Exponential<br />

Distribution. Journal <strong>of</strong> <strong>Hydrology</strong>, 10, pp. 259 - 275.<br />

VIPARELLI C., (1 965). Idrologia applicata all 1 Ingegneria. Parte II, Fond.<br />

Politecnica del Mezzogiorno d'Italia, Napoli.<br />

MATALAS N.C. and BENSON M.A., (1961). Effect <strong>of</strong> Interstation Correlation<br />

on Regression Analysis. Journal <strong>of</strong> Geophysical Research, Vo1.66, nolo.<br />

YEVJEVICH V., (1972). Probability and Statistics in <strong>Hydrology</strong>. <strong>Water</strong><br />

<strong>Resources</strong> Publ., Fort, Collins, Colorado.<br />

MARKQVIC R.D., (1965). Probability Functions <strong>of</strong> Best Fit Distributions <strong>of</strong><br />

Annual Precipitation and Run<strong>of</strong>f. <strong>Hydrology</strong> Papers no 8, Fort Collins, Co-<br />

lorado.<br />

GARCIA-AGREDA R., RASULO G., and VIPARELLI R., (1 973) Pluviometric Zones<br />

and the Criteria to Define their Boundaries for Regions <strong>with</strong> Scarce Data.<br />

Simposio sobre proyectos de recursos hidraùlicos con datos insuficientes,<br />

Madrid.<br />

CAFFEY J.E., (1965). Inter-station Correlations in Annual Precipitation<br />

and in Annual Effective Precipitation. <strong>Hydrology</strong> Papers no 6. Fort Collins,<br />

Colorado.


20 40 60<br />

OBJECTIVE CRITERIA TO DECLARE A SERIES OF DAPA SUFFICIENT I'OR<br />

TECHNICAL PURPOSES<br />

*O n


OBJECTIVE CRITERIA TO DECLARE A SERIES OF DATA SUFTICICNT FOX<br />

TECHNICAL PURPOSES


10<br />

Ke<br />

8<br />

6<br />

4 I<br />

2<br />

O<br />

6 - /<br />

- I<br />

O, 50<br />

Y<br />

O, 70<br />

I<br />

?=%O<br />

10 20 30<br />

1<br />

Fig. 3<br />

OBJECTIVE CRITERIA TO DECLARE A SERIES OF DATA SUFFICIENT FOR<br />

TECHNICAL PURPOSES<br />

I I<br />

I I<br />

1 K. 50


l,oo<br />

0,8 O<br />

0,60<br />

0,4 O<br />

0,20<br />

- 1,oo-<br />

/<br />

Fig. 4<br />

10 20 30 50<br />

40 K<br />

OBJECTIVE CRITERIA TO DECLARE A SERIES OF DATA SUFFICIENT FOR<br />

TECHNICAL PURPOSES


ABSTRACT<br />

SOME CRITERIA USED IN HYDROLOGIC STUDIES<br />

WITH INADEQUATE DATA<br />

Carlos Quintela Góis<br />

In territories where the hydrologic networks are<br />

still scarce, it is necessary to adopt simplified designing<br />

criteria which might lead to sufficiently reliable results.<br />

In this paper those which are normally used for the hydro-<br />

logic characterization <strong>of</strong> the drainage basins under these<br />

conditions are presented and example <strong>of</strong> their application<br />

to Okavango Basin in Angola is given.<br />

RESUME<br />

Dans les territoires où les réseaux hydrologiques<br />

sont encore insuffisants, il faut recourir a des procédés<br />

de c alcul simplifiés qui puissent conduire a des résultats<br />

dignes de confiance. L'auteur expose des méthodes normalement<br />

utilisées pour évaluer. dans de telles conditions<br />

les caractéristiques hydrologiques des bassins, en prenant<br />

pour example du bassin du Cubango, en Angola.<br />

* Civil Engineer - Member <strong>of</strong> the Working Group<br />

<strong>of</strong> the Overseas Ministry (Portugal) for the I.H.D.


242<br />

1. Introduction<br />

In the framework <strong>of</strong> the hydraulic policy which has b en followed for he<br />

last years in the Portuguese Overseas Provinces, the study <strong>of</strong> the general plans<br />

for the development <strong>of</strong> the water resources plays a very important role. In the<br />

two main provinces <strong>of</strong> Africa - Angola and Mozambique - this action led to the fact<br />

that the main drainage basins are already covered by such studies; that enables<br />

an adequate hydroelectric and hydro-agricultural overall planning to be made,<br />

Hydrological studies are obviously the fundamental basis <strong>of</strong> such general plans<br />

because they. determine the hydrologic characterization <strong>of</strong> the basin and from the-<br />

re the preliminary design <strong>of</strong> the several schemes and estimate <strong>of</strong> their potentia -<br />

lities. In this field international cooperation which was achieved <strong>with</strong> the other<br />

territories <strong>of</strong> Southern Africa, as a result <strong>of</strong> established agreements, is also <strong>of</strong><br />

a great importance and it gives an idea <strong>of</strong> the value that water has got for the<br />

common development on that part <strong>of</strong> the world.<br />

The inhospitable characteristics <strong>of</strong> these areas together <strong>with</strong> the communica-<br />

tion difficulties and low human occupation result usually in very scarce and<br />

recent hydrologic networks so that on carrying out hydrologic studies one faces<br />

the difficulty <strong>of</strong> applying the classic methods or those used for more developed<br />

areas.<br />

Therefore it is necessary to adopt approximative methods and special crite -<br />

ria enabling to arrive at sufficiently correct and reliable results for the ai -<br />

med purposes.<br />

In this paper the methods which have been followed for carrying out the abo-<br />

ve mentioned hydrologic studies are presented and the approximate criteria that<br />

have been adopted as a result <strong>of</strong> inadequacy <strong>of</strong> data are pointed out; at the end<br />

a practical example is given for the case <strong>of</strong> a drainage basin in Angola. O<strong>nl</strong>y<br />

the aspects <strong>of</strong> rainfall and run-<strong>of</strong>f in average terms are stressed because they<br />

are <strong>of</strong> most interest for the hydrologic studies <strong>of</strong> general plans.<br />

2. Rainfall<br />

Among the hydrologic data, rainfall is commo<strong>nl</strong>y measured for a longer pe-<br />

riod, even in developing territories. Although networks do not cover satisfacto-


ily the areas to be studied, they enable the characterization <strong>of</strong> the phenomenon<br />

<strong>with</strong> enough accuracy to be achiewed.<br />

243<br />

Usually the daily precipitation data measured in raingauges normally loca-<br />

ted at villages or townships are available. Record periods <strong>of</strong> twenty years ormore,<br />

at least in some <strong>of</strong> the stations, are frequent and the use <strong>of</strong> correlation techni-<br />

ques enables to obtain monthly rainfall all over the stations <strong>of</strong> the network, On<br />

the other hand, uniform rainfall regime <strong>of</strong> the African subtropical regions <strong>with</strong> a<br />

long period <strong>of</strong> four months <strong>with</strong>out precipitation is well known, which makes it ea-<br />

sier to fulfil some failures in the records.<br />

The study <strong>of</strong> that regime is usually done by taking the annual weighed pre-<br />

cipitations obtained from the isohyet maps drawn for the basin. The isohyet me -<br />

thod is considered to be the most adequate when dealing <strong>with</strong> incomplete informa-<br />

tion, because local surveys, topography, etc. may help to introduce corrections<br />

or indicate the best drawing <strong>of</strong> the curves <strong>of</strong> equal precipitation so that a pat-<br />

tern, as close as possible <strong>with</strong> reality, can be obtained. Once the basins have<br />

usually a drainage area <strong>of</strong> tens <strong>of</strong> thousands <strong>of</strong> square kilometers, the used sca-<br />

le for drawing isohyet maps is normally 1:l O00 000.<br />

After those maps are obtained, some characteristic sections are chosen and<br />

the weighed values are determined. These are the bases for the study <strong>of</strong> the rain-<br />

fall regime and periods <strong>of</strong> about 20 years permit the application <strong>of</strong> stochastic me-<br />

thods. Among these, the method <strong>of</strong> Hazen-Foster has been considered to be the most<br />

adequate to interpretate the phenomenon. After graphical and analytical confirma-<br />

tion <strong>of</strong> its applicability, it is possible to obtain the mean annual value and tho-<br />

se corresponding to characteristic return periods. The probability relating to each<br />

one <strong>of</strong> the years <strong>of</strong> the period can be obtained as well.<br />

This analysis gives a first idea <strong>of</strong> the natural sequence <strong>of</strong> the years and<br />

principally the occurence <strong>of</strong> dry periods and their degree <strong>of</strong> drought so that fur-<br />

ther studies for comparison <strong>with</strong> the run-<strong>of</strong>f can be done.<br />

The study <strong>of</strong> rainfall is usually completed <strong>with</strong> a short analysis <strong>of</strong> dry and<br />

wet seasons and mai<strong>nl</strong>y <strong>of</strong> the frequency <strong>with</strong> which longer dry seasons may occur.<br />

3. Run-<strong>of</strong>f<br />

As far as flow measurements are concerned, data is always very scarce and o<strong>nl</strong>y


few flow stations in Portuguese Africa have records available for more than 5 to<br />

10 years. Besides, it has been verified that the study <strong>of</strong> general plans normally<br />

shows the need and lead to the best choice and establishment <strong>of</strong> the hydrometric<br />

networks.<br />

Stochastic methods cannot be applied safely <strong>with</strong> such short periods and<br />

therefore the first approximative criterium to be used is trying to characterize<br />

the available flow record period by relating it <strong>with</strong> the similar period <strong>of</strong> the<br />

rainfall studies. Hence it is possible, as a first approximation, to consider the<br />

same probability <strong>of</strong> occurence for the annual flow and rainfall <strong>of</strong> a certain year.<br />

From this it is <strong>of</strong>ten possible to chose certain years which can be considered<br />

as average or <strong>with</strong> a given degree <strong>of</strong> dryness. Therefore a critical period<br />

corresponding to an unfavourable sequence <strong>of</strong> years can be chosen in order to fix<br />

the storage capacity <strong>of</strong> interannual reservoirs and to obtain a complete regulation<br />

<strong>of</strong> the flows. This sequence is normally formed by an average year followed<br />

by two or more dry years <strong>with</strong> fixed characteristics. Undoubtedly this is an approximate<br />

approach, but experience has shown that for studies at the level <strong>of</strong> general<br />

plans this analysis is quite acceptable and safe because the pessimism in<br />

the reasoning compensates the.uncertainties resulting from the inadequacy <strong>of</strong> data.<br />

Sometimes, as an exception, there exists in the basin a measuring section<br />

<strong>with</strong> a longer period <strong>of</strong> records and for which stochastic methods can be applied.<br />

Two ways can then be followed, (1) correlation analysis <strong>with</strong> other stations <strong>of</strong><br />

the basin, trying to obtain more data for those which have shorter records or<br />

(2) characterization <strong>of</strong> the shorter period by relating it <strong>with</strong> the longer one<br />

<strong>of</strong> that station in a similar way as mentioned in the previous paragraph for the<br />

rainfall.<br />

The first method is not always easy to apply, because the rivers might<br />

show a change <strong>of</strong> regime along their course as a result <strong>of</strong> the phisiography and<br />

correlations are no more valid.<br />

The second one is more reliable and on applying it, it is possible to ar-<br />

rive at safe and easily interpretable results. Normally one can obtain not o<strong>nl</strong>y<br />

the annual flow but also the monthly ones <strong>of</strong> the average and dry )ears <strong>of</strong> the cho-<br />

sen critical period and therefore carry out more reliable regulation studies.


245<br />

The study <strong>of</strong> rainfall/run-<strong>of</strong>f relations has not been, as far as our expe-<br />

rience is concerned, successful for large drainage basins as a method <strong>of</strong> e<strong>nl</strong>ar -<br />

ging the available flow record period. This is probably the result <strong>of</strong> the speci-<br />

al type <strong>of</strong> the rainfall regime <strong>of</strong> those regions - short, heavy and localized storms-<br />

together <strong>with</strong> high temperatures and evaporation rates which affect the usual me-<br />

chanism <strong>of</strong> transforming rainfall into run-<strong>of</strong>f. Besides, this method would o<strong>nl</strong>y<br />

lead to global annual values and its distribution along the year is not possible<br />

to obtain.<br />

4. Application example<br />

4.1 - General characterization <strong>of</strong> the problem<br />

The Okavango is one <strong>of</strong> the three big international rivers <strong>of</strong> the<br />

South <strong>of</strong> Angola. It springs on the central plateau <strong>of</strong> the territory and flows<br />

more or less North-South down to the border <strong>with</strong> Southwest Africa where it<br />

shifts eastwards, forming the border, crossing Kaprivi Strip and spreads in-<br />

to a wide swampy area ( Figure 1).<br />

Its drainage basin in Angola is about 150 O00 km2 from which 61 O00<br />

km2 belong to its main tributary Cuito.<br />

The northern part <strong>of</strong> the basin is the most rainy one and there the<br />

altitudes reach 1 800 m, decreasing gradually southwards to 1 O00 m.Here the<br />

climaté is semi-arid. Rainfall occur in the wet season from October to April;<br />

the other months are dry.<br />

From the geological standpoint, the northwest part <strong>of</strong> the basin is<br />

formed by igneous and metamorphic rocks; sedimentary formations occur in the<br />

rest <strong>of</strong> the basin.<br />

The hydrographic pattern is characteristical as well, the tributa -<br />

ries being normally parallel to each other and flowing North-South. The sha-<br />

pe <strong>of</strong> the beds is ruled by the local geological and topographical conditions.<br />

As far as the vegetation is concerned, it changes from the more or<br />

less dense forest in the North into the savana in the South.<br />

The problem was to carry out the general plan for the development <strong>of</strong>


246<br />

the water resources and obviously the first step was the hydrological study.<br />

In the following chapters a summary will be presented <strong>of</strong> the analy-<br />

sis made for the study <strong>of</strong> the rainfall and run-<strong>of</strong>f, according to the methods<br />

and criteria mentioned above in this paper, once the available data was ina-<br />

dequate.<br />

4.2 - Rainfall studies<br />

For the rainfall studies, the records <strong>of</strong> 28 stations for the period<br />

1943/1970 were available. However, o<strong>nl</strong>y from 1950/51 onwards, the number <strong>of</strong><br />

stations <strong>with</strong> complete records was sufficient and therefore the basical study<br />

period considered was 20 years, from 1950 to 1970. Some shortage <strong>of</strong> monthly<br />

records necessary for the evaluation <strong>of</strong> the annual values was easily overcome<br />

by correlation <strong>with</strong> more complete and reliable stations.<br />

With these annual values, the isohyet maps were drawn on a scale<br />

1:l O00 O00 introducting the influence <strong>of</strong> altitude and other known climatical<br />

factors and avoiding a cold interpretation <strong>of</strong> the plotted values.<br />

After chosing some characteristic sections, the weighed annual rain-<br />

fall was determined and analysed by applying the Foster-Hazen method. Figure<br />

2 shows a diagram <strong>with</strong> the sequence <strong>of</strong> annual precipitation and the correspon-<br />

ding probability graph for a section <strong>of</strong> the main course <strong>of</strong> the river where the<br />

international border starts.<br />

From the joint study <strong>of</strong> these graphs, some conclusions can be drawn.<br />

First <strong>of</strong> all, the applied stochastic method can be considered adequate to interpretate<br />

the phenomenon and therefore it is possible to determine a mean annual<br />

precipitation <strong>of</strong> 950 mm as well as precipitations corresponding to certain<br />

return periods. One can note the occurence <strong>of</strong> a sequence <strong>of</strong> four dry<br />

years which might be considered as the basis <strong>of</strong> the critical period for regulation<br />

purposes.<br />

4.3 - Run-<strong>of</strong>f studies<br />

The basin has 19 flow measuring stations and the records started to<br />

be obtained early in 1963. Before that date, there were some random measure-


247<br />

ments made <strong>with</strong> floating device> but their reliability was doubtful. The net-<br />

work is nowadays equipped <strong>with</strong> automatic level gaugings and flows are measu -<br />

red <strong>with</strong> current meters suspended from steel cables crossing the river from<br />

one bank to the other.<br />

It was then possible to have flow records for a period <strong>of</strong> 7 years<br />

consisting <strong>of</strong> maximum and minimum flows, average daily flows, and consequent-<br />

ly monthly and annual values.<br />

For such a short period stochastic methods are not applicable <strong>with</strong><br />

reliability; nevertheless the analyses made for the rainfall showed that such<br />

period has average characteristics and therefore the mean annual flow can be<br />

estimated by averaging the flows <strong>of</strong> those seven years for every station.<br />

The same criteria cannot be applied to determine the dry year flow,<br />

because in this seven years period (1963/1970) any <strong>of</strong> the years <strong>of</strong> the cri-<br />

tical period obtained from the rainfall study is not included.<br />

Fortunately, there is a station in the international strech measu-<br />

red by the South African Services which has got records for a longer period<br />

(25 years) from 1945 on, although some <strong>of</strong> its valueshave been obtained by cor-<br />

relation. It was then possible for this station to apply the Foster-Hazen rne-<br />

thod which showed a rather well interpretation <strong>of</strong> the phenomenon.<br />

Figure 3 shows in the same way as for the rainfall the diagram <strong>of</strong><br />

annual flow sequence and the probability graph.<br />

The former indicates a notorious resemblance <strong>with</strong> the one <strong>of</strong> the<br />

rainfall, being characteristical the four dry year period 1966/1970. It skws<br />

as well that the period 1963/1970 is an average one and that 1966/67 can re-<br />

present the dry year <strong>of</strong> the critical period.<br />

In order to obtain the annual flows in any section <strong>of</strong> the river,tk<br />

curves showing the variation <strong>of</strong> the specific annual flow <strong>with</strong> the drainage ba-<br />

sin for the average and dry year, were drawn ( Figure 4); these curves show<br />

bi uniform pattern and thus one can consider them sufficiently reliable for<br />

obtainment <strong>of</strong> the desired values.<br />

The regulation <strong>of</strong> flows can be studied by considering the sequence


248<br />

<strong>of</strong> an average year followed by four dry years as determined above.<br />

5. Conclusions<br />

Some criteria normally utilized for hydrological studies <strong>of</strong> the general<br />

plans for the development <strong>of</strong> the water resources <strong>of</strong> rivers in semi-arid areas <strong>of</strong><br />

Portuguese African territories were presented and an example <strong>of</strong> their application<br />

given. The obtained results are obviously approximate but they can be considered<br />

sufficiently safe for the purpose and moreover when decisions would be taken for<br />

the design <strong>of</strong> specific projects further data will be available and then a more re-<br />

liable analysis can be made.<br />

.........................


W<br />

I<br />

I-<br />

249


nm<br />

6 O0<br />

LOO<br />

200<br />

O00<br />

BOO<br />

600<br />

LOO<br />

200<br />

O<br />

Pmm<br />

500<br />

LOO<br />

300<br />

200<br />

100<br />

O00<br />

900<br />

SEQUENCE GRAPH<br />

FOSTER- HAZEN ADJUSTMENT<br />

- a% m m<br />

0 0 0 - N Y i 0 O O 0 0 0 0 O O y> m O b m 6<br />

- N<br />

- < m u > c m m m m a m r n m<br />

FiGQRE 2 - STUDY OF ANNUAL RAINFALL<br />

PROEABILIT Y<br />

YEAR


IL LL<br />

O<br />

io6,'<br />

10 O00<br />

z 9000<br />

I 3<br />

< 8000<br />

z<br />

7000<br />

6 O00<br />

5000<br />

.4oco<br />

3 WO<br />

2 O00<br />

1 O00<br />

O<br />

lo6 m'<br />

1.4 o00<br />

IL<br />

Y<br />

O<br />

z 3 O00<br />

3<br />

2<br />

U<br />

3<br />

z U<br />

2 ooa<br />

1000<br />

3 000<br />

9 o O0<br />

a O00<br />

7 O00<br />

6000<br />

5 O00<br />

4000<br />

3000<br />

2 O00<br />

1 O00<br />

SEQUENCE GRAPH 251<br />

FOSTER- HAZEN ADJUSTMENT<br />

-ri yl In "01<br />

0 0 0 - h i - 0 0 0 0 0 0 0 0 o ~n m m o i m m<br />

- N<br />

m - m w p i m 01 m 0 . m m m m<br />

PROBABILITY<br />

FIGURE 3 - STUDY OF ANNUAL RUNOFF<br />

i<br />

1


252<br />

.<br />

3<br />

2<br />

a<br />

a<br />

W<br />

U<br />

:;<br />

W<br />

I<br />

I<br />

U<br />

I-<br />

U<br />

a<br />

3<br />

n<br />

3 .<br />

3<br />

O<br />

3<br />

0<br />

=l<br />

U<br />

3<br />

3<br />

Y<br />

2<br />

6<br />

W<br />

II:<br />

a<br />

l-<br />

z<br />

W<br />

I<br />

W<br />

I<br />

u<br />

U<br />

a<br />

n<br />

a<br />

3<br />

Z<br />

O<br />

A<br />

IL<br />

J<br />

a<br />

3<br />

Z<br />

z<br />

Q<br />

2<br />

LL<br />

u<br />

u<br />

a<br />

ul<br />

z<br />

W<br />

W<br />

I-<br />

W<br />

3<br />

m<br />

a<br />

I<br />

a<br />

K<br />

0<br />

I<br />

U<br />

W<br />

3<br />

LL<br />

a<br />

0


AB S TRA CT<br />

UTILIZING CLIMATIC DATA TO APPRAISE POTENTIAL WATER YIELDS<br />

Robert L. Smith"<br />

Precipitation and temperature measurements <strong>of</strong>ten represent the<br />

o<strong>nl</strong>y significant hydrologic data available in developing areas. Initial<br />

assessments <strong>of</strong> potential surface and ground water supplies must build<br />

on this limited climatic base. Early in the planning studies there is<br />

need for an accurate estimate <strong>of</strong> mean annual streamflow, and <strong>of</strong> the<br />

probable variance in annual flows. These determinations can be made<br />

utilizing an empirical function relating the mean annual run<strong>of</strong>f<br />

coefficient to the aforementioned climatic parameters. The relationships<br />

have been tested in a wide range <strong>of</strong> environments, and their general<br />

utility can be extended appreciably <strong>with</strong> limited surface and subsurface<br />

observations. Applicability <strong>of</strong> the recommended relationships is<br />

demonstrated by selected case studies involving a variety <strong>of</strong> problems.<br />

Included are examples illustrating the calculation <strong>of</strong>: (a) mean yields<br />

for ungaged areas, (b) the probability distribution <strong>of</strong> annual flows for<br />

ungaged areas, (c) daily flow duration curves, (d) potential yield <strong>of</strong><br />

selected groundwater areas, and (e) the potential impact <strong>of</strong> precipita-<br />

tion augmentation on surface water supplies.<br />

RESUMEN<br />

A menudo las medidas de precipitación y temperatura son los Úni<br />

cos datos hidrolbgicos disponibles para áreas en desarrollo. Los esti-<br />

mados iniciales sobre abastecimientos potenciales de aguas superficia-<br />

les y subterráneas deben partir de esta limitada base climática. Muy -<br />

pronto en el curso de la planificación se hace necesario un estimado -<br />

preciso del caudal promedio anual y de la variación probable en flujos<br />

anuales. Estas determinaciones pueden hacerse mediante la utilización<br />

de una función empírica relacionando el coeficiente de escorrentía me-<br />

dia anual con los antes mencionados parbmetros climáticos. Este tipo -<br />

de relación ha sido puesto a prueba en una amplia serie de medio am--<br />

bientes y su utilidad general puede extenderse apreciablemente con li-<br />

mitadas observaciones sobre y bajo tierra. El éxito con que se han --<br />

aplicado las relaciones recomendadas se demuestra por medio de casos -<br />

escogidos que cubren una variedad de problemas. Se incluyen ejemplos -<br />

que ilustran el cálculo de: (a) rendimientos promedios para áreas Ca--<br />

rentes de medidas, (b) la distribución probabilística de caudales anua<br />

les en áreas carentes de medidas, (c) curvas diarias de caudal-dura---<br />

ción, (d) rendimiento potencial de áreas de agua subterránea escogidas<br />

y, (e) el impacto potencial de la incrementación de precipitación so--<br />

bre abastecimientos de agua superficial.<br />

-<br />

JI Deane Ackers Pr<strong>of</strong>essor <strong>of</strong> Civil Engineering, University <strong>of</strong> Kansas,<br />

Lawrence, Kansas, USA.


254<br />

The water resources planner is <strong>of</strong>ten required to appraise the water yield<br />

characteristics <strong>of</strong> streams for which flow data is unavailable. In these situ-<br />

ations the initial appraisal has to be based on climatic factors supplemented<br />

by prior experience in similar terrains. This paper presents an empirical<br />

relationship designed to further this appraisal, and which the author has found<br />

useful on a number <strong>of</strong> occasions.<br />

The basic water balance equation applied to a catchment area may be<br />

expressed as<br />

P = R + E + AS (1)<br />

where all temo represent units <strong>of</strong> depth over the catchment area, and P = precipitation,<br />

R = basin outflow, E = evapotranspiration and AS = change in<br />

storage.<br />

For the condition <strong>of</strong> an extended time interval the AS term becomes<br />

negligible. In this case, and after dividing all terms by P, the equation may<br />

be rewritten as<br />

RIP = c = 1 - E/P (2)<br />

Thus, in the long term the run<strong>of</strong>f coefficient C is governed by climatic considerations.<br />

Geographers and agricultural scientists have long utilized climatic<br />

parameters in appraisinz water balance questions relating to management <strong>of</strong> soil<br />

moisture. In 1967 Guisti and Lopez [i] proposed that the mean stream discharge<br />

could be determined as a €unction <strong>of</strong> (a) mean annual precipitation and (b) the<br />

basin climatic index. BCI. The latter is based on the work <strong>of</strong> Thornthwaite i21<br />

Jan *'"I<br />

where P is the average monthly precipitation in centimeters and T is the aver-<br />

age monthly temperature in degrees Centigrade.<br />

If the hypothesis presented by Guisti and Lopez has merit, it should be<br />

possible to develop a relationship between BCI and the deviations from the mean<br />

line dram on a sc.atter diagram <strong>of</strong> average precipitation versus average run<strong>of</strong>f.<br />

Their initial efforts to develop such a relationship were limited to examination<br />

<strong>of</strong> relatively short term data in Puerto Rico. Smith 131 subsequently extended<br />

this approach by examining data from approximately 250 ca.tchments in the<br />

United States and Puerto Rico. The resulting empirical relationship between<br />

the coefficient C in equation (2) and the BCI is graphed in Figure 1. It dif-<br />

fers appreciably from t.he curve initially presented by Guisti and Lopez.<br />

available data provided firm definition <strong>of</strong> the relationship for BCI values<br />

ranging froiri 35 to 150. Currently, extension beyond these limits is most ten-<br />

tati.ve and i.s Eased on the following. The lower end was extended to the obvious<br />

terminal al: the origin. Extension <strong>of</strong> the upper end <strong>of</strong> the curve was based un<br />

concurrer.t appraisal <strong>of</strong> the nature <strong>of</strong> the 13CI vs P relationship in high rainfall<br />

zrens, and on recognition that the change in C <strong>with</strong> X I should be such that the<br />

i.iic.rment.al percent <strong>of</strong> precipitation which becomes run<strong>of</strong>f is constantljr<br />

The


increasing bur never exceeds unity. One word <strong>of</strong> caution. Data utilized in<br />

developing the re1 onship was obtained €rom catchments for which the sub-surface<br />

outflow was negligible. Thus the ruh<strong>of</strong>f calculated by Figure 1 represents<br />

tot91 run<strong>of</strong>f and cannot be directly equated to streamflow in those instances<br />

wtie're a significant percentage <strong>of</strong> the yield' is discharged as sub-surface flow.<br />

Utilization <strong>of</strong> the relationship is enhanced by conversion <strong>of</strong> existing<br />

climatic data into a basic P vs Bdi relationship for the area in question.<br />

Worldwide the relatioriship between BCI' and P varies markedly. Regionally It<br />

preciably <strong>with</strong> topographie considerations. However, for a given<br />

he relationship between BCï and P is weJ.1 defined. Figure 2 illustrates<br />

a typ'ical relationship for a basin in the State <strong>of</strong> Kansas in the central<br />

United States Qhere elevation changes are negqigible, and similar relations fcr<br />

Puerto Rico where elevation is a significant factor. Note that the slope <strong>of</strong> the<br />

relationship also varies slightly <strong>with</strong> location. Figures 1 and 2 caq be used<br />

conjunctively to develop the mean annual rainfall-run<strong>of</strong>f relationship for the<br />

catchment. Experience has shown that actual data will scatter about the curve<br />

so determined because AS is seldom negligible on an annual basis. The individ-<br />

ual curves tend to approach a 45" asymptote as evapotranspiration tends EO<br />

255<br />

become fully satisfied and thereby constant. For example, in Puerto Rico the<br />

evapotranspiration demand is satisfied at all elevations when the rainfall<br />

exceeds SOO centimeters, but the magnitude <strong>of</strong> this consumptive loss is a function<br />

<strong>of</strong> elevation.<br />

The basic C vs BCI relationship has been tested in several ways <strong>with</strong><br />

satisfactosy results. Figure 3 will seme LO illustrate. Figure 3(a) presents<br />

a coiqparisbii <strong>of</strong> calculated versus observed discharge for thirty streams in<br />

Puerto Rico [4]. The calculated values were determined via conjunctive use <strong>of</strong><br />

the appropriate curve from Figure 2 and Figure 1.<br />

Since the qbserved records<br />

wexe relatively short, many no longer than three years in length, the applicable<br />

BCI was based on the average precipitation during the period <strong>of</strong> observed stream-<br />

flow. BCI values for these streams range from 49 to 178. Figure 3(b) presents<br />

the mean annual precipitation versus mean aqnual run<strong>of</strong>f relationship €or the<br />

State <strong>of</strong> Kansas. The solid curve thereon was based on observed data from 122<br />

basins [5]. The dashed cuí-ve was calculated using the Kansas curve <strong>of</strong> Figure 2<br />

and Lhe basic coefficient chart <strong>of</strong> Figure 1. Basin BCI values for the ctndition<br />

<strong>of</strong> mean precipitation range from 25 to 70.<br />

The basic relationships can also be utilized to appraise possible stream<br />

response under several yeats <strong>of</strong> above or below nomal precipitation. For example,<br />

in recent years appretiable attention has been directed to the potential<br />

application <strong>of</strong> weather modification tachniqves in improving water supply con-<br />

dtionc.<br />

Although the bulk <strong>of</strong> the research effoxt has been directed toward<br />

seeding techniques and understanding the mechanisms <strong>of</strong> cloud physics, several<br />

investigators in the 1Jnited States, via the use <strong>of</strong> hydrologic simulation techniques,<br />

have attempted LO explore how streams would respond to a given increase<br />

in precipitation. The relationships in Figures 1 and 2 can be utilized to<br />

estimate the percent gain in run<strong>of</strong>f thaL will oc €or a given increase in<br />

average precipi tatjon. Let the subscript I represent natural conaitioi-s, subscript<br />

2 represent augmented conditions, and the symbol PM equal P2/P,. Then


256<br />

Percent gain in run<strong>of</strong>f = 100 - = 100<br />

Ri<br />

PC-PC (PM1 c*-cl<br />

22 113100 (4 1<br />

plcl cl<br />

Table 1 summarizes the impact <strong>of</strong> precipitation augmentation on water yield<br />

as determined by hydrologic simulation and as reported by Linsley and Crawford<br />

[6], Crawford [7], Lumb [8] and Smith [3]. The first three authors utilized<br />

the Stanford <strong>Water</strong>shed Model and the latter utilized the Kansas <strong>Water</strong>shed Model.<br />

In aggregate, these investigators conducted simulations on 14 separate watersheds,<br />

13 in the United States and one in New South Wales. The last two columns<br />

provide a comparison <strong>of</strong> the average increase in yield as determined by<br />

simulation and as estimated by use <strong>of</strong> Figure 1.<br />

The calculations assumed that<br />

the slope <strong>of</strong> the BCI vs P relationship was equivalent to the typical Kansas<br />

curve. This approximation introduces some error because the slope <strong>of</strong> this<br />

relationship does vary slightly from watershed to watershed, Nonetheless, the<br />

calculated and simulated values are -most comparable. Examination <strong>of</strong> the computer<br />

simulations again reveals that year to year increases scatter about the<br />

mean value listed in the table. - Table 1 - Comparative evaluation <strong>of</strong> the impact <strong>of</strong> precipitation aiigmentatiun<br />

on mean yield.<br />

-<br />

-<br />

,ength lbserved<br />

<strong>of</strong> Period<br />

'eriod ainfall -- Run<strong>of</strong>f<br />

'ears cm/year iainf all PM<br />

One HundredlTen Mile Creek,<br />

Kansas -<br />

Stranger Creek, Kansas - 11<br />

Doniphan Creek, Kansas - i/<br />

Black Vermi lion River,<br />

Kansas A<br />

Salt Creek, Kansas - 11<br />

17<br />

17<br />

17<br />

20<br />

8<br />

14<br />

14<br />

14<br />

8<br />

88.4<br />

88.4<br />

88.4<br />

90.5<br />

86.4<br />

77.5<br />

77.5<br />

77.5<br />

58.0<br />

.205<br />

.205<br />

,205<br />

.200<br />

.261<br />

.125<br />

.125<br />

.125<br />

,066<br />

1.05<br />

1.10<br />

1.20<br />

1.10<br />

1.10<br />

1.05<br />

1.10<br />

1.20<br />

1.05<br />

S. Fk. Solomon River, Ks - 11<br />

Beaver Creek, Kansas<br />

Cottonwood Creek, Calif. - 21<br />

8<br />

8<br />

20<br />

21<br />

2<br />

58.0<br />

58.0<br />

53.1<br />

45.6<br />

40.9<br />

.O66<br />

.O66<br />

.O57<br />

.O16<br />

,080<br />

1.10<br />

1.20<br />

1.10<br />

1.10<br />

1.15<br />

Wollombi Brook, 3l<br />

New South Wales -31<br />

5 107.7 .141 1.10<br />

Beargrass Creek, Ky T~ 5 110.6 .403 1.10<br />

Arroyo Seco, Calif. -<br />

5 68.2 .386 1.10<br />

LaBrea Creek, Calif. -4/<br />

41<br />

18 28.6 .O84 1.10<br />

Dry Creek, California - 22 130.0 .472 1.10<br />

Saxtons River, Vermont - 41<br />

16 111.6 .499 1.10<br />

- i/ From data presented by rn i70)<br />

- 2/ From data presented by Linsley and Crawford (1962)<br />

- 3/ From data presented by Crawford (1965)<br />

- 4/ From data presented by Lumb (1969)<br />

5/ Not calculated<br />

-<br />

-<br />

-<br />

% Gain i<br />

Computer<br />

#irnulatiori<br />

16<br />

33<br />

74<br />

35<br />

30<br />

21<br />

41<br />

94<br />

23<br />

49<br />

107<br />

41<br />

62<br />

82<br />

35<br />

20<br />

19<br />

41<br />

18<br />

19<br />

Run<strong>of</strong>f<br />

:alculated<br />

17<br />

34<br />

70<br />

32<br />

31<br />

22<br />

40<br />

87<br />

26<br />

52<br />

117<br />

53<br />

- 51<br />

78<br />

40<br />

25<br />

24<br />

44<br />

20<br />

20


257<br />

Earlier reference was made to the fact that a plotting .<strong>of</strong> annual precipitation-run<strong>of</strong>f<br />

values for a given basin will scatter about the mean annual relationship<br />

one develops <strong>with</strong> Figure 1 and the basin applicable Figure 2. Also,<br />

it was noted that year to year percentage gains in flow from precipitation<br />

augmentation, and as determined by computer simulation, would scatter about the<br />

average gain observed for the entire period <strong>of</strong> record. This scattering is due<br />

to the well established phenomenon <strong>of</strong> hydrologic persistence and reflects shortterm<br />

storage changes. Question arises, therefore, as to whether the relation-<br />

ship can be used to determine flow characteristics other than the mean.<br />

answer is yes but a reasonable amount <strong>of</strong> judgment is required. Determination<br />

<strong>of</strong> the distribution <strong>of</strong> annual flows will serve to illustrate.<br />

Available climatic data can be utilized to develop the probability<br />

distribution <strong>of</strong> basinwide annual precipitation, and the basin average curve<br />

for Figure 2. When working <strong>with</strong> a basin whose geologic structure is not conducive<br />

to the development <strong>of</strong> significant baseflow components, i.e., a basin<br />

<strong>with</strong> minimum persistence characteristi.cs, an estimate <strong>of</strong> the prcbability distribution<br />

<strong>of</strong> annual flows can be developed by direct application <strong>of</strong> the pre-<br />

cipitation probability function to Figures 2 and 1.<br />

Figure 4 provides a<br />

comparison <strong>of</strong> calculated and observed annual run<strong>of</strong>f distributions for the<br />

Marias des Cygnes River, Kansas, USA. This basin has little natural storage<br />

and experiences a wide range. in annual precipitation, from less than 50 an to<br />

more than 150 a.<br />

Experience has shown that the foregoing approach is generally applicable<br />

to the above average years. However, where lag or persistence is expected to<br />

be a significant factor the lower portion <strong>of</strong> the distribution function should<br />

be handled differently. In this case, replotting <strong>of</strong> the precipitation proba-<br />

bility function using a two year running average will provide a more appropriate<br />

solution. The effect, <strong>of</strong> course, is to convert the naturally skewed distribu-<br />

tion which results from direct application <strong>of</strong> the basic coefficient relation-<br />

ship to a more normal distribution so <strong>of</strong>ten encountered in the annual flow<br />

relationship. Exercise <strong>of</strong> the judgment option inherent in the alternative<br />

approaches outlined above requires that the planner be cognizant <strong>of</strong> the nature<br />

<strong>of</strong> typical distribution functions in basins <strong>of</strong> similar geologic character.<br />

For areas where freeze is <strong>of</strong> minor concern mean monthly yields can be<br />

estimated by allocating monthly values in proportion to their contribution to<br />

the BCI as defined in equation (3). However, this calculation should be made<br />

using the average two month running total due, again, to the problem <strong>of</strong> lag.<br />

Extension <strong>of</strong> this concept as a means <strong>of</strong> developing a stochastic generator <strong>of</strong><br />

monthly yield needed for preliminary appraisal <strong>of</strong> storage-yield relations is<br />

currently underway.<br />

That is, monthly BCI values based on two month running<br />

averages are being utilized to determine the regression, correlation, and<br />

standard deviation parameters required for stochastic generation <strong>of</strong> long term<br />

monthly yield 191.<br />

Utility <strong>of</strong> the basic relationships can be extended to the determination<br />

<strong>of</strong> additional flow characteristics <strong>with</strong> the acquisition <strong>of</strong> certain short-term<br />

The


258<br />

and miscellaneous field measurements. For example, experience has shown that a<br />

daily flow duration curve obtained from a short-term record acquired over a pe-<br />

riod <strong>of</strong> two to three years can be adjusted to a long-term appraisal if the ordi-<br />

nates <strong>of</strong> the short-term record are expressed as a dimensio<strong>nl</strong>ess ratio to the<br />

average flow observed during the short record period. Subsequent mul.tiplication<br />

<strong>of</strong> these ratios by the long-term mean as determined from Figures 1 and 2 will<br />

provide a reasonable approximation <strong>of</strong> the long-term flow duration curve,<br />

The relations described herein have also proven useful in appraising the<br />

potential yield characteristics <strong>of</strong> coastal aquifers in southern Puerto Rico [IO'.<br />

Historic groundwater use from these aquifers far exceeds the possib1.e direct<br />

recharge assuming all the locally generated flow, as determined from Figure 1,<br />

is di.verted to the groundwater aquifer. In this case the principle recharge<br />

mechanism, excluding the recirculation effect <strong>of</strong> well irrigation, is infi.l.tration<br />

<strong>of</strong> surface water as it flows across the alluvial plain. Figures 1 and 2<br />

were utilized to determine the mean surface inflow from the mountainous central<br />

core at Lne point where the water entered the coastal plain. Following the<br />

analysis <strong>of</strong> various short-term flow duration records which were available, this<br />

mean yield was converted to a daily flow duration curve as described above.<br />

Local stream seepage measurements , available from the U. S. Geological Survey,<br />

were coupled <strong>with</strong> other similar information from prior studies to develop a<br />

channel infiltration rate as a function <strong>of</strong> channel width and slope.<br />

Applica-<br />

tion <strong>of</strong> the potential loss capacity <strong>of</strong> each channel to its flow duration curve<br />

allowed subdivision <strong>of</strong> the surface flow into two components; the portion which<br />

was infiltrated into the subsurface and the portion which escaped tcj th* sea.<br />

An areal mass balance was then performed to determine the magnitude <strong>of</strong> trie<br />

subsurface discharge to the sea (precipitation on the plain plus streamflow<br />

from the mountains minus the sum <strong>of</strong> direct local run<strong>of</strong>f plus evapotranspiration<br />

plus surface flow escaping to the sea). The recharge due to infiltration and<br />

the subsurface discharge to the sea, both as determined above, were then incor-<br />

porated in a subsequent mass balance <strong>of</strong> the subsurtace aquifer in which ïwliarge<br />

was equated to ilet pumping (gross p-mpirig minus recirculation or return flow)<br />

plu: subsurface discharge tu the sea. The calculations were repeated '01 con-<br />

dition? other than the mean, e.g., the vondition <strong>of</strong> protracted drouth. Results<br />

<strong>of</strong> these calculations provided a satisfactory explanation <strong>of</strong> the respons< in<br />

aquiftr water levels that has been expeiienced during both noimal and subnormd<br />

climatic condi t I .,ns.<br />

One additional word <strong>of</strong> caution beforc losjxg this discussion. The<br />

estimates obtained from Figures 1 and 2 as2uine natural catchments, and wtural<br />

climatic ,oriditLons. Whenever man's activities have materially altered he<br />

naturai environment, e.g., by applicatio? <strong>of</strong> irrigation water or the I UI~ ruc-<br />

tion <strong>of</strong> appreciable impervious areas, adjustments must be niade. The fc,l 3ing<br />

will serve L'J illustrate.<br />

Thr lower 6500 hectares <strong>of</strong> Cherry Creek, Colorado is partially iirbanized.<br />

Approxinial eli' 15 percent <strong>of</strong> the area is impervious surface for which hie run..ff<br />

coefficient appioxiniates 0.9, and an addit,( nai 10 perrent is in urban awns<br />

which are heavily irrigated (an average <strong>of</strong> ~uciut t.7 cm per year). 'Hie mem<br />

anmal rainfall appri,. hates 38 m . nd ';c tesponding BCI Is 32. The ad-jii. ;. I:


BCI for the irrigated area approximates 87. An estimate <strong>of</strong> annual yield, <strong>with</strong><br />

and <strong>with</strong>out consideration <strong>of</strong> the man induced changes, is summarized below.<br />

-<br />

Percent Moisture Applied Weighted Run<strong>of</strong>f<br />

Area (a.) C cm.<br />

Natural Conditions<br />

Modified Conditions<br />

100 38 .O25 .97<br />

Natural<br />

Impervious<br />

Irrigated<br />

55<br />

15<br />

30<br />

38<br />

38<br />

104<br />

.O25<br />

.goo<br />

.320<br />

.52<br />

5.12<br />

- 10.00<br />

15.64<br />

The observed mean annual discharge from this 6500 hectare portion <strong>of</strong> the basin<br />

for the four calendar years 1966-69 was approximately 16 centimeters.<br />

The foregoing example is <strong>of</strong> interest on two counts. First, it illustrates<br />

the procedure required for adjusting the appraisal <strong>of</strong> mean yield to accommodate<br />

significant man induced changes. Second, it provides a relatively unique exam-<br />

ple <strong>of</strong> the impact <strong>of</strong> urbanization on flow response.. In many areas the effect <strong>of</strong><br />

urbanization is to reduce the opportunity for recharge and thus diminish baseflow<br />

contributions. The reverse is true for the example cited above. .Here, the im-<br />

pact <strong>of</strong> lawn irrigation in a relatively dry climate has created a substantial<br />

baseflow contribution to the stream and a significant increase in overall yield.<br />

In summary, precipitation and temperature measurements <strong>of</strong>ten represent the<br />

o<strong>nl</strong>y significant hydrologic data available to the water resources planner. AE<br />

empirical function relating the mean run<strong>of</strong>f coefficient to the aforementioned<br />

parameters hac been developed. The relationship has been tested in a wide<br />

range <strong>of</strong> environments, and has proven most useful in undertaking preliminary<br />

assessments <strong>of</strong> water availability. The general utility <strong>of</strong> the relationship can<br />

be extended appreciably <strong>with</strong> limited field data and the application <strong>of</strong> basic<br />

hydrologic concepts. Continued exploration <strong>of</strong> the utilization <strong>of</strong> climatic data<br />

in the preliminary appraisal <strong>of</strong> water yield characteristics must be encouraged.<br />

Acknowledgements<br />

A portion <strong>of</strong> the material described herein was deve.loped during conduct <strong>of</strong><br />

a research project sponsored by the Kansas <strong>Water</strong> <strong>Resources</strong> Research Institute<br />

and the Office <strong>of</strong> <strong>Water</strong> <strong>Resources</strong>, U. â. Department <strong>of</strong> the Interior. The<br />

author is also indebted to Black & Veatch, Consulting Engineers, Kansas City,<br />

Missouri; R. A. Domenech & Associates, Hato Rey, Puerto Rico; and the Puerto<br />

Rico Aqueduct and Sewer Authority for permission to cite information developed<br />

by these several <strong>of</strong>fices in their analysis <strong>of</strong> water availability in Puerto Rico.<br />

References Cited<br />

1. Guisti, E.V. and Lopez, M.A., (1967). Climate and streamflow <strong>of</strong> Puerto<br />

Rico, Carribbean Journal <strong>of</strong> Science, Vol. 7, pp 87-93.<br />

259


260<br />

2. Thornthwalte, C. W., (1931). The climates <strong>of</strong> North America according to a<br />

qew classification, Geographic Review, Vol. 21, pp 633-55.<br />

3.<br />

4.<br />

5.<br />

6.<br />

7.<br />

8.<br />

9.<br />

10.<br />

Smith, RL., (1970). <strong>Water</strong> utilization aspects <strong>of</strong> weather modification in<br />

Kansas, Contribution No. 46, Kansas <strong>Water</strong> <strong>Resources</strong> Research Institute,<br />

Lawrence, Kansas.<br />

Black & Veatch - R. A. Domenech & Assoc., (1971). <strong>Water</strong> <strong>Resources</strong> <strong>of</strong><br />

Puerto Rico, phase 2, surface water appraisal, Puerto Rico Aqueduct<br />

and Sewer Authority, San Juan, Puerto Rico.<br />

Furness, L.W., (1959). Kansas streamflow characteristics, part 1, flow<br />

duration, Kansas <strong>Water</strong> <strong>Resources</strong> Board Technical Report No. 1, Topeka,<br />

Kansas.<br />

Linsley, B.K. and Crawford, N.H., (1963). Estimate <strong>of</strong> the hydrologic<br />

results <strong>of</strong> rainfall augmentation, Journal <strong>of</strong> Applied Meteorology,<br />

Vol. 2, NO. 3, pp 426-427.<br />

Crawford, N.H., (1965). Hydrologic consequences <strong>of</strong> weather modification:<br />

case studies, Human Dimensions <strong>of</strong> the Atmosphere, University <strong>of</strong> Chicago<br />

Press, Chicago, Illinois, pp 41-57.<br />

Lumb, A.M., (1969). Hydrologic effects <strong>of</strong> rainfall augmentation, Tech.<br />

Report 116, Dept. <strong>of</strong> Civil Engineering, Stanford University, Palo<br />

Alto, Calif ornia.<br />

Thomas, KA., Jr. and Fiering, M., (1962). Mathematical synthesis <strong>of</strong><br />

streamflow sequences for the analysis <strong>of</strong> river basins by simulation,<br />

<strong>Design</strong> <strong>of</strong> <strong>Water</strong> Resource Systems, Chapter 12, Harvard Press, Cambridge,<br />

Mass achuse t t s.<br />

Black & Veatch - R. A. Domenech & Assoc., (1970). <strong>Water</strong> <strong>Resources</strong> <strong>of</strong><br />

Puerto Rico, phase 1, ground water appraisal, Puerto Rico Aqueduct<br />

and Sewer Authority, San Juan, Puerto Rico.


z<br />

9<br />

t- U<br />

o -7<br />

O .6<br />

o -5<br />

k<br />

0<br />

o<br />

E 0.4<br />

n.<br />

z<br />

U<br />

w<br />

2<br />

I*<br />

k 0.3<br />

O<br />

z<br />

3<br />

K<br />

z<br />

Q<br />

w<br />

E 0.2<br />

0.1<br />

o .o<br />

COORDINATES<br />

COEFFICIENT<br />

110 .430<br />

I20 .470<br />

140 .5 35<br />

I GO ,583<br />

I RO .624<br />

20 o .655<br />

I I I<br />

O 40 80 120 I60 200<br />

BASIN CLIMATIC INDEX<br />

Figure 1 - Basic climatic index related to the ratio <strong>of</strong> mean run<strong>of</strong>f<br />

divided by mean precipitation<br />

261


262<br />

300<br />

200 -<br />

PUERTO RICO CURVES<br />

ME& BASIN ELEVATION<br />

1500 METERS<br />

1000 METERS<br />

x<br />

Li1<br />

O<br />

z<br />

o100 -<br />

i=<br />

a<br />

z - J<br />

o<br />

5<br />

cn<br />

a 50m<br />

TYPICAL<br />

CURVE<br />

SOO METERS<br />

-<br />

20 20 50 100 200 500<br />

MEAN ANNUAL PRECIPITATION - CENTIMETERS<br />

Figure 2 - Selected examples <strong>of</strong> the relationship between precipitation<br />

and basin climatic index


‘5 1.0<br />

w<br />

E<br />

w<br />

2 0.5<br />

J<br />

3<br />

o -1<br />

a<br />

O<br />

o. 2<br />

OBSERVED MEAN DfSCHARGE IN CMS<br />

MEAFJ ANNUAL RAINFAL.LA<br />

RUNOFF RELATION FOR<br />

STATE OF KANSAS, USA.<br />

BASED ON 122 DATA POINTS<br />

0<br />

(FURNES)<br />

CALCULATED USING STANDARD COEFFI-<br />

CIENT CHART<br />

I I I<br />

40 60 80 100 I20<br />

MEAN ANNUAL PRECIPITATION - CENTIMETERS<br />

Figure 3 - Sone canparative rec4ults obtaiiied <strong>with</strong> the basic BCI vs C<br />

relationship<br />

-<br />

263<br />

40.<br />

2 o.<br />

cn<br />

u:<br />

IO. E<br />

W<br />

T.<br />

_-<br />

I- z<br />

w<br />

4. u<br />

I<br />

IA.<br />

L<br />

O<br />

2. z<br />

3<br />

u<br />

J<br />

Q<br />

I 3<br />

z<br />

<<br />

z<br />

a<br />

w<br />

1.4 2<br />

).2


264<br />

O<br />

in<br />

ó<br />

J<br />

a<br />

3<br />

U<br />

W<br />

2.<br />

k<br />

4<br />

ai<br />

IO<br />

5<br />

2 0 1.0<br />

a:<br />

a<br />

k-<br />

a<br />

W<br />

3 0.5<br />

9<br />

-J<br />

4<br />

æ<br />

z<br />

a<br />

*I*<br />

0)<br />

IJJ<br />

3<br />

-J<br />

3<br />

J 0.1<br />

rr(<br />

53<br />

z<br />

a<br />

0.05<br />

\ \<br />

-++H-OBSERVED ANNUAL RAINFALL<br />

O000 OBSERVED ANNUAL STREAMFLOW<br />

CURVE FITTED TO RAINFALL DATA<br />

---- CALCULATED STREAMFLOVJ CURVE<br />

\<br />

O ooo\<br />

\<br />

o \<br />

O\<br />

\<br />

\<br />

O L<br />

__<br />

.O5 .I5 .30 .50 .70 .85 .95<br />

PROBABILITY OF EXCEEDANCE<br />

Figure 4 - An example plot <strong>of</strong> calculated versus observed probability<br />

distribution <strong>of</strong> annual flows<br />

O


ABSTRACT<br />

DETERMINATION OF HYDROLOGICAL CHARACTERISTICS<br />

IN POINTS WITHOUT DIRECT HYDROMETRIC DATA<br />

S i 1 v i u S t an e s c u Jc<br />

In Colombia, hydrological information is very scarce.<br />

Consequently no direct hydrometric data are available for most<br />

<strong>of</strong> the sites <strong>of</strong> projected hydrotechnical works and exploitation<br />

<strong>of</strong> water. Therefore one must generally apply methods <strong>of</strong> generalization,<br />

transfer <strong>of</strong> direct information from observed points<br />

to points <strong>of</strong> interest, and indirect estimation <strong>of</strong> the hydrological<br />

characteristics. In relation <strong>with</strong> this, there are several<br />

proceedings <strong>of</strong> indirect determination <strong>of</strong> mean, maximum and<br />

minimum run<strong>of</strong>f, as well as <strong>of</strong> other characteristics <strong>of</strong> the<br />

hydrological regime which are applied to the concrete conditions<br />

<strong>of</strong> Colombia. The examples, which are included to illustrate the<br />

application <strong>of</strong> the methods pointed out, are selected from complex<br />

hydrological studies, elaborated or in the process <strong>of</strong> elaboration,<br />

<strong>with</strong>in the frame <strong>of</strong> the activities <strong>of</strong> interpretation and hydrological<br />

calculations worked out in the Colombian Service <strong>of</strong> Meteoro -<br />

logy and <strong>Hydrology</strong>.<br />

RESUMEN<br />

En Colombia, la información hidrológica es muy escasa. Co-<br />

mo consecuencia, la mayoría de los sitios de proyectos de obras -<br />

hidrotécnicas y aprovechamientos de agua no disponen de datos hi-<br />

drométricos directos. De tal manera, se deben aplicar ampliamente<br />

métodos de generalización, de transferencia de información direc-<br />

ta desde puntos en que se dispone de observaciones y mediciones -<br />

hacia puntos de interés práctico, así como métodos de calculo in-<br />

directo de las características hidrológicas. Relacionado con esto,<br />

se presentan varios procedimientos de determinación indirecta de<br />

caudales medios, máximos y minimos, así como de otras caracteris-<br />

ticas del régimen hidrológico, aplicados a las condiciones concre<br />

tas de Colombia. Los ejemplos que se incluyen para ilustrar la -<br />

aplicación de los métodos indicados son seleccionados de estudios<br />

hidrológicos complejos, elaborados o en curso de elaboración den-<br />

tro del marco de labores de interpretación y cálculos hidrológi--<br />

cos desarrollados en el Servicio Colombiano de Meteorología e Hi-<br />

drología.<br />

* <strong>Hydrology</strong> Expert - World Meteorological Organization and United<br />

Nations Development - Program. Bogotá, Colombia - Servicio Co--<br />

lombiano de Meteorología e Hidrología.<br />

-


266<br />

Introduction and generali ties<br />

In Colombia, owing to the scarcity <strong>of</strong> direct hydrometric<br />

information, in most <strong>of</strong> tile specific cases, the sites <strong>of</strong> hydro-<br />

technical works, water uses or other works which come in direct<br />

or indirect contact <strong>with</strong> the rivers, do not coincide <strong>with</strong> the<br />

sites <strong>of</strong> the hydrometric stations. In such cases, the necessary<br />

hydrological parameters must be determined by methods <strong>of</strong> indirect<br />

estimation. The indirect nydrologic estimations are not however<br />

considered as final values, but o<strong>nl</strong>y used in an approximate way<br />

or for guidance. The magnitude <strong>of</strong> these estimations is verified<br />

by means <strong>of</strong> hydrological field activities, which are generally<br />

grouped into two categories:<br />

a) Temporary hydrometric stations.<br />

b) Expeditional hydrological activities.<br />

The temporary hydrometric stations <strong>with</strong> intensive and complex<br />

programs <strong>of</strong> observations and measurements have been widely used<br />

in Colombia, and in particular for dam and reservoir projects<br />

for hydroenergetic purposes, drinking and industrial water uses,<br />

for the most important towns in the country, irrigation and<br />

drainage districts <strong>of</strong> national importance, and, to a lesser<br />

extent, for navegation, construction arid protection <strong>of</strong> bridges,<br />

and also for preservation <strong>of</strong> hydrographic basins.<br />

The expeditional hydrological activities have also encountered<br />

a very wide field <strong>of</strong> application, especially in aqueduct projects<br />

for medium and small towns, road bridges and sewers, land use<br />

programming, reforestation programmes,.prefeasibility studies for<br />

work projects which come in direct or indirect contact <strong>with</strong> the<br />

water currents, and also when planning the use <strong>of</strong> hydric resources.<br />

Regarding this latter aspect, the expeditional hydrological<br />

activities not o<strong>nl</strong>y act as a means <strong>of</strong> verifying indirect Iiydrological<br />

estimations, but tiicy moreover constitute almost UE o<strong>nl</strong>y<br />

really acceptable and reliable way <strong>of</strong> assessing the scope <strong>of</strong> the<br />

hydrological parameters in over half the national territory (in<br />

other words 60ú- 000 km2) , where the stationary hydrological<br />

activities are almost completely missing.<br />

The use <strong>of</strong> temporary hydrometric stations is very similar to<br />

the use <strong>of</strong> what are normally called secondary stations. As this<br />

is generally a known method, no details on this question will be<br />

given. O<strong>nl</strong>y the most important features <strong>of</strong> the problem will be<br />

presented.<br />

More emphasis however will be made when describing<br />

the most usual methods <strong>of</strong> the expeditional hydrological<br />

activities, since in Colombia, these vast fields <strong>of</strong> application<br />

are not o<strong>nl</strong>y found in the past, but also in the present and the<br />

future.


Verification <strong>of</strong> hydrological estimations by means <strong>of</strong><br />

temp o r a ry hy d rometric stations,<br />

The hydrometric activity <strong>of</strong> one or several temporary<br />

stations <strong>with</strong> complex and intensive observations and measurements<br />

programmes, verifies and completes the hydrological estimations,<br />

riot o<strong>nl</strong>y by means <strong>of</strong> direct data it provides during its operation,<br />

but also through the possibility <strong>of</strong> spreading its series <strong>of</strong> direct<br />

data, by means <strong>of</strong> correlatioris <strong>with</strong> data <strong>of</strong> other reference<br />

stations, which have been working for over 15 years, in zones<br />

<strong>of</strong> similar hydrological characteristics.<br />

In most cases, preference is to install one <strong>of</strong> the temporary<br />

hydrometric stations exactly in or near the sites <strong>of</strong> the projected<br />

works. The stretch <strong>of</strong> river corresponding to the work site does<br />

not always however meet satisfactory conditions to install a<br />

hydrometric station. In such cases, various hydrometric stations<br />

must be installed in the hydrographic basin where the site <strong>of</strong> the<br />

works is found, and later deduct the hydrological parameters<br />

by interpolation, balance <strong>of</strong> discharges or relation <strong>with</strong> physiographic<br />

or morphometric characteristics <strong>of</strong> the basin,<br />

In many cases, although a temporary hydrometric station can<br />

be installed in the very site <strong>of</strong> the projected works, it proves<br />

preferible to install several more stations in the corresponding<br />

hydrographic basin, in order to have possibilities <strong>of</strong><br />

controlling the activity developed in the station <strong>of</strong> the works<br />

site, complete the eventual gaps in observations and measurements,<br />

avoid errors and confirm the results,<br />

The working duration <strong>of</strong> the temporary hydrometric stations<br />

is variable, pursuant to the specific conditions. When the<br />

temporary station is right in the river as .the reference station,<br />

and the areas <strong>of</strong> its hydrographic basins differ by less than lo%,<br />

the correlation is generally established in one year alone.<br />

\then the two stations are in the same river, but the areas <strong>of</strong><br />

their basins differ by over lo%, the time needed to establish<br />

a reliable correlation takes various years, In short, when the<br />

temporary station is not in the same river as the reference one,<br />

the operation <strong>of</strong> the first one does not end when an acceptable<br />

mathematical correlation is obtained, but as soon as this is<br />

physically verified, during a period which contains sufficient<br />

humid and dry average years, in other words, rather representative<br />

for the average nultiannual situation, Otherwise the correlation<br />

obtained, although good from a mathematical point <strong>of</strong> view, may<br />

o<strong>nl</strong>y express a temporary situation, which would lead to great errors<br />

Besides the above cases, situations have occasionally been<br />

found where the reference station was too far from the site <strong>of</strong><br />

the projected works. Hence a direct correlation was practically<br />

impossible to establish. The problem could however be solved<br />

<strong>with</strong> various intermediary stations, which facilitated the transfer<br />

<strong>of</strong> data, by means <strong>of</strong> chain correlations.<br />

267


268<br />

The decision to suspend the running <strong>of</strong> a temporary hydro-<br />

metric station has always constituted a great difficulty.<br />

Generally, o<strong>nl</strong>y in a very few cases can the duration <strong>of</strong> operation<br />

<strong>of</strong> these stations be really considered sufficient. Therefore,<br />

even after the works execution has commenced, it is considered<br />

preferible to continue running temporary stations near these<br />

work sites, and these stations sometimes remain in operation<br />

even after the corresponding exploitation has started. The<br />

supplementary data supplied by these stations prove highly useful<br />

to complete and confirm the hydrological estimations, and also<br />

as guidance for eventual improvements in both the works and in<br />

the water uses programmes,<br />

Verification <strong>of</strong> indirect hydrological estimations by<br />

cxpeditional methods<br />

The verification <strong>of</strong> hydrological estimations by means <strong>of</strong><br />

temporary hydrometric stations <strong>with</strong> intensive and complex<br />

programmes <strong>of</strong> observations and measurements, constitutes a superior<br />

method, from a qualitative point <strong>of</strong> view, in relation <strong>with</strong> the<br />

verification <strong>of</strong> estimations by means <strong>of</strong> expeditional hydrological<br />

activities. It is not always however possible to install and<br />

operate stations in the sites <strong>of</strong> the projected works and water<br />

uses, or in their hydrographic basins. In scarcely populated<br />

regions, it is difficult to operate hydrometric stations, but<br />

the estimation <strong>of</strong> the main hydrological parameters <strong>of</strong> these<br />

areas is essential to plan the uses <strong>of</strong> hydric resources on a<br />

long term basis and also for prefeasibility studies. This<br />

situation is due to certain specific conditions, In Colombia,<br />

in more than half the national territory, the land communication<br />

lines are completely or partly missing, or are in a deficient<br />

state, such that in rainy periods, penetration is rarely possible.<br />

In these areas moreover, it is very difficult to find<br />

satisfactorily qualified people to act as hydrometric observers,<br />

and the installation <strong>of</strong> limnigraphs, in areas which have no<br />

watchkeepers, generally proves a hazard and failure.<br />

The lack <strong>of</strong> hydrometric networks, and the difficulty <strong>of</strong><br />

organizing stationary hydrological activities in almost half<br />

the national territory, constitute conditions which favour the<br />

wide use <strong>of</strong> expeditional hydrological activities. Although<br />

these cannot give well defined determinations <strong>of</strong> the hydrological<br />

system characteristics, as the Stationary systematic hydrometry<br />

cannot be substituted, they constitute essential work to verify<br />

hydrological estimations or to obtain approximate or guide<br />

indications in isolated regions <strong>of</strong> difficult access, where the<br />

installation and operation <strong>of</strong> hydrometric stations fail to<br />

encounter satisfactory conditions.<br />

The hydrological measurements in campaigns are frequently<br />

applied in Colombia to determine the following factors:


a) Maximum discharges, duration <strong>of</strong> floods and<br />

time <strong>of</strong> wave propagation;<br />

b) Minimum flows and duration <strong>of</strong> low waters;<br />

c) Sediment charges;<br />

d) <strong>Water</strong> temperatures;<br />

e) Physical, chemical and biological<br />

characteristics <strong>of</strong> the water;<br />

f) Overall hydrological characteristics <strong>of</strong><br />

the currents.<br />

üetermination <strong>of</strong> maximum discharges and flood characteristics<br />

by means <strong>of</strong> hyd rological expeditions<br />

269<br />

In most <strong>of</strong> the concrete situations (except the case <strong>of</strong><br />

flood sweeping), the aim is to determine the maximum run<strong>of</strong>f,<br />

pursuant to information on maximum historic levels and maximum<br />

floods known in the region, which supposes the almost total<br />

absence <strong>of</strong> evident traces <strong>of</strong> maximum waters in the beds <strong>of</strong> the<br />

currents.<br />

Thus, the information obtained on the field, acquires<br />

decisive importance. It can be classified into two categories:<br />

a) Information supplied by the river bank dwellers,<br />

b) Microphysiographic analysis in the largest beds<br />

<strong>of</strong> the rivers and on their banks.<br />

The information solicited from the river-bank dwellers<br />

refers to the following factors:<br />

a) The maximum level <strong>of</strong> the greatest flood known,<br />

b) The year and eventually the date when the flood<br />

came about,<br />

c) The time the flood waters took to reach their<br />

maximum level,<br />

d) The time the waters took in dropping to their<br />

normal levels,<br />

e) Eventual artificial influences on the maximum<br />

run<strong>of</strong>f system,<br />

Pursuant to the specific possibilities, the information<br />

on maximum waters is solicited from river-bank dwellers who<br />

have lived on the premises for over 30 years and the questions<br />

are put to various people, in order to have a chance to compare<br />

replies,<br />

The microphysiographic analysis in the largest beds <strong>of</strong><br />

the currents and on their banks, consider the possibility<br />

<strong>of</strong> finding certain traces about the maximum water levels,<br />

These analysis generally refer to the following factors:<br />

a) Geomorphological aspect,<br />

b) Alluvial material and grounds;<br />

c) Vegetation and organic vegetable material


270<br />

The geomorphological or morphohydrographic aspect <strong>of</strong> the bed<br />

constitutes the first sign on the possibility <strong>of</strong> the river waters<br />

overflowing. The indicative details are micromorphological<br />

aspects <strong>of</strong> very recent age, traces <strong>of</strong> erosion processes, alluvial<br />

formations scarcely fixed by the vegetation etc, Sometimes<br />

one can even determine lines <strong>of</strong> separation between the lowest parts<br />

<strong>of</strong> the banks, characterized by very recent morphogenetic<br />

processes, and the upper parts <strong>of</strong> same, relatively fixed and <strong>of</strong><br />

more advanced evolution. All the information resulting from<br />

the detailed analysis <strong>of</strong> the bed micromorphology, cannot lead<br />

to an exact determination <strong>of</strong> the maximum level <strong>of</strong> the waters, but<br />

it does <strong>of</strong>fer a first and very useful general guidance, on the<br />

extension <strong>of</strong> the maximum flood and its possible lines <strong>of</strong> demark-<br />

ation on the banks or in the largest bed.<br />

The micromorphological analysis is completed <strong>with</strong> observ-<br />

ations on the alluvial materials and the soil. The fine sediments,<br />

coming from the smaller bed, found on the banks, are a sure sign<br />

<strong>of</strong> flooding. The secondary soil, discontinuous on surface, and<br />

those which are scarcely at the beginning <strong>of</strong> the formation<br />

processes, also indicate the overflow <strong>of</strong> the waters, Finally,<br />

the mineralogical analysis <strong>of</strong> the fine sepry recent sediments<br />

<strong>of</strong> the largest bed, may indicate the presence <strong>of</strong> materials which<br />

are not <strong>of</strong> that place but come from upstream in the section under<br />

study, which indicates the flooding <strong>of</strong> the larger bed. The<br />

vegetation can also indicate the overflow <strong>of</strong> the waters, On the<br />

one hand, the discontinuity <strong>of</strong> the vegetable formations indicates<br />

the approximate limit <strong>of</strong> the flood. On the other hand, the<br />

detailled inventary <strong>of</strong> the vegetable species <strong>of</strong> the area can<br />

constitute a highly important piece <strong>of</strong> information, because all<br />

vegetable material which is different, in the larger bed, may<br />

have been brought by floods from upstream. The detailed<br />

laboratory analysis <strong>of</strong> the vegetable content <strong>of</strong> the sample<br />

sediments aiid soils may lead to decisive results, when pollen<br />

particles are found in them which do not belong to the vegetable<br />

species <strong>of</strong> the area under study, but to others from upstream zones.<br />

During the .land activities, the river-bank dwellers'<br />

information is always completed <strong>with</strong> microphysiographic analysis<br />

made in the largest beds <strong>of</strong> .the currents and on the banks <strong>of</strong> same.<br />

Without these analysis, the riversiders' information cannot be<br />

verified, and can consequently i d to very great mistakes, The<br />

errors arise from subjective reasons which make the riversiders<br />

hide the truth or merely <strong>of</strong>fer information on unknown events.<br />

The microphysiographic information, although unable to fix the<br />

maximum level <strong>of</strong> the waters, indicates essential approximations,<br />

as general guidance and verification factors.<br />

Besides finding information on the characteristics <strong>of</strong> the<br />

maximum run<strong>of</strong>f (iiiformation frorii river-side dwellers and micro-<br />

physiographic information), the following main operations are<br />

carried out in each section studied:


271<br />

Survey <strong>of</strong> three cross-sectional pr<strong>of</strong>iles, spaced at<br />

equal distances or more, <strong>of</strong> the river width, and<br />

continuing for no less than 1 m, above the maximum<br />

historic level <strong>of</strong> the waters. During the survey, the<br />

maximum levels are markeù on the pr<strong>of</strong>iles, and any<br />

lithological sign <strong>of</strong> soil or vegetable removed from<br />

the place;<br />

Survey <strong>of</strong> the longitudinal pr<strong>of</strong>ile <strong>of</strong> the current,<br />

<strong>with</strong> a length equal to or at least 5 times the width<br />

<strong>of</strong> the river.<br />

Execution <strong>of</strong> at least one gaging (if the natural<br />

conditions so permit)<br />

Approximate drawing <strong>of</strong> the river span, including the<br />

largest bed, the marking <strong>of</strong> the cross-sectional pr<strong>of</strong>iles;<br />

indications on the types and sizes <strong>of</strong> lithological<br />

materials and vegetation <strong>of</strong> the largest and smallest bed,<br />

the lines defining the maximum flood, certain reference<br />

elements, etc.);<br />

Sampling <strong>of</strong> sediments <strong>of</strong> the smaller bed and <strong>of</strong> alluvial<br />

material, and eventually soils from the larger bed and banks,<br />

along the cross-sectional pr<strong>of</strong>iles made;<br />

Inventary <strong>of</strong> the vegetable species <strong>of</strong> the area and eompiling<br />

<strong>of</strong> vegetable remains differing to the local species,<br />

The litliological samples <strong>of</strong> soil or vegetables are suitably<br />

packed, and all the necessary references are marked on the<br />

packages to establish the site from which they have been taken.<br />

Afterwards, pursuant to possibilities, the samples are analysed<br />

in the laboratory.<br />

The above activities are made in various representative<br />

sections <strong>of</strong> the hydrographic basin studied, in order to have<br />

sufficient data available to permit a comparison <strong>of</strong> values,<br />

an analysis <strong>of</strong> the territorial variation <strong>of</strong> same and generalization<br />

<strong>of</strong> run<strong>of</strong>f maximum. During the field work, the information from<br />

different sections are permanently compared, bearing in mind the<br />

territorial continuation <strong>of</strong> the processes, the variation <strong>of</strong><br />

the magnitudes, the periods and dates on which the events have<br />

come about, etc,<br />

Once the field and laboratory activities have beencompleted,<br />

the following factors are determineo during <strong>of</strong>fice work:<br />

a) Maximum discharges <strong>of</strong> homogeneous probability (generally 1%).<br />

b) Main flood characteristics;<br />

c) Eventually, time <strong>of</strong> wave propagation.<br />

The discharges corresponding to the maximum historic levels<br />

are calculated by hydraulic methods. The measurements made<br />

during the expeditions help to determine the hydraulic formula<br />

factors which contain the rugosity coefficient. These values<br />

are not used directly when estimating the maximum discharges,<br />

but merely <strong>of</strong>fer comparison criteria. Once the maximum historic


2 72<br />

discharges corresponding to a certain frequency have been<br />

calculated (for example 3% if they have been produced in<br />

30 yars), the values should be increased, in accordance <strong>with</strong><br />

the coefficients, which permit one to pass from larger<br />

frequencies to rare occurrences. Thus a homogeneization <strong>of</strong> data<br />

is made (the 1% probability is convenient), essential for<br />

comparisons and generalization. In order to change values<br />

<strong>of</strong> various probabilities into 1% probability values, it is<br />

preferible to use coefficients established <strong>with</strong> base on the<br />

direct hydrometric data available in the same zones or in<br />

regions which are hydrologically similar. If these completely<br />

fail, coefficients will then be used estimated <strong>with</strong> base on the<br />

theoretic frequency curves, considered adequate for the region<br />

under survey,<br />

A final verification <strong>of</strong> the 1% maximum probability discharges<br />

- is made through generalizations <strong>of</strong> various forms. The most<br />

comfipn are the type: Qmax = f (A); lg qmax = f(1gA); qmax =<br />

f ( ); etc, where Qmas = maximum discharge, in m3/s; A area<br />

<strong>of</strong> R e basin in km2; qmax = maximum yield, in l/s/km2, or mm;<br />

Hm = average elevation <strong>of</strong> the basin, in m; n = a subunit exponent,<br />

specific for the natural conditions <strong>of</strong> a given zone; f = a<br />

different function for each zone.<br />

The chief flood characteristics (swelling time and total<br />

duration <strong>of</strong> same) are also verified by comparison <strong>of</strong> data and<br />

generalizations. These latter are determined by reason <strong>of</strong><br />

various morphometric and physiographic factors <strong>of</strong> the hydro-<br />

graphic basins (length <strong>of</strong> currents, gradients <strong>of</strong> same, etc,)<br />

Likewise, the time <strong>of</strong> wave propagation is also verified and<br />

defined. The generalizations are generally determined in<br />

relation <strong>with</strong> the lengths and gradients <strong>of</strong> the currents,<br />

The final verification <strong>of</strong> the results is made by comparison<br />

<strong>with</strong> the direct hydrometric data available in the region. Thus,<br />

it is not acceptable that the 1% probability maximum discharges<br />

estimate? by expeditional methods, be less than the discharges<br />

measured in hydrometric stations, during short intervals,<br />

Determination <strong>of</strong> minimum discharges and duration <strong>of</strong> low waters<br />

by expeditional methods.<br />

In most <strong>of</strong> the concrete situations, the minimum low water<br />

characteristics are determined during the expeditions made to<br />

find the maximum run<strong>of</strong>f, subject to the condition that these be<br />

made during low waters.<br />

The activities developed on the field have three categories:<br />

a) Compiling <strong>of</strong> information froin the riversiders.<br />

b) Hydrological and topographic work in the bed <strong>of</strong> the current.<br />

c) Observations on the lithology and freatic layers <strong>of</strong> the region,<br />

The reports from the riversiders refer to the following aspects


273<br />

a) Eventual interruption <strong>of</strong> the run<strong>of</strong>f,<br />

b) Minimum historic levels;<br />

c) Year and month when the run<strong>of</strong>f was interrupted or when<br />

the minimum level came about,<br />

d) Low waters and duration <strong>of</strong> same,<br />

e) Eventual artificial influences on the minimum run<strong>of</strong>f system.<br />

Preferibly the information is requested from various people<br />

who have lived near the river, for ovcr 30 years. The most<br />

marked sections €or analysis are those which pertain to spans<br />

<strong>of</strong> current where ancient floodgate openings are found, and also<br />

the sections near to irrigation land. The existence <strong>of</strong><br />

derivations, upstream from the section under survey, must be<br />

considered, to avoid considering the minimum discharges in<br />

influenced state as minimums in natural state.<br />

Tile hydrological aiid topographic work in the bed refer to<br />

the following:<br />

a) Execution <strong>of</strong> measurements;<br />

b) Topographic survey <strong>of</strong> loiigi tudinal pr<strong>of</strong> iles,<br />

The measurements are generally made by wading. After making<br />

the measurements, the wet section is drawn and on this, the line<br />

<strong>of</strong> the surface <strong>of</strong> the water corrcsponding to the lowest water<br />

(in accordance <strong>with</strong> the information on minimum historic levels).<br />

The topographic survey <strong>of</strong> longitudinal pr<strong>of</strong>iles is made on<br />

the water surface, and spreads for at least three times the<br />

width <strong>of</strong> the lower bed. These operations are made in various<br />

sectioiis representing the basin or area under survey, which<br />

are generally assimilated in the main confluences, The information<br />

is permanently compared, bearing in mind the territorial<br />

continuity <strong>of</strong> the hydrological phenomena.<br />

Throughout the hydrological expeditions , the lithology <strong>of</strong><br />

the region is continually observed. If geological maps are<br />

available, they are taken to the field, to have prior indications<br />

on the areas where there are permeable rocks Any discontinuity<br />

in the run<strong>of</strong>f during low waters should be explained either as<br />

a result <strong>of</strong> human activities or due to lithological influences,<br />

Research on the depth <strong>of</strong> the freatic layers, in existing wells,<br />

is also made, and also on possible contacts <strong>of</strong> these layers <strong>with</strong><br />

the flows, which could constitute an important additional inform-<br />

ation for estimating the minimum run<strong>of</strong>f characteristics.<br />

The estimations, interpretation, verification and generalization<br />

<strong>of</strong> data are made at a later stage, at the <strong>of</strong>fice. The minimum<br />

discharges are estimated by means <strong>of</strong> hydraulic methods, For the<br />

factor containing the rugosity coefficient, the values are used<br />

which result from the measurements made, The discharges <strong>of</strong><br />

diverse statistical probabilities are transformed into 97%<br />

probability discharges (three times in 100 years) to obtain liomogeneous<br />

values which can be compared. The coefficients used to


274<br />

change values <strong>of</strong> greater frequency into values <strong>of</strong> lesser<br />

probability shauld be determined based on direct hydrometric<br />

data <strong>of</strong> the zone or regions <strong>with</strong> similar hydrological system,<br />

If these fail, determinate coefficients may be used based on<br />

the theoretic frequency curves, considered adequate for the<br />

region studied.<br />

In the event <strong>of</strong> intermittent run<strong>of</strong>f flows once in 30 years,<br />

all the minimum discharges <strong>with</strong> probabilities above 959. may<br />

be considered the same or zero.<br />

The 97% probability minimum discharges are firstly analysed<br />

in relation <strong>with</strong> the areas <strong>of</strong> basins and by means <strong>of</strong> balances <strong>of</strong><br />

discharges. The yields are analyzed by means <strong>of</strong> generalization<br />

relations, which may be <strong>of</strong> type qmin = f (iim) for mountainous<br />

areas and qmin = f (B%) or qmin = f (Ud) for flat areas, In<br />

these relations qmin = minimurn yield, in l/s/km2, or mm; Iim =<br />

average elevation <strong>of</strong> the basin, in m; B% = forestal covering<br />

coefficient <strong>of</strong> the basin, in %; Ud = drainage density or density<br />

<strong>of</strong> the hydrographic network in km/km2; and f = a different function<br />

in each zone.<br />

If maps are available <strong>with</strong> monthly mean isohyets, the minimum<br />

yields may be compared <strong>with</strong> the monthly mean precipitations <strong>of</strong><br />

the driest month, by means <strong>of</strong> relations <strong>of</strong> type qmin = f(Pm),<br />

where Pm = mean precipitation <strong>of</strong> the driest month, in the basin<br />

correspoiiding to each section, in mm.<br />

The duration <strong>of</strong> the low waters is analysed from the point <strong>of</strong><br />

view <strong>of</strong> territorial continuation <strong>of</strong> the hydrological phenomena<br />

aiid moreover, in relation <strong>with</strong> the distribution <strong>of</strong> the precipit-<br />

ations <strong>with</strong>in the year, When special meteorological maps are<br />

available, indicating the average duration <strong>of</strong> the drought periods,<br />

this data can be used to verify the maximum low water durations,<br />

by means <strong>of</strong> relations <strong>of</strong> type Te = f(Ts), where Te = time or<br />

duration <strong>of</strong> the drougnt period, in days; and f = a different<br />

function in each zone.<br />

Determination <strong>of</strong> sediment charges by expeditional methods<br />

The hydrological campaigns to determine sediment charges<br />

are made during high waters periods and after floods <strong>of</strong> certain<br />

importance have occurred, The expeditions organized during high<br />

waters periods try to determine sediment charges in suspension,<br />

whereas the others refer to haulage volumes.<br />

The main activities to determine sediment charges in suspension<br />

are as follows:


a) Sampling <strong>of</strong> waters <strong>with</strong> suspensions;<br />

b) Execution <strong>of</strong> measurements;<br />

c) Geomorphological observation <strong>of</strong> the land.<br />

275<br />

The water samples are taken during tlie execution <strong>of</strong><br />

measurements, in tlie same points where tlie speeds <strong>of</strong> the<br />

water are measured. The measurements and water sampling<br />

are made in various characteristic sections <strong>of</strong> the hydrographic<br />

basin or study zone, where bridges or other facilities<br />

are available to execute the gagirigs.<br />

iluring these runs, permanent geomorphological observations<br />

are made on the existence <strong>of</strong> erosion processes, land degradation,<br />

lithological conditions ardvegetation, and also their relation<br />

<strong>with</strong> washing <strong>of</strong> the soils, etc. All these factors help to<br />

explain the abrupt changes in the territorial variation <strong>of</strong> the<br />

sediment concentration. To make our work easier and as general<br />

guidance, it is convenient to take to the field the lithological<br />

or geological, general geomorphological and special geomorphological<br />

maps (gradient, fragmentation <strong>of</strong> the relief, erosion, etc) if<br />

they exist.<br />

Once they have been estimated, the sediment charges in<br />

suspension are analysed, bearing in mind the territorial<br />

continuity <strong>of</strong> the hydrological processes, Any discontinuity<br />

ihould be explained by tlie different contribution <strong>of</strong> any <strong>of</strong><br />

the affluents, or by evident morpholithological changes in the<br />

basin, which determine changes in the erosion and the transport<br />

<strong>of</strong> sediments. The concentration <strong>of</strong> sediments in suspension may<br />

moreover be analysed in function <strong>of</strong> the territorial variation <strong>of</strong><br />

tlie corresponding run<strong>of</strong>f, <strong>with</strong>in the hydrographic basin or area<br />

studied.<br />

In order to establish the magnitude <strong>of</strong> the averages <strong>of</strong> sedi-<br />

ment concentration in suspension, various hydrological campaigns<br />

are made, until relations between discharges and sediment<br />

charges, in various characteristic sections can be determined.<br />

Thus, the verification and generalization <strong>of</strong> concentrations or<br />

sediment charges in suspension is made through the flow and run-<br />

<strong>of</strong>f magnitudes,<br />

Finally, the verification <strong>of</strong> the magnitude <strong>of</strong> the average<br />

values <strong>of</strong> eoncentretion <strong>of</strong> suspensions is made, by morpholitho-<br />

logical zones, in function <strong>of</strong> the variation <strong>of</strong> the gradients,<br />

coefficients <strong>of</strong> covering <strong>with</strong> forestal vegetation, etc.<br />

To find voluniEs <strong>of</strong> dragged sediments, certain activities are<br />

carried out, during low water periods, and the following are the<br />

most important among these:<br />

a) Set up marks and fixed reference points.<br />

b) Topographic surveys <strong>of</strong> alluvial accumulations in flow beds;<br />

c) Set up and recover traps for sediments and measure accumula<br />

t i on s .


276<br />

These operations are performed in various characteristic<br />

sections , generally downstream <strong>of</strong> important confluences regard-<br />

ing the drags contribution. To obtain a general idea on tlie<br />

size <strong>of</strong> the sediment charges dragged along, various campaigns<br />

are made. In the first, the marks and fixed reference points<br />

are set up on the banks, in the larger lied, and sometimes even<br />

iii tile smaller bed <strong>of</strong> the currents, and also the sediment traps<br />

in the smaller and larger river beds. In later campaigns,<br />

topographic surveys are made <strong>of</strong> the alluvial accumulations;<br />

the sediments accumulated in the traps are removed; the marks<br />

are repaired and also the reference points that have been<br />

damaged during floods, and the traps are again set up for bottom<br />

sediments.<br />

lhe dragged sediment charges are analysed in relation <strong>with</strong><br />

the magnitude <strong>of</strong> the discharges and suspension charges, and also<br />

in function <strong>of</strong> the morpliolitliolpgical local conditions (litho-<br />

logical complexes, erosion and gradient processes, etc.)<br />

Finally, coeffients may be established which, for each zone<br />

<strong>of</strong> specific morpnolithological conditions, indicate the magnitude<br />

<strong>of</strong> tlie proportion that the sediment charges dragged along<br />

represent , in relation <strong>with</strong> the suspension charges.<br />

Determination <strong>of</strong> water temperatures by expeditional methods<br />

The hydrological expeditions which determine the water<br />

temperatures, refer to the following operations:<br />

a) Measurement <strong>of</strong> air temperatures.<br />

b) Measurement <strong>of</strong> water temperatures,<br />

c) Observations on the land lithology.<br />

The air temperatures are measured in order to have values<br />

available to determine correlations between these and the water<br />

temperatures. Once the correlations have been established,<br />

characteristic values and the variation in space and time <strong>of</strong><br />

the water temperatures can be determined, based on the values<br />

<strong>of</strong> the former, Naturally, in such cases, maps <strong>with</strong> isotherms<br />

<strong>of</strong> the air in tlie surveyance regions are available,<br />

‘She water temperatures are measured in various characteristic<br />

sections, parallel <strong>with</strong> those <strong>of</strong> the air temperatures. The<br />

variation in their values is analysed bearing in mind the territorial<br />

continuation <strong>of</strong> the hydrological processes, Aiiy jump in<br />

the water temperatures, throughout a flow, should be explained<br />

either by confluences <strong>with</strong> different temperature flows, or by<br />

imp0 r t ant prouiid water contributions,<br />

Observations oii the lithology <strong>of</strong> the region are made to<br />

detect possible substantial ground water contributions, and related<br />

to this, explain the sharp changes in temperature experienced by<br />

the waters throughout the flows,


277<br />

in order to compile representative data not o<strong>nl</strong>y from<br />

the territorial variation point <strong>of</strong> view, but also regarding<br />

tiic temporary variation, expeditions are made tliroughout all<br />

the seasons <strong>of</strong> the year.<br />

Determination <strong>of</strong> physical, chemical and biological character-<br />

istics <strong>of</strong> the water by means <strong>of</strong> expeditional methods<br />

The campaigns to determine the quality <strong>of</strong> the waters are<br />

organized during low water periods, when the physical , chemical<br />

and biological characteristics <strong>of</strong> the flow waters are most<br />

stable.<br />

Iii cases <strong>of</strong> waters whose quality is unchanged by human<br />

activities, the characteristic sections for expeditional work<br />

are the confluences. To the contrary , the conf luences <strong>with</strong><br />

drainage and sewerage are also taken into account,<br />

The main activities carried out during the campaigns arc<br />

as follows:<br />

a) Compiling <strong>of</strong> water samples;<br />

b) Execution <strong>of</strong> measurements;<br />

c) Analysis <strong>of</strong> water samples , and eventually, preservation<br />

and packing <strong>of</strong> same;<br />

d) Geological observations.<br />

The water samples are analysed on the field, if mobile<br />

laboratories are available (the most suitable]. When there<br />

are no possibilities <strong>of</strong> making complete analysis on the field,<br />

the samples are preserved, and at least the analysis <strong>of</strong> the easily<br />

changeable characteristics are made, anù which can be o<strong>nl</strong>y<br />

determined in fresh tests. ‘Iiie samples sent to the laboratory<br />

are suitably packed, and all tiic indications regarding the site,<br />

and date <strong>of</strong> collection are noted on the packets.<br />

The measurements are made to find the discharges to which<br />

the characteristics measured correspond, anù also the amounts<br />

<strong>of</strong> waters available for dilution <strong>of</strong> chemical coiicentrations,<br />

<strong>of</strong> vital use, especially in cases <strong>of</strong> pollution tipping.<br />

The geological observations are similar to those made during<br />

expeditions to find the miiiimum run<strong>of</strong>f characteristics. In the<br />

case <strong>of</strong> physical, chemical and biological qualities <strong>of</strong> the flow<br />

waters, any sharp change should be explained either by artificial<br />

influence (tipping <strong>of</strong> pollutions), or by natural influence, due<br />

to confluences <strong>with</strong> flows <strong>of</strong> different biological, chemical and<br />

physical characteristics, or due to an abundant food <strong>of</strong> ground<br />

waters from different lithological zones,<br />

As soon as thc physical, cliemral and biological character-<br />

istics <strong>of</strong> the water have been determined, they are analysed,<br />

bearing in mind the territorial continuity <strong>of</strong> the hydrological


278<br />

processes, and they are verified, according to litliokgical<br />

zones, in relation <strong>with</strong> the discharge and run<strong>of</strong>f magnitudes.<br />

Determination <strong>of</strong> whole hydrological characteristics <strong>of</strong> the<br />

Flows by means <strong>of</strong> observations and measuremeiits on campaigns<br />

In practice, the caso very frequently turns up <strong>of</strong> there<br />

being no direct hydrometric data available in certain Iiydro-<br />

graphic basins, or estimations <strong>of</strong> various hydrological<br />

characteristics must be verified.<br />

In such situations, complex expeditional hydrological<br />

activities are developed, based essentially on tiie following<br />

p r i nc ipk s :<br />

a) iixccution <strong>of</strong> simultaneous measurements hydrologically,<br />

in various sections;<br />

b) Periodicity <strong>of</strong> campaigns, in accordance wi tli the hydro-<br />

logical method phases;<br />

c) Installation <strong>of</strong> recorder apparatus, <strong>with</strong> long duration,<br />

autonomous operation;<br />

Ci) General Observations o11 the genetic characteristics <strong>of</strong><br />

the hydrological sys tem.<br />

The measurements may refer to most <strong>of</strong> the hydrological<br />

characteristics (levels, discharges, sediment charges, temperature<br />

and physical, chemical arid biological characteristics <strong>of</strong> the<br />

waters, etc,) and they are made in various representative<br />

sections <strong>of</strong> the basins under survey, and also in nearby<br />

hydrometric stations, located iii areas <strong>with</strong> similar hydric<br />

system.<br />

The principle <strong>of</strong> Iiydrological simultaneity should be strictly<br />

respected during the measurements, in order to compare and<br />

correlate the results. From an operational point <strong>of</strong> view, this<br />

supposes a need to execute work by means <strong>of</strong> various teams <strong>of</strong><br />

hydrologists working parallel, in accordance wi tli strictly<br />

established programs regarding the sections and measurement hours,<br />

The periodicity <strong>of</strong> the campaigns, iri functinn <strong>of</strong> the hydro-<br />

logical system, is irnposcd as a compulsory condition, in order<br />

to establish the variation ranges <strong>of</strong> the characteristics measured<br />

and the correct correlations between the data <strong>of</strong> nrious sections<br />

arid those <strong>of</strong> the nearby liydrometric stations.<br />

"lie installation <strong>of</strong> recording apparatus, <strong>of</strong> long duration<br />

autonomous operation, is convenient when the periodicity and<br />

frequency <strong>of</strong> the campaigns cannot be assured on a satisfactory<br />

level, and also when oiie is trying to complete the correlations<br />

between the data <strong>of</strong> the sections studied and the reference<br />

hydrometric stations. tiowever, in most specific cases, the land<br />

difficulties prevent execution <strong>of</strong> works for installation <strong>of</strong><br />

recorder apparatus (lack <strong>of</strong> roads and labour; the maintenance and


279<br />

periodic inspection <strong>of</strong> the installations and apparatus cannot<br />

be assured, etc.)<br />

The measurement <strong>of</strong> tlie hydrological characteristics is<br />

organized in accordance <strong>with</strong> the indications given in the '<br />

above paragraphs.<br />

The data analysis is made bearing in mind the territorial<br />

continuity <strong>of</strong> the hydrological processes and the correlations<br />

between various sections and the reference hydrometric stations,<br />

arid also in terms <strong>of</strong> the local physiographic conditions<br />

influencing the variation <strong>of</strong> the hydrological system factors,<br />

Naturally, the most important thing is to properly determine<br />

tile correlations so as to extend the series <strong>of</strong> data <strong>of</strong> the<br />

sections studied, in terms <strong>of</strong> the long series <strong>of</strong> data available<br />

in the reference hydrometric stations. It is therefore<br />

convenient for the expeditioiiai hydrological activities to be<br />

developed in each zone, at least during two complete years.<br />

The verification, analysis and interpretation <strong>of</strong> the data<br />

is made before suspending the field activities. Pursuant to<br />

tlie results, the initial programmes can be changed and the<br />

work intensified, to define the processes which have not yet<br />

been satisfactorily determined. The total suspension <strong>of</strong> the<br />

expeditionai hydrological activities in the study area can o<strong>nl</strong>y<br />

be macle after conclusive results have been obtained, or,<br />

exceptionally, when the sure conclusion is reached that the<br />

methods used are sufficient to deterriiine or verify the hydro-<br />

logical characteristics which must be known.<br />

bibliography<br />

1.<br />

2.<br />

3.<br />

4.<br />

5.<br />

6.<br />

7.<br />

Uiaconu, C., Lazarescu D, (1965). Iiidrologie, Bucuresti.<br />

Irjorld Meteorological Organization (1970). Hydrometeorological<br />

Practices Guide, OMM-No. 168 TP. 82, Geneva.<br />

Roche, M. (1963). llydrologie de suÏface, Paris,<br />

Stanescu, S. (1969). Chief prcsent day problems <strong>of</strong> the<br />

national network organization <strong>of</strong> hydrological stations<br />

in Colombia, Aperiodic Publication 1 , SCMII, Bogota,<br />

Stanescu, S. (1971). Expeditional Iiydrological Activities.<br />

Aperiodic Publication 22, SCMiI, Bogota.<br />

Vircol, Al. (1960). Calculul debitelor maxime folosind<br />

cercetarile expeditionare, Studii de liidrologie 1, Bucuresti.<br />

World Meteorological Organization (1972). Casebook on<br />

Hydrological Network <strong>Design</strong> Practice, WMO- No. 324 , Geneva.


280<br />

1100<br />

260<br />

E STAC I ON ME TE ORO LOG IC A I NGE N I O MAN U EL I TA<br />

PROMEDIO 1901 -1970<br />

ESTACION HIDROMETRICA CAUCA - JUANCHITO<br />

PROMEDIO 1934-1970<br />

24 O<br />

1935 1940 1945 1950 1955 1960 1%5 1970<br />

COMPARACION DE PROMEDIOS MULTIANUALES SUCESIVOS (GLISANTES) DE PRECIPITA -<br />

CION CON EL PROMEDIO DEL PERIODO 1901-1970 EN LA ESTACION METEOROLOGICA<br />

INGENIO MANUELITA (A) Y DE CAUDAL CON EL PROMEDIO DEL PERIODO 1934.1970<br />

EN LA ESTACION HIDROMETRICA CAUCA- JUANCHITO (8)<br />

FIGURA I<br />

I GRAFICO PARA CURVA DE FRECUENCIA I<br />

COMPARACION DE CURVAS DE FRECUENCIA DE CAUDALES MEDIOS ANUALES<br />

DEL PERIODO 1934-1970 Y i951 -1970 EN LA ESTACION HIDROMETRICA<br />

CAUCA - JUANCHITO<br />

FIGURA 2<br />

A<br />

Ah0<br />

A


.l<br />

I<br />

L<br />

3<br />

3 -<br />

L<br />

Y<br />

3<br />

L<br />

o<br />

a<br />

281


\<br />

0 -<br />

O O<br />

9- i%' x x o N<br />

!li' E l<br />

O 0 I<br />

L J<br />

I I<br />

I I<br />

I<br />

I<br />

I *<br />

I<br />

I<br />

*I<br />

I<br />

I<br />

I<br />

I<br />

L. .J<br />

I<br />

I<br />

I I<br />

ae n<br />

oe<br />

c<br />

282


283


I<br />

0 0 0<br />

IL<br />

IL<br />

a<br />

2<br />

3<br />

a<br />

2<br />

3<br />

m<br />

a<br />

r(<br />

4<br />

a<br />

284<br />

I


I l<br />

-4 I<br />

l<br />

\<br />

l<br />

i<br />

.- U<br />

n<br />

v><br />

c'<br />

\<br />

\<br />

a<br />

\<br />

b \<br />

\<br />

\<br />

285


ABSTRACT<br />

NEW MODELS OF FREQUENCY LAW OF RUNOFF<br />

STARTING FROM PRECIPITATIONS<br />

J.R. TEMEZ<br />

Pr<strong>of</strong>essor<br />

1.T.O.P.College-Madrid<br />

Two interesting applications <strong>of</strong> a new hydrometeorological<br />

method are developed <strong>with</strong> scientific rigour.<br />

From the frequency law <strong>of</strong> annual precipitations, we can<br />

deduce symply the law <strong>of</strong> run<strong>of</strong>f, and <strong>with</strong> precission, proved<br />

in all tne esperimental verifications. To do it, we must know<br />

or estimate the potential evapotranspiration on the basin (ETP)<br />

and the minimum effective precipitacion (Po).<br />

An analogous reasoning, yet simplier, allow us to convert<br />

the frequency law <strong>of</strong> maximum precipitations in the law <strong>of</strong><br />

volumes <strong>of</strong> superficial run<strong>of</strong>f in floods. The o<strong>nl</strong>y necessary<br />

datum is the minimum effective rainfall PL, analogous to the<br />

Po *<br />

We can simplify the calculations <strong>with</strong> special paper <strong>of</strong><br />

double scale. In them, the statistic function <strong>of</strong> run<strong>of</strong>fs is<br />

the same as precipitations if we read each one in the correspondent<br />

scale.<br />

The pr<strong>of</strong>it <strong>of</strong> this methodology, evident in bassins <strong>with</strong>out<br />

data <strong>of</strong> discharge is also important when we know the registers<br />

<strong>of</strong> flow because it makes easy models <strong>of</strong> adjustment more reasonable<br />

than the classic one <strong>of</strong> Galton, Goodrich and so on, and<br />

in this way we avoid nonsensical extrapolations in the intervals<br />

<strong>of</strong> large and small values.<br />

--<br />

RE S U ME N<br />

Dos interesantes aplicaciones de un nuevo método hidrometeo<br />

rológico se desarrollan con rigor científico.<br />

A partir de la ley de fre'cuencia de las precipitaciones --<br />

anuales, se deduce la de aportaciones de manera sencilla, y con<br />

precisión, demostrada en todas las comprobaciones experimentales.<br />

Para elio solamente se necesita conocer o estimar la evapotranspiración<br />

potencial en la cuenca (ETP) y la lluvia mínima eficaz<br />

(Po).<br />

Un razonamiento análogo, aún más simple, permite convertir<br />

la ley de frecuencia de máximas precipitaciones en la de volumenes<br />

de escorrentía superficial en avenidas. El Gnico dato necesa<br />

rio es la lluvia mínima eficaz PL, análoga a ia Po.<br />

Los cálculos se simplifican con papeles especiales de doble<br />

escala. En ellos, la función estadística de aportaciones es la -<br />

misma de precipitaciones con tal de leer cada una en la escala -<br />

correspondiente.<br />

La utilidad de esta metodologia, evidente en cuencas sin da<br />

tos de aforo, es también importante cuando existen registros fo-<br />

ronómicos, pues facilita modelos de ajuste más racionales que --<br />

los clásicos de Galton, Goodrich, etc., y se evitan así absurdas<br />

extrapolaciones en los intervalos de grandes y pequenos valores.


2 88<br />

1. MOTIVATION<br />

The precipitations, phenomenon <strong>of</strong> general type, are adjusted<br />

correctly to the also general classical frequency laws: Gumbel (maximum<br />

rainfalls), Gauss (annual precipitations*), and so on, altering the mean value<br />

and the dispersion from some places to others.<br />

These precipitations are transformed partially in run<strong>of</strong>fs, but is<br />

fundamentaly a deterministic process, peculiar <strong>of</strong> each basin in relation to<br />

their edafogeological and climatical characteristics. Therefore the regime <strong>of</strong><br />

run<strong>of</strong>fs can not be defined <strong>with</strong> the statistic functions, at present in use, which<br />

ignore the concrete parameters <strong>of</strong> each basin, significatives <strong>of</strong> the hydrological<br />

cycle. These functions, by virtue <strong>of</strong> the liberty that their indetermined coef-<br />

ficients give them, are able to adjust to the experimental points o<strong>nl</strong>y in the -<br />

interval <strong>of</strong> the intermediate values, but they point their inadequate conception<br />

out to represent the hydrological phenomenon in the band <strong>of</strong> small and large<br />

values where the disadjustments are significative and many times nonsensical,<br />

such as what happens when the run<strong>of</strong>f <strong>of</strong> low frequency are negatives and the<br />

high ones exceed notably the cipher <strong>of</strong> the precipitations. Their inadequateness<br />

is manifested more clearly in basins <strong>of</strong> irregular regime than in the regular<br />

ones, since these last are easy to adjust any curve to the reduced range <strong>of</strong><br />

variation <strong>of</strong> the registers not indicating the erroneous extrapolations which are<br />

done about the extreme values.<br />

On the other hand, in the basins <strong>with</strong>out registers <strong>of</strong> flow, we<br />

must define correctly from the precipitations, not o<strong>nl</strong>y the mean flow, but also<br />

the other parameters which are characteristical <strong>of</strong> their hydrological regime<br />

like functions <strong>of</strong> frequency <strong>of</strong> run<strong>of</strong>fs floods and so on.<br />

These considerations have moved the author to develop a new hydro<br />

meteorological method <strong>of</strong> precision and scientifica1 base, though <strong>of</strong><br />

simple application.<br />

The article shows two interesting applications <strong>of</strong> this metodology,<br />

which will be the object <strong>of</strong> an exhaustive treatment in a later publication.<br />

* The author will propose in a later publication a modified Gauss law.


2. TYPE OF FREQUENCY LAW OF THE ANNUAL<br />

RUNOFFS PROPOSED BY THE AUTHOR<br />

289<br />

When we treat <strong>of</strong> regulating high percentages <strong>of</strong> the mean flow <strong>of</strong><br />

a river, the decisive fact is the frequency law <strong>of</strong> their annual run<strong>of</strong>fs, lossing<br />

importance in the study, the precise knowledge <strong>of</strong> the monthly variations, more<br />

sensible to the geological characteristics <strong>of</strong> the basin, on the other hand deci-<br />

sives when the volumes <strong>of</strong> water to regulate are low.<br />

Therefore it has a big interest to determine the said law starting<br />

from the precipitations <strong>of</strong> the basins <strong>with</strong>out registers <strong>of</strong> flow, or by the<br />

convenient adjustment to the experimental points if there are registers <strong>of</strong><br />

flows. The method that is exposed later on, solves the probleme in both cases.<br />

The balance <strong>of</strong> water in a period like the water year,<br />

permits to establish the relation<br />

A = P - E where A = annual total run<strong>of</strong>f<br />

P = annual precipitation<br />

E = annual and actual evaporation<br />

This equation applicable to the individual values <strong>of</strong> one or several<br />

years, suggest us also about the relative configuration <strong>of</strong> the frequency <strong>of</strong> run-<br />

<strong>of</strong>fs and rainialls laws.<br />

For very big values <strong>of</strong> P, the actual evaporation will be identified<br />

<strong>with</strong> the potential one, practically constant from some years to others (in the<br />

humid years is smaller than in the dry ones). On the other hand, in the extre-<br />

mely dry years all the precipitation will evaporate from its own basin E = P, and<br />

A = O. In intermediate conditions E and A will increase <strong>with</strong> p.<br />

The qualitative sight <strong>of</strong> the precipitations and run<strong>of</strong>fs laws is<br />

represented by the figure 1. We can calculate the frequencies <strong>of</strong> A from the<br />

frequencies <strong>of</strong> P if we know the values <strong>of</strong> 6 (P) that in this way it has the<br />

significance <strong>of</strong> a middling evaporation to that precipitation.<br />

That relation 6 = 6 (P) according to the considerations done previoly,<br />

will be represented in the figure 2 and different from some basins to others<br />

in relation to the capacity <strong>of</strong> retention <strong>of</strong> water on their soil R and the regime<br />

<strong>of</strong> temporal distribution <strong>of</strong> their climatical variables.<br />

The method proposed consists in establishing the family <strong>of</strong> curves<br />

i=$<br />

(- P<br />

ETP ETP)


290<br />

among which we must select the most suitable in each concrete case.<br />

We can make that selection in relation to - R , but the curve,<br />

according to what was said before, is also conditioned E by the temporal<br />

distribution <strong>of</strong> the precipitation and the evapotranspiration, which is variable from<br />

a meteorological zones to another. Therefore we think more practical to<br />

represent the influence as a whole <strong>with</strong> all these variables by their inmediate<br />

effect Po (figure 2), minimum effective precipitation from which frequency<br />

corresponds a null run<strong>of</strong>f.<br />

Having present the definition <strong>of</strong> 6 , the figure 2 is transformed in<br />

the figure 3.<br />

The calculations <strong>of</strong> the frequency laws <strong>of</strong> precipitation and run<strong>of</strong>fs<br />

in many basins <strong>with</strong> registers <strong>of</strong> flows were made, and in all <strong>of</strong> them we found<br />

out that the values, correspondent to a same frequency, are combined realy<br />

by a relation <strong>of</strong> the type schematized in the figure 3 arid has the following<br />

expression:<br />

A = O para P < PO y para P > PO<br />

that permits to transforme the frequency law <strong>of</strong> precipitations in the frequency<br />

law <strong>of</strong> run<strong>of</strong>fs.<br />

The figure 4 contrasts the results obtained by this process and<br />

the usual ones at the basin <strong>of</strong> the Guadalmellato river. In front to the good<br />

adjustment <strong>of</strong> the author’s law, Galton gives nonsensical high values, higher<br />

including to the precipitations, in the interval <strong>of</strong> high frequencies, while Good<br />

rich in the interval <strong>of</strong> small values, decisive in the studies <strong>of</strong> regulations <strong>of</strong> a<br />

river, recomends negatives ciphers including for frequencies higher to O, 10.<br />

The functions <strong>of</strong> Goodrich, and specially Galton, ignoring the physical sense<br />

<strong>of</strong> the hydrological phenomenon, are not capable <strong>of</strong> simultaneously adapting<br />

to the total range <strong>of</strong> values.<br />

The adjustment <strong>of</strong> the author is repeated in the figure 5 <strong>with</strong><br />

double scale <strong>of</strong> ordinates: the normal and their transformation according to<br />

formula (2). In this way the law <strong>of</strong> frequency <strong>of</strong> run<strong>of</strong>fs must be the same as<br />

that precipitations provided that to read each one in the correspondent scale;<br />

effectivelly we can verify that the experimental points as much as the preci-<br />

pitations as the run<strong>of</strong>fs are confounded and are distributed in the grapht round<br />

about to an o<strong>nl</strong>y curve.


291<br />

Guadalmellato is an example <strong>of</strong> the many empirical cornprobations<br />

carried out, which demostrate the big precision <strong>of</strong> the method proposed here.<br />

1)<br />

2)<br />

3)<br />

4)<br />

The procedure <strong>of</strong> calculation consists in the following steps:<br />

Calculation <strong>of</strong> the frequency law <strong>of</strong> precipitations,<br />

Determination <strong>of</strong> the potential evapotranspiration value <strong>of</strong> the<br />

basin (ETP) deductible from the evaporimetrical measures (or<br />

charts) existing in the zone.<br />

Valoration <strong>of</strong> the minimum ei'fective precipitation Po. The data <strong>of</strong><br />

flows, if they exist, must orientate the computations to choose<br />

theparameter Po more convenient. On the contrary the valoration<br />

<strong>of</strong> Po must be guided by the values obtained in other basins gauged<br />

<strong>of</strong> that zone and based in the capacity <strong>of</strong> retention <strong>of</strong> water in their<br />

soil. Po is equal to the capacity <strong>of</strong> retention <strong>of</strong> the soil plus a<br />

function <strong>of</strong> the climate which sign can be positive or negative<br />

depending on the cases. The author prepares an orientative table<br />

<strong>of</strong> values <strong>of</strong> Po, though a hydrologist can estimate sufficiently<br />

exact that cipher <strong>with</strong> so dear physical sense, based o<strong>nl</strong>y in their<br />

experience and in a superficial knowledge <strong>of</strong> the characteristics<br />

<strong>of</strong> the basin.<br />

In humid climates where the precipitations <strong>of</strong> low frequency are<br />

much higher than PO, is enough a gross approximation <strong>of</strong> this<br />

last parameter.<br />

Once that data are known, the run<strong>of</strong>f A <strong>with</strong> frecuency F is obtain-<br />

ed in relation to the precipitation P <strong>of</strong> that same frequency by the<br />

formula (1) or their equivalent (2).<br />

It must not be forgotten that the knowledge <strong>of</strong> the frequency law<br />

determines automatically the value <strong>of</strong> the mean run<strong>of</strong>f. Inversely we can<br />

choose the parameter Po <strong>with</strong> the condition to proporcionate a mean run<strong>of</strong>f<br />

equal to the previous valuation by other procedure.<br />

In any case, if there are registers <strong>of</strong> flow the values <strong>of</strong> ETP and<br />

Po will be needed to get the best adjustment <strong>with</strong> the experimental points.<br />

To programme the method to the use <strong>of</strong> computers will yet be<br />

easier the calculation.


292<br />

3. CORRECTIVE RUNOFF<br />

Let us imagine that after a serie <strong>of</strong> years <strong>of</strong> intermediate<br />

characteristics, a year so dry is produced that all their precipitation is<br />

evaporated and not producing any run<strong>of</strong>f. In spite <strong>of</strong> that circunstance, the<br />

flows <strong>of</strong> the river will be not necessarily null, since they can feed from the<br />

underground reserve (or superficial) <strong>of</strong> the basin decreasing in agreeable to<br />

the curve <strong>of</strong> exhaustion <strong>of</strong> the base flow.<br />

The corrective run<strong>of</strong>f, or variation <strong>of</strong> the reserve from the end<br />

<strong>of</strong> a water year to the end <strong>of</strong> the following one, will be an analogous function<br />

to the represented one in the figures 6 and 7: <strong>with</strong> high values <strong>of</strong> theprecipi-<br />

tation, the reserve will increase and discharge <strong>of</strong> the river, diminish in this<br />

quantity; on the contrary <strong>with</strong> low values it will decrease, to feed the super-<br />

ficial flows; in mean raining years the reserve will not change.<br />

For smaller frequency than the correspont one to the frequency<br />

<strong>of</strong> minimum effective precipitation F (PO), the total run<strong>of</strong>fs are identified <strong>with</strong><br />

the corrective ones, responding to terms fundamentally different so far mention<br />

ed. Neither the potential evapotranspiration, ETP, nor the Po has now any<br />

incidence in the phenomenon, as neither the value <strong>of</strong> P; the law is determined<br />

by the curve <strong>of</strong> exhaustion <strong>of</strong> the reserves <strong>of</strong> the basin, as well as by the<br />

frecuencies <strong>of</strong> the initial state <strong>of</strong> said reserves and <strong>of</strong> PO.<br />

The classical functions <strong>of</strong> frequency are not either capable <strong>of</strong><br />

being adapted simultaneously to the interval <strong>of</strong> usual values, prevailing the<br />

direct run<strong>of</strong>f <strong>of</strong> the year, and to the different interval <strong>of</strong> small values corres-<br />

pondent to the variation <strong>of</strong> the reserve. These functions treat them indiscrimi<br />

nately <strong>with</strong> an intermediate dull adjustment in which ignoring this real duplicity<br />

to get out <strong>of</strong> orbit the dry run<strong>of</strong>fs, which are precisely the decisive ones in<br />

the regulation process <strong>of</strong> a river.<br />

The article will not extend in the detail <strong>of</strong> this corrective run<strong>of</strong>f<br />

which in several cases is necessary to have present, while in the others, on<br />

the contrary, it has little importance, like what happens in impermeable basins<br />

<strong>with</strong> little variation <strong>of</strong> their reserves <strong>of</strong> a year to the next one and <strong>of</strong> which<br />

mean value and pluviometrical regularity are at least moderated, in this way<br />

the probability <strong>of</strong> precipitations close to the minimum effective one PO is<br />

extremely small not participating on the computations. The substractive term,<br />

that according to the graph <strong>of</strong> the figure 6, must be applied also to the zone <strong>of</strong><br />

strong precipitations, represents a percentage very small <strong>of</strong> the total run<strong>of</strong>f<br />

in these dates which is not worthwhile considering.


4. MAXIMUM ACTUAL EVAPOTRANSPIRATION<br />

ON A DRY CLIMATE<br />

293<br />

As it has been exposed previously, the precipitations increase<br />

the availabilities <strong>of</strong> water for the evaporation and this one will increase up to<br />

the potential evapotranspiration, or more exactely to the potential evapotrang<br />

piration <strong>of</strong> the humid years which is about O, 9 times their mean value. The<br />

previous affirmation is evident to humid climates, but not so to the dry ones.<br />

In climates like the mediterranean one, there is a season <strong>of</strong> the<br />

year (Summer), when their potential evapotranspirations are maximum<br />

while the precipitations are practically null as much in dry years as in the<br />

plenty ones. It exists in these dates a permanent deficit <strong>of</strong> precipitation; the<br />

actual total evaporation <strong>of</strong> the year does not reach ever to the value <strong>of</strong> the<br />

potential one and its maximum value will be the potential evapotranspiration<br />

<strong>of</strong> the period <strong>of</strong> precipitations (ETP) p increasing in the capacity <strong>of</strong> retention<br />

<strong>of</strong> water on the soil (R) evaporating in posterior dates.<br />

Is very important that in these cases the ETPwhich intervenes in<br />

the formulas be replaced by the maximum actual evapotranspiration ETP*<br />

where (ETP)* = (ETP)p t R.<br />

It could be said that the ETP <strong>of</strong> the formula will in any case be<br />

the least <strong>of</strong> the following values:<br />

1)<br />

2)<br />

potential total evapotranspiration <strong>of</strong> the year<br />

potential evapotranspiration in the period <strong>of</strong> rains increased<br />

in the retention <strong>of</strong> the soil<br />

5. FREQUENCY L AW OF VOLUMES OF MAXIMUM FLOODS<br />

The relation between the total rainfall P’ and the volume <strong>of</strong><br />

superficial run<strong>of</strong>f A’ is <strong>of</strong> the type schematized in the figure 3 for P - A, but<br />

now, treating <strong>of</strong> a phenomenon <strong>of</strong> short duration and strong concentration <strong>of</strong><br />

rainfall, exist the following differences:<br />

. The evaporation in so short time and in an atmosphere <strong>of</strong> big<br />

relative humidity is worthless and not altering the process.


2 94<br />

The essential element is the quantity <strong>of</strong> water that can be retain<br />

ed in the soil, characterized by a minimum actual rain Pó,<br />

similar in idea to the Po <strong>of</strong> the annual run<strong>of</strong>fs but <strong>with</strong> ciphers<br />

much smaller.<br />

According to the documentation <strong>of</strong> the Soil Conservation Service<br />

<strong>of</strong> EE. UU. and verified <strong>with</strong> several studies <strong>of</strong> the author, the relation is:<br />

If P’ GPO , A’= O andif P’ >Pó<br />

universal law in relative values to Pó, which is their o<strong>nl</strong>y indetermined<br />

parameter (figure 8).<br />

The previous one, suggests the creation <strong>of</strong> a new special paper<br />

(figure 9) <strong>with</strong> scale <strong>of</strong> frequency according to Gumbel and double scale <strong>of</strong><br />

ordinates: the normal one and their transformed as:<br />

deducted from the equation (4).<br />

x = It (it JTx)<br />

If we draw the frequency law <strong>of</strong> maximum rainfalls on the mention<br />

ed paper, that same straight will define the frequencies <strong>of</strong> the volumes <strong>of</strong> flood<br />

A’ reading them in the correspondent scale. The method can not be simpler.<br />

The figure 9 shows an example <strong>of</strong> application to the basin <strong>of</strong> the Cheliff at<br />

Algerie.<br />

The hydrologists defenders <strong>of</strong> the analytical and non-graphical<br />

adjustment, o<strong>nl</strong>y have to transform the law <strong>of</strong> maximum precipitations accord-<br />

ing to formula (3) or their equivalent (4).<br />

There upon these volumes are related o<strong>nl</strong>y to surface run<strong>of</strong>f and<br />

to obtain the total ones is necessary to increase them in the correspondent<br />

groundwater run<strong>of</strong>f, worthless however in the interval <strong>of</strong> the high values, the<br />

most interesting to the calculations.<br />

In summary, once the frequency law <strong>of</strong> maximum rainfalls is<br />

defined, the process <strong>of</strong> calculation <strong>of</strong> the volumes <strong>of</strong> flood o<strong>nl</strong>y need the<br />

estimation <strong>of</strong> the value <strong>of</strong> the minimum effective rainfall PA,


295<br />

The book "<strong>Design</strong> <strong>of</strong> Small Dams" <strong>of</strong> the Bureau <strong>of</strong> Reclamation<br />

take in the information <strong>of</strong> the Soil Conservation Service and facilitates a tables<br />

which suggests values <strong>of</strong> the Pó, principally in relation to the nature and thick-<br />

ness <strong>of</strong> the soil, although modified by the type <strong>of</strong> cultivation; this book explains<br />

that each concrete case will depend naturally on the humidity <strong>of</strong> the soil in the<br />

initiation <strong>of</strong> the rainfall and the values <strong>of</strong> the formula are considered to an<br />

intermediate conditions in the dates <strong>of</strong> presentation <strong>of</strong> the floods. The author<br />

in keeping <strong>with</strong> the theory <strong>of</strong> the Soil Conservation Service but precisely by<br />

that remarkable influence <strong>of</strong> the initial humidity <strong>of</strong> the soil, the Pó <strong>of</strong> the<br />

formula has to change also in relation to the climate and in this manner, other<br />

things being equal, it will be higher in a dry one than in other humid one, where<br />

there is a big probability that at the beginning <strong>of</strong> the rainfall, the soil would be<br />

in proximate conditions to the saturation <strong>of</strong> the water.<br />

If data <strong>of</strong> flows could exist, the experimental points <strong>of</strong> the volume<br />

<strong>of</strong> superficial run<strong>of</strong>f in the maximum flood <strong>of</strong> each year <strong>of</strong> register, could<br />

advice the Pó to choose to obtain the best adjustment.<br />

The conditioning factors <strong>of</strong> Pó and <strong>of</strong> Po are basically the same<br />

and it must not be forgotten, since any information that w e can orientate in the<br />

estimation <strong>of</strong> one (for example the tables <strong>of</strong> the Soil Conservation, Service) can<br />

be used in the determination <strong>of</strong> the other.<br />

In the order <strong>of</strong> magnitude it can be said that Po is aproximately<br />

fifteen times greater than Pó ; a study directed in establishing <strong>with</strong> greater<br />

precision this relation would be interesting.<br />

6. CORRELATIONS PRECIPITATIONS-RUNOFFS<br />

The relations:<br />

2<br />

(P - Po) 2 (P'- Pó)<br />

A' =<br />

A = Pt ETP - 2 Po Y P't 4Pó<br />

are rooted in the essence <strong>of</strong> the hydrological cycle and have a big physical<br />

signification. Besides obtaining its specific end in the transformation Of<br />

frequency law, it also makes clear the types <strong>of</strong> correlation more adequate<br />

to the individual values <strong>of</strong> these variables.


296<br />

7. LIMTS OF THE METHOD<br />

This method, as any other hydrometeorological one, is not<br />

strictly applicable to a singular basin <strong>with</strong> appreciable captures <strong>of</strong> water from<br />

other zones or leakages towards them, since their flows are conditioned also<br />

by precipitations outside the said basin.<br />

It is conceived for regimes fundamentally rainy and it has not<br />

been studied for any possible adaptation to the snowy ones.


Fig. I . ESQUEMA DE SITUACION RELATIVA DE LAS LEYES DE FRECUENCIA DE "P"Y "A':<br />

RELATIVE SITUATION SCHEME Op FREQUENCY LAWS OF "P" AND "A",<br />

i<br />

4_<br />

ET P<br />

Fig.2 . ESQUEMA DE VARIACION CE 6.<br />

VARIATION SCHEME OF 6.<br />

P = Precipitacidn anual de frecuencia F.<br />

A= Aportacion especifica onud dr lo misma frecunieia<br />

F<br />

5 :Diferencio entre P y A de ia misma frecuencia F.<br />

ETP: Evapotranspiracidn pciencid.<br />

R,= Precipitacidn a cuya frecuencia F ( Po) corresponde<br />

uno aportación nula.<br />

P= Annwl pr.cipitol)an at treginncy F.<br />

297<br />

A= Annwl rprcific totalrun<strong>of</strong>f Or the SQIY fp.p-y<br />

F.<br />

P I<br />

ETP<br />

6 : DiffWlnCe beîueon P and A <strong>of</strong> iha saw m<br />

ETP x Patentid ewpotranspira tion.<br />

y F.<br />

PO= Precipitation ta which frequrnoy F( Po) Oorrewponh<br />

o null iotalrun<strong>of</strong>f.


!<br />

-f<br />

I<br />

--- Ley da Goodrich.<br />

Ley d. ßolton<br />

---<br />

4<br />

I<br />

0 1<br />

5<br />

O Puntos experimentales de atoro.<br />

Puntos rperimntoler de lluvia.<br />

-7-<br />

l !<br />

i i<br />

Fig. 4 r 5 - AJUSTE EN LA CUENCA DEL GUADALMELLATO<br />

ADJUSTEMENT AT GUADALMELLATO BASIN.<br />

-<br />

--- Qoodrich's low<br />

--- Galton's br<br />

o Annual run<strong>of</strong>f miperiiaentol peints.


AA<br />

P A<br />

299<br />

Fip. 6 y 7 - ESQUEMA DE APORTACION CORRECTIVA DE LA LEY DE FRECUENCIA DEBIDA A LA VARIACION<br />

DE L& RESERVAS.<br />

CORRECTIVE CONTRIBUTICW SCHEME OF FREOUENCY LAW WING TO VARIATION OF RESERVES<br />

P =Procipitacibn anual de frecuencio F , P =Annual precipitation <strong>of</strong> frequency F<br />

A= Apartacidn especifica M U O I de la misma frocww ' A =AnnuOJ aQocific t#alrUnolf <strong>of</strong> the s- tre-<br />

cia F. qurncy F<br />

ETP = Evapotranipiroci6n potwcial, 1 ETP- Patrntlal rwpotronspiration<br />

PO = Procì~itoci~ 0 cuyo frccunicia F(Po) corres- , PO = Proclpitotion to which frequency F(Pe) carrespande<br />

una apwtación nula. , pondi a null totalrun<strong>of</strong>f.<br />

AA = Aportación carroctiva. AA = Corroctlve totalrun<strong>of</strong>f<br />

&,= Máxima valor de la aportaci6n correctivo , AO = Maximum valu# at correctivo totalrun<strong>of</strong>f


30G<br />

- A'<br />

PA<br />

4<br />

3<br />

2<br />

i<br />

O<br />

a -RELACION ENTRE P' Y A' DE UNA MISMA FRECUENCIA.<br />

RELATION BETWEEN P' AND A' OF THE SAME FREQUENCY.<br />

- P'<br />

?A ~<br />

6 T-<br />

5 1<br />

44<br />

.- . ~- . -- -<br />

Bassin <strong>of</strong> the Cheliff river ( ALGERIE 1<br />

Pk = 35 IlMn.<br />

3 1<br />

I P'<strong>with</strong> frequency F<br />

I- -- - -- -<br />

ol , i c<br />

. ~~ -<br />

Experimental pointa P'<br />

FIP. 9. GRAFICO ESPECIAL CON DOBLE ESCALA. EN EL UHA MISMA RECTA REPRESENTA LAS LEYES DE<br />

FRECLÆNCIA DE P' Y A'.<br />

SPECIAL GRAPHIC WITH DOUBLE SCALE.ON WHICH THE SAME STRAIGHT LINE REPRESENTS THE<br />

FREQUENCY LAWS OF P' AND A'<br />

P' = Precipitación toto1 de un aguacero de frecuen- P'vTotal precipitation <strong>of</strong> o rainfall <strong>with</strong> frequency F.<br />

cia F<br />

A' = Volumen de escorrentia auperficio( de b misma A', surface run<strong>of</strong>f volume <strong>of</strong> the rame frequency F<br />

frecuencia F en mdrimaa avenidar.<br />

in maximum floods.<br />

Ph= Precipitación de un opuacero do frecuencia - PA= Precipitotlon <strong>of</strong> o rainfall <strong>with</strong> frequency F( Po 1 to<br />

F ( PO ) o lo que correrpondo una escorreniio which corresponds o null rurtoce rurl<strong>of</strong>f.<br />

superficiai nulo


ABSTRACT<br />

TRAITEMENT OPERATIONNEL DES DONNES PLUVIOMETRIQUES<br />

ENTACHEES D'ERREURS OU INSUFFISANTES<br />

R. Trendel - Der Megreditchian - Mme Rulliere<br />

The Bureau <strong>of</strong> <strong>Water</strong> <strong>of</strong> the National Meteorology, at present<br />

applies a method that allow us, under certain hypothesis, to obtain<br />

the equation <strong>of</strong> lineal multiple regression, which permits to<br />

calculate the theoretical values <strong>of</strong> the monthly rains. The<br />

application <strong>of</strong> this formula is possible by the existance <strong>of</strong> base<br />

data, corresponding to each season an index actual value/theore-<br />

tical value that is useful to correct.<br />

In this way, we can calculate the values <strong>of</strong> theoretical rain,<br />

that allow to correct and complete the series, and also the rainy<br />

periods in season <strong>with</strong>out data or <strong>with</strong> inadequate data. It is<br />

carried out an analysis <strong>of</strong> correlation to establish the degree <strong>of</strong><br />

guaranty <strong>of</strong> this method and to choose the parameter to use in the<br />

different possible hypothesis and, particulary, the iterative<br />

method <strong>of</strong> Van Isacker.<br />

-- RESUME<br />

Le Bureau de l'Eau de La Météorologie Nationale applique<br />

actuellement une méthode opérationnelle, découlant sous certaines<br />

hypothèses de l'équation de regression linéaire multiple, permettant<br />

de calculer des valeurs dites "théoriques" des pluies mensuelles.<br />

L'application de cette formule est rendue possible grâce à<br />

l'existence d'un important fichier de normales. A chaque estation<br />

correspondant un indice (valeur réelle/valeur théoriqye), il est<br />

alors aisé de repérer les valeurs qui divergent trop a l'intérieur<br />

d'une même zÔne d'homogénéité.<br />

On calcule ainsi les valeurs de la pluie "théorique"<br />

permettant de combler les données manquantes et de pallier les<br />

erreurs les pius grossières.<br />

De même, pour les précipitations, on calcule les valeurs<br />

mensuelles et s'il y a lieu, celles des episodes pluvieux, pour<br />

les poster fermés ou insuffisants.<br />

On effectue une analyse de corrélation pour étayer le degré<br />

de validité de la méthode opérationnelle et effectuer le choix des<br />

paramètres à utiliser. On examine les possibilités <strong>of</strong>fertes dans<br />

ce domaine par la méthode des composantes principales, en parti-<br />

culier sous la forme itérative de Van Isacker.<br />

Différents critères sont également testés pour déceler les<br />

valeurs douteuses, éventuellement entachées d'erreurs.<br />

Certaines indications sont fournies sur la répartition<br />

rationnelle du réseau pluviométrique.


302<br />

I - DETECTION AUTOMATIQUE DES ERREURS :<br />

1 - Pl~~e_theoriq~e_'encuelle<br />

Le Bureau de L'Eau de la Météorologie Nationale a mis au point<br />

une méthode permettant la critique automatique dos données pluvio-<br />

métriques. Elle est appliquée dans le domaine relativement peu<br />

étendu d'un département français; elle utilise une formule empi-<br />

rique permettant de calculer 1a"pluie théorique" mensuelle pour<br />

une station donnée, en fonction de la somme pondérée des valeurs<br />

réelles de la pluie mensuelle aux autres stations du département.<br />

considéré, les coefficients de pondération étant le rapport du<br />

seuil de référence de cette station 5 celui des autres stations.<br />

La formule proposée est de la forme :<br />

O0 .~<br />

Pth - p luie théorique mensuelle de la station à étudier<br />

m - seuil de référence de cette station<br />

ms - seuil de référence de La station s<br />

Pr(s)-pluie réelle mensuelle de la station s<br />

n - nombre de stationssans données manquantes utilisées<br />

pour.l'interpolation<br />

La formule précitée découle de la formule utilisée en analyse<br />

objective pour l'interpolation de Gandine.<br />

Les seuils de référence des stations pluviométriques ont ete<br />

obtenus en partant des normales mensuelles publiées par la Météoro<br />

log i e Franc a i se C.13<br />

______________---_--<br />

Indice d'homogénéité<br />

On appellera indice d'homogénéité le rapport "pluie réelle<br />

mensuelle/pluie théorique mensuelle" calculé pour une station<br />

donnée. IL est bien evident que ce rapport sera nul pour une sta-<br />

tion ne possédant aucune donnée pendant le mois étudié, et qu'il<br />

sera inférieur 5 la valeur réelle si la station possède des don-<br />

nees manquantes.<br />

Lorsque l'on porte les valeurs des indices de toutes les sta-<br />

tions du département sur une carte, i l apparait des zÔnes d'homo-<br />

généite bien délimitees 5 l'intérieur desquelles ces valeurs sont<br />

très voisines; ce qui veut dire que, dans ces zÔnes, Les pluies<br />

sont fortement corrélées. Les stations ne s'inscrivant pas dans<br />

La répartition spatiale des indices sur le département sont jugees<br />

douteuses; telle est la base de la critique proposée.<br />

_______ ~<br />

~<br />

2 - Pluie mensuelle _______ -_----<br />

estimée<br />

Pour I estimation de Ta pluie mensuelle des stations possbUdi~t<br />

une série incomp!&te, nous utilisons la somme pondérée des indjccs<br />

d'homogénéite relatifs aux trois stations complètes lec. plus ~r'oches<br />

multiplice par la pluie theorique de la station en question.<br />

. . ./


Ob<br />

La formule est de La forme :<br />

'est - pluie mensuelle estimée de,la station à étudier<br />

KS - facteur de pondération relatif à la station s<br />

CS - indice d'homogénéité de la station s<br />

303<br />

Pth - pluie théorique mensuelle de ta station à étudier<br />

Le facteur de pondération utilisé ici est fonction de l'inverse<br />

des distances entre stations.<br />

3 - ------------ Décalages et --------- anomalies -<br />

Pour rechercher des anomalies ou décalages éventuels, souvent<br />

dus à des erreurs de transcription, nous appliquons le principe<br />

suivant :<br />

On considere qu'une valeur journali&re (nous la noterons flk)<br />

est décalée ou anomale si :<br />

a) O, alors que la valeur journalière pour chacune des<br />

trois stations les plus proches est supérieure<br />

ou égale à 1 mm.<br />

b) vk<br />

supérieur à 3 mm. avec une valeur jour<strong>nl</strong>ière nulle<br />

aux trois stations les plus proches.<br />

Dans Les deux cas, i l faut que les conditions suivantes soient<br />

vérifiées pour un jour donné;<br />

nombre de stations <strong>of</strong> = O 1<br />

nombre total de stations<br />

G?T<br />

4 - ------ Cumuls<br />

nombre de stations où ,><br />

nombre total de stations<br />

3 mm. 1<br />


O0 Cjlest(j) - p luie journalière estimée au jour j a la station<br />

étudiée<br />

Fil-(s,j> - pluie réelle journalière La station s Le jour j<br />

- pluie cumulée de la station étudiée<br />

n,<br />

"1<br />

- ler jour des données cumulées<br />

"2 - dernier jour du. cumul ("1 \< j < n2)<br />

Dans la formule (I), nous utilisons un seuil de référence établi<br />

a partir des normales établies par Angot en 1913 pour la periode<br />

1850-1900. Pour les stations n'existant pas à cette époque, ce<br />

seuil est obtenu par la méthode du tracé des isohyètes. Pour avoir<br />

des valeurs aussi précises que possible, nous corrigeons reguli&rement<br />

ce seuil de reference au fur et 3 mesure du développement<br />

du fichier.<br />

Pour cela, nous calculons les moyennes mensuelles des données<br />

du fichier, en tenant compte s'il y a lieu, des observations manquantes.<br />

Ces moyennes considérées comme pluies réelles dans la<br />

formule (1) permettent de calculer les indices d'homogénéite qui<br />

devraient être voisins de 1. Si les coefficients appartiennent à<br />

l'intervalle (0,90 ; 1,îO) la normale est acceptée, sinon elle<br />

est modifiée.<br />

II - REMPLACEMENT DES DONNEES MANQUANTES OU ABERRANTES PAR DES<br />

VALEURS C ALC ULEES.<br />

------ 1Pre méthode - ----- :<br />

En cas de donnees manquantes, la formule (2) permet de calculer<br />

la pluie estimée. Si la différence "pluie estimée-pluie réelle"<br />

est négative, les données manquantes de la station ne sont pas recherchées<br />

car, dans la plupart des cas, elles correspondent a des<br />

traces ou 5 des cumuls oubliés.<br />

Pour calculer ces données, nous utilisons toujours le même<br />

principe de pondération, ce qui conduit A la formule :<br />

Test(j) - pluie estimée du jour j de la station étudiée<br />

V%(s,j) - pluie réelle journalière de la station s le jourj<br />

R m - pluie réelle mensuelle de la station à étudier<br />

- nombre de pkriodes distinctes de donnees manquantes<br />

"1 1 - ler jour de donnees manquantes de la lierne pbriode<br />

n2(<br />

- dernier jour de cette période(<strong>nl</strong>l


305<br />

--------<br />

REMARQUE<br />

Cette méthode ne donne pas toujours des résultats acceptables.<br />

a) Lorsque la station dont on veut calculer la pluie estimee se<br />

trouve à la frontière séparant deux zônes de répartition spatiale<br />

différentes des indices d'homogénéité, la pondération<br />

utilisée relative aux trois stations les plus proches, traduit<br />

une distribution particuliere des poids qui peut s'éloigner de<br />

la réalité.<br />

b) Alors que les indices d'homogénéité caractérisent les précipi-<br />

tations mensuelles aux stations, ils entrent dans le calcul de<br />

la pluie journalière estimée.<br />

Pour toutes ces raisons, i l a été nécessaire de réduire l'échelle<br />

du temps. La critique automatique des données pluviométriques<br />

est maintenant appliquée aux épisodes pluvieux. L'efficacit6 de ce<br />

procédé a déjà éte vérifié par l'étude de certains mois ne présentant<br />

qu'une seule période pluvieuse.<br />

Pour pallier ces difficultés, nous avons mis au point une deuxième<br />

méthode permettant d'orienter Le choix du météorologiste.<br />

------------<br />

2ème methode :<br />

Elle est basée sur la recherche d'un rapport de proportionnalité<br />

moyen entre la somme des précipitations correspondant aux périodes<br />

des données manquantes et la différence du total mensuel complet<br />

avec cette somme.<br />

I Nous utilisons ici les trois stations les plus proches sans<br />

données manquantes.<br />

Appelons Pr(l), Pr(2), Pr(3) les totaux mensuels respectifs de<br />

la première, seconde et tro.isikme stations.<br />

DI, D2, D3 la somme des précipitations tombées respectivement<br />

à ces trois stations durant les périodes considérées.<br />

P/,(s), la différence Pr(s) - Ds (s variant de 1 3 3).<br />

Nous calculons : 3<br />

K=Z K s L (5)<br />

s=' P;(q<br />

OU Ks est un facteur de pondération, fonction de l'inverse de la dis-<br />

tance séparant la station étudiée de la station s.<br />

Connaissant P:, le total mensuel incomplet de la station étudiée,<br />

et La valeur de K d'après la formule (5), nous pouvons ecrire :<br />

ob D représente la somme des précipitations correspondantes aux<br />

jours des données manquantes pour la station étudiée.<br />

Pour calculer les quantités journalibres manquantes, i l suffit<br />

de reprendre la formule (4) utilisée pour la première méthode en<br />

remp1,açant par D.<br />

(6)


0<br />

Y I<br />

. 0<br />

I-<br />

I-<br />

C 2<br />

i1<br />

4<br />

W<br />

Ii<br />

.I- U<br />

c<br />

I-<br />

- .e W<br />

N N N<br />

n n n<br />

I I<br />

c .<br />

o<br />

4 L<br />

O<br />

e.<br />

I<br />

52<br />

306


1 - 1 1 I<br />

~:ooooooooooooooooooooooooo 00000<br />

n~ooooooooooooooooooo~~oooo 00000<br />

t<br />

Q:000000000000000O0000Q0000 00000<br />

t<br />

yI toe, 00.0 oo oooo 0-0 oo o oo a a o o o oo.oee<br />

.I<br />

*~00O0O00000000000000000000 00000<br />

t<br />

s-~ooooooooooooooooooooooooo ooooa<br />

t<br />

Q~OOOOOOOOOOOOOOOOOOOOOOOOO O0000<br />

*<br />

m80000000000000000000000009 O0000<br />

e<br />

w a<br />

æ<br />

-i1 O.<br />

W O<br />

-<br />

a<br />

Y<br />

w<br />

a<br />

=-<br />

Y<br />

O<br />

v-<br />

-a 23<br />

cn<br />

v-<br />

a<br />

m<br />

o ><br />

z<br />

T<br />

a<br />


308<br />

I I I - CALCUL A PARTIR DES STATIONS EXISTANTES DES VALEURS MENSUELLES<br />

ET DES EPISODES PLUVIEUX POUR LES POSTES FERMES OU INSUFFISANTS<br />

Les développements précédents nous permettent de :<br />

1 - calculer le seuil de référence d'une station dont les données<br />

n'existent que pour une période très courte (2 ou 3 ans)<br />

sous réserve cependant qu'elles ne soient pas erronées.<br />

2 - déterminer d'après la formule (1) La pluie théorique d'une<br />

station B l'aide de son seuil de référence et des données<br />

disponibles pour les autres stations du département<br />

3 - calculer la pluie estimée d'après la formule (21, (Le météo-<br />

rologiste pouvant éventuellement l'obtenir B partir de la car-<br />

te des indices d'homogénéité) '<br />

4 - rechercher les pluies journalières en utilisant les formules<br />

(1) (2) et (4) dans Le cadre des épisodes pluvieux.<br />

Les impératifs de l'élaboration d'un fichier valable de pluvio-<br />

métrie avaient déterminé l'adoption dans la pratique opérationnelie<br />

de la méthode simple de critique des données, que nous venons d'ex-<br />

poser.<br />

Parallèlement B cela, Le Bureau de L'Eau a poursuivi des recher-<br />

ches théoriques afin d'elucid.er le degré de validité de la méthode<br />

adoptée et les améliorations qu'il convenait de lui apporter.<br />

IV - 'LE PROBLEME DES DONNEES MANQUANTES C8,3,43<br />

Quatre methodes ont été vérifiées sur un fichier donnant les<br />

hauteurs des pluies journalieres en 15 stations des Côtes du Nord<br />

pour les mois de Janvier de 1'1 années consécutives (de 1961 2 1971)<br />

1 - Analyse en composantes principales<br />

__________-I_---------------------<br />

Le principe de La méthode est le suivant :<br />

On passe des données initia1es:r;ii valeur de la pluie le jour<br />

i B la station j aux données centrees'réduites =;i 3c.i , où<br />

m<br />

ni % SJ<br />

x.j:A Xij , Sj '2 2 (lu- .<br />

i:4 b-4<br />

les valeurs manquantes étant remplacées par la moyenne mensuelle<br />

de la station concernée. On calcule les valeurs propres A; et Les<br />

vecteurs propresci de la matrice de corrélation. Les composantes<br />

principales sont alors déterminées par la transformation linéaire<br />

des données initiales 3 l'aide de la matrice des vecteurs propres.<br />

On effectue une reconstitution approchée du fichi'er initial en<br />

ne conservant que les premibres composantes principales. Les va-<br />

leurs manquantes sont alors remplacées par les valeurs ainsi re-<br />

constitu6es.<br />

L'efficacité de la méthode est mesurée B l'aide du coefficient


30 9<br />

ry<br />

où x est ta vraie valeur, ta valeur reconstituée,gx L'écart<br />

moyen quadratique pour La station concernee, N Le nombre des "trous"<br />

supplémentaires introduits dans le fichier de façon aléatoire afin<br />

de tester la methode, La sommation étant etendue à toutes les va-<br />

leurs de x correspondant aux trous supplémentaires.<br />

Une étude expérimentale a montre que le nombre optimum de com-<br />

posantes principales retenues pour reconstituer le fichier initial<br />

était n = 4.<br />

---_--_-__-<br />

--___- ----------<br />

2 - Analyse des correspondances<br />

La méthode est analogue 3 la première mais, au Lieu de passer<br />

aux variables centrées réduites =Li -3C.L on utilise La trans-<br />

6J<br />

formation classique en analyse des correspondances<br />

I *<br />

où xi.=- L.r..est la te jour i pour L'ensemn<br />

jz4 Y<br />

1<br />

ble du département, x.j=-g x~j est La moyenne mensuelle à la<br />

1 m ir4<br />

station j et x..=-P =.j=L 2 ~~.<br />

n j:d<br />

rn ir4<br />

Les valeurs propres de la matrice de corrélation des nouvelles<br />

V ariables tij sont très voisines: 1,24 . 10-2


v -<br />

310<br />

I -4<br />

Pour maximiser {()o on minimise La forme quadratique x V X .<br />

La condition de minimum est ainsi<br />

X'V'1dX = O<br />

si t'on pose XI, =Z,--- ~n les valeurs connues et "&+d j - - - -1<br />

7t, les valeurs inconnues (manquantes) la condition de minimum<br />

s'-écrira<br />

.-<br />

On obtient n-k équations à n-k inconnues pour determiner les<br />

valeurs inconnues x p+4 > ---- =,.<br />

b) On ne connait pas Vxx. On calcule alors les covariances, couple<br />

par couple, en effectuant la sommation pour les valeurs simultnnement<br />

non-manquantes pour chaque couple donné. On obtient ainsi une<br />

matrice Vxx, qui n'est pas nécessairement definie positive étant<br />

donné que les indices de sommation =ont étendus à des ensembles<br />

differents. On diagonalise ensuite Vxx, on range Les valeurs.propres<br />

par ordrededécroissance et on ne conserve que celles d'entre<br />

elles qui sont supérieures 5 un seuil positif donne. Un seuil optimal<br />

semble exister qui est d'.autant plus grand que la taille de<br />

l'échantillon est petite.<br />

On a presenté dans le tableau 1 les valeurs du coefficient 6'<br />

(c-f 7) en fonction du pourcentage de trous dans le fichier pour<br />

les trois premikres méthodes retenues.<br />

Le tableau Z permet de comparer, pour la quatrième méthode, Le<br />

gain obtenu en remplaçant la .donnee manquante, non pas par La valeur<br />

moyenne mais, par la valeur reconstituee à l'aide de cette<br />

méthode, les crit&re_c de qualité étant respec.tivement,E(r-;E)',<br />

E(~c-2)~<br />

et -4-t*Cr,~).<br />

RECHERCHE DES ZONES HOMOGENES DE PLUVIOMETRIE PAR UNE METHODE DE<br />

VISUALISATION DE MATRICE D'INTERDISTANCE<br />

Soit N points dans l'espace RP . On construit La matrice symetrique<br />

NxN dont les termes sont les distances euclidiennes entre<br />

points, mesurés dans l'espace R<br />

P ;<br />

On recherche une représentation plane des N points XI, Xz, ...,<br />

XN deRP à l'aide de N points images YI, Yz,-Yp de Rz, de façon<br />

à ce que la distance entre deux points images Yi et Yj soit La<br />

plus proche possible de la distance entre Xi et Xj. ,<br />

Pour cela, on part d'une configuration arbitraire des Yi et on.<br />

deplace ces points de façon a minimiser un critere de type Xa<br />

entre distances reelles et distances images. Cette methode ne neces<br />

site pas de diagonalisation de la matrice de distanceset peut être<br />

aisement mise en oeuvre. La pr8cision de La visualisation diminue<br />

quand le nombre de points augmente. I l semble toutefois possible<br />

de traiter des matrices 15Ox15C avec une précision de reppesen'<br />

tation satisfaisante.


Pourcentage de trous<br />

dans le fichier<br />

Méthode des composantes<br />

principales<br />

Analyse des<br />

correspondances<br />

Méthode de<br />

regression<br />

15,19 19,6 24,3 29,4 32,9<br />

o,33<br />

31 1<br />

0,34 0,26 0,35 0,51<br />

O ,33 0,36 0,20 O ,33<br />

0,30 O ,30 0,21 0,32 0,46<br />

Tableau I - Valeurs des 6% en fonction des pourcentages de<br />

trous dans le fichier<br />

tations<br />

1 o1<br />

161<br />

471<br />

1131<br />

1211<br />

1271<br />

1581<br />

1681<br />

1711<br />

2101<br />

21 51<br />

2231<br />

2281<br />

2 62.1<br />

--<br />

E(X -%y<br />

381<br />

335<br />

755<br />

343<br />

797<br />

359<br />

5 79<br />

253<br />

43 4<br />

391<br />

327<br />

41 6<br />

390<br />

761<br />

3621<br />

51 2<br />

T'ablcau 2<br />

JANVIER<br />

E(*- ;y 1 - r2<br />

2795 0,14<br />

1454<br />

2864<br />

1318<br />

1844<br />

649<br />

3453<br />

1632<br />

21 59<br />

1236<br />

1477<br />

2533<br />

2791<br />

2418<br />

1699<br />

O ,23<br />

0,26<br />

0,26<br />

0,43<br />

0,55<br />

0,16<br />

0,15<br />

0,20<br />

0,32<br />

0,23<br />

0,16<br />

0,14<br />

O ,31<br />

0,30<br />

:(x -ry<br />

319<br />

177<br />

179<br />

1 o1<br />

191<br />

97<br />

409<br />

145<br />

220<br />

160<br />

3 85<br />

2 88<br />

186<br />

161<br />

221<br />

JUILLET<br />

E(X-%)=<br />

1542<br />

Y65<br />

992<br />

1126<br />

1027<br />

257<br />

1311<br />

1262<br />

2285<br />

822<br />

1 3 2'ï'<br />

1413<br />

1448<br />

1511<br />

85 1<br />

0,21<br />

0,18<br />

0,18<br />

0,09<br />

0,18<br />

O ,38<br />

0,31<br />

0,11<br />

0,10<br />

0,19<br />

0,29<br />

o ,20<br />

0,13<br />

0,1Î<br />

0,26


312<br />

A partir de 24 stations notées A,B,C,-, X dans la région Sud-<br />

Ouest de la France (Fig 2), on a construit 12 matrices de distances<br />

(une par mois) B partir des hauteurs de pluie journali6res rele-<br />

vées dans chaque station. Ces douze matrices ont été visualisées;<br />

on trouvera en exemple (Fig 3)les deux visualisations Décembre et<br />

Mai. Il a eté possible de trouver quatre g'roupes de stations voi-<br />

sines qui se retrouvent sur chaque visualisation.<br />

Ces groupes ont été reportes sur la carte et correspondent A<br />

des zbnes pluviométriques homogènes en ce sens que deux stations<br />

d'un même groupe cont"proches" vis 3 vis de la pluviométrie.<br />

Ces th6mes de recherche ont été développés sous l'egide du<br />

Bureau de L'Eau et rendus opérationnels avec La participation<br />

active de Mrs. B.RAMBALDELL1, J.F. ROYER, J.C. BARESCUT, J.ZIRPHILE.<br />

Notons en conclusion.que ces recherches se poursuivent au<br />

Bureau de L'Eau et que d'autres methodes d'analyse des données<br />

sont également étudiées dans le but de parvenir 3 une meilleure<br />

connaissance du champ de pluviométrie.<br />

REFERENCES BIBLIOGRAPHIQUES<br />

CI1 ANGOT A. (1911-1914) Annales du Bureau Central Meteorologique<br />

de France<br />

C21 BUCK S.F. (1960) A method <strong>of</strong> estimation <strong>of</strong> missing values in<br />

multivariate data suitable for use <strong>with</strong> an electronic computer.<br />

Journal <strong>of</strong> the Royal Stat'istical Society, Series 8.22<br />

pp. 302-306<br />

C31 AFIFI A.A., Elash<strong>of</strong>f R.H. (1966). Missing observations in<br />

multivariate statistics. Journal <strong>of</strong> the American Statistical<br />

Association. 61 pp. 595-604.<br />

C41 KELEJAN H.H. (1969). Missing observations in multivariate<br />

regression : e fficiency <strong>of</strong> a first order methods. American<br />

Statistical Association Journal. 65 pp 1609-1616.<br />

C51 SAMMON J.U. (1969). A no<strong>nl</strong>inear mapping for data structure<br />

analysis. IEEE Transactions on computers - Vol C - 18, N' 5<br />

pp. 401-409.


I<br />

Fig. 1 - ndiccs d'homogéneitE<br />

5'<br />

I<br />

ARNE<br />

I<br />

31 3


314<br />

Fig.2 -<br />

12 BIS<br />

Fig.3 - Exemple de visualisation des matrices d’interdis-<br />

tances.


INFLUENCE OF INADEQUACY OF HYDROLOGICAL DATA<br />

ON PROJECT DESIGX AND I'ORMULATION<br />

GENERAL REPORT<br />

by<br />

Leo R. Beard ( 1)<br />

NATURE OF DATA INFLUENCE ON PROJECT DESIGN<br />

In evaluating the effect <strong>of</strong> data inadequacy on water resources project<br />

design, it is important to recognize that a moderate error in project size that<br />

might result is not necessarily accompanied by a proportional over-all loss in<br />

project net benefits. As a matter <strong>of</strong> fact, the difference between benefits<br />

derived from almost any water resources project and the costs <strong>of</strong> that project<br />

changes very little over a relatively large range <strong>of</strong> project size in the vicinity<br />

<strong>of</strong> optimum project size. However, it is in this range that added uncertainty<br />

in design reduces project net benefits on the average, beca:ice net benefits<br />

decrease in both directions from the optimum, and, even thoiigh increased expected<br />

cost due to uncertainty is usually a smaìl fraction <strong>of</strong> the total project cost, it<br />

can be large enough to justify care and extra cost in obtaining data for more<br />

reliable design.<br />

When project design level is quite different from tconomic optimum<br />

(and this can occur because <strong>of</strong> financial constraints, political constraints, and<br />

other factors) , then the net project benefits change vei *J rapidly <strong>with</strong> errors in<br />

design magnitude, but these errors tend largely to carit-el in the expectation<br />

computation. Hence, in general but not always, errors in determining over-all<br />

project size have far less than a proportional effect on project net benefits,<br />

provided that the project operation can be modified as necessary to make effective<br />

use <strong>of</strong> the project facilities under conditions different from those anticipated<br />

during design.<br />

On the other hand, rather minor inadequacies in data can have an unex-<br />

pectedly large effect on the over-all project size. In flood control design, for<br />

example, errors due to data inadequacies can cause differences as great as a<br />

factor <strong>of</strong> 2 or 3 in estimating extreme flood sizes corresponding to specified<br />

exceedence probabilities. In the case <strong>of</strong> drought regulation (water supply) , a<br />

change in magnitude or duration <strong>of</strong> a prolonged drought can result in differences as<br />

great as a factor <strong>of</strong> 2 or 3 in the amount <strong>of</strong> supplementary supply (usually storage)<br />

(l)Technical Director, Center for Research in <strong>Water</strong> <strong>Resources</strong>, The University <strong>of</strong><br />

Texas, Austin, Texas, USA.


316<br />

that must be provided for. Here again, though, project design magnitude<br />

does not necessarily respond linearly to changes in flood or drought magnitude,<br />

because cost and benefit considerations have a strong dampening or stabilizing<br />

influence.<br />

INFLUENCE OF DATA INADEQUACY ON PROJECT SIZE<br />

Considering then, that there is no simple relationship between data<br />

inadequacy and project net benefits, it is safe to say that evaluation <strong>of</strong> the<br />

effects <strong>of</strong> data inadequacies on design requires a detailed study <strong>of</strong> the<br />

inadequacies and all <strong>of</strong> the interrelated factors that influence project design.<br />

Such detailed studies have been demonstrated in rather simplified applications<br />

in work cited by Mr. lames and used as a basis <strong>of</strong> the studies described by<br />

Mr. James.<br />

In his paper, “Data Requirements for the Optimization <strong>of</strong> Reservoir<br />

<strong>Design</strong> and Operating Rule Determination ,” Mr. James develops the theory<br />

and some practical demonstrations for determining the optimum length <strong>of</strong><br />

stream gaging stations where their value for reservoir design and operation<br />

alone is considered. In effect, the question to be answered is, how soon<br />

should gaging records be started if a project will be constructed at some<br />

distant time in the future. His basic solution is first for a known future<br />

construction time, and then he considers uncertainty in the time <strong>of</strong> construction.<br />

Benefits <strong>of</strong> gaging records are a function <strong>of</strong> increased efficiency <strong>of</strong> design and<br />

operation.<br />

Although much simplification <strong>of</strong> the design and operation problems is<br />

assumed, the concepts developed by Mr. James are <strong>of</strong> fundamental importance.<br />

It is interesting to note that optimum record periods are in the order <strong>of</strong> 25 to<br />

50 years, but there is insufficient information in the paper to determine whether<br />

the basis <strong>of</strong> these results is real or largely assumed. Perhaps the author could<br />

elaborate on this.<br />

Stream gaging records are <strong>of</strong> value for many things other than project<br />

design. It would be helpful if the author could express some opinions on whether<br />

other benefits exceed these or are rather minor. It would seem <strong>of</strong>f-hand that our<br />

great heritage <strong>of</strong> hydrologic data could not have been justified many years ago on<br />

such grounds alone, and yet w e know Chat the body <strong>of</strong> data that now exists is<br />

invaluable.


INFLUENCE OF DATA INADEQUACY ON METHODOLOGY<br />

317<br />

In addition to affecting the size <strong>of</strong> a project, data inadequacies can<br />

greatly influen..e the methodology used in planning and designing a project.<br />

Pr<strong>of</strong>essor Reid o in his paper, "Tiie <strong>Design</strong> <strong>of</strong> <strong>Water</strong> Quality Management<br />

<strong>Projects</strong> <strong>with</strong> <strong>Inadequate</strong> Data, " points out that mathematical models must<br />

be built <strong>with</strong> availability <strong>of</strong> data in mind, that there is never as much data as<br />

needed, and that the o<strong>nl</strong>y defense against inadequate data is judgment. He<br />

describes a number <strong>of</strong> water quality models very briefly in the form <strong>of</strong> mathe-<br />

matical equations, but does not attempt to describe their purpose or application<br />

or to delineate the need for data in each case. Perhaps he could elaborate on<br />

this. He expresses some thoughts on the cost <strong>of</strong> waiting for more data before<br />

designing a project, and points out that an important element is the zost <strong>of</strong><br />

postponing the stream <strong>of</strong> net benefits from the project.<br />

Dr. Reid suggests 8 quality parameters that are commo<strong>nl</strong>y measured in<br />

the U.S. <strong>with</strong> adequate reliability and accuracy and at reasonable cost. It<br />

would be helpful to discuss these in relation to the models described, <strong>with</strong><br />

particular attention to data gaps that would exist if o<strong>nl</strong>y these paranieters are<br />

measured.<br />

Dr. Reid also suggests a time scale for a progressive pollution abate-<br />

ment program, showing abatement <strong>of</strong> lake eutrophication by 1980, reuse by<br />

1990 and recycling by 2000. This is apparently for the United States, but<br />

would be <strong>of</strong> interest to other countries. It would help if some <strong>of</strong> the abbrevia-<br />

tions used would be explained, if distinction between reuse and recycle is<br />

explained, and if the basis for or origin <strong>of</strong> the table were stated.<br />

METHODS USABLE WITH INADEQUATE DATA<br />

Two other papers prepared for this session describe specific methodology<br />

that should be used when data inadequacies exist.<br />

In the paper, "<strong>Design</strong>ing <strong>Projects</strong> for the Development <strong>of</strong> Ground <strong>Water</strong><br />

<strong>Resources</strong> in the Alluvial Plains <strong>of</strong> Northern India on the Basis <strong>of</strong> inadequate<br />

Data, " Sarherwal describes generalized ground-water yield criteria, developed<br />

for guidance in developing ground-water supplies in the Punjab until such time<br />

as systematic data on ground-water reservoirs becomes available. The develop-<br />

ment <strong>of</strong> high-yield crops has occasioned a marked increase in ground-water<br />

exploitation as an assured supply for critical irrigation needs. In order to<br />

further increase the use <strong>of</strong> ground water effectively, studies based on such<br />

criteria are essential.


318<br />

The criteria described are based on approximating the pertinent<br />

components <strong>of</strong> the hydrologic cycle. Of primary concern are those components<br />

associated <strong>with</strong> replenishment <strong>of</strong> the ground-water supplies. Formulas are<br />

given for the amount <strong>of</strong> rainfall that contributes to deep percolation, seepage<br />

from lined and u<strong>nl</strong>ined canals, recharge from water courses, and return<br />

seepage from irrigated fields. It was found that horizontal movement <strong>of</strong> ground<br />

water is very small compared to vertical recharge and could therefore be<br />

ignored in this set <strong>of</strong> approximate criteria. <strong>Water</strong> <strong>with</strong>drawal criteria consist<br />

<strong>of</strong> generalized values for evaporation from water-logged areas and draft from<br />

various types <strong>of</strong> wells.<br />

Planning <strong>of</strong> new wells is based on a water balance study using these<br />

generalized criteria and a safety factor dependent on the region. An example<br />

<strong>of</strong> criteria application is given for the Bist Doab Tract.<br />

Mr . Sarherwal supports his paper <strong>with</strong> an abundance <strong>of</strong> background<br />

material indicating the importance <strong>of</strong> this subject to the economy, to the<br />

ecology and to social conditions in India. It would appear that some elaboration<br />

on the role <strong>of</strong> surface water development in conjunction <strong>with</strong> ground water<br />

management would also be very useful in such an outstanding paper.<br />

In their paper, "<strong>Design</strong> <strong>of</strong> <strong>Water</strong> <strong>Resources</strong> <strong>Projects</strong> <strong>with</strong> <strong>Inadequate</strong><br />

Data in India - General and Particular Case Studies," Banerji and La1<br />

describe a variety <strong>of</strong> methods used in India for the estimation <strong>of</strong> design<br />

floods and for monthly and seasonal run<strong>of</strong>f quantities.<br />

Rough approximations <strong>of</strong> seasonal run<strong>of</strong>f from monsoon rainfall are<br />

obtained <strong>with</strong> Strange's Table <strong>of</strong> run<strong>of</strong>f ratios for apparently arbitrary<br />

categories <strong>of</strong> good, average and bad catchments. A less arbitrary method<br />

<strong>of</strong> estimating run<strong>of</strong>f from rainfall uses Khosla's Formuld, which simply<br />

substracts monthly evaporation and transpiration loss from monthly precipi-<br />

tation. The loss is a universal, unique function <strong>of</strong> average monthly temperature.<br />

A modified formula is given for calculating annual loss from annual temperature<br />

in order to compute annual run<strong>of</strong>f from annual rainfall.<br />

A third technique for obtaining run<strong>of</strong>f from rainfall is the correlation<br />

<strong>of</strong> short run<strong>of</strong>f records <strong>with</strong> rainfall on an annual or monsoon-season basis<br />

and then estimating run<strong>of</strong>f for all the years <strong>of</strong> rainfall reco<strong>nl</strong>. The fourth<br />

technique uses the standard unit-hydrograph method for relating run<strong>of</strong>f to<br />

rainfall.


319<br />

Methods <strong>of</strong> estimating peak flows include empirical formulas<br />

relating maximum observed floods to size <strong>of</strong> catchment area , envelope<br />

curves <strong>of</strong> maximum floods and regional flood frequency analysis. Criteria<br />

are given for obtaining probable maximum precipitation and unit-hydrographs<br />

for ungaged catchments. An interesting exponential recession technique<br />

in lieu <strong>of</strong> the unit-hydrograph technique is described.<br />

The authors do not discuss the degree <strong>of</strong> development or <strong>of</strong> flood<br />

protection that is needed for various types <strong>of</strong> structures, so it is difficult<br />

to visualize how their criteria would be applied for a great variety <strong>of</strong><br />

structures such as culverts, levees, dams and spillways, where there is<br />

a great range in the degree <strong>of</strong> safety needed. Also, they do not indicate the<br />

degree <strong>of</strong> adequacy <strong>of</strong> the methods and whether further development <strong>of</strong><br />

methodology or increased amounts <strong>of</strong> data would substantially improve the<br />

reliability <strong>of</strong> project design. It appears that they are in an excellent<br />

position to render judgment in this matter, and perhaps they would do so<br />

in their discussion at this session.<br />

MINIMUM DATA REQUIREMENTS<br />

There is always the question as to the minimum data required for any<br />

design, and, <strong>of</strong> course, this varies <strong>with</strong> the type <strong>of</strong> project and level <strong>of</strong><br />

development. In a paper, "Minor water Resource <strong>Projects</strong> Formulation<br />

on Micro Hydrological Data for Standardization and Quicker Execution<br />

in Developing Areas: Guidelines, " received through written communication,<br />

Mr. Sikka discusses the problems <strong>of</strong> data needs in reldtion to development<br />

<strong>of</strong> projects <strong>of</strong> moderate size. He supplies a list <strong>of</strong> miriimum data requirements,<br />

which should be <strong>of</strong> value to countries outside <strong>of</strong> India as well as to India.<br />

These include topographic and soil mapping, many types <strong>of</strong> hydrologic data<br />

and data on irrigation efficiency. Special emphasis is placed on the fact<br />

that past drought periods can be exceeded in the future and that this should<br />

be taken into account in design.


320<br />

Mr. Sikka discusses environmental impacts and the needs for indices<br />

<strong>of</strong> environmental conditions and for value weights that can be related to<br />

economic efficiency benefits and costs. He lists water and air quality,<br />

wilderness and scientific areas, esthetic features and wildlife habitats<br />

as environmental elements <strong>of</strong> principal concern. He stresses the conservation<br />

<strong>of</strong> water resources through more efficient application <strong>of</strong> irrigation water. He<br />

also discusses the conjunctive development <strong>of</strong> surface and ground waters and<br />

related data needs.<br />

Mr. Sikka brings up the question <strong>of</strong> the adequacy <strong>of</strong> basin-wide studies<br />

<strong>of</strong> surface waters in conjunction <strong>with</strong> ground-water aquifers that extend beyond<br />

the boundaries <strong>of</strong> river basins. This is a rather common circumstance, and<br />

it is apparent that the scope <strong>of</strong> surface water studies must be extended where<br />

ground water is a substantial element and where horizontal movement <strong>of</strong> ground<br />

waters across the river basin boundaries is significant. This emphasizes the<br />

importance <strong>of</strong> obtaining surface and ground-water data extending far beyond<br />

river basin boundaries in some studies.<br />

INFORMATION CONTENT OF DATA<br />

Many <strong>of</strong> the effects <strong>of</strong> data inadequacies discussed thus far in this<br />

general report are direct influences that are relatively easy to understand.<br />

There are some subtle effects that are little understood and yet can have<br />

major impact on project design.<br />

Weber, Kisiel and Duckstein in their paper, "Maximum Infonnpon<br />

Obtainable from inadequate <strong>Design</strong> Data: From Multivariate to Bayesian<br />

Methods," discuss some theoretical aspects <strong>of</strong> a subiect that is critical in<br />

the use <strong>of</strong> inadequate data and has considerable impact even where substantial<br />

data exists in many applications. They examine the effect <strong>of</strong> possible<br />

inapplicability <strong>of</strong> theoretical assumptions underlying techniques such as linear<br />

regression, discriminant functions, canonical correlation, principal component<br />

analysis, factor analysis and cluster analysis. In many cases, departure <strong>of</strong><br />

data from underlying assumptions such as linearity or normality will cause<br />

erroneous results. More markedly and more generally, confidence estimates<br />

will be in error.<br />

The authors discuss the complexity that is introduced into Bayesian<br />

analysis by uncertainties in the basic assumptions and cite some degree <strong>of</strong><br />

success in applications to discriminant analysis.


321<br />

Remarks relative to the interpretation <strong>of</strong> the results <strong>of</strong> principal<br />

component analysis are interesting. Attempts to identify the physical<br />

significance <strong>of</strong> the components or to use the components in subsequent<br />

regression analysis bring up serious questions. The general reporter feels<br />

also that such attempts would constitute a misapplication <strong>of</strong> the technique<br />

(as the authors may feel also).<br />

This paper does not attempt to answer the problems but simply identifies<br />

them. It should be <strong>of</strong> great value if it occasions attempts by the authors or<br />

others to find answers to these problems. It would be useful if the authors would<br />

comment on the effects that inapplicability <strong>of</strong> assumptions may have on the<br />

stability <strong>of</strong> maximum-likelihood solutions. The general reporter has witnessed<br />

cases where highly erratic results were obtained through use <strong>of</strong> maximum-likelihood<br />

parameters that were apparently sensitive to the form <strong>of</strong> a distribution function<br />

and where the data were not known for sure to fit the assumed distribution.<br />

GEOGRAPHIC CONS IDERATIONS<br />

None <strong>of</strong> the papers in this session discuss the differences in the<br />

various geographic regions that affect the adequacy <strong>of</strong> data. It is known that<br />

many rivers are very stable and that a relatively small amount <strong>of</strong> data can be<br />

adequate for fairly reliable hydrologic determinations. On the other hand,<br />

there is almost never sufficient data for evaluating the run<strong>of</strong>f potential <strong>of</strong><br />

some highly erratic streams where flows some years may be ln0 to 1000 times<br />

as great as flows in other years.<br />

Also, there is a difference in the nafure <strong>of</strong> data transfer potential in<br />

various geographic regions. In regions where genera! storms or general snow-<br />

melt floods predominate to produce high conelations among hydrologic events<br />

<strong>with</strong>in the region, data at a long-record site may be used to effectively extend<br />

data at a short-record site. In this manner, short records can be made to serve<br />

for long records to a large extent. It should be noted, however, that this permits<br />

estimates whose reliability is limited to that obtainable <strong>with</strong> the longest records<br />

<strong>of</strong> the region.<br />

On the other hand, where great hydrologic heterogeniety exists, such<br />

as where small-area storms predominate, information might be transferred if<br />

the rainfall-run<strong>of</strong>f process can be modeled accurately. In this case, there is<br />

a virtually u<strong>nl</strong>imited amount <strong>of</strong> information in a region that might be assembled<br />

to yield estimates far more reliable than those obtainable from the longest<br />

records. At present, the technology does not exist for effectively assembling<br />

such data, but the potential certai<strong>nl</strong>y is there.


322<br />

SUMMARY<br />

In summary, it is not at all obvious how data inadequacies can affect<br />

design <strong>with</strong>out making a detailed. study and <strong>with</strong>out a thorough understanding<br />

<strong>of</strong> the factors Involved. Errors due to data inadequacies can accidentally<br />

improve a design, but the expectation is that better data will produce better<br />

designs, as long as sound policies and technology are employed.<br />

Many important contributions are contained in the papers for this<br />

session, and the authors are to be congratulated on their efforts. They have<br />

studied the need for and value <strong>of</strong> basic data and the impacts <strong>of</strong> data deficiencies<br />

on techniques and on design adequacy, and have defined new problem areas<br />

where special considerations are required in the use <strong>of</strong> small data samples.


ABS TRACT<br />

DESIGN OF WATER RESOURCES PROJECT WITH INADEQUATE<br />

DATA IN INDIA - GENERAL Q PARTICULAR CASE STUDIES<br />

S.Banerji" E V.B. Lal* - INDIA<br />

India has rich experience in successful construction <strong>of</strong> water<br />

resources projects <strong>with</strong> inadequate data. While rainfall data <strong>of</strong><br />

considerable length are availaBle in or around the catchment, run<strong>of</strong>f<br />

observations are usually available for 10 years or less, Commo<strong>nl</strong>y<br />

some gauge site some distance away from the dam site may be available<br />

Data on soil moisture, infiltration, and evapotranspiration are<br />

almost non-existent,<br />

The paper, based on a study <strong>of</strong> several important reports rela-<br />

ting to many projects situated in different climatological, topo-<br />

graphical and geological regimes, describes the practices followed<br />

in: (i) transferring rainfall data from a hydrologically similar<br />

region to the reservoir catchment by short term correlation, Ciil<br />

establishing correspondence between rainfall and run<strong>of</strong>f by applying<br />

a regional empirical formula, or by first deriving a regression<br />

equation for rainfall vs, run<strong>of</strong>f for the small period for which simul-<br />

taneous records <strong>of</strong> both parameters are available and then applying<br />

it to longer rainfall records for getting the discharge series (iii)<br />

tranferring gauge discharge relationship <strong>of</strong> a distant site to the<br />

dam site to work out time distribution <strong>of</strong> inflows, and the peak flow.<br />

For the latter, a method evolved for estimating maximum flood in the<br />

Narmada and Mahanadi rivers, principally based on assessing the<br />

contribution due to different zones <strong>of</strong> catchment each extending to 1<br />

day's flow time, has been descrìbed for the Benefit <strong>of</strong> monsoon regions.<br />

RESUME<br />

Les Indes ont une grande expérience dans la réalisation d'amlna-<br />

gements des eaux h partir de données insuffisantes, L'observation<br />

directe des débits ne porte en général que sur des périodes de moins<br />

de 10 ans, tandis qu'on dispose souvent de données de précipitations<br />

sur de longues périodes. D'autre part, il est courant de disposer<br />

d'une échelle limnimétrique 3 quelque distance du sîte du barrage pro-<br />

jeté, alors que les données sur l'humidité du sol, 1iinfPltration et<br />

ì'êvaporation sont presque ìnexfstantes.<br />

L'étude présentée est basée sur plusieurs rapports importants<br />

relatifs à des projets situés dans des régions qui présentent des<br />

conditions variées en climatologie, topographie et geolog2e. Les<br />

auteurs décrivent les méthodes employdes pour (31 transférer les<br />

données de précipitations d'une région hydrologiquement analogue au<br />

bassin qui alimente le r&servol'r, Ci'il &tqblir uqe correspondance<br />

entre les precipitations et l'écoulement par l'application d'une formule<br />

empirique régionale ou d'une Iquatioy de r@gress.Con, calcul@es<br />

sur la période d'observation commane des pluzes et des débits et utilisées<br />

avec des données de prgcipitations de longue durée pour obtenir<br />

une extension des debits, (iii) déterminer la relation hauteur-débit<br />

au droit du barrage 1 partir d'une relation établie a une station siT<br />

tuée 3 quelque distance pour estimer la distrìbution des d&bìts et les<br />

pointes de crues, Les auteurs exposent a titre d'exemple une méthode<br />

utilisée pour évaluer la crue maximale des rivibes Narmada et Mahanadi;<br />

cette mlthode, intéressante pour les régimes de mousson, tient<br />

compte de la contribution des différentes parties du bassin, le<br />

découpage correspondant a un isochronisme journalier.<br />

~<br />

* Scientists, Secretariat <strong>of</strong> 1.H.D' National Committee<br />

I


324<br />

1.0 introduction<br />

India h a a rich experience in 'successful' construction <strong>of</strong> water msources<br />

projects <strong>with</strong> inadequate hydrologioal data. Since 1951, when tha fimt Five Year<br />

Plan commenced, 537 major and mriàium projeots, each having a reservoir etorage <strong>of</strong><br />

over 6167 hectare-mtree i.e. 50,000 aumfset, ham been taken up and about 300 have<br />

been completed (1). However, since most <strong>of</strong> the gauge ami discharge sites f a<br />

regular observation on Indien riveru have been eet up o<strong>nl</strong>y after independenoe in<br />

1947, run<strong>of</strong>f observatioas or even gauge-readings, if at all available at the sito<br />

<strong>of</strong> a proposed dam were <strong>of</strong> very short duration, sw, lesa than 10 gbm. 'phr redseeing<br />

factor in this situati= has been tknt for most aress <strong>of</strong> the oouutry long records<br />

<strong>of</strong> rainfall, <strong>of</strong> 50 years or more ere gen9ra;lI.y available. Aluso, ooemo<strong>nl</strong>J aoma gauge<br />

site would be evaileble on the ccgcerned river som distema away from tkie dai site.<br />

Data on soil moisture, infiltration end evapotranpipiratiai axe praotiedïy non-<br />

existent.<br />

1.1 hia mesent paper is based m e tatu* <strong>of</strong> neveral intportant reports (vide<br />

appendix 1) mlat- to meny projects <strong>of</strong> variona siaes rituated in different<br />

ûlbtOlOgiû& topmphioal a d @ûl~iC8l =gimes Of the Cmtrj. W pY.æOtiCeS<br />

described relake to the following thme oetegoriee <strong>of</strong> problem:<br />

(i) 'Jkarisferring rainfall date from an adjacent, lydrologieally nimilar<br />

regiai to tlie reservoir oatchnte<br />

(U) Eatciblisw oormepandeme between rainfall and run<strong>of</strong>f<br />

(iii)Tramaferring gaw discharga relatioriehip <strong>of</strong> a distant site to dam site<br />

Mœt <strong>of</strong> thee relate to estimation <strong>of</strong> run<strong>of</strong>f vdrmies. Eltimation <strong>of</strong> p.nk<br />

flore has been discussed separately.<br />

2.0 Indien Pcaotice<br />

It meg be etated hem that 88 there is lege di.arsity not od7 in the<br />

2.1<br />

size and the region <strong>of</strong> lm&Aon but also in the nature <strong>of</strong> data available for<br />

differed projeote, lhm are no 8~tau&d8 or mallar8 Wd-8 to -rocmm<br />

problem <strong>of</strong> dafa maralty. Then, he8 ban no partioular Pmferenoe for either<br />

the Mit i@rograph or tb etatietiad Mqoenny distribution In &te- tìm<br />

'dosigm flod8, and, bpending upoe the gravity ni wzumxmnnoe <strong>of</strong> a likely failure<br />

<strong>of</strong> tb stmûtm, attsmpts hem ben meâe, wimromr m-88- ad poisiblev<br />

to arrive at the design flood by =me <strong>of</strong> both thse approdms and a for others<br />

<strong>of</strong> regid applloatian.<br />

1Lo 8 general guideline it h m been pmsuribed that inajar and odium groJects<br />

2.2<br />

should be deeigmd for Probable Msximtri Flood (m) "that wodd reriult from the


co&ination <strong>of</strong> critical msteorslsgicd and hYhOle@;iO f oonditians<br />

ca.sidend physi.~c~llg possible in the mgid"' Ln oases <strong>of</strong> SPJQ~ wojects<br />

<strong>with</strong> mery larga catchm;.nte whem applicaticm Of imit Wai.oS=Qh is bdVhabble<br />

a 1OOO-yeer flood esthte ia attempted by fnqwncy onalg.eie from a dkchprgs<br />

aeries at site cmtmted frem &ta <strong>of</strong> rainfall or other infomtim that Ippg b~<br />

amilable. In tb CPB~ <strong>of</strong> germanent ba-8<br />

tu<br />

less thpn 6167 ha. m the design is to be based on the Stanbra Pr@d**t<br />

Flood (SPF) that would msdt from Ithe mest severe combination <strong>of</strong> ~ t e ~ ~ l W i c ~<br />

and hg&ologic omditime, considersd reasonably characteristi0 ef liha =gim<br />

excluding extmmb ram oo?abineticars', er a 1oO-year flmd whia*r IS<br />

For smaller projects design flood ae;y be estimated by approximate end empirioel<br />

methods applicable locally. (2~3)-<br />

3.0 Transferring Rainfall Data from Adjacent Catchment<br />

In Cases where rainfall data for considerable periods are not<br />

available for the catchment upto the damsite two tendencies are discerni-<br />

ble. If it has been possible to construct a discharge series at the dam<br />

site by some technique from discharge data available elswhere no<br />

outstanding necessity has been felt for precîpitation data for estimating<br />

the flood peaks or periodic inflow volumes e.g. Tehri Dam. Otherwise<br />

attempts are made to work out precipitation figures for the catchment<br />

under consideration. If the number <strong>of</strong> raîngauge <strong>of</strong> raingauge station<br />

in the project catchment is samall, the statìons in the adjacent region<br />

considered hydrologically similar are utilised for constructing<br />

Thiessen's Polygon for working out weighted average figures <strong>of</strong> rainfall<br />

in different years <strong>with</strong>in the catchment e.g. Hasdeo (Bango) Project. It<br />

is also possible to have a few years'data at some specially set up sta-<br />

tions <strong>with</strong>in the catchment and to correlate them <strong>with</strong> the observations<br />

at some stations <strong>with</strong> longer records, lying outside the project catch-<br />

ment but still <strong>with</strong>in a hydrometeorologically similar region. The<br />

short-term correlation thus established is then applied to the longer<br />

records <strong>of</strong> outside stations and the series completed for the project<br />

catchment,<br />

4.0 Establieu C o r m s D o n m y 1 & run& f<br />

Bainfali reoords are @rerally available for projeet-catohwnte in<br />

the form <strong>of</strong> 24 hour ralnfail amounte obeemd at a fixed hour for moat staticne<br />

and 88 continuous recorde for selected etations <strong>with</strong> self-moording raingaugda.<br />

For estimating run<strong>of</strong>f data the follmlng methode am generally follmedt-<br />

a. Regional correlations, like Strange's Table; b.Khosla's F o d a<br />

C. Regression equations defining correlatia betweem short-term<br />

raipfall run<strong>of</strong>f data; à. whograph application.<br />

While PrrtboC a,b,o, yield estiiiatee <strong>of</strong> run<strong>of</strong>f volume, hydrograph application<br />

ia good for eetiaieta <strong>of</strong> flood volume as well aa flood peaksl.<br />

4-1<br />

l&2&!2w C-OXUl a SWQE'S TABLE<br />

325<br />

It gime permntage <strong>of</strong> run<strong>of</strong>f from 10~18ocn-1<br />

rainfalls for different<br />

lnàian catchmanta, which were rathbr subjeotively divided into three oatagories~<br />

'good' 'average' and 'bad'. Thus far a total monsoon rainfall <strong>of</strong> 1000 e a good<br />

catchment will yield 37.@ run<strong>of</strong>f, an average oatchnient, 2& ami a bad eatohRIent<br />

18.776. Inspite <strong>of</strong> the faat tìmt theee tablea am ncm very old and o m yield o<strong>nl</strong>y


326<br />

rough estimates, they ere <strong>of</strong>ten applied in the projects for assessrnt <strong>of</strong> run<strong>of</strong>f<br />

volUries, e.g. Chambal Valley Development Scheme, where such calculations baw also<br />

been checked againat the observed data <strong>of</strong> a few years. €&o (3) has also used Strangego<br />

table while working out dischargea for Nagarajuriaegar aiid Srisailm projects.<br />

4.2 sx-&a's Fornu4<br />

Khoela (4) working 'on tb rational concept that run<strong>of</strong>f is the residual <strong>of</strong><br />

rainfall after deduction <strong>of</strong> evaporation and transpiratian loss' aesuiped that<br />

'temperature can be taken to be a complete maaure <strong>of</strong> all the factore which are<br />

responsible €or the loes <strong>of</strong> rainfall to run<strong>of</strong>f'. The formula hos no mgional lid-<br />

- ta5cms <strong>of</strong> applicability.<br />

1<br />

His empirical formula is Ra Pm -Lp wbm Rm, P, Lm am rssp8otiln3ly the<br />

run<strong>of</strong>f, rainfall and 'loss' figures for a given month in mu. Lm is taken as equal to<br />

5 'Ern, ilkre Tm is the man monthly tempereture in centigrades and is more than<br />

4.5"C. For Tm


327<br />

-<br />

aucounte for ab ut 9% <strong>of</strong> tlm anatm1 rainfall. Out <strong>of</strong> thee thee equstioriey the<br />

momoon rainfdl-monaoon nui<strong>of</strong>f equatian gave the highemt QOrIdaticeiS coefficient<br />

(0.869) od thia was u. ad to derive the amoal run<strong>of</strong>f from the ennuel raiafoll f m s .<br />

4.4 &hr-Dh Applicationr The tuchnique is lairly well haai. Later diseusaions<br />

will ahow how the design storm is selected and its tiiir, distribution obtaineà for<br />

applylag the mcipltetion figues to th unit hydrograph.<br />

5.0 -Disc- Belet ioliahip <strong>of</strong> a Distant site to the Barn Site<br />

We piok up tbme o- studies Vix the Eirakuà Dam, tts ThiLTi Deia a d the<br />

NagarJunaaagar to illustrate hou this is being done.<br />

5-1 In the Hhalcud Dam project (1947) the &am was prapomd to be looeted at a<br />

site near SamboLpur whr8 gauge recad8 existed sinee 1921, but there were no<br />

COrreaPpopdine gauge dieche@ curves. Ebwever, at Earaj, a site som 230 miles downstream<br />

froaSembalpur, gauge diaßhaqp recards existed sinue 1868. The gaugs madia@<br />

at Sambdpur were corzhlated <strong>with</strong> the gauge readiq at NaraJ, ding due allowance<br />

for the tinia. 1- and similar epuea, discbrge c m 8 were prepared for Sdelpur<br />

and checked 8gainst the dally discharge obrervatians o M d eince Jm, 1946.<br />

5-2 The Tebri Dam Project (1969j enwbws construction <strong>of</strong> a dam eor~~s thb river<br />

BhagFratM near Tehrii tha catohnmt arsa upto tb dpn eite ia 7511 8q.h.inaluding<br />

2328 8q.b <strong>of</strong> constantly snou bound axea. Daily rimr g&ugoa andwe8-U~ âiaaharge<br />

observatiais at tkm damaite .ere available o<strong>nl</strong>y fra May, 1964. This Catchment is<br />

a part <strong>of</strong> tb Ganga cstcharnt in which, at Bairele, near Haricbrar about 105 km.<br />

damst- Of 'pehri, deilr aid dia- dot8 Svdlabh €hail l9Olo The<br />

catcent<br />

up%o Raiwala t 23000 8q.b. inoludbg 8450 8q.h- is anow-<br />

bound.The Raiwala data have been utilised to compute run<strong>of</strong>f at Tehri<br />

in 10-day periods <strong>of</strong> the year. For this purpose the run<strong>of</strong>fs for<br />

different 10-day periods, in the period <strong>of</strong> actual observation <strong>of</strong><br />

discharges at Tehri, have been compared <strong>with</strong> the corresponding 10-day<br />

run<strong>of</strong>fs <strong>of</strong> Raiwala, assuming a one-day time lag for the flow to reach<br />

Raiwala from Tehri. The percentages <strong>of</strong> Tehri discharges to correspon-<br />

ding Raiwala discharges have been plotted against the relevant 10-day<br />

periods for the period <strong>of</strong> observation, 1964-66. These percentages vary<br />

for the same 10-day period from year to year due to variation in<br />

precipitation, temperature, humidity, vegetation, soil moisture etc.<br />

and for individual catchments <strong>of</strong> the tributaries <strong>of</strong> the river Ganga<br />

above Raiwala. The required factors have been worked out as below:<br />

AvoroRs <strong>of</strong> run<strong>of</strong>f et Tem.<br />

ri<br />

Ave- <strong>of</strong> run<strong>of</strong>f at Raiwtle<br />

~eing r vaime for &ifferet 10- periodi, the -<strong>of</strong>f figme at Beirala<br />

have ben canverted to f-a for Tehri for 30 (fra 1936 to 1966).<br />

5.2.1 'Ffiib Rairela Qata haw albo heen wed, ia ocajimotian <strong>with</strong> the ih&-tea<br />

rseard at TekrirL, for estimating the flood peds et 'psbri, &a- Baiwda 88 th<br />

etaticus, tfie peroeritege d tias e pcirticular noOb hae been equalla8 or<br />

emeebd le plotted agaInet the flood 021 a sed-log paper to giw e lozig-tsra data<br />

c m for tb inder itattian. Bor tb short-term for which data ara available both<br />

for %hi arrd Baida, rimilar o m s u. plot- far both th6 et&ticma. Tbs IOWterm<br />

c m for the project 8t&iOn (%-i) L then coiiltriiabd from the abow three<br />

oms, and ths flooda <strong>of</strong> various frequencies &PB obtabd from this OPM. It is,<br />

-


328<br />

hmemr, o<strong>nl</strong>y apIQ <strong>of</strong> m w w<br />

adopted in the projeot for eetimting tha flood peek.<br />

5.3 Ra0 (5,3) applies a different apprcmh to determim peak flooda at a section,<br />

when discharge data are available for a diffemnt site al- the river. W<br />

principle applied is simple: thedischage observed at a dametream aite ieequal to<br />

the discharge at an upstream site plue the dischar@ contributed by me interniedia*<br />

catcbnt mincis the oharial' trough' oapaieitg between the two sites. W 'trough'<br />

capacity oan be computed ideally <strong>with</strong> the help <strong>of</strong> croes eectime <strong>of</strong> the river at<br />

close internals, or otherwise in the absence <strong>of</strong> thie inforretian, by taking the<br />

average width <strong>of</strong> the river flow at one end, the difference in the depth <strong>of</strong> flw on<br />

the day <strong>of</strong> Peak flood and 24 hours before its occurmncc and the length <strong>of</strong> the river<br />

reach into woount. Th? inflow from ths intermediate catchnt q be worked out from<br />

the rainfall recorda using strange*s table. In this way the flood aeries at the<br />

upstream point ia Constructd for a number <strong>of</strong> years and subjected to frequsnoy<br />

analysis far estimeting tb design flood <strong>of</strong> a given recurrence interval.<br />

6.0 Esthau= <strong>of</strong> Ped Floa<br />

Nodly, peak floods are estimated by several mithoda before adopting a<br />

design flood. Such niethods range fra empirical f<strong>of</strong>iaulae directly giving peak flows<br />

from a oatchniant <strong>of</strong> given area to the elaborate etarm-trailspoeition and aiaximisation<br />

mthode. "hey m y broadly be clamifiad into tuo oategoriest<br />

(a) Non-mteorological =th& (b) Meteorologici1 methods<br />

In the non-mteorologieal oategory we may include tb following: Empirioal<br />

formulae, Enveloping Curves, Regional Flood Frequency analysis. In the meteorological<br />

category we inelude æ?thoQe that proceed frcm atom analysis. They msy or mqr not we<br />

unit hydrograph.<br />

6.1 .O Non-ktoorolouiad Cateaory<br />

6.1 .1 Enipiriaal F a<br />

(a) Ths noet popul formulae link the peak flood <strong>with</strong> the ama <strong>of</strong> the basin,<br />

like Diokm's, Q= CAY4 , for the Central and Northern India, the Byve's,<br />

g CABB, for the south India, the &lis Q- O0O ."or faa shaped catohmmb ki<br />

the Bombay aegica, wherm Q &vea the peak ra k- f disohaya in cusecs, A, tis ama<br />

in sq. miles and C is a coneteat differing fron loeation to looation. &oaueß Of<br />

their simplicity euch regional formulae<br />

appraaimatiar <strong>of</strong> the likely flood.<br />

still hi wide use for getting a fimt<br />

(b) Quite <strong>of</strong>ten, if high flood mark6 ara avrilable <strong>with</strong> raferrtaae to old trees<br />

or =oient atructplae, or OWE from the m ory <strong>of</strong> th looal inhabitruita, elow-ama<br />

method is employed as (UI aid to gueoo tkm ordar <strong>of</strong> t b dieoharm. No reliable idea<br />

c m obviously be bad <strong>of</strong> t b Seetion prevail* at fhs t- <strong>of</strong> flood fim, end thsm<br />

is diffiaulty in estabbliehin& ttie bed slope, which i8 teken OB equal to tkm SudaCe<br />

Slop establiaha0 from mrka at different points. Kutter's or uamih@' Coeffioient<br />

<strong>of</strong> rugosity ie eitbr (usumd, or dete-d by t b eubmtitution <strong>of</strong> ieaemd äata<br />

for a few flood8 In th oonoerned formula.<br />

%Sidea th faot tht eu& formulae are ueeful o<strong>nl</strong>y for limited regiolipl<br />

applioation, present ri& eoope far eubjectim fagtom in choosing the valm<br />

<strong>of</strong> tïæ constant. Also, it is not paisible to have any idea <strong>of</strong> tbie probable frequencg


329<br />

<strong>of</strong> the flood so estimated, ao that a partlulm value <strong>of</strong> C may give a flood which<br />

may be too high for designing a minor work, mey a culvert and too loa for &signing<br />

a spillwey.<br />

6.1.2 Envelope curvesi<br />

Working on tb assumption that basins <strong>of</strong> similar hgdmlogical characteristics<br />

should produce the sana mexlmum floods psr unit <strong>of</strong> catchment ama, Kanwar Saia and<br />

Karpov plotted data <strong>of</strong> mm~imum floods in Indian rimiers againet the drainage amss<br />

producing thoee floods on a log-log paper, and gave two envelope curves one enveloping<br />

data <strong>of</strong> South Indian Basins ond the other enveloping data far northern and oentral<br />

Indian basina. !be likely maximum flood from a catchment <strong>of</strong> given area is then<br />

expected to be indicated by these curves. Besides tìm basic inadequaoy that these<br />

curves relate flood potential o<strong>nl</strong>y <strong>with</strong> the drainage area, they do not provide for the<br />

occurrence <strong>of</strong> floods <strong>of</strong> higher magnitude than those on reoord.<br />

6.1.3 Resi onal Flood Freauew-<br />

Data <strong>of</strong> all the stations (points) in a statietioally homogeneoua region are<br />

combimd to produce a flood-frequenoy oume that is asswd to be valid for the entire<br />

region and can thye be applied to determine flood <strong>of</strong> a retuni period for an imgauged<br />

catchment In the region. The simplified procedure recommended by tìm Central <strong>Water</strong> &<br />

Power Commissian (2) is as follows:-<br />

All stations in the regim <strong>with</strong> flow recorde <strong>of</strong> 10 years or more are eelected<br />

and for each etation a frequency curva go- upto a 100-year flood Is constructedby<br />

the Gumbel's Ethod, <strong>with</strong> a confidence-band <strong>of</strong> 9% reliability. All points am tested<br />

for homogeneity as f ollors:<br />

The ratio <strong>of</strong> 10-year flood to man annual flood is determined for each point!<br />

this ratio awreged for all points is taiœn to give the mean 'lo-year ratio' for the<br />

ama. The mturn period corresponding to the ran 'lO-year ratio' time the maen<br />

annual flood Is detemlned from the frequency oume <strong>of</strong> each station and plotted<br />

against the number <strong>of</strong> years <strong>of</strong> record far that etatim oq a sed-log test graph. If<br />

tiæ pointa far ail tim etations lie between the 9% confidence limits, they are<br />

oonsidered homogeneous.<br />

The frequency curves <strong>of</strong> different stations in a homogsneoua region a m regarded<br />

as different estimates <strong>of</strong> the regimal curve, and tlaey are averaged as follows:<br />

For eaoh statim, flood ratioe (flood <strong>of</strong> a return period T over the niean<br />

mual flood) a m computed for a number <strong>of</strong> arbitrarily selected values <strong>of</strong> T. The rean<br />

<strong>of</strong> the flood ratioe for all stations for a particular period T is taken to represent<br />

the flood ratio for the r egid curve. The resulting mans for different vaìws <strong>of</strong> T<br />

are plotted a t b extreiiie value probability paper and the best fit line through them<br />

gives tïm mquized regional frequency curve.<br />

The application <strong>of</strong> thie curve to an wuged catchment rsquims M setimate <strong>of</strong><br />

the E= BIIILup1 flood for the wtchnmnt. This is dom from another e m which gives<br />

the plot <strong>of</strong> man umual floods at different statims agai-t tbe corrsepmding<br />

drainage amm. From this C- the value Of ttn? likely<br />

flood W d t<br />

the are <strong>of</strong> the naxg mgaugad oatobment can be mado<br />

6.200 &teorOlaasop1~


330<br />

records <strong>of</strong> all the precipitation stations in the region <strong>of</strong>, and around, the project<br />

catchment, which may rather subjectively be ree;ardeà 88 hyäromteorologicdly homogeneous,<br />

are studied to sglect storms <strong>of</strong> high rainfall covering an area more or<br />

less equal to or larger than the project oatchment. Far this purpose it mu b<br />

neceesary to carry out the umtaai Deptharea-Duration (DU> analysis <strong>of</strong> selected major<br />

st >rp~s 6nd from there maximum one-day, maximum two-deg, maximum three-day precipitati-<br />

are worked out. These aeleoted stom, are then transposed to the project<br />

oatcìnrent adjusting the precipitation axis dso to an orientation that will give the<br />

maximun run<strong>of</strong>f producing effect, if such directional change <strong>of</strong> storm axis is <strong>with</strong>in<br />

20° from the original axis. The storm is then maximised for the moisture content by<br />

applying a moisture-adJustiPent factor (maf) defimd as the ratio <strong>of</strong> the max. precipitable<br />

water over the catchmnt, W piex, and the precipitable water <strong>of</strong> the storm,<br />

P<br />

W This factor can be worlred out from consideration <strong>of</strong> the repremntatiw dew point<br />

op the storm, and the mucimm dew point over the catchment and then finding out the<br />

corresponding precipitable waters from the 'Pressure Vs Precipitable <strong>Water</strong>' diagram<br />

between the pressure range 1000 mb to 300 mb. Alternatively, in the absence <strong>of</strong><br />

sufficient data, a multiplying factor lying between 2C$ to 5s ia assumed .<br />

Havhg thue determined the design storm, the tina-distribution <strong>of</strong> the rainfall<br />

has to be obtained. From DAD analysis maximtua rainfall depths for durations <strong>of</strong> 6,12,<br />

18,24,36,48 etc. hours are obtained for each <strong>of</strong> the atorpis and expressed a8 percent<strong>of</strong><br />

the total rainfall, From a study <strong>of</strong> these pementages suitable distribution for<br />

the desiga storm is arrived at. Alternativelyif a limited number <strong>of</strong> self-moording<br />

rainges are available the ti- distributim cum be obtained from the continuous<br />

records. If no self-recerding gauges are available time distribution based on the<br />

experience <strong>of</strong> storma elsewhere in comparable area is adopted. Effective rainfall<br />

for difr'emnt time incremnte is estimated by any <strong>of</strong> tb usual rays, vis,(a) tha<br />

calculation <strong>of</strong> infiltration loes by finding the total surfme flws from actual<br />

flood-hydrographe and commng them <strong>with</strong> corresponding rainfall vol~aes e.g.<br />

Tenughat krojeat or (b) by simply assuming a run<strong>of</strong>f factor and applying it to the<br />

design stozm values, e.g. Fíasdeo (Bsngo) Project. These effective rainfall values<br />

are then arranged in the oritieal sequence which may be a mm or less sgmnietric<br />

arrangement <strong>of</strong> valiies <strong>with</strong> the greatest value in the middle, or my be determined<br />

by arranging the rainfall increaients against the ordinates <strong>of</strong> the design d t<br />

hydrograph ln such a way that the longest odinate faces tke largest effectiw<br />

rainfall and the next largest ordinate faces tb next largeet rainfall increment<br />

and so on, and then reversing this arraageeient to give tb oritical seqrrenœ. It is<br />

then applied to the design unit hydrograph, which can ba derivad by eriy <strong>of</strong> the<br />

wual nieans,actual obsemtiolls ar synthetic.<br />

6.2.1.1 A recent report (6) suggeete e new Psthod to qatimete t 3 design flood<br />

peak (50-yem recumme) from small oatch~mnta (25 Km to 500 KID 1. It takes into<br />

account selected besin characteristios (length and weighted .Ban BloP <strong>of</strong> the bmid 88 representative <strong>of</strong> the beeh response to tiie storm intaet and the atora P-PieterS<br />

like areal to poNt rainfall ratio. The procedure hae been evolved from an -lysis<br />

<strong>of</strong> short-term diaeharge data (5 to 10 yeare) for 60 drahmege basi- Of different<br />

slopes and sim soattered all over India. It Gen be briefly summed up a8 Pollairs:<br />

The weighiiù mm slope <strong>of</strong> the main stream, defined 88 given belw,<br />

worked out'<br />

L - 2 -<br />

C<br />

= ( Li/+ +L 21 SB 2 + .....<br />

1


331<br />

where Lc is the length <strong>of</strong> the mPin stream ln dles fra th@ maeuremnt site to a<br />

point on the main stream near the centre <strong>of</strong> grevity (CG) <strong>of</strong> the catchment area,<br />

and S1,S2 etc. are the slopes <strong>of</strong> the stream in the remhee <strong>of</strong> lengths L,,L2 etc.<br />

into which the length Lc is divided. Lengths axe mesured from the topoaheet,ln=l mile,<br />

From the value <strong>of</strong> s, the peak rate <strong>of</strong> flow Qt, in a tc-hour mit graph in cuuecs can<br />

beestimated by th following formiilaer-<br />

-<br />

(i) Qtc I 16000 A%2'3, if s 4 0.0028<br />

(ii) Qtc 320 A 6 , if s > 0.0028<br />

0-9<br />

t, is the duration <strong>of</strong> th rainfall excess given by 255/(Qtc/A)<br />

where A is the area <strong>of</strong> the catchment in sq. miles. For estimeting the design rainfall,<br />

a 'design storm by6tograph' table hae been pmgred giving point-rainfall volume (m)<br />

<strong>of</strong> 5O-gear return period for durations varying from 15 minutes to 24 hours, and<br />

these are then conmrted to arsal rainfall volume by applying ama1 to point rainfall<br />

ratios that have been worked out earlier by analysing data <strong>of</strong> 12 àense networks. To this<br />

areal rainfall a uniform loss rate is applied which is determimd from the empirical<br />

relatioioohips which have been deriwd for different types <strong>of</strong> soil. This rill .determine<br />

tb rainfall exoess in t, hours, and the Qtc value multiplied by this excess would<br />

give the design flood peak.<br />

6.2.2<br />

Bowever, these formulae need to be tested further by the field events.<br />

Meteoro l wcal cat BPON i <strong>with</strong>out usina t b U.G<br />

Banerji md Mantan (7,û) ham adopted a new approach for eStiIU8ting volume<br />

and peak <strong>of</strong> run<strong>of</strong>f from data <strong>of</strong> atoras. They have studied flood in the Namada and<br />

the ~hanaäi oatohmants. Studring hydrographe <strong>of</strong> a number <strong>of</strong> floods (including ia floods), thy find out the ti- base <strong>of</strong> the hydrographs after the bese flow has been<br />

eeparated; it was 6 days in each <strong>of</strong> these oaseu. The basin is then subdivided into<br />

zone8 <strong>of</strong> 1-day travel time each, by using the following equation (9)<br />

1 .i5 0.38<br />

Tc = L /7.700 ii<br />

where Tc is the time <strong>of</strong> ooncentration, calculated for all the min tributarie8 to tirs<br />

points <strong>of</strong> outflow in hours, L is tìm length <strong>of</strong> the remoteat point in the zone to tb<br />

outlet point in feet ani II ia the diffemzuu in elevatia betwen the waterslmd outlet<br />

and the moet distant ridge h feet.<br />

It io assumed that the contribution to the flood-vol- from each ~ OPYI is<br />

depeudent on the average ama1 depth in ewh didelm, ths scdl moiet- cmdition<br />

and the retenticm orpmity; the proentsge contribution <strong>of</strong> flood vol- from elch<br />

zone is th- made independent <strong>of</strong> the %d catchment characteristioB. It has ben<br />

further aaaued that tb infiltration or retention deoleame from upatream to dom-<br />

8tnam zoma so that if K i8 the Storage facta (considered a8 the fmtiOn Of<br />

ecierage preci itatian &pa a p p a r ~ aa run<strong>of</strong>f ) in the zone nearest to the point<br />

<strong>of</strong> outflcnr, l! is tb starogb faotor fm the nth diviaion m y from the outflm point.


The total daily run<strong>of</strong>f *Fit at the outlet can then be sriPiPed up as<br />

Shew An i8 t h area and Pn-, ia t b average precipitation recorded in the nth<br />

division. The value <strong>of</strong> K is seleoted, by trial and error, from past records <strong>of</strong><br />

discharge for which simultaneous precipitation data are aleo available. A graph<br />

is then Plotted between values <strong>of</strong> K obtained for different perioda and corns-<br />

ponding antecedent catchnt rainfall.<br />

hydrograph, but utilises all the sante the es8ential underlying principle that the<br />

ordinates <strong>of</strong> two hydrographs for the 8amB basin and similar tine bese are proportional<br />

to their respective volumes <strong>of</strong> run<strong>of</strong>f. The correspondence may be effected between<br />

tkie biggest storm on record <strong>of</strong> which o<strong>nl</strong>y rainfall data are available and any or<br />

all available hydrographs if the oharacteristios <strong>of</strong> stom are meteorologically<br />

similar to tke outflow point.<br />

Heferences<br />

For working out peak run<strong>of</strong>f rates (7) the method does not need a unit<br />

1. India, Irrigation and Power Projecte (Five Year Plans) 1970, Govwrzuœnt <strong>of</strong> India,<br />

&inistry <strong>of</strong> Irrigation and Power.<br />

2. Eetimation <strong>of</strong> <strong>Design</strong> nood, bcoimPsndeà Procedures 1972, Govt. Gf India,<br />

Central <strong>Water</strong> 4 Power Commission.<br />

3. bo, G.ii~. 1569 Modern Trenda in Hydrologic Computations, New Celhi<br />

Central <strong>Water</strong> and Pmer Commission.<br />

4. Khoela, Ad. 1949 Analysis and Appraisal <strong>of</strong> Data for t h Appraisal <strong>of</strong> water<br />

<strong>Resources</strong>. Central Board <strong>of</strong> Irrigatia Jour. pp 410-422.<br />

5. Ha0 G.A.H. 1967. Computation technique for Probable Maximum Flood Discharge<br />

at place in the river while gauge dischare data is available for anotber<br />

pïaoe <strong>with</strong> special referena to dam on Krishna river, India. Proc. Int. Sgmp.<br />

Floods and their Computation, Aug. 1967, Leningrad, u-s-sj.~*<br />

6. 1973 Flood Estimation Directorate, Central <strong>Water</strong> & Power Commission, New Delhi,<br />

&sign Office Report No. 1/1973.<br />

7. Bansrji, Sdhton, D.C. (1967). On estimating peak discharges correeponding<br />

to heaviest redorded atom in a oatchment. Ind. Jour. Wt. and Ceoph. V01.17<br />

Spl. N0.M 297-306.<br />

6. Banerji, S.Manton, D.C. (1967) Determination <strong>of</strong> the distribution<br />

<strong>of</strong> rainfall floods in large catchments using hydrometeorological<br />

data. Unesco Int. Symp. on Floods and their Computation, Lenin-<br />

grad.


d<br />

z n<br />

Q)<br />

8<br />

- - V A v<br />

333


n n<br />

4 4<br />

- n<br />

4 4<br />

rl<br />

I


ABSTRACT<br />

DATA REQUIREMENTS FOR THE OPTIMIZATION OF<br />

RESERVOIR DESIGN AND OPERATING RULE DETERMINATION<br />

James, Ivan C., Ir<br />

U.S. Geological Survey, Washington, D.C., USA<br />

Approaches to the design <strong>of</strong> multipurpose reservoirs have usually<br />

assumed a given set <strong>of</strong> operating rules. Conversely, studies <strong>of</strong> oper-<br />

ating rules have <strong>of</strong>ten taken reservoir size as fixed. In o<strong>nl</strong>y the<br />

former case have estimates <strong>of</strong> the optimal data requirements been made.<br />

This paper gives the estimates <strong>of</strong> and compares the optimal length <strong>of</strong><br />

data sequences for reservoir design where operating rules are fixed,<br />

for operating rule determination where reservoir design is fixed, and<br />

for the combined determination <strong>of</strong> operating rules and reservoir size<br />

for a multipurpose reservoir where the benefit is a piecewise-linear<br />

function <strong>of</strong> storage and release. A strategy is developed for the<br />

economically efficient design <strong>of</strong> the combined program <strong>of</strong> additional<br />

data collection and project deferment. The shape <strong>of</strong> the benefits<br />

foregone versus time function is such that project deferment is<br />

usually optimal o<strong>nl</strong>y where very short hydrologic records exist, and<br />

the effect <strong>of</strong> an uncertain project inception date is to increase the<br />

optimal-length <strong>of</strong> the data sequence.<br />

RESUMEN<br />

Métodos para el diseño de un embalse multipropósito usualmente<br />

han asumido un juego fijado de reglas de operación. Reciprocamente,<br />

los estudios sobre las reglas de operación frecuentemente han ini-<br />

ciado con un tamaño fijado de embalse. Estimaciones de los reque-<br />

rimientos Óptimos de datos se han hecho solamente en el caso ante-<br />

rior. Este artículo presenta las estimaciones del largo Óptimo de<br />

series de datos para el diseño de embalses con reglas fijadas de<br />

operación, para la determinacìón de reglas de operación cuando el<br />

embalse se fija, y para la determinación junta de reglas de operación<br />

y tamano para un embalse multipropósito en que los beneficios son una<br />

función contìnua por arcos de abastecimiento y descarga. Una estra-<br />

tegia se desarrolla para el diseño eficiente economicamente de un<br />

programa junto de aplazamiento del proyecto y recopilación de datos<br />

adicionales. La forma de la función de beneficios renunciados contra<br />

tiempo es tal que el aplazamiento del proyecto usualmente sea Óptimo<br />

cuando existen solamente registros hidrológicos muy cortos. El efec-<br />

to de una fecha incierta del comienzo del proyecto es crecer el largo<br />

Óptimo de la serie de datos.


336<br />

Introduction<br />

Fundamental to any development process is an information base<br />

for use in making planning, design, and operational decisions.<br />

This input has measurable costs and benefits as do the other inputs<br />

such as planning resources, capital, and site values for alternate<br />

uses. Economic efficiency requires that the balance between the<br />

inputs <strong>of</strong> a development process be such that the marginal returns<br />

on all inputs are equal. These marginal returns should be equal<br />

to their marginal costs where budget constraints are not active,<br />

or equal to their shadow costs when they are active. Viewed as<br />

another input, information may be conceptually handled as any<br />

other input. As Weiner [i] succinctly states:<br />

"Information is o<strong>nl</strong>y one <strong>of</strong> many development inputs;<br />

development, in turn, is but a transformation process<br />

adopted in order to reach certain objectives. Infor-<br />

mation is, thus, purely an instrumental objective and<br />

not a final purpose in itself, a basic fact we some-<br />

times tend to forget. "<br />

Information requirements for project development include such<br />

diverse factors as hydrology, future prices and extent <strong>of</strong> markets,<br />

climatology, topography, soil classification, demand level, geol-<br />

ogy, demography, and political trends. In reviewing this list <strong>of</strong><br />

information requirements, it can be seen that hydrologic data,<br />

particularly those <strong>of</strong> a stochastic nature such as streamflows<br />

have distinguishing characteristics that require a different treat-<br />

ment than other information inputs such as economic, demographic,<br />

political, and physiographic data. Climatic and hydrologic phe-<br />

nomena require rather long data sequences to develop suitable<br />

representations <strong>of</strong> their generating mechanisms. In contrast,<br />

programs for the collection <strong>of</strong> physiographic information such as<br />

topographic, soil, and geologic data can be deferred until shortly<br />

before these inputs are needed in the planning process. Models<br />

for projecting economic, demographic, and political trends into<br />

the project life horizon heavily weight the latest inputs, thus<br />

these data are usually collected o<strong>nl</strong>y shortly before their use.<br />

Planning the hydrologic data collection program requires the<br />

longest lead time and is usually accomplished when a high degree<br />

<strong>of</strong> uncertainty exists about other project information inputs.<br />

Efforts devoted to hydrologic network design cannot rely on highly<br />

formal tools in the absence <strong>of</strong> these other inputs. An alternative<br />

is the development <strong>of</strong> heuristic rules based on generalizations<br />

from results <strong>of</strong> pilot studies <strong>of</strong> optimal data record length for<br />

specific planning and design situations.<br />

The relationship between the timing <strong>of</strong> investments in data<br />

collection and the time stream <strong>of</strong> benefits gained through the use


337<br />

<strong>of</strong> these data in the design and o'peration <strong>of</strong> water developmecii<br />

projects is an important consideration when these time streams <strong>of</strong><br />

costs and benefits are discounted to a common point in time.<br />

Discounted marginal costs <strong>of</strong> the first years <strong>of</strong> stream gaging are<br />

much higher than the costs <strong>of</strong> gaging just before construction.<br />

<strong>Design</strong> and construction produce large sunk costs for which there<br />

is little recovery from incorrect decisions u<strong>nl</strong>ess the designs<br />

have incorporated a high degree <strong>of</strong> option flexibility such as<br />

through staged construction or other <strong>of</strong>ten costly methods <strong>of</strong> main-<br />

taining decision liquidity.<br />

The problem for the designer <strong>of</strong> a water development project<br />

is to maximize net project benefits subject to exogenously<br />

supplied constraints. The decision variables pertaining to the<br />

water supply design <strong>of</strong> a reservoir are usually the size <strong>of</strong> storage,<br />

release target, and operating rules for determining specific<br />

releases. Herein, the decision variables are divided into those<br />

physically immutable design values'such as sizing, and those<br />

operating rule variables which could conceivably be changed to<br />

reflect the results <strong>of</strong> new information.<br />

Whereas design sizing requires historical data, the use <strong>of</strong><br />

information for defining operating rules may be another matter.<br />

Additional data collected as normal requirements <strong>of</strong> project oper-<br />

ation may be used to update operating policies. On a theoretical<br />

basis, sequential decision theory provides a methodology for a<br />

flexible and continually updated operating policy. In practice,<br />

however, political and institutional constraints make changes in<br />

operating policy a difficult and expensive process.<br />

The determination <strong>of</strong> trade-<strong>of</strong>fs between capital and operating<br />

expenditures is a straightforward process when marginal benefits<br />

are known. Planning decisions, by their very nature are further<br />

removed from the time stream <strong>of</strong> benefits than are design decisions.<br />

Little is known about the mix <strong>of</strong> planning process input resources<br />

which achieve an optimal design from the viewpoint <strong>of</strong> econonic<br />

efficiency. A large effort cannot be expended to determine the<br />

optimal length <strong>of</strong> record at every possible site: rather, simple<br />

guidelines are needed that answer such questions as:<br />

a) How much streamflow data is optimal at a site €or the<br />

expected design decisions and economic parameters?<br />

b) What is the most efficient operation <strong>of</strong> a gaging<br />

station when there are uncertainties in decisions and<br />

parameters?<br />

c) I€ the gaging station has already.been operated longer<br />

than the optimal length, what factors would justify<br />

à3scontinuing or retaining the station?


338<br />

An approach to the determination <strong>of</strong> optimal lengths <strong>of</strong> gaging<br />

for the design sizing and operating rule determination <strong>of</strong> irriga-<br />

tion reservoirs is presented herein. This system was chosen for<br />

several reasons. In the western United States irrigation reser-<br />

voirs receive the majority <strong>of</strong> their inflow in the spring months<br />

from rainfall and snow-melt run<strong>of</strong>f. Usually o<strong>nl</strong>y small quantities<br />

<strong>of</strong> natural flow are available during the peak demand months <strong>of</strong><br />

July and August. The essence <strong>of</strong> such a system can be captured by<br />

a model in which inflows must be stored for satisfying demands in<br />

later seasons or future years. This permits the use <strong>of</strong> annual<br />

flows and operating rules which are nonseasonal in nature. Bene-<br />

fits from irrigation projects are also usually more easily measured<br />

than for other types <strong>of</strong> water supply.<br />

The value <strong>of</strong> data in a particular situation is <strong>of</strong>ten limited<br />

by constraints in the decision space. For example, if arable land<br />

were limited because <strong>of</strong> available streamflow, reservoir design<br />

would become sensitive to the irrigation requirements, not mea-<br />

sures <strong>of</strong> the available streamflow. Systems which have a high<br />

degree <strong>of</strong> operational flexibility may have low sensitivity to the<br />

availability <strong>of</strong> data since operating policies can be changed to<br />

consider streamflow data collected after project construction.<br />

The Value <strong>of</strong> Data for Reservoir <strong>Design</strong> and Operation<br />

The seminal work on the determination <strong>of</strong> optimal data lengths<br />

for project design is that <strong>of</strong> Dawdy, Kubik, and Close [2]. This<br />

work has been extended by considering the effect <strong>of</strong> discounting<br />

and benefits foregone by Moss [31, Herfindahl 141, and Tschannerl<br />

151.<br />

For the most part, these studies have dealt <strong>with</strong> the situation<br />

where operating rules were given and design siting was the primary<br />

decision variable. Hydrologic data also have value for the deter-<br />

mination <strong>of</strong> optimal operating rules.<br />

Operating Rule Determination<br />

The transform <strong>of</strong> state variables such as storage and inflow<br />

into release values is accomplished through operating rules.<br />

Perhaps the simplest and most <strong>of</strong>ten used operating rule for analyt-<br />

ical purposes is the Z rule, where the release R is defined by:<br />

Minimum { S + I, T 1 for S + I<br />

Vm<br />

Maximum { T, S + I - Vm for S + I > Vm<br />

where S is the carry-over storage, I is the inflow, T is the<br />

target, and Vm the maximum conservation storage. This rule would<br />

Se optimal if losses were linear <strong>with</strong> the deficits below the target<br />

value and no benefits or losses accrued from releases greater


339<br />

than the target value. Though these may be rather restrictive<br />

conditions, the Z. rule has proved to be a useful conceptual tool.<br />

In recognition <strong>of</strong> no<strong>nl</strong>inear loss functions and seasonal differ-<br />

ences in expected inflows, Maass et. al. -161 describe modifica-<br />

tions to the basic release rule called the pack rule and the<br />

hedging rule. Young 171 and Hall and Howells [8] used regression<br />

analysis on optimal deterministic releases derived from dynamic<br />

programming to define release rules. Russell 191 uses dynamic<br />

programming to determine the form <strong>of</strong> an optimal operating policy<br />

following a development similar to that <strong>of</strong> Gessford and Karlin 1101.<br />

Both investigators assumed serial independence in inflow sequen-<br />

ces. Gablinger and Loucks [ill, Loucks and Falkson 1121, and<br />

Loucks (131 consider design and operation <strong>of</strong> storage facilities<br />

where flows can be described by Markov transition processes.<br />

The Z rule for release determination is not optimal when<br />

marginal losses increase <strong>with</strong> the amount <strong>of</strong> the release deficit<br />

or where significant benefits accrue from competing reservoir<br />

purpo'ces such as recreation or water power. One method for devel-<br />

oping operating rules is to select from a set <strong>of</strong> operating rules<br />

which are defined as a function <strong>of</strong> state variables such as storage<br />

and target draft. Parameters values <strong>of</strong> these release rules can<br />

then be optimized in conjunction <strong>with</strong> reservoir design parameters.<br />

The selection <strong>of</strong> a particular functional form <strong>of</strong> the release rule<br />

will depend upon the objective function, and the nature <strong>of</strong> the<br />

assumed mechanism which generates the inflows. For other than<br />

extremely simple problems, this determination is non-analytic.<br />

where<br />

The operating rule chosen for this study was:<br />

R = Maximum'{O.O, Minimum (aA - ßB+T, Si+J)}<br />

A = Maximum (0.0, S+I-T'Vol<br />

B = Maximum-{O.O, T+V -S -I}<br />

O i<br />

si e: Minimum {V ; s +I)<br />

rn i-1<br />

and CL and ß are release rule parameters, R is the release to bene-<br />

ficial uses, and ifo is a minimum target conservation storage. In<br />

other words, the relea'se is the target modified by a fraction a<br />

<strong>of</strong> the end-<strong>of</strong>-season contents above minimum pool level Vo or by a<br />

fraction 6 <strong>of</strong> the end-<strong>of</strong>-season contents below minimum pool level.<br />

This release rule is more sensitive to project economics than the<br />

2 rule, yet adds o<strong>nl</strong>y the two parameters a and $ to the optirniza-<br />

tion problem.<br />

The previously defined parameters a, ß, T, and V , the active<br />

storage volume above Vo, were determined by the methoa <strong>of</strong> general


340<br />

function minimization described by Berman 1141, using a reservoir<br />

simulation model which returned the negative <strong>of</strong> discounted net<br />

project benefits for any set <strong>of</strong> the four parameters from the opti-<br />

mization routine.<br />

The selection <strong>of</strong> a project benefit function is not an easy<br />

task. The marginal economic response <strong>of</strong> crops to marginal water<br />

applications vary widely. For this analysis a linear benefit<br />

function was used <strong>with</strong> the following coefficients.<br />

C1 .O016 $/m3/ short term loss for end-<strong>of</strong>-season<br />

storage below V<br />

0<br />

C2 .O004 $/m3/ short term benefit for end-<strong>of</strong>-season<br />

c3 .o12 $/m3/<br />

storage above V<br />

O<br />

short term loss for releases below<br />

target<br />

C4 .O04<br />

3<br />

$/m<br />

short term benefit for releases above<br />

target<br />

C6 .O057 $/m3/yr long term benefit for target releases<br />

Assumed marginal capital cost3 for providing reservoir storage C<br />

5<br />

ranged from .O017 to .O04 $/m /yr. All annual benefits and<br />

costs were discounted at 6% to the starting point <strong>of</strong> project<br />

benefits.<br />

Analysis <strong>of</strong> Data Requirements for Irrigation <strong>Projects</strong><br />

Five gaging stations were selected which had been used in<br />

the design <strong>of</strong> existing irrigation project reservoirs. The his-<br />

torical data were extended <strong>with</strong> generated operational hydrology<br />

to a length <strong>of</strong> 200 years. The reservoirs were sized and operat-<br />

ing rules determined for all 100, 50, 33, 20, 15, and 10-year<br />

sequences <strong>of</strong> the 200-year sequence, and on 8 and 5-year segments.<br />

for some <strong>of</strong> the projects. For each set <strong>of</strong> determined parameters,<br />

the reservoir was simulated for the 200-year period and discounted<br />

values <strong>of</strong> the objective computed. These values were then averaged<br />

across all equal-length segments <strong>of</strong> record. Average objective<br />

function values were then plotted against segment length and a<br />

curve smoothed in as shown for an example in figure 1. To the<br />

values <strong>of</strong> this curve are added the present value <strong>of</strong> the cost <strong>of</strong><br />

gaging, and a total cost curve results. The optimal length <strong>of</strong><br />

record occurs at the minimum <strong>of</strong> the total cost curve.<br />

Operating rules were held constant at their optimal values,<br />

and the analysis repeated for reservoir sizing alone. Also,<br />

reservoir size was fixed and the analysis repeated for operating<br />

rules alone. For clarity, o<strong>nl</strong>y the objective function values


and not the total cost curves are shown in the published figure<br />

for these analyses.<br />

These latter analyses were done to attain comparability <strong>with</strong><br />

previous studies on the worth <strong>of</strong> data where operating rules were<br />

fixed and o<strong>nl</strong>y reservoir sizìng allowed to vary.<br />

Discussion <strong>of</strong> Results<br />

341<br />

The present value <strong>of</strong> the cost <strong>of</strong> a gaging station record<br />

which is assumed to cost $2000 per year <strong>of</strong> operation is given in<br />

table 1 assuming an interest rate <strong>of</strong> 6%. Thus, in a 50-year<br />

gaging record, the first 10 years has a marginal cost <strong>of</strong> $580,000-<br />

$310,000 = $270,000 as compared to the original $20,000 investment<br />

for that record. The effect <strong>of</strong> discounting the gaging costs is<br />

to make the marginal cost <strong>of</strong> gaging much higher than might ordi-<br />

narily be perceived.<br />

The results from these studies are tabulated in table 2.<br />

For the economic parameters used, several results are apparent.<br />

The optimal data length for both design sizing and operating-<br />

rule determination is considerably longer than the optimal data<br />

length for design sizing alone, but o<strong>nl</strong>y slightly longer than<br />

the optimal data length for operating rule determination. There<br />

is a strong correlation between optimal data length and size <strong>of</strong><br />

stream, as is seen in figure 2.<br />

If a gaging station is already in existence and has already<br />

achieved its planned "optimal" length <strong>of</strong> record but the project<br />

has not been yet built, then the decision problem must be viewed<br />

from a different economic viewpoint. For this, the present value<br />

<strong>of</strong> the marginal benefits <strong>of</strong> an additional year <strong>of</strong> record must<br />

equal or exceed the cost <strong>of</strong> that marginal year <strong>of</strong> gaging. The<br />

right-hand column <strong>of</strong> table 2 is the point on the marginal benefit<br />

curve that equals the marginal cost <strong>of</strong> gaging. For example, if<br />

the decision maker designing a reservoir on the Smoky Hill River<br />

near Arnold, Kansas was one year away from construction, then he<br />

should continue to gage if the total available record is less<br />

than 55 years, even though it may exceed the apriori optimal<br />

length <strong>of</strong> 30 years.<br />

In previous work by James, Bower, and Matalas í151, it has<br />

been suggested that the total variability <strong>of</strong> meeting a water<br />

quality target was more strongly influenced by economic and<br />

political uncertainties than hydrologic uncertainty. This was<br />

based upon a multivariate sensitivity analysis <strong>of</strong> output measures.<br />

Such an analysis is similar to measurement <strong>of</strong> the type A error,<br />

which is an apparent error in design caused by incorrect economic<br />

parameters evaluated at those incorrect parameters. The type B


dal<br />

V C<br />

E<br />

O<br />

.rl<br />

ci<br />

m<br />

ci<br />

VI<br />

mcn<br />

rl<br />

mLi<br />

il6<br />

ma,<br />

E C<br />

E h<br />

aLi XLi<br />

X d o m<br />

Lia, Bal<br />

am<br />

LiLi<br />

mpi 4<br />

uv<br />

x<br />

m<br />

E<br />

id<br />

ci<br />

E<br />

O<br />

e<br />

i l -<br />

O h<br />

rlrl<br />

sa,<br />

c<br />

*n<br />

“d rlrl<br />

n d o<br />

mal rifi<br />

m-a XLI<br />

CLi<br />

om<br />

Url<br />

.:; “a‘<br />

om<br />

X<br />

Liu<br />

al<br />

d<br />

n<br />

id<br />

E<br />

a,<br />

rl<br />

A<br />

a<br />

€4<br />

LiC<br />

ala<br />

9%<br />

al -.-I<br />

x -<br />

@ E<br />

alo<br />

u+><br />

(Y<br />

rl<br />

O<br />

a<br />

m<br />

&I<br />

O<br />

rl<br />

O<br />

m<br />

d<br />

m<br />

c<br />

a<br />

ci<br />

D<br />

00000000<br />

rlNmeulWbQ)<br />

Lid<br />

pia<br />

E U<br />

a,<br />

mid<br />

a 4<br />

E*<br />

.rl<br />

ci<br />

a<br />

O.<br />

I<br />

4s<br />

V<br />

m<br />

-rl<br />

a<br />

U P<br />

@Li<br />

* a<br />

I*<br />

N<br />

O<br />

N<br />

mal<br />

a, .rl<br />

Ici<br />

4 0<br />

ma,<br />

*z cio<br />

d<br />

a<br />

a,&<br />

e<br />

rl<br />

d<<br />

W<br />

m<br />

rn<br />

N<br />

\<br />

m<br />

O C<br />

O<br />

W .<br />

a,<br />

s<br />

ci<br />

a,<br />

E<br />

4<br />

c,<br />

iu.<br />

I<br />

00000000<br />

rn<br />

00000000 S’<br />

~ W 0 0 0 0 0 0 ci<br />

. œ œ œ - œ . - e.<br />

L D ~ W O O W W N C.<br />

N I C ~ F I W W a, ~ ~<br />

rlmul0m-J rll<br />

œ œ œ<br />

rlrlm a<br />

k<br />

O<br />

U<br />

a,<br />

U<br />

a,<br />

m<br />

m C<br />

4 rn<br />

Cci a,<br />

m a 4<br />

-FI Li 3<br />

ma,&<br />

ma<br />

n o<br />

IC<br />

-J<br />

-J<br />

w<br />

O<br />

m<br />

PI<br />

a<br />

C P<br />

iu<br />

O<br />

5 a,<br />

Li<br />

ci<br />

m<br />

Li.<br />

O<br />

ci<br />

rn<br />

;<br />

C<br />

rl<br />

E<br />

P<br />

C<br />

.rl<br />

P<br />

m<br />

br<br />

a<br />

al<br />

ci<br />

V<br />

a,<br />

rl<br />

a,<br />

rn<br />

Ph<br />

C d<br />

-4 C<br />

u 0<br />

m<br />

Li<br />

al<br />

a<br />

O<br />

ul<br />

*<br />

O<br />

cy<br />

b<br />

N<br />

IC<br />

C<br />

4<br />

m<br />

ci<br />

E<br />

ueoooooo ci<br />

~ r l m ~ ~ e w om o<br />

ne-Julwcnmw ci<br />

m<br />

TI .FI rl<br />

m N C<br />

al -rl o<br />

am<br />

m<br />

a,<br />

rl<br />

2<br />

Li<br />

P C h<br />

rn<br />

N<br />

rn<br />

rl<br />

CT<br />

rl<br />

ul<br />

V<br />

v)<br />

E<br />

O<br />

4<br />

3 w<br />

C P<br />

aC Li<br />

ao o<br />

LiOalP<br />

al<br />

n ax m<br />

O<br />

O<br />

rl<br />

A<br />

A<br />

P<br />

rlC<br />

a m -rl<br />

C&ci<br />

5.4 m a,<br />

oc,-.+ P<br />

O<br />

O<br />

rl<br />

rn<br />

rn<br />

W


343<br />

error, or efficiency loss, is the pertinent measure to compare<br />

against efficiency losses from inadequate gaging records. The<br />

type B error is the loss measured <strong>with</strong> the true economic param-<br />

eters <strong>of</strong> a system whose desfgn was optimìzed <strong>with</strong> the incorrect<br />

parameters o<br />

The type A and type B errors resulting from 40% errors in<br />

each <strong>of</strong> the cost parameters used are shown in table 3.<br />

Table 3. Type A and type B errors resulting from 40% error<br />

in cost coefficients for a reservoir on the Smoky<br />

Hill River near Arnold, Kansas<br />

Cost Coefficient Type A error Type B error<br />

(% <strong>of</strong> net project benefits)<br />

c1 recreation 3.1 < .1<br />

c2 recreation < .1 < .1<br />

c3 short run deficit .6 < .1<br />

c4 short run release 22 2.5<br />

c5 res e rvoi r<br />

construction<br />

10 < .1<br />

C6 long run release 60 11<br />

For comparison, on this same project the efficiency loSS for<br />

incorrect record lengths <strong>of</strong> 5, 10, and 15 years is 0.4, 1.4, and<br />

3.7% resPectivelY. Project feasibility is usually quite sensitive<br />

to type A errors and to the interest rate used for discounting<br />

project costs and benefits to a common time name. Type A-and B<br />

errors were not estimated for errors in interest rate, however,<br />

on this project a change in interest rate from 6% to 5% would<br />

change the optimal record length from 30 to about 35 years.<br />

This analysis has taken the manager's viewpoint <strong>of</strong> a project<br />

gaging network, whose objectives are overall economic efficiency.<br />

Budget constraints are not active. The network manager seldom has<br />

precise information<br />

is then to minimize<br />

years in the future<br />

m<br />

C P(t)L(t--r) is a<br />

ta0<br />

the project will be<br />

on the date <strong>of</strong> project inception. His problem<br />

the losses by starting gaging at a point<br />

such that the expected loss<br />

minimum, where P(t) is the probability that<br />

started t years in the future, and L(t-T) is<br />

the total loss function as sho& in the example in figure 1.<br />

<strong>Water</strong> resources development projects also must consider other<br />

criteria than economic efficiency. Considerations <strong>of</strong> regional<br />

income distribution and the degree <strong>of</strong> risk aversion in the parties<br />

receiving the economic benefits will temper gaging network<br />

decisions.


344<br />

If the analysis presented herein is to be used to determine<br />

ghe optimal sìarting time for a gaging station at a previously<br />

yngaged site, some estimates <strong>of</strong> the flow characteristics will<br />

bave to be made. Estimates <strong>of</strong> flow characteristics prior to gag-<br />

ing can be made for sites in the Unfted States using regional<br />

gelationships presented in Thomas and Benson n61. Additional<br />

gaging information can then be incorporated into the prior ecti-<br />

wgtes using Bayesian analysis.<br />

cgnclusions<br />

Optimal record lengths for determining reservoir sizing and<br />

ekerating rule parameters can be determined by computing expected<br />

project benefits from designs resulting from varying lengths <strong>of</strong><br />

design data. Optimal record lengths for the combined process <strong>of</strong><br />

reservoir sizing and determining operating rule parameters are<br />

significantly longer than for reservoir sizing alone under a<br />

fixed optimal operating rule.<br />

The optimal length <strong>of</strong> record increases <strong>with</strong> size <strong>of</strong> stream,<br />

ganging from 7 to 47 years for the five str ams used in this study,<br />

9<br />

which range in discharge from .25 to 27.1 m /sec.<br />

Econcmic efficiency requires that the marginal worth <strong>of</strong> col-<br />

ìecting additional streamflow data be greater than the marginal<br />

costs when these two values are discounted to a common point in<br />

%ime. Hence the decision problem <strong>of</strong> discountinuing an existing<br />

gage is different than the decision problem for the optimal<br />

gtarting time for the gage because the discount factors applied<br />

gp the initial year are larger than those applied to the final<br />

year.<br />

References<br />

Wiener, Aaron, (1972). The role <strong>of</strong> water in development,<br />

New York, McGraw-Hill, Inc.<br />

Dawdy, D.R., Kubik, H.E., and Close, E.R. (1970). The value<br />

<strong>of</strong> streamflow data for project design - a pilot study,<br />

<strong>Water</strong> <strong>Resources</strong> Research, v. 6, no. 4, pp. 1045-1050.<br />

MOSS, M.E. (1970). Optimum operating procedure for a river<br />

gaging station established to provide data for design <strong>of</strong> a<br />

water supply project. <strong>Water</strong> <strong>Resources</strong> Research, v. 6, no. 4,<br />

pp. 1051-1061.<br />

Herfindahl, Orris C., (1969). Natural resources information<br />

for economic development, Baltimore!, Johns Hopkins Press.<br />

Tschannerl, G., (1971). <strong>Design</strong>ing reservoirs <strong>with</strong> short<br />

streamflow recoräs, <strong>Water</strong> <strong>Resources</strong> Research, v. 7, no. 4,<br />

pp. 827-833.


6<br />

7.<br />

8.<br />

9<br />

lu.<br />

1 .<br />

IL<br />

13<br />

14<br />

15.<br />

16.<br />

Maass, Arthur, et. al. (1962). The design <strong>of</strong> water resource<br />

sy~tems, Cambridge, Harvard University Press.<br />

345<br />

aung, G.K. , (1967). Findiiig reservoir 01 crating ruler. Jour.<br />

f the Hydrau1ic.s Div., Am Soc. <strong>of</strong> Cìvi I Enqr.. v. 93. no.<br />

HY6, pp. 297-<br />

Hall, Warren A., and Howell, David T., (1963 . The uptimiza-<br />

tion <strong>of</strong> single purpose reservoir design <strong>with</strong> the appii ition<br />

<strong>of</strong> dynamic programming to synthetic hydrology samples, Jour.<br />

<strong>of</strong> <strong>Hydrology</strong>, v. 1, pp. 355-363.<br />

Russell, C. Bradley, (19121. An optimal policy for operating<br />

d multipurpose reservoir, Operations Research, v :O, no. 6,<br />

pp. 1181-1189.<br />

Gessford, John, and Karlin, Samuel, Optimal policy for hydro-<br />

el-ectric operdiicns, pp. 179-200 in Arrow, Kenneth, J.. Karlin,<br />

Samuel, and Scarf, Herbrrt (1958). Studies in the mathematical<br />

theory <strong>of</strong> inventory an..; productions, Stanford, Stanford Univer-<br />

sity Press.<br />

bablinger, Moshe, and Loucks, Daniel , (1970). Markov models<br />

for flow regulation, JOUI. <strong>of</strong> the Hydraulics Div., Am. SOC.<br />

Civil Engrs., v. 96, no. HY1, pp. 165-181,<br />

Loucks, D.P., and Falkson, L.M., (1970). A comparison <strong>of</strong> Some<br />

dynamic, linear and policy iteration methods for reservoir<br />

operation, <strong>Water</strong> <strong>Resources</strong> Bulletin, v. 6, no. 3, pp..385-399.<br />

Loucks, D.P., (1970). Some comments on linear decision rules<br />

and chance constraints, <strong>Water</strong> <strong>Resources</strong> Research, v. 6, no. 3,<br />

pp. 668-671.<br />

Berman, Gerald, (1969). Lattice approximations to the minima<br />

Jf functions <strong>of</strong> several variables, Jour. <strong>of</strong> the Assn. for<br />

omputing Machinery, v. 16, n,,. 2, pp. 286-294.<br />

James, I.C., 'II, Bower, B.B., and Matalas, N.C., (1969 ,<br />

Relative importance <strong>of</strong> variables in water resources planning,<br />

<strong>Water</strong> <strong>Resources</strong> Research, v. 5, no. 4, pp. 1165-1173.<br />

Thomas, D.C., and Benson M.A., (1970). Generalization Of<br />

streamflow characteristics from drainage basin characteristicsr<br />

1v.S. Geol. Survey <strong>Water</strong> Supply Paper 1975, 55 P.


U<br />

346


O 10 20 30 40 50<br />

OPTIMAL LENGTH OF RECORD<br />

347


ABSTRACT<br />

THE DESIGN OF WATER QUALITY MANAGEMENT PROJECTS<br />

WITH INADEQUATE DATA<br />

George W. Reid<br />

Regents Pr<strong>of</strong>essor<br />

University <strong>of</strong> Oklahoma<br />

One <strong>of</strong> the increasingly important elements in the design <strong>of</strong><br />

water resource projects is, <strong>of</strong> course , the management <strong>of</strong> quality<br />

and a technology that was almost purely hydrological and hydraulic<br />

is now being expanded to include what might be classed as the<br />

environmental and edological impact areas and systems, So, it is no<br />

longer sufficient to understand the interrelationships, flows and<br />

transports, but to this must be added the impacts on ttbe lisJrng and<br />

no<strong>nl</strong>iving water, and peripherral environments; <strong>with</strong> a need to<br />

develop ecological models or more specifically, water quality models,<br />

Unfortunately, there is rarely adequate data to properly describe<br />

these interrelationships, The methodology used for hydrological<br />

studies involving inadequate data such as the transfer <strong>of</strong> okserved<br />

points to points <strong>of</strong> interest; short term interise studies; &,Y use <strong>of</strong><br />

simulation techniques, can and are being used in quality management<br />

modeling, Perhaps more basic is an understanding <strong>of</strong> data requirements,<br />

using the system approach, the sequence <strong>of</strong> events ar- il) problem<br />

formulation, (2) symbol1 modeling, (3) data collectlon, (4) analysis<br />

and (5) design. (See Figure 1) Frequently, the order is ,hanged,<br />

particularly the entire process will start <strong>with</strong> available data.<br />

The complexities, <strong>of</strong> course, arise due to the fa.t that the<br />

I rocesses associated <strong>with</strong> water quality management: hydraulic,<br />

hydrologi,al, chemical, biological and ecological -- are extremely<br />

and imperfectly understood. So, that is a complex reality, <strong>with</strong> a<br />

great many variables on which there is available veri poor measures<br />

and which themselves interrelate in ways very inadequately<br />

understood -- must be measured and appropriately related to be useful,<br />

Certai<strong>nl</strong>y, one recognizes the superiority <strong>of</strong> an expli-it quantifiable<br />

data and models over intuitive models and hurlChes. The<br />

alternatives to such a model, based on partial knowledge, is a mental<br />

model, based on the mixture <strong>of</strong> incomplete information and intuition<br />

similar to those controlling most political decisions. A mathematical<br />

mcdel deals <strong>with</strong> the same incomplete information available to an<br />

1 1 *uitive model, but through organization <strong>of</strong> information from many<br />

iifferent sources into a closed loop at last analyses is permitted<br />

and data needs studied,


350<br />

RESUMEN<br />

Uno de los elementos altamente importantes en el diseño de pro<br />

yectos de recursos de agua es, desde luego, el manejo de la calidad<br />

y tecnologia que fue casi puramente hidrolögica e hidráulica y está<br />

siendo ahora expandida para incluir lo que debe de ser clasificado -<br />

como áreas y sistemas de impacto ambientales y ecológicos. Asi que -<br />

ya no será suficiente entender las interrelaciones, flujos y trans--<br />

portes, pues a éstos deben de ser agregados los impactos en las ---<br />

aguas con y sin presencia de formas de vida y los ambientes perifi--<br />

cos; con la necesidad de desarrollar modelos ecológicos o más especl<br />

ficamente modelos de calidad de agua. Desafortunadamente, rara vez -<br />

existen datos adecuados para describir propiamente estas interrela--<br />

ciones. La metodología usada para estudios hidrológicos incluye in--<br />

formación inadecuada, tales como el cambio de puntos observados a -<br />

puntos de interés; estudios intensos de corto plazo; o uso de técni-<br />

cas de simulación, pueden y han sido usadas en modelos de manejo de<br />

calidad. En el modelado existe siempre una cierta incompatibilidad -<br />

entre puntos de sustancia y generalidad; requerimientos de informa--<br />

ciÓn y la representatibilidad del mundo real. El objetivo desde lue-<br />

go, es proveer por medio de una abstracción idealizada un comporta--<br />

miento aproximado el cual es siempre un compromiso entre simplicidad<br />

y realidad. En años recientes una gran cantidad de modelos han sido<br />

desarrollados, pero, desafortunadamente parece haber un alto grado -<br />

de polarización. En un extremo, hay un elegantisimo y s<strong>of</strong>isticado mo<br />

delo basado en técnicas econométricas requiriendo un alto grado de -<br />

especificación de información, que en la realidad no existe, Por --<br />

otro lado del espectro, los senarios dependen casi muy poco de info;<br />

mación, más sobre conceptos. La necesidad básica es para modelos en<br />

aìgfin lugar entre los dos extremos que están construidos usando in--<br />

formación existente y que puedan ser responsables a las necesidades<br />

de las agencias de acción, Es en esta realidad en la cual el autor -<br />

ha desarrollado una serie de modelos de calidad de agua. Los proyec-<br />

tos siendo modelados son generalmente de una naturaleza tal que la -<br />

realización final ocurrirá bastante después de la partida de los di-<br />

señadores y por tal los procedimientos de evaluación directa son im-<br />

posibles, necesitándose de alguna forma de evaluación o integridad -<br />

interna. El problema es que usando cuanta información esté disponi--<br />

ble, para 50 a 100 años a la fecha y haciéndolo de manera que no sea<br />

tan elegante que se convierta en un modelo dogmático. El autor ha -<br />

desarrollado una serie de modelos respondiendo al desafio. La esen--<br />

cia de la metodologia es reconocer la complejidad de un problema y -<br />

trazar una combinación de técnicas de investigación de operaciones,<br />

técnicas deterministicas, asi como m’etodos empîricos, fenomológicos<br />

y analiticos. Modelos para sistemas de rios responden a la polución<br />

organizada de cuatro maneras: bioquimica, biodegradable, sedimentos<br />

nutricionales, incluyendo modelos adicionales para flujos urbanos y<br />

poluciiin dispersa, así como flujos rurales. Todos los modelos usaron<br />

información existente y ésto los sitG‘a para modelado pronosticable -<br />

de nivei de las cuencas siendo computarizados y sistematizados y es-<br />

tán siendo usados en problemas específicos en el Suroeste de los Es-<br />

tados Unidos.


Problem Formulation: To arrive at a water resource project design, the number<br />

<strong>of</strong> variables is enormous, and they are mostly no<strong>nl</strong>inear. The structure <strong>of</strong><br />

the system is more hierarchical than functional, and many <strong>of</strong> the parameters<br />

and variables are unquantified at present, certai<strong>nl</strong>y those associated <strong>with</strong><br />

ecology. Nonetheless, to some degree, a merging <strong>of</strong> disciplines and the<br />

increased use <strong>of</strong> the system approach has been taking place in the study o€<br />

urban systems, and it is not just a matter <strong>of</strong> collecting data and figuring<br />

out what one has.<br />

Lf one looks at the type <strong>of</strong> models being postulated €or the design <strong>of</strong><br />

water quality systems today, it will be seen (Figure 2) that they fall<br />

<strong>with</strong>in a spectrum ranging from erudite mathematical models at one end <strong>of</strong><br />

the spectrum to scenarios at the other. In the first case, the mathe-<br />

matical models may be rigorously developed in a mathematical sense, but<br />

are all too <strong>of</strong>ten <strong>of</strong> little use in describing a real complex system in<br />

inadequate data. On the other hand, the scenario model - little data,<br />

numerous ideas --may accurately depict the significant elements <strong>of</strong> the<br />

real system, but it is <strong>of</strong> little use to the engineer-planner because he<br />

cannot manipulate it. or quantify it.<br />

The target one should try to hit is a reasonable and useable balance<br />

hetween the poles <strong>of</strong> intuition and selecting hard data. One would like<br />

to be able to use the mathematical rigor <strong>of</strong> the physical scientist and.<br />

at the same time, give equal weight to the heuristic insight <strong>of</strong> the social<br />

scientist.<br />

The result would be a useable model for a system design. So,<br />

perhaps, or certai<strong>nl</strong>y, for planning purposes, one is dealing <strong>with</strong> the lowest<br />

level <strong>of</strong> quantification that allows good estimates and the lowest level <strong>of</strong><br />

complexity which gives a reasonable picture <strong>of</strong> the real world system <strong>with</strong><br />

the lope <strong>of</strong> expounding in both directions.<br />

The dpplication <strong>of</strong> mathematical modeling techniques to water quality<br />

management can significantly aid the decisionaakers to arrive at better<br />

decisions. Thus, modeling provides relevant facts and alternatives, the<br />

decision-maker chooses the strategy. Operational modele are still prim-<br />

itive, primarily becaiise <strong>of</strong> the probilistic or random nature <strong>of</strong> the<br />

physical processes involved in waste diffusion. One is sometimes inclined<br />

to be skeptical <strong>of</strong> the value <strong>of</strong> increasing model sophistication which<br />

<strong>of</strong>ten seems to have progressed much further than our understanding <strong>of</strong> the<br />

rmrnplex real world situation; all models currently proposed in the literature<br />

have enormous data requirements which far exceed those data usually available,<br />

and which, for the most part, must be derived from actual measurement.<br />

Many parameters in the more sophisticated models are simply not known in<br />

actual situations.<br />

The water quality management design problem require:<br />

1. The cause and effect relationship between pollution from any<br />

source and the present deteriorated quality <strong>of</strong> water in the estuary.<br />

2. Forecasting variation <strong>of</strong> water quality due to the natural and<br />

man-made causes.<br />

3. Methods <strong>of</strong> optimal management, including treatment and flow<br />

regulation to control the quality in the estuary for muaicipal, industrial,<br />

agricultural, fisheries, recreation and wild life propagation.<br />

4. Chemical, biological, hydrological, hydraulic, at the same the,<br />

same place, and same accuracy.<br />

3 51


352<br />

Models In modeling there is always a certain incompatibility and representativeness<br />

<strong>of</strong> the real world. The aim, <strong>of</strong> course, is to provide through<br />

an idealized abstraction an approximate behavior <strong>of</strong> the system which always<br />

is a compromise between simplicity and reality. <strong>Water</strong> quality models can be<br />

used to simulate, describe and predict, and programming leading to optimization<br />

<strong>of</strong> design. Programing which leads to policy requires an explicit<br />

set <strong>of</strong> objectives, or an objective function to maximize benefits or minimize<br />

costs. Simulation does not require explicit results. So, simulations are<br />

misunderstood, if one expects to use the numerical projections and values.<br />

Using numbers is wrong if it leaves the impression that design projections<br />

are in any way predictions <strong>of</strong> the future. It is helpful, E as a prediction<br />

but to get one to realize how short-sighted -- how present-oriented - images<br />

<strong>of</strong> the future ordinarily are, but extrapolltion <strong>of</strong> present trends is a time-<br />

honored way <strong>of</strong> looking into the future.<br />

Most people intuitively and<br />

correctly reject extrapolations -- the point is that it provides indications<br />

<strong>of</strong> the system's behavioral tendencies and as an analysis <strong>of</strong> current trends,<br />

<strong>of</strong> their influence on-each other, and <strong>of</strong> their possible outcomes.<br />

Models may be classified usefully by areal extent into national, regional<br />

and local . At the highest, or national level, data is necessary for broad<br />

planning purposes, such as to determine an overall level <strong>of</strong> water pollution,<br />

to determine the total investment necessary for pollution abatement, to<br />

determine national policies and to project the problems into the future.<br />

At the second highest level, the regional level, all <strong>of</strong> the above information<br />

is necessary, plus the particular information needs for the region. The<br />

third, local level, consists usually <strong>of</strong> checking the operation <strong>of</strong> waste<br />

treatment plants to insure compliance <strong>with</strong> regulations and statutes.<br />

Thus,<br />

due to the different requirements and objectives, a data program which may<br />

be optimal at one level, is usually far from optimal at some other level.<br />

U<strong>nl</strong>ess a clear objective has been set, there is no guarantee that all<br />

critical bits and bytes <strong>of</strong> information are collected, and that the gathering<br />

<strong>of</strong> useless data is minimized. Similar calssification classification can be<br />

made <strong>with</strong> relation to time.<br />

Hypothetical attempts to describe the intricate relationships between<br />

nutrients, phytoplankton, zooplankton, fish, detritus, bacteria and maninduced<br />

waste loads. There has resulted a great variety <strong>of</strong> models. One <strong>of</strong><br />

the first developed, classical Streeter-Phelps equation, describes adequately<br />

the deoxygenation and reoxygenation in the river. The familiar form <strong>of</strong> the<br />

oxygen sag equation is:<br />

-<br />

Do -<br />

-<br />

where: D oxygen dificit at time t<br />

-<br />

oxygen deficit at time zero<br />

BOD at time zero<br />

Lo<br />

t = time (distance) in days<br />

deoxygenation coefficient<br />

kl =<br />

k2 = reoxygenation coefficient<br />

This equation has been expanded to provide for evection and diffusion; algae<br />

growth, beuthal deposits, etc., into, inreality, impossible data requirements.<br />

The basic need is for models somewhere between two poles that are built using<br />

existing data and as such can be responsive to the needs <strong>of</strong> the action agencies.<br />

Tt is in this realm in which the author has developed a series <strong>of</strong> water quality<br />

models. The projects being modeled generally are <strong>of</strong> such a nature that the<br />

ultimate realization will occur long after the departure <strong>of</strong> the designers, and<br />

as such direct validation procedures are impossible, necessitating some form


<strong>of</strong> internal validation or internal integrity. The problem is one <strong>of</strong> using<br />

what information is available for a 50-100 year future, and doing it in<br />

such a fashion that it is not so elegant that it becomes a classroom make-<br />

believe world, The essential thread in the author's methodology is that <strong>of</strong><br />

recognizing the complexity <strong>of</strong> a problem and drawing on a combination <strong>of</strong> OR<br />

techniques, deterministic techniques, as well as imperical, phenomological,<br />

and analytical methods. River system models respond to organized pollution<br />

L,I modes.<br />

There are suggested six categories <strong>of</strong> stream responses: biodegradable,<br />

nutritional, bacterial, solids, persistant <strong>of</strong> slowly degradable chemicals<br />

and thermai. The response <strong>of</strong> a given stream to these categories can be<br />

formulated; or the reverse. given an instream criteria (RQS), allowable<br />

effluent quality can be calculated. The specific criteria now can be<br />

grouped under response headings; for nutritional, one might select N, P,<br />

NIP, or AGP, etc. If primary treatment is established as a lower con-<br />

straint on the effluent, the solids criteria can be deleted; and further,<br />

if a public health constraint on toxic and bacterial levels can be exercised,<br />

fosir rather than six responses can now be used leaving a four-by-four matrix<br />

'o be examined.<br />

TABLE I<br />

Municipal Industrial Agricultural Recreational<br />

Biodegradable<br />

Nutritional<br />

Controlled by D. O. levels<br />

Controlled by N and P levels<br />

Thermal Controlled by Temperature increases<br />

Persistent<br />

Chemical Controlled by Salt, CCE's or ABS, etc.<br />

353<br />

So, a response/use matrix, changing <strong>with</strong> time will set goals; based on a<br />

matrix such as the one in Table I "d alternative socio-operated projections.<br />

A linking technical basin model can be built and operated to provide the optimal<br />

use <strong>of</strong> water resources, and <strong>of</strong> necessary treatments; or in pianning for<br />

ruture population increases and the concomitant increased use <strong>of</strong> water, it<br />

is possible to build mathematical models depicting the optimum treatments and<br />

stream flows necessary to meet ths RQS. The one-to-one input-output relationships<br />

f-r he four c-tegorius vf waste discharges follows <strong>with</strong> the Low Flow<br />

Augmentation FA), associated <strong>with</strong> each treatment level (mi) , will be QL,<br />

QN, Qp and Q,. This is a terminal flow in MO. T'Li is a fraction where i<br />

refers to BOD, N and P.<br />

BIODEGRADABLE MODEL (L)<br />

Y PE or P A (P)<br />

Q, y+ (i-Y) CS - RQsDO<br />

(i) where:<br />

Y = Fraction <strong>of</strong> total population in SMA's<br />

E = Efficiency term, Point LoadIUniform Load<br />

PE = Population Equivalent Ln millions<br />

P = Percentage discharge to river, expressed


- as a fraction, Decision<br />

Variable (1-TL)<br />

Cs = DO saturation level 6 given temperature<br />

A = 942,900 relates to stream characterk2<br />

4 * istics<br />

where n is essentially the number <strong>of</strong> reoxygenized volumes, Ir the reaeration<br />

2<br />

constant, L the reach, V the velocity -- these valués will change as the<br />

stream Ltself is subject to management.<br />

ACCELERATED RITROPHICATION MODEL<br />

Z'P (1-%-1.44 (1-5) (TLL3250) (3)<br />

Qp = 2-P (1-TLp) - .27 (1-5) (TLL 1080)<br />

F, ROS<br />

THERMAI. MODEL (T)<br />

Qr =<br />

ATw - C<br />

AT +C<br />

Q<br />

AQ<br />

= Thermal Dilution Required, MGD<br />

where:<br />

Qp or QN = Nutritional Dilution Required, MGD<br />

(4)<br />

Z = Relative portion impounded and<br />

effected by RQS, level<br />

- P = Population, millions<br />

T$ or %<br />

-<br />

Phosphorus or Nitrogen removal level<br />

expressed as a decimal<br />

F or Fp BOD/, Ratio divided by optimum<br />

N<br />

combining ratio<br />

RN = BOD removal level expressed as<br />

a decimal<br />

RQS, or RQS, = Acceptable level, RQS determined<br />

by RQSAGp<br />

A Lw - Allowable temperature difference between added flow and RQSt (t-RQSt)<br />

A TQ =<br />

-<br />

Allowable temperature change (RQST - To)<br />

( Ratio <strong>of</strong> K/Vx when K Geometric mean for Bowmen's ratio and V =


subsidance velocity<br />

AQ = Waste Flow, MGD<br />

CONSERVED OR PERSISTENT SHEMICAL MODEL (C)<br />

These models, though’cast in terms <strong>of</strong> dilution requirements, can be<br />

altered, given a diluted level to provide permissible loadings. The<br />

models (2) thru (6) are based on organized (sewered) pollution. Models<br />

for storm drainings or dispersed pollution have also developed such as:<br />

DISPERSED POLLUTION MODEI. (D)<br />

Y2 = 4.8 + 0.0827X2 + 0.489X8 (7)<br />

where Y is BOD<br />

3<br />

Y = 2.36 - 0.188 1nX + .310 Inxl0<br />

5<br />

where Y is ON and Y6 is PO, in<br />

5<br />

Y6 = 2.90 + .OOOOSX1 - .OOOlX, - .0137X8 - .741Xll<br />

and Xi = population<br />

X2 =. population density<br />

X = number <strong>of</strong> households<br />

3<br />

X8 = comercial establishments<br />

Xl0 = streets<br />

Xll = environmental index<br />

Models (2-9) can be used to relate waste inputs to stream responses under<br />

varying municipal stream characteristics and against varying goals (RQS).<br />

Many technical models are available to project flows (Q), and other stream<br />

characteristics it2, L, V, et.. but a final model is needed for evaluation <strong>of</strong><br />

the effects <strong>of</strong> the rural upstream watershed programa on downstream run<strong>of</strong>f to<br />

complete the set. Such a model was developed for the Congress in 1969. ls2<br />

For details <strong>of</strong> model. development see, THE OUTLOOK FOR WATER, Wollman and<br />

Bonem, The John Hopkins Press, Baltimore & London, 1971, Appendix C., p. 203.<br />

This was a special consultative report to the Secretary <strong>of</strong> the Interior,<br />

October, 1967.<br />

355


356<br />

UPSTREAM USE MODEL (U)<br />

Y=-16+XX<br />

1 3 - u7x2<br />

Where:<br />

Y =i percentage <strong>of</strong> nonna1 run<strong>of</strong>f<br />

X1 -i percentage <strong>of</strong> normal precipitation<br />

X2 * percentage <strong>of</strong> watersheds controlled by hydraulic structures<br />

Xj = annual above one inch precipitation<br />

In these equation, the simple Phelps equation (1) has been reduced to:<br />

n<br />

Expanding this to<br />

dL = % dO = f dO<br />

ao E 2 E a20<br />

-iP<br />

- kdL - kn L" + ka (Cs -C) -<br />

three dimension, (x, y, z,) would require:<br />

at - xa: ++<br />

EZa2 o<br />

i- -<br />

- kic , etc.<br />

ax ax<br />

(10)<br />

(11)<br />

That is to say, the load equals the capacity. Distribution factors are<br />

added, load is put in terms <strong>of</strong> people, PE's, etc. This is useable. On the<br />

other hand and by way <strong>of</strong> contrast, O'Connor uses a one dimensional, differentia1<br />

equation, first involving:<br />

(13)<br />

Also the evaluation <strong>of</strong> E's, U, Ki, etc. in terms <strong>of</strong> velocity, solar energy,<br />

depth, turbidity, etc. 3<br />

The effectivehess <strong>of</strong> models is, <strong>of</strong> course, acceptance. Actually, very few<br />

models have been used. Limitations <strong>of</strong> applying them to "real" systems are<br />

rooted in many factors, most related to data inadequacies; the acquisition<br />

<strong>of</strong> proper data, adjustment <strong>of</strong> non-homogenity, or inconsistency, to MIU~ a<br />

few.<br />

SYSTEMS ANALYSIS AND WATER QUALITY, Thoman, Environmental Science Service,<br />

New York, 1972.


Every model, or system, is always embedded in a larger system in space<br />

or time, so one is limited to selection <strong>of</strong> a free body cut and exogenously<br />

determined parameters. Finally, serious factors, mostlv associated <strong>with</strong><br />

social values cannot, at present, be quantified.<br />

An efficient use <strong>of</strong> models thus, argues for different models to answer<br />

different question. For example, one for sediments, one for social costs,<br />

etc. The systems process is iterative and continues while the models are<br />

refined and until satisfactory results are obtained.<br />

The flow <strong>of</strong> information for all the mested models eventually leads to the<br />

decision process. Forward and feedback information flows take place between<br />

models until the alternative selection and information developed is accepted<br />

for decision-making.<br />

As illustrated, there is no attempt to "hang" all<br />

models together. More important, different levels <strong>of</strong> data, can be used in<br />

each mode, providing homogenity in each model.<br />

DATA<br />

The data must support the models. Some <strong>of</strong> the questions for which answers<br />

are needed are, goals, include,:<br />

1. What significant parameters <strong>of</strong> water quality should be measured,<br />

for an alert system, for treatment plant control, for a quality forecasting<br />

system, for a river management system?<br />

2. What should be the periodicity or time interval in collecting<br />

specific data?<br />

3. What are the cross correlations <strong>of</strong> these parameters?<br />

4. Are there any synergisLic relationships between the parameters?<br />

5. What is being accomplished to develop instrumentation that can<br />

gage quantitatively those essential parameters, such as BOD, that are not<br />

being measured automatically at the present time?<br />

So, there are all sorts <strong>of</strong> data, much <strong>of</strong> it redundant. One needs a model<br />

to discover needs, costs, etc. The process is shown graphically in<br />

Figure 3.<br />

Data has a cost, collection and deferral <strong>of</strong> decisions.<br />

The quantity <strong>of</strong> information collected should be increased so long as the<br />

present value <strong>of</strong> the investment opportunity (or cost savings if this is the<br />

use to which the information is put) is increased by more than the cost <strong>of</strong><br />

the information.<br />

The expected value <strong>of</strong> a decision will be low <strong>with</strong> little data available, but<br />

will rise <strong>with</strong> more data available. With little data available. the solution<br />

<strong>of</strong>ten would be overstated (resulting in unused capacity) or understated<br />

(resulting in lost opportunity), thus reducing the expected present value <strong>of</strong><br />

tht opportunity. For small enough quantities <strong>of</strong> data, the expected value<br />

will be negative.<br />

The conclusion thatthe decision take place when the cost <strong>of</strong> getting one more vear<br />

<strong>of</strong> information is equal to the resulting increase in expected present value.<br />

The cost <strong>of</strong> getting one more year <strong>of</strong> data is made up <strong>of</strong> two elements, the


outlay during the during the year to get the data, k, and interest on the<br />

expected present value <strong>of</strong> the opportunity one would experience if a year <strong>of</strong><br />

waiting is not included. That is, if V(t) is the basic function, one should<br />

not wait until its rate <strong>of</strong> increase, V’(t), is equal to [rV(t) + LI, where<br />

r is the rate <strong>of</strong> discount ( the rate <strong>of</strong> return on investment).<br />

Several conclusions are evident. First, it never will pay to wait for<br />

”complete” information. Second, an extremely important element <strong>of</strong> the<br />

problem is the cost coming from postponement <strong>of</strong> the stream <strong>of</strong> net revenues<br />

from the decision. This factor means it does not pay to accumulate data<br />

until the increment in expected value is equal to the annual cost <strong>of</strong> the<br />

data.<br />

Experience in the United States has resulted in the common utilization <strong>of</strong><br />

o<strong>nl</strong>y eight water quality parameters that are thought to satisfy the re-<br />

quirements <strong>of</strong> reliability, accuracy, and low maintenance. These parameters<br />

are dissolved oxygen, pH, turbidity, conductivity, temperature, OñP, solar<br />

radiation intensity and chlorides. Time sequence is important. Parameters<br />

needed today may not be the correct ones torrorrow.<br />

TABLE II<br />

---<br />

TIME SCHEDULE FOR WATER POLLUTION ABATEMENT<br />

Secondaw BOD N&P TDS Thermal<br />

- Time<br />

Treatment Eff Eff Eff - Ef f<br />

1960<br />

1970<br />

X<br />

X X<br />

1980<br />

1990<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X X<br />

2000 X X X X X<br />

Criteria Fish KJlls Eutrophi- Reuse Recycle<br />

<strong>Water</strong> Treatueur. cation<br />

Problems<br />

Figure 4 suggest a water pollution abatement time scale; that is, the<br />

standard will be upgraded <strong>with</strong> time, and the resource must be used<br />

<strong>with</strong>in these constraints.<br />

One is still concerned <strong>with</strong> the frequency <strong>with</strong> which data should be<br />

collected, the optimum locations <strong>of</strong> collection, the provisions for data<br />

storage and the resources for analysis <strong>of</strong> the data. The use <strong>of</strong> a shortterm<br />

survey approach or establishment <strong>of</strong> a minimal number <strong>of</strong> permanent<br />

stateions. An analysis <strong>of</strong> historical data will yield insight into those<br />

parameters which require continuous analysis because <strong>of</strong> significant fluctuations<br />

and help to identify those locations which best identify changing<br />

conditions in the receiving water.<br />

In contrast to the monitoring <strong>of</strong> a simgle point over a long period, studies<br />

can be concenrrated over shorter times but more intensive. There is a<br />

questi01 ,f manual collection versus continuous, automatic recording. All<br />

parameters <strong>of</strong> interest can be determined on a continuous basis and the results


transmitted to a central storage facility, while water quality parametere<br />

that can be economically and dependently measured in the field are still<br />

somewhat limited.<br />

CONCLUSIONS<br />

Briefly, models to illucidate design parameters should be built <strong>with</strong><br />

available data in mind. By a process <strong>of</strong> separating and nesting, submodels<br />

can overcome inconsistencies. If goals are precisely stated as<br />

to function, various parameters can be represented by what ia available.<br />

The author has developed a series <strong>of</strong> models using very general data,<br />

leaving a latitude <strong>of</strong> alternative data.items to define a parameter. Data<br />

has a cost, collection and opportunity or decision errors also cost. If<br />

inadequacies continue, short-term intensive studies are justified, either<br />

now or backward, for example, point reviews can be used. Manual systems<br />

can be replaced by automatic monitors; all eight suggested parameters<br />

handled by electrodes. Generally speaking, however, automatic monitors<br />

tend to provide more data than are needed, because noone dares to turn<br />

these expensive machines <strong>of</strong>f or set the sampling interval to such a time<br />

interval that meaningful deviations can be recorded.<br />

One never has adequate data, nor can one afford to wait for it. So, models<br />

must be made using every device available, recognizing that the final<br />

result will still involve uncertainty and risks, and require judgement -<br />

the o<strong>nl</strong>y defense against inadequate data.<br />

359


360<br />

SELECTED REFERENCES<br />

1. Biswas, Asit K. PROCEEDINGS, INTERNATIONAL SYMPOSIUM ON MODELLING<br />

TECHNIQUES IN WATER RESOURCES SYSTEMS. Volumes 1 and 2. Ottawa,<br />

Canada: Environment Canada, 1972.<br />

2. Herfindahl, Oris C. NATURAL RESOURCE INFORMATION FOR ECONOMIC<br />

DEVELOPMENT. Baltimore: John Hopkins Press, 1969.<br />

3. Krenkel, Peter A. (ed.). PROCEEDINGS OF THE SPECLAZTY CONFERENCE<br />

ON AUTOMATIC WATER QUALITY MANAÇEMENT IN EUROPE, No. 28.<br />

University, 1971.<br />

Vanderbilt<br />

4. Mancy, Khalil H. (ed.). INSTRUMENTAL ANALYSIS FOR WATER POLLUTION<br />

CONTROL. Ann Arbor, Mich.: Ann Arbor Science Publishers, Inc., 1971.<br />

5. Public Health Service. U. S. Department <strong>of</strong> Health, Education and<br />

Welfare. SYMPOSIUM ON ENVIRONMENTAL MEASUREMENTS, VALID DATA AND<br />

LOGICAL INTERPRETATION. Cincinnati, Ohio: Public Health Service, 1964.<br />

6. Public Health Service. U. S. Department <strong>of</strong> Health, Education and<br />

Welfare. SYPPOSILJM ON STREAMFLOW REGULATION FOR QUALITY CONTROL.<br />

Cincinnati, Ohio: Public Health Service, 1965.<br />

7. Thomas, William A. (ed.). INDICATORS OF ENVIRONMENTAL QUALITY.<br />

New York: Plenum Press, 1972.


#<br />

PROBLEM<br />

FORMULATION<br />

DESIRED DATA<br />

V<br />

DATA<br />

COLLECTION<br />

ADEQUATE DATA<br />

I<br />

ANALYSIS<br />

1-SIMUUTION<br />

2-PROGRAMING<br />

- L<br />

V C<br />

r<br />

L<br />

DESIGN<br />

CRITERIA -<br />

Figure 1.<br />

c<br />

t<br />

361


362


I L I<br />

c .-<br />

L O u'<br />

C<br />

.- N:<br />

LaJ<br />

a u<br />

a;g<br />

c<br />

O<br />

.- 8<br />

I<br />

o)<br />

UI<br />

.-<br />

07<br />

E<br />

3<br />

0"<br />

*<br />

O<br />

2<br />

Q<br />

o<br />

3<br />

0)<br />

O<br />

C<br />

E<br />

al<br />

z<br />

L<br />

al<br />

c<br />

C<br />

al<br />

363


ABSTRACT<br />

DESIGNING PROJECTS FOR THE DEVELOPMENT OF GROUND WATER<br />

RESOURCES IN THE ALLUVIAL PLAINS OF NORTHERN INDIA ON<br />

THE BASIS OF INADEQUATE DATA,<br />

BY<br />

B. K, SABHERWAL<br />

Utilization <strong>of</strong> ground water potential to develop irrigated<br />

agriculture in the alluvial plains <strong>of</strong> Northern India through<br />

"Push button" water wells has played a vital role to bring about<br />

the Green Revolution for meeting country's food deficit. But the<br />

positive development on the food front is o<strong>nl</strong>y a phase. Continuing<br />

population growth and the resultant increase in demand for food,<br />

fibre and other services obtaining from water use are adding to the<br />

water requirements thereby underlining the urgency to hasten<br />

execution <strong>of</strong> projects capable <strong>of</strong> delivering assured water supply to<br />

meet the demands <strong>of</strong> high yielding varieties (-HYV] crops, This can<br />

be achieved by installing more water wells in the alluvial plains<br />

<strong>of</strong> India rich in ground water potential. Ground water resource<br />

though it gets replenished annually, is not an inexhaustible resource,<br />

Ecological responsibility makes it incumbent on the planners <strong>of</strong><br />

ground water development projects that this precious resource, IS<br />

not exhausted due to over exploitation, Surface waters are tangible<br />

and their potential can be predicted upto reasonable certainity on<br />

the basis <strong>of</strong> long term observations <strong>of</strong> flow in channels. Assessment<br />

<strong>of</strong> ground water potential on the other hand is quite complicated.<br />

The difficulty arises on account <strong>of</strong> the fact that ground water<br />

relates to that invisible part <strong>of</strong> hydrologic cycle which occurs<br />

beneath the land surface. Evaluation <strong>of</strong> ground water resource to a<br />

high degree <strong>of</strong> accuracy is a multi discipline study involving,<br />

collection, analysis and synthesis <strong>of</strong> hydrological, geological,<br />

meteorological, geophysical, hydrochemical data, computing quantums<br />

<strong>of</strong> recharge, discharge and balance <strong>of</strong> ground water in a basin or a<br />

sub-basin and correlating the results <strong>with</strong> the changes in ground<br />

water levels and its regime, A comprehensive study <strong>of</strong> this type is<br />

time consuming and costly, In view <strong>of</strong> the latest developments in<br />

ground water hydrology the available hydrological and geological<br />

data is not adequate enough for a comprehensive and precise<br />

assessment <strong>of</strong> ground water potential though exploitation <strong>of</strong> ground<br />

water in India commenced quite some time back. On the other hand<br />

preparation and execution <strong>of</strong> plans and schemes for the exploitation<br />

<strong>of</strong> ground water cannot be held over till the completion <strong>of</strong> such a<br />

study which may take four to five years, ît has therefore become<br />

necessary to adopt some reasonably accurate methodology to evaluate<br />

the ground water potential <strong>with</strong> the help <strong>of</strong> the available data and<br />

plan ground water exploitation projects on its basis though at the<br />

same time keeping margin for subsequent adjustments when better<br />

data becomes available, Appraisal techniques and adopted criteria<br />

for an approximate evaluation <strong>of</strong> ground water balance in water table<br />

aquifers are described <strong>with</strong> particular reference to the Bist Doab<br />

Tract <strong>of</strong> the State <strong>of</strong> Punjab-India which has an area <strong>of</strong> 9000 sq.<br />

kilometers and where 80% <strong>of</strong> annual rainfall occurs in the months <strong>of</strong><br />

July to September. Significant part <strong>of</strong> the assessment study is the<br />

recharge to ground water from the annual flow <strong>of</strong> about 1.25 M.A.F.<br />

<strong>of</strong>; surface water thorough a net work <strong>of</strong> u<strong>nl</strong>ined and lined irrigation<br />

canals and its ultimate spillage in the cropped fields. On the


366<br />

discharge side is the drawal by approximately, 0.1 million existing<br />

shallow and deep water water wells which are either electrically or<br />

diesel driven. The electrically driven wells have unmetered electric<br />

supply, the tarrif being on the basis <strong>of</strong> horse power <strong>of</strong> the electric<br />

motor. For both the tupes <strong>of</strong> water wells log books recording the<br />

number <strong>of</strong> hours a tubewell operates are not being maintained by the<br />

private owners, This aspect further adds to the problem <strong>of</strong> working<br />

out accurate drawals from and return seepage to ground water in<br />

tubewell irrigated fields, In the absence <strong>of</strong> adequate data to<br />

correctly evaluate ground water potential and pressing necessity to<br />

exploit the potential for food production statistìcal or empirical<br />

methods have been adopted to work out ground water balance and then<br />

apply a reasonable safety factor to take care <strong>of</strong> short comings in the<br />

approach. In the project areas water table fluctuations are also<br />

being observed more frequently to closely watch the effect <strong>of</strong><br />

additional draft,<br />

RESUME<br />

L'utilization du potentiel des eaux souterraines pour le<br />

développement de 1"agriculture irriguées dans les plaines alluviales<br />

de l'Inde du Nord au moyen des puits d'eau du button-préssoir a<br />

joué un rôle vital pour accompler la "Revolution Verte'' afin de<br />

satisfaire les besoins deficitaires des aliments du pays. Mais le<br />

développement positif sur le front de nourriture n'est qu'une phase.<br />

La continuation de la croissance de la population et l'augmentation<br />

resultante du besoin de nourriture, tissus, et des autres services<br />

utilizant l'eau necessitent les besoins de l'eau supplementaires,<br />

ainsi soulignant l'urgence de l'ëxecution des projets capables de<br />

l'alimentation fourniture assuT+e d'eau pour subvenir la demande des<br />

récolte de haute z-eqdement. On peut satisfaire cette demande en<br />

installant plus de pults d'eau dans les plaines alluviales de l'Inde<br />

du Nord, riches en potentiel des eaux souterraines. Des ressources<br />

des eaux souterraines quoiqu'elles se remplissent chaque année, n'est<br />

pas une ressource ingpuissable. La responsabilité écologique le rend<br />

obligatoire aux planificateurs des projets des eaux souterraines de<br />

voir que cette ressource prlcieuse ne seppuisse pas, en raison de<br />

sur-éxplóitation. Des eaux de surface sont tangibles et on peut prédire<br />

leur potentiel jusqu'une certitude raisonnable sur la base des obser-<br />

vations à long terme de l'écoulament des eaux dans les canaux. L'esti-<br />

mation du potentiel des eaux souterraines par contre est bien compli-<br />

quee. La difficulté s'8le've en raison du fait que l'eau souterraine<br />

se rapporte à cette partie invisible du cycle hydrologique qui se<br />

fait au-dessous de la surface de la terre. La nature héterogene des<br />

formations géologiques à travers lesquelles l'eau souterrasne circule<br />

rajoute à la complzxitê du problame. YaloTisation des ressources des<br />

eaux souterraines a une haute degr6 d'exactitude est une étude de dis-<br />

ciplines multiples comprenant recuîl, analyse et synthese des données<br />

hydrologiques, géologiques, méteorologiques, géophysiques et hydro-<br />

-chemiques, calculant les quanta de récharge, d@scñarge et le bi'lan<br />

l'eau souterraine dans un bassin ou sous-bassin et mettant en corréla-<br />

tion les résultats avec des changements dans les niveaux d'eau soute-<br />

rraine et son régime. Une étude detaillée de cette type demandes plus<br />

de temps et est coûteause. En vue des plus derniers dêveloppments dans<br />

l'hydrologie de l'eau souterraine la données hydrologiques et géologi-<br />

ques disponibles ne sont pas assez pour une estimation complJte et


367<br />

exacte du potentiel des eaux souterraines, bien que l'exploitation<br />

des eaux souterraines commence il y a quelque temps dans le passé.<br />

D'un autre cote, la préparation et l'dxecution des plans ou schemes<br />

pour l'exploitation des eaux souterraines ne peut pas &tre arrêtées<br />

jucqu'a la complétion d'une telle étude quì puisse prendre, 4 ou 5<br />

ans.Donc, i1 est devenu nécessaire d'adopter une méthodologie<br />

raisonnable exacte pour estimer le potentiel des eaux souterraines<br />

avec l'aide des donnêes dìsponsible et planifier des projets<br />

d'exploitation des eaux souterraines, au même temps en retenant une<br />

marge pour les modificatìons subséquentes quand p+us de données<br />

seront dispo<strong>nl</strong>bles. Les technìques d'estìmatïon, pour une valorisa-<br />

tion approximative de balance d'eau souterraine decrite avec une<br />

réference particulière à BIST DOAB tracte Etat de Punjab en Inde qui<br />

a un terrain de 9000 kilometres-carres et ou 80% de pluie annuelle<br />

arrive aux mois de Juillet.Septembre. La partie signìficative d'6tude<br />

estimative concerne la récharge 2 l'eau souterraine de l'écoulement<br />

annual d'environ 1.25 M.A.F. (million acre pieds) d'eau de surface<br />

par un réseau de canaux d'irrigation alignes et non alignes, et son<br />

utilization ultîme dans les champs cultivés, A cbtk de déchargement<br />

1.0 million des existants puits d'eaux qui sont opérées soit par<br />

electricit6 soit par essence. Des puits mechanizes par electricit6<br />

assurent une alimentation d'eau sans compteur d'electrictricite, le<br />

tarrif étant basé sur le C.V. des moteurs eléctrlques, Pour les deux<br />

types de puits d'eaux, des carnets à régle concernant le nombre des<br />

heures qu'un puit S opére, ne sont pas tenus par les propriétaires<br />

prives. Cet aspect ajoute encore au problème de calculs des puise-<br />

ments exacts de l'eau souterraine dans les champs irrigués au moyen<br />

des puits à moteurs électriques, Dans l'absence de données de valo-<br />

riser correctement le potentiel d'eau souterraine & la nécessité<br />

pressante d'exploiter le potentiel pour la production de nourriture<br />

les methodes empiriques et de statistiques ont Btd adoptées pour<br />

retrouver la balance d'eau-souterraine et d'appliquer un facteur<br />

raisonable de sÛréte de bein rendre compte des fautes dans la mainère<br />

d'aborder, Dans les regions sous observation on étudie aussi tres<br />

souvent le niveau de variabilité d'eau pour remarquer de pres<br />

l'effect d'eau puisée en supplement,


368<br />

1. UTROWCTICN<br />

1.1 India i6 the seventh largeet country in tbe<br />

World. ït's area is 328 million hectarest 3-28 million bqtlue<br />

iiiïorn9ters) <strong>with</strong> a population <strong>of</strong> 547 million (1971)<br />

Agricultural out put accounts for half <strong>of</strong> thr country's Gross<br />

23: tioneï droductí GPW.<br />

1.2 In the year 1947 wheu the country was divided,<br />

the major irL-i;jation syskais únd %cod piav~ucLi? ?reas were<br />

lost to rtkistm resuïtiag ILI a deficit <strong>of</strong> 4 dillions tmms <strong>of</strong> food grains. India had tbrefcm to iwort ,ILL t;.c's.us<br />

from the major wheat producing countries <strong>of</strong> the world till<br />

the advent <strong>of</strong> Green devolution recently brought about by<br />

the'incrrased utilization <strong>of</strong> country(s surface water resources<br />

for irriyqtion from 93745 priïlion ~1 m (76 million acre ft.)<br />

in IL361 to 222000 milîion CU m ( 186 miliion acYe a.) at<br />

Grosent ?nd t<strong>of</strong> ground water lli000 Pilllion CU m (I30 million<br />

ecre ft.) üse í~f high yielding variety (W) seePS <strong>of</strong><br />

cerc<strong>nl</strong>s hke wheat ,rice,wiize,Jawar and Bjra hes Ris0<br />

hastened to a great extent the tremendous increase III<br />

'food cut put. Cevelopmgnt Of rtwarf varieties <strong>of</strong> wheat made<br />

Possible following the introduction <strong>of</strong> valuable genetic<br />

material from bxtco 141 1962 has alone increased the production<br />

<strong>of</strong> thb important cereal from neerly 12 to 23 million tonnes<br />

<strong>with</strong>in a period <strong>of</strong> about five yeam.<br />

1.3 Eilt the maximm production per unit <strong>of</strong> any<br />

Particular variety <strong>of</strong> m d seed is the result <strong>of</strong> a set <strong>of</strong><br />

cultivation practices proper doses o9 ioputs prophylactic<br />

and curative measures to check the atta& OP insects, pests<br />

and disewes end above all adequate irrigation at proper time.<br />

2. INDIA-PH!EICAL AND OTHE=TI FJ3AlWRES.<br />

2.1 Physio raphially Indkais main land can be<br />

divided into six divisfons comprishg <strong>of</strong> i-<br />

i) the Himslayan mountains<br />

ii) the indo-Gangetio Plains<br />

iii) the Central Hiagi Unda<br />

the Decm Plateau<br />

the Eastern Coastal Belt<br />

vi) the Western Coastal Belt<br />

2.2 The Himla moimtains are <strong>of</strong> comparatively<br />

recent origin. The Deccan Eteau end the CentraR Hi@ Lande<br />

are composed <strong>of</strong> ancient rocks. The Plains are hilt up<br />

<strong>of</strong> layers <strong>of</strong> sends, clays <strong>of</strong> molo loally very recent &te.<br />

The metern anditestem Coastal befts comprise <strong>of</strong> deltaic<br />

and sedimentary marine deposits.<br />

2.3<br />

About 7<strong>of</strong> <strong>of</strong> the country's ama is under lain by<br />

hard rock <strong>with</strong> a thin soil cotrer at top derived fra l%o<br />

wealtherinn <strong>of</strong> rocks. IO 1i, mai<strong>nl</strong>y the Indo-Gan etic Phkis and<br />

the two deltaic Eastern and Westem Coastal dts which are<br />

made up <strong>of</strong> alluvial solls and sedfmentwy deposits varying in<br />

thickness from a few hundred feet ln the coastal belts to<br />

thousands <strong>of</strong> feet in the Plains.<br />

2.4 Ailuviai soils are suitable for agricultum<br />

and respond well to artificial irrigation. Being generally<br />

permeable in character and having laysrs <strong>of</strong> coarser deposits<br />

also provide under ground storage for seepage water. NO<br />

wonder the Indo-GangetLe Plains, 8nd the tu0 coestal belts<br />

though accomt for on1 l./3 <strong>of</strong> the oauitry'e laad rnam ?ut<br />

suwort atmut <strong>of</strong> tL caintrps por<strong>nl</strong>ation.<br />

2.6<br />

The maor snow fed riveris <strong>of</strong> tu country naaiely<br />

the triaitaries <strong>of</strong> the U&s, the cianges and the Bwhaii Putra<br />

flow rlugyishly through the indo-Gangetic Blain. The main rivers


369<br />

flowing to the coastal belts are the Xarkda and the Tapti on<br />

the western side Cmd the Maha Nadi, the Godavari, the Krishana<br />

rind the Cavery on the eastern sir%. All these rivers outfall<br />

into sea. The rfvers also provide irririation supklies to the<br />

vast net work <strong>of</strong> m al systems part <strong>of</strong> which was constructed<br />

about a century back. host <strong>of</strong> the old canals are designed as<br />

Il mn <strong>of</strong> the riveril schemes and are u<strong>nl</strong>ined. The u<strong>nl</strong>ined cana.ls<br />

act es additicnal souY'ce <strong>of</strong> recharge to ground water besides<br />

seepage from rivers, streams and rainfall.<br />

2.6 In dia s clima. te ranges from con t in en ta. 1 to<br />

oceanic, from extrems <strong>of</strong> heat to extrerns <strong>of</strong> cold, Prom high<br />

a.ridity a.nd negligible rainfall to excessive humidity and<br />

torrential rainfall. Sauth destemi monsoons in summer accounts<br />

for mre than 85% <strong>of</strong> the precipitation and that too in a<br />

short span <strong>of</strong> about 4 months. The great diversity in weather<br />

conditions and uncertainity <strong>of</strong> rainfall results in the prevalence<br />

<strong>of</strong> draught condition in about one third <strong>of</strong> the country.<br />

3. GROW D :,! AT-g 2 17s<br />

3.1 In the face <strong>of</strong> variability and tirircliability <strong>of</strong><br />

rsinfall and also lack <strong>of</strong>' adequate storage support for some Of<br />

the major canal irrigation schemes, tappin:? <strong>of</strong> zround water<br />

resource through iiells and tubewells for intensive agriciiltu re<br />

has pla ed a yitzl role in ushering the (Green Revolution<br />

particu Y a.rly in these parts <strong>of</strong> the country where low or badly<br />

distributed rainfall is quickly lost thrm$l evaporation Ixit<br />

where g-ound watnr potential is available stored in alluvial<br />

deposits<br />

3. 3 Cultive.tion <strong>of</strong> high yielding varieties and<br />

intmsive cropping dernad water at the right time and <strong>of</strong> the<br />

rewired quantity. These pre-requisits have made the<br />

cultivators in areas <strong>with</strong> copious ground watcr supplies take<br />

to the instcllatïon <strong>of</strong> their own', push aittontt irrigation<br />

systems. The water scarcity during the yesr 1365-67 which<br />

created draught conditions almost all over the country acted<br />

as catalyist to boost up exploitation <strong>of</strong> ground water poteiitfal<br />

thmu& diesel or electrically operated tubwells 100 feet<br />

to 200fbet dealfor the protection <strong>of</strong> Crops.<br />

3.3 The Govemrcent also rose to the occassion and<br />

undertook to provide large saale loan finance to the cultivstors.<br />

for the installation <strong>of</strong> tubewells on their farms in areas where<br />

the ground watcr potentialities were promising. The result is<br />

that at present an investment <strong>of</strong> about Rs.2000 crores hac Filreacbr<br />

bean Lade in the field <strong>of</strong> ground water exploitation in the<br />

country. Most <strong>of</strong> this investment has taken place in private<br />

sector.<br />

3.4 The following table, indicates the progress Of<br />

insxellation <strong>of</strong> tubwells in the a3untry:-<br />

(In thousands I<br />

250 - 1965 A969 - 1971 -.- (anticipated)<br />

Mo.<strong>of</strong> private tubewells 3 100 279 470<br />

rio.<strong>of</strong> diesel pumps 66 471 837 1150<br />

No.<strong>of</strong> electric pump sets 19 513 1080 1620<br />

Total 88 1084 2196 3240


370<br />

3.5 The spectacular development <strong>of</strong> ground water<br />

utilization in the country has been influenced by a npmber <strong>of</strong><br />

factors namely the rzcognition by farmers <strong>of</strong> the importmt role<br />

played by ground water in sustaining modern agricultural<br />

techniques, incrceaed availability <strong>of</strong> institutional credit for<br />

financing the ground water exploitation programme, rapid<br />

electrification Of rural areas, local availebility <strong>of</strong> technical<br />

how how to drill well8 <strong>with</strong> machines, and indiyenously<br />

manufactured pumps, motors and other equipmat for the<br />

construction <strong>of</strong> wells and above all large scale village road<br />

deve lopmen t p rogr amme .<br />

3.6<br />

Heavy investments in gound water exploitati.<br />

schemes and the involvement <strong>of</strong> the Government back institufional<br />

credit far the purpose has made it incunibent to plan and execute<br />

this programme <strong>of</strong> utmost natio'lal imoortance duly sumorted by<br />

proper assessment <strong>of</strong> ground water potential.<br />

4. HYDROLOCEIC CYCB.<br />

4.1 All the waters in existance en be located by<br />

what is ïmìwn as 1) hydrologic cyclen or 11 Nater Cycle". This<br />

C cle involves total earth system comprising <strong>of</strong> the atmosphere,<br />

d e hydro-sphere Snd the lithosphere. The activities <strong>of</strong> the<br />

n ilater Cycle" are vast extending from an average depth <strong>of</strong> about<br />

half a mile in the lithosphere to abcut 10 miles in the<br />

a tmsphere .<br />

4.2 Hydrologic cycle is greatly influenced by the<br />

geologic history <strong>of</strong> a particular area. If the geology consists<br />

<strong>of</strong> alluvial fmnatlons, water will occur in the openings<br />

between granular XcFosits; EUT; if the area fOr~tiOnS are rocky,<br />

the ground water Will be found in decomposed parts <strong>of</strong> ro&B,<br />

freotures or in tabular openings in soluable rocks or opening<br />

in lava formed by flow or gas expansion during solidification.<br />

Guide lines to evaluate ground water potential in alluvial<br />

formatias have o<strong>nl</strong>y been discussed in this p3Per.<br />

4.3 Ground water originates from surface water and<br />

gets renewed or recharged <strong>with</strong> the down vard percolation Of<br />

precipitation, flow in stream, canale, return flow fra irri,ated fields etc. Propm assessment <strong>of</strong> this valuable<br />

resource fomd in Permeable geQlOgac formations and in motim<br />

through the voids or pore spaces in an area requires working<br />

out its total storage and quantities whir& are annually pumped<br />

out or replenished into the ground water reservoir. bality Of<br />

grOUnd water .leo requires to be known. Comprehensive studies<br />

and explorati-ns -re necessary to evaluate the potential to a<br />

hfgh degree <strong>of</strong> accuracy.<br />

5. APPRbACH TO WORK OUT GRWdD WATER BULLANCE;<br />

ON TI% &.SIS OF INADECrJATE DATA.<br />

5.1 hthodology for the precise eva2natioB <strong>of</strong> ground<br />

vater potential is quite complicated. The difficulty arises 691<br />

account <strong>of</strong> the fact that ground water relates to the.t invisible


371<br />

pert <strong>of</strong> hydrologic cycle which occurs 'beneath the land surface.<br />

9etero~~eneoUs nature <strong>of</strong> the ,(.f?ological format ions through which<br />

ground water moves e-dds to the coarplexity <strong>of</strong> the problem.<br />

5.2 It ha.s been observed by pump tests that in Punjab<br />

which is the Northern-Western part <strong>of</strong> the Indo-Gangetic Plain<br />

alluvial materials constitute an extensive hetrogeneous and<br />

a.nisotropic unconfined aquifers . Discharge from tubwells as<br />

deep a$ 300' results in- draw-down <strong>of</strong> water tsóle over larye<br />

prea. ?nd is sustained by dawrltering <strong>of</strong> surface watr,r recharne,<br />

such condit iow jrevail through out the top aauffers ~f slluaiurn.<br />

5.3 Planning and designing <strong>of</strong> ground vmte? development<br />

through small and medium sized tubewells (1.10 to 200 feet<br />

deep) in the ground water &sins and sub-basins o0 the indo-<br />

Gmjetic plain ' cím therefore be ,compared to re:.err)ir prObLem.<br />

This approach cal-1s for drawing iipm the fresh water table<br />

a,quifem upto the Safe Yield which should not. exceed ^che long<br />

term mean -annual supply or recherge involving wet and dry years.<br />

In view <strong>of</strong> lack <strong>of</strong> complete data the genersl. i"om CJf bhe squrtie.cn<br />

<strong>of</strong> hydrologic equilibrium in thcs project areas has been simplified<br />

cmd suitably adjusted to arrive at worh.ble ,g:rourid ;iater hiance.<br />

In areas having ground water quality problem Safe Yield cannot<br />

be equated to mean annual recharger<br />

5.4 Installation af tubewci-11s upto 300 feet for<br />

irriz8tion is being practised in India since 19.34-36. In<br />

edditìon, tubwells vere a.lso install.ed Por municlpal,rai%ays<br />

Tnd indust, ia1 use. Geological Survey <strong>of</strong> India, state Zrri%ticn<br />

&partmats and Central Gróund -.:a.ter Board have bom iminte.in1ng<br />

oeological, hydrological, geochemical and other ground water<br />

data <strong>of</strong> a rudimentary character. Irrigation Depart<strong>nl</strong>snts have<br />

also meintahed record <strong>of</strong> water table fluctuations keduced to<br />

mean sea level ( 1%.Lr) from a net work <strong>of</strong> observa.tion wells.<br />

kmccipitatScn, racord is kept by Indian bieteorological Department.<br />

Ifit no are?wlse systematic investi.zations and exploration to<br />

a-ssess ground water potential were conàucted. In the absence<br />

<strong>of</strong> adequate ùata to evaluate ground water potlontkal on the basis<br />

<strong>of</strong> lat$st deVelOPI~ent6 in grmd water hydrology and pressing<br />

necessity to exploit ground water potential statistica.1,<br />

analytical and empiriel wtbods were resorted to arrive at<br />

preliminary quantitative evaluatîon <strong>of</strong> ground water balances in<br />

the pro,je ct areas<br />

5.5 Ground water balance te Plan schemes was<br />

computed on the collp,ction and malysis <strong>of</strong> the following basic<br />

data in project areast-<br />

1. Village -wise iocatim5 and other details <strong>of</strong> existing<br />

tu heiaelle<br />

2. Colleetion <strong>of</strong> reliable litholo- <strong>of</strong> tubewer-ils.<br />

3. Iso-pstch featums E@ revealed by litho-lons and<br />

geologid correlation <strong>of</strong> strata upto the available<br />

depths to broadly understand t.he geometry <strong>of</strong> aquifers.


372<br />

4.<br />

5.<br />

6.<br />

7.<br />

8.<br />

il.<br />

10.<br />

11 0<br />

12.<br />

13.<br />

,Sample observatiais <strong>of</strong> pumping rates o? existing tubewells<br />

by ushg simple devices(0rifice or ri,qht Angled '6-notch) .<br />

dimple surveys to assess pumping hours for surn'lier and<br />

winter crops to work out present ground water draft<br />

in the Gi'oj ect .-;.rea.<br />

Locatim <strong>of</strong> raingaue stations m d annual ra.infel1 datn.<br />

for the last 20 to 30 years. '<br />

::eighted mean average annual rainfall fill;ures for<br />

different blocks <strong>of</strong> the area by Theisson method.<br />

Locations <strong>of</strong> existing pugln?JdischPrp sites on stresms,<br />

drains and CO! lectfon <strong>of</strong> run <strong>of</strong>f data monthwise.<br />

Available ground water qiality data to demrcate fresh<br />

and inferior ground water zones.<br />

Location <strong>of</strong> existing cmel irriyation s,Ftem m d data<br />

about their len$.hs ,. sectims,( lined/u<strong>nl</strong>ined) desiled<br />

dischzcrges, actual flow time and areawise.<br />

Yeriod-wise flow in enals Rt the point OP entry into<br />

and exit from the project area.<br />

Locations <strong>of</strong> existkg water table observation wells<br />

and past data <strong>of</strong> tiatcr table fluctustbas for pre<br />

and post monsoon periods<br />

hater table depth data to delineate high water table<br />

areas . Cropping pet tern, cropkning cslander and water<br />

14<br />

requirements for summer and winter crops.<br />

15 . :,orking out zvera- value <strong>of</strong> specific yield <strong>of</strong> the<br />

formations, either by pump tests or empirically.<br />

6. TJXH1vICk.L CRITl3RI.A FOF GROTD ?dUKE PLZ./L".JJCI:<br />

C0PîJT;RTIDN.<br />

Technical criteria adopted to work out ground<br />

water balance is given as under:-<br />

6.1 Rechars oroni R&infall<br />

Unconfined %quifers get recharwd from local<br />

rainfall. Based on the sQiilles ccnducted in the Ganges &sin<br />

for period 1937-78 to 19Sû-51 a relationship vas evolved to<br />

WO& out net penetmtim <strong>of</strong> rain water to water teble in<br />

alluvial areas<br />

2/5<br />

Rp t 2*O(R-15)'<br />

'Ihere R average annual rainfall Zn inches.<br />

Rp = annial rainfall penetration to water<br />

table in inches.<br />

ïhis relationship applies to areas having<br />

annual rainfall in excess <strong>of</strong> 15".<br />

6.2 beemge from Canals<br />

seepage loss values from u<strong>nl</strong>ined canals based on


373<br />

experimental data are given below. These figures are inclusive<br />

<strong>of</strong> evaporation losses which form o<strong>nl</strong>y a small proportion:-<br />

i) In the :tete <strong>of</strong> Uttar Brzdech-ïndia it is about 8 Cs.<br />

(GU ft/:iec.jfor ordínary clay loam to about 16 cs.for<br />

sandy loam Per million 5;q.feet <strong>of</strong> wcttad parameter.<br />

i,verage king 10 CS ./k.qt .<br />

li> In the Wz1iarashtr.a State-India these sire calculated at<br />

15 Cs./M sat. for discharse upto 250 CS. anil lO.&s!./M%ft<br />

for hiisher discliarzes.<br />

iïi) In FunJab and Haryana state -India =lue, <strong>of</strong> ..eepa


374<br />

alopes <strong>of</strong> the $round water table in the $lains the quantity <strong>of</strong><br />

subterrainem flow g ~tthg $.h and out <strong>of</strong> project are- is<br />

negligible 2s conipared to vertical recharge from rainfall,<br />

cmal PB~PU~L, return flow from irrigated fields etc. Henthis<br />

item has been omitted from computatiuns on both sides<br />

<strong>of</strong> hydraulic equation amialy due to' the non-availability <strong>of</strong><br />

adequate data.<br />

6 r? Ground wqtrr loss due to non bene3tçkl<br />

etrapo-tranepiration in water logged areas.<br />

EvagotreEspiration losses ars related to depth<br />

<strong>of</strong> water table froin th@ ground surface 81.14 vegetatkq cover.<br />

Airing July to October period when recharge to grow-d water<br />

reservoir is maximum Qe to rainfall and high supplies in rivers<br />

and canals etc. water table rises towards ground surface. In<br />

the riverain md water Jogged tracts, the depth <strong>of</strong> Found water<br />

veries between zero to 6 feet below lanu surface. in 1963,<br />

'J.S. B.RI conducted experiments/ obervctiuns for salvaging<br />

ground water t6i?g evawqsteü from ground LI' transpired non<br />

beqeficially by vegetation In the central part <strong>of</strong> san-his Valley,<br />

Ceil'tral Coloredo ( U.S+) t Graphs were plotted, correlating E.T.<br />

loss to ground water depth E.T.loss th negligible if water table<br />

is lowered to 12.5k<br />

Persistance <strong>of</strong> higher water table 5r water<br />

logged amas indicates that recharge to ground waster is equivalent<br />

to the E.T.loss or may be $ven morg. Pending detailed studies,<br />

it would be reasonably pod planning to draft grouad water<br />

<strong>with</strong>in the limits <strong>of</strong> water est9rnated to be lost through evapotranspirat<br />

ion.<br />

6 08 Draft froor the exhthg state (deep) and<br />

Arivate (shallow ) tubewells.<br />

The State tubewells ( 1.5 to 2r0 CS. cawcity)<br />

ere planaad to operate at 22 hours a day for 240 days in a y6arr<br />

Henœ dmal draft from state Tubewells varies frm 660 acre ft.<br />

to 880 acre ft. Shallow tubeiwslls (0.2 to 0.8 cs.cepacity) for<br />

abut 800 to i000 hours per year. Draft fra these wells cm b<br />

taken as 15 acre ft, to acre e, per well per year. por wells<br />

driven by animal power dralpt Is taken W 5 acre ft. while for<br />

drinking sugply wells in villages the draft 1 acre ft. has been<br />

adopted per mimam.<br />

6s 9 SpaqIpg q$ shallo~ tubewells, '<br />

Closdl spaaed tubewells muse mutual hydlaulic<br />

interfpence due to ovQr fapphg 09 their ocrnes <strong>of</strong> depression.<br />

In ~ thi&y populated &we&9 <strong>of</strong> the IndolGangetic Plph@ Qr<br />

abry Basin ?mm ho&&hgs are very small < abcut 10 to 15 acres<br />

per head ) . The tuWells aro <strong>of</strong> 0.2 to 0.3 cubic feet/ $eco<br />

dfaeharge and 100'-190' deep. These wells do not run more than<br />

10 to 15% <strong>of</strong> the time in a year. After tests results minimm<br />

epacinp <strong>of</strong> such wells has been kept at abut 600 feet 6


375<br />

6.10 Grotmd WatEr Ealmce<br />

Computing the item <strong>of</strong> ,annual recharge and<br />

discharge as por criteria discussed above if a balance is<br />

struck 5 first estimation <strong>of</strong> the balance <strong>of</strong> T2cbyze potcntntlal<br />

in a Project crea beccmes laown for planning further explcit-ticq.<br />

A reasotinble factor <strong>of</strong> safety can be adopted to plen exploitetim<br />

<strong>of</strong> the comnuted ground water ImiBncs which tcakes care <strong>of</strong> the<br />

saps in the available data or the appraisal approech. The fa.ctor<br />

will depend on area conditicns.<br />

7. GHOTjND b~dkii BLLA.?JiCG IN B145T DCAB 'I'R.'ICT<br />

7.1 Bict Doab is a triangu1a.r part <strong>of</strong> the Punjab<br />

StF.te ( India ) enclosed the rivers Sutlej and the Beas on<br />

t?:c ciäes and aivalu hi1 9 s (lover iïj.ml8yan ranyes) on thc<br />

third side. Three districts <strong>of</strong> the state ncmely Jullundur ,<br />

doshiarmr and Kapurthala are located in th;c tract .<br />

7.2 The area <strong>of</strong> the trect is 9900 Fq. Kilometers<br />

mostly mugrising <strong>of</strong> alluvial plpin except the 8 miles wide<br />

belt <strong>of</strong> Shivalik Hills on the XGrth-eestorri ,?id&. depth <strong>of</strong><br />

alluvium in the plain as revealed by seismic surveys is thousends<br />

feet.<br />

7.3 Gmeral water table is abut 20 to c% feet in the<br />

plains. Avcrzge ?.nnual rainfall in hilly region 1s 1200 mms<br />

tJhils in the plains it varies between 914 mm tc 635 mm. 80% <strong>of</strong><br />

the rainfpll occurs during the monsoon period.<br />

7 04 The soils are fertile and the ??SB 112s Copious<br />

gromnd water supplies. There are abcut 0.2 million irriqatiw<br />

tubwells clnà dugwells in the area. Quality OP grmnd water is<br />

qood for cultivation.<br />

7.5 The tract is also irri,gated tl-iraigh Bist mab<br />

eanal which draws its supplies fYom the barrage on tho river<br />

Lutkj at Rupar. Abut 1.25 M.A.F. <strong>of</strong> water is used annually<br />

for cultiva.i;ion. The net work <strong>of</strong> canal system Measures 7,54.28<br />

Lilcirieters out <strong>of</strong> which 34.5i) Km. is lined. mcthcr feature<br />

<strong>of</strong> tile; area is ;iutiierous hilly utrea=( clioec) which descend<br />

from the :,hivz~lik hills and fiord o<strong>nl</strong>y &i.ing monsoon period<br />

w ith flashy uischw .;es<br />

7.6 The recharge and discharge computntions ta<br />

work out the ground Kater bzlance in the m ea dis+;rictwise are<br />

talxilated 88 per stateuats i & 11. .A safety factcr 0.60 has<br />

been cùopted to the computed figures to arrive a.t the exploitable<br />

grourd water stential. The water ttible f1uctuatir:ns end the<br />

rainfall hi the area 8i-e being closely observed to watch the<br />

strezses m d strains covered by ground water exb>lcitat*on on<br />

the shallow unconfined aquifers under water table conCAtions<br />

8. ca4crusCáu<br />

8.1, Demographic trends indicete that the Lndia's<br />

populatun is likely to inn,ease to 700 millions by the end <strong>of</strong><br />

the present dea&. On the kcis <strong>of</strong> the piiojecte8 growth rate


376<br />

cf 1.45 per tbausand per a<strong>nl</strong>iuam during 1981-85 the population<br />

wmld rise to 300.millions in the year ZOO0 A.D. i.e. about<br />

S5$ increase over the 1371 population. Keeping in view the<br />

expected improvement in the standard <strong>of</strong> living <strong>of</strong> the people<br />

during the intervening period, the food and fibre requirements<br />

will increase by abwt 100% <strong>of</strong> 1371 production. Suck an<br />

enormous increase in the production is possible through intensive<br />

agriculture and bringing additional areas under irrigation by<br />

optima utilization <strong>of</strong> the water resources (Surface and qround )<br />

8.2 Tnis will eventually result in intensified drawels<br />

<strong>of</strong> ground waters from shallow as well as deep aquifers. Ground<br />

water resource though it gets replenished annually, is not an<br />

inexhaustible resource. Ecological respansi bility mkes it<br />

incumbent on the planners <strong>of</strong> ground water development projects<br />

that this precious resource: is not exhausted due to over<br />

exploitatbn arid is so utilized that it also remakis ava.ilable<br />

ïor the yencrstion to come. Therefore aremise potential <strong>of</strong><br />

ground wa.ter anà its safe yield both from shallower and deep<br />

aquifers neads to te assessed as accurately as possible to<br />

prepa1.e realistic exploitat ion plms and schemes. This aspect<br />

has ben duly recognized and separate state level orgpnizations<br />

cmpï-is ing <strong>of</strong> hydrologists, hydrometeorologist, geologist,<br />

agronomist, geoph scist and drilling engineers have been set up<br />

to carry out deta s led investigationa. These detailed studies<br />

will however take time.<br />

However to maIntaln the continuity <strong>of</strong><br />

N grow more food 1) compaign exploitation <strong>of</strong> ground water<br />

recharge &lance may be planned on the %sis <strong>of</strong> Safe Yield worked<br />

out <strong>with</strong> the approximations and applicatmn <strong>of</strong> safety factors<br />

suited to each project area.<br />

1.<br />

mmmv CES<br />

Report <strong>of</strong> the Irrigation Commissian, 1972, Volume-I,<br />

Ministry <strong>of</strong> Irrigation and irower, New Delhi.<br />

2.<br />

3.<br />

Krishnm, M.S.,m Geology <strong>of</strong> India and Emma<br />

Tolm, C.J.,l) Ground<strong>Water</strong> " .<br />

4, Ehattacharya, R.P. 1) Ground <strong>Water</strong> supplice, depletion <strong>of</strong><br />

water table and penetration <strong>of</strong> rain water to ground water<br />

table in Western Uttar Pradesh ( India )IIo<br />

5. U.S.G.S. <strong>Water</strong>-supply paper, 1608-G Anplycis <strong>of</strong> Aquîfcr<br />

Tests in the Punjab Region <strong>of</strong> West Pakistan<br />

6. tJ.s.';.S. :uater supkly papc'r, 1608-G '1 Ground <strong>Water</strong><br />

Hydrciogy <strong>of</strong> the Punjab, West Pakistan 1~1th '=mphasiS<br />

<strong>of</strong> ?rcblems caused by Canal Irriggtion II .


7.<br />

8.<br />

9.<br />

10 o<br />

11 b"<br />

12<br />

33.<br />

14<br />

15 o.<br />

377


37 8<br />

ITEMS<br />

-<br />

ISWlhRpI<br />

-<br />

1.410<br />

.7ss<br />

b.30<br />

-<br />

D.310<br />

0.oy<br />

0.27<br />

0.06<br />

&IO<<br />

o .ai<br />

ODs'<br />

o .41<br />

o .Ia!<br />

STATEMENT I


A DRAFT<br />

CROSS DRAF T(1+2+:<br />

1 41<br />

II 9<br />

6SC<br />

7 S2<br />

96<br />

2s<br />

. Il<br />

379<br />

0.309<br />

o. 132


380<br />

S E\SM\C L \ NE’S<br />

RE F LE CTI ON<br />

REFRACTI ON<br />

h<br />

8-<br />

TEST WELL LOCATION 8<br />

CONTOUR INTERVAL 02KM<br />

DATUM M.s L<br />

hLLUV\kL PU\H5 O<br />

?LRYLbRY (SM\\uhL\KS)


MAP 15<br />

381


ABSTRACT<br />

IMPROVED TECHNIQUES FOR WATER RESOURCE SYSTEMS DESIGN<br />

J R SEXTON<br />

D G JAMIESON<br />

WATER RESOURCES BOARD, READING, ENGLAND<br />

Flow data inadequacy can take different forms. One extreme is<br />

the complete lack <strong>of</strong> any information but the more usual case is<br />

insufficient length <strong>of</strong> record since very long sequences <strong>of</strong> flow<br />

data are required to evaluate the yield and reliability <strong>of</strong> water-<br />

-resource systems <strong>with</strong> confidence. Using traditional concepts <strong>of</strong><br />

failure and reliability, all water-resource systems are being<br />

designed on inadequate data <strong>with</strong> o<strong>nl</strong>y the degree <strong>of</strong> inadequay<br />

varying between schemes, The use <strong>of</strong> simulation as a design technique<br />

has necessitated a more rigorous definition <strong>of</strong> reliability which<br />

accepts the lack <strong>of</strong> data yet maintains a means <strong>of</strong> comparing the<br />

reliability <strong>of</strong> different schemes both in terms <strong>of</strong> frequency and<br />

magnitude <strong>of</strong> failure, A new definition <strong>of</strong> reservoir reliability<br />

has been used for the hydrological design <strong>of</strong> the Wash Estuary<br />

Storage, a proposed series <strong>of</strong> pumped-storage reservoirs in south-east<br />

England.<br />

RESUMEN<br />

La insuficiencia de datos de flujo puede tomar formas distin-<br />

tas. Ocurre el caso extremo de la falta total de información, pero<br />

lo más usual es la duración insuficiente de registro puesto que se<br />

necesitan cantidades inordenadas de datos de flujo para que se eva-<br />

IÚen confianza la eficacia de sistemas de recursos hidráulicos. Em-<br />

pleando conceptos tradicionales del fracaso y de la eficacia, todas<br />

las instalaciones de recursos de agua se han concebido con datos de<br />

flujo inadecuados, con grado de insuficiencia como sola variación<br />

entre ellas. El uso de simulacibn como modo de diseñar sistemas com-<br />

plejos de recursos de agua exige definición más riguroso de eficacia<br />

que mientras acepta la falta de datos de flujo mantiene sin embargo<br />

un medio de comparar la eficacia de un proyeqto con otro y en térmi-<br />

nos de su frecuencia de ella y en grado de su fracaso. Un concepto<br />

de esos -la frecuencia de poTcentaje cumulativo- se ha empleado en<br />

el disefio hidrológico Ifel depósito del estuario del Washff, serie de<br />

depÖs*itos de reserva a bomba en el sudeste de Inglaterra,


384<br />

INTRODUCTION<br />

The analysis and study <strong>of</strong> water resource systems can be conveniently<br />

subdivided into three stages, planning, design and operational.<br />

Each stage has its own specific flow data requirements and what maJr be<br />

adequate for one stage could well be inadequate for another.<br />

planning stage, a large number <strong>of</strong> possible combin&t&ons <strong>of</strong> sources are<br />

evaluated but not in detail: the requirement for hydrological data is<br />

minbal, since the yields <strong>of</strong> individual sources need o<strong>nl</strong>y be determined<br />

approximately. The most promising combinations <strong>of</strong> sources are subsequently<br />

examined in considerably more detail at the design stage.<br />

This stage is concerned <strong>with</strong> aspects such as frequency, probability and<br />

reliability all <strong>of</strong> which make considerable demands in terms <strong>of</strong> data<br />

quantity and quality. The requirement is for long period <strong>of</strong> flow<br />

records which may have a time increment <strong>of</strong> a day or more.<br />

At the<br />

In the oper-<br />

ational staze, the data requirement emphasis changes from long-term<br />

flow records to shorter but more detailed flow records perhaps even on<br />

an hourly basis.<br />

This paper is concerned <strong>with</strong> the relationship between the assessment<br />

<strong>of</strong> reliability, the definition <strong>of</strong> failure and flow data inadequacy<br />

at the design stage. Flow data can be inadequate in many ways: it may<br />

be that there is no data or Rot enough data, or the wrong data has been<br />

collected. Data can be <strong>of</strong> inadequate quality or have too coarse a time<br />

increment between successive values. To sunmiarise, inadequate data is<br />

an occupational hazard to all those involved in the hydrological design<br />

<strong>of</strong> water-resource systems. However, <strong>with</strong> traditional concepts <strong>of</strong><br />

reliability and what constitutes a failure, the problem <strong>of</strong> flow data<br />

inadequacy will remain for a very long time.<br />

In the planning <strong>of</strong> water resources for England and Wales, many<br />

diverse types <strong>of</strong> sources such as pumped-storage reservoirs, multipurpose<br />

reservoirs, rivers, aquifers and estuarial storage are being<br />

considered. &ch proposed source is n? longer considered in isolation<br />

hut as part <strong>of</strong> a much larger water-resource system.<br />

stances the individual yield <strong>of</strong> the proposed source loses importance<br />

since it is the yield <strong>of</strong> the system as a whole that requires evaluation.<br />

The increase in the scale <strong>of</strong> the problem caused by consideration<br />

<strong>of</strong> a water-resource system as a whole has outdated many <strong>of</strong> the traditional<br />

techniques for analysing the performance <strong>of</strong> a resernoir: some <strong>of</strong><br />

the implicit assumptions have been made invalie by the complexity <strong>of</strong> .<br />

modern water-resource systems, other assumptions have never been valid.<br />

mHOD OF ANALYSIS<br />

In these circum-<br />

owing to the complexity <strong>of</strong> the water-resource systems currently<br />

envisaged and the lack <strong>of</strong> theoretical techniques cspable <strong>of</strong> analysing<br />

such systems, simulation is considered to be the o<strong>nl</strong>y viable method <strong>of</strong><br />

analysis. A simulation model <strong>of</strong> a proposed water-resource system can be<br />

constructed by joining appropriate component models <strong>of</strong> particular types


385<br />

<strong>of</strong> reservoirs iri an <strong>of</strong>der corresponding to the physical system.<br />

Examples are given in Fi$ures 1 and 2 <strong>of</strong> component models for a pumpedstorqe<br />

reservoir and a pumped aquifer. It should be appreciated that<br />

not all the links indicated in these models need be included since in<br />

the specific application some can be set to zero.<br />

The simulation is structured in a general form <strong>with</strong> physical constraints<br />

such as the capacity <strong>of</strong> the reservoir, maximum pumping capacity,<br />

minimum residual flows in rivers etc treated as input vaxiables. The<br />

model can then be used to find the frequency <strong>with</strong> which the system fails<br />

to meet the specified demands and the sensitivity to changes in any <strong>of</strong><br />

these or other input variables in terms <strong>of</strong> frequency <strong>of</strong> failing to meet<br />

specified iieiads. The relative importarice <strong>of</strong> each data ita! xc thus<br />

be determined and the effect <strong>of</strong> data inadequxy can be qusntirird i?i<br />

terms <strong>of</strong> confidence limits on the resulting reliable yield. LÅoFeovcr,<br />

since the w a ~ in which a water-resource system is managed will dfect<br />

the reliability <strong>of</strong> the system, different operating rules can be compared<br />

and evaluated.<br />

Since the design <strong>of</strong> the system is concerned <strong>with</strong> rare events,<br />

large amounts <strong>of</strong> historic or synthetic flow data have to be routed<br />

through the models. Consequently the component models have to be relatively<br />

simple to keep camputing costs down and therefore they are essentially<br />

accounting procedures <strong>with</strong> lags and attenuation built in.<br />

Given adequate data it is possible to include both conservative and<br />

degradable water quality parameters in the model. The build up <strong>of</strong><br />

pollutants in various parts <strong>of</strong> the system can be monitored in the seme<br />

w a ~ as the quantity <strong>of</strong> water and the performance <strong>of</strong> the system can be<br />

depicted as histograms <strong>of</strong> both quantity and quality <strong>of</strong> water (Figure 3).<br />

In this WEIJ the interactions between water quality and quantity can be<br />

investigated.<br />

BPPLICBTION<br />

The techniques described [i) are being used in the hydrological<br />

evaluation <strong>of</strong> the Wash Storage, a pumped-reservoir scheme in the estusry<br />

<strong>of</strong> the Great Ouse, a river in south-east England (Figure 4). The preliminary<br />

estimate for the total capital cost <strong>of</strong> the scñeme is<br />

2140 O00 O00 at 1971 prices. The work outlined here forms a small part<br />

<strong>of</strong> the e2 900 O00 feasibility study though much <strong>of</strong> it will have application<br />

even if estuary storage is rejected. A schematic diagram <strong>of</strong> the<br />

whole system is given in Figue 5 <strong>with</strong> symbols defined in Table 1. The<br />

complexity <strong>of</strong> the complete system has necessitated the division into<br />

three interlinked subsystem namely, the Welland and Nene, the Great<br />

Ouse and the Wash Storage. The first two subsystems define the potential<br />

input to the third.


3 86<br />

The Welland and Nene subsystem which comprise8 the right hand portion<br />

<strong>of</strong> Figure 5 is a model <strong>of</strong> a pumped-storage reservoir, %pingham (now under<br />

construction), in conjunction <strong>with</strong> a confined aquifer, the Lincolnshire<br />

Limestone.<br />

<strong>Water</strong> will be pumped into lbpingham from both the River<br />

Welland and River Bene when the flows axe in excess <strong>of</strong> specified minimum<br />

values. Rnpingham can be used for a variety <strong>of</strong> purposes including meeting<br />

direct-supply requirements as well as regulating the lower Welland to<br />

enable it to support downstream abstraction. Some <strong>of</strong> the water from<br />

hpinghm will be returned to the Nene aa effluent, upstream <strong>of</strong> the<br />

intake pumps for Ehpingham.<br />

<strong>Water</strong> from Rnpinghem will also be used to<br />

maintain the flow in the River Glen. The Lincolnshire Limestone is used<br />

mai<strong>nl</strong>y for direct-supply in conjunction <strong>with</strong> abstractions from the Welland<br />

but any spillage from the aquifer helps to maintain the flow in the Glen.<br />

The possibility <strong>of</strong> artificially recharging the aquifer from the lower<br />

Velland has been included.<br />

The Great Ouse subsystem comprises the left hand and upper centre<br />

portions <strong>of</strong> Figure 5. The model is a simulation <strong>of</strong> an existing pumpedstorage<br />

reservoir, Grafham <strong>Water</strong>, in association <strong>with</strong> an unconfined<br />

aquifer, the Great Ouse Chalk. Grafham <strong>Water</strong> is replenished by pumping<br />

water from two points on the Bedford Ouse, a tributary <strong>of</strong> the Great Ouse.<br />

Agairi, there is an element <strong>of</strong> recirculation since some <strong>of</strong> the water<br />

supplied direct to a demand centre is returned as effluent upstream <strong>of</strong><br />

the reservoir's intake pumps. The Great Ouse Chalk aquifer has been<br />

modelled as six interlinked unconfined aquifers. In a scheme shortly to<br />

be promoted all the sub-aquifers are to be used for direct-supply and<br />

river regulation. Obviously pumping water from an unconfined aquifer<br />

will affect the natural outflow from the aquifer to the tributary.<br />

Poreover, if the aquifer is drawn down, the possibility <strong>of</strong> seepage<br />

through the bed <strong>of</strong> the tributary exists. Both these effects have been<br />

incorporated in the model.<br />

The lower centre portion <strong>of</strong> Figure 5 is a schematic representation<br />

<strong>of</strong> the proposed first two stages <strong>of</strong> the Wash Storage which comprises the<br />

third subsystem. <strong>Water</strong> could be pumped from both the Great Ouse and the<br />

lower Nene.<br />

The possibility <strong>of</strong> having sea-water recirculation schemes<br />

on both the Great Ouse and lower Nene has been included. This enables the<br />

low-flow constraint at the tidal limit <strong>of</strong> each river to be zero.<br />

Sgnthetic flow data generation techniques [27 have been used for<br />

this invastigation. Currently the historic flow record on the River<br />

Nene has been used as the master series and all other subsidiary flow<br />

sequences have been obtained by regreseion on the logarithmic values <strong>of</strong><br />

flow. hproved multisite daily data generation techniques are being<br />

developed under contract o] and will be used when available. Prior to<br />

being used as the master series, the Nene record was corrected for all<br />

upstream abstractions and effluent returns to obtain the 'natural' flow<br />

series.


INADEQUACY OF FLOiV DATA<br />

387<br />

A simulation model such as that used in the hydro1oglc.d design<br />

<strong>of</strong> the T.3h Stor2.p rcyui.:>e., a coneiderable amount <strong>of</strong> information as<br />

input data. It is inevitable that some <strong>of</strong> this data will be inade-<br />

quate in one form or another. The usual case is where some inîorma-<br />

tion is available but in insufficient quantity to estimate input<br />

paxmeters reliably, m d for some parts <strong>of</strong> the system there is a<br />

complete absence o€ data. To amplify these problems specific ex-<br />

amples which have been encountered in the bdrological desi,m <strong>of</strong> the<br />

Wash Storage axe given together <strong>with</strong> the way in which they have been<br />

partly overcone.<br />

INADESUACY DUE TO HU DATA<br />

in modelling an unconfined aquifer such as the Great Ouse Chalk<br />

it is evident that when punping the aquifer for either water-supply<br />

or river regulation, the natural outflow from the aquifer to the<br />

river will decrease. However, pumping the aquifer will have no<br />

effect on the run-<strong>of</strong>f from the non-aquifer portion <strong>of</strong> the catchment.<br />

It is the combination <strong>of</strong> these two flow components that is measured<br />

by the downstream gauging station. In short, if the aquifer is to<br />

be developed by pumping, it is neaessaxy to have two inputs, the<br />

recharge to the aquifer and the run-<strong>of</strong>f from the remaining portion<br />

<strong>of</strong> the catchment when o<strong>nl</strong>y one measurement <strong>of</strong> the combined effect is<br />

available. No details on the natural recharge <strong>of</strong> the aquifer were<br />

known.<br />

The aasumption was made that the downstream flow comprised two<br />

flow recimes, a slow response from the aquifer itself and a fast<br />

response from the remainder <strong>of</strong> the catchment. Having separated oyt<br />

the base flow component, the overall 'proportion <strong>of</strong> base flow to<br />

surface flow for the period <strong>of</strong> historic record was ascertained. The<br />

surface flow component alone was cross-correilated <strong>with</strong> the corresponding<br />

historic flow data for the master station on the River Nene. The<br />

cross-correlation was performed on the logarithmic flow values which<br />

gives weighting to the low flows and avoids the difficulty caused by<br />

zero flows. This'relationship was then used to generate the surface<br />

flow component direct. The base flow component could not be treated<br />

in a similar manner since this was a measure <strong>of</strong> the output from the<br />

aquifer rather than the input.<br />

It was assumed that the temporal distribution <strong>of</strong> the surface<br />

flow component was indicative <strong>of</strong> the periods when natural recharge<br />

occurred. Therefore the surface flow component was scaled by the<br />

overall ratio <strong>of</strong> base flow to surface flor and used as input to the


388<br />

recharge process. This data stream was attenuated by an exponential<br />

delay function to simulate porous-media flow prior to adding the<br />

percolate to the water already in storage. The delay induced by this<br />

process was made equal to the observed mean delay between rainfall<br />

ind the resulting maximum well levels.<br />

The aquifer above the threshold constraint defining when channel<br />

loss occurred, was modelled as a single linear storage. Consequently<br />

the natural outflow from the aquifer to the river is proportional to<br />

the mount <strong>of</strong> water in storage, the storage coefficient being derived<br />

from the base flow recession. In this W¿QJ the effect <strong>of</strong> pumping the<br />

aquifer was to reduce the amount <strong>of</strong> water in storage thereby reducing<br />

the natural outflow from the aquifer <strong>with</strong>out interfering <strong>with</strong> the<br />

surf ace flow component.<br />

INADEQUACY DUE TO INJCOIJPLEZ'E MTA<br />

Although a historic flow record was available close to the proposed<br />

abstraction point on the Ely Ouse, it would have been <strong>of</strong> little<br />

use for the hydrological design <strong>of</strong> the Wash Storage even if it had<br />

'been an accurate flow record. The river acts as a source <strong>of</strong> supply to<br />

both industrial and agricultural consumers as well ag a disposal<br />

system for treated effluents. No detailed records have been kept <strong>of</strong><br />

abstractions or returns and consequently the record can not be adjusted<br />

to obtain natural flows. Ideally it would have been fax simpler to<br />

have used the natural flow record at this station and account for the<br />

net changes as time progressed rather than to have to construct a<br />

simulation model <strong>of</strong> the entire river basin. In this specific case,<br />

however, development <strong>of</strong> the chalk aquifer necessitated a simulation <strong>of</strong><br />

the entire basin. Fortunately better quality flow records existed on<br />

ail <strong>of</strong> the important tributaries which were all upstream <strong>of</strong> the.major<br />

industrial and agricultural demands.<br />

INADXQUACY DUX TO INSUFFICIENT DATA<br />

Traditionally the criterion for assessing the reliability <strong>of</strong> a<br />

reservoir system has been the mean recurrence interval between failures.<br />

This concept <strong>of</strong> return period has generally been defined quantitatively<br />

in one <strong>of</strong> two ways, namely, a once in T year event where T is typically<br />

50 or 100 yeam or in terms <strong>of</strong> probability where it is said that there<br />

is a 100 per cent chance <strong>of</strong> failure occurring in any one year. Assum-<br />

T<br />

ing that reservoir failures axe rare events and that the time between<br />

failures has an exponential distribution, these two definitions are


equivalent and the probability <strong>of</strong> m failures <strong>with</strong>in n years is given<br />

by :<br />

-0<br />

phn> = e- Mrn<br />

n!<br />

consequently there is a 37 per cent chance <strong>of</strong> there not being a once<br />

in T year event in any T year period <strong>of</strong> record.<br />

Even in the recent past attempts have been made to isolate low<br />

flow events <strong>with</strong> return periods <strong>of</strong> 50 or 100 years from a short<br />

period <strong>of</strong> historic flow data. The usual lengths <strong>of</strong> these records<br />

typically range from 20 to 50 years. These lengths <strong>of</strong> record axe<br />

totally inadequate for isolating such rare events and consequently<br />

very little codidence can be placed in the results obtained. For<br />

exmple, to be 9% certain that an estimate <strong>of</strong> return period is<br />

<strong>with</strong>in 2 10 years <strong>of</strong> a 50 yeas return period would require 2000<br />

years <strong>of</strong> data and to be 9@ certain that the estimate was <strong>with</strong>in<br />

f 5 years would require no less than 11,000 years <strong>of</strong> data. bioreover,<br />

even to be 9% certain that the return period was in the<br />

r,mge <strong>of</strong> 50 years to 100 years would require 1600 years <strong>of</strong> data.<br />

These data requirements show the absurdity <strong>of</strong> tho present reliability<br />

criterion. It infers that all water-resource systems are<br />

designed on inadequnte data <strong>with</strong> o<strong>nl</strong>y the degree <strong>of</strong> inadequacy<br />

varying between schemes.<br />

Even if a once in T yeas low flow sequence could be isolated,<br />

there is no guarantee that this would produce a once in T year<br />

failure rate in a reservoir system designed to <strong>with</strong>stand such an<br />

event. Shortkves in water supply are not independent events due<br />

to the effect <strong>of</strong> storage. If a reservoir has failed one year and<br />

has not recovered it is more likely to fail in the follovnng ye:=<br />

than if it had been full at the start <strong>of</strong> the year. Consequentlg<br />

reservoir failures come in groups rather than completely random<br />

sequences and an event less severe than a once in T year flow<br />

sequence closely following on a similar loa-flow sequence could<br />

ceuse the system to fail. The occurrence pattern <strong>of</strong> these extreme<br />

low-flow events is therefore as important as their severity and<br />

individual events should not be taken from the historic record and<br />

used in isolation when designing a reservoir system. Unfortunate-<br />

ly the historic flow record provides just one realisation <strong>of</strong> the<br />

occurrence pattern at a given point and the probability <strong>of</strong> the<br />

historic sequence being repeated in the future i3 infinitesimal.<br />

Consequently even if the whole historic record were used and even<br />

if it contained what were considered to be extreme events there is<br />

no guarantee that this would enable a realistic prediction <strong>of</strong> the<br />

reservoir's reliability to be made.<br />

389


390<br />

The difficulty <strong>of</strong> determining 'rare1 events from 'short' data<br />

cannot be overcome. Recently the use <strong>of</strong> synthetic data generation has<br />

alleviated some <strong>of</strong> the problems. The historic flow &ta is used to<br />

estimate the parent population by modelling statistical chaxacteristics<br />

and many synthetic samples can be generated each <strong>of</strong> which is<br />

equally as likely to occur in the future as the historic record was to<br />

have occurred in the past. In this way vaxious occurrence patterns<br />

may be obtained and long perio&<strong>of</strong> synthetic data can be ?%gzìxdd as<br />

producing a larger sample from the infinite population <strong>of</strong> possible<br />

flows than the historic record affords. With the larger sample there<br />

is a. correspondingly increased chance <strong>of</strong> the record containing (rare1<br />

flow events providing a 'true' model has been used. However, the<br />

synthetic data can o<strong>nl</strong>y be as representative <strong>of</strong> the parent population<br />

as the historic data. If an untypical historic record has been used<br />

or there is insufficient data for the reliable estimation <strong>of</strong> node1<br />

parameters then little confidence can be placed on the generated<br />

sequences and in particulm on inferences about extremes <strong>with</strong>in the<br />

data.<br />

in looking for a suitable design criterion we must accept the<br />

lack <strong>of</strong> data and use a criterion that can be estimated <strong>with</strong> more<br />

confidence from the same &ta. Rather than defining failure as a<br />

reservoir or aquifer becoming empty, an event which would understandably<br />

be accepted o<strong>nl</strong>y raxely, the introduction OP rationing <strong>of</strong><br />

water supplies can be used as the definition <strong>of</strong> failure. This would<br />

occw when o<strong>nl</strong>y a certain amount <strong>of</strong> water remained in store and would<br />

obviously be tolerated more frequently. In practice a reservoir<br />

would not be used at normal demand until it was empty. Instead a<br />

level <strong>of</strong> storage would be reached below,which the supply would be<br />

rationed. If rationing could be accepted, say, every twenty year3<br />

then this would be a more frequent event and one has a correspondingly<br />

increased confidence in the design.<br />

Another shortcoming <strong>of</strong> the return period criterion is that it<br />

gives no indication <strong>of</strong> the magnitude <strong>of</strong> the shortage. For example<br />

in figure 6 the reservoir failed o<strong>nl</strong>y once in the first case whereas<br />

in the second case it failed twice. Therefore although the first case<br />

is clearly the more severe condition the concept <strong>of</strong> return period<br />

indicates the second is worse as it has twice as many shortages.<br />

This is o<strong>nl</strong>y.to illustrate a point but in practice reservoir failures<br />

do group together which poses the problem <strong>of</strong> deciding whether such<br />

a series should be consideyed as a single failure or a number <strong>of</strong><br />

individual failures. Therefore return period is not ideally suited<br />

to describe the pattern in which reservoir shortages occur. An alternative<br />

criterion i~ required which must be a measure <strong>of</strong> both the<br />

frequency and magnitude <strong>of</strong> failures. It must be flexible enough to<br />

allow for a variable definition <strong>of</strong> failure (as the introduction <strong>of</strong><br />

rationing is somewhat subjective) and it must be simple to calculate.


3 91<br />

The concept <strong>of</strong> cumulative percentage frequency (CPF) <strong>of</strong> a<br />

.specified failure level being reached meets these requirements.<br />

CPF measures the percentage <strong>of</strong> time that the reservoir is at or<br />

below a spec.ified storage. It will not however differentiate<br />

between sw one &y <strong>of</strong> failure every year or a one hundred day<br />

failure every hundred years. Fibwe 6 shoirs that the first case<br />

would have a CPF <strong>of</strong> and the second 100 (x + y1 which<br />

V V<br />

'correctly assigns the less severe shortage to the latter.<br />

The CPF value for any reservoir state can easily be obteined<br />

from the storage histopans already referred to (Figure 3). By<br />

rerunning the model <strong>with</strong> different demands a graph showing the<br />

CPF <strong>of</strong> vmious storage levels for different demands can be con-<br />

structed (Fibwe 7). Given a reservoir level at which rationing<br />

would be introduced the relationship between quantity <strong>of</strong> water<br />

and reliability can be obtained. In this way the effect <strong>of</strong> dif-<br />

ferent policies on reliability can be easily determined in toms<br />

<strong>of</strong> yield and the definition <strong>of</strong> failure does not need to be pre-<br />

judged.<br />

CONCLUSION<br />

Hydrological design criteria are based on rare events and<br />

there will always be some degree <strong>of</strong> inadequacy in flow data.<br />

Synthetic flow àata is o<strong>nl</strong>y a partial solution because the<br />

techniques are dependent upon the assumption that the historic<br />

sample is representative <strong>of</strong> the infinite popultxtion <strong>of</strong> flows.<br />

Even then, the historic data will o<strong>nl</strong>y contain limited infoma-<br />

tion on long-term periodicities and persistencics which are<br />

important when examining rare events.'<br />

Where no flow information is available there seems to be<br />

little alternative to improvisation. This inay take the form <strong>of</strong><br />

transposition <strong>of</strong> data, scaling flow data or estiinating data<br />

indirectly as in the case illustrated. Any improvisation should<br />

always be treated <strong>with</strong> suspicion and attempts made to verify it<br />

if possible, Failing this, simulation can be used, at a cost,<br />

to ascertain the sensitivity <strong>of</strong> the system's performance to this<br />

input. If the outcome is insensitive to that specific input there<br />

is little cause for concern. If on the other hand the outcome is<br />

sensitive to that input,at least it shows where the àata collection<br />

effort should be concentrated.<br />

Another way <strong>of</strong> improving the confidence in the prediction <strong>of</strong><br />

reliability, given a limited amount <strong>of</strong> flow data, is to choose a<br />

better design criterion by changing the definition <strong>of</strong> failure.


392<br />

Hence the proposal is made that the introduction <strong>of</strong> rationing should<br />

be used as the definition <strong>of</strong> failure since this would be tolerated<br />

more frequently than the complete emptyiw <strong>of</strong> the reservoir. Nore-<br />

over, by changing the concept <strong>of</strong> reliability to one which is both a<br />

measuce <strong>of</strong> frequency and magnitude <strong>of</strong> failure rather than just the<br />

frequency <strong>of</strong> failure enables two schemes to be compared objectively<br />

even :?hen based upon a small amount <strong>of</strong> flow data. Thus the cam-<br />

bination <strong>of</strong> synthetic flow data generation, introduction Qf ration-<br />

ing au the definition <strong>of</strong> failure and cumulativa percentage frequency<br />

as a masure <strong>of</strong> reliability helps to overcorce the problem <strong>of</strong><br />

inadequate flow data.<br />

ACiO-f?LEIlc~<br />

The authors thank their Director, Sir Norman Bowtree, for<br />

permission to publish this paper in which the views expressed are<br />

those <strong>of</strong> the authors and not necessarily those <strong>of</strong> the Hater <strong>Resources</strong><br />

Board.<br />

1. Jamieson, D.G., Radford, P.J. and Sexton, J.R. (1973).<br />

The Hydrological design <strong>of</strong> water-resource systems.<br />

<strong>Water</strong> <strong>Resources</strong> Boosd. (To be published)<br />

2. Bloomer, R.J.G.B. and Sexton, J.R. (1972). The<br />

generation <strong>of</strong> synthetic river flow data. <strong>Water</strong> Resouroes<br />

Boad publication No. 15.<br />

3. Weiss, G. (1973). Shot noise models for synthetic<br />

generation <strong>of</strong> multisite àaily streamflow data. Symposium<br />

on Desi,v <strong>of</strong> <strong>Water</strong> Resouxces Project <strong>with</strong> <strong>Inadequate</strong> Data,<br />

Uadrid.


TâBLE 1<br />

LIST Q SYNBOLS ASSOCIATZD WITH FIGURE 5<br />

D hand centre<br />

E Effluent retumi<br />

R Naturd recharge<br />

AR Artificial recharge<br />

S Seepage or spill-<br />

I Natural inflow<br />

L "ranslational delay<br />

P Precipitation<br />

V Evaporation<br />

t b P<br />

tc- AtiPinimum-flow constraint<br />

3 93


394<br />

a<br />

II minimum flow constraint<br />

FLOW<br />

II minimum flow constraint<br />

A<br />

SECOND RIVER FLOW - -<br />

FIGURE 1 Component Model <strong>of</strong> a Pumped-Storage Reservoir<br />

FIGURE 2 Component Model <strong>of</strong> a Pumped Aquifer


3 95<br />

NUMBER OF DAYS RESERVOIR AT THAT STORAGE<br />

i<br />

W<br />

O<br />

O<br />

t<br />

I I<br />

I I<br />

w<br />

O O 1<br />

4 BOTTOM WATER<br />

O<br />

2<br />

v)<br />

<<br />

v)<br />

-I<br />

rn<br />

3<br />

W<br />

1<br />

4<br />

f Lp<br />

O<br />

6<br />

æ<br />

O<br />

uI<br />

P)<br />

n<br />

a<br />

n<br />

c<br />

n<br />

0<br />

3<br />

o!<br />

- s<br />

n<br />

4<br />

B<br />

3<br />

o<br />

E<br />

2<br />

4<br />

:<br />

al<br />

I<br />

o)<br />

o)<br />

-<br />

3<br />


39t;


w<br />

397


- 30VüOlS üIOhM3S3ü<br />

LL<br />

E<br />

a<br />

a<br />

Q> u<br />

e<br />

O<br />

-<br />

Y<br />

al<br />

f<br />

YI<br />

U<br />

Y E u3<br />

r a l<br />

0-<br />

f e<br />

I<br />

r&<br />

\<br />

\<br />

al<br />

.-<br />

ir .-<br />

3<br />

D e<br />

O<br />

al<br />

.- > i<br />

t<br />

m<br />

c Q<br />

c<br />

al<br />

al<br />

Q<br />

v><br />

m<br />

o *<br />

c<br />

al<br />

3<br />

U<br />

e L<br />

398


I-<br />

3 99


MAXIMUM INFORMATION OBTAINABLE FROM INADEQUATE DESIGN DATA:<br />

FROM MULTïVARIATE TO BAYESIAN METHODS<br />

ABSTRACT<br />

Jean Weber1, Chester C.Kisie12 and Lucien Duckstein2<br />

An overniew is given <strong>of</strong> some theoretical and empirical issues<br />

involved in designing water pesource projects in the face <strong>of</strong> inade-<br />

quate data. The primary focus is on multivariate analysis <strong>of</strong> samples<br />

whose properties are not consistent <strong>with</strong> the assumptions <strong>of</strong> the<br />

analysis, The multivariate models discussed include multiple linear<br />

regression, discriminant functions, canonical correlation, principal<br />

components, and factor and cluster analysis. Each <strong>of</strong> these models<br />

is discussed in terms <strong>of</strong> its assumptions, data requirements and<br />

applications in hydrologic research. The Bayesian approach to para-<br />

meter estimation and decision making is introduced for the purpose<br />

<strong>of</strong> considering both the uncertainty due to inadequate data and<br />

economic losses.<br />

RESUME<br />

Les auteurs exposent queJques ccFsidérations générales, théo-<br />

riques et empiriques, sur 1'élaboratio.i des projets d'am€nagement<br />

des eaux quand on se trouve en prdsence de donnges insuffisantes.<br />

Ils mettent l'accent sur les problèmes que pose l'analyse multiva-<br />

ride lorsque les échantillons qui lui sont soumis ne répondent pas<br />

aux hypotheses de base de cette analyse. Les modèles multivariés<br />

dont il est question comprennent: les régressio?s linéaires, l'ana-<br />

lyse discriminatoire (variable dependante discrete), la corrélation<br />

canonique, les composantes principales, l'analyse factorielle et<br />

l'analyse groypde. Chacun de ces modeles est examiné sous l'angle<br />

de ses hypotheses de base, des données qu'exige sa mise en oeuvre<br />

et de ses applications en recherche hydrologique. L'approche bayé-<br />

sienne de liestirnation das paramètres et de la décìsion, permet<br />

d'introduire a la fois l'incertitude due à l'insuffisance des données<br />

et ses conséquences économiques.<br />

lpr<strong>of</strong>essor, Department <strong>of</strong> Management, University <strong>of</strong> Arizona, Tucson,<br />

Arizona 85721.<br />

2Pr<strong>of</strong>essors, Department <strong>of</strong> Systems and Industrial Engineering and<br />

Department <strong>of</strong> <strong>Hydrology</strong> and <strong>Water</strong> <strong>Resources</strong>, University <strong>of</strong> Arizona,<br />

Tucson, Arizona 85721.


402<br />

1 .O Introduction-<br />

This DaDer considers L.e problem o .-recastinq o hvdroloaic variables for<br />

water resoke projects when the data-are inadequati, thät is, when there is a<br />

mismatch between data and model. This mismatch is considered in terms <strong>of</strong> multivariate<br />

methods <strong>of</strong> data analysis. Mismatch implies a discrepancy between model<br />

structure and structure suggested by the data and/or data inadequacy in relation<br />

to model requirements. Several types <strong>of</strong> data inadequacies are considered in the<br />

context <strong>of</strong> models frequently used in hydrologic research. The discussion is from<br />

two related points <strong>of</strong> view; it considers limitations <strong>of</strong> a model in terms <strong>of</strong> the<br />

assumptions on which it is based and sensitivity <strong>of</strong> the predictions <strong>of</strong> a model to<br />

data inadequacies <strong>of</strong> various types. These considerations are inextricably related<br />

since the more restrictive the assumptions <strong>of</strong> a model are, the more likely<br />

it is that data obtained are inadequate for estimating the parameters <strong>of</strong> the model.<br />

Uncertain input information for the design <strong>of</strong> water resource systems is the<br />

result <strong>of</strong> the inability <strong>of</strong> hydrologists to model large basins in substantial detail<br />

as projected by Freeze (1972) and a result <strong>of</strong> the "curse" <strong>of</strong> small samples in<br />

developing space-time series models and probability density models <strong>of</strong> flow, precipitation,<br />

temperature and evapotranspiration. Problems <strong>of</strong> extending data at a<br />

design site and to ungaged sites are <strong>of</strong> long standing concern.<br />

the implications <strong>of</strong> assumptions in mu1 tivariate statistical methods applied to<br />

these problems is important to subsequent steps <strong>of</strong> coping <strong>with</strong> the consequent<br />

assumptions and <strong>of</strong>fering alternatives and decision strategies.<br />

1.1 Model Building and Its Assumptions<br />

An awareness-<strong>of</strong><br />

When data such as streamflow are obtained, it is almost always for the ulti-<br />

mate purpose <strong>of</strong> designing or operating a structure (bridge opening, dam, drainage<br />

structure); one intermediate step consists <strong>of</strong> predicting or forecasting future<br />

events (floods or droughts) using a model. The sequence <strong>of</strong> events in accumulation<br />

<strong>of</strong> knowledge for predictions can be characterized as follows: some knowledge is<br />

obtained by observations, a preliminary theory or hypothesis (for example, log<br />

normal probability density function (pdf) <strong>of</strong> flow) is formulated on the basis <strong>of</strong><br />

these observations, additional data are obtained perhaps more systematically, the<br />

theory or hy othesis is revised and/or refined (for example, log Pearson type III<br />

pdf <strong>of</strong> flews!, additional data are obtained, and so forth. As this interaction<br />

between theory and data proceeds, the theory becomes more reproducible and per-<br />

haps less general and the data required for its verification or modification also<br />

become increasingly accurate, so that the design process may be started <strong>with</strong>out<br />

having to use large safety factors to compensate for uncertainty.<br />

At some point, after accumulation <strong>of</strong> sufficient supporting data, a theory or<br />

hypothesis is generally accepted and, u<strong>nl</strong>ess subsequent theory and/or obser-<br />

vations strongly indicate otherwise, the theory is used for prediction <strong>of</strong> a design<br />

quantity such as the 50-year flood Q(50). By this time the theory is frequently<br />

referred to as a model. As a theory becomes generally accepted, even tentatively,<br />

the purpose <strong>of</strong> obtaining data gradually shifts; data are used less as a basis for<br />

reformulating theory and more as a basis for estimating the parameters <strong>of</strong> a model<br />

whose form has been determined, at least in most respects. Unfortunately. it is<br />

frequently tempting to accept a theory and corresponding model prematuwly,


especially if the urgency <strong>of</strong> making predictions or forecasts is compelling (for<br />

example, in a decision to be made at once on the building <strong>of</strong> flood control works,<br />

a water supply reservoir, or hydroelectric power dam).<br />

Premature acceptance <strong>of</strong> a model can have very serious consequences, particularly<br />

since the model is likely to be idealized to the point <strong>of</strong> being unrealistic<br />

or to hold o<strong>nl</strong>y under very restricted conditions, such as time invariance <strong>of</strong> a<br />

watershed (Foge1 et al., 1971). Any model is an oversimplification <strong>of</strong> reality.<br />

This is inevitable, because the purpose <strong>of</strong> theory is to simplify reality, which<br />

is enormously complicated, by abstracting from it those elements that explain a<br />

large proportion <strong>of</strong> the observed phenomena. ' <strong>Water</strong>shed models certai<strong>nl</strong>y are in<br />

this cateogry. Acceptance <strong>of</strong> a model thus involves a compromise between realism<br />

(e.g., a distributed model involving all details <strong>of</strong> the water cycle) and simplicity,<br />

represented by a lumped model. In economics and behavioral science, the<br />

predictions <strong>of</strong> a theory or model are said to be appropriate, ceteris paribus,<br />

that is, other things being equal (not varying). Under controlled laboratory<br />

conditions extraneous variation can be minimized; in the real world, it generally<br />

cannot. Thus , in using a rainfall-run<strong>of</strong>f model for forecasting streamflow,<br />

for example, it is important to know how robust the model is to its assumptions,<br />

including the ceteris paribus assumption which, for example, precludes urbani- .<br />

zation. That is, it is important to know whether minor perturbations in the conditions<br />

under which a model is applied have relatively small or relatively large<br />

effects on its predictions. Clearly, if the predictions <strong>of</strong> a watershed model are<br />

sensitive to changes in a variable, this variable should be included in the model.<br />

Unfortunately, a model developed for one set <strong>of</strong> conditions is frequently used<br />

under quite different conditions <strong>with</strong>out consideration <strong>of</strong> the inadequacies <strong>of</strong> the<br />

data obtained under those conditions. A linear rainfall-run<strong>of</strong>f model that has<br />

been shown to yield a correct design <strong>of</strong> a culvert draining 50 km2 cannot be extrapolated<br />

to a 500 km2 watershed. Here the predictions <strong>of</strong> the model may be quite<br />

erroneous.<br />

One <strong>of</strong> the major difficulties in choosing and using models for decisionmaking<br />

in hydrology or other engineering design is the mismatch between available<br />

models and available data. The implications <strong>of</strong> the mismatch are not clearly<br />

understood. Most <strong>of</strong> the analytic derivations <strong>of</strong> the properties <strong>of</strong> deterministic<br />

and statistical models (for example, sampling distributions <strong>of</strong> estimators , tests<br />

<strong>of</strong> significance, standard errors <strong>of</strong> estimates and predictions, and so forth) are<br />

based on assumptions that are almost always violated in applications. These<br />

assumptions include linearity in the parameters <strong>of</strong> the system and <strong>of</strong> estimation<br />

equations, normality <strong>of</strong> population distributions, independent random sampling,<br />

large samples (for applicability <strong>of</strong> asymptotic results) and a variety <strong>of</strong> assumptions<br />

concerning the covariance or correlation structure <strong>of</strong> multivariate observations<br />

and/or their errors. In most applications at least one <strong>of</strong> the assumptions<br />

<strong>of</strong> the model is violated; the relevant concern should thus not be <strong>with</strong><br />

the properties <strong>of</strong> the model when its assumptions are satisfied, but should be<br />

<strong>with</strong> the properties <strong>of</strong> the model when its assumptions are violated in various ways<br />

and to various extents. The research in this area is not nearly sufficient to<br />

provide practical guidelines (Dhrymes et al., 1972).<br />

Specific assumptions and their violations are discussed in the next sections<br />

for several models. In addition to inadequacy <strong>with</strong> respect to these assumptions<br />

data may be inadequate in several more general respects including sample size,<br />

missing observations, measurement errors , secondary variables.<br />

403


404<br />

These types <strong>of</strong> data inadequacy occur, for example, in the method <strong>of</strong> regionalization<br />

used by the U.S. Geological Survey (USGS). Assume that a stream flw characteristic, say the 50-year flood Q(50), is needed at an ungaged site for<br />

design purposes. Regionalization may be used to calculate Q(50) in those cases<br />

for which a data collection network for the region has been in operation for a<br />

certain time. One method <strong>of</strong> regionalization, used by the USGS, relies on re-<br />

gression analysis (Thomas and Benson, 1970).<br />

characteristic Q(50) is regressed upon basin characteristics, such as basin area,<br />

precipitation, channel slope, elevation, forest cover and soil index. Then,<br />

given the basin characteristics <strong>of</strong> the ungaged design site, the regression equat-<br />

ion is used to predict Q(50) for that site.<br />

For most regional data collection networks, many sites have record length <strong>of</strong><br />

the order <strong>of</strong> 20 years or less; small sample bias thus is quite substantial, so<br />

that distributions other than the normal distributions should be used to compute<br />

the logarithm <strong>of</strong> the flow Q(50); see Metler (1972). The basic reason for using a<br />

regional regression is that data are missing in space at the design location and<br />

large scale physically based models <strong>of</strong> combinations <strong>of</strong> river basins are non-exis-<br />

tent to help in augmenting the data. Although calibration curves <strong>of</strong> flow veysus<br />

gage height are periodically recalculated, there are difficulties associated <strong>with</strong><br />

sediment flows and <strong>with</strong> recording <strong>of</strong> flow data. All the variables entering the<br />

regression equation constitute by definition secondary data (primary data is the<br />

flow itself).<br />

2.0 Multivariate Models and Data Inadequacies<br />

The follwing sections concern multivariate models frequently used in<br />

hydrologic research and focus on model limi tations arising from inadequate data.<br />

The multivariate models discussed include multiple regression, discriminant<br />

functions, canonical correlation, principal components ,:and' factor and cluster<br />

analyses. Each <strong>of</strong> these multivariate models, <strong>with</strong> its assumptions, data require-<br />

ments and applications, is discussed in the following sections. Primary refere-<br />

nces on these models are Anderson (1958),'Christ, C1966), Dem ster (1969) Dhr mes<br />

(1970 and 1972), Harmon (1967), Johnston (19631, benta (1971!, Morrison (19671,<br />

Press (1972), Tryon (1970), Zellner (1971).<br />

2.1 Multivariate Linear Regression<br />

First, the desired streamflow<br />

The purpose <strong>of</strong> multivariate linear regression analysis is to obtain an<br />

equation -%-for predicting the value <strong>of</strong> a dependent variable 1 as a linear<br />

function <strong>of</strong> a vector <strong>of</strong> k independent variables &=[Xi ,. . , Xk]. The criterion<br />

for obtaining the vector k=[bi, . , &] is that the sum <strong>of</strong> squared errors<br />

(y-@) - '(Y-Xi) be minimized.<br />

Linëarregression and analysis <strong>of</strong> variance, which can be viewed as a special<br />

case <strong>of</strong> linear regression, are the o<strong>nl</strong>y multivariate models for which there has<br />

been considerable investigation <strong>of</strong> the effects <strong>of</strong> violation <strong>of</strong> the assumptions.<br />

The assumptions. <strong>of</strong> the multivariate linear regression model ~=XB+E can be stated<br />

as follows: E sN(0,~) where c=$I is the covariance matrix <strong>of</strong>the multinomial<br />

(N) population, & Ts non-stocFastTc, and has rank k


405<br />

The number <strong>of</strong> observations is n, so 1 is n x 1, X is n x k, is k x 1 and E is<br />

n x 1. Thus the ässumptions are linearity, normality <strong>of</strong> errors, serial indëpen-<br />

dence <strong>of</strong> errors, nonstochastic independent variables, and an observation matrix<br />

<strong>of</strong> full rank <strong>with</strong> the nunber <strong>of</strong> independent variables less than the number <strong>of</strong><br />

observations.<br />

The assumptions required for estimating a model are generally much weaker<br />

than the assumptions required for inferences concerning the estimates. In<br />

particular, normality assumptions are usually required for inference but not<br />

for estimation (say <strong>of</strong> the 6's). This is the case for multivariate regression.<br />

Since estimates are <strong>of</strong> little use <strong>with</strong>out knowledge <strong>of</strong> their distributional<br />

properties, the assumptions stated for mu1 tivariate linear regression and for<br />

models discussed subsequently are those required for standard tests <strong>of</strong> significance<br />

and confidence intervals.<br />

The effects <strong>of</strong> violating the various assumptions <strong>of</strong> multivariate linear regression<br />

are summarized in Table 1; also included in the table are procedures<br />

for detecting violations <strong>of</strong> assumptions and proposed al ternatives for remedying<br />

detected violations.<br />

2.2 Canoni cal Corre1 ati on<br />

The purpose <strong>of</strong> canonical correlation analysis is to study linear relationships<br />

between two sets <strong>of</strong> variables l'=[Yi ,. . ,Y,] and L'=[XI ,. . ,Xq]. Peck<br />

(1972) uses the analysis to determine whether 12 meteorological parameters (like<br />

vorticity, vertical velocity, wind speed at different elevations and from various<br />

directions, temperature differences, etc.) are sufficient to predict variations<br />

in orographic winter precipitation patterns <strong>with</strong>out the need for storm typing.<br />

Nimnannit (1969) uses the technique to relate spring run<strong>of</strong>f at a set <strong>of</strong> stations<br />

in the target region (where clouds are seeded) to run<strong>of</strong>f at a set <strong>of</strong> stations in<br />

the control region (no seeding); the urpose is to assess the effectiveness <strong>of</strong><br />

weather modification. Torranin (19725 investigates the potential <strong>of</strong> the method<br />

for (1) forecast <strong>of</strong> monthly precipitation <strong>of</strong> three large areas <strong>of</strong> the U.S. west<br />

coast and (2) forecast <strong>of</strong> seasonal snowmelt ruir<strong>of</strong>f for three gaging stations in<br />

the Flathead River Basin in Montana. The applications in hydrology have been<br />

very few in nunber.<br />

The analysis obtains vectors and such that the correlation between &'Yand<br />

b'& given by<br />

a'YX'b<br />

. ---<br />

r =<br />

Ja'Y 'Y a b 'X 'Xb<br />

------<br />

is maximized, subject to the normalizing conditions C'L'Y~ = 1 = d'&'Xb.<br />

Subsequent vectors are obtained such that for each successive vector %e canonical<br />

correlation is maximized subject to normalizing conditions and the condition <strong>of</strong><br />

independence <strong>with</strong> respect to previous vectors.<br />

The number <strong>of</strong> canonical correlations between r=[Yl,. . .,Y,] and X'=[Xi,. . ,Xq]<br />

is min !p.q), although in practice usually o<strong>nl</strong>y the first few canonic3 correlates<br />

are <strong>of</strong> interest. For the special case when either or is scalar, that is, consists<br />

<strong>of</strong> o<strong>nl</strong>y one element, canonical correlation is equivalent to multiple correlation.<br />

Except in this special case, canonical eorretatim analysis is not useful


406<br />

for prediction but is <strong>of</strong> value o<strong>nl</strong>y to aid in formulating a modez; this is in<br />

contrast to hydrologic uses mentioned above.<br />

Under the assumption that Y' and X' are jointly normally distributed, the<br />

joint significance <strong>of</strong> sets <strong>of</strong> cänonicar correlations can be tested using a likelihood<br />

ratio statistic. Unfortunately, the exact distribution <strong>of</strong> this statistic<br />

is complicated. An approximate large sample distribution has been obtained, but<br />

its convergence properties have not been studied. Thus , inferences concerning<br />

canonical correlations can appropriately be made o<strong>nl</strong>y on the basis <strong>of</strong> large<br />

samples from a multivariate normal population. No information is available concerning<br />

the nature and extent <strong>of</strong> the effects <strong>of</strong> violations <strong>of</strong> the assumption <strong>of</strong><br />

normality on the distribution <strong>of</strong> canonical dorrelations. Canonical correlation<br />

analysis thus appears <strong>of</strong> limited use for building models for eventual use in<br />

design <strong>with</strong> limited or inadequate data, in contrast <strong>with</strong> the hydroiogic uses<br />

mentioned above.<br />

2.3 - Discriminant Analysis<br />

The purpose <strong>of</strong> discriminant analysis differs from the purpose <strong>of</strong> multivariate<br />

linear regression analysis o<strong>nl</strong>y <strong>with</strong> respect to the type <strong>of</strong> prediction<br />

required for the dependent variable; in regression analysis the dependent variable<br />

is continuous and its value is to be predicted, while in discriminant analysis<br />

the dependent variable is discrete and its classification is to be predicted, for<br />

example, classification <strong>of</strong> watersheds.<br />

For the case <strong>of</strong> a dichotomous dependent variable, discriminant analysis can<br />

be computed as a special case <strong>of</strong> multiple regression analysis by using a dumy<br />

variable having values zero and one for the dependent variable and point biserial<br />

or biserial correlations between the dependent (dummy) and independent variables.<br />

The regression coefficients obtained by this type <strong>of</strong> analysis are proportional<br />

to the coefficients obtained by discriminant analysis.<br />

The follwing discussion concerns discriminant function analysis for a<br />

dichotomous dependent variable; the discussion can readily be extended to a<br />

dependent variable having more than two categories.<br />

Suppose that the independent variables &=[Xi ,. . ,Xk] are jointly normally<br />

distributed in each <strong>of</strong> two populations <strong>with</strong> mean vectors and g and connnon<br />

covariance matrix c <strong>of</strong> full rank k. If the prior probabilities <strong>of</strong> each population<br />

(pop) are equal ana the costs <strong>of</strong> misclassification are equal, then the probability<br />

<strong>of</strong> misclassification is minimized by using the following rule for classification<br />

<strong>of</strong> an observation g<br />

classify in pop 1 if ~'~+(~1+g)'~<br />

classify in pop 2 if K'L


are extremely complicated and its convergence properties have not been investi-<br />

gated. The affects <strong>of</strong> nonnormality <strong>of</strong> & are not known. Thus discrinimant function<br />

analysis is appropriate o<strong>nl</strong>y when x is normally distributed for each population<br />

and, in addition, its application to small samples is appropriate o<strong>nl</strong>y if the popu-<br />

lation mean vectors p~ and u and the comnon population covariance matrix are<br />

known.<br />

2.4 Principal Components<br />

The purpose <strong>of</strong> principal component analysis is to reduce the dimensionality<br />

<strong>of</strong> K=[Xl ,. . ,Xk] on the basis <strong>of</strong> dependence among the variables. For example.<br />

Fiering (1964), in his work on extending the single-site streamflow synthesis<br />

model to the multi-site case, applied the technique to a river basin <strong>with</strong> p gaging<br />

sites each site having an n-year record <strong>of</strong> annual flaws. Craddock (1965)<br />

applied the principal components method to monthly temperature series from 1680<br />

to 1963 for Central England. Other applications include increases in sediment<br />

discharge from 31 watersheds after two major floods in northern California<br />

(Anderson, 1970), sediment network design in California to insure accuracy <strong>of</strong><br />

predicted sediment yield (Wallis and Anderson, 1965), establishment <strong>of</strong> the uniformity<br />

<strong>of</strong> a hydrological region in Northland, New Zealand (Blake et al., 19-70),<br />

derivation <strong>of</strong> a water yield model from monthly run<strong>of</strong>f data (Snyder, 19631,<br />

identification <strong>of</strong> watershed factors from annual precipitation and run<strong>of</strong>f data <strong>of</strong><br />

watersheds in Coshocton , Ohio and Riesel, Texas (Diaz et al., 1968) , and shortrange<br />

forecasts <strong>of</strong> river stage or discharge on the river Kolyma, U.S.S.R.<br />

(Nechaeva and Mukhin, 1968).<br />

Mathematically, principal components analysis transforms the X's to a set<br />

<strong>of</strong> variables which are pairwise uncorrelated and <strong>of</strong> which the first has maximum<br />

possible variance, the second has maximum possible variance subject to the condition<br />

<strong>of</strong> being uncorrelated <strong>with</strong> the first, and so.forth. Principal components<br />

are estimated on the basis <strong>of</strong> a random sample <strong>of</strong> n observations as follows. The<br />

first principal component <strong>of</strong> & is denoted by Li=X a~ and g, is obtained such that<br />

Z'1L1=g'lX1h1 is maximized subject to the normaTizing constraint g'1&1=1.<br />

n e secona principal component Q=X- a is then obtained by determining 7uch<br />

that g&= am2X-'X9 is maximiaed sdject to the normalizing constraint ti23=1<br />

and the independence constraint &'I 3 = O. This procedure is repeated until the<br />

k principal components have been obtained.<br />

Large sample distributional prooerties <strong>of</strong> principal components have been<br />

obtained assuming that has a multivariate normal distribution <strong>with</strong> a covariance<br />

structure such that the covariance matrix c has k distinct characteristic roots.<br />

The effects <strong>of</strong> nonnormality and the covergence properties <strong>of</strong> the large sample<br />

distributions have not been investigated. Small sample distributional properties<br />

<strong>of</strong> principal components are not known; this again limits the use <strong>of</strong> this technique<br />

for the problems considered here.<br />

In many cases determination <strong>of</strong> the number <strong>of</strong> principal components needed to<br />

account for a reasonably large proportion <strong>of</strong> the variance in X is a matter <strong>of</strong><br />

judgment on the part <strong>of</strong> the investigator. Even if the investTgator is willing to<br />

make this decision on judgmental rather than statistical grounds and he concludes<br />

that a relatively small number <strong>of</strong> principal components seem to account for a<br />

reasonably large proportion <strong>of</strong> the variance in X, there is still the problem <strong>of</strong><br />

interpreting the principal components in terms <strong>of</strong> the original variables.


40 8<br />

hfortunately, pi.incipal components are not ahap interpretable and this hae<br />

been a deterrent to the extensive use <strong>of</strong> principal components in developing<br />

models.<br />

The use <strong>of</strong> principal components as independent variables in regression<br />

analysis has been suggested for the purpose <strong>of</strong> reducing the dimensionality <strong>of</strong> 5<br />

and thus avoiding problems <strong>with</strong> degrees <strong>of</strong> freedom and for the purpose <strong>of</strong><br />

circumventing the problems resulting from multicollinearity in X.<br />

applications see earlier references in this section as well as Singh's (1970a)<br />

application for predicting infiltration in an aspen-grassland watershed in<br />

southwestern Alberta, Canada. Al though principal components have been used as<br />

independent variables in regression analysis by numerous investigators, there is<br />

no generally accepted procedure for determining the number <strong>of</strong> principal com-<br />

ponents to be included in such analyses, nor is there agreement concerning whether<br />

it is acceptable to include one <strong>of</strong> more <strong>of</strong> the original x variables in addition<br />

to principal components.<br />

In spite <strong>of</strong> these shortcomings and limitations, a principal component<br />

analysis could possibly lead to a better use <strong>of</strong> insufficient or correlated data<br />

for hydrologic prediction. For example, it <strong>of</strong>fers an alternative to the method *<br />

<strong>of</strong> regionalization described elsewhere in this paper.<br />

2.5 Factor Analysis<br />

The purpose <strong>of</strong> factor analysis is to account for the covariance structure<br />

<strong>of</strong> a set <strong>of</strong> observable random variables in terms <strong>of</strong> a minimal number <strong>of</strong> unobservable<br />

or latent random variables referred to as factors. Among hydrologic<br />

applications have been those that sought decision rules that resulted in reduced<br />

inventory and survey costs for specific areas and problems, as in the study <strong>of</strong><br />

the chemistry <strong>of</strong> groundwater quality (Dawdy and Feth, 1967), in the design <strong>of</strong> a<br />

hydrologic condition survey in the TVA system (TVA, 1965), in parameter screening<br />

for watershed analysis (Shelton and Sewell, 1969), in predicting reservoir<br />

losses in cavernous terrain (Knisel, 1970) and in reducing a set <strong>of</strong> edaphic<br />

variables for a soil (Singh, 1970b).<br />

Factor analysis estimates the coefficients to be us& in expressing each<br />

response 'variable as a linear combination <strong>of</strong> a small number <strong>of</strong> unobservable<br />

common-factor variables and a (latent) specific variable. The common factors<br />

generate the covariances among the observable variables (responses) and each<br />

specific term contributes o<strong>nl</strong>y to the variance <strong>of</strong> the particular associated<br />

response variable. The coefficients <strong>of</strong> the common factors, estimated by factor<br />

analysis, are not required to be orthogonal and their matrix is unique o<strong>nl</strong>y up<br />

to multiplication by an orthogonal matrix. The observations are assumed to be<br />

a random sample from a multivariate normal population <strong>of</strong> full rank and the nunher<br />

<strong>of</strong> common factors is assumed to be known; both <strong>of</strong> these requirements limit the<br />

use <strong>of</strong> the technique in hydrology. The factor analysis model can be written as<br />

- X=<strong>nl</strong>+c where X is pxl, is pxm, 1 is mxl and is pxl, There are thus p<br />

response variames L'=[Xi, ..., X,], m common factor variables r=[Y, ..., Y,] and p<br />

specific-factor variables E'=[E~ ,. ..,E 1. The matrix<br />

For hydrologic<br />

gives the factor loadings<br />

where aij is the loading <strong>of</strong> the ith regponse variable on the je common factor<br />

variable. The conunon-factor variables l'=[Y1 ,. . .,Y,] are independently<br />

distributed N(0, 1). The specific-factor variables E'=[E~ ,. are independently


distributed N(0,q~~). Factor analysis estimates the elements <strong>of</strong> the loading<br />

matrix A. Maximuil: likelihood estimates can be obtained assuming that is<br />

multivariate normal <strong>with</strong> covariance matrix L=@&' <strong>of</strong> full rank p.<br />

Note that principal components can be viewed as a particular solution <strong>of</strong><br />

the problem <strong>of</strong> factoring the covariance matrix. The- principal components<br />

solution ignores variance associated <strong>with</strong> a specific response variable and requires<br />

the factors (components) to be orthogonal and <strong>of</strong> decreasing importance in<br />

accounting for (common) variance in the response variables.<br />

Assuming normality, the adequacy <strong>of</strong> the m-factor model can be tested for<br />

large samples using a likelihood ratio test <strong>of</strong> the null hypothesis E=&+$'<br />

against the alternative hypothesis that is any symmetric positive definite<br />

matrix. In most applications the number <strong>of</strong> common factors is not known and<br />

successively larger numbers <strong>of</strong> factors are extracted until the goodness <strong>of</strong> fit<br />

hypothesis is accepted or the computing routine fails to converge. Successive<br />

tests used in this procedure clearly are not independent and the statistical<br />

properties <strong>of</strong> the result are unknown.<br />

Factor analysis has been used since the beginning <strong>of</strong> the twentieth century<br />

to study the covariance structure <strong>of</strong> multivari te observations. Many variations<br />

<strong>of</strong> the model discussed above have been propose 3 and many estimation procedures<br />

have been developed. Unfortunately, factor analysis, in any <strong>of</strong> its forms, may<br />

be very difficult to interpret in practice. Part <strong>of</strong> the difficulty arises from<br />

the fact that, regardless <strong>of</strong> the method <strong>of</strong> extimation used, the factor solution<br />

is unique o<strong>nl</strong>y up to a rotation <strong>of</strong> the axes. Various criteria, notably those<br />

involving simple structure, have been suggested for obtaining the rotation most<br />

readily interpreted; in practice, considerable subjectivity may be involved in<br />

applying these criteria, even if their appropriateness is not in question.<br />

Another difficulty in factor analysis arises from the fact that evaluation <strong>of</strong><br />

factor scores for use in subsequent analyses is not uniquely defined; several<br />

intuitively appealing approaches have been suggested, but there are no apparent<br />

criteria for choosing among them. Thus there are serious problems involved in<br />

interpreting the results <strong>of</strong> factor analysis and using them in subsequent analyses.<br />

In addition, relatively little is known about the sampling properties <strong>of</strong><br />

the estimates obtained in factor analysis (see Matalas and Rieher (1967) for<br />

hydrologic discussions <strong>of</strong> this issue). The test for appropriateness <strong>of</strong> structure<br />

assumes normality and large samples; unfortunately, the alternative hypothesis<br />

for this test may not be the most interesting alternative in many applications.<br />

There is considerable evidence that factor analysis can give meaningless results<br />

if its assumptions are ignored.<br />

As an example <strong>of</strong> the last point, consider Rice's (1970) use <strong>of</strong> variables<br />

describing the physiography <strong>of</strong> experimental basins on the San Dimas Experimental<br />

Forest in southern California. His goal was to identify variables which would<br />

be useful in flood prediction. He notes "that the hydrologist might be better<br />

rewarded if he turns his efforts toward developing physiographic variables<br />

which better portray hydrologic processes rather than relying on a mathematical<br />

artifact such Bs factor analysis to appraise the utility <strong>of</strong> various expressions<br />

<strong>of</strong> basin physiography." This point is borne out in a non-hydrologic study by<br />

Armstrong (1967); he finds that, while factor analysis "explains" a large proportion<br />

<strong>of</strong> the variances, it fails to identify the known factors in the model!<br />

409


41 O<br />

2.6 Cluster Analysis<br />

The purpose <strong>of</strong> cluster analysis is to group multivariate observations according<br />

to various cri teria based on their degrees <strong>of</strong> homogeneity and .heterogeneity.<br />

In hydrology, cluster analysis can be used to classify watersheds, flaw regimes,<br />

and climates. Bogardi et al. (1972) have used it to group statistical properties<br />

<strong>of</strong> monthly water levels in Lake Balaton (Hungary). Hydrologic appli-<br />

cations are very few.<br />

cl us i on in mu1 ti vari ate regression.<br />

The other multivariate methods discussed above assume that the variables<br />

belong to particular populations and that these populations have specific<br />

(usually normal) distributions.<br />

Cluster analysis can help to identify variables for in-<br />

In cluster analysis the variables are not assumed<br />

to have even the minimal structure <strong>of</strong> belonging to particular populations and<br />

the purpose is to establish appropriate populations as a basis for structuring<br />

the variables.<br />

Techniques <strong>of</strong> cluster analysis have been developed, almost exclusively, not<br />

o<strong>nl</strong>y for computer application but also on the basis <strong>of</strong> computer analysis. Al-<br />

though mathematical rigor is minimal and statistical inference is almost non-<br />

existent for cluster analysis, very useful results have been obtained in appli-<br />

cations. Because <strong>of</strong> its (lack <strong>of</strong>) assumptions concerning population structures<br />

and distributions, cluster analysis is applicable to a wide variety <strong>of</strong> hydrologic<br />

and other problems;. its results can be useful if they are recognized as tentative<br />

and if even tentative conclusions are based o<strong>nl</strong>y on results from large samples.<br />

There are several questions or decisions that must be considered in any<br />

cluster analysis: the number <strong>of</strong> clusters must be determined, the cluster<br />

boundaries must be established, the method for handling correlated variables must<br />

be specified, the technique for examining similarities must be chosen, and so<br />

forth. Several approaches have been proposed for each <strong>of</strong> these aspects <strong>of</strong> cluster<br />

analysis. Which criteria or rules <strong>of</strong> thunh are most appropriate depends on the<br />

problem. Regardless <strong>of</strong> the techniques and criteria chosen for cluster analysis,<br />

the investigator usually examines successive computer printouts and uses his<br />

judgment to al ter apparently poorly selected cri teria and techniques. Compared<br />

<strong>with</strong> the other multivariate analyses discussed, cluster analysis is more <strong>of</strong> an<br />

art and less <strong>of</strong> a science, but so is engineering design under uncertainty assoc-<br />

iated <strong>with</strong> insufficient data.<br />

2.7 Bayesian Inference<br />

The preceding discussion <strong>of</strong> multivariate models is entirely from the point<br />

<strong>of</strong> view <strong>of</strong> classical sampling theory. Several <strong>of</strong> these models have been analyz-<br />

ed from the Bayesian point <strong>of</strong> view and these results are summarized in the follo-<br />

wing discussion. Bayesian inference incorporates, <strong>with</strong> sample infomation, the<br />

investigator's prior information concerning the sampling distributions <strong>of</strong> the<br />

parameters to obtain point or interval estimates. More general, however, is<br />

Bayesian decision theory that incorporates both prior information and a loss<br />

function <strong>with</strong> sample information in order to obtain parameter estimates or to<br />

determine the optimal decision. Bayesian analysis is intuitively appealing; in<br />

many applications the investigator has considerable prior data or experience as<br />

a basis. for prior parameter distributions and in most applications he has at


least a general idea <strong>of</strong> the?(economic) loss function associated <strong>with</strong> inaccurate<br />

estimation. Unfortunately, the results for many multivariate Bayesian methods<br />

are complicated and at best are applicable o<strong>nl</strong>y for large samples. However,<br />

since many classical results also have this limitation, Bayesian methods may be<br />

p:i ferable because <strong>of</strong> their flexibility in incorporating prior distributions and<br />

loss functions in the estimation <strong>of</strong> parameters or in determining optimal decisions.<br />

Also, human beings are better at estimating prior distributions than at estiniatlng<br />

posterior distributions (Ferre11 , 1972).<br />

There has been considerable application <strong>of</strong> Bayesian methods in mu1 tivariate<br />

linear regression analysis. Bayesian point estimates <strong>of</strong> the regression coefficients<br />

can be obtained <strong>with</strong> or <strong>with</strong>out incorporating loss functions and Bayesian<br />

interval estimators (credibility intervals) can be formulated.<br />

As discussed in section 2.5, the maximum likelihood factor analysis solution<br />

is unique o<strong>nl</strong>y up to a rotation <strong>of</strong> the axes; the use <strong>of</strong> subjective information<br />

in a Bayesian analysis is an intuitively appealing basis for eliminating this<br />

ambiguity. Unfortunately, the technical difficulties involved in obtaining<br />

numerical solutions have thus far precluded use <strong>of</strong> this approach.<br />

The Bayesian approach has also been considered for canonical correlation<br />

analysis; unfortunately, even for the simplest assumptions <strong>with</strong> respect to both<br />

the prior distributions <strong>of</strong> the parameters and the sampling distributions <strong>of</strong> the<br />

data, the Bayesian results for canonical correlation analysis are so complicated<br />

that their applicability is extremely limited.<br />

The most notable success <strong>of</strong> Bayesian methods in multivariate analysis thus<br />

far has been for discriminant functions. As summarized above, a number <strong>of</strong> methods<br />

based on the sampling theory viewpoint have been proposed for discriminant<br />

analysis, but these results are unsatisfactory for use <strong>with</strong> small samples. The<br />

Bayesian approach provides a useful and simple al ternative.<br />

Consider the case <strong>of</strong> classification into one <strong>of</strong> two mutually exclusive populations.<br />

Denote the populations by Pi and P , the vector <strong>of</strong> observations by<br />

x'=[xl, ..., xk]. the density functions by fl(Kf and fp(&) and the prior probabi-<br />

Tities by p1 and p2 where p +p2=1. The costs <strong>of</strong> misclassification are C(211) if<br />

an observation from P1 is classified in P2 and C(112) if an observation from P2<br />

is classified in Pl. The problAem is to determine a classification rule <strong>of</strong> the<br />

following form: partition K into regions R1 and R2 such that if ZERI, the observation<br />

is classified in Pi and if x~R2, the observation is classified in P2.<br />

The expected cost <strong>of</strong> misclassTfication is given by<br />

and the corresponding ,classification rule is<br />

f+X) C(l MP2 f+x) C(112)PZ<br />

R2:<br />

R1:q-g 'copl<br />

< cop1<br />

411<br />

This classification rule involves the densities f1(&) and f2(&) which may not be<br />

known. Assume that fi(&) and f2(&) are multivariate normal <strong>with</strong> mean vectors PJ<br />

and and common covariance matrix c. Then the above rule can be written<br />

c(1 PIP, c(1 12)P2<br />

R, :L'i.-+(IL,+q) 'L>log, R2:~'6-+(~1+4) '&


41 2<br />

1<br />

where 6 = E- (ply) and x'6 is the discriminant function. If p1=p2=% and<br />

C(112)3(2ll),'-this reducësto the rule, given in the discussion <strong>of</strong> the sampling<br />

theory appLoack to discriminant analysis. As noted in that discussion, sample<br />

estimates x x and 2 may be used to obtain from the sample data <strong>with</strong>out<br />

knowledge d'i' -2 and c.<br />

Bayesian aiscriminant analysis can easily be extended to other cases; for<br />

example, fl(x) and f2(&) may have some form other than the normal distribution<br />

or there may be more than two populations into which an observation may be<br />

classified. Finally, for the sake <strong>of</strong> completeness, we should mention the use <strong>of</strong><br />

Bayesian decision theory in design to imbed uncertainty in parameters resulting<br />

from inadequate samples into a loss function (Davis et al., 1972; Davis et al.,<br />

1973).<br />

3.0 Sumnary and Conclusions<br />

In this overview, we have critiqued the current status <strong>of</strong> multivariate<br />

methods <strong>of</strong> data analysis because <strong>of</strong> their central position in making estimates<br />

and predictions <strong>of</strong> both hydrologic and econometric (e.g., cost) inputs to design<br />

<strong>of</strong> water resource systems. The design implications <strong>of</strong> many <strong>of</strong> the assumptions '<br />

in these methods remain to be evaluated - a task <strong>of</strong> importance to many pr<strong>of</strong>es-<br />

sional disciplines.<br />

models <strong>with</strong>out considering the assumptions involved, we believe that use <strong>of</strong><br />

Bayesian decision analysis, while not the final answer, may be a viable alter-<br />

native for anticipatinq poor design. Bayesian analysis <strong>of</strong>fers flexibility in<br />

incorporating prior (subjective) knowledge about probabil i ty distributions on<br />

design parameters and it encourages the design engineer to invoke his general<br />

ideas <strong>of</strong> loss functions associated <strong>with</strong> inaccurate estimation in many specific<br />

design problems. The focus is on the consequences for a specific use and not on<br />

a precise design estimate. The latter has a subtle linkage <strong>of</strong> probability and<br />

utility, depending on one's value structure, but Bayesian decision analysis<br />

encourages specific consideration <strong>of</strong> each in an open manner. With the continuing<br />

emphasis on environmental impact evaluation, such an approach seems timely and<br />

necessary in the face <strong>of</strong> small samples <strong>of</strong> hydrologic and other environmental<br />

data.<br />

4 .O References<br />

In contrast to the current tactic <strong>of</strong> using multivariate<br />

Anderson, H. W. 1970. Principal components analysis <strong>of</strong> watershed variables<br />

affecting suspended sediment discharge after a major flood. Int'l. Assoc.<br />

for Hydrologic Sciences. Publ. 96, pp. 404-416.<br />

Anderson, T. W. 1958. An Introduction to Multivariate Statistical Analysis,<br />

New York: John Wiley ti Sons, Inc.<br />

Armstrong, J. S. 1967. Derivation <strong>of</strong> theory by means <strong>of</strong> factor analysis or<br />

Tom Swift and his electric factor analysis machine. The American Statistician.<br />

21(5), pp. 17-21.


41 3<br />

Blake, G. J., A. D. Cook and D. H. Greenall. 1970. The use <strong>of</strong>.principa1 component<br />

factor analysis to establish the uniformity <strong>of</strong> a hydrological region<br />

in Northland, New Zealand. Int'l. Assoc. tiydrol. Sci. (IAHS) Pulb. 96.<br />

Bogardi, I., L. Duckstein, and C. C. Kisiel. 1972.. Distribution <strong>of</strong> dynamic<br />

water level in a shallow lake, paper prepared for Fall Annual Meeting, AGU,<br />

San Francisco, Calif., December.<br />

Christ, C. F. 1966. Econometric Models and Methods. New York: John Wiley<br />

and Sons, Inc.<br />

Craddock, J. M. 1965. A meteorological application <strong>of</strong> principal component<br />

analysis. The Statistician, Vol. 15, p. 143.<br />

Davis, D., C. Kisiel and L. Duckstein. 1972. Bayesian decision theory applied<br />

to design in hydrology, <strong>Water</strong> Resour. Res., Vol. 8, No. 1, pp. 33-41.<br />

Davis, D. R., L. Duckstein, C. Kisiel, and M. Fogel. 1973. A decisiontheoretic<br />

approach to uncertainty in the return period <strong>of</strong> maximum flaw<br />

volumes using rainfall data, paper to be presented at Symposium on <strong>Design</strong><br />

<strong>of</strong> <strong>Water</strong> Resource <strong>Projects</strong> <strong>with</strong> <strong>Inadequate</strong> Data, UNESCO, Madrid, Spain,<br />

June.<br />

Dawdy, D. R. and J. H. Feth. 1967. Application <strong>of</strong> factor analysis in the study<br />

<strong>of</strong> groundwater quality, Mojave River Valley, California. <strong>Water</strong> Resour<br />

Res., Vol. 3, No. 2, pp. 505-510.<br />

Dempster, A. P. 1969. Elements <strong>of</strong> Continuous Multivariate Analysis. Reading,<br />

Mass : Addison-Wes 1 ey .<br />

Dhrymes, P. J. et al. 1972. Criteria for evaluation <strong>of</strong> econometric models.<br />

Annals <strong>of</strong> Economic and Social Measurement, Vol. 1, No. 3, pp. 291-324.<br />

Dhrymes, P. 1970. Econometrics: Statistical Foundations and Applications,<br />

New York: Harper & Row.<br />

Diaz, G., J. I. Sewell and C. H. Shelton. 1968. An application <strong>of</strong> principal<br />

component analysis and factor anal sis in the study <strong>of</strong> water yield. <strong>Water</strong><br />

<strong>Resources</strong> Res. , Vol. 4 NO. 2, Pp. 2 99-306.<br />

Ferrell, R. 1972. Subjective inputs and uncertainty in water resources<br />

decisions, Proceedings, Int. Symp. on Uncertainties in Hydrologic and <strong>Water</strong><br />

Resource Systems, Univ. <strong>of</strong> Arizona, Tucson, Ariz., Decenber.<br />

Fiering, M. 1964. Multivariate technique for synthetic hydrology. J. Hydraulics<br />

Div., Proc. Amer. Soc. Civil Engrs. Vol. 90(HY5), pp. 43-60.


41 4<br />

Fogel, M, M., C. t. Kisiel and L. Duckstein. 1971. Space-time validation <strong>of</strong> a<br />

rainfall model for summer-type precipitation, Mater Resour. Bull.,<br />

Vol. 7, NO. 2, pp. 309-316.<br />

Freeze, R. Allan. 1972. Role <strong>of</strong> subsurface flow in generating surface run<strong>of</strong>f<br />

2. Upstream source areas, Mater Resour. Res., Vol. 8, No. 5, pp. 1272-1283.<br />

Gray, Howard. 1972. Bayesian Decision Analysis <strong>of</strong> a Statistical Rainfall/Run<strong>of</strong>f<br />

Relation, Tech. Report #14 <strong>of</strong> Reports on Natural Resource Systems, Univ.<br />

<strong>of</strong> Arizona, Tucson, Arizona.<br />

Harmon, H. H. 1967. Modern Factor Analys'is, 2nd Ed. Chicago: University <strong>of</strong><br />

Chi cago Press.<br />

Johns ton, J. 1963. Econometri c Methods. New York: McGraw-Hi 11 , Inc.<br />

Kmenta, Jan. 1971. Elements <strong>of</strong> Econometrics. New York: Macmillan.<br />

Knisel, W. G. 1970. A factor analysis <strong>of</strong> reservoir losses. <strong>Water</strong> <strong>Resources</strong><br />

Res. Vol. 6, No. 2, pp. 491-498.<br />

Matalas, N. C. and B. J. Rieher. 1967. Some comnents on the use <strong>of</strong> factor<br />

analyses. <strong>Water</strong> <strong>Resources</strong> Res., Vol. 3, No. 1, pp. 213-223.<br />

Metler, W. A. 1972. Bayes Risk Analysis <strong>of</strong> Regional Regression Estimates <strong>of</strong><br />

Floods. Master <strong>of</strong> Science Thesis, Dept. <strong>of</strong> Systems & Industrial Engineering,<br />

Univ. <strong>of</strong> Arizona, Tucson.<br />

Morrison, D. F. 1967. Multivariate Statistical Methods. New York: McGraw-<br />

Mill.<br />

Nechaeva, N. S. and V. M. Mukhin. 1968. The use <strong>of</strong> statistical methods for<br />

short-range forecasts. IAHS Publ. 81, pp. 405-416.<br />

Nimannit, V. 1969. Multivariate analysis <strong>of</strong> hydrologic changes. Doctoral<br />

dissertation, Dept. <strong>of</strong> Civil Engineering, Colorado State Univ., Fort Collins.<br />

Peck, E. L. 1972. Relation or orographic winter precipitation patterns to<br />

meteorological parameters. Proceedings, Int'l, Symp. on Distribution <strong>of</strong><br />

Precipitation in Mountainous Areas, World Meteorological Organization,<br />

Gei 1 o, Norway.<br />

Press, S. James. 1972. Applied Multivariate Analysis. New York: Holt,<br />

Reinhart, and Winston.<br />

Rice, R. M. 1970. Factor analyses for the 'iiterpretation <strong>of</strong> basin physiography.<br />

IAHS Publ. NO. 96, pp. 253-268.


Rodda, J. C., et al. 1969. Hydrologic Network <strong>Design</strong>, World Meteorological<br />

Organizat ion/International Hydrological Decade, WO, Geneva, Sui tzerland.<br />

Shelton, C. H. and J. I. Swell. 1969. Parameter screening for watershed<br />

analysis. Trans. ASAE, Vol. 12, No. 4, pp. 533-539.<br />

415<br />

Singh, T. 1970a. A principal components regression model for predicting infiltration.<br />

Paper presented at 1970 National Fall Meeting <strong>of</strong> the American<br />

Geophysical Union, San Francisco, Calif.<br />

Singh, T. 1970b. A minimum entropy rotation <strong>of</strong> principal components for obtaining<br />

simple structure in a hydrologic data matrix. Paper presented at the<br />

1971 Fall Annual Meeting <strong>of</strong> the American Geophysical Union, San Francisco,<br />

Calif.<br />

Snyder, W. M. 1963. A water yield model derived from monthly run<strong>of</strong>f data. IAHS<br />

Publ. 63, pp. 18-30.<br />

TVA (Division <strong>of</strong> <strong>Water</strong> Control Planning). 1965. <strong>Design</strong> <strong>of</strong> a hydrologic<br />

condition survey using factor analysis. TVA Research Paper No. 5.<br />

Thomas, D. M. and M. A. Benson. 1970. Generalization <strong>of</strong> Streamflow Characteristics<br />

from Drainage Basin Characteristics; ~ U.S. Geological Survey <strong>Water</strong><br />

Supply Paper 1972, 55 pp.<br />

Torranin, P. 1972. Application <strong>of</strong> Canonical Correlation in Hydrologic Predictions,<br />

Ph.D. dissertation, Dept. <strong>of</strong> Civil Engineering, Colorado State<br />

Uni v. , Fort Col 1 ins.<br />

Tryon, R. C. and D. E. Bailey. 1970. Cluster Analysis. New York: McGraw-Hill.<br />

Wallis, J. R. and H. W. Anderson. 1965. An application <strong>of</strong> multivariate analysis<br />

to sediment network design. Int'l. Assoc. Hydrol. Sci. (IAHS) Publ. 67.<br />

pp. 357-378.<br />

Zellner, A. 1971. An Introduction to Bayesian Inference in Econometrics.<br />

New York: John Wiley & Sons, Inc. 480 pp.


m<br />

im<br />

S.C<br />

ou<br />

so<br />

GI<br />

x m<br />

U<br />

.Ic,<br />

X %i3<br />

Pi*<br />

m .? r-<br />

I55 g<br />

.Y Ia o<br />

o L<br />

L<br />

sa<br />

FUU<br />

.<br />

l<strong>nl</strong><br />

-L<br />

ao<br />

as.<br />

m<br />

:


X L<br />

c<br />

V<br />

u-c<br />

I<br />

- r-<br />

ZX<br />

.-<br />

.r<br />

L<br />

m<br />

W<br />

h<br />

0<br />

m e E m<br />

E o 0'- L<br />

-cicl-C><br />

g z p<br />

.I- ..) L u<br />

w .P .<br />

.).we-* s<br />

won IO o<br />

m .I-<br />

L L m se na > 4<br />

ow O<br />

L eu Lb<br />

<br />

c> E m al.?<br />

3<br />

L<br />

I<br />

al<br />

c<br />

.#r-<br />

c,<br />

VI<br />

o,<br />

.n<br />

v)<br />

li W<br />

3<br />

P<br />

rr% (np<br />

e<br />

.r<br />

00u L o a<br />

U<br />

W<br />

L0ic e E I<br />

uLc0<br />

c 0.6- u<br />

mu- L<br />

c C>L<br />

.r'U E o<br />

L w.ru-<br />

40<br />

e uic-0<br />

.I- W a r w<br />

u - 0<br />

t<br />

VI<br />

a<br />

o<br />

E<br />

w<br />

CI<br />

I<br />

c<br />

L.r w c<br />

o w -1.-<br />


PRATIQUES COURANTES POUR L'EVALUATION DES CRUES ET<br />

DES DEBITS D'ETIAGES PRIS EN COMPTE DANS LES PROJETS<br />

Rapport General<br />

P ar<br />

Marcel ROCHE<br />

Pour &borer les données hyärologiqueis néceseaires à la mise au<br />

point diun projet d'aménagamcmt des eaux, on dispose finalement de trois<br />

graisda types d'approche :<br />

- u'utilieer que lee observatione concernaut les débite et re-<br />

cueillie6 au site m be de l'amhgement ou & p roat6 ;<br />

- utili- 6gelement les données climatiquee ãieponibles BUF le<br />

baadn, notemnent les relevée de précipitatione i<br />

. 88 mvlr de formules r6gionalee1 ou de corr6lationa. Pour a-<br />

trapoler des reeultate recueillis d dee statione hgdrom&riqUeE<br />

et/ou plu~iométrigues tdtu&s BiUeure äaus ia regiou, à 1li.n-<br />

ttieur OU d l'extbieur du basain fluvial.<br />

Le premier typa groupe lee dthodee dites Wirscteetl, tandis qUe<br />

lee d ew autree pmoèdemt de 1'Cvaluation indirecte. La m&hode "la plu8<br />

aireate" consiste en lkdyse statietique d'un Bchentillon, par exemple


420<br />

de débits maximaux annuels t elle nécessite, pour que l'évaluation ait un<br />

sens, une infoimation riche, des m emes précises de débite portant sur de<br />

longues périodes.<br />

Le second type de méthodes ccmaiste en fait à l96tendrett des échan-<br />

tillons existante de debits, portant BUT dee périodes courtee, en utilisant<br />

les relations qu'on peut dkager entre lea dábits et les donnbe climatiques<br />

disponibles sur une dur& beaucoup plus longue. C'est @ll'exteneion des don-<br />

néedi, qui fait largement appel aux méthodes de r¿greesion et à l'anaïyse<br />

multivariate, mais aussi dans certaine cas aux modèles dits conceptuels. On<br />

peut rattacher à ce type lee m&hodes qui consistent à effectuer les trans-<br />

formations ou à appliquer les régressions & u11 évènement climatique de pé-<br />

riode de retour connue, ou considéré comme un maximum possible.<br />

Le tmi&me type, enfin, rassemble les méthodes d'interpolation<br />

ou d'extrapolation géographique. Ces méthodes vont de la simple analogie &o-<br />

morphologique et climatique, aux raffinements de l'analyse factorielle, en<br />

passant par les tablee et abaquee régionaux.<br />

U paraft se dégager de cette &um&ration une id& simple de l'uti-<br />

lisation dee m6thodee en face de l'information disponible ; il semble évident<br />

a priori que les m6thodes de type I n'ont de sens qu'en cae d'information très<br />

abondante, que odles du type II correspondent A une information hydrologique<br />

réduite, mais à une informetion cïimatoïogique consistante, et que le type<br />

III groupe les mgthodes utilie8ss lorsqu'on ne dispose de pratiquement rien.<br />

On pourrait en conclure que la m&hodologie de type I devrait être exclue<br />

d'un symposium tel que celui-ci.<br />

En fait, le jugement doit être plue nuancé, car on commence à ten-<br />

ter des régionalisatione BUF lee lois de distribution, donc à rechercher par<br />

là des estimations indirectes, a melanger dane lee études statistiques des<br />

dondes de conaietances t Ae différentes. C'est pourquoi nous rQerverom,<br />

ciam notre expod, une piace à l * m & e statistique.<br />

Chaque m&hode d'heluation fait appel à des outils de calcul qui<br />

ne lui sont pae forchent propre. C'est aind qu'un modèle 6 structure détor-<br />

ministe, ì'hydmgranmie unitaire par example, peut etre utilisé pour une ex-<br />

tension des donnhe, pour u11 celcul de transformation d'una, averse de fr&<br />

quence donnét, ou pour une extrapolation &graphique.


ûn pourrait envisager, dans ce rapport, une présentation par<br />

"outil de ~ elcul~~ ; il nous a paru plus cmfonne au eujet du eymposiuc<br />

d'aùmter un ordre d'exposé qui se rattache, autant qu'il mit possible,<br />

à la quantité d'information disponible.<br />

421<br />

Les sujets proposés dans la question qui fait l'objet de ce rap-<br />

port général se rappsrtent aux débits extr&nes, c'est-à-dire aux étiages<br />

et aux crues. I1 faut bien reconnaître que le premier sujet nia guère tenté<br />

les ~ãpécialistes, puisque un 6eUl rapport, eur les quatorze que nous avona<br />

examinés, traite des basses eau, Finalement, cela n'est pas tellement sur-<br />

premt ; les basses eaux sont liées de très pr&3 aux problèmes d'hydrogh-<br />

logie ; or ce n'est que dans quelques cas trèer particuliers qu'il est possi-<br />

ble de dégager des paraadtree morphologiques et climatiques simples qui<br />

soient en relation directe avec ces pmblèmeo et qui permettent une tramp-<br />

sition &,panhique suffisamment précise. Par contre, u11 auteur aurait pu<br />

être tent6 par l'aspect "extedon des donnée^'^, qui dierpoee d'une méthodo-<br />

logie courante sinon riche, du moina 88888 efficace ; cela ne s'est pa6<br />

produit.<br />

I1 était précisé enfin que les expos6s devaient se rapporter à<br />

des llpratiques courantes", ce qui semblait exclure les sujete de recherche<br />

et certaim procédk de calcul non totalement dégagés de leur phase exp&i-<br />

mentaie. Aussi n'Fneieterona noua par3 tmp LNF certaine aapecte qui no-<br />

ont été soumie ; ceci ne veut pas dire que noua lee trouviane peu dignes<br />

d'inter&<br />

Dana notre prbentation des rapporta, nous parlerone d'abord des<br />

étiages, puis des crues.<br />

Le eeul rapport traitant de ce pmblème est celui de<br />

MM. Vladimirov et Chebotarev [I3]- Lee autemrs définiasent avec m in les


422<br />

en<br />

variables par lesquelles on caractÓriae lee basses eaux/G.R.S.S. :<br />

- d&it journalier minimal de l'annw,<br />

- d6bbit moyen meneuel minimal de l*annh.<br />

Chacune de ce6 oarlablee est définie pour choune dee deux saisons<br />

de basses eaux : celle d'hiver et celle d'&&-automne.<br />

Les auteurs exposent ensuite ï'infïuence, sur ces débits de bM6e6<br />

eaux, des caractéristiques climatiques, en insistant Bur le Ale du gel, et<br />

des carúct&istiques phyeiographiquuee, en notant le r81e particulièrement<br />

important des lacs, des rnaraic, du sol, du sow-sol, du karst. 110 définie<br />

sent enmite le cadre régionel dans lequel va s'exercer la méthadologie :<br />

les bassins sont classés en<br />

- petits bassins : jusqu'a 1 o00 1 500 h2en zone de plaine hu-<br />

mide, jusqu'à 2 000-2 500 h2 dan6 les zones de montagnes oc les<br />

zones de plaines peu humides, jutSqu'8 5 OOO-10 o00 km' dans les<br />

régiow arides ou pour les rivières soumises à un gel intense ;<br />

- bassins inoyene : jusqu'8 75 O00 km2.<br />

Pour lee petite bassins, on applique, dana un cadre strictement<br />

régionali66 6 partir des caractériatiques phydographiquee et climatiques,<br />

une formulo de la fome Q = a (A ;I. fIn oÙ Q eat le dBit meneuel minimal<br />

moyen (dit l~omuiì~l daps le texte) en d/s, A ia eurface B.V. tan d, f un<br />

correctif tenant compte d, la non coincidence hentueile du bassin topogra-<br />

phique et du bassin souterrain ; a ot n srnt de6 paramdtres régionaux. Le<br />

passage du débit % od1* 6 dee débits de fr8quences donnbs er'effectue par<br />

deux méthode8 diffbentes.<br />

?our lee baemns moyenne, on utilise des cartes d'isopl&thes (iflolines)<br />

pour la détexmination du débit d'étiage meneuel ; ces cartes sont établies<br />

pour les valeur8 moyennes (normeles) et pour la frbence 80 % de dépasscirent.<br />

coefficient de p-.<br />

Les étiages joumdiers sont dikìuits de6 étiages menauele par un<br />

Il s'agit donc d'un proc6dd8 de formule @kd8gionale1@ dont les parani&<br />

tres sont d&erminb gar un catalogue, et non l ib à dee caractéristiques


423<br />

ghorphologiques et climatologiques meeurables. C'est pratiquement le seul<br />

moyen de e'en eortir en matière de basaes eaux, pour los raieons que noua<br />

avo- deja indiqubs. I1 est dommage que l'auteur n'ait pea indiqué quel-<br />

ques valeure de cosfîiciente r6gioll~yx, ni montré sur un exemple la concor-<br />

dance des réniltate du calcul avec des dombs observks.<br />

Lorequ'on dit qu'on détermine dee crue8 en l'absence de données,<br />

c'est faux. Sane donnéeel on ne caicüie ria du tout. Simplement, on cherche ici<br />

.4 trveer des do~8es existantee ou à établir des relations entre le phé-<br />

nomène qu'on &tudie et des données d'une autre nature. Toute L1infonnation,<br />

et par suite +out le sérieux de6 edhations qui en dbdent, tiennent dam<br />

Ce8 d O~h6.<br />

C'est pourquoi nous regrettons un peu qu'il ne se mit pas trouvé<br />

d'auteur pour exposer lea méthodee, pourtant de pratique bien courante, per-<br />

mettant de reconetituer UTI certain nombre d'6v&nementa marquanedu passé.<br />

Noue verrou tout 6 l'heure qu'on commence a se prkoccuper d'insérer dane<br />

des échantillons r4guliere de dbbite d maw de crue5 annuelles, dee obser-<br />

vations discontinues, parfoie t mnquh et souvent entachées d'erreur6 beau-<br />

coup plus grandee que celleede l'&chantillon régulier. Lorsque lee donnéee<br />

sur les ornes sont rame et surtout portent SUT de5 périodes très courtee,<br />

il devient extrhment important de dispaser du plus grand nombre de telles<br />

obaervatiom.<br />

chi peut aauvent trouver dana les archivea, dane la preme, ~ ur<br />

de6 télégrammes adminietratifel dee indications parfoiPs trèB préci898<br />

oertaines 5mdee crues. On peut également mener des enquatee 6ur place,<br />

auprès dee riverains et em a'intbrsemant aux d&hhs& ou autres marques<br />

laiss6es par ces orue~). 11 y a 1a toute une m6thodologie dont nom no pou-<br />

viam peu ne pas tout BU moina signaler l'existence.


424<br />

des crues réellement observées e d traditionnellement un outil pour informa-<br />

tion riche. Des études relativement récentes ont pourtant 6tk men688 afin<br />

de voir s'il n'Était pas possible, en cas de données rares,<br />

- soit de compléter l'échantillon de données rkgulierement recueillies<br />

par des observations sporadiques et/ou tmnqubs,<br />

- soit de faire de la transposition régionale sur les lois stutisti<br />

ques elles-mêmes<br />

Bien entendu, lee deux ne smt pae incompatibles.<br />

La première question a été traitée, au moins partiellemmt, dens la<br />

cornunication de M. Morven N. keee 183. L'auteur considère deux aspects de<br />

la question. Dans le premier, il suppose qu'on dispose d'une série n o d e<br />

d'observations (enregistrements par exemple) au cours de laquelle un certain<br />

nombre de maximums annuels n'ont pas &é observés, par exemple par suite d'uno<br />

déficience d'appareillage : on cornaft seuìernent , pour les crues concernhs,<br />

le seuil inf&ieur du débit, seuil supposé constant eur la période. C'est le<br />

cas pratique du stylet d'enregietreur qui sart des limites du tambour ou de<br />

la table dbulante.<br />

Le second aespect est celui de la station pour laquelle on dispose<br />

d'une skie d'observations régULiBres de N années, courte mais complète,<br />

des maximums muela de cruea. On connaît par ailleurs, sur une p aode de<br />

M autres annha, les n d8bits maximaux de crues ayant d&ad un seuil 5 ;<br />

et on est certain que p e a t lee N-n anahs reetantes de cette période, aucun<br />

débit n'a atteint ou d6paee6 xh. Ce eont là des hypotheses assez restrictives<br />

qui correspondent au cas pratique des échelles de hautes eaux Wloitées Pon-<br />

dant u11 certein nombre d'années avant que les services se préoccupent des<br />

basses et moyennes eaux ; ce peut (tre aussi le cas de certaines marques<br />

relatives a des cmes historiques.<br />

Lee deux problemes sont trait& par la méthode du maximum de vrai-<br />

semblance, suivant la technique indicph pm Kendall aux paragraphes 32.15<br />

et suivants de son ouvrage. L'auteur donne un exemple d'application a la ri-<br />

vière Avon a la dation de Bath (U.K.). Le but de l'étude<br />

eat de déter-<br />

miner le gain d'information apport& par les observations tronquées ou les don-<br />

nks que l'auteur qualifie d'historiques ; ce gain d'information est estimé


425<br />

ici par la r&ction apport& à 1'eITeur etandard d'estimation pour différent;<br />

quant i les.<br />

Cette 6tude est fort int&resaante, bien qu'on puisse ne pas être<br />

pleinement d'accord avec touteei les hypathèees introduites par l'auteur. Elle<br />

est susceptible d'importants prolongements vers d'autres formes d'information<br />

tronquée ou sporadique, mais le traitement rieque alors de ne pas être aussi<br />

simple.<br />

En ce qui concerne la aeconde question, la traueposition des lois<br />

statistiques a été mainteefois tenth, souvent avec succ8s. Nous nous permet-<br />

tona de rappeler les 6tudes de U, Oktay hanoglu sur le5 mo~ules pluviom&<br />

trique8 de IlAfrique de l'Ouest (Cahiers de l*O.R.S.T.O.M., hérie @droiogie>.<br />

MM. Herbst, Van Biljon, Olivier et Hai1 noue présentent une c odcation sur<br />

la régionalisation des paramètres das lois de distribution des crues 151.<br />

Les auteurs prennent comme m>dèle statistique la loi log-gaiinna<br />

incomplète (log-Pearson III), tout en hoquant la possibilité d'effectuer<br />

les mi3mee opératiom en Re basant mr une lo' de Qumbel. La méthode consiste<br />

à<br />

- calculer. '.es paP810dtime8 des lois pour toutes les longues séries<br />

diaponibleB,<br />

- apposer que chacun de ces paramatres d6pend deun certain nombre<br />

de facteur@ gbmorpholagiques et climatiques (il cite la super-<br />

ficie du bm&n, la pluie annuelle moyenne, la pente moyenne,<br />

la longueur de la rivière, la pluie menquelle maximale médiane,<br />

un facteur de fome mais n'utilise dans la suite du texte<br />

que La surface du bassin A et la pluie annuelle moyenne R),<br />

- appliquer pour chaque parametre de la loi une régression multiple<br />

avec lea facteurs retanus ; les coefficients de la r6gression<br />

sont calculés par lea moindres carrés et l'opération constitue<br />

en fait un "lieeage gbgraphiquelt des valeurs de ces paramètres.<br />

En r&äiité, lee auteum neiitilisent pas les param¿tres fLgurant<br />

dana l'expresdon mathhatique de la Loi, &is la moyenne (des logarithmes<br />

dee débite), ll&cart-type et 10 coefficient d1msiymétrie, ce dernier étant<br />

du reste trait6 de fapon trèe diffhnte. Le pint le plus important au calcul


426<br />

se rapporte à la variance d'estimation de tele paramètres et dee quanti-<br />

qui en dkoulmt, toujours parr l'intermediaire de la loi log-ggnnaa.<br />

Les auteurs donnant quelques résultats obtenue en Afrique du Sud.<br />

Lo cadcation de MM. Davis, Ducketein, Kisiel et Fogel /2]<br />

traite du problhe de la distribution de la pkiode de retour correspondant<br />

au déparssement d'un maxipnrm ou diun volume de crue donni, en partant des don-<br />

nées sur les précipitations. La méthode se rapporte plut8t au type II,<br />

d e les techniques de calcul expos6ee relhnt enti8rement de l'analyse<br />

atatidique. La formule de transformation pluies-débits adoptée pour les<br />

volumes de cnie e& de la forme Q = C (R - A). Dana l'analyse de &bili-<br />

té conduite par dmulation, les auteurs ne se préoccupent que de C et trou-<br />

vent, come il fallait s'y attendre, une énorme influence de la variance<br />

d'estimation de ce paramètre sur la variance d'estimation de la période de<br />

retour. I1 n'est pas pmuvé, come semblent le supposer les auteurs, que<br />

la variance de A n'ait qu'une influence négligeable.<br />

2.2. - kJB-hodes_de rn-1; = *&e-d-og gee ~ o ~ . g<br />

Dane Bon sena le plus littéral, l'extension Eee d o ~ de h d6bits<br />

consiste en l'opération suivante.<br />

- Une variate Y &tant définie mivant le phhomene i@rologique<br />

qui intbesse et le probl8me qu'm a à résoudre (par emmpie<br />

Y a d&it maximal instantané de l'année) ;<br />

- on dispose d'un échantillon de n valeurs de Y obtenues par l'Obsemation<br />

directe des débits ;<br />

- on dispoee d'un échantiiìon de N > n<br />

valeurs de une 01 ph-<br />

sieurs oaractgristiqueim cìimatoiogiques XI, U .. . Xk(pm 8xezaple :<br />

averse dmaìe annuelle, indice de pluies antk6dentee mtte<br />

aveme, etock de neige sur le baasin au d h t de la fonte) N<br />

contenant n i<br />

(StJ - on cherehe à établir une r8grulsolon multiple (au simple) entre<br />

11 et XI, X2 ... xk (ou seulement XI) :


427<br />

- on appïiqtm la régreseion trouvée aux Io-n valeur8 de XI ... non<br />

contenues dane la période commune de n années ;<br />

- on a ainsi une nouvelle ebie de N valeurs de Y, plus longue que<br />

la &rie originale de n valeurs, laquelle on peut appliquer<br />

11analyse statistique.<br />

OU BDN - on &ablit un modèle déterministe de transformation pluies-débits<br />

(par exemple hydrogramme unitaire + fonction de ruissellement) ;<br />

- on applique ce modele aux donn&s climatologiques XI ..., et on<br />

procède comme pour lee données reconstitubs par régression.<br />

On doit noter que, ni par une méthode ni par l'autre, on ne :ail;<br />

de transposition ou interpolation gbgraphique. Les modeleis, qu'ils soient<br />

régressionsll ou de structure déterministe, sont appliquh aux bassi116<br />

mêmes pour lesquels ils ont et6 établis.<br />

Le problème du gain d'information se pose dans les deux cas. I1<br />

e~t bien évident qLe le nouvel Qchantilion de n valeurs de X observées<br />

+ N-n valeurs de X calculés n'est pas équivalent, du point de vue quantité<br />

d'information, à un échantillon de N valeurc de X observées, mais '1 un &chan-<br />

tillon de NI valeurs, avec n < Nu < N. Si on a procédé par régressions et<br />

qu'on se soit m angé pour que ces régressions répondent à peu près aux con-<br />

ditions suivantes :<br />

- homsc8aasticit6,<br />

- linéarité,<br />

- distributions marginales n odes, en opérant bei changements<br />

de vexiables ou dea anamorphoeesp le gain d'information, c'est-d-dire la wan-<br />

tit6 NI-n, peut être facilement &du61 en comparant les variance8 des estima-<br />

tiom.<br />

Si on a utili& un modèle d&erministe, cette &elmtian n'est pas<br />

imgdiate. Ii est nécetseaire de rechercher empiriquement la loi des écarts<br />

rkiduels, ou la corrélation entre valeurs obeervbe et vele~~W calculées


42 8<br />

en se baeent ~ u1 lee n ann&s d'obmrvatioiiei conmnme0. il faut dire que bien<br />

souvent on ne fait pas cette remherche et on se psisee de 1*6valuation des in-<br />

tervallee de confiance.<br />

L'avantage du modale déterministe, (notamment de ì'hydrolp.Emime uni-<br />

taira, est de fournir la totalité de l'hydrogramme de amel donc simultané-<br />

ment le débit maximal, le volume ruisselé et la fome. Taiidie que ces Biéments<br />

(au moins débits maximaux et volumes) doivent &re étudiés séparbment par une<br />

méthode strictement 1% régressionet'.<br />

On peut élargir la notion d'extension des données en coneidérant non<br />

plus In totalité de l@échantillon des Xi, mais des ensembles de valeurs de ces<br />

données sélectionnée par des critères statistiques (averse de fr6quence donnée,<br />

par exemple), ou bien cornidbée comme représentant dee situations partidi&-<br />

rement défavorables eu égard au but poursuivi (précipitation maXimale probn-<br />

ble, par exemple).<br />

Cae&<br />

une attitude très répandue, qui correspond bien à la con-<br />

ception moderne des crues de projet. Mais elle ne - J~B pas s- poser quelques<br />

problèmes, ourtout quand on procède par hydrogramme unitaire. h effet, sur<br />

lfenser;ible des v:trLat?s Xi, une seule peut &tre introduite avec sa fréquence.<br />

Supposons qu'on désigne par XI l'averse décennale et qu'on prenne pour X2 ...<br />

X& des valeurs moyennes, ou médianes ; quelle probabilité peut-on attribuer<br />

à la crue obtenue par application du modèle à l'ensemble des Xi ? On convient<br />

souvent que la probabilité de la crue est la même que celle de l'averse.<br />

C'est certainanent faux, mais dans quelle mesure ?<br />

M. Beran, ciana la c odcation qu'il noua soumet IlIltente de ré-<br />

pondre a cette question. La e.ynthèse qu'il propose pour 1'Wdrogmme e& tout<br />

à fait classique. Le choix de l'averse est fait à partir de ia reìation<br />

hauteur-dicrée-fréquence. La distribution des crues obtenues à partir de cette<br />

averse est étudiée par une simulation effectub pour toutes les combinaisons<br />

possibles d'un choix de<br />

- 12 valeurs de 1~ durée de l@averBe,<br />

- 3G 8Ch&~ de hyétogmrmee,<br />

- 12 valeurs d'un indice d'humidité du bassin.


La conclusion de l'autemr eat que, ai l'on utildm dee valeurs<br />

m8dianes pour la durée de Le pluie, la r-ition de celle-ci au esin de<br />

l'averse, le taux d'infiltration, la crue obtenue a une fr6quence voiaine<br />

de celle qui a 6tB choidc pour la hauteur de precipitation. La forme àu<br />

hyéto,p-amme ne semble pas jouer un grand Ale.<br />

429<br />

MM. Kitmaita et Haehimoto 171 exposW?i'au Japon on part de l'ana-<br />

lyse statistique des prboipitations de deux jours pour lee petite bassins,<br />

ou de trois JOWS pour les grands. Lee auteurs attachent une très grande<br />

importance à la distribution de la ?hie à l'intérieur de ces intervalles ;<br />

l'étudc de cette ustribution sat rai'.? AU RB de temps horaire et ibdécri-<br />

vent une méthode d'élaboration du hy6tograrame de projet qui met en jeu un<br />

"facteur d'ag-an disse ment^^ et un hyétogramme dit lfreprésentatifl1 qui n'est<br />

autre qu'un hyétogrme naturel observé lors d'une averse récente. Autrement<br />

dit, on sélectionne une "formea* qu'on applique à la hauteur de pluie déter-<br />

minée par l'analyse statistique.<br />

Pour cette détermination, la période de retour choisie dbend en<br />

fait du type c'e projet et des conditions économiques, sociales et politiques<br />

dans lesquelles il est envisagé. La durée de cette période est de cinq à sent<br />

ans pour un projet d'égout, de vi.?& ans pour un petit bassin urbdn, de<br />

cent rms pow un projet sur une gl


430<br />

se aont tous cantonnb daOs deux aspects particuliers du problème : la trans-<br />

position de l'hydmgramme unitaire et l'utilisation de formules régionales<br />

dbivées de la méthode rationnelle.<br />

Noue rappelerone que, parmi d'autres, on peut considher la méthode<br />

des courbes enveloppes comme une methode de tramposition géographique, quand<br />

elle est assortie d'une "formule de r6gionalisation", come c'eet le cas<br />

pour les abaques de I'ranmu-Rodier (Cahier6 O.R.S.T.O.I., ewe hydrologie).<br />

D'autres méthodee pourront 8tre conatmites H partir du catalogue des crues<br />

exceptionnelles de l'U.N.E.S.C.O., lorsque celui-ci pourra enfin voir le jour.<br />

De tels catalogues, lorsqu'ile comportent dee descriptions sufff-<br />

ates dee cara& Bristiquee climatiques et gbmrphologiquee du baaseiin (sans<br />

toutefoia trop compliquer lee C~OSOE)~ constitueraient par leur sede exis-<br />

tence un outil de tout prender choix pour l'bvaluation dee crues en l'absence<br />

de &m&s insuffisantee. Cseat m8me à vrai dire la seule choae qui actuelle-<br />

ment fasse vrdnent ahfaut.<br />

Rappelons enfin que la transposition des loi8 de distributions des<br />

crues pourrait atre traitée BOU cette rubrique. Nous avons pr8î8i.h en parler<br />

6 propos de l'analyse etatietique,davantage pour uno queetion de m&hodologie<br />

que dans un souci de préeentation logique.<br />

L'hydr-ogranme unitaire paraît $tre encore, malgré ses dé-<br />

tracteurs, un inetment de choix pour l'evaluation des crues mar lee petits<br />

baseins. Noue n'ailone pas ici emtemer une foie de plue une äi~cuseion am<br />

la d6finition de ce derni- terme. Noue amne d6jà parlé de e m utilisation<br />

à un mame batwin, il s'agit maintenant ae voir comment on peut trawposer<br />

lee résuitate.<br />

Cette traaepdition est eseentielle dans la m6thoùologie<br />

ConcermELllt lee cruce dee petit8 bamuins. ûn 88 bute bien qu'il n'est pas<br />

poesible d'entretenir des rbaux de longue dude sur la totalité des petits<br />

bassiris d'un pays. I1 n'est m8me pas toujours possible, pour chaque petit<br />

projet, de mettre en oeuvre sur le bassin correspondant des observations<br />

d'une densité suffisante, pendant une dur& suffieante pur l'application


de l'bydrogrme unitaire au bassin lul-m&ue.<br />

431<br />

Pour lee petits bassins, l'inauffisance, et mbe l'absen-<br />

ce totale de donnbs au lieu d'utilisation, est donc la &gte. La préparation<br />

des données hydrologiques pour les projets consiste donc à échantillonner<br />

un certain nombre de basains, dits reprbentatifs, correepondaat B un nombre<br />

suffisant de conditione climatiques et morphologiques. Ce erant lee résultats<br />

recueillis sur ces baasins qui permettent la mise en oeuvre des différentes<br />

méthodes de trampsition.<br />

H. ~~äier, sa communication [Il] , présente ia mho-<br />

dologie mise en oeuvre par 1'O.R.S.T.O.M. pour les paye tropicaux. Cette mé-<br />

thodologie est bask sur les résultats obtenus par l'exploitation, pendant<br />

des durées égales ou supérieures A trois ans, de plus de lo0 ensembles de<br />

bassins représentatifs. Elle ee rapporte surtout aux zones mahéliemes et<br />

tropicales, mais des résultats sont ¿galement disponible8 pour lea zones dé-<br />

sertiques et pour lee zonee équatoriales.<br />

Les parametree sélectionnés pour représenter la forme de<br />

l%ydrograme eant :<br />

- le temps dû bue (Tb) OU durée du d,esûllment,<br />

- le temps de montée (GI,<br />

- le rapport K du d6bit de pointe au d.bit moyen de lib-<br />

drogranune de ruissellement.<br />

Le volume ruisselé est évalué à partir de la hauteur totale<br />

de l'averee par l'intermédiaire d'un coefficient de ruissellement i$.<br />

L'analyse des rewiltats disponibles a permis de lier les<br />

paramètres %, l& et i à certaines caractéristiques gbamorphologiques du<br />

bassin, soit :<br />

- la Burface du bassin,<br />

- une clame de relief (R) d8terminb A partir d'un indice<br />

-<br />

de pente,<br />

une clame de pennbbilit6 6valub 4 lleetime.


Lee relations sont prkentbee SOUS fome d'abaques. Suivant<br />

l'&umbation ci-deesus, ces abaques ne tiennent pas compte explicitement du<br />

rdle pourtant importaut de la couverture végétale. C'est que, dam les régions<br />

étudiée^, cette couverture v¿&ale abend eaeentielleiacsnt de la zone clima-<br />

tique dane laquelle se t mwe le bmsin. Come les jeux d'abaque eont établis<br />

par Bones climatiques, loensemble tient compte simplicitemciait dea conditions<br />

de végétation. Dane lee cas particuliers, il cmvient au epéciaìiste d'gvaluer<br />

ie ltcoup de pouce" à donner pour tenir compte d'une anomalie de ce8 cmditione.<br />

Le coefficient de fome K est &du6 mivant les zones<br />

climatiques, la eurface du baesin, mu8 forme de tableau.<br />

Les abaques fournissent des valeur6 moyennes de6 parmètres<br />

c,iLL ALI^^..: L. 1x1 ir; q 3vc- 'iverse äécr-~qal-.<br />

ans une communication Is] consacrée e o u t à ilinfìuence<br />

du degré d'urbanisation eur les cme~ des petits bassine, M. Hall propose<br />

une méthode de r6gionalisation des hyärogrmmes unitaires. I1 part d'un hydro-<br />

grme unitaire dimension en utilisant comme paramètre d'khelle des<br />

-- *<br />

le temps 'r retctrd l i (la?). TL est dors exprimé en fonction du<br />

llrapport de bessin" Z O L /p, où 2 e& en km, L est la longueur du cour6<br />

d'eau principal, en km, et S la pente moyenne du cours principal en %.<br />

W. Eelliwell et Chen, dans leur c odcation [4] présen-<br />

tent 6gaìsment une m6thode de traneposition r8gionale b a h ar un bydrogrme<br />

BBPB dimmion. Leur pmblhe e& absolument typique du cbantp dgapplication de<br />

la m6thode de l'bydmgramme unitaire. Les rivières de la colonie de Hong Kong<br />

sont très nombreueee pour un ai pctff territah (1 o00 kd de terres) et la<br />

taille de leure baeeina est hidemuent td6 reduite. Il n'est pas concevable<br />

d'utiliser dane ces conäitions la fermule classique du réseau hydrologique.<br />

Lea hydrologues de Hong Kong ont donc s6lectionub quelques<br />

baseins reprbentatife dont ilpl ont 6tudi6 en détail le comportement hydrolo-<br />

gique. Le8 auteurs dbivent lee mathodee d'analyse utiliekm qui mnt d'ail-<br />

leiir8 trh claesiques, sauf que le pa^ de tamps tde caurt nécesmire (15 am<br />

ou mine) a créé quelques difncuitb par euite de la ree&¿ de6 enregistre-<br />

ments pluviographiquem exploitables. L'hydmgramme aan~ dimension eet obtenu,<br />

comme chez Hail, en multipliant les ordannies par le Lag, en divisant les


abscisses par le h g et Bll r ~ e le ~ tout t un volume unité.<br />

433<br />

L'analyse a conduit, pour chaque baeain btudi6, à un hydro-<br />

graimne unitaire moy'en, dont le tempe de retard (Lag) a 6th mie en relation<br />

avec l'indice L L, /r8, 0ii E est la longueur de la rivière principale, Lc<br />

la distance le long de cette rivière entre l'exutoire et le point le plus<br />

près du centre du bsrasin, 9 la pente moyenne du cour8 principal. Le Ia[:<br />

a été mio auSei en relation avec la siarface du baeain, et cette régression<br />

donne du rede um meilleure corrélation (0,92 contre O,%).<br />

de LI méthode mt;.onnelle.<br />

Touteo les formulee prbentkei par les auteurs sont d&riv&s<br />

EIM. Jarmwathma et Pinkayan dkrivent dana leur rapport [6]<br />

les abthode6 de d cul dee crues utiliebea en Thai'lande pour les petits bas-<br />

si-. Apre6 avoir rappelé la pauvreté dea donnke ditiponiblee dane ce pays,<br />

ils adreseent quelques crítiquea à ia formuìe rationnelle cl as rip^^<br />

Q P C i A et lui préfèrent la fozmule de Mc Math Q p: A C i @/A) "' qui in-<br />

trodult la pente du tasdn.<br />

La codcation de M. Pereira 9 damie entre autres qual-<br />

que8 indíaatione mur i'utilieation de la methode rationnelle au Erbil, notam-<br />

ment den valeurs du coefficient de miesellement. L'auteur y donne &alement<br />

dea rsnseignsme&e Bur le@ tsmpe de retour dOpt68 dane ca, pp d-raE le<br />

type de l*amhgement et l'erivimmemnt, a r l'intensité dee pluies au &&fi,<br />

BUF lea P.W.P.,sur l*eatimation des volumes N imelb à partir deer prkipita-<br />

tio-<br />

en U.R.S.S.,<br />

(fonmile du Soi1 Conservation Service).<br />

d e<br />

M. Sokalov 12 hoque l'emploi de l'hydrogrmme unitaire<br />

fait une place plue large & la méthode rationnelle, ainsi<br />

qu'à des foruniLee empiriques de la forme


434<br />

où sax est le débit maximal spécifique en m 3/s.km 2 , q un paramètre qui exprime<br />

le débit spécifique extrême lorsque la gurface A du bassin tend vers zéro.<br />

C est en fait égal à 1 ; n varie de 0,15 - 0,30 pour une crue de fonte de neige<br />

à O,5 - O,7 pour les crues dues à de violentes averses locales.<br />

M. Won [ 141 expose les méthodes utilisées en République de<br />

Corée. I1 propose une formule qui procède .?i la fois de l'hydrogramme global<br />

(sinon utilitaire) et de la méthode rationnelle :<br />

- = CY A R/T<br />

qo<br />

dans laquelle g, est le débit maximal, qo le débit avant la crue, C un coeffi-<br />

cient de forme de l'hydrogramme, 9 le coefficient de ruissellement moyen, A la<br />

surface du bassin, R la pluie totale, T la durée de la crue. I1 propose d'autres<br />

formules concernant le temps de concentration, la courbe intensité-durée, la<br />

durée critique de la pluie (t =


435<br />

M. Rendon Herrero a choisi, pour sa codcation bo] un eujet<br />

bien particulier. Il s'agit du transport de sédiments en suspension €tudi6<br />

à l'échelle de l'averse. L'auteur met d'abord l'accent sur l'importance des<br />

apports latéraux de sediments (Washload), mitit par l'brosion en nappe (sheet),<br />

soit par le ravinement (gully) par rapport aux dát&iaux du lit mis en jeu<br />

durant le transport. Lee r6sultatcs sont interpr8t6e par des techniques ana-<br />

logues & celles de l'hydrogranmie unitaire (s6dimentopame unitaire). Une<br />

application est faite au bassin de Bixler Run (U.S.A.)<br />

CONCLUSION<br />

I1 eet certes Intbeesant de mettre au point des méthodes d'analyse<br />

de plus en plw bborées pour essayer d'amocher le moina mal possible les<br />

caract6riatiques des crues et des basses eaux, lorsqu'on dispoae de donnbs<br />

rarea ou peu précisoa. Xais il ne faut pas trop se faire d'illueion BUT la<br />

portée réelle de cette tentative, ni oublier que toute la confiance qu'on<br />

peut attribuer d une eetimation rénide dana la quantité d'information , c'est-<br />

&-dire finalement dane la masee et la qualité des donnéee diqmniblee. La com-<br />

titution de cette infomation n'est pai3 te&&, il est faia de dire qu'elle<br />

ne pose plus de probl8mes.<br />

Ea matière de cruet3 par exsmple, ce qui fait le plus défaut danri la<br />

plupart des paye, e out lorsque les rivihs y epnt difficiles, torrentielles<br />

et inetables, c'est une bonne connei~aance des débits dee plus grandes crues<br />

connues. L'organisation d'un service hydrologique efficace n'est pae une petite<br />

affaire : elle demande une grande compbtence, un soin de tous les instants et<br />

une certaine aportivité. Elle demande awai de l'argent et c'eet L4 que rbide<br />

souvent la plus gnrnde difficult).<br />

le<br />

Notse conolwion aera donc que/meiUeur moyen de suppleer d la ca-<br />

rence dee donube hyàrologiques est encore de s'attacher à la Buppremion, ou<br />

tout au moins d la diminution de cette carence.


436<br />

111 - M.A. Bleuw (kglanä)<br />

E.timation <strong>of</strong> dedp floods and the problema <strong>of</strong> equating the<br />

probability <strong>of</strong> rainfall and run<strong>of</strong>f -<br />

R. DAVIS,bCKSTFZN, C. KIISIEL, N. Fo(zEL (U.S.A.)<br />

A decision - theoretic approach to uncertainty in the return<br />

period <strong>of</strong> maximum now volumee using rainfall data -<br />

131 M.J. HALL (U.K.)<br />

Synthetic dthydrograph technique for the design <strong>of</strong> flood<br />

alïepiatlon works in urban areas -<br />

[4] P.R. EEUWIEL, T.H. CEW (~ong-~ozy)<br />

A dimeriPiio<strong>nl</strong>Ess unitgraph for Hong-Kong -<br />

[5] P.E. HERBBT, S. VAN BiLúûN, J.P.J OLMER, J.H. HAIL (South Africa) -<br />

Flood estimation bp determination <strong>of</strong> regional parameters from<br />

limited data -<br />

r<br />

[GI D. JWATHANA, S. PINKAYAN (Thailand)<br />

Practice8 <strong>of</strong> design flood frequency for epiall <strong>Water</strong>eheds in<br />

!l%arland -<br />

171 T. K0IWSITA, T. HAsHuIoTo (Japan)<br />

-<br />

<strong>Design</strong> diecharge derived from design rainXall -<br />

[8] W.N. LEEBE (U.K.)<br />

The um <strong>of</strong> asmoreci data in estimating T - y ~ar floode<br />

-<br />

-<br />

L91 P.P. Pm!uzl?A (Brasil)<br />

Amesment <strong>of</strong> deeign noode in bradl -<br />

Eo] o. RIBIDON mmmo (U.S.A.)<br />

-<br />

A method for<br />

-<br />

the prediction <strong>of</strong> W o a d in certain d l<br />

wateraheäm<br />

FI] J.A. ROD= (fime)<br />

Méthodes utilidee gour l'kaiuation dee dbits<br />

-<br />

de crue des<br />

petits cour6 d'eau en r8gione tmpicalee


[la I A.A. SOICOIDI7 (U.S.S.R.)<br />

Methods for the estimationa <strong>of</strong> meximum dischargea <strong>of</strong> snowmelt<br />

and rainfall water vith inaàequate observational &ta -<br />

Ilq A.M. VLADMIROV, A.1. CHEBOTARGv (U.S.S.R.)<br />

Computation <strong>of</strong> pmbabilietic values <strong>of</strong> lot flow for ungaugeü<br />

rivers -<br />

T.B. WON (Korea)<br />

A study on maximum flood discharge fondee -<br />

437


ESTIMATION OF FLOODS BY MEANS OF THEIR SILT LOADS<br />

ABSTRACT<br />

Modesto Batlle Girona<br />

Dr. Civil Engineer<br />

An empirical and experimental formula <strong>of</strong> very simple<br />

structure is studied, to obtain €he flows <strong>of</strong> maximum floods in<br />

relation to the sediment loads that the floods produce, depen-<br />

ding o<strong>nl</strong>y <strong>of</strong> the maximum size <strong>of</strong> aridities <strong>of</strong> the channel.<br />

This formula can be useful to study also the behaviour <strong>of</strong> the<br />

river bed, alluvial volume, and so on.<br />

Se estudia una fórmula empírica y experimental de es<br />

tructura muy simple, para obtener los caudales de máximas cre-<br />

cidas en función de los arrastres que éstas producen, depen-<br />

diendo Únicamente del tamaño máximo de ’aridos del cauce. Esta<br />

fórmula puede ser Útil también para estudiar el comportamiento<br />

del lecho de los rios, volumen de acarreos, etc.


440<br />

ESTIMATION OF FLOODS BY MEANS OF TIIliIR SILT LOADS<br />

Based on the physical fact that every flood deposits<br />

a mass <strong>of</strong> arids whose maximum cliametres are proportional to<br />

the magnitude <strong>of</strong> the flood, by means <strong>of</strong> a reciprocal process<br />

an attempt was made to find a way <strong>of</strong> estimating tne discharge,<br />

obscrving the silt loads produced,<br />

Accordingly a very simple network formula has been<br />

obtained. In a series <strong>of</strong> 15 tests, the prevision <strong>of</strong> the<br />

maximum floods that have occurred could be made (correspond-<br />

ing to a return period between 100 and 500 years) WITH Ah'<br />

LRKOK bELOW 13%. To do so, one merely has to know the maximum<br />

size <strong>of</strong> the river-bed arids.<br />

Besides being a new instrument to calculate floods,<br />

this formula may, as indicated iii the "Summary" , open up an<br />

interesting field <strong>of</strong> investigation regarding mobility <strong>of</strong> the<br />

river beds, volume <strong>of</strong> bed-loads, etc,<br />

1. - FORMULA f'llOPOSEI3<br />

1.1. WORK SCHEME, -<br />

On the one hand, the maximum silt load diametre<br />

is function <strong>of</strong> the flood Jischargc.<br />

On the other hand, the arids are moved by the<br />

force <strong>of</strong> the silt load, wnicii is proportional to the gradient<br />

arid to tho draft.<br />

Considering the above two factors, a formula was<br />

sought which related the diametre <strong>of</strong> the deposited arid, <strong>with</strong><br />

the draft and gradient. The mathematical deduction <strong>of</strong> this<br />

relation is however inaccessible and a semi-empirical formula<br />

was sought, verifying it and deducting the unknown values <strong>of</strong><br />

same, by neans <strong>of</strong> experimentation.<br />

Once a relation was obtained between the diametre<br />

<strong>of</strong> the arids, tlie.gradiarit aiid the draft, this could be<br />

deducted from the previous ones, thus defining the maximum<br />

level obtained by the flood waters. Since the bed-section<br />

is also known, the discharge <strong>of</strong> the flood which has borne<br />

along the arid through this section, depositing it immediately<br />

downstream, can moreover be obtained.


441<br />

Once the purpose <strong>of</strong> the study was specified,<br />

a formula liad to be proposed which would relate maximum<br />

diametre-draft-gradient. The probing was systematized,<br />

and the proposed formula was verified and as already<br />

mentioned, the unknown coefficients <strong>of</strong> same wcre verified<br />

<strong>with</strong> a series <strong>of</strong> 15 samples or tests. The margin <strong>of</strong> error<br />

obtained was found and compared <strong>with</strong> other existing methods,<br />

The return period <strong>of</strong> the flood-waters calculated <strong>with</strong> the<br />

formula, was sought, defining an inferior limit, The possible<br />

limitations <strong>of</strong> the formula due to the petrography <strong>of</strong> the arids,<br />

the morphology <strong>of</strong> the basins used or the non-existence <strong>of</strong><br />

certain sizes <strong>of</strong> arid, were studicd. Finally, the conclusions<br />

drawn are summarized, All the documentation involvcd in the<br />

tests, regarding diametres <strong>of</strong> arids and drafts observed, was<br />

collected photograpliical ly .<br />

1.2. - MATilEMATIC OBTENTION OF TiíE PROPOSGL) FOIMULA<br />

Une tried to reach a formula, deducing it mathe-<br />

matically from the silt load force equàtions, but the<br />

influence on the larger arids cannot be defined quantitatively,<br />

nor can the protector inter-action which the silt loads <strong>of</strong>fer<br />

between themselves, in the face <strong>of</strong> the dynamic thrust <strong>of</strong> the<br />

current.<br />

Various hypothesis were used, but the subsequent<br />

elaboration did not crystallize into any practical formula.<br />

Ori the other hand, adopting one or another hypothesis as base,<br />

produced inadmissible differences <strong>of</strong> above 100%.<br />

In view <strong>of</strong> the above, it was decided to employ a<br />

semi-empirical formula, Its structure was obtained matliematically<br />

but it has been verified and defined from the experiments made.<br />

1.3. - UL.1)UCING A SEMI-EMPIRICAL FORMULA<br />

To obtain the formula in question, various methods<br />

were applied: a) .- considering the dynamic thrust on the arid;<br />

b).- balancing the silt load forces, The liermanek aiid<br />

Manning formulae were likewise used in one case or the other<br />

to determine the mean velocity,<br />

When using the Manning formula, the possibility was<br />

considered <strong>of</strong> the rugosity <strong>of</strong> the bed 'In" b e in g prop or t i ona 1<br />

to one sixth the power <strong>of</strong> the arid diametre. ïliis is correct<br />

in canals, but ir1 natural beds, the most accepted formulae <strong>of</strong><br />

river hydraulics (Ilermanek, Christen, Wiiikel, etc.) do <strong>with</strong>out<br />

the rugosity or adopt a constant value <strong>of</strong> same.<br />

Equations were reached through different channels,<br />

<strong>with</strong> identical structure:<br />

0b<br />

Ila = -.<br />

u. 1


442<br />

but in which the exponents a and b varied in terms <strong>of</strong><br />

the velocity distribution law, adopted. The degree <strong>of</strong><br />

parabolic speed distribution is normally one seventh,<br />

and it was <strong>with</strong> this value that a arid b were calculated.<br />

The values <strong>of</strong> "a" and "b" were also deduced in the hypo-<br />

thesis <strong>of</strong> supposing a one ninth degree distribution.<br />

ïiie results were:<br />

Degree <strong>of</strong> the speed<br />

distribution parabola 1/9 1/7<br />

E X P O N E N T a b a b<br />

Hermane k 1,28 O,78 1,21 0,71<br />

Manning: n = Cte<br />

Manning: n = Cte 0<br />

10<br />

- Manning: 11 = Lte<br />

Manning: 11 Cte 0 1/6<br />

1,11 0,78 1,OS<br />

1~11 1#11<br />

1,13 1,OO 1,O8<br />

1,13 1,33 1,08<br />

0,72<br />

1#O5<br />

1,OO<br />

1,33<br />

Nevertheless, the empirical<br />

-<br />

formula proposed and<br />

verified <strong>with</strong> tests, was, as will be seen later on:<br />

00,s<br />

. 11<br />

u.i<br />

The formulae obtained in the previous table (where<br />

the later experimental definition <strong>of</strong> B) is required,)<br />

iiave no faithful tradition in the reality <strong>of</strong> the river<br />

beds, as they give different values to those <strong>of</strong> the<br />

said formula where "a" =<br />

The most approximate<br />

In this, m = 7.<br />

1.4, - DLFINITION OF THE PROPOSED FORMULA<br />

The formula we are trying to verify, wkeby on<br />

experimentam obtaining the value <strong>of</strong> B, this value<br />

should be practically constant, was:<br />

1/2<br />

ii = am<br />

13. i


II = Draft expressed in centimetres,<br />

flm = blaximum diametre <strong>of</strong> the arid in centimetres,<br />

i = Gradient<br />

ki = Coefficient to be defined.<br />

44 3<br />

In each test, knowing the draft 11, obtained directly<br />

or from the discharge, in a sector, wliicli was termed "control",<br />

tlie 0 <strong>of</strong> tlie arids deposited in the area, if possible<br />

immedyately downstream <strong>of</strong> same, was defined, calculating:<br />

i/ 2<br />

B = am<br />

li. i<br />

The series <strong>of</strong> 15 tests undertaken, permitted a verification<br />

that coefficient B is almost constant; its value could be<br />

calculated, and at the same time tlie exponent 1/2 <strong>of</strong> 0 was<br />

found to be most suitable.<br />

m<br />

2.- RESULTS OBTAINED, -<br />

2.1. - MET1iOL)OLOGY<br />

First <strong>of</strong> all, a "control section" must be defined. Knowing<br />

the maximum historic flood in a prudential period, the draft<br />

corresporiding to H was calculated in it. This iì <strong>of</strong> the control<br />

section, was in certain cases measured directly after some<br />

important flood, through the traces <strong>of</strong> undergrowth and residues<br />

that the current left in tlie river bed shrubbery 0. The gradient<br />

i <strong>of</strong> the span corresponding to the control section was sought,<br />

and the maximum diametre 0 <strong>of</strong> the arids deposited downstream<br />

in this section was meacurgd. With this information, the<br />

following was calculated: 1/2<br />

B = k'm tl, i<br />

Control Section:<br />

The control section should be sited in stretches <strong>with</strong> as<br />

uniform system as possible. Consider the influence <strong>of</strong> bridges,<br />

etc. The arids should clearly define 6,.<br />

Gradients:<br />

The "i" adopted, is that <strong>of</strong> the stretch from 1 to 1,s kms.,<br />

immediately upstream from the control section, It is obtained<br />

from plan 1:50.000 <strong>of</strong> the Geographic and Cadastral Institute,<br />

rounding <strong>of</strong>f, if iiecessary, the excessive twists in the<br />

longitudinal section.<br />

- Draft:<br />

The "H" draft is measured from the lowest reading <strong>of</strong> tlie<br />

control section,


444<br />

izlaximiim diametre:<br />

The arids probe area for defining Øm will be chosen<br />

downstream the "cnntrol section" and as ncar to this as<br />

possible, so that the sizes observed are effectively the<br />

largest that have passed through this section,<br />

'To define the maximum diainetre, o<strong>nl</strong>y those rounded<br />

or parallel-epipedical shape arids will be suitable , whose<br />

smallest dimension is at least 2/3 (two thirds) the largest<br />

orie, The 0 value will be the mean <strong>of</strong> the largest two<br />

dimensions <strong>of</strong> the arid.<br />

The suitable arids for defining 0 should be found<br />

<strong>with</strong> a minimum density <strong>of</strong> 1 per every pwo square metres.<br />

Uy density, we understand the number <strong>of</strong> units in sight,<br />

per river bed surface, In some cases, this may even drop<br />

to 1 per 4 square metres.<br />

The choice <strong>of</strong> arids on which the 0 is going to be<br />

measured, demands a careful, critical judgement on same,<br />

considering the possibility <strong>of</strong> it coming from the erosioned<br />

sides and not upstream, that they may pertain to demolished<br />

works, or under construction, etc, Certain geological know-<br />

legge <strong>of</strong> the area will always prove most useful. Any kind<br />

<strong>of</strong> rock excepting slate is suitable.<br />

It should be emphasized that in minimum densities ,<br />

relation 2/3 <strong>of</strong> dimensions, etc., a qualitative common sense<br />

should always preside over ali rigorist criterion.<br />

It is important to take photographs <strong>with</strong> scales which<br />

will act as referenee so as to compare the field observations<br />

at the <strong>of</strong>fice.<br />

One must remember that the problem consists in a trans-<br />

port through the control section <strong>of</strong> the arids, which will be<br />

deposited immediately afterwards, and that they may even be<br />

covered by other finer ones, which have settled when the flood<br />

waters dropped.<br />

Qu a 1 i t y :<br />

To have a p;rudeiit judgement <strong>of</strong> the suitability <strong>of</strong> the<br />

tests made, they have been classified into GOOD (G), MEDIUM (M)<br />

and FAIR (F) , in accordance <strong>with</strong> the guarantee deserved by<br />

the definition <strong>of</strong> the data obtained li, am and i.<br />

pemarks :<br />

1.- In low river-bed spans, <strong>with</strong> very slight gradient, it<br />

is <strong>of</strong>ten difficult to define this on plans 1:50.000<br />

and ori a smaller scale, the bottom oscillations are<br />

excessive. In these cases, the river is also usually


very wide, and the transversal section presents siiarp<br />

relative <strong>of</strong>f-levels. In this case, the definition <strong>of</strong> 11<br />

must be closely examined, to avoid falling into errors.<br />

2.- In some cases, owing to the type <strong>of</strong> alluvial terrace<br />

in wliicli the bed is fouiid, the prehistoric and millenary<br />

arids cannot be differentiated from those corresponding<br />

ti1 the latest historic floods.<br />

2.2. KLSULTS OF TIIE TESTS.-<br />

Below, the data i, 1i and id obtained in each test, anci<br />

the resulting value <strong>of</strong> B are given:<br />

Test Nomenclature and Site i 11 0 yual Coeff<br />

;.i O ím) (CH) ity icient b<br />

445<br />

1 K. Llémana at crossroads 0,00822 2,81 18 M 1,84<br />

Main road S,Martfn de<br />

Llémaria<br />

2 R. Llémana in Sta, Afra 0,00590 3,45 19 li 2,13<br />

3 ‘ler in S.Julián de Kamis 0,00725 3,73 29 F 2,OO<br />

4 Ter in S.Julián de Kamis 0,00725 5,63 60 I: 1,90<br />

5<br />

6<br />

Ter in outlet <strong>of</strong> the Dar6<br />

Uñar at crossroads N-II<br />

Madri d - F r an c e li i g hw ay<br />

0,00100<br />

0,00300<br />

7,93<br />

5,42<br />

25<br />

10<br />

F<br />

G<br />

2,OO<br />

1,94<br />

7 R.Uerneda at bridge Riudellots,maximum<br />

flood 0,00237 5,lO 8 G 2,33<br />

8 K.berneda at bridge Riudellots,<br />

flood 11-X-70 0,00237 4,OO 5 G 2,05<br />

9 Tordera in Sai1 Celoni 0,00835 2,52 16 G 1,90<br />

10 Tordera in Tordera 0,00320 2,85 4 G 2,20<br />

11 R. Rifer in San Celoni 0,00120 1,05 7.5 G 2 , 16<br />

12 Corigost in La Carriga 0,00880 2,90 28 M 2,07<br />

13 Cardoner in Manresa 0,00435 4,65 18 G 2,09<br />

14 Llobregat in S.Vicente<br />

de Castellet 0,00345 5,85 22 G 2,32<br />

15 Llobregat in Martorell 0,00209 7,65 10 G 1,98


446<br />

2.3.- VERIFYING THE EXPONENT OF QIm.-<br />

In principle, the value 1 was adopteù as exponent <strong>of</strong> OmD<br />

proposing tiie formula: z<br />

-<br />

0,s<br />

am<br />

li<br />

r<br />

ìiowever, the value 0,s was later esteemed and its worth<br />

confirmed as the tests were made, owing to the scanty dispersion<br />

presented by the values <strong>of</strong> B obtained.<br />

The possibility <strong>of</strong> the dispersion <strong>of</strong> the resulting 13 being<br />

less <strong>with</strong> another exponent , is consequently likely.<br />

dased on the values i, li and 0,,, obtained in the tests, the<br />

b coefficient has been calculated for the following exponents<br />

<strong>of</strong> 0,,,: 0,4ü - 0,45 - 0,50 - 0,55 and 0,67.<br />

,A The typical<br />

E<br />

e<br />

0.55<br />

o<br />

u 0.50<br />

derivations obtained are:<br />

for B = 0, 0140/i H - T = 0,195<br />

for U = 0, i 11 -G = 0,175<br />

for B = 0m H - G = 0,143<br />

for U = 0, li - TT = 0,189<br />

8 0.45<br />

for B = 0, OaU7/i H - o = 0,484<br />

J<br />

0.40..<br />

- Desviación típico<br />

. 0.2 0.3 0.4 0.5<br />

0.35<br />

1 7<br />

0.1<br />

In the figure, the aforementioned results are represented,<br />

and it can be seen how the minimum typical deviation corresponds<br />

to the 0,s thus verifying that this value is the most suitable<br />

as exponent <strong>of</strong> 0,.<br />

2.4 - CALCULATING THE COEFFICIENT U. -<br />

Having obtained the value <strong>of</strong> U for each <strong>of</strong> the 15 tests madc,<br />

what is proposed for the famula in question must be defined.<br />

In order to consider the quality <strong>of</strong> each test in the determination<br />

<strong>of</strong> B, by means <strong>of</strong> a prodent mean, the ones qualified as good<br />

(E) are assigned weight 3, the "mediumtv (M) , are given weight 2,<br />

and the "fair" (F) , weight 1. Tnus we get:<br />

B = 2,08lY2,08


-<br />

The value <strong>of</strong> the coefficient L4 adopted is:<br />

i3 2,08<br />

Whereby the formula proposed will be:<br />

2,08 . i<br />

li = maximum draft in centimetres (see 2.1)<br />

Bm= maximum diametre in centimetres (see 2.1)<br />

i = gradient (see 2.1)<br />

2.5 SIGNIFICATION wrE OF TIE TEST SERIES.-<br />

447<br />

The "signification rate" <strong>of</strong> tlie test series made, or in other<br />

words tlie quality <strong>of</strong> the whole ensemble <strong>of</strong> same and the mean i =<br />

2,08 was obtained. Accordingly, tiic likiliood <strong>of</strong> another value<br />

<strong>of</strong> B, obtained as a result <strong>of</strong> a new series <strong>of</strong> tests, being<br />

<strong>with</strong>in specific limits, was calculated.<br />

- (mean) aiid ';r (typical deviation) be the monthly<br />

characbgigtics <strong>of</strong> the series <strong>of</strong> Values <strong>of</strong> B obtained; tlie number<br />

<strong>of</strong> representative tests is n = 15.<br />

In tiie interval <strong>of</strong> possible values <strong>of</strong> B included between:<br />

cr<br />

and Y + tp .-<br />

if we choose a percentage <strong>of</strong> probability P (ex. p = 1%) where<br />

tiie value <strong>of</strong> the medn U <strong>of</strong> a new series <strong>of</strong> tests is outside these<br />

limits, in the table <strong>of</strong> function <strong>of</strong> Student for this 1% and n-1<br />

= 14 degrees <strong>of</strong> freedom, a value <strong>of</strong> tp is obtained <strong>with</strong> which<br />

the above mentioned "confidence interval" is defined. The<br />

probability p is the "signification level".<br />

-<br />

x = 2,OG; q= 0,143<br />

,* -<br />

- = 0,03823<br />

m<br />

According to tlie Student t8t" function table, we get:


448<br />

sigriification Value <strong>of</strong> tp<br />

Confidence limits<br />

G<br />

level p for 14 degrees t p . m Be 1 ow Above<br />

<strong>of</strong> freedom<br />

i¿-tp.m G - X*tp.fl=$y o-<br />

~~~~~ ~<br />

__ -~ ~~~~~<br />

0,l % 4,140 0,16 1,90 2,22<br />

1,o % 2,977 1,11 1,95 2,17<br />

2,o % 2,624 0,lO 1,96 2,16<br />

5,o % 2,145 0,08 1,98 2,13<br />

Thus, the probability that the mean <strong>of</strong> a new test series<br />

is between 1,95 and 2,17 is 99%.<br />

Let us set this conclusion out in terms more befitting<br />

our problem.<br />

The confidence interval between 1,95 and 2,17 admits a<br />

possibility below 1 %, that the 13 obtained in a new series is<br />

1,95; this represents a discrepancy <strong>of</strong> 0,11 in respect <strong>of</strong> the<br />

mean <strong>of</strong> 2,OG <strong>of</strong> the experimented series.<br />

This difference <strong>of</strong> 0,11 means an error <strong>of</strong><br />

o 11 I<br />

2,06 *'Oo' = 5B3 %<br />

in the appreciation <strong>of</strong> the drafts. Let us see how much this is<br />

?illen translated into flood water discharges:<br />

and if the section is approximately rectangular T I1 , Whereby:<br />

Ob7' i1l2,ki.b = 0,34 b.i 1/2 , 1i1,75<br />

Qi = 0,34 li ,<br />

Thus an erro,,i2 draft <strong>of</strong> 5,3% multiplies the discharge<br />

obtained by 1,053 = 1,095 which means an error <strong>of</strong> 9,5%.<br />

Therefore, the quality <strong>of</strong> the series <strong>of</strong> tests made and<br />

consequently that <strong>of</strong> the B value adopted, can be defined as<br />

follows:<br />

The probability<br />

-<br />

that in a new series <strong>of</strong> tests, the value<br />

<strong>of</strong> B defined for the formula proposed means an error in the<br />

determination <strong>of</strong> discharges, below 9,5%, in respect <strong>of</strong> those<br />

obtained <strong>with</strong> B 2,08, is 99%.


2.6. - MAXIMUM ERROR AND COMPARISON WITH OTIIER METIfODS. -<br />

In practice, to determine the maximum historic flood,<br />

applying the proposed formula, a certain number <strong>of</strong> tests<br />

should be made in certain other control sections <strong>of</strong> the bed,<br />

and finally obtain a mean, In this way, the inevitable errors<br />

and discrepances will be compensated for, and which will take<br />

place on defining the gradient (i) and in particular the<br />

maximum diametre (e,) <strong>with</strong> which to enter into the formula.<br />

The number <strong>of</strong> verifications will depend on the exactness<br />

to be obtained, and on common sense, in face <strong>of</strong> the data<br />

defined in each "control section". On an average, four tests<br />

may prove sufficient.<br />

Supposing that all the tests made correspond to a same<br />

bed, we can find the maximum possible error by mixing<br />

together the results <strong>of</strong> the whole series.<br />

The five tests <strong>with</strong> highest B values are 2,33<br />

2,20 -2,16 - - 2,32 -<br />

2,13; the mean is B 02~23.<br />

Similarly, the 5 tests <strong>with</strong> lowest B values are 1,90 -<br />

1,34 - 1,98 - 2,OS - 2,09; the mean is B = 1,99.<br />

In both series, those tests classed as "medium" (M) and<br />

"fair" (F) have been omitted,<br />

The difference between these means and the value B = 2,08<br />

<strong>of</strong> the formula is:<br />

2,23 - 2,08 a 0,15<br />

2,08 - 1,99 = 0,09<br />

Considering the most unfavourable case where the tests<br />

have given the 5 highest values <strong>of</strong> 8, whereby their mean would<br />

be B = 2,23 instead <strong>of</strong> U = 2,08, this means an error in draft<br />

appreciation <strong>of</strong> ;.tW O 15 .lo0 = 7.2%.<br />

-<br />

As seen in 2.5, this indicates that the real discharge<br />

has been multiplied by:<br />

1 , 0 7 2 ~ ~ 1,129 ~ ~ 1,13<br />

which means a 13% error,<br />

To conclude: THE MAXIMUM ERROR OBTAINED ~ViiliN ESTIMATING<br />

'ï1ii.i IIISTORIC FLOOD DISCHARGE, ACCORDING TO VERIFICATIONS MADG<br />

WITH THE PROPOSED FORMULA, IS 13%.<br />

Other calculation methods:<br />

Wit11 t h statistical method, the errors for return periods<br />

449


450<br />

above 50 years, may be around 20 to 3090.<br />

Specifically in the floods study <strong>of</strong> the Congost river<br />

made at the liydrographic Confederation <strong>of</strong> tlie East Pyrenees ,<br />

by the Measurerncnts Service, using the historia method, and<br />

for a 50 year return period, a discharge <strong>of</strong> 160 m3./sec. is<br />

obtained <strong>with</strong> the Gumbel method and 135 rn3./sec. <strong>with</strong> another<br />

law <strong>of</strong> distribution, which means a difference <strong>of</strong> 20% between<br />

iaoth methods. Applying the tational method to the same study,<br />

biie gets a discharge <strong>of</strong> 305 m3./sec. for the same return period.<br />

2.7. - RETURN PERIOD<br />

The return period <strong>of</strong> the floods <strong>of</strong> the various tests<br />

was also studied, to try and relate it <strong>with</strong> the discharges<br />

foreseen <strong>with</strong> the formula, and at least obtain a lower limit<br />

<strong>of</strong> samc.<br />

The return period <strong>of</strong> the floods for which the formula<br />

has been verified is:<br />

Test 1 -----__----_-_- 400 years<br />

Test 2 -------_-_---_- 400 years<br />

Test 3 -_----_----_--- 95 years<br />

Test 4 --------------- 95 years<br />

Test 5 --_------_---_- 95 years<br />

Test 7 -_------------- >70 years<br />

Test 8 -__------_----- >70 years<br />

Test 9 ---------_----- 90 years<br />

Test Il--------------- 1000 years<br />

Test 12--------------- 160 years<br />

Test 13--------------- 180 years<br />

Test 14--------------- 180 years<br />

Test IS--------------- 180 years<br />

In face <strong>of</strong> these figures, it would appear that the lower<br />

limit <strong>of</strong> tlie return period is 100 years,<br />

ilowever, it must be remembered that this conclusion is<br />

based on a series <strong>of</strong> i3 tests.<br />

As indicated in 2.8, the influence <strong>of</strong> wear throughout time<br />

is very scarce and does not change the return period <strong>of</strong> the<br />

floodwaters,<br />

It can therefore be said that the fbod obtained generally<br />

has a return period between 100 and 500 years.


2.3. - STUDY OF TIIE POSSIBLE LIMITATIONS<br />

Due to the petrography <strong>of</strong> the arids observed and their<br />

possible erosion:<br />

There is a possibility that the determination <strong>of</strong> the<br />

maximum diametre d has o<strong>nl</strong>y been made <strong>with</strong> certain rock<br />

types, as the othefs were excessively worn by the erosion,<br />

If this has occurred, in other areas where there are no<br />

arids <strong>of</strong> the most resistent types, false results <strong>of</strong> 0,<br />

could be obtained,<br />

To approach this problem, the petrographic classification<br />

<strong>of</strong> the arids was made, based on the photos obtained<br />

in the determination <strong>of</strong> the 0, <strong>of</strong> cach test, and which<br />

defined 0, <strong>with</strong> the following symbolics:<br />

A - Sandstone Co - Conglomerates Gn - gnes<br />

B - Basalts G - Granite and P - Slate<br />

C - Limestone<br />

eruptive rock Q - Quarzite<br />

The types <strong>of</strong> arid used in cach determination <strong>of</strong> the Ibrn<br />

were:<br />

451<br />

‘rest 6 ------------ 2A + 2G + 3Q<br />

Test 7 ------------- A + B + 2Co+ G + P + Q<br />

Test 8 ------------ 3B + 2G<br />

Test lo------------ (2A + B + CO + 2G * 34<br />

(A + B + G + 4Gn + 2A.<br />

Test Il------------ íG + 34<br />

(3A + 44<br />

Test 12- - - - - - - - - - - - 2A + 2G + Cn + 2q<br />

Test IS------------ SA + 2C + 2G + 3Gn + Q<br />

Test 14------------ 2A + 4C<br />

Test 15------------ SA + 14C + 24<br />

Test lb------------ (2A + 2C + Gn<br />

(2C + P<br />

Making a tctal used <strong>of</strong>: 26A + 13U + 32C + 3Co + 16G +<br />

+ 9Gn + 22Q<br />

In view <strong>of</strong> the above results! evidently the rock type<br />

does not influence the determination <strong>of</strong> the diametre, since<br />

all the classes appear as maximum arids (8 ) in considerable<br />

number (except the slates which will be dipcussed below) and<br />

it can therefore be supposed that the erosion, for the effects<br />

<strong>of</strong> the method adopted whep determining the 0, iii a way affects<br />

any type <strong>of</strong> mtk.


452<br />

This is because these arids are not from the bed downstream<br />

and they consequently o<strong>nl</strong>y suffer the effects <strong>of</strong> the river<br />

erosion <strong>with</strong> high waters or normal flooding, which take place<br />

intermittently arid not very frequently. On the other hand, the<br />

large adjustment obtained in the value <strong>of</strong> B makes one suppose<br />

the influence <strong>of</strong> the erosion in tlie various arids could not be<br />

important.<br />

It must however be emphasized tiiat the slate, as definers<br />

<strong>of</strong> tlie 0 o<strong>nl</strong>y appear twice, as a logical consequence <strong>of</strong> their<br />

greater tensitivity to the environment, as is deduced from the<br />

above table. For this reason, what lias been said in the above<br />

two paragraphs cannot be applied to the slate arids.<br />

We can consequently say that the definition <strong>of</strong> Om, is<br />

independent <strong>of</strong> the arid petrography except in the case <strong>of</strong> slates,<br />

which should not be used for the determination.<br />

ihe to the region studied:<br />

All the tests made have been in the provinces <strong>of</strong> Barcelona<br />

and Gerona. Therefore extrapolation to another type <strong>of</strong> basin<br />

could present doubts,<br />

In the enclosed table , the chief geographic characteristics<br />

<strong>of</strong> the tested basins are indicated.<br />

However, it should be stressed that the o<strong>nl</strong>y thing that<br />

can change the validness <strong>of</strong> the proposed formula, is the arid<br />

which defines 0, and according to the above paragraph, it has<br />

been considered that the formula is valid for any type <strong>of</strong><br />

rock (except slate).<br />

On the other hand, although not definite, it is most<br />

significant that in a later test made in the Guaro river <strong>of</strong><br />

tlie basin in Southern Spain, near Vélez-Malaga, the value <strong>of</strong><br />

the U coefficient obtained is:<br />

-<br />

B = 2,14<br />

whereas that adopted is B 2,08 which reprecents a 3% error.<br />

Although not conclusive, this result opeiis up a hopeful field,<br />

awaiting an extension <strong>of</strong> the tests to other regions.<br />

üue to the lack <strong>of</strong> arids:<br />

Thecase may arise <strong>of</strong> there being no arids <strong>of</strong> a diametre<br />

superior to a certain size, as they do not exist in the bed or<br />

because they are retained by some dam or weir. The lack <strong>of</strong> such<br />

arids does not produce any change since the floods correct the<br />

gradient <strong>of</strong> the river according to the existing sizes. In short<br />

stretches where the local effect <strong>of</strong> a weir modifies tlie gradient,<br />

this should be taken into account,<br />

b


The formula should be applied to river-beds whose<br />

possible mobile bottom during the flood later permits the maximum<br />

arids deposited by the flood peak to be discovered.<br />

If a mobile bottom <strong>of</strong> considerable thickness is produced,<br />

by means <strong>of</strong> burrows, the thickest deposits made by the flood<br />

peak should be reached, aiid if the sediment thickness is very<br />

important , the gradient adopted should be corrected. However ,<br />

none <strong>of</strong> this kind have been experienced in the tests.<br />

453


O<br />

4<br />

+J<br />

VI<br />

P,<br />

E-<br />

t.4<br />

o><br />

><br />

.FI<br />

d<br />

x<br />

+J<br />

.rl<br />

rl<br />

O<br />

U<br />

a<br />

a<br />

fl<br />

3<br />

d<br />

0<br />

3-<br />

V<br />

+<br />

45


3.- SUMMARY<br />

To obtain the draft (H) that has been produced in the<br />

maximum historic floods, knowing the size <strong>of</strong> the arids (Om)<br />

which may have been hauled along by this flood-water,<br />

across a section termed "control", and the bed gradient (li)<br />

the following formula is proposed:<br />

o, 5<br />

which should be experimentally checked when the coefficient<br />

U is defined.<br />

455<br />

The above formula could not be obtained mathematically;<br />

The most reached expressions <strong>of</strong> type:<br />

- the one nearest the proposed one is that where a 1<br />

0,67.<br />

and b =<br />

To define U, a series <strong>of</strong> 15 tests was made, obtaining<br />

B = 2,08.<br />

There was a possibility <strong>of</strong> the proposed formula not being<br />

correct, which would occur if the value <strong>of</strong> B obtained in the<br />

tests was variable. However these values ali varied around 2,33<br />

and 1,84. The typical deviation <strong>of</strong> the series was = 0,143,<br />

The series also helped to contrast the favourability <strong>of</strong> the<br />

exponent <strong>of</strong> 0, since the 0,s produces the minimum typical<br />

.devi at i on.<br />

The "signification level" <strong>of</strong> the mean <strong>of</strong> the series <strong>of</strong><br />

tests made, corresponding to the "confidence interval" between<br />

B = 1,95 and B = 2,17, is 99%. Expressed in other terms, it<br />

means that the l ikgmd <strong>of</strong> another value <strong>of</strong> B, defined by a<br />

new series <strong>of</strong> tests, having ari error in obtaining discharges,<br />

less than 9,5% (regarding those obtained <strong>with</strong> B = 2,08) is 99%.<br />

THE MAXIMUM ERROR IN DETERMINING DISCHARGES, ACCORDING TO<br />

TIIE SERIES OF 15 TESTS, IS 13%.<br />

The formula proposed is therefore:<br />

O m a ~ 5<br />

li =<br />

2,08.i<br />

li - Draft <strong>of</strong> the maximum historic flood in crns. defined<br />

according to 2.1.<br />

0,- Maximum diametre <strong>of</strong> the arid in crns. defined according to 2.1.


456<br />

i - Gradient <strong>of</strong> the bed, defined according to 2.1.<br />

2,08 - Coefficient <strong>with</strong> dimensions L<br />

-l/Z<br />

,<br />

Tlie methodology to define these figures is indicated<br />

in greater detail in 2.1.<br />

The return periods <strong>of</strong> the floodwaters estimated <strong>with</strong><br />

the formula are generally between 100 and 500 years,<br />

The control section is that in which i, II and the<br />

silt loads Ibm which have crossed it, are defined.<br />

In the river bed, whose discharge one wishes to define,<br />

a series <strong>of</strong> tests will be made in accordance <strong>with</strong> the<br />

precise ùegree <strong>of</strong> exactitude, and the guarantee that the data Bm<br />

and i <strong>of</strong>fer. An acceptable number may be four.<br />

The formula is valid for any type <strong>of</strong> arid, except the<br />

slates which should not be used to define firn.<br />

Tlie formula was applied to beds whose mobile bottom<br />

during the flood was sufficiently scarce to permit the<br />

maximum arids deposited by the flood peak to be later dis-<br />

covered. If this mobile bottom leaves the arids correspond-<br />

ing to the maximum discharge hidden, by the smaller arids,<br />

work may be done as indicated in 2.8, but in this study it<br />

was not necessary to experiment <strong>with</strong> buried arids.<br />

The 15 tests were made on the Catalan slope, The formula<br />

also appears acceptable in other regions, but it has o<strong>nl</strong>y<br />

been verified <strong>with</strong> a test in Malaga.<br />

This study does not pretend to have exhausted the<br />

subject, but merely initiatesa new field <strong>of</strong> operations.<br />

The series <strong>of</strong> tests can be expanded, The value <strong>of</strong> B can<br />

be adjusted more in accordance <strong>with</strong> the variations <strong>of</strong> am<br />

and i. The case <strong>of</strong> bed <strong>with</strong> far thicker mobile bottoms<br />

may be studied , during the flood as indicated in 2.8, analysing<br />

the buried arids. The observation <strong>of</strong> the arids need not<br />

be restricted to the surface, By means <strong>of</strong> burrows the<br />

diametres <strong>of</strong> the arids <strong>of</strong> the lower layers can be obtained,<br />

thus extending the period studied. It may be used to measure<br />

floods, previously photographing a panorama <strong>of</strong> the river bed<br />

arids, <strong>with</strong> sufficient detail and after the flood water to<br />

be studied, <strong>with</strong> another new photograph, establish the size<br />

<strong>of</strong> the silt loads contributed by it. The dimensioning <strong>of</strong> the<br />

protection rockfills <strong>of</strong> the river bed is defined <strong>with</strong> the<br />

proposed formula arid for the slopes, the pertinent corrections<br />

need merely be made, In terms <strong>of</strong> the draft <strong>of</strong> each flood,<br />

the silt laden arids cari be foreseen and <strong>with</strong> the granulometries<br />

<strong>of</strong> the bed, the sedimentation volume can be defined.<br />

The longitudinal section can be studied in terms <strong>of</strong> the


ADDITIONAL NOTE: Afìer the present doctoral thesis was<br />

approved, the author continued making a series <strong>of</strong> tests<br />

in various points in Spain, obtaining the following results:<br />

1. - Guadalquivir basin (Jacsi)<br />

-Kiver Guadalbullón in Mengibar; B -<br />

2.- Ebro basin (Calatayud)<br />

-River Jalón in Cetina;<br />

3.- Ebro basin (Calatayud)<br />

-River Jalón in Ateca;<br />

2,lO<br />

u<br />

-<br />

2,lO<br />

B 2,lS<br />

As can be seen, these values, added to the one obtained<br />

in the basin in the South <strong>of</strong> Spain (Malaga) in the river<br />

Velez Guaro, <strong>with</strong> B = 2,14, make solidly based hopes arise<br />

that the formula is applicable for all types <strong>of</strong> basins.<br />

At the same time, it brings the number <strong>of</strong> tests made<br />

up to 19, verifying the proposed formula,<br />

457


458


ESTIMATION OF DESIGN FLOODS AND THE PROBLEM OF EQUATING THE PROBA-<br />

BILITY OF RAINFALL AND RUNOFF<br />

M.A. Beran<br />

Floods Stuies Team, Institute <strong>of</strong> <strong>Hydrology</strong>, Wallingford, Berkshire,<br />

England.<br />

ABSTRACT<br />

Where data on river discharge are scarce it is a common engi-<br />

neering design practise to concoct a design flood <strong>with</strong> the aid <strong>of</strong><br />

rainfall depth-duration-frequency information and a catchment res-<br />

ponse model. Two major waknesses <strong>of</strong> this approach are (.a) the pro-<br />

blem <strong>of</strong> the sensitivity <strong>of</strong> the design to legitimate changes in the<br />

design assumptions and (b) the uncertainty <strong>of</strong> preserving the nomi-<br />

nal rainfall return period in the design flood. A solution to the-<br />

se problems is proposed which makes use <strong>of</strong> a computer simulation<br />

investigating the sensitivity <strong>of</strong> flood magnitude to variations in<br />

return period, storm duration, temporal rainfall intensity pattern,<br />

infiltration loss rate, base flow and unit hydrograph shape. An es<br />

tension to the sensitivity analysis allows an estimate to be made<br />

<strong>of</strong> any quantile <strong>of</strong> the distribution <strong>of</strong> flood magnitude based on<br />

sampling across all causative rainfall and antecedent conditions.<br />

RESUME<br />

El est courant, lorsque les données sur les débits sont insuf<br />

fisantes, que l'ingénieuc élabore la crue de projet 'a partir de<br />

l'information qu'il possede sur la distribution des pluies, en uti<br />

lisant un modèle de transformation pluies-débits. Les deux inconvk<br />

nients majeurs de ce procédé concernent (a) la sensibilité de l'am$<br />

nagement a la variation des paramètres du projet, (b) la conserva-<br />

tion de la période de Tetour (ou de la probabilité) lorsqu'on passe<br />

de la ptuie de projet a la crue de projet. L'auteur propose une so<br />

lution a ces problèmes, en utilisant une simulation pour recher-<br />

cher la sensibilité de la grandeur de la crue aux variations de la<br />

période de retour, de la durée de l'averse, de la configuration du<br />

hyétogramme, de la capacité d'infiltration, du débit de base, de<br />

la forme de l'hydrogramme unitaire. Une extension de cette analyse<br />

de la sensibilité permet d'estimer n'importe quelle quantité de la<br />

distribution des crues, en se basant sur un échantillonnage des<br />

pluies et des conditions antécédentes.


460<br />

3 . INTRODUCTION.<br />

Modern engineercg pract


2. THE SAMPLING PROCEDURE.<br />

461<br />

The procedure follows closely the steps used to estimate the design flood.<br />

(a)<br />

(b)<br />

(c)<br />

Determine a nominal return period<br />

Choose a storm duration and calculate the total depth <strong>of</strong><br />

rainfall from the depth-durat ion-frequency relationship.<br />

Distribute the total rainfall <strong>with</strong>in the duration to form<br />

the gross rainfall hyetograph.<br />

(d) Subtract from this an infiltration loss to form the net<br />

rainfall hyet ograph.<br />

(e)<br />

(f)<br />

Convolute the net rainfall hyetograph <strong>with</strong> the unit hydro-<br />

graph to form the design inflow hydrograph.<br />

Process the inflow hydrograph and extract the particular<br />

flood magnitude measure <strong>of</strong> interest.<br />

In practical engineering application an arbitrary single choice is made at each<br />

step (a) to (f); in the procedure described in this paper, however, the choice<br />

is made from a selection <strong>of</strong> possible values, each one <strong>with</strong> a frequency proport-<br />

ional to its probability <strong>of</strong> occurrence. Figure 1 illustrates the procedure as a<br />

tree diagram on which the "single choice" method would be represented by a single<br />

pat h.<br />

As implied in figure 1 the continuous distributions <strong>of</strong> variables such as<br />

rainfall duration are "discretized" so that each variable is made to assume o<strong>nl</strong>y<br />

one <strong>of</strong> a finite number <strong>of</strong> possible values to each <strong>of</strong> which a probability weight<br />

is attached. Twelve values <strong>of</strong> duration, 36 temporal intensity patterns and 12<br />

values <strong>of</strong> catchment wetness index (Cm .- and index <strong>of</strong> antecedent conditions<br />

governing infiltration loss and base flow) are used. In a separate study to<br />

provide rainfall information (Appendix 1) no dependences were noted between the<br />

rainfall variables and this assumption was made throughout the simulation. This<br />

means that the weights associated <strong>with</strong> each sampled variable value was itself<br />

invariable; for example the weights associated <strong>with</strong> each <strong>of</strong> the 12 CWI values is<br />

the same for 3 hour as for 48 hour duration storms. This particular consequence<br />

might represent some departure from actuality as, in the United Kingdom, both<br />

are seasonable variables.<br />

However assuming independence and discretizing allowed considerable simpli-<br />

fication in the programming and allowed the associated weights <strong>of</strong> each <strong>of</strong> the<br />

12 x 12 x 36 combinations to be calculated from the product <strong>of</strong> the weights <strong>of</strong><br />

each <strong>of</strong> the contributing variables. This product weight is associated <strong>with</strong> the<br />

flood magnitude in calculating statistics or assembling data into histograms.<br />

To summarise, let pi be the weigM(or probability) <strong>of</strong> the ith duration,<br />

Di ; let qj be the weight (or probability) <strong>of</strong> the jth hyetograph distribution,


462<br />

Hj; let rK be the weight (or probability) <strong>of</strong> the kth CWI, CK; and let QijK<br />

be the flood magnitude resulting from the combination <strong>of</strong> Di , Hj and Cu. Then<br />

under the assumption <strong>of</strong> independence the weight or probability to be associated<br />

<strong>with</strong> QijK is Wijk = pi qj rn and the expected flood magnitude is calculated from<br />

B E pi qjrn Qi~n , while the mean flood magnitude following al1 storms <strong>of</strong> say<br />

Fh'e fourth duration is calculated from E C W Qijh (Figures 2A and 2B).<br />

j K 41~<br />

Table 1 shows the results <strong>of</strong> the simulation for the IO -year return-period<br />

at Burbage and Grendon. The contingent distributions show the effect <strong>of</strong> different<br />

assumed values on the peak discharge. One noticeable result is that changes to<br />

the rainfall variables have small effect on the average peak discharge showing<br />

that the design flood would be insensitive to variations in hyetograph pattern<br />

or storm duration. This is not to say that floods resulting from storms following<br />

particular combinations <strong>of</strong> duration and hyetograph pattern cannot be found that<br />

depart from the average, but as can be seen from the low standard deviations <strong>of</strong><br />

peaks contingent on chosen CWI values centrally chosen rainfall variables will<br />

introduce little bias into the design flood. It has been found that this same<br />

effect is even more marked when the measure <strong>of</strong> flooding being investigated<br />

involves seme element <strong>of</strong> storage.<br />

On the other hand, small changes in the CWI have a marked effect on the<br />

resulting flood. It happens that a CWI value chosen to be near the median <strong>of</strong> the<br />

distribution <strong>of</strong> CWI would have yielded a peak discharge o<strong>nl</strong>y 5% in excess <strong>of</strong> the<br />

expected flood.<br />

Figure 3 shows some <strong>of</strong> the histograms <strong>of</strong> flood peaks following the 100-year<br />

storm. These are noticeably negatively skewed and the modal value is typically<br />

20% to 30% in excess <strong>of</strong> the mean. The inference from this is that a single choice<br />

<strong>of</strong> each <strong>of</strong> the variables is likely to yield a flood that exceeds the average flood.<br />

The sharpness <strong>of</strong> the histograms contingent upon CWI and the discrete sampling is<br />

responsible for the spikey nature <strong>of</strong> the other histograms.<br />

3. RAINFALL AND DISCHARGE DISTRIBUTIONS.<br />

It had been noted in Section 2 and Figure 3 that the probability distribu-<br />

tion <strong>of</strong> floods following rainfalls <strong>of</strong> fixed return period is negatively skewed.<br />

One might anticipate from this that T-year return-period storms tend on average<br />

to give rise to more floods <strong>with</strong> return period less than T-years than floods <strong>of</strong><br />

return period greater than T-years.<br />

To test this and to derive the flood distribution the simulation was gener-<br />

alised to sample the distribution <strong>of</strong> storm depths. Instead <strong>of</strong> sampling o<strong>nl</strong>y<br />

storms <strong>of</strong> depth and duration such as lie on a line <strong>of</strong> equal return period the<br />

sampling is now conducted across all combinations <strong>of</strong> storm depth and duration.<br />

The depth-duration-frequency is again used in order to calculate the probability<br />

<strong>of</strong> occurrence <strong>of</strong> any combination (Figure 2C).<br />

Figure 4 shows a comparison between the flood frequency relation as derived


463<br />

from the two simulations and from recorded flood peaks. In the case <strong>of</strong> Grendon<br />

Underwood there is an apparent tendency for the simulated relation to underestimate<br />

the flood discharge based on the recorded peaks. although independent<br />

evidence from regional analyses has suggested that the distribution as estimated<br />

from the six o<strong>nl</strong>y annual maxima would overestimate floods quite severely. However<br />

the agreement <strong>with</strong> Burbage Brook, a small upland catchment in the Derbyshire<br />

pennines <strong>with</strong> 43 years <strong>of</strong> data, is rather better. At small return periods the<br />

generalised simulation produced lower flood values than the expected flood<br />

following storms <strong>of</strong> that same return period.<br />

4. CONCLUSIONS.<br />

A technique has been described whereby the solution <strong>of</strong> several problems<br />

pertinent to hydrological design in regions <strong>of</strong> inadequate data may be approached.<br />

In particular, the sensitivity <strong>of</strong> the design flood to design assumptions can be<br />

assessed. Experience <strong>with</strong> the technique suggests that the size <strong>of</strong> the flood is<br />

determined more by the total depth <strong>of</strong> the rainfall than by its temporal distribu-<br />

tion through the storm's duration. Correct choice <strong>of</strong> loss rate is in consequence<br />

most important.<br />

It appears that median values <strong>of</strong> duration, temporal distribution and loss<br />

rate yield a design flood not far removed from the overall average flood follow-<br />

ing the T-year storm. Because <strong>of</strong> the skewed nature <strong>of</strong> the flood distribution a<br />

random choice <strong>of</strong> duration etc. would be more likely to yield a design flood<br />

rather larger than the overall average.<br />

The ability <strong>of</strong> the technique to reproduce tolerably well the flood magni-<br />

tude frequency relation could be <strong>of</strong> very great value at a site where flow data<br />

are scarce, whilst even at a well-endowed location the simulation result may be<br />

used <strong>with</strong> pr<strong>of</strong>it to augment the flow record.<br />

While attention has been concentrated on peak discharge as the measure <strong>of</strong><br />

flooding it should be emphasized that the technique is suited to more complex<br />

design criteria. The hydrograph may be treated as an inflow and routed through<br />

the scheme and so the actual design criteria <strong>of</strong> interest mqr be calculated.<br />

Examples are:-<br />

(a) volume between inflow and outflow hydrographs for reservoir<br />

freeboard design; (b) time to peak for a flood warning scheme; (c) volume over<br />

a threshold level for a levee design.<br />

The technique may also be adopted to use an entirely different catchment<br />

response model such as that inherent in the rational formula, a multiple<br />

regression equation or conceptual model although it can be expected that the<br />

data requirements will be rather different from those <strong>of</strong> this investigation.<br />

5. FUTURF RESEARCH.<br />

The simulation appears promising as a tool for assessing the sensitivity <strong>of</strong><br />

design floods to variations in their causative factors and in estimating the<br />

magnitude-frequency relationship for small return periods. However the technique<br />

has not succeeded in reproducing the observed rapid growth in flood discharge<br />

<strong>with</strong> increasing return period and it is here that further research is being


464<br />

direct ed.<br />

It is felt that the disparity between the definition <strong>of</strong> storms used to<br />

determine the distribution <strong>of</strong> depth and duration (Appendix A - Introduction)<br />

could be responsible for the "slow" growth and so long term autographic rainfall<br />

records are to be. analysed to provide information on the distribution <strong>of</strong> the type<br />

<strong>of</strong> storm used for the duration statistics.<br />

Further investigation into dependencies between the variables could produce<br />

results wkich would affect the aiscñarge distribution. For example seasonal simulation<br />

would reduce the coincidence <strong>of</strong> winter storm types <strong>with</strong> low summer CWI's<br />

and vice versa.<br />

The dependence <strong>of</strong> CWI on losses and base flow is essentially statistical<br />

and this source <strong>of</strong> variability could be preserved fn the simulation by the addition<br />

<strong>of</strong> a random quantity to the values predicted from the best fit lines.<br />

6. ACKNOWLEDGEMENTS.<br />

Although few references have been cited the labours and opinions <strong>of</strong> others<br />

have played no small part in the development <strong>of</strong> the procedure. Colleagues and<br />

consultants <strong>of</strong> the United Kingam Floods Studies Team Dr. J.Y. Sutcliffe,<br />

Pr<strong>of</strong>essor J.E. Nash, Mr. M.J. Lowing, Mr. C. Cunnane, Mr. R.T. Clarke and<br />

Mr. A.F. Jenkinson have all provided advice and encouragement. Mrs. J. Haworth<br />

was responsible for the FORTFAN computer program and the numerical experiments<br />

were run on the ICL 1906A <strong>of</strong> the Science Research Council's computing laboratory.<br />

7. REFERENCES.<br />

1.<br />

2.<br />

3.<br />

4.<br />

5.<br />

6.<br />

NASH,J.E. ; "Frequency <strong>of</strong> discharges from ungauged catchments".<br />

Trans.A.G.U. , Vol. 37, No. 6, December 1956.<br />

CHOW,V.T. and RAMASESHAN,S. ; "Sequential generation <strong>of</strong> rainfall and<br />

run<strong>of</strong>f data". Proc. A.S.C.E., Journ. Hyd. Div. , Vol. 9, HY4, July 1965.<br />

EVANS,T. ; "River Eden flood relief studies". Feasibility report by<br />

Sir M. Macdonald and Partners for Kent River Authority. Chapter 4,<br />

September 1971.<br />

DYCK,S. and KLUGE,C. ; "Investigations on the structure <strong>of</strong> frequency<br />

distributions <strong>of</strong> floods". I.A.S.H. Warsaw, Vol. 3 , July 1971.<br />

EAGLESON,P.S. ; "The dynamics <strong>of</strong> flood frequency". Trans. A.G.U.,<br />

<strong>Water</strong> Resour. Res..Vol. 8, No. 4, November 1972.<br />

LECLERC , G. and SCHAAKE , J. C. ; "Derivat ion <strong>of</strong> hydrologic frequency<br />

curves from rainfall". <strong>Water</strong> Resour. Res. (in print).


TABLE 3<br />

FLOOD DISCHARGE FOLLOUNG 3 O-YEAR RETURN PERIOD STORMS.<br />

GFiENDON UNDERWOOD<br />

MEAN STANDARD<br />

DEY<br />

3<br />

m3/s m Is<br />

Overall 5.9 2.0<br />

Constant duration storms.<br />

1 hour<br />

3 hour<br />

6 hour<br />

9 hour<br />

12 hour<br />

15 hour<br />

18 hour<br />

21 hour<br />

24 hour<br />

30 hour<br />

36 hour<br />

48 hour<br />

4.5<br />

5.7<br />

6.2<br />

6.2<br />

6.2<br />

6. o<br />

5.9<br />

5.7 .<br />

5.0<br />

4.4<br />

4.0<br />

4.1<br />

I .6<br />

2.0<br />

2.1<br />

2.0<br />

2.0<br />

1.9<br />

1.8<br />

1.7<br />

1.5<br />

1.3<br />

1.2<br />

1.2<br />

Constant Quartile Type<br />

I 5.8 2.0<br />

II 6. o 2.0<br />

III 5.9 2.0<br />

IV 5. a 2. o<br />

Constant CWI<br />

i5<br />

35<br />

50"<br />

60<br />

1.6<br />

2.8<br />

55 70 3.9<br />

70 ao 4.7<br />

80 go 5.2<br />

90 100 5.6<br />

100 i10 6.1<br />

i10 120 6.6<br />

120 130 7.1<br />

130 140 7.7<br />

i40 150 8.3<br />

150 165 9.4<br />

0.2<br />

0.3<br />

O. 4<br />

0.5<br />

0.6<br />

0.7<br />

O. 7<br />

o. 8<br />

o. 8<br />

0.9<br />

o. 9<br />

1.0<br />

Recorded data<br />

Graphical '-<br />

fit 12.0 I<br />

MaX.<br />

Likelihood1 3.1 3. O<br />

MAXIMUM MINIMUM<br />

DISCHARGE<br />

m3/ s *3/s<br />

11.3<br />

7.7<br />

10.0<br />

33.3<br />

11.3<br />

11.1<br />

11.0<br />

10.9<br />

9.8<br />

9.1<br />

8.4<br />

8.9<br />

13.3<br />

10. 5<br />

10.5<br />

11.1<br />

1.9<br />

3.4<br />

4.8<br />

5.7<br />

6.4<br />

6.9<br />

7.5<br />

8.0<br />

8.6<br />

9.3<br />

10. 1<br />

11.3<br />

1.0<br />

3.0<br />

3.2<br />

1.4<br />

3.6<br />

1.6<br />

3.5<br />

1.6<br />

3.6<br />

1.4<br />

1.2<br />

3.1<br />

1.2<br />

1.0<br />

1 .O<br />

1.0<br />

1 .o<br />

1.0<br />

I. 8<br />

2.1<br />

2.3<br />

2-5<br />

2-7<br />

2.8<br />

3. O<br />

3.2<br />

3.4<br />

3.8<br />

4.6<br />

MEAN<br />

3<br />

m /s<br />

6.7<br />

4.8<br />

6.4<br />

7.3<br />

7.3<br />

7.0<br />

6.8<br />

6.5<br />

6.3<br />

5.8<br />

5.2<br />

4.7<br />

5.3<br />

6.2<br />

6.7<br />

6.8<br />

6.9<br />

1.3<br />

2.0<br />

2.9<br />

3.7<br />

4.4<br />

5.1<br />

5.8<br />

6.5<br />

7.3<br />

8.1<br />

9.0<br />

11.0<br />

BURBAGE BROOK<br />

STANDARD<br />

DEY<br />

3<br />

m /s<br />

3.9<br />

3.4<br />

3.8<br />

2.0<br />

3.9<br />

1.8<br />

1.7<br />

1.7<br />

1.6<br />

1.5<br />

3.4<br />

Y .2<br />

3.4<br />

1.8<br />

1 .8<br />

1.9<br />

2.0<br />

0.2<br />

0.3<br />

0.4<br />

0.5<br />

o. 6<br />

o. 6<br />

0-7<br />

0.8<br />

0.9<br />

1.0<br />

3.1<br />

1.2<br />

--<br />

8.6<br />

8.2 1.6<br />

* First figure refers to assumed CWI at Grendon, second to Burbage Brook.<br />

46 5<br />

MAXIMUM MINIMUM<br />

DISCHARGE<br />

3<br />

m /s<br />

14.0<br />

8.8<br />

13.5<br />

13.4<br />

14.0<br />

13.9<br />

13.7<br />

13.5<br />

13.4<br />

12.5<br />

33.7<br />

31.0<br />

12.3<br />

12. i<br />

12.7<br />

12.4<br />

14.0<br />

1 .6<br />

2.7<br />

3.7<br />

4.7<br />

5.6<br />

6.6<br />

7.5<br />

8.4<br />

9.4<br />

10.4<br />

13 -6<br />

14.0<br />

m3/5<br />

0.6<br />

0.6<br />

0.9<br />

1.3<br />

3.1<br />

1.2<br />

1.1<br />

1.1<br />

1 .O<br />

0.9<br />

0.8<br />

0.8<br />

0.9<br />

o. 6<br />

0.6<br />

0.6<br />

0.6<br />

0.6<br />

1.2<br />

1.7<br />

2.2<br />

2.4<br />

2-7<br />

2.9<br />

3.2<br />

3.5<br />

3.9<br />

4.4<br />

5.9


466<br />

APPENDIX A - DATA REQUIREMENTS.<br />

INTRODUCTION.<br />

Statistical distributions were required for the three modes <strong>of</strong> rainfall<br />

variability: depth, duration and temporal variability- for each catchment invest-<br />

igated. In order not to predetermine any <strong>of</strong> the variability modes it was necess-<br />

ary to define a storm in a manner u<strong>nl</strong>ike that <strong>of</strong> the customary rainfall depth-<br />

duration-frequency diagram. The definition was expressed k terms <strong>of</strong> the condi-<br />

tions for starting and ending a storm: a storm was considered to begin at the<br />

onset <strong>of</strong> rain and to end when in the preceeding Y hours not more than X mms <strong>of</strong><br />

rain occurred. X and Y were chosen to represent the conditions under which a<br />

flood hydrograph would return to near base flow and allowed sbrt spells <strong>of</strong> zero<br />

rainfall to occur <strong>with</strong>in a storm event.<br />

Hourly analysis <strong>of</strong> catchment average rainfall was available from three<br />

catchments; Grendon Underwood, Coalburn and Ply<strong>nl</strong>imon (Wye). Sufficient records<br />

were available to permit an investigation hto statistical distribution <strong>of</strong> storm<br />

durations and temporal patterns but not to conduct an investigation into storm<br />

depth. For this element <strong>of</strong> the simulation, results <strong>of</strong> a depth-duration-frequency<br />

analysis <strong>of</strong> the entire country were available from A.F. Jenkinson (Ref. Al).<br />

The catchment response model is one currently under investigation by the<br />

Floods Study Team. A relation between catchment wetness index (CWI) and total<br />

storm losses, and CWI and base flow was used. A unit hydrograph based on recorded<br />

unit hydrographs from the catchments were convoluted <strong>with</strong> the gross rainfall less<br />

losses.<br />

DETAILS OF THE SIMULATION DATA.<br />

(a) Rainfall depth: The basic equation used to relate the T-year return period<br />

rainfall <strong>of</strong> any duration (MT) to that <strong>of</strong> the five-year return period rainfall<br />

(~5) is<br />

MIM5 = (T/5)'<br />

where c is the "growth factor" and is related uniquely to M5 which is mapped<br />

for the entire United Kingdom. Other necessary information required by the<br />

simulation and provided in Ref. A1 concerns areal reduction factors to convert<br />

point to areaì rainfall.<br />

(b) Rainfall duration: This distribution is dependent upon the storm definition<br />

and for the values X = 2 m s, Y = 5 hours used for both Grendon Underwood and<br />

Burbage Brook simulation is given below<br />

STORM DURATION 1 3 6 g 12 15 18 21 24 30 38 48<br />

(HOURS )<br />

RELATIVE FREQUENCY 5 12 26 20 13 30 8 1 1 2 1 1<br />

(PER CENT)


It was found that the distribution was very similar for hoth upland and lobiland<br />

rainfall stations and varied slowly <strong>with</strong> changes to X and Y, longer storms<br />

becoming commoner as the conditions for ending a storm were relaxed.<br />

467<br />

(c) Temporal distribution <strong>of</strong> storm rainfall: Several alternative schemes for<br />

describing the hydrograph shape were investigated. The one chosen was due to<br />

F. Huff (Ref. A2) in which four quartile types are recognised depending upon in<br />

which <strong>of</strong> the four quarters <strong>of</strong> the storm duration tiïe largest rainfall fell. The<br />

fine detail <strong>of</strong> the hyetograph is sampled by plotting all curves <strong>of</strong> the same<br />

quartile type on a graph showing accumulating fraction <strong>of</strong> storm depth against<br />

fraction <strong>of</strong> total storm duration. Composite storms can then be constructed by<br />

connecting points which are exceeded by lo%, 202, 30% etc. <strong>of</strong> all storms. Sampl-<br />

ing from these composite storms is analogous<br />

from a distribution function in order to sample a variable in proportion to its<br />

frequency <strong>of</strong> occurence,and were used by the sfmulation. The shapes <strong>of</strong> the campos-<br />

ite storms were found to be insensitive to changes to the storm definition and<br />

were nearly indistinguishable between upland and lowland catchments. The percent-<br />

age frequency <strong>of</strong> the four quartile types were 12% type I, 32% type II, 35%<br />

type III, 21% type IV.<br />

(d) CWI distribution: CWI is calculated in nuns. from the soil moisture deficit<br />

(SMD) as computed by the Meteorological Office (Ref. A3) and a five day anteced-<br />

ent precipitation index (API5) using a daily decay constant <strong>of</strong> 0.5. The formuïa<br />

usedwasCWI = 125-SMD+API5. It had been observed in a recent study (Ref. Ab)<br />

that wet day rainfall and SMD were statistically independent and SO the end <strong>of</strong><br />

month values were adopted as representative <strong>of</strong> all cw? values. Oxford data nr&S<br />

used to provide the distribution for Grendon Underwood and Buxton for Burbage<br />

Brook. In the simulation a linear relation <strong>with</strong> CWI was used to calculate total<br />

storm losses and the reciprocal <strong>of</strong> the temporal variation <strong>of</strong> CWI as the storm<br />

progresses (assuming no evaporation to increase SMD) determined the loss rate<br />

curve. An exponential relationship <strong>with</strong> CWI determined the base flow.<br />

REFERENCES.<br />

Al<br />

A2<br />

A3<br />

A4<br />

to sampling at regular intervals<br />

JENKINSON,A.F. ; "Meteorological <strong>of</strong>fice progress report. January 1972".<br />

Report prepared for Floods Study Steering Committee.<br />

HUFF,F.A. ; "Time distribution <strong>of</strong> rainfall in heavy storms". <strong>Water</strong> Resour.Res.<br />

Vol. 3, No. 4, fourth quarter 1967.<br />

GRINDLEY,J. ; "Estimation and mapping <strong>of</strong> evaporation". 1970 I.A.S.H.<br />

symposium, Reading, I.A.S.H.<br />

BEM,M.A. and SUTCLIFFE,J.V. ; "An index <strong>of</strong> flood-producing rainfall based<br />

on rainfall and soil moisture deficit". Journ. <strong>of</strong> <strong>Hydrology</strong>, Vo1.17, 1972<br />

pp 229-236.


46b<br />

FIGURE 1


DuraîK<br />

M 1 etc.<br />

j<br />

~<br />

~<br />

FIGURE 2A FIGURE 2B<br />

WïES<br />

1 1 Consider case where two variables o<strong>nl</strong>y aFFect discharge Q, for example storm duration<br />

and CUI (Figure 24).<br />

For each Combination <strong>of</strong> duration and CWI a value OF Q md B probability <strong>of</strong> occurrence CU<br />

be calculated. For exsmple combining the duration in the Fourth interval, Dy, <strong>with</strong> the<br />

CWI in the second interval. C2, a discharge q(H) and a probability p(H) - p(D,,)xp(ci) arc<br />

ïoud<br />

'-1 Summing ail the probabilities in each discharge interval a discharge distribution [Fimi<br />

20) may be COOStmCted.<br />

) This concept can be generalised to sample From Further variables.<br />

I<br />

9<br />

Discharge den<<br />

/ / / /<br />

wm0. Durat ion<br />

a) Depth uld duration are plotted on the base plane ( Piwe 2c)<br />

b) Each coibtiatim ia assoeiited nith a probability <strong>of</strong> occurmce u) givm by thr depthduration-frequency<br />

diagni.<br />

c) Contingent on each depth duration ccmbination B diatribution <strong>of</strong> diachugai like Pipure<br />

OB CM be visudiaed on the vertical discharge arii.<br />

d) Integrating such densities above all points on the bue m e 011 locu. or =qual retur,,<br />

period yields the results <strong>of</strong> Section 2.<br />

0) Integrating over the entire base plane Yields the dihributim <strong>of</strong> diichuge <strong>of</strong> Section 3.<br />

FIGURE 2C<br />

469


470<br />

>-<br />

u<br />

æ<br />

W<br />

x<br />

E<br />

s<br />

i=<br />

0,<br />

W<br />

œ<br />

20-<br />

18.<br />

+<br />

l<br />

i 4<br />

I<br />

!<br />

I<br />

4<br />

I<br />

l<br />

l I<br />

PEAK DISCHARGË- M"/S<br />

Burbage Brook-Floods following 100-year Rainfalls<br />

Distribution <strong>of</strong> all floods<br />

Floods from storms <strong>of</strong> given duration<br />

Floods from storms <strong>of</strong> given CWI ---<br />

FIGURE 3


Q/C<br />

2.2<br />

2.0<br />

1.5<br />

1.0.<br />

O. 5<br />

O<br />

Return period-years<br />

I I I I I I<br />

2 33 5 IO 20 50 100<br />

Mean annual<br />

flood<br />

Most likely peak following storms <strong>of</strong> given return period<br />

\<br />

/'Simulated flood peaks<br />

following storms <strong>of</strong> given<br />

Peaks have been standardised by the arithmetic mean <strong>of</strong><br />

the recorded annual maxima 5.39 mYs.<br />

Plotting position corresponds to expected value <strong>of</strong> order statistic.<br />

Graphical fit to plotted points so'recorded'line misses (1,l).<br />

1 1 I I I I<br />

O 1 2 s 4 5<br />

Reduced variate- y<br />

FIGURE 4<br />

471


ABSTRACT<br />

A DECISION - THEORETIC APPROACH TO UNCERTAINTY<br />

IN THE RETURN PERIOD OF MAXIMUM FLOW VOLUMES<br />

USING RAINFALL DATA<br />

Donald R. Davis('), Lucien Duckstein(t:) Chester C. Kisiel('),<br />

and Martin M. Fogel<br />

The maximum seaaonal rUno#f YolUw Q #or an ungaged atream site is<br />

derived using (1) an event-based rainfall mode1 for thunderstorma, and<br />

(2) a linear rainfall-run<strong>of</strong>f model. Major emphasis is placed on effect<br />

<strong>of</strong> uncertainty in parameters <strong>of</strong> rainfall inputs on the return period <strong>of</strong><br />

maximum run<strong>of</strong>f volumes in a season. The event-based rainfall model, derived<br />

previously by the coauthors and others, has the following features:<br />

(1) the distribution <strong>of</strong> the number <strong>of</strong> events per season N is Poisson<br />

<strong>with</strong> mean m; (2) the d' 1s t ribution <strong>of</strong> point rainfall amount R per<br />

event is exponential <strong>with</strong> mean llu; (3) N and R are independent. More<br />

explicitly, we obtain a correct distribution function for the return pe<br />

riod T (x) under the uncertainty in m and u, and demonstrate the necessity<br />

0 P following this approach for a decision-theoretic analysis <strong>of</strong> a<br />

water resource design problem. The approach enables us to design structures,<br />

relying o<strong>nl</strong>y on rainfall data, on watersheds <strong>with</strong> ungaged<br />

streams by taking into account uncertainty <strong>of</strong> design site parameters.<br />

Also, we cari tailor the design to a specific problem rather than use a<br />

pre-specified design flood, such as the magical lOO-year flood.<br />

RESUME<br />

Le volume d'écoulement maximum est calculé 2 un site non instrumenté,<br />

en utilisant: (1) un modele de pluie d'orage construit par événe<br />

ment; (2) un modèle pl,uie-débit linéaire. La maniere dont l'incertitudë<br />

sur les paramètres du modèle de pluie affecte la période de récurrence<br />

TQ(x) du volume $'écoulement maximum Q est analysée d'une manière quantitative,<br />

Le modele de pluie d'orage a les caractéristiques suivantes:<br />

(1) se nombre d'événements par saison N suit une distribution de Poisson<br />

a moyenne m; (2) la quantité de pluie ponctuelle R par événement<br />

suit une distribution exponentielle de moyenne l/u; (3) N et R sont des<br />

variables aléatoires indépendantes, Nous obtenons la fonction dti distri-<br />

bution de TQ(x) tenant compte<br />

de l'incertitude sur m et u et montrons<br />

l'utilité de cette méthode pour une application correcte de la théorie<br />

de la d6cision à un problème de planification de ressources en eau.<br />

Nous pouvons ainsi de conceyoir des ouvrages sur des bassing déversants<br />

sans données d'écoulement, a l'aide de données pluvincgtriques, tout en<br />

tenant compte de l'incertitude sur les paramètres. Par ailleurs<br />

pouvons spécialiser la conception & chaque cas d'e;tpèce au lieu'd:ItTli<br />

ser une crue standard, telle la magique crue de pêriode de retour centë<br />

naire.<br />

1 Respectively, Assistant Pr<strong>of</strong>essor and Pr<strong>of</strong>essors, on joint appointment,<br />

Departments <strong>of</strong> <strong>Hydrology</strong> and <strong>Water</strong> Reaources and Sistems and fndustrial<br />

Engineering, University <strong>of</strong> Arizona, Tucson, Arizona 85321,<br />

2 Pr<strong>of</strong>essor, Department <strong>of</strong> <strong>Water</strong>shed Management, Same address as in.(l),


474<br />

1.0 Introduction<br />

Fle,ods or stream discharges are properly described by their durations and<br />

volumes above a certain flow level and their instantaneous peak flows. Of<br />

~I1cs.e three properties, this paper is concerned <strong>with</strong> the uncertainty in the<br />

return period <strong>of</strong> maximum flow volumes which is a design parameter for flood pro-<br />

tection and other structures. In particular, we consider the uncertainty due tc<br />

inadequate data on small watersheds (up to 500 lon2).<br />

Jt is well known that there is a good chsnce that a flow event Q.<strong>with</strong> a<br />

large return period TR may be exceeded at least once in an R-year design period.<br />

Typically, however, calculated risk diagrams (Gilman, 1964) do not consider the<br />

uncertainty in the return periods <strong>of</strong> rainfall and flow events. TO a design<br />

engineer, the uncertainty <strong>of</strong> inadequate rainfall or flow data cari result in either<br />

overinvestment (overdesign) or underinvestment (economic losses) in the design <strong>of</strong><br />

flood retarding or retention structures or <strong>of</strong> water storage facilities (farm<br />

ponds or water supply reservoirs for small towns or industries). The Bayesian<br />

framework presented in this paper allows<br />

logic uncertainty as noted above and for<br />

for an explicit<br />

a methodology<br />

consideration <strong>of</strong> hydroto<br />

evaluate potential<br />

losses associated <strong>with</strong> that uncertainty.<br />

Approaches takea to arrive at estimates <strong>of</strong> the return period <strong>of</strong> hydrologie<br />

f'low properties include:<br />

(a) tipirical fitting <strong>of</strong> probability density functions to historical data;<br />

in particular, the Soi1 Conservation Service (1965) fitted Pearson<br />

Type III distributions ta flow volumes for various time periods in<br />

Arizona. This approach disregards any available information in precipitation<br />

records or any knowledge about the rainfall-run<strong>of</strong>f prccess.<br />

(h) Use <strong>of</strong> phenomenological relations such as a linear trensformation <strong>of</strong><br />

rainfall volume to flow volume as a basis for obtaining probability<br />

density functions (pdf) <strong>of</strong> flow. The pdf <strong>of</strong> rainfall volume may be<br />

denrribed empiri~ally (<strong>with</strong> its consequent uncertainty) or from a<br />

procesc viewpoint .,herein individual rainfall events are modeled as<br />

(c)<br />

a stochastic process along the time axis<br />

Use <strong>of</strong> detailer! dynemical flow equations<br />

(Duckstein<br />

to relate<br />

et al. 1972).<br />

pdf <strong>of</strong> rainfall<br />

psoperties to pdf <strong>of</strong> flow properties (Ragleson, 1972).<br />

In this paper we use the second approach. Herein we build on previaus work<br />

(Davis et al. 1972) where we evaluated the ucertainty in the return period <strong>of</strong><br />

point rainfall amounts from summer thunderstorms. We define an event-based<br />

process in this case as a sequence <strong>of</strong> thunderstorms in tine. The return period<br />

TR(k) <strong>of</strong> maximum point rainfall e (<strong>with</strong> k the rainfall smount or value <strong>of</strong> the<br />

random variable 5) is derived by considering the following elements <strong>of</strong> the<br />

event-based nrocess:<br />

(a) l?hë number 1; <strong>of</strong> events per season is Poisson distributed <strong>with</strong> met-a m<br />

(<strong>of</strong> number <strong>of</strong> events per season):<br />

b)<br />

(cl<br />

(d)<br />

Rainfall events 53, R,,..., are independent identically distributed<br />

random variables.<br />

The amo\‘Jit 5 <strong>of</strong> point rainfall per t\sent is exponentially distributed<br />

<strong>with</strong> parsmeter u (equal to reciprocal <strong>of</strong> mean emount rainfall per event):<br />

fR(klu) = ueBuk<br />

N and 5 are indepenaent.


Then, the return period <strong>of</strong> k units <strong>of</strong> rain in a season, given the event-based<br />

parameters m and u, is<br />

Because m and u are uncertain due to small sample size, T is uncertain.<br />

475<br />

To encode the uncertainty, the posterior distribution <strong>of</strong> m and u represents<br />

the likelihood <strong>of</strong> the values <strong>of</strong> m and u which produced the data. This posterior<br />

is given by the conjugate distributions for the exponential and Poisson distributions<br />

(de Groot, 1970, Chapt. 9). The distribution that is conjugate to both<br />

<strong>of</strong> these is the gamma:<br />

a a-1 -bx<br />

b x e<br />

gX(xla,b)<br />

-. = r(a) (4)<br />

For the Poisson distributution,<br />

x = m , the parameter <strong>of</strong> the Poisson and estimated as m.<br />

b = n , the number <strong>of</strong> seasons.<br />

a = &-I , the total number <strong>of</strong> rainfall events in n seasons.<br />

For the exponential distribution,<br />

x = u , the parameter <strong>of</strong> the exponential and estimated as Û.<br />

a = &-I , the total number <strong>of</strong> rainfall events in n seasons.<br />

b = h/û, the total amount <strong>of</strong> rainfall for the mn events.<br />

The resulting F (x)s in each case are posterior distributions and represent<br />

z<br />

the likelihood that various values <strong>of</strong> m and u axe the values describing the rainfall<br />

process that we are observing, after getting the data. These posterior<br />

distributions are used in a computer simulation to develop the posterior distribution<br />

<strong>of</strong> TR(k). The mean <strong>of</strong> this distribution is the expected return period<br />

E[T (k)Tl fo; a k-inch rainfall.<br />

R<br />

Computer results' given by Davis, et al. (1972)<br />

indicate that the return period <strong>of</strong> point rainfall is subject to considerable<br />

uncertainty even <strong>with</strong> 20 years <strong>of</strong> data. The design and operational implications<br />

are obvious for flood control, dry farming <strong>with</strong> irrigation, and water supply.<br />

Next, we extend the procedure to uncertainty in return periods <strong>of</strong> seasonal flow<br />

volumes on small watersheds.<br />

2.0 Extension to Seasonal Flow Volumes<br />

If m is the total number <strong>of</strong> run<strong>of</strong>f producing rainfall events in a summer<br />

season, then the exact expected return period T (y) <strong>of</strong> the maximum seasonal<br />

run<strong>of</strong>f volume Q is, under our previous hypotheses,<br />

T& (ylm,u) = [i-exp I-m + m F (ylu)~~-l (5)<br />

9<br />

where F (ylu) is the distribution function <strong>of</strong> run<strong>of</strong>f per event CJ which we will<br />

9<br />

9 Q<br />

write F (y) for simplicity. Our approach is to obtain F (y) from the distribution<br />

function F (x) <strong>of</strong> rainfall 5 per event, using the linear rainfall-run<strong>of</strong>f relation-<br />

R<br />

where A are the initial abstractions depending on the watershed and c is a coefficient<br />

depending on the rainfall characteristics for a given watershed, in<br />

particular, a time factor such as the maximum 15-minute intensity (Duckstein<br />

et al. 1972).<br />

--<br />

Q<br />

R


476<br />

If we let<br />

p = !-A for R > A I<br />

= o for 5 < A<br />

then Equation (6) becomes = CP -- or y = cx; the distribution function <strong>of</strong> P - is<br />

Fp(x) = 1 -exp (-u(x+A)) for x > O (7)<br />

and thit <strong>of</strong> €j (Feller, 1967, Chapt. 2) is<br />

m<br />

FQ(y) = I,"p($) fC(c) dc<br />

because c is a random variable as noted in previous work by the coauthors<br />

(Duckstein et al. 1972). Since, physically, we cannot obtain more run<strong>of</strong>f than<br />

rainfall, then O 5 c 51, and a beta distribution for c seems to be most appro-<br />

Driate:<br />

The uncertainty on a,b will not be considered in the present study.<br />

Equations (7), (8) and (9) may be combined to obtain<br />

(9)<br />

To sum up,<br />

Equations (10) and (11) are now substituted into Equation (5) to obtain an explicit<br />

expression <strong>of</strong> Tg (ylm,u). Because we have the sufficient statistics,<br />

fi and a, our knowledge <strong>of</strong> m and u can be expressed as a pdf !Tiao and Box, 1973).<br />

Hence, this encoded uncertainty results in a pdf on T (ylm,u).<br />

3. O Met hodolopy<br />

To obtain the pdf <strong>of</strong> the return period on hand, T (ylm,u,n) is a problem <strong>of</strong><br />

transformation <strong>of</strong> random variables, where a closed form is beyond reach.<br />

Thus, a simulation approach is used as follows: (a) consider a fixed<br />

yearly maximum flow volume Q = yo, and (b) sample values m,u are drawn from the<br />

conjugate pars.<br />

-<br />

%(mlfi,n) and gu(uli,n), respectively, as noted in our discussion<br />

<strong>of</strong> Equation (b), (c) these sample values are substituted into T (y,Im,u) to<br />

obtain one value <strong>of</strong> the return period T<br />

8<br />

and (a) the process is repeated to<br />

0'<br />

obtain pdf <strong>of</strong> T for a fixed y (for example yo = Q = 0.7 inch in Table 1).<br />

9<br />

A similar procedure is then used to calculate the pdf <strong>of</strong> (T )-', which is<br />

9<br />

the probability <strong>of</strong> exceedance <strong>of</strong> y . The design parameter <strong>of</strong> interest may be<br />

O<br />

either T (for sizing a small dam) or (T (estimating long-range replace-<br />

B 9<br />

ment costs <strong>of</strong> structures.)<br />

Finally, to be considered in a later study is the pdf <strong>of</strong> maximum seasonal<br />

flow Q that corresponds to a fixed return period. Such a pdf may be <strong>of</strong> interest<br />

for flood plain insurance purposes and can be calculated by the same simulation<br />

procedure as above.<br />

Q<br />

9


ABSTRACT<br />

A DECISION - THEORETIC APPROACH TO UNCERTAINTY<br />

IN THE RETURN PERIOD OS MAXIMUM FLOW VOLUMES<br />

USING RAINFALL DATA<br />

(1) (1)<br />

Donald R. Davis"), Lucien Duckstein (2j Chester C. Kisiel ,<br />

and Martin M. Foge1<br />

The maximum seas.ona1 Trino$$ YolYge for an ungaged styeam site is<br />

derived using (1) an eyent-based rainfall podel $or thunderstorms, and<br />

(2) a linear rainfall-run<strong>of</strong>f model. Major empñasis is placed on effect<br />

<strong>of</strong> uncertainty in parameters <strong>of</strong> rainfall inputs on th-e return period <strong>of</strong><br />

maximum run<strong>of</strong>f volumes in a season. The event-based rainfall model, de-<br />

rived previously by the coauthors and others, has the following featu-<br />

res: (1) the distribution <strong>of</strong> the number <strong>of</strong> events per season N is Pois-<br />

son <strong>with</strong> mean m; (2) the distribution <strong>of</strong> point rainfall amount R per<br />

event is exponential <strong>with</strong> mean 1Lu; c3) N and R are independent, More<br />

explicitly, we obtain a correct distribution function for the return pe<br />

riod T (x) under the uncertainty in m and u, and demonstrate the neces-<br />

sity 09 following this approach for a decision-theoretic analysis <strong>of</strong> a<br />

water resource design problem. The approach enables us to desigr, struc-<br />

tures, relying o<strong>nl</strong>y on rainfall data, on watersheds <strong>with</strong> ungaged<br />

streams by taking into account uncertainty <strong>of</strong> design site parameters.<br />

Also, we can tailor the design to a specific problem rather than use a<br />

pre-specified design flood, such as the magical 100-year flood.<br />

Le volume d'écoulement maxjmum est calculé i un site non instru-<br />

menté, en utilisYnt: (1) un modele de pluie d'orage construit par 'evéne-<br />

ment; (2) un modele pluie-débit linéaire. La maniere dont l'incertitude<br />

sur les paramètres du modèle de pluie affecte la période de récurrence<br />

TQ(x) du volume d'écoulement maximum Q est analysée d'une maniere quan-<br />

titative. Le modèle de pluie d'orage a les caractéristiques suivantes:<br />

(1) le nombre d'événements par saison N suit une distribution de Pois-<br />

son à moyenne m; (2) la quantité de pluie ponctuelle R par événement<br />

suit une distribution exponentielle de moyenne l/u; (3) N et R sont des<br />

variables aléatoires indépendantes. Nous obtenons la fonction de distri<br />

bution de TQ(x) tenant compte de l'incertitude sur m et u et montrons<br />

l'utilité de cette m'ethodf pour une application correcte de la théorie<br />

de la décision à un probleme de planification de ressources en eau.<br />

Nous pouvons ainsi de conceroir des ouvrages sur des bassing déversants<br />

sans données d'écoulement, a l'aide de donn'e$s pluviométriques, tout en<br />

tenant compte de l'incertitude sur les parametres. Par ailleurs, nous<br />

pouvons spécialiser la conception à chaque cas d'espèce au lieu d'utili<br />

ser une crue standard, telle la magique crue de période de retour cent:<br />

naire.<br />

'Respectively, Assistant Pr<strong>of</strong>essor and Pr<strong>of</strong>essors, on joint appointment,<br />

Departments <strong>of</strong> <strong>Hydrology</strong> and <strong>Water</strong> <strong>Resources</strong> and Sìstems and Industrial<br />

Engineering, University <strong>of</strong> Arizona, Tucson, Arizona 85721.<br />

2Pr<strong>of</strong>essor, Department <strong>of</strong> <strong>Water</strong>shed Management, Same address as in (1).


474<br />

1.0 Introduction<br />

Floods or stream discharges are properly described by their durations and<br />

volumes above a certain flow level and their instantaneous peak flows. Of<br />

briese three properties, this paper is concerned <strong>with</strong> the uncertainty in the<br />

return period <strong>of</strong> maximum flow volumes which is a design parameter for flood protection<br />

and other structures. In particular, we Consider the uncertainty due to<br />

inadequate data on small watersheds (up to 500 h2).<br />

It is well known that there is a good chance that a flow event 9 <strong>with</strong> a<br />

large return period T may be exceeded at least once in an N-year design period.<br />

Typically, however, calculated<br />

R<br />

risk diagrams (Gilman, 1964) do not consider the<br />

uncertainty in the return periods <strong>of</strong> rainfall and flow events. To a design<br />

engineer, the uncertainty <strong>of</strong> inadequate rainfall or flow data can result in either<br />

overinvestment (overdesign) or underinvestment (economic losses) in the design <strong>of</strong><br />

fiood retarding or retention structures or <strong>of</strong> water storage facilities (farm<br />

ponds or water supply reservoirs for small towns or industries). The Bayesian<br />

framework presented in this paper allows for an explicit consideration <strong>of</strong> hydrologic<br />

uncertainty as noted above and for a methodology to evaluate potential<br />

losses associated <strong>with</strong> that uncertainty.<br />

Approaches taken to arrive at estimates <strong>of</strong> the return period <strong>of</strong> hydrologic<br />

flow properties include:<br />

(a) Rupirical fitting <strong>of</strong> probability density functions to historical data;<br />

in particular , the Soil Conservation Service (1965) fitted Pearson<br />

Type III distributions to flow volumes for various time periods in<br />

Arizona. This approach disregards any available information in precipitation<br />

records or any knowledge about the rainfall-run<strong>of</strong>f process.<br />

(b) Use <strong>of</strong> phenomenological relations such as a linear transformation <strong>of</strong><br />

rainfall volume to flow volume as a basis for obtaining probability<br />

density functions (pdf) <strong>of</strong> flow. The pdf <strong>of</strong> rainfall volume may be<br />

described empirically (<strong>with</strong> its consequent uncertainty) or from a<br />

process viewpoint wherein individual rainfall events are modeled as<br />

a stochastic process along the time axis (Duckstein et al. 1972).<br />

(c) Use <strong>of</strong> detailed dynamical flow equations to relate pdf <strong>of</strong> rainfall<br />

properties to pdf <strong>of</strong> flow properties (Eagleson, 1972).<br />

In this paper we use the second approach. Herein we build on previaus work<br />

(Davis et al. 1972) where we evaluated the uncertainty in the return period <strong>of</strong><br />

point rainfall amounts from summer thunderstorms. We define an event-based<br />

process in this case as a sequence <strong>of</strong> thunderstorms in time. The return period<br />

T<br />

R<br />

(k) <strong>of</strong> maximum point rainfall (<strong>with</strong> k the rainfall amount or value <strong>of</strong> the<br />

random variable FJ) is derived by considering the following elements <strong>of</strong> the<br />

event-based process:<br />

(a) The number N <strong>of</strong> events per season is Poisson distributed <strong>with</strong> mean m<br />

(<strong>of</strong> number <strong>of</strong> events per season):<br />

(b) Rainfall events R -1, G2, ..., are independent identically distributed<br />

random variables.<br />

(c) The amount <strong>of</strong> point rainfall per event is exponentially distributed<br />

<strong>with</strong> parameter u (equal to reciprocal <strong>of</strong> mean amount rainfall per event):<br />

fR(klu) = ue -Uk<br />

(a) $ and R are independent.


477<br />

4.0 Results<br />

The results <strong>of</strong> the computer simulation are summarized in Tables 1 and 2 and<br />

Figures 1 and 2. In these we consider the variance <strong>of</strong> c, representative <strong>of</strong> conditions<br />

on the watershed, and the variance in our knowledge about rainfall<br />

parameters m and u.<br />

Table 1 shows that u, the average rain per event, is much more important<br />

than m, the average number <strong>of</strong> storms per season, as judged by the variance <strong>of</strong><br />

T ,(Var !? ), for different values <strong>of</strong> Var c. We also note the following<br />

9 9<br />

(a As Var c increases, EL?,? and Var ? decrease, Thus by not randomizing<br />

9<br />

C the estimated return period <strong>of</strong> Q = 0.7 is much higher. By varying C<br />

the variable effects <strong>of</strong> rainfall intensity and watershed behavior on<br />

the return period are anticipated;<br />

(b) Var T increases dramatically when Var $ = O for joint uncertainty in<br />

9<br />

m and u;<br />

(c) The mean reciprocal return period (= exceedance probability = p) and<br />

,. -1<br />

Var T increase rapidly as Var c increases. This result is shown<br />

9<br />

because p is commo<strong>nl</strong>y used as the design parameter in hydrologic risk<br />

analysis.<br />

These patterns hold for all values <strong>of</strong> run<strong>of</strong>f volume used in the sensitivity analysis<br />

(Q = 0.5, 0.7 and 0.9 inches <strong>of</strong> run<strong>of</strong>f) as shown in Table 2.<br />

As expected, the Var T decreases <strong>with</strong> doubling <strong>of</strong> available data (10<br />

9<br />

to 20 years used in the simulation) as summarized in Table 2. The E[id is o<strong>nl</strong>y<br />

slightly changed. A more general manifestation <strong>of</strong> the simulated process is evident<br />

in Figure 2 where the posterior pdf (<strong>of</strong> return periods for 0.7-inch run<strong>of</strong>f) based<br />

on 20 years <strong>of</strong> data has a much sharpy modal value than the posterior pdf based<br />

on 10 years <strong>of</strong> data; note that mear, T is just to the right <strong>of</strong> the mode. While<br />

9<br />

not shown, the posterior pdf's become more peaked as Var c increases.<br />

The effect <strong>of</strong> increasing run<strong>of</strong>f Qolume is to increase E[Td, Var T and<br />

9<br />

coefficient <strong>of</strong> variation CV(T ) as shown in Table 2. The latter result about<br />

9 I<br />

CV(TQ) also implies that a Var T increases more rapidly than E[Td. It is<br />

9<br />

intriguing to note the dramatic effect that the introduction <strong>of</strong> Var has on the<br />

parameters.<br />

The results in Table 2 for n = 10 years are shown in Figure 1, a plot on<br />

Gumbel extreme value paper. As previously noted, as Var c increases the smaller<br />

"Liil. From the tabulated results we note that so-called confidence limits for<br />

ea& line would get wider as T increases because Var T increases <strong>with</strong> run<strong>of</strong>f<br />

61 9<br />

volume. These confidence limits are narrower for n = 20 years <strong>of</strong> data as is<br />

evident from Table 2.<br />

Of interest is the modest computer time (maximum <strong>of</strong> 25 seconds for 20 years<br />

<strong>of</strong> data) per simulation run on the CDC-6400. Given the number <strong>of</strong> uncertain<br />

parweters in this problem, it does not appear feasible to prepare charts and<br />

graphs for routine design use u<strong>nl</strong>ess more exhaustive computer studies are performed.<br />

4.1 Comments on Results A<br />

In contrast to the classical empirical frequency approach in deriving T 9,


478<br />

the event-based approach outlined here results in evaluation <strong>of</strong> uncertainty in<br />

.<br />

T from physically meaningful parameters like m and u. This is a much more<br />

Q<br />

efficient use <strong>of</strong> the available data on rainfall and run<strong>of</strong>f.<br />

We have seen how the design would depend on the uncertainty in m and u and<br />

on the interaction between*uncertainty in m and u and Var C. The end result, a<br />

posterior distribution on T is <strong>of</strong> value to inference on hydrologic stochastic<br />

9’<br />

processes as discerned from limited data <strong>of</strong> value to the next important step<br />

<strong>of</strong> invoking Bayesian decision theory for evaluating design decisions and for<br />

judging if better designs are possible by waiting for-additional cata.<br />

It would be desirable to express the moments (ErTJ and Var T ) <strong>of</strong> the<br />

Q<br />

posterior pdf in terms <strong>of</strong> m, u, Q and C, but this is intractable. -The next<br />

approach for thinking about our results in simpler terms is to consider the<br />

mean and variance <strong>of</strong> 5 = cp:<br />

ECQI = EC~J CIFI<br />

Var = E2[C] Var P + E2[P]<br />

- Var C + (Var C) - (Var P) -<br />

as given by Benjamin and Cornel1 (1970, p. 169).<br />

equations become E[g = CE[?] and Var 9 = C2 Var p.<br />

When C is not random, these<br />

The variance <strong>of</strong> Q (and<br />

thus its frequency <strong>of</strong> exceedance and its return period) is dramatically affected<br />

by randomization <strong>of</strong> C. It is common in hydrologic design to choose a “frequency<br />

factor” z (or standardized variate) in the relation 9 = Ere] + z (Var Q) 1/2 .<br />

.<br />

To contrast properly this classical approach to finding a design flow Q <strong>with</strong> the<br />

method outlined in this paper wou1.d require a full-fledged decision theoretic<br />

analysis for a specific design problem. The evaluation would have to be repeated<br />

for each design use <strong>of</strong> the posterior pdf. Much work remains to be done in this<br />

direction.<br />

4.2 Relationship <strong>of</strong> results to Bayesian decision theory<br />

Let the loss function for the design <strong>of</strong> a flood protection structure, say<br />

a dike, be L(h,T) where h is the height <strong>of</strong> the dike and T is a design return<br />

period such as T or an exceedance probability (T )-l. The result <strong>of</strong> our<br />

a 9<br />

investigation was to determine the posterior pdf f (t) as given in Figure 2.<br />

Thus, we are now able to calculate Bayes risk, which corresponds to the optimum<br />

design h*<br />

+m<br />

BR(h*) = min L(h,t) fT(t)dt (14)<br />

.<br />

h o<br />

We can also calculate the worth <strong>of</strong> sample information to sharpen the estimate<br />

<strong>of</strong> T (Davis et al. 1972) for each intended use <strong>of</strong> the data. Such studies are<br />

9<br />

left for the sequel. It is very important to emphasize that the worth <strong>of</strong> data<br />

discerned by this methodology is based on the economic loss function associated<br />

<strong>with</strong> a particular design use <strong>of</strong> the data; the results are not in terms <strong>of</strong> the<br />

variance <strong>of</strong> the return estimate (return period in this case).<br />

5.0 Conclusions<br />

It is important to keep in mind when judging the results <strong>of</strong> the research<br />

reported here that we are dealing <strong>with</strong> maximum flow volumes generated by a sequence<br />

<strong>of</strong> thunderstorms during a season. Additional work is necessary to extend the<br />

T


479<br />

approach to other run<strong>of</strong>f-producing precipitation events (including snow) during<br />

the year. The use <strong>of</strong> the Gumbel distribution in this paper goes beyond its<br />

classical use for the instantaneous rainfall and flood maxima during the year.<br />

We thus have found the following points in our theoretical and simulation<br />

arialy,is :<br />

The approach enables us to design structur'es, relying o<strong>nl</strong>y on rainfall<br />

data, on watersheds <strong>with</strong> ungaged streams by taking into account<br />

uncertainty <strong>of</strong> the site parameters,<br />

Using this approach we can tailor the design to a specific problem<br />

rather than use a pre-specified design flood, such as the magical<br />

100-year flood.<br />

Simulation is an appropriate method for evaluating uncertainty in<br />

estimates <strong>of</strong> physically-meaningful parameters arising in the eventbased<br />

approach.<br />

Return period varies <strong>with</strong> record length rainfall, and watershed events,<br />

etc. We have given an event-based approach to evaluate this variation.<br />

The sensitivity analysis demonstrates the dramatic importance <strong>of</strong> uncertainty<br />

in the average amount <strong>of</strong> rainfall per event and the importance<br />

<strong>of</strong> considering variability in the rainfall and watershed parameter<br />

called C in this paper.<br />

The resats, if encoded in the posterior pdf <strong>of</strong> the return period<br />

TI, allow the user to exercise inference or to find sensitivity <strong>of</strong> the<br />

analysis to design decisions in the face <strong>of</strong> inadequate data. Bayesian<br />

decision theory is the framework suggested for undertaking the decision<br />

analysis.<br />

The results have implications for design <strong>of</strong> a variety <strong>of</strong> hydraulic structures<br />

in both urban and rural watersheds, in temperate and arid climates, and in<br />

regions <strong>of</strong> the world confronted <strong>with</strong> inadequate hydrologic data. In the face<br />

<strong>of</strong> changing watershed conditions, as reviewed by Fogel, et al. (1972), the<br />

approach <strong>of</strong>fered in this paper permits exercise <strong>of</strong> judgment on the effects <strong>of</strong><br />

lack <strong>of</strong> knowledge and <strong>of</strong> nonstationary meteorologic and hydrologic parameters<br />

such as m, u and C. In o w jument, classical empirical frequency methods do<br />

not provide such a clear basis for evaluation. Extension to no<strong>nl</strong>inear water-<br />

shed models are possible as noted by Duckstein, et al. (1972) and Fogel, et al.<br />

(1972).<br />

6. O Acknowledgments<br />

The work was supported in part by U.S. National Science Foundation Grant<br />

GK-35791 and by a matching grant (Decision Analysis <strong>of</strong> <strong>Water</strong>shed Management<br />

Alternatives) from the U.S. Office <strong>of</strong> <strong>Water</strong> <strong>Resources</strong> Research. !Che computer<br />

programming skills demonstrated by Joel Friedman have contributed substantially<br />

to the realization <strong>of</strong> the results.<br />

7.0 References<br />

BenJanin, J.R. and C.A. Cornell. Probability, Statistics and Decision for Civil<br />

Engineers, McGraw-Hill Book Co., New York, 1970.<br />

Davis, D.R., L. Duckstein, C.C. iíisiel, and M. Fogel. Uncertainty in the return<br />

period <strong>of</strong> maximum events: A Bayesian a.pproach. Proceedings, International<br />

Symposium on Uncertainties in Hydrologic and <strong>Water</strong> Resource Systems,<br />

University <strong>of</strong> Arizona, Tucson, Arizona; 1972, pp. 853-862.


480<br />

Davis, D.R., C.C. kïsiel and L. Duckstein. Bayesian decision theory applied<br />

to design in hydrology, <strong>Water</strong> <strong>Resources</strong> Research, Vol. 8, No. 1,<br />

February 1972, pp. 33-41.<br />

de Groot, M.H. Optimal Statistical Decisions. McGraw-Hill Book Co., New York,<br />

1967.<br />

Duckstein, L., M.M. Fogel and C.C. Kisiel. A stochastic model <strong>of</strong> run<strong>of</strong>fproducing<br />

rainfall for summer type storms, <strong>Water</strong> <strong>Resources</strong> Research,<br />

Vol. 8, No. 2, April 1972, pp. 410-421.<br />

Eagleson, P.S. Dynamics <strong>of</strong> flood frequency, <strong>Water</strong> <strong>Resources</strong> Research, Vol. 8,<br />

NO. 4, August 1972, pp. 878-898.<br />

Feller, W. An Introduction to Probability Theory and its Applications, Vol. 2.<br />

John Wiley, New York, 1967.<br />

Fogel, M.M., L. Duckstein and C.C. Kisiel. Choosing hydrologic models for<br />

management <strong>of</strong> changing watersheds, Proceedings, National Symposium on<br />

<strong>Water</strong>sheds in Transition (American <strong>Water</strong> <strong>Resources</strong> Association) , Fort<br />

Collins, Colorado, June 1972, pp. 118-123.<br />

Gilman, C.S. Rainfall (Section 9). In "Handbook <strong>of</strong> Applied <strong>Hydrology</strong>,"<br />

Edited by V.T. Chow, McGraw-Hill Book Co., New York, 1964, pp. 9-59.<br />

Soil Conservation Service, Run<strong>of</strong>f volume-duration-probability analyses for<br />

selected watersheds in Arizona. Central Technical Unit, <strong>Hydrology</strong><br />

Branch, SCS, U.S. Dept. <strong>of</strong> Agriculture, April 1965.<br />

Tiao, G.C. and G.E.P. Box. Some comments on "Bayes" estimators, The American<br />

Statistician, Vol. 27 (i), February 1973, pp. 12-14.


Table 1: Sensitivity anaiysikon return period moments as<br />

function <strong>of</strong> uncertain parameters for rural water-<br />

shed <strong>with</strong> o<strong>nl</strong>y 10 years <strong>of</strong> data.<br />

Jncertain<br />

)arameters Var C<br />

l&U O<br />

.O005<br />

.O05<br />

* O5<br />

)<strong>nl</strong>y m .O005<br />

.O05<br />

O5<br />

<strong>nl</strong>y u .O005<br />

.O05<br />

* O5<br />

flean T (years<br />

?<br />

~<br />

A<br />

Moments <strong>of</strong> return period T<br />

cv( TQ)**<br />

.,<br />

41.82<br />

39.00<br />

26.33<br />

6.30<br />

35.36<br />

23.41<br />

6.20<br />

37.61<br />

24. i4<br />

6.52<br />

Var I<br />

Q -<br />

538.<br />

442.<br />

153.<br />

2.35<br />

8.30<br />

3.89<br />

t 19<br />

383.<br />

110.<br />

1.96<br />

.555<br />

.539<br />

.470<br />

.243<br />

.o81<br />

.O84<br />

.O70<br />

.521<br />

.435<br />

.215<br />

~~ ~<br />

Reciprocal<br />

return period -<br />

nean variance<br />

.O00299<br />

.o00318<br />

.o00328<br />

.o01809<br />

* Conditions for the analysis: A = 0.4 inches, mean C = 0.3 for beta<br />

distribution, Q = 0.7 inches on the average; rainfall is<br />

distributed on basis <strong>of</strong> an exponential distribution for<br />

amounts above 0.3 inches <strong>with</strong> an average <strong>of</strong> 14.0 storms/<br />

season and an average <strong>of</strong> 0.39 incheslevent.<br />

*+ Coefficient <strong>of</strong> variation <strong>of</strong> T s-<br />

481


Average<br />

run<strong>of</strong>f<br />

volume Q<br />

0.5<br />

Table 2: Sensitivity analysis on return period moments<br />

asa fun&ion <strong>of</strong> rainfall P, length <strong>of</strong> record n<br />

ànd variance <strong>of</strong> C; both m and u are uncertain;<br />

watershed is rural; conditions are as noted in<br />

Table 1.<br />

n<br />

(years <strong>of</strong><br />

data)<br />

Var <<br />

I<br />

Moments <strong>of</strong> return period 'f<br />

9<br />

&lean (years<br />

I<br />

~ ~-<br />

10 .o01 11.70<br />

58.07 .650<br />

.O05<br />

O5<br />

6.97<br />

2.94<br />

14.90<br />

- 27<br />

.553<br />

* 177<br />

20 .O05 6.25 4.38 ,335<br />

10 O<br />

.O005<br />

.O05<br />

O5<br />

41.82<br />

39.00<br />

26.33<br />

6.30<br />

20 37.44<br />

10 O<br />

.O05<br />

O5<br />

24.36<br />

271<br />

103<br />

6.41<br />

14.29<br />

~~~<br />

538<br />

441<br />

153<br />

245<br />

68<br />

48,085<br />

3 , 602<br />

20 .O05 95.95 1,721 I<br />

2.35<br />

1.09<br />

21.25<br />

.432<br />

.555<br />

.539<br />

.470<br />

,243<br />

.418<br />

.339<br />

.163<br />

.809<br />

.582<br />

.323


I .o<br />

O. 8<br />

v,<br />

w<br />

I<br />

o<br />

z 0.6<br />

-<br />

-<br />

w<br />

z<br />

3<br />

-I<br />

$ 0.4<br />

LL<br />

IL<br />

O<br />

Z<br />

3 0.2<br />

O<br />

2 5 IO 20 50<br />

RETURN PERIOD, YEARS<br />

100 200<br />

Figure 1: The effect <strong>of</strong> the varlance <strong>of</strong> C on tha Teturn<br />

period <strong>of</strong> pun<strong>of</strong>f volume.<br />

483


w<br />

3<br />

o<br />

w<br />

CE<br />

LL<br />

484<br />

.25 -<br />

.20 -<br />

.I5 -<br />

.IO -<br />

.O5 -<br />

RETURN PERIOD, YEARS<br />

Figura 2: Posterior prooabilitr densiTy function <strong>of</strong> return periods<br />

f o 0.7-i’nch ~<br />

run<strong>of</strong>f <strong>of</strong> record length.<br />

O


ABS TRACT<br />

SYNTHETIC UNIT HYDROGRAPH TECHIQUE FOR THE<br />

DESIGN OF FLOOD ALLEVIATION WORKS IN URBAN AREAS<br />

by<br />

M.J. Hall<br />

Lecturer in Civil Engineering, Imperial College<br />

<strong>of</strong> Science and Technology, University <strong>of</strong> London<br />

The development <strong>of</strong> rural land for urban, suburban or industrial<br />

purposes can radically alter the flow regime <strong>of</strong> the catchment area WL<br />

thin which such changes take place. The volume <strong>of</strong> surface run<strong>of</strong>f tends<br />

to increase, the lag time <strong>of</strong> the flood hydrograph to decrease and the<br />

peak rate <strong>of</strong> flow to increase. These ch-anges should be anti’cipated in<br />

the design <strong>of</strong> flood alleviation works for catchment areas undergoing<br />

urbanisation, but in general, little quantitative information is avai<br />

lable on the magnitude <strong>of</strong> the effect at different stages <strong>of</strong> urban de-<br />

velopment. If flow records are available from several catchment areas,<br />

each <strong>of</strong> which has reached a different stage <strong>of</strong> urban development, the<br />

finiteperiod unit hydrographs derived from these data can be used as<br />

an index to the influence <strong>of</strong> urbanisation. The application <strong>of</strong> a syn-<br />

thetic unit hydrograph technique to flow records from both urban and<br />

rural catchment areas <strong>with</strong>in the headwaters <strong>of</strong> the River Mole near<br />

Crawley, United Kingdom, has confirmed the feasibility <strong>of</strong> the<br />

approach but has shown that more thought is necessary in choosing cai<br />

chment characteristics which reflect the character <strong>of</strong> the urban deve-<br />

lopment.<br />

RESUME<br />

L’utilisation des espaces ruraux pour le développement urbain et<br />

industriel peut changer radicalement le régime hydrol2gique des bas-<br />

sins concernés. Le volume du ruissellement tend a croitre, le temps<br />

de réponse du bassin à décoitre et les pintes de crues s’amplifient.<br />

Lors de l’élaboration des projets, ces modifications devraint être<br />

prévues et on devrait chercher à atténuer l’effet des crues par des<br />

travaux appropigs, mais on ne dispose en général que d’une informa-<br />

tion très succincte sur l’importance de cet effet aux différents sta-<br />

des du développement urbain. Si on dispose de relevés de débits sur<br />

plusieurs bassins atteints à des degrés différents par le développe-<br />

ment urbain, on peut utiliser les hydrogrammes unitaires tirés de ces<br />

données pour constituer des indices concernant l’influence de l’appli-<br />

cation d‘u?e technique d’hydrogramme unitaire synthétique aux débits<br />

observés, a l’issue de bassins urbains et ruraux, dans le bassin sup5<br />

rieur de la Mole, pres de Crawley (Royaume Uni), a confirmé les possi<br />

bilités de cette méthode; elle a montré aussi que le choix des caracy<br />

téristiques du bassin reflétant l‘influence du d6velo;pement urbain<br />

demandait une sérieuse réflexion.


486<br />

I. INTRODUCTION<br />

According to Toynbee [I], almost half the World's population had become<br />

urban by 1969. This increase in the urban population has been accompanied<br />

by an even more marked expansion in the area occupied by streets and buildings.<br />

The development <strong>of</strong> rural land for urban, suburban and industrial purposes is<br />

characterised by two important physical changes, both <strong>of</strong> which may have a pr<strong>of</strong>ound<br />

effect on the hydrological cycle <strong>of</strong> the area <strong>with</strong>in which such urbanisation<br />

takes place.<br />

Firstly, the area covered by relatively impervious surfaces increases,<br />

thereby increasing the proportion <strong>of</strong> storm rainfall which becomes surface run-<br />

<strong>of</strong>f. Owing to the concomitant decrease in soil moisture recharge, dry weather<br />

flows are reduced.<br />

Secondly, the natural surface water drainage system <strong>of</strong> the area is invariably<br />

subjected to a variety <strong>of</strong> changes, ranging from realignment <strong>of</strong> channels to the<br />

installation <strong>of</strong> stormwater sewerage. Since the flow velocities in the modified<br />

drainage network are generally higher than those observed in the orlginal<br />

natural channel system, both the time-to-peak and the length <strong>of</strong> the recession<br />

<strong>of</strong> storm hydrographs tend to decrease as a catchment is urbanised.<br />

The increased<br />

volume <strong>of</strong> run<strong>of</strong>f, and the shorter time <strong>with</strong>in which that volume is discharged,<br />

inevitably produce peak rates <strong>of</strong> run<strong>of</strong>f that are markedly higher than the flow<br />

records from a catchment in its previous rural state would tend to indicate.<br />

Although the effects <strong>of</strong> urbanisation on the flow regipie <strong>of</strong> a catchment<br />

area have been appreciated qualitatively for over a decade [2], relatively<br />

little information has been available on the magnitude <strong>of</strong> the changes brought<br />

about by different forms <strong>of</strong> urban development. Of particular importance to<br />

the engineer concerned <strong>with</strong> the design <strong>of</strong> flood alleviation works for urban<br />

areas are<br />

i)<br />

ii)<br />

the frequency distribution <strong>of</strong> peak rates <strong>of</strong> flow ; and<br />

the shape <strong>of</strong> the flood hydrograph.<br />

The changes in the magnitude <strong>of</strong> the parameters <strong>of</strong> the frequency distribution<br />

<strong>of</strong> annual floods caused by urbanisati)onhave been studi,ed by Carter [3],<br />

Martens [4] and Anderson 151, each <strong>of</strong> whom approached the problem by means <strong>of</strong><br />

regional analysis. Much <strong>of</strong> the work on changes in the shape <strong>of</strong> flood hydrographs<br />

has employed a similar treatment, <strong>with</strong> the finite-period unit hydrograph<br />

(TUH) being used as an index to catchment response. Flow records for<br />

catchment areas in different stages <strong>of</strong> urban development <strong>with</strong>in the same<br />

hydrologically homogeneous region have been used to derive WH's <strong>of</strong> a predetermined<br />

duratiqn. Selected parameters <strong>of</strong> these !CUH's have then been expressed<br />

in terms <strong>of</strong> pertinent catchment Characteristics using multiple linear regression<br />

analysis. The relationships so obtained may then be employed to derive TUHts<br />

for both ungauged catchments and gauged catchments in a more advanced state <strong>of</strong><br />

development. For example, Espey et al [6] used 5 hydrograph parameters : peak<br />

rate <strong>of</strong> flow ; time-<strong>of</strong>-rise and base length <strong>of</strong> the hydrograph ; and hydrograph<br />

widths at 50 and 75 per cent <strong>of</strong> the peak discharge. Since the catchment<br />

characteristics selected by those Authors did not ipclude any parameter reflecting<br />

changes in the surface water drainage system, an empirical coefficient (


L<br />

ref. river<br />

no.<br />

1 Mole<br />

- Mole<br />

2 Gatwick Stream<br />

3 Ifield Brook<br />

4 Crawters Brook<br />

5 Crawters Brook<br />

487<br />

that simple one and two-parameter linear conceptual models can be used to<br />

advantage in characterising the changes iq catchment response caused by urbanisation.<br />

However, a prerequisite to either approach is the availability <strong>of</strong><br />

hydrometric data for a sufficiently large number <strong>of</strong> urban and rural catchment<br />

areas to effect a regional analysis. Where the number <strong>of</strong> flow records is<br />

limited, techniques which employ as few hydrograph parameters as possible are<br />

an obvious advantage.<br />

In the following paper, a dimensio<strong>nl</strong>ess unit hydrograph technique which<br />

involves the use <strong>of</strong> o<strong>nl</strong>y one parameter is outlined. The method <strong>of</strong> approach<br />

is illustrated by means <strong>of</strong> data from an area in the south-east <strong>of</strong> England.<br />

The paper begins in Section (2) <strong>with</strong> a brief description <strong>of</strong> the area and the<br />

available hydrometric data, and continues in Section (3) <strong>with</strong> an outline <strong>of</strong><br />

the method by which TüH's were derived. The regionalisation <strong>of</strong> these TüH's<br />

is discussed in Section (4). The paper concludes in Section (5) <strong>with</strong> a brief<br />

diqcussion <strong>of</strong> the existing data inadequacies in Urban <strong>Hydrology</strong>.<br />

2. DATA PRXPARATION<br />

2.1 Data inventory<br />

Between 1949 and 1969, the population <strong>of</strong> Crawley, a town situated some<br />

30 miles to the south <strong>of</strong> London, increased from 5,000 to 68,000. The<br />

developed area i? drained by the headwaters <strong>of</strong> the River Mole, a south-bank<br />

tributary <strong>of</strong> the River Thames. !Che western side <strong>of</strong> the town drains to Ifield<br />

Brook, whereas the centre and eastern sides are served by Crawters Brook and<br />

Gatwick Stream respectively (see Figure 1). A major part <strong>of</strong> the urban area<br />

lies on Weald Clay overlying Tunbridge Wells Sand, the latter outcropping to<br />

the south <strong>of</strong> the area. The average annual rainfall in the Crawley region<br />

(1916-1950) ranges from 750-850 rnrn.<br />

There are 6 gauging stations <strong>with</strong>in the area <strong>of</strong> interest, the details<br />

<strong>of</strong> which are summarised in Table 1. Both the gauging statipns on the River<br />

Mole and that on Gatwi.ck Stream are operated by the.Thames Conservancy ;<br />

Crawley Urban District Council maintain the records at the remaining 3 sites.<br />

For the purposes <strong>of</strong> the present study, data were available for all sites apart<br />

from the River Mole at Gatwick Airport.<br />

TABU 1<br />

: Details <strong>of</strong> gauging stations <strong>with</strong>in the Crawley region.<br />

Horley Weir<br />

stat ion cat chment records<br />

from<br />

Gatwick Airport<br />

Tinsley Sewage Works<br />

Ifield Mill<br />

Hazelwick Roundabout<br />

Woolborough Road<br />

89.8<br />

31 -8<br />

31 .o<br />

12.3<br />

4.7<br />

2.2<br />

Nov., I961<br />

Nov., 1967<br />

Jul., 1952<br />

Dec., I958<br />

May, 1954<br />

Sew.. 1952


488<br />

The positions <strong>of</strong> the 3 principal autographic raingauges located <strong>with</strong>in<br />

the headwaters <strong>of</strong> the River Mole are indicated on Figure 1 along <strong>with</strong> the<br />

gauging stations. 2 <strong>of</strong> the 3 raingauges have been in operation since before<br />

the first regular streamflQw measurements were taken at Tinsley Sewage Works<br />

and Woolborough Road, and records from all 3 raingauges are available from<br />

before 1961 when the two gauging stations on the River Mole were brought into<br />

use.<br />

2.2 Selection <strong>of</strong> storm events<br />

The first stage in the analysis <strong>of</strong> the available data involved the<br />

preparation <strong>of</strong> a short-list <strong>of</strong> suitable storm events for each <strong>of</strong> the £ive<br />

catchment areas. The criteria used in choosing these events were somewhat<br />

arbitrary, but in genera1,an attempt was made to confine the analysis to<br />

hydrographs <strong>with</strong> well-defined peaks having both a smooth rising limb and a<br />

smooth recession. Rainfall data for each <strong>of</strong> the selected storm events were<br />

then abstracted.<br />

The raingauge at Broadfield was taken to be representatjve<br />

<strong>of</strong> the rainfall patterns over the catchment areas draining to gauging statipns<br />

3, 4 and 5 (see Table I>, and the arithmetic mean <strong>of</strong> the catches at Broadfield<br />

and Gatwick Airport was taken for the areas commanded by gaugipg stations 1<br />

and 2. The records from Tinsley Sewage Works were o<strong>nl</strong>y used when no information<br />

was availab1.e at either <strong>of</strong> the other gauges.<br />

The above selection procedure produced 8 storm events at gauging statipn<br />

3, 11 at gauging station 1, 12 at gauging station 4 and 16 each at gauging<br />

stations 2 and 5, the majority <strong>of</strong> whi,ch were associated <strong>with</strong> rainfall totals<br />

exceeding 12 mm.<br />

2.3 Baseflow separation<br />

The second stage in the analysis consisted <strong>of</strong> the separation <strong>of</strong> the baseflow<br />

component from each <strong>of</strong> the recorded streamflow hydrographs, The procedure<br />

adopted involved the plotting <strong>of</strong> the recession limb <strong>of</strong> each hydrograph on<br />

semi-logarithmic graph paper <strong>with</strong> discharge on the logarirchmjc scale. A<br />

straight line was then fitted by eye to the lower portion <strong>of</strong> the curve, the<br />

point at which the recession departed from this straight line being taken to<br />

mark the time at which surface run<strong>of</strong>f effectively ceased. The variatipn <strong>of</strong><br />

baseflow <strong>with</strong> time during the storm was then represented by a straight line<br />

joining this point on the recession limb to the beginning <strong>of</strong> the rising limb<br />

<strong>of</strong> the hydrograph.<br />

The above method <strong>of</strong> baseflow separation, which is both straightforward<br />

in use and less subjective than the majority <strong>of</strong> the alternatgve procedures<br />

was applied to each <strong>of</strong> the 63 recorded hydrographs selected for analysis.<br />

The ordinates <strong>of</strong> the resultant surface run<strong>of</strong>f hydrographs were then abstracted<br />

at I-h intervals for all events at gauging stations 1-4 and at 30-min intervals<br />

at gauging station 5.<br />

These data were subsequently transferred on to 80-<br />

column punched cards along <strong>with</strong> the total recorded rainfalls witpin the same<br />

time incrementso


3. DERIVATION OF UNIT H!¿DROGRAPHS<br />

489<br />

There are two distinct methods <strong>of</strong> approach to determining the instantaneous<br />

unit hydrograph (IW) or finite-period unit hydrograph (TUH) <strong>of</strong> a<br />

catchment area from rainfall and streamflow data [g]. The first <strong>of</strong> these<br />

methods <strong>of</strong> approach involves the fitting <strong>of</strong> a linear conceptua1,model to the<br />

records <strong>of</strong> rainfall excess and surface run<strong>of</strong>f.<br />

The 4mpulse response functi.on<br />

<strong>of</strong> the fitted mode1,is then taken to approximate the IUH <strong>of</strong> the catchment.<br />

This indirect synthesis approach may be contrasted <strong>with</strong> the more direct methods<br />

<strong>of</strong> analysis which operate on the rainfall excess and surface run<strong>of</strong>f data to<br />

yield an IUH or TLTH wi,thout the need to postulate a model. The harmoni? method<br />

for defining the TUH <strong>of</strong> a catchment [9], which was adopted for the purposes<br />

<strong>of</strong> the present study, falls into the latter category.<br />

3.1 The harmonic method <strong>of</strong> unit hydrograph derivation<br />

In order to apply the harmonic method, the volumes <strong>of</strong> raiyfall excess<br />

and the ordinates <strong>of</strong> both the surface run<strong>of</strong>f hydrograph and the TIM are defined<br />

in terms <strong>of</strong> harmonic series. For example, if the equally-spaced ordinates <strong>of</strong><br />

the surface run<strong>of</strong>f hydrograph are given by yi, i = 1, 2, ...., n,<br />

+ = + C[A~ P cos j - 2xi sin j &]<br />

Yi.<br />

n j n<br />

j=l<br />

If n is an odd number, p = (n-1)/2 and<br />

B = 2 c y<br />

sink -;i<br />

n k<br />

j k= 1<br />

The volumes <strong>of</strong> rainfall excess, xi, i = 1, 2, ..., m, <strong>with</strong>in the same<br />

equal time increments may also be expressed as a harmonic series <strong>with</strong> the same<br />

fundamental period and number <strong>of</strong> terms if (n-m) zeros are added to represent<br />

the terms xi, i = m+l, m+2, ...., n.<br />

This series will be identical in form<br />

to equation (I), but <strong>with</strong> n harmonic coefficients a, b whose values can be<br />

obtained by substituting rainfall excess volumes for surface run<strong>of</strong>f ordinates<br />

in the equations (2). If the TITH is also assumed to have n equally-spaced<br />

ordinates, Le. the same fundamental period as that <strong>of</strong> the rainfall excess<br />

and surface run<strong>of</strong>f data, O'Donnell 191 has shown that the harmonic coefficients<br />

a, ß, <strong>of</strong> the harmonic series which defines the ordinates <strong>of</strong> the TUH can be<br />

calculated directly from the harmonic coefficients A, B, a, b usipg the linkage<br />

equations<br />

a.A. + b.B - -<br />

a = - but cio<br />

n<br />

-<br />

j a. +b<br />

~j<br />

- 2 w<br />

Pj - n 2<br />

aj2+bj<br />

1 %<br />

n a<br />

O<br />

eq. (3)


49 O<br />

Substitution <strong>of</strong> the aj, ßj in a series expansion <strong>of</strong> the form <strong>of</strong> equation<br />

(1) then gives the successive ordinates <strong>of</strong> the TUH, ui, i = 1, 2, ...., n<br />

dir e c t ly .<br />

The application <strong>of</strong> any <strong>of</strong> the established methods <strong>of</strong> analysis, such as<br />

the harmonic method, is liable to produce TUH's which are distorted by highfrequency<br />

oscillations <strong>of</strong> varying amplitude. PhiiliFpee and Wiggert [IO] who<br />

applied the harmonic method to data from 38 storms on 4 drainage basins in<br />

thr vicinity <strong>of</strong> Detroit, encountered this problem but <strong>of</strong>fered no explanation<br />

as to its cause. More recent studies by Blank et al [Il], who used the Fourier<br />

transform approach, which bears some relatipnship to the harmonic method, have<br />

indicated that such oscillations can result from errors in the data and are<br />

not necessarily caused by the inherent non-linearity <strong>of</strong> the rainfall-run<strong>of</strong>f<br />

relationship. Blank et al [Il] also show that oscillatory TUH's can be avoided<br />

by applying a low-pass digital filter to the rainfall excess and surface run<strong>of</strong>f<br />

data prior to the derivation <strong>of</strong> the TUH.<br />

One <strong>of</strong> the principal advantages <strong>of</strong> the harmonic method is its flexibility<br />

in dealing <strong>with</strong> storm events which produce such oscillatory "UH's <strong>with</strong>out the<br />

need to use digital filters. This property <strong>of</strong> the method stems from the form<br />

<strong>of</strong> the linkage equations (3) by which the aj, ßj <strong>of</strong> the harmonic series representation<br />

<strong>of</strong> the TKH depend o<strong>nl</strong>y on the harmonic coefficients <strong>of</strong> the rainfall<br />

excess and surface run<strong>of</strong>f data for the same frequency. Individual harmonics<br />

may therefore be omitted from the series representation <strong>of</strong> the TUH <strong>with</strong>out<br />

affecting the calculation <strong>of</strong> other üj, ßj.<br />

In particular, if the ordinates<br />

<strong>of</strong> the TUH obtained by using all the aj, ßj exhibit high-frequency oscillations,<br />

truncation <strong>of</strong> the series representation may help to eliminate these<br />

oscillations. However, the amount <strong>of</strong> truncation applied should not be suffic-<br />

ient to cause the hydrograph obtained by convolving the smoothed Tw <strong>with</strong> the<br />

distribution <strong>of</strong> rainfall excess to depart significantly from the original<br />

surface run<strong>of</strong>f hydrograph.<br />

3.2<br />

Appliiation to Crawley area data<br />

A computer program was written to derive TUH's using the harmonic method<br />

described ip Section (3.1) above. The computation began <strong>with</strong> the determination<br />

<strong>of</strong> the distribution <strong>of</strong> rainfall excess using the @-index method. The total<br />

volumes <strong>of</strong> both rainfall and run<strong>of</strong>f were calculated and their difference<br />

averaged over the number <strong>of</strong> time intervals <strong>with</strong> non-zero rainfall. This<br />

average t'losstt was then subtracted from the recorded volumes <strong>of</strong> rainfall w5thin<br />

each time interval, any negative differences being set to zero. The whole<br />

procedure was repeated until the difference between the total volumes <strong>of</strong><br />

rainfall and run<strong>of</strong>f was less than 0.25 mm. Having obtained the distribution<br />

<strong>of</strong> rainfall excess, the derivation <strong>of</strong> the TUH was carried out according to the<br />

method outlined in Section (3.1) above. The surface run<strong>of</strong>f hydrograph was<br />

then reconstituted by convolving the derived TUH <strong>with</strong> the distribution <strong>of</strong><br />

rainfall excess.<br />

The data from all 63 storm events were processed using the full number<br />

<strong>of</strong> harmonic coefficients in determining the ordinates <strong>of</strong> the TUH. The results<br />

obtained were then plotted and compared. The majority <strong>of</strong> the derived TUH's<br />

were found to exhibit high frequency oscillations <strong>of</strong> varying amplitude. The<br />

storm events which gave rise to such behaviour were therefore re-processed<br />

using fewer harmonic coefficients in determining the TUH ordinates.


The choice <strong>of</strong> the most appropriate number <strong>of</strong> harmonic coefficients to<br />

use for any given storm event is largely subjective. Truncating the harmonic<br />

series representation <strong>of</strong> the TLTH may remove the high-frequency oscillations,<br />

but the hydrograph obtained by convolving that TUK <strong>with</strong> the distribution <strong>of</strong><br />

rainfall excess should not depart markedly from the original surface run<strong>of</strong>f<br />

hydrograph, particularly in regard to the magnitude and timing <strong>of</strong> the peak<br />

flows. The amount <strong>of</strong> computer time that would have been involved in<br />

systematically reducing the number <strong>of</strong> harmonic coefficients in the series<br />

representation <strong>of</strong> the !ì'üñ until the fit provided by the reconvolved surface<br />

run<strong>of</strong>f hydrograph was no longer acceptable would have been excessive. A pilot<br />

study using a restricted number <strong>of</strong> truncated,,series,each having a predetermined<br />

proportion <strong>of</strong> the full number <strong>of</strong> harmonics, was therefore carried out. For the<br />

majority <strong>of</strong> the storm events, halving the number <strong>of</strong> harmonics successfully dampened<br />

the high-frequency oscillations, and gave rise to a reconvolved hydrograph<br />

whose maximum ordinate was generally <strong>with</strong>in 5 per cent <strong>of</strong> the peak <strong>of</strong> the<br />

original surface run<strong>of</strong>f hydrograph.<br />

491<br />

As a result <strong>of</strong> the above analysis, 8 TiJH's were obtained for gauging<br />

station 2, 6 each for gauging stations 4 and 5, 4 for gauging station 1 and<br />

3 for gauging station 3. The changes in flow regime which had occurred at<br />

gauging stations 2, 4 and 5 during the period <strong>of</strong> record were immediately<br />

obvious, and TiJH's for each <strong>of</strong> these sites were therefore grouped according<br />

to the dates <strong>of</strong> occurrence <strong>of</strong> the storm events from which they were derived.<br />

For convenience, these different groupings will be referred to by the letters<br />

IfAt1 (for the earlier storms) and "BI1 (for the later storms). Of the 8<br />

separate sets <strong>of</strong> TUH's, none consisted <strong>of</strong> less than 3 hydrographs. The TUH's<br />

<strong>with</strong>in each set were then plotted together using a common starting time, and<br />

an "average" TiiH obtained by drawing in a smooth curve through the plotted<br />

points, care being taken to ensure that the area under the curve was equivalent<br />

to 25 mm over the catchment area.<br />

Figure 2 shows the smoothed TITH'S obtained for Crawters Brook at Woolborough<br />

Road, and is indicative <strong>of</strong> the change in flow regime which has taken place as<br />

the town centre <strong>of</strong> Crawley has developed over a period <strong>of</strong> some 15-20 years.<br />

4. REGIONALISATION OF UNIT KYDROGRAPHS<br />

One <strong>of</strong> the simplest assumptions that can be made in regiqnaliTi9g a group<br />

<strong>of</strong> unit hydrographs is that all TLTH'S <strong>of</strong> a common duration are reducible to<br />

the same dimensio<strong>nl</strong>ess shape. The scaling parameters that are required to<br />

describe the dipensio<strong>nl</strong>ess hydrograph (<strong>of</strong> which there are generally two) are<br />

expressed in terms <strong>of</strong> catchment characteristics by means <strong>of</strong> a multiple linear<br />

regression analyses. The appljcation <strong>of</strong> this approach,$ the present study<br />

is complicated by the necessity to include independent variables which reflect<br />

thg man-made changes <strong>with</strong>in the catchment areas affected by the development <strong>of</strong><br />

Crawley.<br />

Previous authors who have applied a dimensio<strong>nl</strong>ess unit hydrograph approach<br />

have differed widely ip their choice <strong>of</strong> scaling parameters, For example,<br />

Commons u23 developed a l'basic hydrograph" <strong>with</strong> a time base <strong>of</strong> 100 arbitrary<br />

units, a height <strong>of</strong> 60 arbitrary discharge units and an area <strong>of</strong> 1196.5 square<br />

units. The scaling parameters required were peak rate <strong>of</strong> run<strong>of</strong>f and total<br />

volume <strong>of</strong> run<strong>of</strong>f. In common <strong>with</strong> many similar pairings, these parameters


49 2<br />

are not entirely independent, and as Diskin [I31 has recently pointed out, a<br />

choice <strong>of</strong> parameters which satisfy the constraint <strong>of</strong> unit area under the TLTH<br />

is to be preferred.<br />

A review <strong>of</strong> previously-published work on the hydrological consequences<br />

<strong>of</strong> urbanisation showed that, <strong>of</strong> several possible time scaling parameters, the<br />

lag time TL, defined as the time interval between the centroid <strong>of</strong> rainfall<br />

excess and the centroid <strong>of</strong> surface run<strong>of</strong>f, has been found to show a consistent<br />

variation <strong>with</strong> the length and slope <strong>of</strong> the main channel for both rural and<br />

urban catchment areas 13-53. If, however, the constraint <strong>of</strong> unit area under<br />

the TUH is observed, making the time scale <strong>of</strong> each TüH dimensio<strong>nl</strong>ess by expressipg<br />

the timing <strong>of</strong> all ordinates as a proportion <strong>of</strong> TL also determines the ordinate<br />

scale. Hence, the dimensio<strong>nl</strong>ess unit hydrograph can be specified in terms <strong>of</strong><br />

o<strong>nl</strong>y one parameter, the functional form <strong>of</strong> the curve being<br />

ut.TL = f (t/TL) eqe (4)<br />

where ut is the ordinate <strong>of</strong> the actual TUH at time t.<br />

The above method <strong>of</strong> producipg a dimensio<strong>nl</strong>ess unit hydrograph was applied<br />

to the data obtained from the 5 catchments in the Crawley area. The lag time<br />

<strong>of</strong> the I-h TUH for each catchment was obtained by computing the tjme interval<br />

between the origin <strong>of</strong> the TüH and its centroid and subtracting O.5h. Following<br />

Carter [3) and Anderson [5], a double-logari4hmic plot <strong>of</strong> lag time against<br />

basin ratio was prepared (see Figure 3). Basin ratio is defined by the quotient<br />

L@, where L is the length <strong>of</strong> the main channel between the gauging station<br />

and the watershed (km) and S the main channel slope.<br />

S is defined by the alti-<br />

tude difference between points located 10 and 85 per cent <strong>of</strong> the main channel<br />

length upstream from the gauging station divided by their distance apart [14].<br />

Values <strong>of</strong> L and S were obtained from 1 : 25000 scale maps for all catchment<br />

areas apart from that <strong>of</strong> gauging station 5 for which 1 : 500 longitudinal<br />

sections were available.<br />

In preparing Figure 3, the number <strong>of</strong> data was increased by the inclusion<br />

<strong>of</strong> TUH's for 2 gauging stations on the River Wandle in the southern suburbs<br />

<strong>of</strong> London to the north <strong>of</strong> Crawley (see Table 2). These hydrographs, which<br />

were obtained by Nash [l5], relate to conditions before and after the execution<br />

<strong>of</strong> channel improvement works. The data tabulated by Nash (loc. cit. Table 3,<br />

p.323) were assumed to relate to a duration <strong>of</strong> 30 min. The reduction in lag<br />

time shown by the Itpost-works" hydrographs was estimated by Nash from the<br />

records for 3 adjacent catchment areas whose channels were considered to be<br />

in an equivalent state to the improved conditions on the River Wandle. The<br />

"post-works" hydrographs were therefore synthetic and not derived directly from<br />

recorded data. Nevertheless, the data were considered to be useful in providing<br />

an independent measure <strong>of</strong> the influence <strong>of</strong> channel improvement works <strong>with</strong>out<br />

a simultaneous growth in the impervious area <strong>with</strong>in a catchment.<br />

TABLE 2 : Details <strong>of</strong> gauging stations <strong>with</strong>in the River Wandle catchment area<br />

(from Nash [IS] 1<br />

river station catchment


493<br />

Also plotted in Figure 3 are the lag timebasin ratio relationships<br />

obtained by Anderson [5] for catchment areas in three different stages <strong>of</strong><br />

development. Drainage class N refers to natural (rural) areas. Drainage class<br />

B includes areas in which the impervious cover ranges from 20 to 30 per cent,<br />

the tributary streams are sewered but the main channels are retained in their<br />

natural state. Drainage class U refers to fully developed urban areas having<br />

more than 30 per cent impervious cover and all stream channels completely<br />

sewered or improved and realigned. The majority <strong>of</strong> the gauging stations used<br />

by Anderson in deriving these relationships were situated <strong>with</strong>in the Washington<br />

D.C. metropolitan area.<br />

Examination <strong>of</strong> Figure 3 shows that data for gauging stations 2 and 3<br />

exhibit markedly longer lag times than would be predicted from Anderson's class<br />

N relationship. Since gauging station 3 is situated at the outfall <strong>of</strong> a mill<br />

pond covering an area <strong>of</strong> some 8-10 ha, such behaviour is to be expected. The<br />

presence <strong>of</strong> a lake <strong>of</strong> similar size <strong>with</strong>in the headwaters <strong>of</strong> Gatwick Stream<br />

catchment has a similar if not as pronounced an effect on lag time. In contact,<br />

the data for gauging stations 1, 4A, 5A, 6A and 7A all show reasonable agreement<br />

<strong>with</strong> the Anderson class N relationship, although bearing in mind the<br />

channel improvements above gauging station 5 and the existing urban development<br />

above gauging station 6, the broken line drawn above and parallel to Anderson's<br />

equation is perhaps a better approximation to natural catchment conditions<br />

<strong>with</strong>in the Crawley area.<br />

Figure 3 shows that at gauging station 5, an increase in the proportion<br />

<strong>of</strong> impervious cover (as estimated from data supplied by Crawley Urban District<br />

Council) from 5 to 26 per cent is associated <strong>with</strong> a reduction in lag time <strong>of</strong><br />

23 per cent, whereas at gauging station 4 an increase in impervious area from<br />

18 to 27 per cent apparently causes a reduction in lag time <strong>of</strong> 72 per cent.<br />

The latter anomaly is thought to result from extensive renewal <strong>of</strong> sewerage<br />

<strong>with</strong>in the catchment which took place concurrently <strong>with</strong> the increase in paved<br />

area. The data from gauging stations 6 and 7 indicate that channel improvement<br />

(not including installation <strong>of</strong> sewerage) can cause a 30-40 per cent reduction<br />

in lag time. The results obtained at gauging stations 4 and 5 are therefore<br />

not as inconsistent as they might at first appear.<br />

Figure 3 also shows that the lag times for Anderson's developed (class B)<br />

and fully developed (class U) catchments are markedly shorter than those<br />

observed in the Crawley area. The lower broken line, drawn parallel to and<br />

immediately above Anderson's class B relationship, is probably the best approximation<br />

to the behaviour <strong>of</strong> developed catchments <strong>with</strong> approximately 30 per cent<br />

impervious cover and improved channel systems <strong>with</strong>in the Crawley area that the<br />

available data will allow.<br />

Having obtained the relationship between the chosen scaling parameter and<br />

two readily-computed catchment characteristics, o<strong>nl</strong>y the form <strong>of</strong> the dimension-<br />

less curve is required to construct the I-h TUH for an ungauged catchment<br />

<strong>with</strong>in the Crawley area. Accordingly, the 8 observed TITH'S whose derivation<br />

was described in Section (3) above were reduced to the form <strong>of</strong> equation (4)<br />

using the appropriate observed values <strong>of</strong> lag time (see Figure 4). A single<br />

dimensio<strong>nl</strong>ess hydrograph was then fitted by eye to the plotted points, care<br />

being taken to ensure that the area under the curve was unity.


494<br />

In practice, application <strong>of</strong> the method to produce a I-h TUH for an ungauged<br />

catchment may be summarised as follows :<br />

i)<br />

ii)<br />

iii)<br />

measure the length and slope <strong>of</strong> the main channel <strong>of</strong> the catchment area<br />

from a 1 : 25000 Ordnance Survey map, and compute the basin ratio ;<br />

use Figure 3 to estimate the lag time <strong>of</strong> the catchment for a particular<br />

stage <strong>of</strong> urbanisation ; and<br />

given the lag time, use the dimensio<strong>nl</strong>ess unit hydrograph <strong>of</strong> Figure 4<br />

to construct the I-h TLTH <strong>of</strong> the catchment.<br />

5. CONCLUDING REMARKS<br />

Since the procedure outlined above uses the lag time as the o<strong>nl</strong>y scaling<br />

parameter, there is an obvious analogy <strong>with</strong> the single linear reservoir model<br />

whose storage constant is equivalent to the lag time as defined in the present<br />

study. The major difference between the two approached lies in describing<br />

the TUH by means <strong>of</strong> a series <strong>of</strong> plotted points, rather than an equation.<br />

peak <strong>of</strong> any TUH constructed from Figure 4 is therefore constrained to occur<br />

at a specific proportion <strong>of</strong> the lag time rather than at a time equivalent to<br />

the duration <strong>of</strong> the unit hydrograph.<br />

According to Rao et al 181, the single linear reservoir model provides<br />

an adequate description <strong>of</strong> the behaviour <strong>of</strong> both urban and rural catchments<br />

less than approximately 13 km2 in area. Those Authors obtained an expression<br />

for lag time in terms <strong>of</strong> volume and duration <strong>of</strong> rainfall excess and proportion<br />

<strong>of</strong> impervious cover. The results <strong>of</strong> the present study (in particular, Figure 3)<br />

tend to indicate that, for the area under study, proportion <strong>of</strong> impervious cover<br />

provides a less than adequate description <strong>of</strong> the man-made changes <strong>with</strong>in a<br />

drainage basin. In the absence <strong>of</strong> additional parameters relating to changes<br />

in the channel system, and perhaps distribution <strong>of</strong> impervious cover <strong>with</strong> respect<br />

to the outfall <strong>of</strong> the catchment, the engineer concerned <strong>with</strong> the design <strong>of</strong><br />

flood alleviation works must rely on diagrams such as Figure 3 whose construction<br />

is unfortunately largely subjective and highly dependent on local knowledge<br />

<strong>of</strong> the area.<br />

The urbanisation <strong>of</strong> a catchment area provides one <strong>of</strong> the most dramatic<br />

examples <strong>of</strong> man's interference <strong>with</strong> the hydrological cycle. Whereas the<br />

expansion <strong>of</strong> any conurbation creates an increasing water demand for domestic,<br />

industrial and recreational purposes, the very presence <strong>of</strong> the urban area<br />

accelerates the processes by which locally stored ana precipitated water is<br />

returned to the sea. Despite the major changes in the flow regime <strong>of</strong> a catchment<br />

area which urbanisation can bring about, relatively little attention has<br />

been given to the quantification <strong>of</strong> such changes when compared <strong>with</strong> other land<br />

use changes,such as that <strong>of</strong> forest to grassland. Bearing in mind the large<br />

sums which have been and are being devoted to flood protection schemes for<br />

urban areas, the available information can justifiably be labelled as inadequate.<br />

The


ACKNOWLEDGEMENTS<br />

The study described above was carried out on behalf <strong>of</strong> the <strong>Resources</strong><br />

Group for West Sussex County Council. The author wishes to thank Dr. T.M.<br />

Prus-Chacinski, partner, C.H. Dobbie and Partners, for his encouragement<br />

to prepare and permission to publish this paper. The assistance received<br />

from the Chief Engineer, Thames Conservancy, Mr. E.J. Brettell, and the<br />

Engineer and Surveyor, Crawley Urban District Council, Mr. H.J. Lumley, in<br />

providing hydrometric data was also greatly appreciated.<br />

REFERENCES<br />

1.<br />

2.<br />

3.<br />

4.<br />

5.<br />

6.<br />

7.<br />

8.<br />

9.<br />

IO.<br />

11.<br />

12.<br />

Toynbee, A. (1970).<br />

Cities on the move, Oxford Univ. Press, 257 pp.<br />

Savini, J., Kammerer, J.C. (1961). Urban growth and the water regime,<br />

U.S. Geol. Survey, <strong>Water</strong>-Supply Pap. 159l-A, 43 pp.<br />

Carter, R.W. (1961). Magnitude and frequency <strong>of</strong> floods in suburban<br />

areas, U.S. Geol. Survey, Pr<strong>of</strong>. Pap. 424-B, pp. B9-SII.<br />

Martens, L.A. (1968). Flood inundation and effects <strong>of</strong> urbanisation in<br />

metropolitan Charlotte, North Carolina, U.S. Geol. Survey, <strong>Water</strong>-Supply<br />

Pap. 1591-C, 60 pp.<br />

Anderson, D.G. (1970). Effects <strong>of</strong> urban development on floods in<br />

Northern Virginia, U.S. Geol. Survey, <strong>Water</strong>-Supply Pap. 2001-C, 22 pp.<br />

495<br />

Espey, W.H., Morgan, C.W., Masch, F.D. (1965). A study <strong>of</strong> some effects<br />

<strong>of</strong> urbanisation on storm run-<strong>of</strong>f from a small watershed, Centre for Res.<br />

in Wat. Resour., Univ. <strong>of</strong> Texas, Teoh. Rept. KYD 07-65OI,.CRWR-2, IO9 pp.<br />

Espey, W.H., Winslow, D.E., Morgan, C.W. (1969). Urban effects on the<br />

unit hydrograph, in Moore, W.L., Morgan, C.W. (eds.), Effects <strong>of</strong> watershed<br />

changes on streamflow, Proc. Wat. Resour. Symp. no. 2, Centre for Res.<br />

in Wat. Resour., Univ. <strong>of</strong> Texas, Univ. <strong>of</strong> Texas Press, pp. 215-228.<br />

Rao, R.A., Delleur, J.W., Sarma, B.S.P. (1972). Conceptual hydrologic<br />

models for urbanising basins, Proc. Am. Soc. Civ. Engrs., J. Hydraul.<br />

Div., 98 (KY71, pp. 1205-1220.<br />

O'Donnell, T. (1966). Methods <strong>of</strong> computation in hydrograph analysis and<br />

synthesis, Recent trends in hydrograph synthesis, Proc. Tech. Meeting<br />

no. 21, T.N.O., The Hague, pp. 65-102.<br />

Philippee, J.T., Wiggert, J.M. (1969). Instantaneous unit hydrograph<br />

response by harmonic analysis, Wat. Resour. Res. Centre, Virginia<br />

Polytechnic Institute, Bull. 15, 36 pp.<br />

Blank, D., Delleur, J.W., Giorgini, A. (1971). Oscillatory kernel<br />

functions in linear hydrologic models, Wat. Resour. Res., 7, pp. 1102-1117.<br />

Commons,, G,G. (1942). Flood hydrographs, Civ. Engrg. (New York), 12,<br />

pp. 571-5720


496<br />

13. Diskin, M.H. (1972). The role <strong>of</strong> lag in a quasi-linear analysis <strong>of</strong> the<br />

surface run<strong>of</strong>f system, paper presented at the 2nd Internat. Hydrol. Symp.,<br />

Fort Collins, Colorado.<br />

14. Benson, M.A. (1959) . Channel-slope factor in flood-frequency analysis,<br />

Proc. Am. Soc. Civ. Engrs., J. Hydraul. Div., 85 (Kyk), pp. 1-9.<br />

15. Nash, J.E. (1959). The effect <strong>of</strong> flood-elimination works on the flood<br />

frequency <strong>of</strong> the River Wandle, Proc. Instn. Civ. Engrs., 13, pp. 317-338.


W<br />

E<br />

497


H/L '3ìVNIOäO HdVMCIOtKIAH IINíl<br />

g o<br />

3<br />

O<br />

6 O<br />

g r W<br />

"S<br />

O<br />

P<br />

498


20<br />

I<br />

. 10<br />

< W<br />

I<br />

+<br />

0<br />

3 50<br />

2.0<br />

lo<br />

0.5<br />

0.2<br />

499<br />

0.1<br />

0.5 1.0 ZD 10.0 2OD 40.0<br />

BASIN RATIO, Z, KM<br />

PLOT OF LAG TIME AGAINST BASIN RATIO FOR THE CRAW!.EY AWEA.


* o v)<br />

2 5<br />

i 2<br />

LC3<br />

500


A DIMENSIONLESS UNITGRAPH FOR HONG KONG<br />

P. R: HELLIWELL<br />

Department <strong>of</strong> Civil Engineering, University <strong>of</strong> Southampton.<br />

ABSTRACT<br />

T.Y. CHEN<br />

Royal Observatory, Hong Kong<br />

The large number <strong>of</strong> individual catchments in Hong Kong makes it<br />

impracticable to measure stream flows on all but a small proportion<br />

<strong>of</strong> streams. Rainfall characteristics and topography are similar over<br />

much <strong>of</strong> the area.<br />

Using data for several storms at ea-h <strong>of</strong> the seven stream gau-<br />

ging stations, a mean dimensio<strong>nl</strong>ess unitgraph was derived. Basin lag<br />

was used in the conversion <strong>of</strong> both time and discharge scales. For un-<br />

gauged catchments basin lag can be estimated either as a simple func-<br />

tion <strong>of</strong> catchment size, shape and slope.<br />

This work was based on records collerted in 1964 and 1965, and<br />

was one <strong>of</strong> the first studies made possible by the installation <strong>of</strong> a<br />

network <strong>of</strong> hydrometric stations in Hong Kong.<br />

RESUME<br />

Le grand nombre de bassins fluviaux du territoire de Hong Kong<br />

fait qu'il n'est possible d'effectuer des mesures de débit que sur un<br />

faible pour centage d'entre eux. La pluviométrie et la topographie<br />

présentent des caractéristiques semblables sur la plus grande partie<br />

du territoire.<br />

En s'appuyant sur les données recueillies à .ept stations de jaz<br />

geage au cours d'un certain nombre d'averses, on a mis au point un h l<br />

drogramme unitaire moyen sans dimension. Le temps de réponse du bas-<br />

sin intervient dans les conversions à la fois pour l'échelle des temps<br />

et pour celle des débits. Pour les bassins qui ne tont pas l'objet de<br />

m sures des débits, le temps de réponse peut être estimé soit simple-<br />

ment en fonction de la surface du bassin, soit en fonction de sa tai-<br />

lle, de sa forme et de sa pente.<br />

La présente étude est basée sur des observations recueillies en<br />

1964 et 1965; ce fut une des premières qui aient été [,endues possibles<br />

par l'installation d'un réseau hydrométrique dans le territoire de<br />

Hong Kong.


502<br />

Introduction<br />

The British Crown Colony <strong>of</strong> Hong Kong is located on the coastline<br />

<strong>of</strong> China, just inside the Tropic <strong>of</strong> Cancer at latitude 220N and longitude<br />

114O. The land area <strong>of</strong> the Colony is approximately 1000km2, comprising<br />

a section <strong>of</strong> the mai<strong>nl</strong>and, the islands <strong>of</strong> Hong Kong and Lantau, and a<br />

large number <strong>of</strong> very small islands. The total area, including sea, is<br />

approximately 2 500km2.<br />

It is an area <strong>of</strong> high relief, the highest point being over 1OOûm<br />

above sea level. Drainage lines are short, usually less than lokm, giving<br />

a large number <strong>of</strong> small steep catchment areas draining to the very long<br />

coastline. In some areas, mast notably in the northwest, there is an area<br />

<strong>of</strong> almost flat land between the hills and the sea shore, formed by silting<br />

up .If shallow bays, and subsequent uplift <strong>of</strong> the land relative to sea level.<br />

These areas are intensively cultivated, <strong>with</strong> vegetable crops replacing the<br />

traditional rice cultivation where levels are high enough to be clear <strong>of</strong><br />

sea water intrusion, and fish ponds starting to replace brackish water rice<br />

cultivation near sea level.<br />

Much <strong>of</strong> this flatter land, particularly near<br />

the larger stream channels, is natural floodland, which makes stream<br />

gauging at high flows very difficult.<br />

The vegetation <strong>of</strong> the upland areas is <strong>of</strong> coarse grasses or mixed scrubland.<br />

Gathering wood for firewood and traditional seasonal burning <strong>of</strong> hillside<br />

vegetation tend to degrade the cover. Soils on the hills are coarse,<br />

thin, and poor. Gullying, sometimes severe, occurs mai<strong>nl</strong>y in the west <strong>of</strong><br />

the Colony. In the East, the grass cover is complete, and sediment loads<br />

are very low. The geology is predominantly granitic. Soil moisture and<br />

groundwater storage are small.<br />

Climate is seasonal. Winters are cool and dry, although periods af<br />

li-ght rain do occur. Summers are warm (daily maximum temperature up eo 35W,<br />

fvith very little diurnal variation) and wet. The mean summer half year rainfall<br />

at the Royal Observatory is 1850mm and the mean winter half year rainfall<br />

is 350mm. Observation-day rainfalls in excess <strong>of</strong> 250mm occur in most<br />

years. Frosts can occur at levels above 600m, but snow does not fall.<br />

Annual rainfall elsewhere in the Colony varies between 1250mm and 3000m.<br />

<strong>Water</strong> supply has always been a major problem in Hong Kong. The small<br />

size <strong>of</strong> catchment areas, the seasonal nature <strong>of</strong> rainfall, and occasional<br />

severe droughts have presented a major challenge to the water engineers(l1.<br />

Of necessity, reservoirs <strong>with</strong> small direct catchments have been built, and<br />

water has been broughtin from much larger areas by systems <strong>of</strong> catchwater<br />

channels or tunnels, intercepting many small streams which would otherwise<br />

discharge to the sea. More recently, arms <strong>of</strong> the sea have been converted to<br />

freshwater storage, at Plover Cove and at High Island.


Measurement <strong>of</strong> Streamflow<br />

Measurement <strong>of</strong> streamflow in all catchments in Hong Kong is obviously<br />

impossible, The approach adopted has been to make measurements in a<br />

relatively small number <strong>of</strong> basins spread through the Colony, and to transfer<br />

data from these to other basins. This paper describes the method used to<br />

generalise flood hydrograph data, and presents the resulting dimensio<strong>nl</strong>ess<br />

unitgraph.<br />

Streamflow is measured by fixed structures. Sharp-edged and crump<br />

weirs <strong>of</strong> various compound pr<strong>of</strong>iles, triangular and trapezoidal flumes,<br />

Parshall flumes and broad-crested diversion weirs are all used. Data are<br />

published annually(2).<br />

Selection <strong>of</strong> Records for Study<br />

Examination <strong>of</strong> records from streamflow stations and <strong>of</strong> autographic<br />

rainfall records for sites in or near to gauged catchments showed that three<br />

or more storms suitable for analysis were available at seven stations. There<br />

were seven more catchments which had been or were being gauged, but no suitable<br />

records for this analysis were found among them, the commonest problem<br />

being submergence <strong>of</strong> the measuring structure at high flow.<br />

notes on all streamflow stations, and Figure 1 is a map showing stations used<br />

in this study. From the table it will be seen that all catchments are small.<br />

Method <strong>of</strong> Analysis<br />

Table 1 gives<br />

The method used was that described in USBR <strong>Design</strong> <strong>of</strong> Small and<br />

by Linsley, Kohler and Pa~lhus(~).<br />

Studies <strong>of</strong> base flow had shown that depletion could be assumed to be<br />

<strong>of</strong> the type qt = qokt.<br />

arithmetic graph paper.<br />

503<br />

Base flow separation was achieved by plotting on log-<br />

No attempt was made to separate interflow.<br />

Duration <strong>of</strong> effective storm rainfall was found by applying the$-index<br />

technique to the hyetograph, having found the total storm run<strong>of</strong>f by<br />

integration <strong>of</strong> the storm run<strong>of</strong>f hydrograph. Storms <strong>with</strong> up to five unit<br />

periods <strong>of</strong> excess precipitation were used.<br />

Successive approximation procedures were used to find the unitgraph<br />

ordinates.<br />

In order that the period should be less than one third <strong>of</strong> the rise time<br />

<strong>of</strong> the unitgraph (to avoid instability in the computations), it was necessary<br />

to use a unit period <strong>of</strong> 15 minutes, except in the case <strong>of</strong> the smallest catch-<br />

ment where 74 minutes was used.


504<br />

With such short periods, the accuracy <strong>of</strong> timing <strong>of</strong> the chart records<br />

<strong>of</strong> streamflow and rainfall is critical. In the cases <strong>of</strong> Hok Tau and<br />

C’iung Mei, unshielded, tilting bucket rain gauges were sited on the stream<br />

recorder house ro<strong>of</strong> in order to ensure correct relative timing. Unfortunately,<br />

the mechanism transferring the tipping bucket record to the chart proved<br />

u.iieliable, and some records were lost. With the other stations, it was<br />

hoped that timing errors would average out, but there is no evidence on this.<br />

From experience, errors in long-period chart records using chart drives <strong>of</strong><br />

ZVk<strong>nl</strong>day can be kept to less than five minutes by making corrections based<br />

on check observations.<br />

On the other hand, standard daily autographic rainfall<br />

recorders in the hands <strong>of</strong> all but the most careful observers can <strong>of</strong>ten show<br />

fluctuations from correct time <strong>of</strong> ten to 15 minutes.<br />

The measure <strong>of</strong> agreement between various unitgraphs for a given catchment<br />

varied. Two examples, one showing consistent behaviour, and another showing<br />

rather poor agreement, are shown in Figure 2. Average unitgraphs for each<br />

catchment are shown in Figure 3. These were formed in the usual way by<br />

averaging time to peak, magnitude <strong>of</strong> peak and total duration, sketching in<br />

a mean shape, and adjusting the area under the curve.<br />

The variation <strong>of</strong> the mean unitgraphs can be seen in Figure 3. A means<br />

<strong>of</strong> unifying these was required. They were made dimensio<strong>nl</strong>ess in terms <strong>of</strong> the<br />

time to the centroid <strong>of</strong> the unitgraph and the volume <strong>of</strong> unit rainfall excess.<br />

Time-axis values were divided by time to centroid <strong>of</strong> unitgraph and<br />

discharge values were multiplied by time to centroid <strong>of</strong> unitgraph and divided<br />

by the volume <strong>of</strong> unit depth <strong>of</strong> run<strong>of</strong>f over the catchment area.<br />

The seven dimensio<strong>nl</strong>ess unitgraphs and the mean dimensio<strong>nl</strong>ess unitgraph<br />

found from them are shown in Figure 4. The ordinates <strong>of</strong> the dimensio<strong>nl</strong>ess<br />

unitgraph are listed in Table 2.<br />

Application to ungauged catchments<br />

The size range <strong>of</strong> individual catchments included in the analysis<br />

adequately covered the sizes <strong>of</strong> catchments found in Hong Kong. Similarly,<br />

geographical distribution was quite good, o<strong>nl</strong>y the eroded area in the west<br />

being excluded.<br />

Catchment and stream slope variability was not so well<br />

covered. The Tai Po Tau catchment included some lowland area, as did the<br />

Kam Tin catchment. The other five were upland in type.<br />

The time to the centroid <strong>of</strong> the unitgraph for the seven catchments is<br />

the basin lag (i.e. time from centre <strong>of</strong> area <strong>of</strong> excess rain to centre <strong>of</strong><br />

area <strong>of</strong> hydrograph <strong>of</strong> excess run<strong>of</strong>f) plus half the unit period, (lag + 9).


505<br />

The basin lag for the mean unitgraph <strong>of</strong> each catchment was plotted<br />

against catchment area and against-where L is the length <strong>of</strong> the main<br />

s<br />

stream projecked back to the catchment divide, as measured on 1:25000scale<br />

maps, Lc is the distance along the stream from the gauging station<br />

to a point on the main stream nearest to the catchment centre <strong>of</strong> area,<br />

and S is the stream slope as estimated by the difference in elevation <strong>of</strong><br />

the main stream at the catchment divide and the gauging station divided<br />

by L). The correlation coefficients were 0.92 and 0.86 respectively. It<br />

was significant that the Kan Tin value fell close to the regression line<br />

when slope was included, and <strong>of</strong>f the line where area alone was used.<br />

However, in all work using the hydrograph, catchment area alone has been<br />

used. Figure 5 6 show the relationship. Figure 6 also shows data from<br />

Linsley et ad4j and <strong>Design</strong> <strong>of</strong> Small Dams(3).<br />

The equations for estimation <strong>of</strong> catchment lag in ungauged basins are:<br />

lag = 0.47 areaoss4<br />

<strong>with</strong> lag in hours,area in km2<br />

lag = 0.36 (3)0.40 <strong>with</strong> lag in hours and lengths in km<br />

si<br />

To apply the unitgraph to any particular storm it is necessary to<br />

estimate a @-index value, or loss rate. Studies <strong>of</strong> this for Hong Kong<br />

conditions showed wide fluctuations between storms, ranging from 2.5 to<br />

80m/h, <strong>with</strong> values commo<strong>nl</strong>y between 10 and 40mm/h. Judgement must be<br />

used in selecting a suitable value. When reservoir spillway studies are<br />

in hand, a very low value is appropriate. For drainage design, a value<br />

nearer the mean would be used.<br />

This dimensio<strong>nl</strong>ess unitgraph has been used in conjunction <strong>with</strong> studies<br />

<strong>of</strong> probable maximum precipitation over Hong Kong(5~6) carried out by the<br />

staff <strong>of</strong> the Royal Observatory, to check capacity <strong>of</strong> existing reservoir<br />

spillways and in the design <strong>of</strong> new dams in Hong Kong.<br />

Flood frequency<br />

analysis has also been used but in the absence <strong>of</strong> long records this is<br />

thought to be less reliablef7).<br />

Conclusions<br />

The dimensio<strong>nl</strong>ess unitgraph derived by procedures developed in the<br />

U.S.A. is useful as a design tool. Hydrographs from the seven catchment<br />

areas, covering the range <strong>of</strong> sizes and types found in Hong Kong were unified<br />

to an acceptable degree <strong>of</strong> accuracy using time to centroid <strong>of</strong> unitgraph in<br />

converting scales into dimensio<strong>nl</strong>ess values.


506<br />

Whether area alone or a more complex parameter should be used for<br />

predicting basin lag is uncertain. Area alone appeared to be adequate<br />

except in the case <strong>of</strong> catchments <strong>with</strong> extensive lowland area.<br />

The volume <strong>of</strong> data available for this study was small both in terms<br />

<strong>of</strong> length <strong>of</strong> records used and number <strong>of</strong> stations.<br />

Acknowledgements<br />

Thanks are due to the Director <strong>of</strong> Public Works, Hong Kong Government,<br />

for permission to publish this paper; to Mr. J. Forth, who later extended<br />

the work on floods to other methods <strong>of</strong> approach; and to Mr. Wong Shiu Ming,<br />

present holder <strong>of</strong> the post <strong>of</strong> EngineerIHydrologist, for his valued ascist-<br />

ance in checking the data in this paper and providing information.<br />

References<br />

1.<br />

2.<br />

3.<br />

4.<br />

5.<br />

6.<br />

7.<br />

Robertson, A.S. and La Touche, M.C.D., Assessing the Yield <strong>of</strong> Hong Kong's<br />

Reservoirs, J. Institution <strong>Water</strong> Engineers, 23, (1969), 8, 507-519.<br />

Hong Kong Rainfall and Run<strong>of</strong>f (Annually from 1965), Hong Kong, <strong>Water</strong><br />

Authority, Public Works Department.<br />

United States Bureau <strong>of</strong> Reclamation. <strong>Design</strong> <strong>of</strong> Small Dams, (1960),<br />

Washington, U.S. Govt. Printing Office.<br />

Linsley, R.K. , Kohler and Paulhus, <strong>Hydrology</strong> for Engineers , (1958) ,<br />

New York, McGraw-Hill.<br />

Bell, G.J. and Chin, The Probable Maximum Rainfall in Hong Kong.<br />

R.O. Tech. Mem. 10, (1968). Government Printer, Hong Kong.<br />

Cheng, S. and Kwok, (1966) A Statistical Study <strong>of</strong> Heavy Rainfall in<br />

Hong Kong. Tech. Note 24, Hong Kong, Royal Observatory.<br />

<strong>Design</strong> Flood for Hong Kong, HS7, (1968), <strong>Water</strong> Authority, Public Works<br />

Department, Hong Kong.


-<br />

Altitude Catchment<br />

Station <strong>of</strong> Crest Area<br />

Name - m -@<br />

I_<br />

Tai Lam Chung 15 16.2<br />

60ft. weir<br />

Sham Tseng<br />

Tai Lam Chung<br />

'A'<br />

Tai Lam Chung<br />

'B'<br />

30<br />

75<br />

63<br />

2.0<br />

0.8<br />

1.2<br />

Contro 1<br />

Compound weir <strong>with</strong> ogee crest,<br />

l<strong>of</strong>t. low flow section.<br />

30ft. compound weir <strong>with</strong> ogee crest,<br />

3ft. low flow section.<br />

Compound V and rectangle sharp-<br />

crested suppressed weir.<br />

Compound V and rectangle sharp-<br />

crested suppressed weir.<br />

Instrument<br />

Staff gauge.<br />

Locally-made float level recorder.<br />

Staff gauge.<br />

George Kent float level recorder.<br />

Sloping brass staff gauge.<br />

Munro vertical drum<br />

Sloping staff gauges.<br />

Streamflow Stations in Hong Kong, to 1966<br />

Ob s erving Programe<br />

Frequent staff gauge readings<br />

before Jan. 1950, thereafter<br />

continuous recording <strong>with</strong><br />

daily observations.<br />

Continuous recording <strong>with</strong><br />

daily observations.<br />

Frequent staff gauge readings<br />

before June 1963, thereafter<br />

continuous reading <strong>with</strong> daily first<br />

and then weekly observations.<br />

Frequent staff gauge readings<br />

before June 1959, thereafter daily<br />

observations.<br />

Readings Record<br />

Commenced Quality Remarks<br />

Apr. 1948<br />

Fair<br />

Discont inued<br />

May 1955<br />

Jul. 1952 Fair Discontinued<br />

June 1956<br />

Jun. 1958<br />

Good<br />

Jun. 1958 Poor<br />

Shek Pi Tau L<br />

41.6<br />

102ft. long <strong>with</strong> 4ft. wide broadcrested<br />

weir.<br />

Sloping staff gauge.<br />

Munro vertical drum float level<br />

recorder.<br />

Daily observations before June 1964,<br />

thereafter continuous recording<br />

<strong>with</strong> bi-daily observations.<br />

May 1960 Poor<br />

Ho Sheung Heung 5<br />

16.9<br />

40ft. long broad-crested weir.<br />

Sloping staff gauge.<br />

Munro vertical drum float level<br />

recorder.<br />

Daily observations before June 1964,<br />

thereafter continuous recording <strong>with</strong><br />

di-daily observations.<br />

May 1960 Poor<br />

Tai Po Tau<br />

9<br />

15.2<br />

Broad-cres ted weir.<br />

Sloping staff gauge.<br />

Munro horizontal drum float<br />

recorder.<br />

eve1<br />

Continuous recording from July 1961<br />

to April 1963, daily observations<br />

at other times.<br />

Sha Tin<br />

100<br />

1.2<br />

Compound sharp-crested rectangular<br />

weir <strong>with</strong>out separating walls. 90°<br />

V notch upstream for low flows.<br />

Staff gauge.<br />

Munro horizontal drum float eve 1<br />

recorder.<br />

Continuous recording from Jan. 1961<br />

to Jan. 1963, daily observations at<br />

other times.<br />

Nov. 1960<br />

Hok Tau 85<br />

6.0<br />

Compound sharp-cres ted rectangular<br />

weir, <strong>with</strong>out separating walls.<br />

Sloping brass staff gauge.<br />

Munro horizontal drum float level<br />

recorder before May 1964, thereafter<br />

Leupold & Stevens A-35 recorder.<br />

Daily observations before June 1961,<br />

thereafter continuous recording <strong>with</strong><br />

daily first and then weekly observations.<br />

Dec. 1960 Good<br />

Chung Mei 13 9.1 Compound crump weir <strong>with</strong> -90° V notches<br />

upstream for low flows.<br />

Sloping brass staff gauge.<br />

Munro horizontal drum float level<br />

recorders before April 1964, thereafter<br />

Leupold & Stevens 2A-35 recorder.<br />

Continuous recording <strong>with</strong> daily first<br />

and then weekly observations.<br />

May 1962 Good<br />

Siu Lek Yuen 74 2.1 Compound sharp-edged rectangular<br />

weir <strong>with</strong>out separating walls.<br />

'Vertical brass staff gauge.<br />

Munro horizontal drum float levei<br />

recorders before June 1964, thereafter<br />

Leupold & Stevens A-35 recorder.<br />

Continuous recording <strong>with</strong> weekly<br />

observations.<br />

May 1964 Good<br />

Tsak Yue Bu 41<br />

1.6<br />

Compound V and rectangle sharpcrested<br />

suppressed weir.<br />

Sloping brass staff gauge.<br />

Leupold & Stevens A-35 recorder.<br />

Continuous recording <strong>with</strong> weekly<br />

obscrvations.<br />

Jul. 1964 Good<br />

Lo Shue Ling 3<br />

10.8<br />

Parshall flume, 15ft. throat.<br />

Staff gauge. Leupold & Stevens<br />

:A-35 recorder.<br />

Continuous recording <strong>with</strong> weekly<br />

observations.<br />

Jul. 1964 Poor<br />

Kam Tin 3<br />

11.7<br />

Parshall flume, 25ft. throat.<br />

Staff gauge. Leupold & Stevens<br />

2A-35 recorder.<br />

Continuous recording <strong>with</strong> weekly,<br />

observations.<br />

Jul. 1964 Fair<br />

Oct. 1960 Fair Dis continued<br />

Aug. 1963<br />

Table 1<br />

Good Discontinued<br />

March 1963


TABLE 2<br />

Ordinates <strong>of</strong> the 15-Minute Dimensio<strong>nl</strong>ess Unitgraph<br />

Time + (Lag+:)<br />

o. 20<br />

0.30<br />

0.40<br />

0.45<br />

0.50<br />

0.55<br />

0.65<br />

O. 70<br />

O. 80<br />

0.95<br />

1.00<br />

1 .O5<br />

1.30<br />

1.50<br />

2.00<br />

2.20<br />

2.75<br />

3.40<br />

3.90<br />

5.13<br />

U<br />

lag+2<br />

Discharge x - V<br />

0.05<br />

o. 10<br />

0.19<br />

0.32<br />

0.57<br />

O. 71<br />

1.00<br />

1.02<br />

1.01<br />

O. 73<br />

O .64<br />

0.56<br />

0.38<br />

0.30<br />

O. 18<br />

O. 15<br />

o .o9<br />

0.05<br />

O .O3<br />

0.00<br />

509


Fig. 1<br />

Q<br />

51 O


O<br />

/<br />

I-<br />

.-<br />

E<br />

I<br />

.-<br />

t<br />

3<br />

-e<br />

oa N<br />

L<br />

.-<br />

B


O<br />

- - t 2<br />

E .-<br />

I-<br />

+ .-<br />

t<br />

3<br />

I<br />

cv<br />

O


cc ;v<br />

--i--<br />

-+


ABSTRACT<br />

STUDY ,OF MAXIMUM FLOODS 1.N SMALL BASïNS OF TORRENTIAL TYPE<br />

Rafael HERAS<br />

Dr. Civil Engineer<br />

Angel LARA<br />

Civil Engineer<br />

The methodology <strong>of</strong> study is summarized for small b=<br />

sins <strong>of</strong> torrential character and it is applied to one <strong>of</strong> the gu-<br />

llies <strong>of</strong> the Gran Canaria island, considering the geological and<br />

geomorphological conditions <strong>of</strong> the basin and also the principal<br />

physical characteristics <strong>of</strong> the same one. In relation to all these<br />

physical characteristics and <strong>of</strong> a statistical complete study <strong>of</strong> in-<br />

tensities, the hydrogram is established for different hypothesis<br />

and the type <strong>of</strong> hydrogram is studied more unfavorable in relation<br />

in relation to the duration-intensity-frequency curves <strong>of</strong> maximum<br />

precipitations in 24 hours.<br />

RESUMEN<br />

S:e resume la metodologia de estudio para pequeñas<br />

cuencas de carácter torrencial y se aplica a uno de los barrancos<br />

de la isla de Sran Canaria, teniendo en cuenta las condiciones geo-<br />

lógicas y geomorfológicas de la cuenca y también las principales c z<br />

racteristicas físicas de la misma. En función de todas estas carac-<br />

terísticas y de un estudio estadístico completo de intensidades, se<br />

establecen los hidrogramas para distintas hipótesis y se estudia el<br />

hidrograma tipo más desfavorable en función de las curvas duración-<br />

intensidad-frecuencia de precipitaciones máximas en 24 horas.


518<br />

1. Generalities<br />

This method has been applied to the Tirajana gully, which is<br />

one <strong>of</strong> the most important in the south zone <strong>of</strong> the Gran Canaria island. The<br />

high part <strong>of</strong> their channel is formed by a big number <strong>of</strong> gullies which have its<br />

origin to an altitude <strong>of</strong> about 1,700 m., following the receiver basin a direction<br />

sensibly north-west-southeast. The maximum longitude <strong>of</strong> the channel is 27 km.<br />

and the total area <strong>of</strong> the basin is 71,4 km2. Its location in the island is reflected<br />

in the graph number 1.<br />

2. Geology <strong>of</strong> the basin <strong>of</strong> the Tirajana gully<br />

The region where the Tirajana gully is located is the southeast<br />

<strong>of</strong> the Gran Canaria island.<br />

For its location, it participates <strong>of</strong> the geological characteristic<br />

<strong>of</strong> the half south <strong>of</strong> this island, appearing on the surface the most ancient<br />

complex which have taken part in its formation, such as are the Ancient Basalt<br />

<strong>of</strong> the Serie I, <strong>of</strong> basaltic alkaline-olivinical composition and formed by sub-<br />

parallel running out <strong>with</strong> pyroclasts intercalated, the Trachysienite complex<br />

<strong>with</strong> ignimbrites associated, <strong>of</strong> rhyolithical, panthelithical and trachyphenol-<br />

ithical compositions, and the Phonolithical serie, composed in this zone by<br />

running out, pius, end ignimbrites, frequently <strong>with</strong> laminar parting parallel<br />

to the direction <strong>of</strong> the flow.<br />

All these series are located principally in the middle zone <strong>of</strong><br />

the gully, existing also in form <strong>of</strong> little cropping out, principally phonolithic<br />

and trachysienite, in the high part <strong>of</strong> the basin. On the other hand, all the<br />

mentioned series are practically impermeable in the process <strong>of</strong> infiltration<br />

from the surface and, particularly, the series <strong>of</strong> Basalts I and Trachysienite<br />

Complex, forming the majority <strong>of</strong> the substratum on which are seated the most<br />

recent superficial formations.


519<br />

The series Pre-Roque Nublo and Roque Nublo, which have its<br />

maximum power in the interior <strong>of</strong> the island appearing largely disseminated<br />

in the Tirajana gully, specially in its middle and high zones.<br />

The said series are composed lithologically by angular<br />

fragments constituting xenolithical agglomerate <strong>with</strong> intercalations <strong>of</strong><br />

tephrithical lavas, basaltical running out and sediments. In these series, <strong>of</strong><br />

moderate permeability, a quick fall in the level <strong>of</strong> water is produced, being<br />

therefore, its pondage coefficient very law.<br />

The most modern basaltical serie that appear on the surface,<br />

is the correspondent to the Basalts II, <strong>of</strong> basaltical olivinical composition and<br />

constituted by aa and pahoehoe lavas, more permeable than the previous<br />

formations. These lavas cover principally the northcast zone <strong>of</strong> the fully<br />

disseminating also in smaller proportion in its middle zone.<br />

Finally, this basin present a genuine characteristic which is<br />

distinguished from the contiguous ones, since that a big part <strong>of</strong> its surface<br />

occupied by sedimental formations, <strong>of</strong> which, the avalanches <strong>of</strong> various ages<br />

constitute the principal cropping out <strong>of</strong> the zone <strong>of</strong> heading, while the low zone<br />

<strong>of</strong> the basin is covered by deposits <strong>of</strong> recent alluviums, <strong>with</strong> bigger porosity<br />

and higher permeability.<br />

3. Physical Data<br />

In order to know the characteristics <strong>of</strong> the basin to use them<br />

fundamentally in the estimation <strong>of</strong> its velocity <strong>of</strong> propagation <strong>of</strong> maximum<br />

flood, it has been calculated for the same one, the following characteristics:<br />

, longitudinal section<br />

. surface<br />

. perimeter<br />

. equivalent rectangle<br />

, hypsometrical curve<br />

. index <strong>of</strong> compactness<br />

. index <strong>of</strong> slope


520<br />

surface perimeter<br />

17.4 km2 57.5 k m<br />

4. Maximum floods<br />

4. 1. General planning<br />

The values obtained have been the following:<br />

compac tnes s equivale nt<br />

index rectangle<br />

1.90 L = 26. 10<br />

1 = 2.74<br />

slope<br />

index<br />

O. 263<br />

The principal probleme presented is the absolute lack <strong>of</strong><br />

direct data <strong>of</strong> gauging <strong>with</strong> sufficient extension and guarantee, as much in<br />

the studied basin as in the rest <strong>of</strong> the island, therefore it is not possible to<br />

study the flood from the direct data <strong>of</strong> maximum flows neither by comparison<br />

<strong>with</strong> others basins, affinitive basins hydrologically. Therefore, using the<br />

maximum available data, it has been performed the complete study <strong>of</strong> floods<br />

by empirical and hydrometrical methods, constrasting each one <strong>of</strong> the<br />

estimated parameters <strong>with</strong> data obtained by direct procedures in the Gran<br />

Canaria gully.<br />

4. 2. Empirical methods<br />

In the formation <strong>of</strong> maximum floods intervenes multiple<br />

causes, whose possibility <strong>of</strong> coincidence characterizes the risk. The surface<br />

<strong>of</strong> the receiver basin is one <strong>of</strong> the causes among the principal ones, since<br />

there exists a good correlation between the basin area and the maximum flood.<br />

Using formulas that could tie directly the flows <strong>of</strong> floods <strong>with</strong><br />

the surface <strong>of</strong> the basin and others in which intervene others hydrological<br />

parameters.<br />

Among the existing formulas it has been used those which are<br />

in the joined chart; these formulas has been selected in relation to the hydro-<br />

logical characteristics <strong>of</strong> the basin in the present study. In the mentioned


chart it has been given, in the same way, the values which are the result <strong>of</strong><br />

its application.<br />

SANTI<br />

GREAGER<br />

FORTI<br />

ZAPATA<br />

423 (Tr = 500 años) KUICKLING 255 (Tr = 100 anos)<br />

520 (Tr = 500 años) TURAZZA 820 (Tr = 500 anos)<br />

626 (Tr = 500 años) HERAS 780 (Tr = 500 anos)<br />

272 (Tr.= 100 años) G. QUIJANO 292 (Tr = 100 anos)<br />

The big dispersion <strong>of</strong> the results obtained <strong>of</strong> the same ones<br />

can be observed.<br />

4. 5. Hydrometrical method<br />

521<br />

This method consists in trying to reproduce the meteorological<br />

phenomenon and, in this case, we will use the method <strong>of</strong> the isochronal curves,<br />

to which it is necessary to discompose the surface <strong>of</strong> the basin in some zones<br />

(si, s2, . . . sn) limited by lines (isochrones) in which the water fallen in one<br />

<strong>of</strong> these ones delays in arriving to the point in wich we estimate the flood,<br />

sucesive times <strong>of</strong> value t, 2t, . . . , being our case t half hour.<br />

The velocity <strong>of</strong> the water if fixed by experimental and<br />

empirical methods, in relation to the physical data, fundamentally <strong>of</strong> the<br />

longitudinal section and index <strong>of</strong> slope, and other characteristics peculiar <strong>of</strong><br />

the basin (vegetation, geology and so on). In our case, we have fixed as<br />

velócity 6 km/hour in the low zone <strong>of</strong> the basin, up to an altitude <strong>of</strong> 600 m.,<br />

above sea level, and 7 km/hour in the high part. Once fixed this one, the pointe<br />

are obtained from which delays in arriving the water to the place studied a<br />

same time and <strong>with</strong> which, as contour line <strong>of</strong> a topographical elevation, we<br />

can draw the isochronical lines obtaining simultaneously the concentration<br />

time, that in our case is <strong>of</strong> 4.3 hours.


522<br />

If we contrast this time <strong>with</strong> the one given by any <strong>of</strong> the<br />

empii ical formulas existing (for example, Giandotti), we obtain a difference,<br />

by an excess <strong>of</strong> about 1 hour. This appreciable difference is justified by the<br />

quantity <strong>of</strong> sediment load which carry the floods in this type <strong>of</strong> gullies, and<br />

produce a disminution in the mean velocity <strong>of</strong> propagation. The incidence <strong>of</strong><br />

the considered velocity in the flood peak is small, and so is o<strong>nl</strong>y influenced<br />

by the concentration time.<br />

The isochrones once obtained, multiplying the area encircled<br />

among the same ones by the intensity <strong>of</strong> precipitation and the supposed run<strong>of</strong>f<br />

coefficient, the flow is obtained in the studied point due to the precipitation in<br />

each one <strong>of</strong> the zones.<br />

They are, therefore, necessary the data <strong>of</strong> maximum<br />

intensities <strong>of</strong> precipitations in the basin for a determined period <strong>of</strong> recurrence.<br />

To realize the statistical study <strong>of</strong> the intensity we will use from among the<br />

several laws <strong>of</strong> distribution <strong>of</strong> frequencies which are applied in hydrological<br />

problems, Gumbel’s law, which is used principally for distributions <strong>of</strong><br />

maximum values. This law has been applied to the usable series <strong>of</strong> the interior<br />

stations <strong>of</strong> the basin and to a series <strong>of</strong> stations <strong>of</strong> lap. All <strong>of</strong> them can be seen<br />

in the graph number 1. The maximum annual values <strong>of</strong> precipitation in 24 hours<br />

for several periods <strong>of</strong> recurrence are reflected in the charts numbers 1, for<br />

the stations <strong>of</strong> the interior <strong>of</strong> the basin, and number 2, for the exterior ones.<br />

In order to adjust the distribution <strong>of</strong> the values <strong>of</strong> maximum<br />

precipitation in 24 hours and considering the probability <strong>of</strong> coincidence <strong>of</strong> said<br />

values, the Gumbel’s law has been applied to the monthly data in all the<br />

stations, for October, november, december, january, february and march,<br />

resulting to be the months <strong>of</strong> October and november the most unfavourable in<br />

relation to the floods, as it is deducted <strong>of</strong> the observation <strong>of</strong> the chart number 3.<br />

Also, to contrast the distribution <strong>of</strong> maximum values in the<br />

basin, the isomaximum curves has been designed <strong>with</strong> the values <strong>of</strong> maximum<br />

precipitation in 24 hours to times <strong>of</strong> recurrence <strong>of</strong> 50, 100 and 500 years for<br />

the maximum maximorum annual values and for the maximum values <strong>of</strong><br />

October (which is the month <strong>of</strong> maximum intensity). These isomaximum curves<br />

can be seen in the graphs numbers 5 up to 10 and have served like contrast <strong>of</strong><br />

the values obtained by Gumbel and also to adjust the mean intensity <strong>of</strong><br />

precipitation and its variation <strong>with</strong> the time.<br />

With regard to the run<strong>of</strong>f coefficient, there is hardly no data<br />

for maximum maximorum flows, therefore considering the impermeability <strong>of</strong><br />

the middle and high zone and the greater permeability <strong>of</strong> the low zone, we<br />

estimate some run<strong>of</strong>f coefficients <strong>of</strong> O. 85, O. 80 and O. 50, respectively, for<br />

each one <strong>of</strong> the three considered zones. To estimate these coefficients, which<br />

could be reached in strong floods which would be produced after several days


523<br />

<strong>of</strong> considerable precipitation, it has been realize studies <strong>with</strong> all usable data<br />

and considering the physical, geological and geomorphological characteristics<br />

<strong>of</strong> the basin, detached in high, middle and low zones, it has been obtained<br />

mean run<strong>of</strong>f coefficient <strong>of</strong> O. 78 that seems to be reasonably adjusted to the<br />

characteristics <strong>of</strong> this basin.<br />

The duration <strong>of</strong> the storm is an important factor in the<br />

determination <strong>of</strong> the maximum flood, the maximum value <strong>of</strong> the peak flow is<br />

used to obtain <strong>with</strong> durations <strong>of</strong> storm about the concentration time. In our<br />

case, we have supposed durations <strong>of</strong> storm <strong>of</strong> 1, 2, 3, 4, 5, 6 and 8 hours.<br />

The precipitation for the several hypothesis has been estimated in relation to<br />

the distribution <strong>of</strong> the maximum precipitation in 24 hours for smaller periods,<br />

obtained from the short available data, which have been contrasted <strong>with</strong> direct<br />

measures, obtaining the following values:<br />

Duration <strong>of</strong> the storm (hours) 1 2 3 4 5 6 8<br />

Precipitation in percentage <strong>of</strong><br />

the precipitation in 24 hours 35 43 57 69 75 ao 86<br />

Although it is considered little representative the compiled<br />

data <strong>of</strong> maximum intensities in several stations <strong>of</strong> the basin in study, the said<br />

values are kept, putting us in security side. At the same time and in order to<br />

procure greater aproximation to the actual phenomenon, we can consider three<br />

stretch <strong>of</strong> different mean intensity coincident <strong>with</strong> the high, middle and low<br />

zones, previously mentioned in the estimation <strong>of</strong> the run<strong>of</strong>f coefficients.<br />

For the different hypothesis <strong>of</strong> duration <strong>of</strong> the flood, the<br />

intensity, together, is distributed in the time in such a manner that in the<br />

hydrograms <strong>of</strong> duration 1 and 2 hours it is considered all the unitary intensity<br />

estimated and for 3 or more hours it has been supposed uniform intensity<br />

during the two first hours and decreasing in a 20% each hour more <strong>of</strong> duration<br />

until reaching a minimum <strong>of</strong> a 20% in the storm <strong>of</strong> 6 or more hours.<br />

The isochrone curves used in the calculation <strong>of</strong> the hydrograms<br />

as well as the different zones considered can be seen in the graph number 11,<br />

and the hypothesis that the storm i s produced simultaneously in all the basin<br />

has been made since that the hypothesis that began in the head waters and goes<br />

displacing in the direction <strong>of</strong> the gully appears excessively unfavourable for<br />

the climatological conditions <strong>of</strong> the basin. Once the run<strong>of</strong>f values, intensity<br />

<strong>of</strong> precipitation and duration <strong>of</strong> the storm, are fixed, we can obtain the flows<br />

due to each zone and the accumumulated <strong>of</strong> these ones give the flows that would<br />

reach the sea in each moment, supposing an infinite time <strong>of</strong> rain. Displacing<br />

horizontally this curve in the time <strong>of</strong> duration <strong>of</strong> rain and calculating the curve<br />

difference <strong>of</strong> the two, we obtain the actual flows that reach in each moment.


In relation to the study realized it has been considered the<br />

hypothesis (i), applying in all <strong>of</strong> them some run<strong>of</strong>f coefficients <strong>of</strong> O. 80, O. 85<br />

and O. 50 for each one <strong>of</strong> the different zones considered and the distribution <strong>of</strong><br />

intensities already cited for durations higher than two hours.<br />

As summary <strong>of</strong> the hydrograms obtained, in the graphs<br />

numers 12 up to 15 figure the correspondent to a duration <strong>of</strong> storm <strong>of</strong> 4 hours<br />

and periods <strong>of</strong> recurrence <strong>of</strong> 100 and 500 years, the same for the maximum-<br />

maximorum values <strong>of</strong> precipitation, as for the maximum <strong>of</strong> October. In the<br />

chart number 4 appears the distribution <strong>of</strong> intensities in space and time for<br />

these hypothesis.<br />

CONCLUSIONS<br />

As a result <strong>of</strong> the calculations realized by the different methods<br />

and considering that the hydrograms obtained must be affected by a reducent<br />

coefficient in relation to the hypothesis <strong>of</strong> calculation, in which it has been<br />

considered some maximum values <strong>of</strong> the run<strong>of</strong>f coefficient and some maximum<br />

intensities which must be reduced due to the non-coincidence <strong>of</strong> the distribution<br />

in the space and time <strong>of</strong> maximum values in all the stations, we obtain the<br />

results that can be seen in the annexed chart.<br />

(1)<br />

The hydrogram type estimated figure in the graph number 16.<br />

The statistical study <strong>of</strong> maximum precipitation in 24 hours has been<br />

realized in the period <strong>of</strong> 21 years, 1949-50 - 1969-70 and the data <strong>of</strong><br />

the usable stations has been contrasted and, generally, it appears to<br />

have enough guarantee, but by the extension <strong>of</strong> the period used, resulted<br />

as a risk to extrapolate for times <strong>of</strong> recurrence higher than 100 years.<br />

The results obtained are conditioned by the empirical-theorical<br />

methods used, due to the absolute lack <strong>of</strong> series <strong>of</strong> maximum flows,<br />

although we estimate that the maximum difference <strong>with</strong> the actual<br />

values will not exceed 15%.<br />

The study is o<strong>nl</strong>y related to maximum values <strong>of</strong> flood and in it has not<br />

been considered the effect <strong>of</strong> the solid flows.<br />

<strong>of</strong> hydrograms <strong>with</strong> durations <strong>of</strong> storm <strong>of</strong> 1, 2, 3, 4, 5, 6 and 8 hours.


d<br />

Fi<br />

3<br />

tJ<br />

id<br />

c<br />

v<br />

525


H<br />

o .o o<br />

m o o<br />

'4 m<br />

u<br />

al<br />

ci<br />

lti<br />

O<br />

7<br />

m<br />

Wru<br />

al<br />

c<br />

ci<br />

c<br />

'4<br />

al<br />

u<br />

c<br />

al<br />

F<br />

m<br />

W f<br />

0)<br />

c<br />

O<br />

'4<br />

ci<br />

a<br />

4J<br />

o)<br />

f<br />

Wrn<br />

4-l<br />

O<br />

cv<br />

w w<br />

a,<br />

c<br />

ci<br />

!x<br />

O<br />

H<br />

!x<br />

w<br />

FI<br />

!z<br />

H<br />

f<br />

W w<br />

ree<br />

O<br />

O<br />

W O<br />

r(<br />

u<br />

F:<br />

ed<br />

:<br />

c<br />

n<br />

al<br />

m<br />

W m<br />

4<br />

m<br />

W h<br />

r(<br />

526


O 0 0<br />

m o o<br />

rlm<br />

W N<br />

W<br />

W f<br />

W<br />

W h<br />

m<br />

w w<br />

UJ<br />

W O<br />

1<br />

h<br />

W 1<br />

1<br />

1<br />

rl<br />

N<br />

W m<br />

1<br />

[B<br />

a<br />

O<br />

.rl<br />

h<br />

a,<br />

a<br />

w m<br />

rl<br />

h<br />

N<br />

W f<br />

rl<br />

U J<br />

wu.<br />

rl<br />

W<br />

W O<br />

hl<br />

527


m<br />

m<br />

><br />

-<br />

5:<br />

- E - E<br />

52 8


529


530<br />

ISLA E<br />

--T<br />

o- 1<br />

6-3


6-5<br />

5 31<br />

BARRANCO DE T I W A<br />

-<br />

ISOMAXIMAS -ANUAL<br />

50 AfiOS


532<br />

ISOMAXIMAS- ANUAL<br />

100 AROS


06ä<br />

533<br />

BIRRANCO DETIñàùANA<br />

-<br />

ISOMAXIMAS-ANUAL<br />

soo AROS


534<br />

02<br />

\O"<br />

G-8<br />

ûARRANC0 DE TVLIWANA<br />

ISOMAXIMAC-OCTUBR!<br />

50 AROS


02<br />

OM<br />

G-9<br />

535<br />

-<br />

BARRANCO DE TIRUIW<br />

ISOMAXIMAS - OCTUBRE<br />

100 AROS


536<br />

G-10<br />

BARRANCO DE TIRWANA<br />

ISOM AXMAS-OCTUBRE


oz<br />

O78<br />

065<br />

537


U.,.' ,.@.a<br />

s<br />

538


O<br />

O<br />

ir)<br />

W<br />

m<br />


FLOOD ESTIMATION BY DETERMINATION OF REGIONAL PARAMETERS FROM LIMITED DATA<br />

ABSTRACT<br />

P.H. EERBST, S. VAN BILJON, J.P.J. OLIVIER AND J.M. HALL<br />

A regionalized study <strong>of</strong> maximum annual flows <strong>of</strong> different short dura-<br />

tions (including peaks) has been carried out. In view <strong>of</strong> the limited<br />

length <strong>of</strong> record available at most <strong>of</strong> the gauging stations in the region,<br />

an attempt has been made to develop a technique to strengthen the data<br />

available at any particular point <strong>of</strong> interest, by using all available per<br />

tinent flow data in the region. Having chosen the extrema1 dislribution<br />

best suited to the region, the moments <strong>of</strong> the sample (after adjustment)<br />

are correlated <strong>with</strong> various catchment characteristics. This allows estima<br />

tion <strong>of</strong> flood magnitude frequency curves at any site <strong>of</strong> interest <strong>with</strong>in<br />

the region, <strong>with</strong> associated confidence bands. Such frequency curves are<br />

determined for various suitable time intervals which then allows the syn-<br />

thesis <strong>of</strong> characteristic flow hydrographs, <strong>with</strong> a specific probability <strong>of</strong><br />

occurrence attached to each, along Mith associated enyelopes correspon-<br />

ding to specific confidence limits, Comparison <strong>with</strong> hydrographs derived<br />

from rainfall input depths <strong>with</strong> specified probabplities, subtracting los?<br />

ses, and then using unitgraph methods, leads to the conclusion that a bet<br />

ter relation between probability <strong>of</strong> occurrence <strong>of</strong> a specific hydrograph,<br />

and its magnitude, can usually be obtained by direct statistical methods,<br />

than by more indirect deterministic techniques.<br />

RESUMEN<br />

Fia sido ejecutado un estudio regionalizado de gastos máximos anuales<br />

de duraciones cortas y diferentes (.incluyendo valores máximosr. En vista<br />

de la limitación de información disponible para la mayoria de las estacio<br />

nec de aforo de la región, se ha intentado desarrollar un método que permita<br />

reforzar dicha información para cualquier punto de interés usando to<br />

dos los registros existentes de la región. Habiendo elegido la distribución<br />

extrema que mejor acomoda a la región, se han correlacionado los mementos<br />

estadísticos de muestre0 (ajustando valores) con ias características<br />

de diferentes hoyas. Esto permite la estimación de curvas “magnitudfrecuencia”<br />

de riadas para cualquier punto de inter’es dentro de la región,<br />

asociadas con bandas de confiabilidad. Tales cur~as de frecuencia<br />

se han determinado para convenientes intervalos de tiempo las cuales permiten<br />

la sfntesis de hidrógrafos de flujo caracteristicos, relacionados<br />

con probabilidades específicas de ocurrencia, junto con envolventes que<br />

corresponden a limites específicos de confiabilidad. Comparación con hidrógrafos<br />

derivados de precipitaciones de ocurrencia especifica, substrayendo<br />

pdrdidas y usando luego métodos de gráfico unitario, lleva a la<br />

conclusión que una mejor relación entre probabilidad de ocurrencia de un<br />

hidrógrafo determinado y su magnitud, puede obtenerse generalmente medi’an<br />

te métodos estadísticos directos en vez de técnicas deterministicas indirectas.


542<br />

INTRDDUCTIOIY<br />

There is no need to stress the importance <strong>of</strong> reliable flood magnitude frequency estimates in mter resource development.<br />

Whilst this problem is especially highlighted in developing regions, even so called developed<br />

countries frequently suffer from a limitation <strong>of</strong> data on which to base reliable flood flow estimates.<br />

An estimate <strong>of</strong> a flood <strong>with</strong> a specified recurrence interval (determined by specified design consideration)<br />

should be accompanied by information concerning the reliability <strong>of</strong> such an estimate, but this has not<br />

usually been the case in the past.<br />

This paper outlines a methodology by means <strong>of</strong> which all or most <strong>of</strong> the available flood flow information<br />

in a region can be rationally analysed and assembled, by taking into account quantifiable parameters <strong>of</strong><br />

characteristics <strong>of</strong> the various catchments in the region and relating these to the moments <strong>of</strong> the frequency<br />

distr, but ion assumed.<br />

Methods are described by means <strong>of</strong> which a flood hydrograph <strong>with</strong> a specified recurrence interval can be<br />

estimaied and a quantitative statement on the reliability <strong>of</strong> such an estimate can be made.<br />

lhe method was<br />

drvtloped partly due to uncertainty about the validity <strong>of</strong> use <strong>of</strong> the method whereby rainfall intensity - dura:<br />

::on curves are applied to a transformation function (e.g. a I - hour Unitgraph) due to the many assunptions<br />

necessary in the latter approach.<br />

It was felt that where some limited flow information does exist, an approach as outlined woulo provide better<br />

estimates <strong>of</strong> flood frequencies and flood hydrographs, including also information on the reliability <strong>of</strong> such<br />

estimates. Avoidance <strong>of</strong> any mention <strong>of</strong> the degree <strong>of</strong> uncertainty in any such estimate does not remove the<br />

uncertainty, it o<strong>nl</strong>y serves to diminish consideration <strong>of</strong> the fact that such uncertainty not o<strong>nl</strong>y exists but<br />

may be considerable.<br />

FREOUtNCV DISIRIBUTIONS<br />

In developing a methodology for flood frequency estimates (for annual extreme flows <strong>of</strong> various -hart dura=<br />

tions) on a regional basis, it is essential to decide which frequency distribution should be assumEd to apply<br />

throughout the rsgion. This is so, firstly for the reason that if a reasonable correlation between moments <strong>of</strong><br />

the oistribution assumed (whether the variables be transformed or not) and characteristics <strong>of</strong> the catchent can<br />

be found, the same distribution must by force also be used for estimation purposes at some new site <strong>of</strong> interest<br />

in the region.<br />

Secondly it was considered that if a distribution is used which has a third parameter, this would provide<br />

the necessary flexibility (adaptability) for the distribution to be ‘Iraiaxefi so as to fit that particular<br />

region; the third parameter thus being a constant throughout the region (for every duration).<br />

Furthermore, the possibility exists that such a third parameter may show some sensible variation if adjacent<br />

regions are analysed in turn, thus promising the possibility <strong>of</strong> a “smoothing” there<strong>of</strong>, providing there are no<br />

gross geographic discontinuities. The coastal zone, consisting <strong>of</strong> rivers draining to the south eastern sea=<br />

board <strong>of</strong> the Republic is considered suitable for such further analysis, a similar but less comprehensive study<br />

having been carried out for those rivers mai<strong>nl</strong>y draining via the Orange, Limpopo and Komati river systems [i] .<br />

The region chosen for use as a pilot study which this paper srnarizes, consisted <strong>of</strong> the north eastern part<br />

<strong>of</strong> the zone mentioned and is shown on the locality map narked figure 1.<br />

Data from wme <strong>of</strong> the gauging stations <strong>with</strong> a reasonable length <strong>of</strong> record in this region were used to com-<br />

pare the log Gumbel and log Pearson Type III distributions. In the latter case the data were plotted on<br />

specially made graph paper on which a distribution <strong>with</strong> a skew equal to that calculated from the sample concerned,<br />

plots as a straight line. Camparison <strong>of</strong> the plots led to the conclusion that no particular superiority<br />

<strong>of</strong> the one above the other was evident. The log Pearson Type III distribution was therefore chosen for the<br />

reasons mentioned above. It should be stated however, that the techniques described in this paper could be<br />

applied equally well to the Gunbel or log Gmbel distributions.<br />

Moreover, the basic supposition that nature would be so kind as to ensure that the distribution <strong>of</strong> flou<br />

extremes would follow some definite (simple) statistical distribution, should always be remembered for the<br />

fallacy which it is. Ihis is especially true where two distinctly separate flood producing factors may pertain;<br />

and may operate either separately or conjunctively.<br />

The authors feel, along <strong>with</strong> Harter 121 that there can be IM finality about the recommendations made by<br />

the U.S. <strong>Water</strong> <strong>Resources</strong> buncil 131 concerning the log Pearson Type III distribution, but for the various


543<br />

reasons stated, and the availability <strong>of</strong> the tables provided by Hartar, the exact form <strong>of</strong> the distribution<br />

postulated is <strong>of</strong> lesser importance than is the proper utilization and assembly <strong>of</strong> all the available<br />

flow data in the region, in a rational manner, so as to ohtain the best possible flood flow estimates<br />

and concomitant reliability estimates.<br />

The various durations <strong>of</strong> extreme flows in the region that was investigated in the pilot study sunniarized<br />

herein were: peak flow, 1 day, 2 day, 4 day and 6 day average extreme flows. The logarithms (to base 10) <strong>of</strong><br />

these extremes were found to have a skew <strong>of</strong> 0,3 for peak flows, 0,4 for 1 day average extreme flows and 0,5<br />

for 2 day, 4 day and 6 day average extreme flows. It would appear that there may be a relationship between<br />

the skew and the duration and if this is also found to be the case in other regions this could cnnveivabìy<br />

be used to obtain more stable estimates <strong>of</strong> the skew.<br />

Special graph paper was developed for the skew values <strong>of</strong> 0,l (0,l) 1,O and 1,5. An example <strong>of</strong> this is<br />

the paper on which the graph shown as figure 3 appears. The ordinate has both logarithmic and linear scales,<br />

and the abscissa consists <strong>of</strong> both the emulative probability <strong>of</strong> exceedence (e.g. <strong>of</strong> a certain flow magnitude)<br />

and a linear scale, the units <strong>of</strong> which are essentially in the number (and decimal fraction) <strong>of</strong> standard<br />

deviations from the population mean p, corresponding to the probability <strong>of</strong> exceedence for the particular skew<br />

value in question. This scale is identified as the K - scale (K being analogous to Gumbel's reduced variate).<br />

On the assumption then, that the logarithms <strong>of</strong> the annual extreme flows for the various durations are distributed<br />

according to a Pearson Type III distribution <strong>with</strong> the applicable regional skew values, the N year<br />

flood can be obtained from the expresfion:<br />

X =X . KS . (i)<br />

Here and S are the mean and ssandard deviation <strong>of</strong> the logarithms <strong>of</strong> the individual extreme annual flows.<br />

X, is the logarithm <strong>of</strong> the N year extreiae flood magnitude, and K is the number <strong>of</strong> standard deviations from the<br />

population man y that corresponds to the exceedence probability for the skew value in question (presented<br />

in detail in Harters tables).<br />

If the logarithms <strong>of</strong> the extreme flows are distributed according to the Log Pearson III distribution <strong>with</strong><br />

a skew <strong>of</strong>ï= 1 say, then if probability paper designed forö= 1 is used, a straight line draw hereon for<br />

specific values <strong>of</strong> X and S, will yield a flood magnitude - frequency curve <strong>of</strong> XIversus K. As K is uniquely<br />

related to the probability <strong>of</strong> exceedence, X, can be read and transformed to yield the flou value estimated to<br />

be equalled or exceeded for any specified return period <strong>with</strong>in the range.<br />

ESTIMATION Of IHE M@KIIIS OF THE DISTRIBUTION<br />

The problem therefore reduces to estimation <strong>of</strong> the values <strong>of</strong> i and S for a specific catchent. This is done<br />

by correlation <strong>of</strong> all availab!e and pertinent measured flow data to catchment characteristics, so as to be able<br />

to obtain best estimates for X and S. The variables investigated depend upon factors considered either as<br />

possibly causal, or as possible contributary factors towards the occurrence <strong>of</strong> extreme flows. Although the<br />

authors are aware <strong>of</strong> the possible application <strong>of</strong> factor analysis (or principal cuœponent analysis) here, it has<br />

not been used during this study for various reasons [4'J .<br />

The various independent variables considered were the following: area, mean annual rainfall, average<br />

slope, river length, monthly rainfall <strong>with</strong> a tvo year recurrence interval (log normal distribution assumed) and<br />

a shape factor. The data used in the present study are presented in Tables 1 and 2.<br />

The regression nodels used were-all <strong>of</strong> the general form:<br />

X . a . b log A+ c log R t ................. (2)<br />

It may be noted that, as 1 is the mean <strong>of</strong> the logarithms <strong>of</strong> the extreme flous, the above formula using o<strong>nl</strong>y<br />

= 2 Ab RC where og,m,iS the geometric mean <strong>of</strong> the extreme flows at<br />

A and R is equivalent to the mdel Q<br />

a specific site. g.m.<br />

In obtaining a further estArnate <strong>of</strong> i (1 )by simple or multiple linear regression, a value for the variance<br />

<strong>of</strong> such a further estimate <strong>of</strong> X is always optained. This variance depends not o<strong>nl</strong>y upon the degree <strong>of</strong> variance<br />

explained by the regression model, but also by the extent <strong>of</strong> the deviation <strong>of</strong> any <strong>of</strong> the independent variables<br />

from its mean. In the case <strong>of</strong> equation 2 above the expression for the variance will be <strong>of</strong> the form:<br />

VAR (ie) = Residual Variance[l + 7 1 + cZ2 (Log Ae - m)' + cj3 (Log Re - v)'<br />

+ZcZj(Log A e - m > (Log R e - W ] .................. (3)


544<br />

The statistical theory applied here is very clearly set outlin text books on statistics [5,6] .<br />

In short, for every regression equation used for estimation <strong>of</strong> X or S an accompanying equation is developed<br />

e e<br />

for the calculation <strong>of</strong> VAR (le) and VAR (Se).<br />

The variables mentioned earlier were used in regression models to determine the regression equations<br />

that would explaln the highest proportion <strong>of</strong> the variance <strong>of</strong> the dependent variables I and S, for the five<br />

durations considered.<br />

from some 150 regression models tested, the 10 equations that were selected as the best are presented in<br />

lable 3. Values <strong>of</strong> ~22, C J ~ and C ~ J are also presented for !se in an equation <strong>of</strong> the type represented by<br />

equations 3 and 4, in order to calculate the variance <strong>of</strong> the X *s and the S 's. E.g. the equation for the<br />

variance <strong>of</strong> a further estimate <strong>of</strong> X for peak flow, X by uS"e <strong>of</strong> equatiog 3 is as follows:<br />

1 P t e 2<br />

VAR ($,e) E Residual Variance [ 1- + 0,1191 (Log Ae-Log A) + 11,6819 (Log R e - W I 2<br />

n<br />

+ 2~0,4545 (Log A e - W ) (Log Re- WR)]<br />

= 0,0454<br />

6 2<br />

(this is for the brgenstond Dam site which has a catchment area <strong>of</strong> 528x10 m and a mean annual rainfall <strong>of</strong><br />

900 x 10-3m).<br />

In this analysis it was hoped that the monthly extreme rainfall would be a more representative parameter<br />

<strong>of</strong> the flood producing characteristic <strong>of</strong> rainfall than the mean annual rainfall. However, as both <strong>of</strong> these<br />

parameters explained an approximately aqua1 amount <strong>of</strong> additional variance, it was considered advisable to<br />

select the annual rainfall for use in the prediction equation. In view <strong>of</strong> the availability on magnetic tape,<br />

on a large scale, <strong>of</strong> such monthly rainfall data, and the understandable hope that an extreme value rainfall<br />

parameter would yield better results, this is a very disappointing result. It is however intended to invati.<br />

gate this aspect further.<br />

Hawing estimated the value <strong>of</strong> i and Se, a straight line flood magnitude-frequency curve can be drawn on<br />

the graph paper <strong>with</strong> the apprcpriate skew, and X for any value <strong>of</strong> N <strong>with</strong>in the range can then be read from<br />

N<br />

the graph. Ihis is done for the peak flow and for the various durations for which formulae have been developed,<br />

thus allowing for the synthetization <strong>of</strong> a balanced hydrograph. Ihis is a hydrograph constructed symmetrically<br />

around the peak. It can then be adjusted along the time axis (but <strong>with</strong> retention <strong>of</strong> the properties derived)<br />

to its proper shape, either by means <strong>of</strong> information an unitgraph shapes [7] or by actual measurement <strong>of</strong> one<br />

or two reasonably large floods at the site in question. Such measurements muld be arranged for at an early<br />

stage <strong>of</strong> a feasibility study involving a specific site, if no data are available. It should be noted here that,<br />

according to Nash [8,14 estimation <strong>of</strong> a unitgraph shape, even from o<strong>nl</strong>y one good sized flood in a season will<br />

yield more reliable results than that whlch can be obtained synthetically.<br />

RELIABILITY OF ESTIMATES<br />

In constructing the flood magnitude-frequency relationship we have:<br />

XN=ie + KSe . . (1)<br />

If and Se are not independent, the problem <strong>of</strong> estimation <strong>of</strong> the covariance term arises, for which a<br />

formula tuch as for VAR (1 and VAR (Se) has not been developed.<br />

This problem was solves by use <strong>of</strong> an artificial population, distributed according to Pearson Type III,<br />

<strong>with</strong>y = O, Q = 1. Skew, 8 was varied from O to 1,5 i.e. a different artificial population for each skew.<br />

For each skeu an artificial population consisting <strong>of</strong> 10 O00 terns was prepared, by use <strong>of</strong> Harters tables.<br />

Samples <strong>of</strong> size W ranging from 2 to 20 were then drawn. Every individual value drawn was, however transfor:<br />

med by addition <strong>of</strong> unity so that in fact an approximation to a universe <strong>with</strong> O- = 1 andy = 1 was used.<br />

for each sample size N, an adeguate number <strong>of</strong> samples were drawn to define-to a sufficient degree <strong>of</strong> accuracy,<br />

the variance <strong>of</strong> i, s and cov h,s). for each sample drawn, the-values <strong>of</strong> x and s were calculated and then an<br />

adequate number <strong>of</strong> such samples drawn so as to calculate var ( x), var (s) and cov (x,s). for the smaller<br />

sample sizes the number <strong>of</strong> sanples drawn were simply increased indefinitely until it was clear that the result


545<br />

:.J& converying. In this way curves were obtained showing how var (i), var (s) and cov (x,s) varies <strong>with</strong> saw=<br />

ples size N, ranging from 2 to 20.<br />

The results are presented in figure 2. Not all the curves developed are shown, but all the data obtained<br />

was used in order to achieve an integrated matching set <strong>of</strong> curves.<br />

lhe use <strong>of</strong> these curves, in order to solve the problem encnuntered <strong>with</strong> the existence <strong>of</strong> the covariance<br />

term in equation 4 is eqlained as follows:<br />

From the regression equations, values are obtained for Xe and VAR (ie) and also for Se and VAR (S 1.<br />

(See Table 3).<br />

Therefore<br />

PutX = k ; = k andS =ks-k<br />

e _ i i e 2-2<br />

(but x = s = 1)<br />

2<br />

VAR (x,)=VA!? (k X)=kl var (S )= VAR fk2s)=k


546<br />

Iherefore<br />

and<br />

COY (EL,S:) = k3k4 cov (;,SI<br />

let i' and S* represent the best pooled estimates <strong>of</strong> these parameters,<br />

then we have:<br />

Nie + N'ile<br />

i* = ............... (6)<br />

N +Nt<br />

s =<br />

(N - l)Se + (N' - 1) Se<br />

.v N+fi'-Z<br />

!if unbiased estimators are used)<br />

Then we have:<br />

xi .<br />

A T<br />

1' .<br />

........... (7)<br />

KSI . (8)<br />

and<br />

VAR (xi) = VAR (2.1 + Kz VAR (S')<br />

. 2K CDV (i*,S*) . . (9)<br />

As before<br />

Therefore<br />

j* =kiandS':ks<br />

5 6<br />

VAR (i*) = k2 var (i)<br />

5<br />

2<br />

VAR(S*) = k6 var (5)<br />

and<br />

COV (i', S') = k k COY (g,s)<br />

56<br />

As i = s = 1, k and k can be calculated. By putting N* = N + W1 and entering figure 2 <strong>with</strong> this calculated<br />

value for N*,<br />

6<br />

"hues for var (i), var(s) and w v (x,s) can be rea$<br />

These latter three values can then be used to calculate VAR (X,) for any specified K value thus making<br />

possible the calculation <strong>of</strong> the confidence limits.<br />

An example <strong>of</strong> a flood magnitude - frequency curve (for peaks) is shown as Figure 3 (brynstond site),<br />

along <strong>with</strong> the one Standard deviation confidence bands.<br />

BALANCED HYDROGRAPHS AND DESIGN HYDROGRAPHS<br />

Using the approach outlined above, an estimate <strong>of</strong> peak flow <strong>with</strong> a specified probability <strong>of</strong> exceedance and<br />

concomitant upper and lower confidence limits corresponding to one standard deviation (or for any other confi.<br />

dence level required) [Io3 may be calculated. lhe same can be done for each <strong>of</strong> the five durations, resulting<br />

in a llbalanced hydrographll (i.e. symmetric about the peak) together <strong>with</strong> upper and louer envelopes wrrespon=<br />

ding to the desired confidence level. In other words, for a confidence level corresponding to one standard de=<br />

viation this implies that there is a 1 in 6 (or 16%) chance that the true hydrograph could be as big, or bigger<br />

than the upper envelope.<br />

lhe shape <strong>of</strong> this hydrograph can then be suitably adjusted along the tiw, axis, but preserving its derived<br />

characteristics, so as to obtain an estimate <strong>of</strong> the hydrograph <strong>with</strong> the required probability <strong>of</strong> occurrence,<br />

but incorporating the shape which is unique to the particular catchment.<br />

CONCL US IOW<br />

Results <strong>of</strong> work similar to that described here have in the past been used in the Department <strong>of</strong> <strong>Water</strong> Affairs<br />

in a somewhat different manner [i] first for estimation <strong>of</strong> peak flou o<strong>nl</strong>y and lately [il] also for ertime<br />

average flows over durations <strong>of</strong> somewhat longer periods. It is intended to extend the study to the whole <strong>of</strong><br />

the eastern and south eastern coastal zone <strong>of</strong> the Republic <strong>of</strong> South Africa.<br />

The possible existence <strong>of</strong> medium term (e.g. from 3 to 7 years) non-stationarity <strong>of</strong> the various flood<br />

magnitude-frequency curves due to such medium term variations in sea temperatures, will also be investigated


4.<br />

5.<br />

6.<br />

7.<br />

8.<br />

9.<br />

10.<br />

11.<br />

12.<br />

13-<br />

547<br />

,: series <strong>of</strong> recent flood disasters in the coastal zone mentioned makes such a study virtually imperative,<br />

the controlling conditions may still not have reverted to normal).<br />

grouping approach will be followed to attempt to improve reliability.<br />

for smaller catchments a stratified<br />

More work is also intended to attmpt to determine the particular rainfall characteristic most closely<br />

related to the flood producing attribute there<strong>of</strong>.<br />

lhe possibility <strong>of</strong> using an analogous approach to that described herein for estimation <strong>of</strong> other hydroloqical<br />

parameters is not overlooked, e.g. low flow sequences <strong>with</strong> specified probabilities, mean annual run<strong>of</strong>f, etc.<br />

This method also holds promise in rational hydrologic network plannirig [i31 or adaptation there<strong>of</strong>.<br />

Preliminary comparison <strong>of</strong> this method <strong>with</strong> older methods used by the Department, in some <strong>of</strong> which the<br />

probability <strong>of</strong> the causative rainfall is put equal to the probability <strong>of</strong> the resulting run<strong>of</strong>f hydrograph,<br />

s e m to inuicate that this method is preferable, not o<strong>nl</strong>y from the point <strong>of</strong> view <strong>of</strong> accuracy <strong>of</strong> estimation but<br />

also due to the frank admission and quantification <strong>of</strong> the reliability <strong>of</strong> estimation, and the extent <strong>of</strong> the<br />

probable errors.<br />

ACKNOWLEDGEME NT<br />

The permission granted by the Secretary for <strong>Water</strong> Affairs to publish this paper is acknowledged.<br />

The assistance provided by J. de Beer <strong>of</strong> the Computer Centre and by A.J. Muller, J. Botha, S. Fitchet and<br />

L. Eskell in the preparation <strong>of</strong> the paper is greatly appreciated.<br />

lhe guidance given by W.J.R.<br />

ledged.<br />

Alexander during the course <strong>of</strong> preparation <strong>of</strong> the paper is gratefully acknoum<br />

RE FERE NCES<br />

1. Herbst, P.H. (1968). flood estimation for ungauged catchments, Technical Report No. 46, Department <strong>of</strong><br />

<strong>Water</strong> Affairs, Republic <strong>of</strong> South Africa.<br />

2. Harter, H.L. (1969. A new table <strong>of</strong> percentage points <strong>of</strong> the Pearson Type III distribution, Technometrics,<br />

II(I), pp.177-186.<br />

3.<br />

U.S. <strong>Water</strong> <strong>Resources</strong> Council, (1967). A uniform technique for determining flood flow frequencies, Bull.<br />

No. 15, <strong>Water</strong> <strong>Resources</strong> Council, Washington, D.C.<br />

Haan, C.T. and Allen, D.M. (1972). Comparison <strong>of</strong> multiple regression and principal component regression<br />

for predicting uater yields in Kentucky, <strong>Water</strong> Resour. Res., 8(6), pp. 1593 - 1596.<br />

Ostle, B. (1963). Statistics in Research, Second Edition, Iowa State University Press, Ames, Chapter 8.<br />

Ezekiel, M and Fox, K.A. (1959). Methods <strong>of</strong> correlation and regrassion#analysis, John Wiley & Sons, Inc.,<br />

New York, pp.320-321.<br />

Midgley, D.C., Pullen, R.A. and Pitman, W.V. (1969). <strong>Design</strong> flood determination in South Africa,<br />

Report No. 4/69, Hydrological Research Unit, University <strong>of</strong> the Witwatersrand, Johannesburg.<br />

Nash, J.E. and Shaw, B.L. (1%6). Flood frequency as a function <strong>of</strong> catchment characteristics,<br />

Symposium on River Flood <strong>Hydrology</strong>, Inst. <strong>of</strong> Civil Engineers, London, Session C 6, pp. 115 - 136.<br />

Beard, L.R. (1962). Statistical methods in hydrology, U.S. Army Engineer District, Corps <strong>of</strong> Engineers,<br />

Sacramento, California.<br />

Mode, E.B. (1961). Elements <strong>of</strong> statistics, Prentice - Hall, Inc., Nw Jersey.<br />

van Blljon, S. (1972). flood volume frequency analysis - Vaal Dam. Internal Report, Department <strong>of</strong><br />

<strong>Water</strong> Affairs, Republic <strong>of</strong> South Africa.<br />

Thorne, R.B. (1966). River Engineering and <strong>Water</strong> Conservation Uorks, Buttervorths, London.<br />

Herbst, P.H. and Shaw, E.M. (1969). Determining rain gauge densities in England from Limited data to<br />

give a required precision for monthly areal rainfall estimates, Journal <strong>of</strong> the I.W.E., 23(4),<br />

pp. 218 - 230.


548


549<br />

GAUGE<br />

SEOUENCE<br />

NUMBER ON<br />

ûFFICIAL RAINFALL<br />

GAUGE AVERAGE MONTHLY<br />

NLMBER ANNUAL WITH<br />

AREA<br />

Of<br />

CATCH-<br />

SLOPE<br />

Of MAIN<br />

WATER<br />

LENGIH<br />

OF<br />

MAIN<br />

NUMBER<br />

Of<br />

YEARS<br />

MAP OVER 2-YEAR MENI COURSE WATER OF<br />

CAT CHME NT RE CUR R E NCE<br />

INIERVAL<br />

COURSE RECORD<br />

10+m 10-3n i06$ m/mxiû3 10% YEARS<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

17<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

XlMOl<br />

x2Mo1<br />

XZMOZ<br />

XZM08<br />

Xx109<br />

X2M10<br />

X2Mll<br />

X2M12<br />

X2M13<br />

Xx114<br />

X2M15<br />

XYOI<br />

XW6<br />

w4Mo2<br />

W4M3<br />

m4<br />

wsMo5<br />

W<br />

W5M7<br />

WW8<br />

w5Mo9<br />

WW12<br />

w6MOI<br />

XlMo6<br />

m3<br />

WY10<br />

W13<br />

888<br />

1142<br />

1074<br />

1163<br />

1070<br />

1187<br />

849<br />

833<br />

907<br />

1237<br />

936<br />

1492<br />

985<br />

889<br />

924<br />

929<br />

920<br />

947<br />

868<br />

862<br />

899<br />

905<br />

1003<br />

1233<br />

921<br />

953<br />

1099<br />

204 5444 5.50<br />

254<br />

104 l3;49<br />

231<br />

176 9,47<br />

289<br />

181 35J1<br />

264<br />

280 18,40<br />

289<br />

127 19,42<br />

183<br />

401 16,37<br />

192<br />

88 10,03<br />

208<br />

1502 12,45<br />

302<br />

251 19,19<br />

213 1538 1256<br />

368<br />

174 33,03<br />

226<br />

76 1 17,37<br />

200 7122 5,05<br />

204 5843 7,41<br />

210<br />

448 3,91<br />

221<br />

751 3,65<br />

213<br />

176 14,95<br />

191<br />

536 2,68<br />

203<br />

119 4,79<br />

206 2805 12,29<br />

209 12769 8,02<br />

238<br />

694 12,15<br />

279<br />

585 18,Ol<br />

205<br />

218 4,73<br />

213 2201 5,81<br />

263 1155 10.93<br />

-<br />

TABLE 2<br />

144.0<br />

26,6<br />

32,2<br />

25,7<br />

28,2<br />

15,8<br />

26,6<br />

13,7<br />

86,9<br />

x),6<br />

76,4<br />

17,4<br />

53,6<br />

232-6<br />

162,5<br />

24-9<br />

5690<br />

1593<br />

46,7<br />

27,4<br />

9197<br />

184,3<br />

85,3<br />

49,l<br />

25,7<br />

120,7<br />

88.5<br />

61<br />

19<br />

19<br />

23<br />

12<br />

22<br />

15<br />

14<br />

10<br />

11<br />

12<br />

23<br />

12<br />

18<br />

21<br />

10<br />

21<br />

21<br />

16<br />

18<br />

10<br />

12<br />

12<br />

12<br />

13<br />

13<br />

10<br />

Average <strong>of</strong> Log <strong>of</strong> Standard Standard Multiple<br />

Prediction Equation<br />

(Log A=Y ; log R.2)<br />

10 10<br />

= 0,802Y+l,1372-3,880<br />

P<br />

Area Mean An.<br />

in Rainfall<br />

d m 2 10-3,<br />

2,790 2,991<br />

Error <strong>of</strong><br />

Estimate<br />

0,207<br />

Deviation:<br />

Dependent<br />

Variable<br />

0,511<br />

‘22 ‘33 ‘23<br />

0,119 11,681 0,454<br />

Correlation<br />

Coefficient<br />

0,92<br />

F<br />

Value<br />

67,5<br />

S D =-O,119Y-O,9692+3,611<br />

il= 0,798’f+0,7262-2,921 2,775<br />

0,115 0,133<br />

0,517 0,134 14,105 0,608<br />

O,%<br />

o,%<br />

5,5<br />

1%,8<br />

S1=-0,092Y-0,4302+1,855<br />

il2= 0,832Y+0,947Z-3,7%<br />

S2=-0,08OY-O,4502+1,865<br />

14’ 0,867V+1,1172-4,479<br />

+O, 070Y -O, %32+1, 559<br />

j6= 0,891V+1,2522-5,026<br />

Sk=-0,081 V-O,3922+1,674<br />

2,775<br />

2,775<br />

2,715<br />

0,073<br />

0,530<br />

0,063<br />

0,545<br />

0,059<br />

0,556<br />

0,075<br />

0,134 14,105 0,608<br />

0,134 14,105 0,608<br />

0,134 14,105 0,608<br />

0,73<br />

0,97<br />

0,74<br />

0,98<br />

0,68<br />

0,98<br />

0.63<br />

11,6<br />

187,8<br />

11,9<br />

248,2<br />

8,8<br />

296,3<br />

6.5


550<br />

KM 20 K) O 20 40 60 80 100 KM<br />

SCALE I I I SCALE<br />

MAP SHOWING POSITIONS OF GAUGING STATIONS<br />

FIGURE 1


551


œ<br />

O<br />

LL<br />

u)<br />

3<br />

5-<br />

LI<br />

E<br />

P<br />

a


PRACTICES OF DESIGN FLOOD FREQUENCY FOR SMALL WATERSHEDS IN THAILLAND*<br />

ABSTRACT<br />

Damrong Jaraswathana<br />

Director <strong>of</strong> <strong>Hydrology</strong> Division<br />

Royal Irrigation Department, Thailand<br />

and<br />

Subin Pinkayan<br />

Associate Pr<strong>of</strong>essor<br />

Asian Institute <strong>of</strong> Technology<br />

Bangkok Thailand<br />

Based on the fact that adequate hydrologic data do not exist and<br />

development <strong>of</strong> water resources projects cannot be kept waiting until<br />

data are made available. Thailand shares this fact <strong>with</strong> the other de-<br />

veloping countries. The hydrologic data conditions in Thailand can be<br />

categorized as follows. These are: (1) none <strong>of</strong> any kind <strong>of</strong> data avai-<br />

lable in the catchment area; (2) some data available <strong>with</strong>in neighbou-<br />

ring areas; (3) some data <strong>with</strong> short period <strong>of</strong> record; and c4) consl-<br />

derable data available <strong>with</strong> low reliability and accuracy.<br />

The purpose <strong>of</strong> this paper is to present the general practices <strong>of</strong><br />

hydrologic analyses in Thailand particularly on design flood frequen-<br />

cy in small watersheds. The method which was the common practice for<br />

assessing design floods was based on the concept <strong>of</strong> rational formula,<br />

the unit distribution graph and the design storm obtained by the con-<br />

ventional procedures <strong>of</strong> frequency analysis.<br />

RESUME<br />

Les données hydrologiques sont insuffisantes, mais l'aménagement<br />

des eaux ne peut attendre. C'est une situation que la Thaïlande parta<br />

ge avec d'autres pays en voie de développement. En Thaïlande, on peut<br />

classer comme suit la nature des données hydrologiques: (1) il n'y a<br />

rien; (2) on dispose 4e quelque chose dans des bassins voisins; (3)<br />

on dispose de données sur une courte période; (4) on a une grande<br />

quantité de données qui n'inspirent pas confiance et sont peu préci-<br />

ses.<br />

Le but de cette communication est de présenter les méthodes d'ana<br />

lyse htdrologique habituellement utilisées en Thailande, notamment<br />

pour l'évaluation des crues de projet sur les petits bassins. Les modes<br />

de calcul les plus fréquents sont basés sur la méthode rationnelle,<br />

l'hydrogramme unitaire et la recherche de l'averse de projet par<br />

les procédés classiques de l'analyse fréquentielle.<br />

* Submitted for presentation at the International Sympsium on the De-.<br />

sign <strong>of</strong> <strong>Water</strong> <strong>Resources</strong> Project <strong>with</strong> <strong>Inadequate</strong> Data, June 4-9,<br />

1973, Madrid, Spain.


554<br />

INTRODUCTION<br />

As far as the existing hydrological networks and its operation in Thailand<br />

are concerned, it can be considered that the design <strong>of</strong> water resources pnojects<br />

in Thailand are based on inadequate data. While the water resources developments<br />

cannot be kept waiting, it is the main function <strong>of</strong> hydrologist to modify<br />

the conventional approaches to the hydrological assessment in planning <strong>of</strong><br />

water resources projects. Application and modification <strong>of</strong> conventional<br />

approaches may have certain degrees <strong>of</strong> complication depending upon the availability<br />

and limitation <strong>of</strong> the information. Inadequacy <strong>of</strong> hydrological data<br />

<strong>with</strong>in the country may be catagorized as follows: (i) none <strong>of</strong> any kind <strong>of</strong><br />

data available in the catchment area; (2) some data available <strong>with</strong>in neighbouring<br />

areas; (3) some data <strong>with</strong> short and/or broken period <strong>of</strong> record; and<br />

(4) considerable data available <strong>with</strong> low reliability and accuracy. Hydrologist<br />

has to make a great attempt and utilized his own experiences in the country in<br />

drawing up the basic fact, assumption and related knowledge to justify the<br />

hydrological assessment <strong>of</strong> each case under study. With such attempts the<br />

justification <strong>of</strong> a project could be made <strong>with</strong> o<strong>nl</strong>y a fair degree <strong>of</strong> accuracy.<br />

Most <strong>of</strong> the small storage reservoirs in the country were planned by applying<br />

the modified Conventional approaches to the hydrological assessment, in which<br />

the o<strong>nl</strong>y available information is the rainfall data in the neighbouring areas.<br />

HYDROLOGICAL DATA PROCUREMENT<br />

It can be stated that hydrological observation has been initiated in<br />

Thailand since 1831, when a staff gage had been installed at Ayuthya to observe<br />

annual flood inundation <strong>with</strong>in the Central Plain areas. The nature <strong>of</strong> flood<br />

inundation had been a major factor reflecting the crop yield during the last<br />

century.<br />

Such maximum water levels were indications <strong>of</strong> water condition in term<br />

<strong>of</strong> good wateryear, too high flood or drought conditions which, in turn, would<br />

help predicting the annual rice harvest.<br />

Later in 1905 the streamflow measurement by surface float was introduced<br />

to measure the discharge <strong>of</strong> the Chao Phraya river for the purpose <strong>of</strong> planning<br />

<strong>of</strong> water conservation, diversion and irrigation control works. Development<br />

at that time comprised <strong>of</strong> diversion schemes in the river valleys and tidal<br />

irrigation in the delta area. Connected channels between rivers in the estuary<br />

were also excavated to conserve water for irrigation and navigation from and<br />

to Bangkok. Scientific approaches applied to planning and implementation <strong>of</strong><br />

irrigation and drainage schemes were carried out by the Royal Irrigation<br />

Department since 1915. Development <strong>of</strong> water resources was gradually extending<br />

towards headwater and slowly progressed.<br />

Until 1952, when the storage work began, the modern methods and scientific<br />

standards to be introduced in the hydrological investigation were recognized.<br />

A network <strong>of</strong> comprehensive streamflow gaging stations was set up in major<br />

tributaries where damsites for possible large reservoirs were found. Meanwhile,<br />

numbers <strong>of</strong> stations were added consecutively in the accessible remote areas to<br />

examine the run<strong>of</strong>f and flood yield from watersheds. At present there are over<br />

230 rating stations operated by various government agencies. Among them there<br />

are small number <strong>of</strong> stations that the drainage area is less than 100 square<br />

kilometers. Many common problems <strong>of</strong> hydrological investigation and data procurement<br />

still exist in the country hence they limit the expansion <strong>of</strong> the net-


work particularly into the smaller watersheds. Among those common problems,<br />

the limitation <strong>of</strong> financial support and lack <strong>of</strong> well-trained personnel are considered<br />

to be the main factors. Lack <strong>of</strong> popularity <strong>of</strong> work is another important<br />

factor leading to have less fund allocated for hydrological investigation.<br />

5 55<br />

Besides the large multiple-purposes storage reservoir projects, the<br />

surface reservoir <strong>of</strong> comparatively small storage volume called "tank" irrigation<br />

projacis were commenced in 1951 in the Northeastern Region <strong>of</strong> Thailand.<br />

Several small watercourses in the undulated topography were formed and appeared<br />

to be good sites for storage tanks. The reservoirs range in capacity from<br />

around 40,000 cubic meters up to 18 million cubic meters. Of course, the hydrological<br />

investigation <strong>of</strong> such small basins has never been practiced in the<br />

region as well as in the other parts <strong>of</strong> the country.<br />

PRACTICES OF DESIGN FLOOD FOR SMALL WATERSHED<br />

To present the general practices <strong>of</strong> design flood for small ungaged water-<br />

shed, a case design by Royal Irrigation Department (1963) <strong>of</strong> the Sattaheep<br />

Tank Project, Thailand, is described below.<br />

It was the requirement <strong>of</strong> the Sattaheep Naval Station in 1963, to construct<br />

a small reservoir <strong>of</strong> 2 million cubic meters capacity for domestic supply. The<br />

proposed damsite has a drainage area <strong>of</strong> 10.9 square kilometers. None <strong>of</strong> any<br />

kind <strong>of</strong> data is available except the rainfall data at Sattaheep, located about<br />

8 kilometers west <strong>of</strong> the basin. Hence, the rainfall data at this station were<br />

used in assessment <strong>of</strong> the design flood. Such adoption was based on the generally<br />

practices that it was applicable where rainfall characteristics were similar.<br />

Trials had been made by applying the empirical formula to determine the<br />

maximum discharge. The rational formula, Q = C i A, was found to be less<br />

applicable as its coefficient. C, could not be determined correctly. The McMath<br />

formula, Q ACi(S/A)1/5, was then introduced because it seems to be<br />

more applicable as the formula involves the basin slope which is one <strong>of</strong> the<br />

major factors governing the peak rate.<br />

The frequency <strong>of</strong> design flood cannot directly be determined. In this case<br />

it was assumed to be similar to that <strong>of</strong> one-day rainfall. From 24-year period<br />

<strong>of</strong> daily rainfall record at Sattahepp, the maximum one-day rainfall amount<br />

<strong>of</strong> 302.7 mm was observed on 6 October 1957. The computed frequency <strong>of</strong> occurrence<br />

<strong>of</strong> this one-day storm rainfall is once in 40 years. From the conventional<br />

frequency analysis, the 50-year frequency one-day rainfall amount <strong>of</strong> 320 mm<br />

was adopted in the assessment <strong>of</strong> the inflow design flood. Such frequency was<br />

assumed to be that <strong>of</strong> the design flood.<br />

Careful inspection <strong>of</strong> the catchment had been carried out in order to<br />

examine the basin characteristics and to estimate the concentration time. It<br />

is apparent that the time <strong>of</strong> concentration <strong>of</strong> such small basin is very short<br />

and usually is much less than one-day.<br />

The percentage <strong>of</strong> rainfall as a fraction<br />

<strong>of</strong> one day was obtained from the graph <strong>of</strong> rainfall recorder. In this case<br />

several storm events were examined and the envelope curve was used. The<br />

rainfall amount falling <strong>with</strong>in the time <strong>of</strong> concentration was calculated and<br />

converted into rainfall intensity which is to be used in the McMath formula.<br />

The basin coefficient, C, was estimated based on basin characteristics as


556<br />

inspected. The basin slope, S, was determined from the available topographic<br />

map <strong>of</strong> the basin. The design peak discharge obtained in this case study was<br />

43 cubic meters per second.<br />

Other means <strong>of</strong> assessments were also made for comparison. The unit hybograph<br />

procedure was applied. The assumption <strong>of</strong> the base time <strong>of</strong> unit hydrograph<br />

is important as it will result in varying peak rate. The storm run<strong>of</strong>f coefficient<br />

was carefully assumed and flood volume was computed. Peak flow rate was,<br />

therefore, obtained by applying triangular distribution hydrograph to the flood<br />

volume. The second comparison was made <strong>with</strong> the specific yields <strong>of</strong> flood<br />

flows obtained from the actual streamflow measurements observed in larger watersheds<br />

by the Royal Irrigation Department (1965). The flood yield per unit area<br />

computed from those stations were plotted against their respective drainage<br />

areas. The possible maximum flood yield from smaller watersheds, in term <strong>of</strong><br />

cubic meter per second per square kilometeramay be read from the logarithmic<br />

extrapolation <strong>of</strong> the envelope curve <strong>of</strong> specific yield. Such technique will be<br />

one <strong>of</strong> the most reliable indirect approaches if the flood yields <strong>of</strong> small<br />

streams are available <strong>with</strong> longer period <strong>of</strong> record. After several trials were<br />

made, the design flood <strong>of</strong> 43 cubic meters per second were adopted in this study.<br />

The assigned frequency was 50-year. The specific yield <strong>of</strong> flood flow was around<br />

4 cubic meters per second per square kilometers, which is believed to be<br />

adoptable in the area easily affected by tropical depression storms.<br />

CONCLUSIONS<br />

Several modifications <strong>of</strong> conventional approaches were used in planning and<br />

design <strong>of</strong> water resources projects in small watersheds in Thailand. The results<br />

obtained by such methods would be satisfied up to a certain degree. New concepts<br />

and statistical techniques which give more reliability are needed to<br />

design <strong>of</strong> small water resources projects in Thailand.<br />

REFERENCES<br />

1. Royal Irrigation Department (1963). Sattaheep Tank Project, Assessment <strong>of</strong><br />

<strong>Water</strong> for Storage, <strong>Hydrology</strong> No.137/63, Royal Irrigation Department, Bangkok,<br />

Thailand.<br />

2. Royal Irrigation Department (1965). Mean Annual Discharge vs. Drainage Area,<br />

Envelope Curves <strong>of</strong> Maximum Recorded Peak Discharge, Specific Yield <strong>of</strong> Flood<br />

Flow for Rivers in Thailand and Malaya, <strong>Hydrology</strong> No.186/65, Royal Irrigation<br />

Department, Bangkok, Thailand.


ABSTRACT<br />

DESIGN DISCHARGE DERIVED FROM DESIGN RAINFALL<br />

Takeo KINOSITA<br />

Takeshi HASHIMOTO<br />

A design discharge for flood control in Japan is in general<br />

derived from a design rainfall since discharge data are not suffL<br />

cient for designing. The procedure <strong>of</strong> derivation and its merits<br />

and demerits will be explained in this report according to fallo-<br />

wing four steps. (i) A design rainfall in a certain return period<br />

is determined by a probability process. (2) <strong>Design</strong> rainfall dis-<br />

tribution are obtained by e<strong>nl</strong>argement <strong>of</strong> rainfall distributions<br />

<strong>of</strong> recent representative storms. (3) A simulation model for run<strong>of</strong>f<br />

is decided by rainfalls and run<strong>of</strong>fs <strong>of</strong> recent representative<br />

storms. (4) A design discharge is determined by the simulation mo<br />

del <strong>with</strong> e<strong>nl</strong>arged rainfall distributions.<br />

RESUME<br />

Au Japon, les données concernant les débits ne sont pas SUL<br />

fisantes pour évaluer les crues de projet; on procède donc généra<br />

lement par l'intermédiaire de l'averse de projet. Les auteurs ex-<br />

posent le procédé utilisé, ses mérites et ses inconvénients; il<br />

se décompose en quatre étapes. (1) On détermin: par analyse fré-<br />

quentielle une averse de projet correspondant a une certaine pê-<br />

riode de retour. (-2) Cette averse est distribuée dans le temps en<br />

s'appuyant sur des hyétogrammes d'averses récentes considérées<br />

comme représentatives. (3) On choisit un modèle de transfoTmation<br />

pluies-débits élaboré à partir d'observations de pluies et de dé-<br />

bits effectuées récemment au cours d'averses représentatives. (4)<br />

On applique ce modele au hyétogramme de projet élaboré en (2).


558<br />

I. Introduction<br />

Japan is located in the temperate and humid zone. A river in this country<br />

is comparatively small and its gradient is steep. Floods have occurred<br />

very <strong>of</strong>ten since the prehistric age and been serious constraints against development<br />

<strong>of</strong> the nation for a long time. Flood control is one <strong>of</strong> the major items<br />

<strong>of</strong> water resource development works.<br />

It is necessary to collect and analyze discharge data for design <strong>of</strong> flood<br />

control projects. Authorized discharge gauging stations are 330 in 120 rivers<br />

in Japan. There are many other non-authorized discharge gauging stations.<br />

However, land developments and river improvement works have remarkably succeeded<br />

and hydrological eituations <strong>of</strong> river badins are rapidly changing. This fact<br />

induces that the discharge cannot be used for design purpose directly and used<br />

o<strong>nl</strong>y for verification <strong>of</strong> a run<strong>of</strong>f simulation model, and the rainfall which is<br />

not affected by human activity is used for design purpose.<br />

Mot o<strong>nl</strong>y the peak discharge but also the flood hydrograph are necessary<br />

for channel improvement, design <strong>of</strong> multipurpose reservoirs and soon. The procedure<br />

to obtain the design hydrograph will be discussed in this report.<br />

2. Probability Analysis<br />

Since discharge is originally derived from rainfall, the design discharge<br />

for water resource system is determined by the design rainfall through the run<strong>of</strong>f<br />

simulati on model.<br />

At the first step <strong>of</strong> this procedure, the total amount <strong>of</strong> the design rainfall<br />

<strong>with</strong>in a certain period should be computed by means <strong>of</strong> the probability<br />

analysis. The important assumption <strong>of</strong> this section is that the time series <strong>of</strong><br />

rainfall are produced by some stationary stochastic process.<br />

The procedure <strong>of</strong> this analysis is divided into two.<br />

(9 Sampling from observed rainfall data.<br />

cn) Frequency analysis.<br />

The latter has been discussed by some hydrologists, 80 the authors intend<br />

to focus their attention on the practical phase <strong>of</strong> the former. The series <strong>of</strong><br />

annual extreme values <strong>of</strong> rainfall <strong>with</strong>in a certain dulation is selected from<br />

the historical data. The duration in this paper is a period which is significant<br />

to the design for the water resource system in the definite basin, and<br />

cannot be so freely chosen. The rainfall <strong>with</strong>in an adequate duration has the<br />

closest relation to the magnitude <strong>of</strong> the flood discharge, and the rainfall <strong>with</strong>-<br />

in a comparatively short or long duration has less relation to it.<br />

the design duration must be appropriately Chosen according to the basin characteristics,<br />

for instance the drainage area, the channel length, the slope and so<br />

on.<br />

The net work <strong>of</strong> daily rainfall observation covers all over Japan, and<br />

daily rainfall data have been recorded for more than thirty years, at some stations<br />

a hundred years. On the other hand, the network <strong>of</strong> hourly rainfall observation<br />

is sparser than that <strong>of</strong> the daily rainfall. The hourly rainfall<br />

data have been recorded for twenty years on an average.<br />

Therefore<br />

The credibility <strong>of</strong><br />

statistical estimations is dependent on the sample size, that is to say the<br />

length <strong>of</strong> the series <strong>of</strong> observed data. Therefore the statistical analysis is<br />

hardly applied to hourly rainfall data. Daily rainfall data are used for de-<br />

termining the amount <strong>of</strong> design rainfall by means <strong>of</strong> the statistical analysis.


5 59<br />

Then, the design duration must be an integer multiple <strong>of</strong> a day. As noted<br />

above, the design duration muet be selected ae a time in which the rainfall<br />

has a close relation to the peak discharge. Since the time scale corresponds<br />

to the space scale in natural phenomena, the duration for a smaller basin must<br />

be a day, and that for a bigger basin must be three days in this country.<br />

A daily rainfall in Japan is defined as a rainfall observed from nine<br />

a.m. to nine a.m. the next morning. If a storm stretches over this boundary<br />

<strong>of</strong> observation, a daily rainfall cannot represent a storm rainfall. 'Two<br />

days'' seems a minimum design duration even for a small basin. The fact that<br />

a big storm in Japan tends to continue more than a day requires this limitation<br />

<strong>of</strong> the minimum design duration. The design duration for the statistical analysis<br />

is two days for a small basin and a medium basin, and three days for a big<br />

basin.<br />

The return period for design purpose is not determined by a mathematical<br />

way, but by consideration <strong>of</strong> economical, political and social situations on the<br />

basin. The sewerage system design claims for five to seven years as a return<br />

period. For an urban basin, some period above twenty years is selected as a<br />

return period. A big river basin in Japan requires almost a hundred years'<br />

return period. For spillway design <strong>of</strong> a dam, about two hundred years' return<br />

period is commo<strong>nl</strong>y used.<br />

3. E<strong>nl</strong>argement <strong>of</strong> Observed Hyetographs<br />

The amount <strong>of</strong> the probability rainfall for design purpose is determined<br />

as shown in the above section. A careful attention should be paid to the<br />

procedure for distributing the amount <strong>of</strong> the probability rainfall to the time<br />

axis, because an hourly distribution <strong>of</strong> flood run<strong>of</strong>f, a hydrograph, is indispensable<br />

for a flood control project, and a hydrograph is derived from an<br />

houry distribution <strong>of</strong> rainfall, a hyetograph, through a run<strong>of</strong>f simulation<br />

model. A hyetograph for design is deduced from that <strong>of</strong> a recent representative<br />

storm. A part <strong>of</strong> the hyetograph observed during the representative<br />

storm is selected aiming at the time <strong>of</strong> occurence <strong>of</strong> the maximum amount <strong>of</strong><br />

rainfall, where the time is taken equally to the design duration.<br />

Suppose N is the number <strong>of</strong> hours <strong>with</strong>in the duration, Rpis the amount<br />

<strong>of</strong> probability rainfall and Roi ( for i=1,2, ... ,N is the observed rainfall<br />

depth in the i-th hour. The e<strong>nl</strong>argement factor R? is defined by the following<br />

equation.<br />

Then the e<strong>nl</strong>argement factor is multiplied to each R<br />

<strong>of</strong> design hyetograph.<br />

to get the time series<br />

EX'-%, EF'sR, a. ,EF.Rou<br />

This procedure is called e<strong>nl</strong>argement <strong>of</strong> observed hyetograph. Several hyetographs<br />

are derived from several representative observed hyetographs in this<br />

way.<br />

If the amount <strong>of</strong> the representative rainfall is almost same as that <strong>of</strong><br />

the probability rainfall, This procedure is very successful. If not, the<br />

e<strong>nl</strong>arged hyetograph sometimes shows an unexpected pattern. In order to<br />

avoid such an unexpected pattern, there must be some limitation for e<strong>nl</strong>arge-


560<br />

ment. Several proposals were given for this limitation, but there's no<br />

praiseful one. For this limitation is to be deduced not theoretically but<br />

merely empirically. One <strong>of</strong> the proposals is presented in the following<br />

paragraph.<br />

A certain domain is set up including the basin concerned, From all<br />

the rainfall gauging stations in the domain, maximum point rainfall values<br />

are selected about various periods shorter than the duration. The e<strong>nl</strong>arged<br />

hyetograph is compared <strong>with</strong> these values. If the e<strong>nl</strong>arged amount during<br />

some period exceeds the mimum point rainfall value during the same period,<br />

the e<strong>nl</strong>arged hyetograph must be abandoned because <strong>of</strong> the rareness <strong>of</strong> occurrence.<br />

But this proposal raises another question. What region is appropriate<br />

as the domain? For instance, if we replace Japan <strong>with</strong> the world, the<br />

selected value <strong>of</strong> maximum poin rainfall becomes greater at any period. In<br />

spite <strong>of</strong> this question, this proposal seems reasonable. Because there must<br />

exist a realistic upper bound on the amount <strong>of</strong> rainfall that can occur on the<br />

basin <strong>with</strong>in a certain period. An example is adduced. On the upper Kiso<br />

River basin from 1951 to 1971, there were 29 representative storm in which the<br />

maximum rainfall amount durig48 hours was greater than 100 mm. The maximum<br />

point rainfall values are made into Table 2. As a result <strong>of</strong> the comparison,<br />

the exceedance is noted by symbol 'E* in Table I. If the exceedance has occurred<br />

at some domein, it also occurs at any narrower domain. And yet, in this<br />

case, the exceedance is apt to occur in a shorter period than a longer period.<br />

This fact suggests us that the hyetograph <strong>of</strong> a heavy storm is uniformer in its<br />

time distribution than that <strong>of</strong> a common storm.<br />

4. Run<strong>of</strong>f Simulation Model and Effective Rainfall Analyeis<br />

In this section, a run<strong>of</strong>f simulation model is determined, and simultaneously<br />

an empirical rule is derived-on the separation <strong>of</strong> rainfall excess from observed<br />

rainfall.<br />

Among the great number <strong>of</strong> rainfall-run<strong>of</strong>f convertion schemes, 'Storage Func-<br />

This method is expressed by the follow-<br />

tion Method' is commo<strong>nl</strong>y used in Japan.<br />

ing two equations.<br />

where sr is the storage in the basin, qL is the outflow from the basin, r excemsive<br />

rainfall, K and p are empirical constants dependent on the basin, and suffix<br />

denotes delayed variable by a lag time Ta. These constants are neceseary<br />

for the run<strong>of</strong>f simulation <strong>of</strong> the storage function, so they are previously<br />

determined by sets <strong>of</strong> rainfall and run<strong>of</strong>f data <strong>of</strong> the recent representative<br />

floods. As is seen in Fq. (2) this method contains a no<strong>nl</strong>inear process.<br />

'Tank Model Method, aïso aseumes a no<strong>nl</strong>inear process, and is sometimes<br />

used as a run<strong>of</strong>f simulation model. Unit hydrograph method has been improved<br />

in this country, and is put to practical use today. But the use <strong>of</strong> unit hydrograph<br />

method ia restricted to the basine where the assumption <strong>of</strong> linearity is to<br />

a certain degree appreciable.


The separation <strong>of</strong> excessive rainfall from the observed one is an important<br />

but an awfully suffering work. In Japan, the soil moisture <strong>of</strong> the basin general-<br />

ly shows a violent variation from dry to wet according to the weather condition.<br />

The soil moisture antecedent to the storm strongly governs the rising part <strong>of</strong> the<br />

run<strong>of</strong>f hydrograph, sometimes even the crest. So the effective rainfall analysis<br />

must be carried out carefully for the identification <strong>of</strong> model parameters. How-<br />

ever, at the simulation for a design flood, a common value <strong>of</strong> the parameter repre-<br />

senting the soil moisture in the basin is used.<br />

5. <strong>Design</strong> Discharge<br />

Finally, the design discharge is determined in this section. The e<strong>nl</strong>arged<br />

hyetographs <strong>of</strong> representative storms are used for the run<strong>of</strong>f simulation. A hydrograph<br />

corresponding to each design hyetograph is computed by the run<strong>of</strong>f simulation<br />

model.<br />

Table 1: Comparison <strong>of</strong> E<strong>nl</strong>arged Hyetographs <strong>with</strong> Maximum Point Rainfall Values<br />

tom<br />

NO.<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

Ra<br />

mm 1<br />

-<br />

137.1<br />

137.6<br />

125.1<br />

117.4<br />

1 IO. 1<br />

114.9<br />

147.7<br />

125.2<br />

106.3<br />

195.9<br />

117.2<br />

107.6<br />

143.6<br />

118.7<br />

173.6<br />

227.5<br />

119.1<br />

148.0<br />

114.3<br />

112.3<br />

144.8<br />

123- 2<br />

169.5<br />

156.3<br />

118.1<br />

136.6<br />

148.1<br />

E3<br />

-<br />

2.19<br />

?.i8<br />

2.40<br />

2.56<br />

2.72<br />

2.61<br />

2.03<br />

2.40<br />

2.82<br />

1.53<br />

2.56<br />

2.79<br />

2.09<br />

2-53<br />

1.73<br />

1.32<br />

2.52<br />

Upper<br />

Liso River<br />

1 3 6<br />

E<br />

E E E<br />

E E E<br />

E<br />

Whole<br />

Liso River<br />

E<br />

E E<br />

E<br />

E<br />

Chubu<br />

District<br />

1 3 6<br />

E E<br />

Japan<br />

1 3 6<br />

E E<br />

561<br />

The<br />

World<br />

1 3 6<br />

2.03<br />

2.62 E<br />

2.67<br />

2.07<br />

2.44<br />

1.77 E<br />

E<br />

E<br />

1.92 E E E E<br />

E<br />

E<br />

2.54<br />

2.20<br />

2.03<br />

263.9 1.14<br />

- - 225.6 - 1.33<br />

Symbols<br />

EF : E<strong>nl</strong>agement Factor ( Rf/Ro<br />

Rp : Amount <strong>of</strong> Two Days' Probability Rainfall at 200 Years, Return Period<br />

RD : Maximum 48 Hours' Rainfall Amount<br />

E : ERLarged Amount exceeds Maximum Point Rainfall Value in this Domain<br />

1*3 and 6 are periods in houds). The estimated value <strong>of</strong> Rp is 300 mm.


I The<br />

562<br />

Table 2: Maximum Point ñainfall Values ( mm )<br />

World 350 600 1488900<br />

Although areas <strong>of</strong> these hydrographs are almost same, peak discharges are<br />

different each other. The reasom are (i) variety <strong>of</strong> hyetograph, (n)no<strong>nl</strong>inearity<br />

<strong>of</strong> run<strong>of</strong>f model, and (ai) loss factor Among these, (i) is the<br />

most predominant. Owing to this fact and to M e it possible to obtain various<br />

hydrographe, e<strong>nl</strong>argement was applied to various representative storm hyetographs.<br />

From the above hydrographs, one is selected as a design discharge. The<br />

election <strong>of</strong> a design discharge itself brings up a brand new problem, but the<br />

authors shall leave the discussion to another occasion.<br />

6. Conclusion<br />

The derivation <strong>of</strong> a design discharge is explained in thie re art. It is<br />

composed <strong>of</strong> (1) design rainfall in a certain return period, (27 e<strong>nl</strong>argement,<br />

(3) a simulation model and (4) design discharge derivation. The procedure is<br />

not fixed today. It will be improved everyday <strong>with</strong> development <strong>of</strong> hydrology.<br />

Takeo KINOSITA, Takeshi HASHIMOTO : Public Works Research Institute,<br />

Ministry <strong>of</strong> Construction,<br />

Government <strong>of</strong> Japan.


AB ST RACT<br />

THE USE OF CENSORED DATA IN ESTIMATING T-YEAR FLOODS<br />

Morven N. Leese<br />

Institute <strong>of</strong> <strong>Hydrology</strong>, Wallingford, Berks, U.K.<br />

Types <strong>of</strong> incomplete data to be found in connection <strong>with</strong><br />

flood series are described, and it is shown how samples contai-<br />

ning such data may be used to estimate the parameters <strong>of</strong> a dis-<br />

tribution describing annual maximum flows. Formulae for the<br />

standard errors <strong>of</strong> the resulting estimates are also given.<br />

Examples are taken from a river for which censored data exist.<br />

Preparatory data standardization is described, and the parame-<br />

ters estimated using this data are compared uith these estima-<br />

ted using the complete sample o<strong>nl</strong>y. The marginal value <strong>of</strong> using<br />

censored data in this context is assessed by means <strong>of</strong> the subse-<br />

quent reduction in the standard errors <strong>of</strong> the estimates <strong>of</strong><br />

T-year floods for various values <strong>of</strong> T, and this is related to<br />

the effort required to collect and standardize the data.<br />

RESUME<br />

L'auteur traite d'une catégorie de données incomplètes<br />

qu'on peut rencontrer dans l'étude d'une série chronclqgique COZ<br />

cernant les crues. I1 montre comment des échantillons contenant<br />

de telles données peuvent être utilisés pour estimer les param;-<br />

tres d'une loi de distribution des maximums annuels. I1 donne<br />

également des formules pour calculer les erreurs types des esti-<br />

mations qui en résultent. I1 prend comme exemple un fleuve pour<br />

lequel existent de telles données tronquées c'est-à-dire défi-<br />

nies par un suil auquel elles sont égales ou supérieures. I1 in-<br />

dique comment on peut parvenir à une normalisation de ces bonnées<br />

et compare les valeurs ainsi estimées pour les parametres a ce-<br />

lles qu'on puet obtenir à partir du seul échantillon des donnees<br />

régulières. L'appréciation du gain marginal d'information dÛ a la<br />

prise en compte des données tronquées revient à évaluer la réduc-<br />

tion de l'écart type qui en résulte pour les estimations des crues<br />

de période de retour T, pour différentes valeurs de T. Ce gain<br />

d'information est comparé 'a l'effort nécessaire pour collecter et<br />

normaliser de telles données,


5 64<br />

1;JTFODUCTION<br />

The design <strong>of</strong> hydraulic structures for a water resources project depends<br />

in part on estimates <strong>of</strong> the floods which the structures may be required<br />

to <strong>with</strong>stand during the project's economic life. The feasibility <strong>of</strong> the<br />

project may be examined by comparing the cost <strong>of</strong> building each structure<br />

to the requirements <strong>of</strong> its design flood <strong>with</strong> its anticipated benefits.<br />

The latter may be realized in terms <strong>of</strong> reduced damage to the structure<br />

itself as well as to surrounding property, and in more effective flood<br />

plain use.<br />

Precision in the estimation <strong>of</strong> a design flood conveys a monetary benefit<br />

by mitigating the costs which arise from over or underdesign.<br />

Nevertheless, the use <strong>of</strong> additional data to increase precision will have<br />

a marginal cost which may be greater than its marginal benefit.<br />

circumstances it is necessary to quantify the increase in precision, and<br />

if possible to express this increase in financial terms.<br />

hydraulic structures thus involves both hydrologic and economic<br />

considerations which require for their formulation: estimates <strong>of</strong> floods<br />

<strong>with</strong> given return periods; values to be placed on the precision <strong>of</strong> the<br />

estimates; cost and benefit curves for the structure.<br />

In these<br />

The design <strong>of</strong><br />

The standard form <strong>of</strong> data for the estimation <strong>of</strong> floods consists <strong>of</strong> a series<br />

<strong>of</strong> annual maxima derived from a continuous flow record. It is proposed to<br />

show how data which is not <strong>of</strong> the standard form may still be used for this<br />

purpose, and that the use <strong>of</strong> additional data <strong>of</strong> non-standard form'hcreases<br />

the precision <strong>of</strong> estimation.<br />

It is not proposed to discuss in detail<br />

the economic implications <strong>of</strong> the increase, but the order<br />

<strong>of</strong> magnitude <strong>of</strong><br />

the resulting cost-reduction is indicated by means <strong>of</strong> a simple example.


ESTIMATION OF T-YEAR FLOOIX - STANDARD DATA<br />

565<br />

Jn order to estimate the flood <strong>with</strong> return period T, sey, (or 'T-year flood'),<br />

it is first necessary to choose a probability distribution representative<br />

<strong>of</strong> the annual maxima. The parameters <strong>of</strong> the distribution may then be<br />

estimated from past records by one <strong>of</strong> many estimation procedures. The<br />

Gumbel , or double-exponential, distribution is <strong>of</strong>ten used to represent<br />

annual maxima because <strong>of</strong> a supposed validity on theoretical grounds and<br />

although these grounds have been questioned (2), its extensive use justifies<br />

- (=)<br />

its further study in this context. It has the following form:-<br />

F(r) = exp [-e -J , - o


566<br />

-1/& E N<br />

i = N<br />

+ L<br />

i = 1<br />

P o<br />

where y the so-called ‘reduced variate’ a is given by:-<br />

i’<br />

The flood <strong>of</strong> return period T, %, is then given by:-<br />

so that<br />

Pr (x 5 %) = 1 - 1/T,<br />

- %-u = 1<br />

-e-<br />

- 1/T.<br />

e a<br />

m y T = %-u.<br />

-9<br />

a<br />

an estimate oí’ 3 is then<br />

A<br />

A 3 = Q+ a YTa<br />

A A<br />

where


the values <strong>of</strong> whoee elements are substituted into the following:-<br />

h<br />

V mw be approximated by replacing a by a. A pull derivation <strong>of</strong> the<br />

above quantities may- be fomd in Gumbel ( 1) and Kimball (4).<br />

NON-STANDARD DATA<br />

Those concerned <strong>with</strong> maximum flood estimation will be familiar <strong>with</strong> at<br />

567<br />

least two types <strong>of</strong> non-standard data found in connection <strong>with</strong> flood series:<br />

missing peaks in continuous chart records and historic flood marks.<br />

Hissing peaks occur when the flow is so high that the recording pen runs<br />

<strong>of</strong>f the eàge <strong>of</strong> the chart; whilst it should be possible to estimate a<br />

missing peak discharge from h knowledge <strong>of</strong> the length <strong>of</strong> time the chart<br />

limit is exceeded, the properties <strong>of</strong> such a method require further<br />

investigation.<br />

The approach used here is to assume no more than that a<br />

flood which has exceeded a chart limit has a peak discharge greater than<br />

the flow corresponding to the flov at the chart limit.<br />

Historic flood marks are usually to be found in waìls,bridges or on<br />

specially coktructed flood stones.<br />

which have risen above a fixed point<br />

certain circumstances, it mey be assumed that all such floods have been<br />

marked, and that floods in the intervening years for which no marks exist<br />

have failed to reach the fixed point.<br />

These are the two types <strong>of</strong> data to be considered.<br />

They indicate the levels <strong>of</strong> floods<br />

during some historic period. In<br />

values are o<strong>nl</strong>y specified if they lie on one side <strong>of</strong> a given threshold.<br />

Samples which exhibit this property are known as censored samples, the<br />

threshold being called the censoring point.<br />

(6)<br />

They have this in common;<br />

If the threshold is fixed,


568<br />

as it is in these caces, and the proportion <strong>of</strong> censored events is a random<br />

variable, the censoring is type I; if the threshold is a random variable,<br />

but the proportion <strong>of</strong> censored events is fixed, the censoring is type II.<br />

A fui1 discussion <strong>of</strong> censoring is given by Kendall and Stuart(5),<br />

further references are given.<br />

The incorporation <strong>of</strong> a. 'missing peak' or 'historic record' into a<br />

where<br />

standard sample is clearly a type I censoring problem. The general form <strong>of</strong><br />

the likelihood function Lc for a sample <strong>of</strong> n + k values <strong>of</strong> which n are below<br />

the censoring point x and are specified 8s x 1, x2 ... x and k ari? above<br />

C n'<br />

x and arë unkna~n, b BS follows:-<br />

C<br />

where f (x) is the appropriate probability distribution function. A similar<br />

expressiori rr,ay be obtained for censoring above a censoring point, and maximum<br />

likelihood equations m4y be obtained from either expression in the USUEL manner.<br />

ESTIMATION OF T-YEAR FLOODS - NON-STANDARD DATA<br />

Censoring above a threshold (Missing Peaks).<br />

(assumed<br />

n<br />

independent) and k missing peaks which are knm to be above the chart<br />

Suppose a sample consists <strong>of</strong> n annual maxima xl, 5, . . . x<br />

limit xc.<br />

-<br />

then :<br />

The likelihood hction L and maximum likelihood equations are<br />

C


-e JC<br />

where yi = Xi - Y i Y, = X - u ; W = e .<br />

o a<br />

The variance-covariance matrix Y <strong>of</strong> ac U the pumeters estimated<br />

Ca<br />

from equations (9) is then given by the inverse <strong>of</strong> Rc, whose elements ri<br />

are as follows:-<br />

where c = eTC, and J and K are integrals which require to be evaluated<br />

numerically. They are given by:<br />

J 3 5<br />


5 70<br />

L<br />

i=N+r i=N+r<br />

- l/a (N+r) - E y. + E YieYi<br />

1<br />

i= 1 i= 1<br />

+ leT%d = O;<br />

i=N+r<br />

- i/a r-(N+r) + C eyi +<br />

-<br />

-<br />

i= 1<br />

where yi = x.-u ; yh %-u ; u= e - 1 -<br />

a a<br />

(13)<br />

A<br />

The variance-covariance matrix $ for a and B, the parameter estimates<br />

estimated from equations (13) is then given by the inverse '<strong>of</strong> #,<br />

whose eisments r5 are 88 follows:-<br />

- rI2h = - E[a2LogI l/a2 {(N+M (0.4228) + M u(yh - 1<br />

aaau i<br />

where J and K, are expressicm <strong>of</strong> the form <strong>of</strong> ( 1 1) <strong>with</strong> h 5 e*<br />

lower limit <strong>of</strong> integration.<br />

-q 1,<br />

as the<br />

Equations (9) and (13) are thus the modified equations to be used for the<br />

estimation <strong>of</strong> parameters f im the na-standard floods data described.<br />

have been derived in the context <strong>of</strong> reliability theory, and are given in<br />

(6). Similar expressions may be obtained for distributions other than the<br />

Gumbel distributirm by substituting the appropriate p.d.f in (7) or its<br />

equivalent fon censoring belar a threshold.<br />

They


An iterative technique for solving the equations (3) for a standard sample<br />

may be found in Jenkinson (71, who gives a worked example. This technique<br />

my be used <strong>with</strong> slight adaptation for the solution <strong>of</strong> equations (9) and<br />

(13); satisfactory results are obtained if the iteration matrix is left<br />

unchanged, i.e. given values appropriate to an uncensored sample. However,<br />

care should be taken in the choice <strong>of</strong> initial values if the proportion<br />

<strong>of</strong> censored values is high.<br />

THE AVON AT BATH - AN APPLICATION OF THE EQUATIONS<br />

The most satisfactory applications <strong>of</strong> these modified equations has been in<br />

the extension <strong>of</strong> records to achieve significantly greater precision in the<br />

resulting estimates.<br />

Avon at Bath, where a set <strong>of</strong> historic flood marks had been recorded during<br />

a historic period prior to a fairly long continuous chart record.<br />

parametex estimated from the recent record alone were compared <strong>with</strong> these<br />

estimated frcm a combined sample consisting <strong>of</strong> the historic floods and the<br />

recent records. The data used is shown in t'able 1, 1940 being the date <strong>of</strong><br />

the beginning <strong>of</strong> the recent record.<br />

One such application was for data from the river<br />

It is necessary to perform a number <strong>of</strong> checks on historic data before<br />

entering it into equations ( 13). for instance, the stage-discharge<br />

The<br />

571<br />

relaticnship derived for the recent record may require adjustment before it<br />

is applied to the historic flood marks, whose site may be at some distance<br />

from the modern gauging station. The assumption that floods are marked if<br />

(and mly if) they have risen above the threshold makes it necessary to<br />

investigate the circumstances surrounding each flood mark.<br />

time-consuming exercise, but it is one which could to a large extent be<br />

carried out by local library or museum staff who have to hand contemporary<br />

evidence such as old newspaper reports.<br />

This mey be 8


572<br />

TABLE 1. Annual Maximum Flooäa Used in the Estimation <strong>of</strong><br />

a and u in Gumbel's Extreme Value Distribution<br />

(In Cumecs).<br />

* <strong>Water</strong><br />

Year<br />

1865<br />

i866<br />

1874<br />

1875<br />

1879<br />

1882<br />

1888<br />

Flood<br />

206<br />

228<br />

12 1<br />

218<br />

264<br />

362<br />

204<br />

375<br />

154<br />

239<br />

302<br />

i86<br />

255<br />

148<br />

<strong>Water</strong><br />

Year<br />

1941<br />

1942<br />

1943<br />

1944<br />

1945<br />

1946<br />

1947<br />

1948<br />

1949<br />

1950<br />

195 1<br />

1952<br />

1953<br />

1954<br />

Flood<br />

84<br />

149<br />

' 73<br />

118<br />

128<br />

282<br />

98<br />

i04<br />

1 q3<br />

229<br />

136<br />

116<br />

96<br />

296<br />

<strong>Water</strong><br />

Year<br />

1955<br />

1956<br />

1957<br />

1958<br />

1959<br />

1960<br />

196 i<br />

1962<br />

1963<br />

1964<br />

1965<br />

1966<br />

1967<br />

1968<br />

- !he following values were obtained for the data <strong>of</strong> table 1:-<br />

N 0 32; M m 58; 1 = 48; r= 10; 5 200,<br />

and when these values, and the data <strong>of</strong> table 1, were substituted into<br />

equations (13), the estimates sham in table 2 were obtained.<br />

Flood<br />

128<br />

107<br />

138<br />

169<br />

169<br />

352<br />

12 1<br />

103<br />

277<br />

110<br />

178<br />

172<br />

31 1<br />

A<br />

Floods <strong>with</strong> various return periods were then estimated from the values <strong>of</strong> a,<br />

and ;h obtained from the e<strong>nl</strong>arged sample, by substitutitm in equation (41, and<br />

their large-samgle stenâard errore were elso calculated from equation (6).<br />

These are shown in teble 3, where values obtained from the original srmgle am ale0 shown.<br />

125


TAñLE 2. Estimates <strong>of</strong> Paretem <strong>of</strong> Gumbel's Extreme Value<br />

(1) Estimated Flood:<br />

Large-s ample<br />

standard error:<br />

(2) Estimated ' Flood:<br />

Large-sample<br />

standard error:<br />

573<br />

Distribution Using (1) Historic Flood Marks and Recent Data<br />

and (2) Recent Data Alone. (In Cumecs).<br />

Parameter<br />

(1) Estimate:<br />

Large -sample<br />

standard error:<br />

(2) Estimate:<br />

Large-sample<br />

standard error:<br />

a U Sample size<br />

47 128 29 recent values<br />

+ 13 historic values<br />

2.5 27 + 48 censored values<br />

48 128 29 recent values<br />

27 29<br />

TABLE 3. Estimates <strong>of</strong> Floods <strong>with</strong> Various Return Periods Using (1)<br />

Historic Flood Marks and Recent Data and (2) Recent<br />

Data Alone. (In Cumecs).<br />

1 Reluni Period I 2.33 (Mean) 10 25 50 100 1000 I<br />

THE AVON AT BATH - THE VALUE OF ADDITIONAL DATA<br />

155 234 278 311 344 , 453<br />

t7 - +12 +i6 219 223 i33<br />

156 236 281 314 348 458<br />

- +Il - +20 - +26 231 - t36 +51<br />

It will be seen from table 3 that the sampling error in the 50year flood<br />

estimate was reduced from 10% to 6% by the use <strong>of</strong> historic flood marks. Was<br />

this reduction worthwhile in view <strong>of</strong> the effort required to standardize the<br />

data?<br />

type.<br />

A number <strong>of</strong> approaches mw be taken ì.n answering questions <strong>of</strong> this<br />

Ultimately they involve the formulation <strong>of</strong> expressions for the benefits<br />

and c,osrs which arise from acquiring the data, and since these c m never be<br />

fully known, the problem <strong>of</strong> evaluating the worth <strong>of</strong> stream flow data are far<br />

from etrai@t-ionrard.<br />

I


574<br />

Reasonable attempts have been made, however, by E~RS <strong>of</strong> simplifying assumptions.<br />

une such attempt has been made by Wilson (81, whose method allows the<br />

estimation <strong>of</strong> the reduction in cost <strong>of</strong> a small structure consequent upon an<br />

increase in the precision <strong>of</strong> its desis flood estimate. His approach is now<br />

applied to data from the A vm at Bath.<br />

It is assumed that the total cost C mey be written as C = $+Z2 where C1 is<br />

associated <strong>with</strong> construction costs and has the form:-<br />

failure and has the form:-<br />

S<br />

c2 = K2 p,<br />

c1 = XTm> (15)<br />

and C2 is associated <strong>with</strong> the probable future damage resulting from structural<br />

where i is the optimum design flood <strong>with</strong> return period T, K1 and K2 are<br />

constants, and m and s are indices dependent an the particular structure.<br />

For smll structures m and 8 may be hssumed eausl.<br />

i 16)<br />

Wilson's formda depends partly on the fact that floods <strong>with</strong> r etm periods<br />

between 5 and 50 )ears may be represented by a power law <strong>of</strong> the following form:-<br />

5 = A$<br />

( 17)<br />

where A is a constant. p is an index which Wilscm suggests may be estimated<br />

><br />

as the ratio <strong>of</strong> the 50- to the S-year flood.<br />

following formula gives the reduction in cost (Ec) <strong>of</strong> a structure, given the<br />

precision <strong>of</strong> the estimate <strong>of</strong> the design flood (Ex):-<br />

Ec = E E'<br />

2 x'<br />

Writing n = lb - 8,<br />

_-<br />

the<br />

It should be noted that this formula applies o<strong>nl</strong>y to small structures, <strong>with</strong><br />

design floods <strong>of</strong> moderate return periods (ie. between 5 and 50 years).<br />

For the river Avon at Bath, p was found to be 0.2; taking FS= 0.75 88 a<br />

typical value, an increase in precision from 10% to 6% may be seen to lead<br />

to a decrease <strong>of</strong> 1% in the cost <strong>of</strong> a structure <strong>with</strong> a 50 years design flood.<br />

While not a high percentage, this would represent in absolute terms a sum <strong>of</strong><br />

money considerably in excess <strong>of</strong> the cost <strong>of</strong> obtaining and standardizing


the data.<br />

More importantly, a similar cost-reduction, by this analysis,<br />

575<br />

wouïd require a further 20 years <strong>of</strong> streamflow data from continuous records,<br />

which might be impractical and would certai<strong>nl</strong>y be expensive.<br />

Since the incorporation <strong>of</strong> the other type <strong>of</strong> nan-standard data considered,<br />

Le, chart censoring resulting in missing peaks, entails no extra cost, and<br />

bearing in mind that flood estimates are likely to be <strong>of</strong> interest in a<br />

variety <strong>of</strong> contexts (not o<strong>nl</strong>y one as in the above example), it may be<br />

concluded that it is on the whole worthwhile to use additional data <strong>of</strong> the<br />

types described.<br />

Acknarle dgement<br />

The author wishes to thank the following for their assistance:<br />

Robin T. Clarke, who initially suggested this study and provided<br />

valuable guidance during its progress; Con Cunnane, who made available<br />

compu+.er programs,'adaptstions <strong>of</strong> which were used in this work> and<br />

Dr Malcoiz D.Newson who collated and helped to standardize the historic data<br />

used in the eyample. This paper is presented by permission <strong>of</strong> the Director,<br />

Institute <strong>of</strong> <strong>Hydrology</strong>, Wallingford, Berkshire, U.K.<br />

1. Gumbel, E.J. (1960) Statistics <strong>of</strong> Extremes Columbia University Press<br />

Iiew York (1959).<br />

2. Moran, P.A.P. (1959) !he Theory <strong>of</strong> Storage. Methuen and Co. London (1970).<br />

3. Lowery, M.D. and Nash, J.E. (1970) A comparison <strong>of</strong> methods <strong>of</strong> fitting the<br />

double exponential distribution. Journal <strong>of</strong> <strong>Hydrology</strong> IO, 259-275.<br />

h. Kimball, B.F. (1949) An approximation to the sampling variance <strong>of</strong> an<br />

estimated maximum value <strong>of</strong> given frequency based on fit <strong>of</strong> doubly exponential<br />

distribution <strong>of</strong> m&mum values. Ann. Math. Stat., 110-1 13.<br />

5. Kendall, M.G. and Stuart N. (1961) The Advanced Theory <strong>of</strong>'statistics<br />

Vol.11. Charles Griffin and Co., Ltd, London.<br />

6. Harper, H.L. and Moore, A.H. (1968) Maximum-likelihood estimation, from<br />

doubly censored samples, <strong>of</strong> the parameters <strong>of</strong> the first asymptotic distribution<br />

<strong>of</strong> extreme values. her. Stat. Assoc. Jour. 63. 889-901.<br />

7. Jenkinson, A.F. ( 1969) Estimation. <strong>of</strong> Maximum Floods. Chapter five <strong>of</strong><br />

W Technical Report 98, 193-227.<br />

8. Wilson, K. C. ( 1972) Benefit-accuracy relationship for small structure<br />

design floods. Weter <strong>Resources</strong> Research 8(2), 508-512.


ABSTRACT<br />

ASSESSMENT OF DESIGN FLOODS IN BRAZIL<br />

Paulo Poggi Pereira<br />

The techniques utilized by the Departamento Nacional de Obras de<br />

Saneamiento for computing the caracteristics <strong>of</strong> flood to be used for<br />

designing works against inundations are described. Very seldom trus-<br />

tworthy river flood discharge measurements are obtained. In most ca-<br />

ses design flood discharges are estimated <strong>with</strong> a basis on topographic<br />

data which can be gathered quickly. Until thirty years ago the contri<br />

buting basin area was multiplied by a standard unit discharge in or-<br />

der to get the design flood discharge. Later on, the rational method<br />

was addopted, mai<strong>nl</strong>y for designing small canals. This system was con-<br />

siderably improved by the execution <strong>of</strong> .a statistical study <strong>of</strong> heavy<br />

rains observed in the Country. The choice <strong>of</strong> the heigth <strong>of</strong> some dikes<br />

was based on the high water levels attained during ancient floods ob-<br />

served and still remembered by local people. It has been found neces-<br />

sary to perform more elaborate and time-consuming hydrological obser-<br />

vations and studies for designing dams. The use <strong>of</strong> mathematical models<br />

is still Incipient but promising. <strong>Design</strong> floods <strong>of</strong> different standard<br />

periods <strong>of</strong> iecurrence are addopted according to the type <strong>of</strong> the work,<br />

the size <strong>of</strong> the river and the utilization given to the area to be pro<br />

tected.<br />

RES UME N<br />

Son descritas las técnicas empleadas por el Departamento Nacional<br />

de Obras de Saneamiento en la determinación de las caracteristicas de<br />

las crecidas a ser consideradas en el proyecto de obras contra inunda<br />

ciones. Raramente se consiguen datos de mediciones fidedigna de las<br />

descargas de crecidas de los cursos de agua. En la mayoria de los ca-<br />

sos estimanse descargas de crecidas para el proyecto, con base en da-<br />

tos topográficos que pueden ser obtenidos rápidamente. Hasta treinta<br />

años atrás, el método utilizado consistia en multiplicar el área de<br />

la cuenca hidrográfica contribuyente por una descarga especifica pa-<br />

dronizada para obtener la descarga de crecida para el proyecto. De<br />

ahí en adelante, fue adoptado el método racional, principalmente para<br />

proyectar pequefios canales. Este sistema fue considerablemente mejora<br />

do por la ejecución de un estudio estadístico de las lluvias intensas<br />

observadas en el país. La altura de algunos diques fue escogida en ba<br />

se de los niveles de agua alcanzados por antiguas crecidas, cuyos ves<br />

tigios perduran todavia y son indicados por los moradores del lugar.<br />

Para el proyecto de represas ha sido necesario realizar observaciones<br />

y estudios hidrologicos más precisos y demorados. El uso de modelos<br />

matemáticos es aún incipiente, no obstante, promisor. También, adop-<br />

tanse crecidas de proyecto con diferentes periodos de recurrencia coz<br />

forme el tipo de la obra, el caudal del curso de agua y los intereses<br />

en juego de las comunidades vecinas.


578<br />

-1 . INTRODUCTION<br />

The Departamento Nacional de Obras de Saneamento - D.N.0.S.<strong>of</strong><br />

the Brazilian Ministry <strong>of</strong> Interior, has been building flood<br />

control works for almost40 years.<br />

Such works include channel improvements, dredging and lining<br />

<strong>of</strong> canals, building <strong>of</strong> levees, dams, conduits and tunnels.<br />

The first basic step in the design <strong>of</strong> these works is the de-<br />

termination <strong>of</strong> the features <strong>of</strong> the floods to be controled or taken<br />

into account. The main methods that have been used for this purpo-<br />

se are presented in the following subtitles. It should be noted<br />

however that not every method reported is still in use.<br />

There is a generalized lack <strong>of</strong> good reliable hydrometric<br />

observations and measurements. As a consequence, indirect hydrologic<br />

methods have been used as a rule <strong>with</strong> very few exceptions.<br />

2. RATIONAL METHOD<br />

The rational method is the most widely adopted for designing<br />

canals and condui te.<br />

it gives the descharge - Q - through the equation Q = CIA ,<br />

the elemerits <strong>of</strong> which are determined as follows:<br />

The area <strong>of</strong> the drainage basin - A - is obtained from maps<br />

or aerial photographs. When none is available, field surveys are<br />

made.<br />

The run<strong>of</strong>f coefficient - c - depends primarily on land use.<br />

As an e)rample the following table was copied from (i), a recent<br />

D.N.0.S.- O.A.S. publication:<br />

Downtown areas, densely built, <strong>with</strong> paved streets and sidewalks<br />

C = 0.70 to 0.90<br />

Neighborhood areas, less densely built, <strong>with</strong> paved streets<br />

and sidewalks ,C 0.70<br />

Residential areas densely built, <strong>with</strong> paved streets C -<br />

0.65<br />

Residential areas averagely inhabited C = 0.55 to 0.65<br />

Suburban residential areas, sparsely built C = 0.35 to 0.55<br />

Residential areas <strong>with</strong> gardens and unpaved streets C = 0.30<br />

Vegetated areas, parks <strong>with</strong> gardens, unpaved sport fields<br />

c = 0.20<br />

The value <strong>of</strong> the run<strong>of</strong>f coefficient for the drainage basin<br />

is obtained by adding the products <strong>of</strong> the fractions <strong>of</strong> total drainage<br />

area occupied by each land use, multiplied by the corresponding<br />

coefficient.<br />

The determination <strong>of</strong> the rain intensity - I - is made through<br />

the following steps:


57 9<br />

a) A recurrence interval is chosen, usually obeyine, the<br />

following criteria (1 and 2):<br />

Rural area Urban area<br />

Small canal (no levees) 5 years 10 years<br />

Large canal (no levees) 10 years 25 years<br />

Small canal <strong>with</strong> levees 25 years 50 years<br />

Large canal <strong>with</strong> levees 50 years 100 years<br />

Small conduits for urban drainage 3 or more years<br />

b) The time <strong>of</strong> concentration is computed by adding the time<br />

n eeded by the rainwater fallen on the remotest part <strong>of</strong> the watershed<br />

e o reach the canal or conduit, to the travel time necessary for the<br />

water to flow to the point under study. The travel time is computed<br />

by dividínp the length <strong>of</strong> the canal or conduit by the averape<br />

flow velocity.<br />

c) A total depth <strong>of</strong> rainfall is determined taking into<br />

account the chosen recurrence interval and a duration <strong>of</strong> rain equal<br />

to the time <strong>of</strong> concentration. (3) is resorted to for this purpose.<br />

The ratio rainfall depthtrain duration gives rainfall intensity I.<br />

3. INTENSE RAINS IN BRAZIL<br />

In 1957 D.N.O.S. edited Otto Pfafstetter's "Intense Rains in<br />

Brazil" prepared mai<strong>nl</strong>y for applications <strong>of</strong> the rational method (3).<br />

This book presents the results <strong>of</strong> frequency analysis <strong>of</strong> rain<br />

fall vhlues recorded in 98 stations <strong>of</strong> the Brazilian Departamento<br />

Nacional le Meteorologia.<br />

Rainfall corresponding to several duration periods <strong>of</strong> rain<br />

(5, 15 and 30 minutes, 1, 2, 4, 8, 14, 24 and 48 hours, 1, 2, 3, 4<br />

and 6 observation days) were analysed separately for each station.<br />

Recurrence intervals <strong>of</strong> the precipitations - T - were carac-<br />

terized by the equation T = n/m, being n the total period <strong>of</strong> obser-<br />

vation and m the number <strong>of</strong> order occupied by the rainfall in a<br />

series where all observed intense precipitations were placed in de-<br />

creasing order <strong>of</strong> magnitude.<br />

This book presents diagrams, tables and formulas that allow<br />

the determination <strong>of</strong> design rainfall for the 98 studied stations up<br />

to 1000 years <strong>of</strong> recurrence intervals. Values pertaining to the<br />

station nearest to the place for where the design is being prepared<br />

are usually utilized. For checking representativeness, rainfall<br />

frequency curves <strong>of</strong> dayly precipitations <strong>of</strong> this station are some-<br />

times compared <strong>with</strong> similar curves prepared <strong>with</strong> data from a non re<br />

cording raingage instaled at the actual place <strong>of</strong> the contemplated<br />

works.<br />

4. STANDARD UNIT DISCHARGES<br />

According to (4) the rational method was addopted when D.N.QS.<br />

began its activities many years ago reclaiming swamps in the neiFh-


5 80<br />

bn,irhood <strong>of</strong> Rio de Janeiro.<br />

The reasons for this choice were the absence <strong>of</strong> discharge<br />

~~~.,?i~~ements, the frequent inexistence <strong>of</strong> defined streams in the<br />

swam-is and because it was feared that the drainage canals to becons<br />

tructcd would change so much the hydraulic caracteristics <strong>of</strong> the<br />

watersheds that the measurements would not provide a reliable basis<br />

f o r designs .<br />

On the other hand, there were no recording rain gage charts<br />

fiom ~t.ich rainfall intensities for different rainfall durations<br />

and recurrence intervals could be deducted.<br />

There were o<strong>nl</strong>y rainfall measurements performed <strong>with</strong> non re-<br />

rording rain gages for a relatively short period which showed a ma-<br />

ximum precipitation <strong>of</strong> 120mm for l day (24 hours).<br />

To get rainfall intensity, this observed depth <strong>of</strong> precipitation<br />

wds supposed to be uniformly distributed through the 24 hours<br />

<strong>of</strong> observation.<br />

So, the rain intensity addopted was always the same, regard-<br />

less <strong>of</strong> the time <strong>of</strong> concentration <strong>of</strong> the various basins. As a con-<br />

sequence, the discharge became directly proportional to the drain-<br />

age basin area.<br />

The run<strong>of</strong>f coeficient addopted €or rural basins was 0.7,<br />

obviously for compensating the weak rainfall intensity used. For<br />

these<br />

3<br />

values, the rational met9od equation gives a discharge <strong>of</strong><br />

100 m /s fLt a basin <strong>of</strong> 100 km .<br />

As a matter <strong>of</strong> fact this application <strong>of</strong> the rational method<br />

was o<strong>nl</strong>y a means <strong>of</strong> justifying the standard unit discharge <strong>of</strong> 1 m3/<br />

1s km2 that was an addopted rule <strong>of</strong> thumb. The behaviour <strong>of</strong> the u~<br />

lined rural canals designed accordingly has been good. Some ocasion<br />

al flooding has occured but <strong>with</strong>out excessive resulting damage.<br />

Another standard unit discharge is 0.5 m Is km2. It reeult-<br />

ed from a design especification asking for pumping rainwater out <strong>of</strong><br />

polders <strong>with</strong>in a few days for avoiding the breeding <strong>of</strong> mosquitoes.<br />

Here again rain intensity was not related to the concentration time<br />

<strong>of</strong> the drainage basin.<br />

5. DESIGN FLOODS FOR DAM SPILLWAYS - TRIANGULAR UNITGRAPH<br />

The design OP dam spillways is usually based on flood hydro-<br />

graphs. The triangular unitgraph presented in (5) has been used<br />

very <strong>of</strong>ten because It presents the advantage <strong>of</strong> doin <strong>with</strong>out hydro-<br />

metric data.<br />

It is believed that peak discharges obtained by this method<br />

are exagerated but flood volumes are correct. Therefore this method<br />

is considered good for cases where the dam reservoir retains much<br />

<strong>of</strong> the flood volumes.<br />

3


The following example is based on recent design computations<br />

<strong>of</strong> a dam spillway for Northeastern Brazil.<br />

a) The time <strong>of</strong> concentration was estimated by the equation<br />

<strong>of</strong> the “California Highways and Public Works” adapted for metric<br />

units :<br />

3<br />

5 0.95 x (L /<br />

TC<br />

Tc = time <strong>of</strong> concentration in hours<br />

I, = length <strong>of</strong> watercourse in km measured from divide to<br />

spillway site.<br />

581<br />

H = difference in elevation in meters between spillway site<br />

and divide.<br />

In our example L = 17 km, H = 400 m and<br />

Tc = 0.95 (lì3 / 4 0 0 ) ~ ’ = ~ 2.5 ~ ~ hours<br />

b) The time in hours from start to peak rate <strong>of</strong> unitgraph<br />

(T ) was computed<br />

-<br />

as follows for excess rains <strong>of</strong> 1 and 6 hours<br />

periods (D)<br />

-<br />

T D/2 + 0.6 Tc<br />

P<br />

For D = 1 hour, T 112 + 0.6 (2.5) = - 2 hours<br />

P<br />

For D = 6 hour6, T = 612 + 0.6(2.5) 4.5 hours<br />

P<br />

c) The time in hours from peak rate to end <strong>of</strong> unitgraph<br />

triangle (T,) was computed as follows:<br />

Tr =<br />

-<br />

1.667 T<br />

P<br />

- For D = 1 hour, Tr 1.667(2) = 3.3 hours<br />

For D = 6 hours, Tr 1.667(4.5) = 7.5 hours<br />

d) Peak rates <strong>of</strong> unitgraphs for 1 mm exceas rainfall <strong>of</strong> 1<br />

and 6 hours duration periods were computed as follows:<br />

A I<br />

‘p 1.8(T + Tr)<br />

P<br />

= peak rate in m 3 /e<br />

4P<br />

- A = drainage area in km2. In the example A = 97 km2<br />

97<br />

For D =<br />

-<br />

1 hour, 9<br />

10.2 m3~s<br />

‘p 1.8(2 + 3.3)<br />

For D = 6 hours, œ<br />

97<br />

4.5 m3/s<br />

qp 1.8(4.5 + 7.5)<br />

e) The excess rainfalls and corresponding run<strong>of</strong>f hydrographs<br />

-unitgraphs - are represented schematicaly in the annex figurestogether<br />

<strong>with</strong> lists <strong>of</strong> unitgraph discharges corresponding to the<br />

middle <strong>of</strong> consecutive one hour time intervals.


6. PROBABLE MAXIMUM PRECIPITATIONS<br />

The spillway <strong>of</strong> the example would be located uptream <strong>of</strong> a<br />

large town and the failure <strong>of</strong> its dam by flood overtoping would<br />

cause great property damage and seriously jeopardize human life in<br />

large numbers. Therefore it vas considered appropriate to utilize<br />

the maximum probable precipitation for computing the design flood.<br />

There were not enough storm data for estimating directly<br />

the values <strong>of</strong> such precipitation. The indirect approximated method<br />

proposed in (6) was used. It is based on suppos ing that maximum<br />

probable precipitation values are identical to those <strong>of</strong> a region <strong>of</strong><br />

the United States where rainfalls <strong>of</strong> 10 years recurrence interval<br />

are the same as those observed in the watershed under study.<br />

(3) was used for obtaining 10 years recurrence interval prg<br />

cipitôtions from a station nearby the spillway site and (7) permil<br />

ed to locate the area in the United States <strong>with</strong> equivalent rain-<br />

falls and also furnished the probable maximum 6-hour precipitation<br />

for a 10-square-mile area: 686 mm.<br />

By using charts from (5) values <strong>of</strong> probable maximum preci-<br />

pitations were computed for the drainage basin under study, which<br />

has an area <strong>of</strong> 97 km2 = 37.5 square-mile, for the following listed<br />

periods <strong>of</strong> duration.<br />

duraticm period<br />

houss<br />

6<br />

12<br />

1<br />

2<br />

3<br />

4<br />

5<br />

computation<br />

88% x 686<br />

107% x 686<br />

50% x 604<br />

65% x 604<br />

76% x 604<br />

85% x 604<br />

93% x 604<br />

rainfall<br />

rnm<br />

604<br />

7 34<br />

302<br />

39 2<br />

460<br />

513<br />

562<br />

Rainfall increments disposed in descending order <strong>of</strong> intensity<br />

were calculated as follows:<br />

interval duration<br />

hours<br />

rainfall increments<br />

mm<br />

1 P1 = 302<br />

392 - 302 = 90<br />

P2<br />

460 - 392 68<br />

p3<br />

513 - 460 = 53<br />

P4<br />

P5 = 562 - 513 = 49<br />

P6 604 - 562 42<br />

P12= 734 - 604 1130


583<br />

For obtaining the design precipitation, rainfall increments<br />

were tabulated in the following order as suggested in (5): P6, Pq;<br />

P3, P1, P2, l 5 nad P (see annex table).<br />

12<br />

7. RUNOFF FCTIMATION AND COMPUTATION OF THE DESIGN FLOOD HYDRC<br />

GRAPH<br />

The computation <strong>of</strong> the design flood hydrograph <strong>of</strong> the exam-<br />

ple is presented in the annex table and was made through the follo_w<br />

ing steps:<br />

a) Rainfall increments obtained as <strong>of</strong> the preceding cub-<br />

title were added in order to obtain accumulative precipitation.<br />

b) Accumulative run<strong>of</strong>f or excess rainfall was estimated by<br />

means <strong>of</strong> the equation <strong>of</strong> the "Soil Conservat ion Servi ce" presented<br />

in (5):<br />

(P<br />

2<br />

- R =<br />

0.2 S)<br />

P + 0.8 s<br />

R = run<strong>of</strong>f in mm<br />

P = accumulative precipitation in mm<br />

S = maximum potential difference P - R at time <strong>of</strong> rain's<br />

begining.<br />

S was estimated as 100 mm.<br />

c) Increments <strong>of</strong> run<strong>of</strong>f were computed by subtracting the<br />

accunulative run<strong>of</strong>f obtained for the preceding interval from the<br />

accumulative run<strong>of</strong>f obtained for the interval under consideration.<br />

d) Increments <strong>of</strong> run<strong>of</strong>f were compared <strong>with</strong> rainfal.1 incre-<br />

ments. The difference between them should attain at least lmm for<br />

each interval hour. As this did not happen at the last tabulated<br />

time interval the increment <strong>of</strong> run<strong>of</strong>f for that interval was recal-<br />

culated by subtracting 6 mm from Phe rainfall increment.<br />

e) Increments <strong>of</strong> run<strong>of</strong>f for each interval were multiplied<br />

by the unitgraph discharges listed in the annex figuresand the pro<br />

ducts were tabulated in the corresponding time intervals.<br />

f) The average discharge <strong>of</strong> the design flood in each time<br />

interval was obtained by adding the products resulting from the<br />

previous step for that tf.me interval.<br />

minal.<br />

g) The base flow was not taken into account for being no-<br />

a. STATISTICAL METHODS<br />

Frequency analysis is applied whenever records that allow<br />

its use are available, for reasons <strong>of</strong> better precision and reliability.<br />

Gumbel's and/or Hazen's methods are the most favored.<br />

D.N.O.S. files keep reports <strong>of</strong> classical hydrological studies<br />

mai<strong>nl</strong>y based on frequency analysis <strong>of</strong> water level observations<br />

and discharge measurements.


5 84<br />

One <strong>of</strong> them is an outstandingly interesting example: the de<br />

termination <strong>of</strong> the heigth <strong>of</strong> levees for protection <strong>of</strong> the city <strong>of</strong><br />

Porto Alegre against floodings <strong>of</strong> the Guaiba River.<br />

In that reach the Guaiba River forms an estuary and its<br />

water levels are dependent not o<strong>nl</strong>y on the river discharges as well<br />

as on the water level ocurring in the lagoon where it flows to ,<br />

which can be strongly influenced by winds.<br />

There were little knowledge <strong>of</strong> the elements involved and<br />

their effect.<br />

On the other hand the Guaiba River water levels had been sys<br />

tematicaly observed since 1899 by means <strong>of</strong> a staff gage installed<br />

near downtown Porto Alegre. The data so obtained was frequency an=<br />

lysed and, according to Gumbel's method the biggest recorded flood,<br />

which occured in 1941, was found to have a recurrence interval <strong>of</strong><br />

about 370 years.<br />

Local people remembered which places had been flooded and<br />

which levels had been attained by the water in different places <strong>of</strong><br />

the town during the 1941 flood. With these informations it was<br />

possible to draw a water-surface pr<strong>of</strong>ile, which was confirmed later<br />

by a hydraulic model <strong>of</strong> the estuary.<br />

It was decided to set the crest <strong>of</strong> the levees 1.20 m above<br />

that water-surface pr<strong>of</strong>ile. No discharge considerations were taken<br />

into account although discharges were estimated by making use <strong>of</strong><br />

the above mentioned model.<br />

9. MATHEMnTICAL MODELS<br />

Up to present time almost no use has been made <strong>of</strong> mathematic<br />

al hydrological models for determination <strong>of</strong> design flood caracteristics.<br />

Recently, the Streamflow Synthesis and Reservoir Regulation<br />

(SSARR) Model began being used for forecasting the behaviour (flood<br />

and low water levels as well) <strong>of</strong> the Paraguay River and some tributaries.<br />

This model was develloped by the U.S. Army Corps <strong>of</strong> Engineers<br />

which addapted it for the Paraguay River basin as part <strong>of</strong> the<br />

activities <strong>of</strong> the "Project <strong>of</strong> the Hydrological Studies <strong>of</strong> the Upper<br />

Paraguay River Basin" - a UNDP/UNESCO technically assisted project<br />

for which D.N.O.S. is the responsible Brazilian counterpart agency.<br />

The potentiality <strong>of</strong> SSARR model for evaluating the caracte-<br />

ristics <strong>of</strong> design floods <strong>of</strong> large rivers is obvious and it is ex-<br />

pected be much used for this purpose in the future.<br />

10. CONCLUSION<br />

D.N.O.S. has always used addapted foreign feekiikques for<br />

assessing design floods. On the other hand, local data has been<br />

used as extensively as possible. Methods that did not allow easy


585<br />

'use <strong>of</strong> this data have not enjoyed preference. Such is the case <strong>of</strong><br />

empirical formulas for rainfall intensity and flood discharge which<br />

were used o<strong>nl</strong>y in a few instances.<br />

Elaborate methods have not been much addopted. The main<br />

reason for this may be the rather vague effect <strong>of</strong> high accuracy<br />

assessment <strong>of</strong> design flood caracteristics upon the economics <strong>of</strong><br />

flood control works in most cases, a fact that does not encourage<br />

too many efforts for refining design flood assessment.<br />

REFERENCES<br />

a<br />

1. D.N.O.S. e Organizaqao dos Estados Americanos (1972). Relató-<br />

rio do Estudo para Controle da Erosao no Noroeste do Estado do<br />

Parana, Rio de Janeiro, DNOS.<br />

2. Poggi Pereira, P. (1967). Controle de cheias: custos e benefi<br />

cios, SANEAMENTO, Rio de Janeiro, DNOS.<br />

3. Pfafstetter, O. (1957). Chuvas Intensas no Brasil, Rio de Ja-<br />

neiro, DNOS.<br />

4. Arauja Goes, H. (1942). A Baixada de Sepetiba, Rio de Janeiro,<br />

DNOS.<br />

5; U.S. Department <strong>of</strong> the Interior, Bureau <strong>of</strong> Reclamation (1960).<br />

<strong>Design</strong> <strong>of</strong> Small Dama, Washington, U.S. Government Printing<br />

Office.<br />

6. Pfafstetter, O. (1967). Floods for Spillway <strong>Design</strong>, Neuvieme<br />

Congres des Grands Barrages, Comission Internationale des<br />

Grands Barrages.<br />

7. U.S. Weather Bureau (1963). Rainfall Frequency Atlas <strong>of</strong> the<br />

United States for Durations from 30 Minutes to 24 Hours and<br />

Return Periods from 1 to 100 Years, Technical Paper NQ 40 ,<br />

Washington, Weather Bureau, U.S. Department <strong>of</strong> Commerce.


586<br />

FIGURES<br />

c.ü 5 1 hour<br />

L-<br />

or run<strong>of</strong>f<br />

-- r<br />

L-<br />


5 87<br />

M<br />

--l<br />

I<br />

N<br />

N<br />

I<br />

d<br />

d<br />

-<br />

-<br />

-<br />

1<br />

O<br />

-<br />

Io<br />

ci<br />

O<br />

c<br />

G<br />

a<br />

rl<br />


ABSTRACT<br />

A METHOD FOR THE PREDICTION OF<br />

WASHLOAD IN CERTAIN SMALL WATERSHEDS<br />

by<br />

Oswald Rendon-Herrero<br />

Present knowledge on the prediction <strong>of</strong> washload reveals that <strong>with</strong><br />

the exception <strong>of</strong> the universal soil-loss equation, and sediment-rating<br />

techniques, a rational method does not exist that can accomplish this<br />

task. A method is presented thar is analogous to Sherman's unit-hydro-<br />

graph method <strong>of</strong> hydrograph analysis. The ordinates <strong>of</strong> a sediment dis-<br />

charge graph are divided by the excess run<strong>of</strong>f that mobilized it, prod:<br />

cing a unit sediment discharge graph. When this is done for many storm<br />

events, unit sediment discharge graphs are generated that vary conside-<br />

rably in peak value and shape. The ordinates <strong>of</strong> the latter graphs are<br />

then plotted logarithmically against their respective excess run<strong>of</strong>f,<br />

yielding data points that can be fitted by straight lines. Predictions<br />

pf sediment discharge or the generation <strong>of</strong> a sediment discharge graph<br />

for a given excess run<strong>of</strong>f can be accomplished using the resulting<br />

graph, Bixler Run <strong>Water</strong>shed, Pennsylvania, having a drainage area <strong>of</strong><br />

15 square miles, was selected as a data source. Granulometric tests<br />

and otti~r related information disclosed that the suspended sediment in<br />

Bixler Ruri is predominantly washload. Prediction <strong>of</strong> washload utilizing<br />

the propose? method yielded errors that were considerably less than<br />

that reported using available sediment transport formulae and techni-<br />

ques.<br />

RE C U ME N<br />

Actualmente los conocimientos con respecto a la predicción de<br />

"washload" son bastante limitados. Con las excepciones de la ecuación<br />

universal de pérdida de suelo y técnicas sedimentarias (sediment-ra-<br />

ting) todavía no existe un método racional para resolver esta tarea.<br />

El procedimiento presentado es análogo al método de Sherman (Unit hy-<br />

drograph) o sea un análisis hidrográfico. Las ordenadas de la gráfica<br />

de descarga sedimentaria divididas entre el volumen del derrame excesi<br />

vo producen una gráfica unitaria de descarga sedimentaria. Al comple-<br />

tarse este procedimiento para muchas lluvias, gráficas unitarias de<br />

descargas sedimentarias son obtenidas y se notarán las diferencias de<br />

los cambios de valores máximos. Las ordenadas de estas Últimas gráfi-<br />

cas son trazadas logaritmicamente versus sus respectivos volúmenes de<br />

derrame excesivo rindiendo diferentes puntos de dato, los cuales pue-<br />

den unirse con líneas rectas. Predicciones de descargas sedimentarias<br />

dado cierto derrame excesivo pueden observarse en la gráfica obtenida.<br />

El área seleccionada de 15 millas cuadradas, donde los datos fueron ad<br />

quiridos queda situada en Bixler Run, Penns.ylyania. Pruebas granulomé-<br />

tricas y otras informaciones relacionadas indican que la aescarga de<br />

sedimentos en Bixler Run es casi todo "washload". El método presentado<br />

rindió errores de magnitud mínima en comparación con los errores repor<br />

tados por otras técnicas y fórmulas de transporte sedimentarias.


590<br />

INTRODUCTION<br />

Relationships have been developed whereby the sediment transport <strong>of</strong> materials<br />

which are native to a channel can be computed <strong>with</strong> varying degrees <strong>of</strong><br />

accuracy. When the sediment transport is primarily composed <strong>of</strong> the lateral inflow<br />

<strong>of</strong> particulate matter eroded from the land surface (washload) in a basin,<br />

the relationships derived are no longer velid(lg2). Heret<strong>of</strong>ore, the leteral<br />

inflow component <strong>of</strong> sediment discharge was predicted via the universal soil<br />

loss equation(*), and sediment rating techniques.<br />

these methods are subject to large errors. The universal soil loss equation<br />

has the disadvantage <strong>of</strong> providing o<strong>nl</strong>y annual predictions, The need for quantitative<br />

evaluation <strong>of</strong> washload is <strong>of</strong> paramount importance at the present time.<br />

A method is presented which is applicable to certain small watersheds and<br />

which can enable the prediction <strong>of</strong> sediment discharge on a storm basis. By<br />

"small" is meant those watersheds where the spati ribution <strong>of</strong> the rainfall<br />

is uniform over the watershed area. Some authors<br />

Predicted quantities using<br />

$3 ,w<br />

define a small water-<br />

shed as being less than 161.0 or as much as 3219.0 square kilometers in area.<br />

"Certain" refers to the sediment discharge graph's locus (sedimentgraph) dependency<br />

on the soil type. For general stream conditions, fine-grained and<br />

colloidal materials transported in suspension will yield. a sedimentgraph that<br />

appreciably parallels the shape <strong>of</strong> its associated hydrograph; under similar<br />

stream conditions, coarser particles in transport will not result in parallelshaped<br />

discharge graphs. The applicability <strong>of</strong> the series graph method depends<br />

on the para!lel nature <strong>of</strong> the sedimentgraph and hydrograph for a given excess<br />

run<strong>of</strong>f. Use ~f the adjective "series" is explained in the Analysis <strong>of</strong> Da<br />

section <strong>of</strong> this paper. The series graph method is analogous to Sherman's F%><br />

unit hydrograph prc,zedure for the analysis <strong>of</strong> a direct discharge hydrograph.<br />

The series graph method is demonstrated using Bixler Run <strong>Water</strong>shed, a<br />

monitored drainage basin 38.9 square kilometers in area near Loysville, Penn-<br />

sylvania (Figure 1). Granulometric measurements made <strong>of</strong> the bed, bank, and<br />

suspended sediment, has established the sediment transport in Bixler Run as<br />

being predominantly washload. Sediment sampling in the Bixier Run <strong>Water</strong>shed was<br />

begun on February 1, 1954, using a U.S.D-43, and a DH-48 depth integrating<br />

hand sampler(7).<br />

The series graph method is used where the quantitative analysis <strong>of</strong> wash-<br />

load is necessary for the prediction <strong>of</strong> sediment discharge and/or variation<br />

<strong>with</strong> time. The prediction <strong>of</strong> total sediment discharge is required for example<br />

where the rate <strong>of</strong> sedimentation can become problematic. This consideration is<br />

particularly important in the allocation <strong>of</strong> storage volumes in new reservoirs.<br />

WASHLOAD<br />

Due to a series <strong>of</strong> rainfall-induced erosive processes, particulate matter<br />

eventually reaches a stream course after being transported through a great<br />

variety <strong>of</strong> distances in a drainage basin. Depending on such characteristics<br />

as, for example, land slope and length, topography, and availability <strong>of</strong> trans-<br />

portable surficial soils, various-sized particles can, given ample time, reach<br />

the main waterways in a basin.<br />

Depending upon the streamflow character, some <strong>of</strong> the eroded materials that<br />

reach the stream course as lateral inflow combine <strong>with</strong> sediments native to the<br />

channel proper and continue to be transported downstream by the prevailing flow.<br />

The lateral inflow <strong>of</strong> Sediment is known as washload. Sediment transport in the


s t-ct'arn may be accomplished by four generally accepted modes depending primarily<br />

upon particle diameter and stream transport capability. The transport modes are<br />

known as contact, saltation, suspended, and solution load. The saltation load<br />

in combination <strong>with</strong> the contact load is generally assumed to comprise the bed<br />

load. The sum <strong>of</strong> the suspended, bed, and solution loads is called the total<br />

load. Of particular note here is the fact that there is no sharp line <strong>of</strong> demarcation<br />

between m terials tifried as bed load ot as suspended load. Some<br />

authors (e.g., Graf ?I), Shen<br />

the washload may comprise from 90 to 95 percent <strong>of</strong> the total sediment load.<br />

The scope <strong>of</strong> this paper is limited solely to washload. Bed load, and<br />

suspended sediments mobilized from the bed, are not considered <strong>with</strong>in the con-<br />

text <strong>of</strong> this paper.<br />

591<br />

, Chow(3)) have indicated that in many instances<br />

THEORY<br />

Of the numerous sediment transport equations that have been presented,<br />

none have been derived which account for the lateral inflow <strong>of</strong> water-soil mixtures<br />

(washload) originating from sheet and gully erosion <strong>of</strong> land surfaces in<br />

a drainage basin. Shen(*) points out, "Finally, none <strong>of</strong> the equations for predicting<br />

suspended load account for the washload <strong>of</strong> the stream." Shen(') also<br />

indicates that application <strong>of</strong> the available suspended sediment transport<br />

equations to stream give rise to substantial error.<br />

The existing sediment transport equations are based solely on the mobilization<br />

<strong>of</strong> fine particulate concentrations (sediment suspensions) and coarse<br />

layered masses <strong>of</strong> the bed, which are native to the stream channel. Of importance<br />

here Is the fact that in most instances, the quantity <strong>of</strong> washload derived<br />

from lateral inflm can be substantially greater than the suspended sediment<br />

native to the bei. Several authors (e.g., Graf (11, Shen(') y Chow(3)) estimate<br />

that the bed load contribution to the total sediment load is usually on the<br />

order <strong>of</strong> five percent, and may in some cases be 'neglected from total load calculati<br />

ms.<br />

Given the flow condition and composition <strong>of</strong> materials native to the bed,<br />

several relationships have been developed that .provide a general relationship<br />

for the rate <strong>of</strong> sediment transport. It is not the intent <strong>of</strong> this paper to<br />

present a development <strong>of</strong> the available sediment transport (bed load, suspended<br />

load, or total load) equations, since their basis <strong>of</strong> derivation places them<br />

outside <strong>of</strong> the realm <strong>of</strong> washload phenomena and, therefore, the scope <strong>of</strong> this<br />

study.<br />

The reader is referred to Graf (1) y Shen(') , and Nordin and McQuivey(8)<br />

for a general development and assessment <strong>of</strong> available sediment transport<br />

formulae.<br />

COMPILATION OF DATA: BIXLER RUN WATERSHED<br />

Storm events were chosen according to accepted hydrograph analysis criteria<br />

and which appreciably satisfied certain analogous sedimentgraph analysis con-<br />

ditions. The storm events were primarily classified according to the degree to<br />

which the locus <strong>of</strong> fhe sedimentgraphs were defined by sampling. In many instances<br />

sampling in the region <strong>of</strong> the crest <strong>of</strong> the sedimentgraph was not accomplished;<br />

the Bixler Run project hydrologist therefore estimated the peak's shape from<br />

the relative positions <strong>of</strong> the rise and recession sample points and from know-<br />

ledge <strong>of</strong> previous sedimentgraphs where the peak was known. The latter class-<br />

ifications yielded 63 storm events, which were grouped on the basis <strong>of</strong> run<strong>of</strong>f<br />

derived during winter (October to March) and Sumner months (April to September).


592<br />

UNIT GRAPH DEVELOPMENT (WATER AND SEDIMENT DISCHARGE)<br />

Processing <strong>of</strong> the stage hydrograph and sedimentgraph for inidividual storm<br />

s!i>ents involved as a first step the separation <strong>of</strong> base flow from the total dis-<br />

charge. In the case <strong>of</strong> the stage hydrograph, baseflow was assumed to comprise<br />

both groundwater flow and interflow. Base flow for the sedimentgraph was<br />

assumed to be the sediment flow prior to the beginning <strong>of</strong> the rise <strong>of</strong> a sedi-<br />

mrntgraph for a particular storm event. The base flow separation technique<br />

WJS identical for both the stage hydrograph and sedimentgraph (see Figure 2).<br />

Point A (or A') on Figure 2 is defined as the point where the rise <strong>of</strong> the dis-<br />

charge graph begins and is determined by inspection. Line AB (or A'B') is a<br />

tangential straight line projection, continuous <strong>with</strong> the base flm curve pre-<br />

ceding it, emanating from point A ,(or A') and bisecting a vertical line drawn<br />

through the peak. Generally, the points B and B' were appreciably in phase<br />

for most <strong>of</strong> the storm events considered in the analysis. On the average, where<br />

such was not the case the hydrograph peak lagged the sedimentgraph peak by one<br />

hour. The point C (or Cl) is determined by drawing tangents on the recession<br />

and base flow portions <strong>of</strong> the curves; the bisector <strong>of</strong> the tangents intersects<br />

at a point assumed to be at the termination <strong>of</strong> surface run<strong>of</strong>f C (or C').<br />

Although the separation technique utilized in this analysi bitrary , the<br />

important feature is the consistency <strong>of</strong> its use throughout $3fay3f the data<br />

process ing.<br />

The resulting direct flow discharge graph data was then processed by<br />

computer to derive the unit hydrograph, unit sedimentgraph, excess rainfall,<br />

and associated sediment mobilized.<br />

Hyetogrqhs were constructed for the selected storms in order to determine<br />

duration for thc derived unit graphs. This was donefor winter and Sumner<br />

rainfall storms ordy.<br />

GRANULOMETRIC MEASUREMENTS OF SUSPENDED,<br />

CHANNEL-BED, AND CHANNEL-BANK MATERIALS<br />

Grain-size analyses <strong>of</strong> suspended-load , channel-bed , and channel-bank<br />

materials were conducted by the USGS District Office, Surface <strong>Water</strong> Quality<br />

Branch, Harrisburg, Pennsylvania.<br />

The compiled data serves as a basis for comparison <strong>of</strong> the materials transported<br />

during storm events and as a basis for reiative classification <strong>of</strong> the<br />

prevailing transport mode (washload, bed load, etc.).<br />

Results <strong>of</strong> 115 granulometric tests conducted on the bed, bank, and suspend-<br />

ed sediment samples are plotted in Figure 3. Granulometric distributions obtained<br />

from the tests generally plot as three distinct bands <strong>of</strong> points, <strong>with</strong> a<br />

minor degree <strong>of</strong> overlapping. For clarity, o<strong>nl</strong>y the arithmetic mean curves are<br />

presented on Figure 3.<br />

These were determined by sumning the percents finer than<br />

by weight at a given particle size diameter and material source (bed, bank, or<br />

suspended), and obtaining an arithmetic average.<br />

Figure 3 corroborates verbal communication between the project hydrologists<br />

<strong>of</strong> the USGS, Harrisburg, Pennsylvania, and this worker, to the effect<br />

that materials encountered in the bed are primarily coarse-grained. In many<br />

instances, bedrock is exposed at the surface. The suspended material, therefore,<br />

can o<strong>nl</strong>y have had as its primary source <strong>of</strong> origin the watershed's land<br />

slopes. The distinctness <strong>with</strong> which the individual mean curves plot on Figure<br />

3 is also indicative <strong>of</strong> significantannoring <strong>of</strong> the bed. Armoring is the time-


wise removal <strong>of</strong> fine particulate matter from the bed.<br />

Sed imcntgrriph Analysis<br />

ANALYSIS OF DATA<br />

The original premise proposed in this study was that the unit hydrograph - .<br />

concept as applied to a direct run<strong>of</strong>f hydrograph was directly analogous in the<br />

iinalyiiis <strong>of</strong> d sedim@negraph, A fami <strong>of</strong> a tirlit gedinientgraph idas indeed develop.<br />

ed whose standard unit was 1.0 kilogram for a given duration, distributed over<br />

the watershed area, analogous in unit-hydrograph analysis to 1.0 centimeter <strong>of</strong><br />

excess (effective) rainfall over the same area. The shape <strong>of</strong> the resulting<br />

unit sedimentgraphs varied o<strong>nl</strong>y slightly for different rainfall events <strong>of</strong> a<br />

given duration, as is anticipated in unit-hydrograph analysis. In order to<br />

utilize such a unit sedimentgraph in generating a sedimentgraph for a particular<br />

storm event, the total amount <strong>of</strong> sediment mobilized during the event would have<br />

to be known or estimated. A relationship has been determined between total<br />

sediment mobilized and excess run<strong>of</strong>f for single storm events. This is shown<br />

on Figure 4, for run<strong>of</strong>f events resulting from winter and summer storms.<br />

The latter approach would, therefore, entail the estimation <strong>of</strong> total<br />

sediment mobilized on the basis <strong>of</strong> a known or predicted run<strong>of</strong>f excess as an<br />

initial step, followed by the selection, based on duration, <strong>of</strong> an appropriate<br />

unit sedimentgraph. The latter can then yield a sedimentgraph by multiplying<br />

the individual unit sedimentgraph ordinates by the total sediment mobilized.<br />

A simpler approach, however, was adopted which has the advantage that consideration<br />

<strong>of</strong> duration <strong>of</strong> run<strong>of</strong>f excess may be neglected altogether; the relationship<br />

developed, as will be shown, is independent <strong>of</strong> duration.<br />

Once the observed total discharge hydrographs and sedimentgraphs were<br />

graphically convzrted to direct discharge graphs by deducting the base flow,<br />

the following calculations were performed:<br />

DDi = DTi - DBi (1)<br />

Where DD. is direct water discharge in cubic meters per second (hereinafter<br />

designated as crns)<br />

DT is total water discharge in crns<br />

i .<br />

DB. is base water discharge in crns.<br />

The subskript "i" refers to the time at which water discharge values (e.g.,<br />

DTi) are measured on the hydrograph's abscissa. For this analysis the hydrograph's<br />

time base was divided into "n" two-hour increments.<br />

Similarly,<br />

SDi = STi - SBi ( 2)<br />

where SD, is direct sediment discharge in parts per million (hereinafter<br />

designated as ppm)<br />

ST. is total sediment discharge in ppm<br />

SB: is base sediment discharge in ppm.<br />

Thelmagnitude <strong>of</strong> the ppm units is equivalent to mg/A units (milligrams per<br />

liter) as long as the sediment concentration does not exceed 15,900 ppm (9).<br />

Concentrations greater than 15,900 ppm have to be multiplied by a factor (9) in<br />

order to convert ppm to mg/Q units. The units <strong>of</strong>.the direct sediment discharge<br />

(SDi) are then converted from ppm units to kilograms per day, thusly,<br />

593


594<br />

Where Si is direct sediment discharge in kilograms per day, 86.56 is a factor<br />

for converting the sediment discharge to kilograms per day.<br />

Excess run<strong>of</strong>f and the associated sediment mobilized are determined as<br />

follows:<br />

i-1<br />

i=l<br />

Where ER is excess run<strong>of</strong>f in centimeters per square kilometer <strong>of</strong> drainage basin,<br />

A is the watershed area in square kilometers,<br />

0.1157 is a factor for converting the remaining elements <strong>of</strong> Equation 4 to<br />

centimeters per square kilometer,<br />

ES is sediment mobilized in kilograms per square kilometer.<br />

Individual unit sedimentgraph ordinates are determined thusly,<br />

usoi =<br />

'i<br />

Yhere USO. is the individual unit sedimentgraph ordinate in units <strong>of</strong> square<br />

kilometer per day. Multiplying USOi by kilograms per squre kilo-<br />

Eaters , yields kilograms per day.<br />

Equation 6, as was previously pointed out, cannot directly be used in the<br />

fashion <strong>of</strong> a unit hydrograph ordinate. The method, therefore, requires the<br />

following operation,<br />

SGO.i =<br />

'i<br />

Where SGOi is an individual "series" graph ordinate in units <strong>of</strong> kilograms per<br />

day per centimeter <strong>of</strong> excess.run<strong>of</strong>f per square kilometer. By<br />

"series" is meant that in contrast to a unit sedimentgraph ordinate<br />

which approximately superpose each other for a given duration, a<br />

series <strong>of</strong> graphs are obtained which vary considerably in shape and<br />

peak. For the purpose <strong>of</strong> discussion, Figure 5 will hereinafter be<br />

referred to as a series graph.<br />

The series graph lines were developed by plotting SGOi for a given excess<br />

run<strong>of</strong>f. This entailed some judgment in the selection <strong>of</strong> coordinate points. The<br />

latter procedure is analogous to selecting a mean unit hydrograph curve from a<br />

number <strong>of</strong> curves, which in practice generally do not overlap for a given<br />

duration. The judgment used was partly justified by the fact that the least<br />

squares line fit <strong>of</strong> the selected coordinate points (p, p 2 2, etc.) have a<br />

distinct tendency to plot approximately parallel to each other. This is indicative<br />

<strong>of</strong> a prevailing trend.<br />

Series graphs were constructed for winter including rainfall and snowmelt,<br />

and for s mer months.<br />

coordinate points were plotted in time groups referenced to the peak discharge<br />

(p). Thus p + 2 for example, refers to the direct discharge ordinate two hours<br />

(7)<br />

These are shown on Figure 5. The SGO. versus "ER"


after the peak; in all, the time increments considered were p,+ 2, p + 4, and<br />

fir the summer events o<strong>nl</strong>y, p + 6. Generally p + 6 represents a negligible<br />

discharge quantity, very frequently zero, and was therefore assumed to be<br />

zero for winter rainfall and snowmelt events.<br />

This writer is <strong>of</strong> the opinion that for this particular analysis a great<br />

part <strong>of</strong> the data scatter on the series graph and Figure 4, can be explained by<br />

the mnnncr in which the sedimentgraphs were defined by sampling. The data<br />

points are not shown since some overlapping exists as refers to p 5 n lines.<br />

The sedimentgraphs selected for analysis did not have continuously defined loci.<br />

As a result, graphical interpolation and judgment by the USGS, based on experience<br />

and knowledge <strong>of</strong> sediment behavior, were incorporated in drawing the sedimentgraphs<br />

between measured points. The observed sediment concentration points<br />

were used as guides. It may be possible, therefore, to considerably reduce the<br />

scatter <strong>of</strong> points by adequately defining sedimentgraph loci for a given storm<br />

event by more frequent sampling. Most <strong>of</strong> the sedimentgraphs considered herein<br />

generally had from four to six, and at times as many as 10 observed sample<br />

points defining th graphs; in many <strong>of</strong> the cases the USGS estimated the magnitude<br />

and location <strong>of</strong> the peak in its entirety. Consideration <strong>of</strong> scatter, at<br />

least in this study, would suggest, that an attempt at explaining the variation<br />

due to watershed soil types, vegetative cover, slope, etc., would be meaningless.<br />

This worker would, however, opine that the loci <strong>of</strong> well-defined<br />

sedimentgraphs would lead to the development <strong>of</strong> series graphs prossessing<br />

less scatter.<br />

Exsmples <strong>of</strong> sedimentgraphs predicted on the basis <strong>of</strong> season and run<strong>of</strong>f<br />

excess art. shown on Figure 6. Table I lists comparisons between predicted and<br />

actual eroded sediment quantities in Bixler Run as shown in Figure 6. To<br />

illustrate the ;ange <strong>of</strong> applicability <strong>of</strong> the series graph method to Bixier Run,<br />

variations in excess run<strong>of</strong>f for snowmelt or rainfall are included in Table I.<br />

For the four storm events considered in Table I, the average error <strong>of</strong> estimate<br />

for washload ranges from 16.1 to 16.5 percent as determined by the series graph<br />

method and the ES versus ER graphical relationships, respectively. This is<br />

based on comparisons <strong>with</strong> ac'tual conditions observed in the field. The errors<br />

<strong>of</strong> estimate computed are all considerably below that reported for similar suspended<br />

sediment load predictions, which may in some cases by greater than 100<br />

percent.<br />

TABLE I<br />

Comparison <strong>of</strong> Predicted versus Computed Sedimentgraphs<br />

595<br />

Sediment Mobilized Percent Error<br />

Date Excess<br />

Run<strong>of</strong>f Source <strong>of</strong><br />

(tons/sq. km.)<br />

Actual Predicted<br />

Total Sediment<br />

Bases (%)<br />

centimetersf sq.<br />

h.<br />

Run<strong>of</strong>f BY BY BY BY<br />

Series ES vs. Series ES vs.<br />

Graph ER Graph ER<br />

Method Curves Method Curves<br />

10/19/68 . O35 Win ter-Ra inf a 11 19.6 27.9 27.7 29.6 29.1<br />

031 10/67 .343 Winter-Snowmelt 1523.0 1293.0 1330.0 17.8 12.6<br />

10/04/62 .572 Winter-Rainfall 2710.0 2694.0 2555.0 0.50 5.7<br />

05f07f 56 .O55 Summer-Rainfall 73.8 61.7 91.0 16.5 18.7


596<br />

CONCLUS IONS<br />

This study discloses two important findings for Bixler Run <strong>Water</strong>shed.<br />


597


598<br />

1.50<br />

1.25<br />

I 1.00<br />

1.75<br />

; peak<br />

\<br />

HYDROGRAPH<br />

?noon 6pm i2pm Gain 12nocn 6pm l2gin 6am 12noon<br />

I_ -I.-.--I-<br />

TIME IN HOURS<br />

FIGURE 2 : TYPICAL STAGE HYDROGRAPH AJW SEDI?KNTGRAPW<br />

(s-roiwi OF MARCH 13, 1963, BIXLER BUN WATERSHED )<br />

5


599


600<br />

3502<br />

a<br />

w<br />

I-<br />

w<br />

I<br />

O<br />

4<br />

Y<br />

W<br />

a<br />

4<br />

350.<br />

u)<br />

\<br />

cn<br />

z<br />

a<br />

a:<br />

W<br />

O<br />

1<br />

y.<br />

- z<br />

.<br />

cn<br />

hl<br />

e<br />

c3<br />

W<br />

N<br />

4 35.0<br />

m<br />

O<br />

z<br />

I-<br />

z<br />

Id<br />

2<br />

I<br />

a<br />

Ill<br />

o)<br />

3.5<br />

(<br />

BIXLER RUN WATERSHED<br />

w<br />

;o098 0.0098 0.098<br />

EXCESS RUNOFF ( ER ) , IN CENTIRIETERS / SQUARE I(Il.Ol\r;ETER<br />

FIGURE 4: SEGIMENT Mû01LjZEü \E:;) VERSUS EXCESS RIINOFF (ER)


I I I I 1 1 1 1 1 I I I I I I I I I<br />

- EIXLER RUN WATERSHED<br />

- legend:<br />

- p peak value.<br />

II I,<br />

p+n n hours before (-1 or after (el peak.<br />

- --summer roinf al I.<br />

- ______winter rainfall. - - winter snowmelt.<br />

0.72C I I I I 1 1 1 1 1 1 I I I 1 1 1 1 1<br />

I<br />

0:00098 0.0098 0.098<br />

6 O1


602<br />

ò A v a p-6 p-4 P-2 P P+2 pt4 pt6<br />

TIME IN HOURS<br />

FIGURE 6 : PREDICTED GRAPH OF SEDIMENT DISCHARGE VERSUS<br />

TI ME


ABSTRACT<br />

METHODES UTILISEES pour 1'EVALUATION des DEBITS de CRUE<br />

des PETITS COURS d'EAU en REGIONS TROPICALES<br />

par J. A. RODIER<br />

For most <strong>of</strong> the tropical small streams studied by the author,<br />

the floods result from surface run<strong>of</strong>f, field <strong>of</strong> application <strong>of</strong> unit<br />

graphs. Hydrometric networks are useless for the floods <strong>of</strong> these basins<br />

(less than 500 km2). Two methods are described:<br />

For area <strong>with</strong>out cyclonic precipitations: the depth <strong>of</strong> the<br />

storm <strong>of</strong> the frequency choosed for the project is computed assuming the<br />

other characteristics equal to the more frequent values for the big<br />

storms. The transformation <strong>of</strong> rainfall into discharge is made in two<br />

steps: computation <strong>of</strong> run<strong>of</strong>f coefficient and flood volume, computation<br />

<strong>of</strong> characteristics <strong>of</strong> the hydrograph. This incorrect method gives good<br />

results if used <strong>with</strong> judgement. Empirical graphs and rules have been<br />

deduced from systematical researches on representative basins for comp~<br />

tation <strong>of</strong> the elements <strong>of</strong> the flood from physiographical data. A gene-<br />

ral synthesis will permit a better characterization <strong>of</strong> the basins.<br />

In area <strong>with</strong> cyclones: the precipitation depth are estimated<br />

from the observations and high values <strong>of</strong> run<strong>of</strong>f coefficient are choosed<br />

in rel&tion <strong>with</strong> observations or envelope curves are drawn from obser-<br />

ved data 5.n the world.<br />

RESUME<br />

Pour la plupart des petits cours d'eau tropicaux étudiés par<br />

l'auteur, les crues résultent du ruissellement superficiel, domaine<br />

d'application de l'hydrogramme unitaire.<br />

Les réseaux hydrométri ues sont sans utilité pour les crues<br />

de ces bassins (moins de 500 km 9 ), Deux méthodes sont décrites:<br />

Pour les régions non affectées par les cyclones: on détermine<br />

l'averse de fréquence égale à celle de la crue du projet, les autres<br />

caractéristiques étant les plus fréquentes pour les tres fortes aver-<br />

ses. La transformation en débit est faite en deux temps: calcul du coe<br />

fficient de ruissellement et du volume de crue, calcul des caractéris-<br />

tiques de l'hydrogramme. Cette méthode non rigoureuse fournit de bons<br />

résultats si elle est employée avec discernement. Des diagrammes ou<br />

des règles empiriques sont déduits de recherches systématiqyes sur bac<br />

sins représentatifs, pour calculer les éléments de la crue a partir<br />

des données physiographiques. Une synthèse générale permettra de mieux<br />

caractériser les bassins.<br />

Dans les régions de cyclones: on détermine les averses d'après<br />

les valeurs observées et on suppose des coefficients de ruissellement<br />

tres élevés en rapport avec ces observations, ou on établit directement<br />

les courbes enveloppes a partir des données observées dans le monde.<br />

Chef du Service Hydrologique de l'<strong>of</strong>fice de la Recherche Scientifique<br />

et Technique Outre-Mer<br />

Conseiller Scientifique à Electricité de France (DAFECOI.


604<br />

L'étude des ouvrages utilisant les eaux des petites rivières<br />

tropicales ou méditerranéennes présente de très sérieuses difficultés<br />

dès que loon aborde la dbtermination des conditions hydrologiques de<br />

réalisation et d'exploitation des ouvrages, en particulier celle des<br />

d6bits moyens annuels et surtout celle des ddbits de crues.<br />

Les donnhes sur le régime hydrologique sont dans ce cas<br />

inexistantes : la densit& des réseaux hydronktriques est faible, le<br />

nombre de stations amdnagées est nul ou dérisoire. LEh outre, les varia-<br />

tions temporelles des débits sont si rapides que les donn&es de ces sta-<br />

tions sont souvent difficiles à exploiter. Enfin, contrairement & ce qui<br />

a lieu pour les grandes rivières, les crues de faible frequente ne lais-<br />

sent aucun souvenir dans la mémoire des habitants les plus proches.<br />

I1 est très sou-ntinipsible de procéder 2 une étude hydrologi-<br />

que sérieuse sur le terrain pour un seul ouvrage car elle durerait long-<br />

temps et son prix atteindrait ou dépasserait même celui de l'ouvrage lui-<br />

même<br />

Tout ce que l'on peut faire c'est organiser une telle étude à<br />

l'occasion de la r8alisation d'une série importante de tels ouvrages,<br />

par exempie pour la construction de tous les ponts d'une longue voie<br />

ferrée (chemin de €er transcamerounais), ou d'un grand axe routier, ou<br />

lorsqu'o, ariiinage i la fois 30 ou 50 petits barrages comme cela a 6t6 le<br />

cas en I!AUî.Q-VOLTA il y a quelques années.<br />

Autrement, on est conduit & utiliser les résultats de synthèses<br />

& caractère g6ogr;pliique.<br />

Nos hydrologues ont souvent rencontré ce problème en Afrique<br />

Tropicale, en Am6rique du Sud, dans les fles du Pacifique et de l'Océan<br />

Indien et ils ont mis au point différentes rnbthodes pour la détermination<br />

des débits moyens annuels et des dLbits de crue, premiers 6léments que le:<br />

ingénieurs demandent aux hydrologues.<br />

Dans ce qui suit, nous ne traiterons que le probleme de la dé-<br />

termination des d&its de crue dans le cas de cours d'eau dont le bassin<br />

versant couvre une superficie inférieure 200 km2 et plus souvent infé-<br />

rieure à 50 km2. Au-delà de ces surfaces, les m6thodes ne sont plus les<br />

memes. Ellos correspondent souvent en effet la limite d'emploi de l'hy-<br />

drogramme unitaire et des modèles globaux.<br />

Pour ces petits bassins, on considérera deux cas différents sui-<br />

vant la genbse des crues exceptionnelles. Dans le premier cas, elles sont<br />

dues a des orages convectifs avec prhcipitations intenses mais d'assez<br />

courte durbej dans le second cas, il s'agit de précipitations cycloni-<br />

ques ?ì iiitensité plus faible mais de plus longue durde, les derniers 616-<br />

ments de l'hpisode pluvieux arrivant sur un sol pratiquement saturé.


1. Cas de crues provoquées par des orages convectifs,<br />

605<br />

La mise au point de méthodes pratiques nous a demandé quinze<br />

ans de recherches fondamentales. Nous passerons rapidement sur ces<br />

recherches pour insister plus particulièrement sur la m6thodologie<br />

proposGe aux ing6nieurs, cette méthodologie n'étant guère applicable<br />

que pour des p6riodes de retour de 10 ou 20 ans. L'idée de base est<br />

IQutilisatian de l'information pluviomhtrique existante et plus parti-<br />

culièrement des sc'ries chronologiques de précipitations journalières<br />

et la transformation des hauteurs de prGcipitations en débits de ruis-<br />

sellemelit superficiel. Pour des averses de ce type et d'assez faible<br />

frcquerice, en réginns tropicales et méditerranéennes, il se produit<br />

g(!nbralernent du ruissellement superficiel, ce qui permet l'emploi de<br />

la m6thode de l'hydrogramme unitaire.<br />

1.1. Recherches fondamentales entreprises.<br />

Les plus importantes ont ét6 les suivantes :<br />

1.l.l.Etudes g&n&rales statistiques des pluies journalières. En<br />

Afrique Occidentale OU elles ont été le plus poussées, elles ont port6<br />

sur 1 O00 stations environ. L'étude simultanée pour un grand nombre de<br />

statioils a conduit a des valeurs assez sûres des paramètres des lois de<br />

distribuLion pour des p6riodes de retour de 10 à 20 ans. Eh particulier,<br />

elle u cona.iit ?i abandonner, pour cette région du monde, la distribution<br />

de GALTOW tro2 pessimiste,pour une distribution de PEARSON III. Sur le<br />

plan pratique, on en a déduit une série acceptable de précipitations<br />

journali&res de période de retour 10 ans ou 20 ans.<br />

1.1.2.Etude de l'abattement (Inverse du rapport pour une méme frdquen-<br />

ce, eiitre la hauteur de précipitations en un point et la hauteur de prcci-<br />

pitations sur une surface donnée entourant ce point). Les études menées à<br />

partir de données recueillies sur bassins représentatifs ont conduit a<br />

des ordres de grandeur acceptables pour la pratique.<br />

1.1.3.Etudes des courbes intensité-durée : ces études faites surtout<br />

à partir des pluviographes des bassins représentatifs ont permis, pour<br />

l'Afrique Occidentale, de donner des courbes-types.<br />

1.1.4.Etude des relations pluies-débits : celles-ci ont été etudibes<br />

averse par averse pendant plusieurs années sur une centaine de bassins<br />

reprGsentatifs, qui ont également 6té utilisés pour les recherches vi-<br />

sées aux points 1.1.2 et 1.1.3. La méthode des r6sidus a permis de dé-<br />

teniiiner dans chaque cas la hauteur d'eau bcoulée HR ou le rapport KR<br />

entre HH et la hauteur de précipitation P eii fonction de P, des condi-<br />

tions d'humidité du sol avant l'averse et de la durée de l'averse.<br />

1.1.5.Etude de la forme des hydrogrammes. Sur les mgmes bassins re-<br />

prdseiitatifs, on a pu appliquer la mgthode des liydrograrimes unitaires<br />

et dbterminer la forme des hydrogranines-types. On en a retenu trois


606<br />

éléments caractéristiques : le temps de montée tm , la durée de ruis-<br />

sellement tg et le rapport k entre le débit de pointe de l'hydrogramme<br />

unitaire et le débit moyen pendant la durée du ruissemment.<br />

1.2. bisthode de détermination des débits de pointes de crue et de leur<br />

volume.<br />

Le cas des fréquences décennales ou de fréquences voisines<br />

est assez différent de celui de la crue maximale probable. Dans ce qui<br />

suit nous traiterons le cas des crues de périodes de retour de 10 ans<br />

ou 20 ans.<br />

De façon générale, on a cherché à mettre au point des méthodes<br />

simples qui puissent &tre utilisées sans ordinateur. Ces méthodes sont<br />

probablement très différentes de celles qui sont élaborées actuellement<br />

et qui seront vulgarisées dans quelques années, mais de nombreux pays en<br />

voie de développement ne disposent pas, à l'heure présente, de moyens de<br />

calculs suffisants et n'ont pas assez de personnel bien entraîné pour les<br />

utiliser pour des fins hydrologiques.<br />

C'est pourquoi, dans ce qui suit, on adoptera les principes sui-<br />

vants, dont certains sont discutables, mais qui permettent aux ingénieurs<br />

d'arriver à des résultats utilisables avec les moyens dont ils disposent.<br />

1.2.1.Principes du calcul : Le point de départ est la série d'obser-<br />

vations de précipitations journalières au poste le plus proche de l'ou-<br />

vrage que l'on a & étudier ou un poste pluviométrique correspondant aux<br />

mdmes conditions pluviométriques si la qualit6 des données du pluviomè-<br />

tre le plus proche est insuffisante.<br />

Des bassins de 50 km2 sont généralement assez homogènes, mais,<br />

dans le cas de forte différence d'altitude, le poste pluviométrique choi-<br />

si devra se trouver à peu près à l'altitude moyenne du bassin et non pas<br />

au niveau de l'esutoire, ce qui rend le choix beaucoup plus difficile.<br />

On étudie la distribution statistique des précipitations journalières ce<br />

qui, en région tropicale, correspond à peu près à la distribution des<br />

averses orageuses et on détermine l'averse correspondant ?I la fréquence<br />

de la crue (période de retour 10 ans, 15 ans, 20 ans, etc...). On recher-<br />

che, en Ltudiant lee 'enregistrements disponibles, quel est le schéma lo<br />

plus courant des répartitions des intensités pour une averse donnée, on<br />

examine également quelles sont les conditions moyennes d'humidité préa-<br />

lables que rencontrent généralement les fortes crues. Enfin, on trans-<br />

forme la hauteur de précipitation en un point par la hauteur de préci-<br />

pitation moyenne sur une surface en la multipliant par un coefficient<br />

d'abattement inférieur à 1.<br />

Au moyen du modele de transformation des pluies en débits, on<br />

transforme la pluie décennale en crue décennale en veillant bien à ce<br />

que la distribution des intensités de l'averse, l'index représentant<br />

l'humidité préalable, le mois de l'année lorsque celui-ci intervient,<br />

correspondent aux conditions les plus fréquentes pour les fortes préci-<br />

pitations. Sur le plan statistique, ceci est très contestable : la


607<br />

v8ritable solution consisterait 5 appliquer le modèle de transformation<br />

pluie/débit à la totalité des averses observées au poste de référence,<br />

sur 40 ans par exemple, et à étudier la distribution statistique de<br />

l'échantillon de crues reconstituées sur 40 ans. Mais cette méthode<br />

serait peu réaliste pour beaucoup de pays en voie de développement<br />

parce qu'il est beaucoup plus difficile de mettre au point un modèle<br />

valable pour toutes les averses qu'un modèle uniquement valable pour<br />

les fortes averses et parce qu'ensuite la reconstitution des crues de<br />

petits bassins pour 40 ans ne peut se faire qu'avec l'ordinateur.<br />

La transformation pluie/débit se fait en deux temps :<br />

lo - calcul du volume de crue par la détermination du facteur KR (voir<br />

1 .I .4.) ;<br />

2* - à partir de ce volume, détermination du débit de pointe par la forme<br />

de l'hydrogramme (voir 1 .1 .5.).<br />

Autant que possible, on a cherché à ramener ce calcul à des<br />

opérations très simples dans un certain nombre de pays où le nombre de<br />

bassins représentatifs était suffisant.<br />

1.2.2.Pratique du calcul pour l'Afrique Occidentale :<br />

Le5 études systématiques visées en 1.1.1. et 1.1.3. fournis-<br />

sent des éléments pluviométriques permettant de déterminer l'averse de<br />

fréquence cherchée avec son diagramme de distribution temporelle, pour<br />

la majeure partie de l'Afrique Occidentale. Des études beaucoup plus<br />

partielles effectuées dans d'autres r6gions du monde ont fourni les me-<br />

mes données.<br />

On réduit ces valeurs ponctuelles à des valeurs moyennes sur<br />

une surface donnée en les multipliant par un facteur qui décroît de 1<br />

pour une svface S inférieure à 25 km2, à 0,8 pour une surface comprise<br />

entre 150 et 200 km2. Ces chiffres qui ne sont valables que pour les<br />

orages convectifs des régions tropicales africaines, sont peut-$tre un<br />

peu forts. Ils seront probablement diminués à la suite de recherches en<br />

cours.<br />

On dispose donc de la hauteur de précipitation P,.<br />

Pour déterminer la valeur de Ks, on a établi des séries d'aba-<br />

ques pour deux types de couvertures végetales naturelles (liées au cli-<br />

mat), savane et savane boisée d'une part, steppe et savane à épineux<br />

d'autre part. I1 n'a pas encore été possible d'établir d'abaques conve-<br />

nables pour la forat tropicale.


608<br />

Les autres facteurs pris en considération pour la détermina-<br />

tion de KH sont : la superficie du bassin, la perméabilité globale<br />

du sol P et la pente R. A défaut d'index quantitatif pour R et surtout<br />

P, on a établi deux classifications : R correspond à des plaines très<br />

plates, RG à des pentes de montagne (pentes longitudinales supbrieures<br />

à 5 $, pentes transversales supérieures à 20 $)o<br />

Pl correspond à un sol rigoureusement imperméable, P5 à un<br />

sol très perméable (sable ou carapace latéritique très disloquée. Le<br />

graphique 1 d m e un exemple de ces abaques pour des sols imperméables<br />

(Pl - P2) et des pentes variables de R2 à R4. Ces abaques ont été &ta-<br />

blies & partir des données des bassins représentatifs. Les valeurs de<br />

KR correspondent des pluies de fréquence décennale (Pm vaciant de<br />

&o à IO5 mm) dans ces régions, tombant dans des conditions d'humidité<br />

du milieu de la saison des pluies.<br />

Bien entendu, au cas OU des facteurs secondaires tels que le<br />

réseau hydrographique, présenteraient des caractéristiques anormales,<br />

par exemple lit marécageux, on devrait rectifier les valeurs de KR en<br />

conséquence.<br />

Le volume de ruissellement de la crue :<br />

A ce volume il convient d'ajouter le volume correspondant au<br />

d6bit de base do1.t on peut avoir une idée sur le terrain, sans &tude<br />

hydroiagique très difficile.<br />

Pour la forme de l'hydrogramme,des abaques ont été également<br />

mis au point;. On en trouvera un exemple au graphique 2 qui donne le<br />

temps de base ou duróe du ruissellement en fonction de la surface du bas<br />

sin et de l'index de pente pour les m8mes conditions de végétation que<br />

le graphique no 1.<br />

La connaissance du temps de base TB permet de calculer le débit<br />

moyen de ruissellement :<br />

M<br />

'ruis<br />

e<br />

s eli emen t<br />

TB<br />

M est obtenu en m 3 /s.<br />

K (K P F)<br />

Pour trouver le débit de pointe s, on utilise un coefficient<br />

étudibi pour les mêmes rbgions sur bassins représentatifs.


609<br />

Pour la couverture végtitaïe steppe ou savane à épineux avec<br />

des valeurs de KR pas trop &levées, on trouve des valeurs de K variant<br />

entre 2,5 pour 25 km2 à 3,t pour 100 kmz. Si ces valeurs de KR sont<br />

supérieures à 50 - 60 $ K varie entre 3 pour 2 km2 et 4,5 pour 50 km2.<br />

de base.<br />

On obtient QM en multipliant $1 par K et on ajoute le débit<br />

Bien entendu, si le diagramme de répartition temporelle des<br />

intensités et si la superficie du bassin sont tels que la crue n'est pas<br />

unitaire, il existe des abaques complémentaires donnant le temps de base.<br />

Dans ce qui précède, c'est volontairement que nous n'avons pas<br />

Gtabli de formules pour repr6senter les courbes des graphiques 1 et 2<br />

auxquelles nous voulons garder un caractère provisoire.<br />

l.Z.3.Limitations de la méthode :<br />

Elle ne s'applique bien en Afrique tropicale que pour des su-<br />

perficies inférieures & 50 - 100 km2.<br />

Comme nous venons de le dire, nos courbes sont provisoires et<br />

on met ali point des modèles plus &labor& pour revoir les bases de nos<br />

abaques quL nécessitent encore un sérieux effort d'homogénéisation des<br />

données et des proc6dés de calculs.<br />

Les problèmes de forêt tropicale exigent encore un effort im-<br />

portant de recherches sur le terrairi.<br />

%fin, il n'est pas très facile de classifier un bassin en caté-<br />

gorie P2 ou P . Des recherches de physique du sol sont en cours pour arri-<br />

ver ?i des règ3es simples permettant de le faire. C'est certainement 1&<br />

le point le plus difficile.<br />

Pour définir quantitativement des index R une bonne combinai-<br />

son des facteurs géomorphologiques courants doit donner satisfaction.<br />

Actuellement, cette méthode est très souvent employée en Afrique,<br />

mais, dans bien des cas delicats, il serait plus prudent que les bassins<br />

soient examinés auparavant par un hydrologue confirmé. Elle présente l'im-<br />

mense avantage d'éviter toute véritable étude hydrologique sur le terrain.<br />

1.3. Crue de période de retour supérieure à 20 ans.<br />

C'est là un problème très difficile car la documentation plu-<br />

viométrique est tout à fait insuffisante. Pour des périodes de retour<br />

de l'ordre de 100 ans, une minutieuse étude critique des relevés de nom-<br />

breux postes pluviométriques permet d'aboutir à un ordre de grandeur.


61 O<br />

En Afrique tropicale, les averses journalières centenaires<br />

de caractère convectif sont peut-8tre de l'ordre de 200 ?i 3-400 mm en<br />

24 heures, suivant les régions.<br />

I1 reste ensuite à choisir une valeur de KR qui n'est plus<br />

celle des abaques mais qui doit en tenir compte, car tous les bassins<br />

pour de telles averses ne parviennent pas à la limite de O,&5 - O,9O.<br />

Enfin, généralement, l'averse dure au moins 5 ou 6 heures et parfois<br />

20 heures, elle n'est donc plus unitaire. On utilise donc les abaques<br />

tels que ceux du graphique 2 pour établir les différents hydrogrammes<br />

élehentaires qu'on ajoute après avoir découpé l'averse centenaire.<br />

Enfin, s'il s'agit de la crue maximale probable, il ne reste<br />

plus qu'8 appliquer la formule de FIERSHFIELD OU l'on ajoute à la valeur<br />

moyenne de la précipitation journalière maximale annuelle 15 fois 1°é-<br />

cart-type de la distribution de cette précipitation maximale. Mais il<br />

faut d'abord partir d'une série de précipitations journalières de quali-<br />

té suffisante pour en déduire une valeur correcte de l'écart-type.<br />

D'autre part, si cette formule paraft excellente pour l'Afrique du Nord,<br />

les régions soumises à des cyclones tropicaux, elle semble conduire à<br />

des chiffres trop élevés pour les orages convectifs d'Afrique tropicale.<br />

Bans ce cas également on revient à l'application de la méthode de l'hydro-<br />

gramme unitaire pour des averses élémentaires successives, mais le choix<br />

de la distribution temporelle des intensités est délicat. Cequi arrive<br />

souvent clest que d'un bout à l'autre de l'estimation, on arrive à de<br />

telles cascadea de marges de sécurité qu'il est facile de fournir des<br />

chiffres trop élovés.<br />

2. Crues dues à des averses cycloniques :<br />

2.1. Crues décennales :<br />

L'averse décennale est plus difficile & définir que dans le<br />

cas précédent, la distribution statistique est plus difficile à étudier<br />

et les donnkes de base sont plus mauvaises (en cas de cyclone une bonne<br />

partie des pluviomètres débordent), mais dans beaucoup de pays du monde,<br />

on arrive 8 d6finir une valeur à peu près convenable de l'averse décen-<br />

nale, on doit alors découper l'averse en averses élémentaires comme au<br />

point 1.3. et on transforme ces averses en crues par la méthode des hy-<br />

drogrammes unitaires. Très souvent, pour les dernières averses élémen-<br />

taires rC, est voisin de 0,9O si la pente est notable, que la couverture<br />

soit forestière ou non. Après calcul, il est bon de comparer le résultat<br />

aux crues maximales connues dans le monde en utilisant des diagrammes<br />

tels que le diagramme FWCOU-RODIER.


2.2. Crue maximale probable.<br />

Dans ce cas, on ne peut donner que des indications gén6rales.<br />

Pour l'averse à prendre en considération, on pourra se référer, dans<br />

les pays à fortes averses, aux valeurs maximales mondiales telles qu'el-<br />

les sont données dans le Guide des Pratiques Hydrométéorologiques de<br />

l'OMM ou aux résultats de la formule de HERSHFIELD, mais il sera encore<br />

plus difficile que plus haut d'aboutir à une valeur convenable de l'écart-<br />

type, ceci nécessitera une sérieuse étude critique des rares données<br />

pluviométriques disponibles, en tenant compte du débordement 8ventuel<br />

des pluviomètres. Le reste est plus facile car le coefficient de ruis-<br />

sellement KR est de l'ordre de 0,gO.<br />

Si la région est COMUB pour avoir des averses exceptionnelle-<br />

ment fortes, il est normal de prendre en considération des valeurs de<br />

précipitations supérieures aux maximums mondiaux connus car, en pays de<br />

cyclones tropicaux, la connaissance des averses de durée inférieure à<br />

48 heures est très incomplète et les maximums mondiaux connus doivent<br />

&tre considér6s comme piut8t provisoires.<br />

ïb générai, dans les cas graves concernant les cyclones tropi-<br />

caux, l'hydrologue arrive a la conclusion un peu décevante qu'il serait<br />

prbférable que l'ingénieur prévoie son barrage de telle façon qu'il puis-<br />

se être submergé par n'importe quelle crue.<br />

Qua1 que soit le cas étuùié, un examen du terrain orienté vers<br />

la recherche L;ss traces laissées par de fortes crues est n&cessaire.<br />

611<br />

I1 résulte de tout ce qui précède que les ñydrologues ont<br />

encore de nombreuses recherches à faire pour aider efficacement les<br />

constructeurs dans leur tâche.<br />

Quelques références utiles pour les petits bassins de ces régions :<br />

1. 0.M.E.i. (1965). Guide des Pratiques Hydromét&orologiques, no 168<br />

T.P. 82, Genève.<br />

2. RODIER J., AWRGY C. (1965). Estimation des débits de crues décen-<br />

nales pour les bassins versants de superficie inférieure à 200 km2<br />

en Afrique Occidentale, ORSTOM, Paris.<br />

3. HERSHFIXLD D.M. (1963). Estimating the probable maximum precipita-<br />

tion. Am. Soc. <strong>of</strong> Civil hhgineers Transactions, Vol. 128, Part I,<br />

PP. 534-556.


61 2<br />

4. FRANCOU J., RODBR JO (1967), Essai de classification des crues<br />

maximales observées dans le monde. Cahiers d'Hydrologie OHSTOM<br />

vol. IV, ne 3, pp. 19-46. Paris.<br />

5. BENSON M.A., (1968), Measurement <strong>of</strong> Peak Discharge by Indirect<br />

Methods, OMM ne 225. TP. 11gP Genève.


613<br />

I<br />

O<br />

h<br />

I<br />

O<br />

YI<br />

N<br />

E<br />

Y<br />

C<br />

a<br />

I<br />

I<br />

O<br />

-N<br />

-<br />

-0<br />

-0<br />

-<br />

O<br />

-0<br />

OI<br />

-0<br />

W<br />

.o<br />

h<br />

O<br />

-a<br />

O<br />

-YI<br />

O<br />

-*<br />

O<br />

-m<br />

-0<br />

N<br />

-0<br />

-YI<br />

-*<br />

-m<br />

-N<br />

i ;<br />

C<br />

- c C<br />

4.<br />

*QL)c<br />

.-<br />

.-


2 5-<br />

u)<br />

?!<br />

a<br />

Q<br />

C<br />

2 o-<br />

C<br />

Q<br />

v)<br />

P<br />

- f<br />

15-<br />

I o-<br />

5-<br />

O- +<br />

0<br />

Ø'<br />

' 4r<br />

Ø<br />

Ø'<br />

I 2 3 4 5 6 7 IO 20 30 40 50 60 7080 loo 2c<br />

S en km2<br />

Fig: 2<br />

Temps d e base en fonction d e R et de S<br />

REGIMES SAHELIENS - SUBDESERTIQUES<br />

I


METHODS FOR THE ESTIMATION OF MAXIMUM DISCHARGES OF SNOW<br />

MELT AND RAINFALL WATER WITH INADEQUATE OBSERVATIONAL DATA<br />

ABS TRACT<br />

Pr<strong>of</strong>. A.A. Sokolov<br />

State Hydrological Institute<br />

Leningrad, USSR<br />

The problem <strong>of</strong> floods computation was accepted by the UNESCO<br />

Co-ordinating Council for the IHD as one <strong>of</strong> the most important<br />

problems. For its solution the Working Group on Floods and their<br />

ccmputation was established; it has realized several projects on<br />

the THD programme essential for future research on floods, deve-<br />

lopmen: and improvement <strong>of</strong> methods for floods computation. The pc<br />

per give;: an evaluation <strong>of</strong> the up-to-date state <strong>of</strong> this problem<br />

as means fLr its solution.<br />

RESUME<br />

Le Conseil de Coordination de l'UNESCO pour la DHI a estimé<br />

que le problème du calcul des crues était tres important. Pour<br />

l'examiner, il a créé un groupe de travail sur les crues et leur<br />

évaluation. Ce groupe a réalisé, dans le cadre du programme de la<br />

DHI, un certain nombre de travaux très importants pour l'avenir<br />

de la recherche sur les crues, pour la mise en oeuvre et l'amélig<br />

ration des méthodes de calcul qui le concernent. Dans la présente<br />

communication, l'auteur fait le point de la situation actuelle,<br />

ainsi que sur les moyens de parvenir la solution du probleme.


61 6<br />

At present triere are two uifferent approac,ies to t.ie complitatlon<br />

<strong>of</strong> fiood discilarge <strong>of</strong> ungauged rivers cievelopec to a certain<br />

dcbree quite independently. The first approach is based on the<br />

s~atistical analysis and generalization <strong>of</strong> field data on<br />

flood run<strong>of</strong>f; the second approach is based on the genetic<br />

analysis and synthesis <strong>of</strong> flood hy&ograph. As was: ctateu<br />

by J. Nemec and M. Moudry (Czechoslovakia) at; the Leningrad<br />

Symposium (1967) these two approaches ase gradually being<br />

brought together and at; present they are used simultaneously<br />

supplementing each other Lis,-/.<br />

Humerous design schemes have been proposed to estimate maximum<br />

flqod run<strong>of</strong>f <strong>of</strong> ungauged and poorly gauged rivers.<br />

According to the principles <strong>of</strong> approach and the scope <strong>of</strong><br />

flood computation these schemes may be divided into 2 main<br />

groups:<br />

3. Empirical or semi-empirical formulae for flood discharge<br />

computation based on the account <strong>of</strong> some <strong>of</strong> its most important<br />

factors ( e.g., drainage area or maximum precipitation rate),<br />

providing maximum water cìischarge o<strong>nl</strong>y.<br />

2. Methods considering flood genesis and providing the<br />

possibility <strong>of</strong> plotting the whole hydrograph on the basis <strong>of</strong><br />

time inflow <strong>of</strong> snow melt and rainfall water and its transformation<br />

into run<strong>of</strong>f as a result <strong>of</strong> losses by infiltration,<br />

suriace retention, lag along the slopes and channel network.<br />

At k-esent, methods <strong>of</strong> maximum flood discharge computation<br />

on the basis <strong>of</strong> the use <strong>of</strong> di€fereat design formulae are<br />

widel applied. The most important formulae are as follows:<br />

(a? formulae <strong>of</strong> extreme intensity, or the so-called<br />

rational formulae, basea on the account <strong>of</strong> maximum or extreme<br />

rainfall intensity during lag-time or flood flov concentration<br />

in its general form:<br />

Qmax =/Cpa,d,A. (1)<br />

where : gp is coefficient <strong>of</strong> dimensionality; ar is maximum<br />

intensity <strong>of</strong> rain or snow melt during lag time ( c ); dris<br />

run<strong>of</strong>f coe ficient during this time interval; A is drainage<br />

area in km 5 .<br />

Pormula (1) is usually applied for the computa-t;ion <strong>of</strong><br />

maximum run<strong>of</strong>f for relatively small basins (less than 200 km ).<br />

To determine design values <strong>of</strong>' dc curves <strong>of</strong> maximum precipitation<br />

increase %, are plotted <strong>with</strong> the increase <strong>of</strong> time<br />

interval Z' ? given as percentage <strong>of</strong> daily precipitation <strong>of</strong> the<br />

same probability <strong>of</strong> exceedence ( p )<br />

The maximum mean precipitation rate Jcp for any time<br />

interval is estimated by formula:


617<br />

Mean velocity and lag-time down the channel and slope6<br />

are computed by simplified formulae <strong>of</strong> Chezy-Manning or<br />

C he zy -Baz in.<br />

The principal disadvantage <strong>of</strong> formula (1) consists in some<br />

uncertainw and inaccuracy <strong>of</strong> the determination <strong>of</strong> lag time<br />

c-<br />

or flood concentration c, is interpreted by iiiJividiia1<br />

scientists in different ways, therefore it causes iii-<br />

accuracy <strong>of</strong> determination <strong>of</strong> principal parameters az and d,-<br />

appearing in formula (1). Besides, formulae <strong>of</strong> type (1) do not<br />

take into account the remaining flood elements (duration rise<br />

and fall duration ratio) and do not provide the plotting <strong>of</strong><br />

%he vihole ïlood hydrograph essential for the determination <strong>of</strong><br />

maxima transformation in ponds and reservoirs;<br />

(b) empirical or semi-empirical reduction formulae <strong>of</strong> the<br />

general type:<br />

is maximum specific discharge, m'/sec per 1 km';<br />

9. is parameter comprising the extreme specific discharge<br />

if A-O and C = 1.O;cis addition to the drainage area<br />

considering non-lineariky <strong>of</strong> dependence 4 ~mp,aj@@~<br />

<strong>with</strong>in the range <strong>of</strong> small areas <strong>of</strong> the basin; nis the<br />

eqonent <strong>of</strong> reduction <strong>of</strong> maximum specific discharge3 <strong>with</strong> %he<br />

incrsase <strong>of</strong> basin area and varying according to experimental<br />

and bheoretical data from n= 0.15 - 0.30 for run<strong>of</strong>f maxima <strong>of</strong><br />

snow mel? water or caused by prolonged frontal rainfalls, to<br />

n = 0.5 - 3.7 for maxima caused by short heavy local storms.<br />

Parameter +,,may be estimated according to the extreme rate <strong>of</strong>'<br />

snow melt or rainfalls for minimum time interval, e.g. 1 hour,<br />

or for snow melt water according to depth <strong>of</strong> run<strong>of</strong>f during a<br />

flood.<br />

In the first case when C = 1.0 formula (4) may be presented<br />

as fo1lov;s:<br />

where: Q,,,~<br />

where: % is coefficient <strong>of</strong> dimensionality; % ds maximum<br />

hourly rato <strong>of</strong> snow melt or rainfall; d, is overland flow<br />

coefficient .<br />

Since does not exceed 10-15 m/hr for snow melt water<br />

and 300-400 mm/hr for rainfall water ( on the basis <strong>of</strong> computation<br />

<strong>of</strong> heat balance <strong>of</strong> snow melt), then the extreme value <strong>of</strong><br />

qe in fo mula (i+) if do= 1.0 and k$= 0.23, may not exceed<br />

2.8 -4.2 m 3 /sec pe 1 lun2 for snow melt water and up to 84-<br />

112 mj/sec per i bS for raidail water.<br />

On the basis <strong>of</strong> these elementary considerations it is possible<br />

to conclude %hat many empirical formulae <strong>of</strong> type (4) <strong>with</strong><br />

parameter 9. exceeding the mentioned limits have no physical<br />

substantiation.<br />

Due to some uncertainty <strong>of</strong> C value in formula (4) when<br />

A -0, this Lormula is sometimes used as follows:


61 8<br />

w ei'3: Cp.6 is parameter (maxim specific discharge in<br />

ì$/sec if &ainage area B=2ûû by:<br />

a is tiie exponent <strong>of</strong> reduction dcterrnined uy regional<br />

=fy/A/.<br />

dependences ep<br />

For practical computations on the basis <strong>of</strong> generalization<br />

<strong>of</strong> empirical data a map <strong>of</strong> regional boundaries is prepared<br />

<strong>with</strong> similar exponents <strong>of</strong> I2 .<br />

The advantage <strong>of</strong> formula (6) consists <strong>of</strong> the fact that the<br />

value <strong>of</strong> parameter c,, slightly depends on and<br />

therefore the mapping <strong>of</strong> cp,6<br />

possible e<br />

in the form <strong>of</strong> isolines is<br />

In case <strong>of</strong> eo determination according to the depth <strong>of</strong> run<strong>of</strong>f<br />

<strong>of</strong> snow melt water during flood hrnformula (4) may be present-<br />

ed as follows:<br />

where: & is t,ie coe€ficient considering a number cif otlier factors,<br />

in particular, duration and siiape <strong>of</strong> flood.<br />

Formula (7) is used as the basis for the computation <strong>of</strong><br />

maxinum snow melt water äischarge for the whole USSII territory<br />

L4L<br />

Duriw recent years the reduct'on scheme is seldom used as<br />

simple regional dependences =*[JI plotted by dependences<br />

enveloping empirical points usually related to larger basin<br />

areas.<br />

In this case it is essential to take into account flood<br />

run<strong>of</strong>f probability <strong>of</strong> oxceedence Its parameters are<br />

differentiated according to climatic zones.<br />

Along <strong>with</strong> the basin area which was previously accepted as<br />

almost the o<strong>nl</strong>y maximum run<strong>of</strong>f factor, numerous important<br />

cli<strong>nl</strong>atic factors are also taken into account, i.e. depth and<br />

sate OP precipitation, snow melt rate, flood run<strong>of</strong>f depth;<br />

and morphological factors as well, i.e. basin topography, lakes<br />

and swamps areas, river network density, soils and subsoils<br />

composing the basin mantle, etc.<br />

7iith the increase <strong>of</strong> hydrological information and reliable<br />

run<strong>of</strong>f data from small basins the reduction scheme has greatly<br />

consolidated its positions since ibs basic parameters i.e.<br />

reduction coefficient anCr maximum run<strong>of</strong>f <strong>of</strong> elementary (small)<br />

basins have gainea a reliable substantiation. This particular0<br />

concerns maximum run<strong>of</strong>f <strong>of</strong> snow melt water;<br />

(c) the so-called volumetric formulae considering flood<br />

shape and duration, besides maximum ordinate <strong>of</strong> flood, may be<br />

given as follows:


61 9<br />

where: H is depth <strong>of</strong> precipitation or snow melt water;<br />

&is total or volumetric coefficient <strong>of</strong> run<strong>of</strong>f during flood;<br />

Ttn ndicate general duration <strong>of</strong> flood or its rise phase;<br />

4 and$ , are coefficients <strong>of</strong> flood shape, i.e. ratio <strong>of</strong> maximum<br />

discharge to mean discharge.<br />

<strong>Design</strong> formulae as (8) or (9) are preferable compared <strong>with</strong><br />

formulae <strong>of</strong> type (1) or (4) since all flood elements are co-ordinated<br />

but they ara applied o<strong>nl</strong>y for simple one-peaked<br />

floods for which general or volumetric coefficient <strong>of</strong>' run<strong>of</strong>f<br />

is applicable.<br />

Despite the existing numerous formulae the computation <strong>of</strong><br />

rainfall flood run<strong>of</strong>f for ungauged rivers is not reliable.<br />

Every design scheme proposed is characterized by certain a6vantages<br />

and disadvantages. There exist no accepted design<br />

schemes until now.<br />

formulae is in the cornputation <strong>of</strong> individual flood elements<br />

<strong>with</strong>out their co-ordination and <strong>with</strong>out the account <strong>of</strong> genesis<br />

anrid type <strong>of</strong> flood; the latter is essential for hydraulic engineering<br />

projects to make a correct estimation <strong>of</strong> the flood transformation<br />

rate in ponds and reservoirs and the amount <strong>of</strong><br />

discharte through spillways. These disadvantages never occur<br />

in genetx computation methods for floods <strong>of</strong> the 2nd group<br />

based on the account <strong>of</strong> time variations <strong>of</strong> inflow <strong>of</strong> rain and<br />

snow melt waters and their transformation into run<strong>of</strong>f hydrograph<br />

as a result <strong>of</strong> non-simultaneous water lag from different basin<br />

areas.<br />

These methods are based on the plotting <strong>of</strong> run<strong>of</strong>f transit<br />

curve showing the distribution <strong>of</strong> areas <strong>of</strong> simultaneous run<strong>of</strong>f<br />

over time intervals.<br />

The following methods may be mentioned for the computation<br />

<strong>of</strong> floods:<br />

(a) isochrone method based on the determination <strong>of</strong> ordinates<br />

<strong>of</strong> the curve <strong>of</strong> unit areas distribution (transit curve) by<br />

means <strong>of</strong> plotting the lines <strong>of</strong> equal transit (isochrones) on a<br />

topographic map o€ river basin;<br />

(b) unit hydrograph method, based on the determination <strong>of</strong><br />

transit curve by the ordinates <strong>of</strong> the observed unit flood<br />

hydro .raphs caused by individual storms;<br />

(cy method <strong>of</strong> mathematical floods simulation.<br />

The method <strong>of</strong> isochrones is mai<strong>nl</strong>y applicable for floods<br />

computation on small water courses <strong>with</strong> surface flow prevailing.<br />

&/<br />

A general disadvantage <strong>of</strong> the majority <strong>of</strong> empirical design<br />

Nhen the method <strong>of</strong> isochrones is applied it is essential to<br />

use topographic map <strong>of</strong> the basin <strong>of</strong> sufficiently large scale


620<br />

anu tile data on time variations <strong>of</strong> rain or snow melt water<br />

Inflow, moreover, for small water courses it is necessary to<br />

have data on such variations <strong>with</strong>in a day and this causes certain<br />

restrictions in the sphere <strong>of</strong> its application.<br />

Unit hydragraph method is based, as it was mentioned, on the<br />

plotting <strong>of</strong> curve <strong>of</strong> unit areas distribution according to the<br />

ordinates <strong>of</strong> unit floods observed.<br />

Unit hydrograph method is based on the lag theory expressed<br />

by the so-called genetic formula <strong>of</strong> run<strong>of</strong>f:<br />

where: Qdt indicates discharges at the outlet at the moment t ;<br />

ht-r is effe tive precipitation per time unit Af at the<br />

moment k-r; #c indicates ordinates <strong>of</strong> the curve <strong>of</strong> unit<br />

areas distribution.<br />

Tne unit ,iydrograpli metiiod is cnaracterized by its visuality<br />

and.pa.ysica1 substantiation, it provides the plotting <strong>of</strong> design<br />

flood nyúrograpii according to preciFitation; tiiis resulted in its<br />

wide application in many countries <strong>of</strong> tile world despite some<br />

draNoacks.<br />

Its sppircasion is aiII1cuII; mai<strong>nl</strong>y ow- ‘GO m e inadequacy<br />

<strong>of</strong> the mekhods used for averaging the observed individual floods,<br />

separation cf multi-peaked floods and methods for infiltration<br />

rate and flow coefficient determination, There is also some<br />

uncertainty as to the applicabili- <strong>of</strong> the unit hydrograph method<br />

to different drainage areas; also problematic is the relationship<br />

between an individual storm duration and flood rise duration<br />

or the time <strong>of</strong> peak shifting relative to rainfall maximum during<br />

the flood.<br />

All these factors limit the application <strong>of</strong> the unit hydrograph<br />

method.<br />

Lately the method <strong>of</strong> mathematical floods simulation has been<br />

more and more widely used.<br />

For instance, in one <strong>of</strong> the variants <strong>of</strong> trie method <strong>of</strong> mathematical<br />

floods simulation applied in the USSR the analogy between<br />

equation (10 ), describing flood formation resulting from<br />

water lag and summation <strong>of</strong> individual discharges from different<br />

parts <strong>of</strong> river basin, and the eq,uation describing the change <strong>of</strong><br />

current in the electric circuit, was used,<br />

To apply this method practically, it is essential to develop<br />

investigations connected <strong>with</strong> determining parameters set for the<br />

specific electric analog computer to estimate flood run<strong>of</strong>f <strong>of</strong><br />

ungauged rivers.<br />

The importance <strong>of</strong> research, computation and prediction <strong>of</strong><br />

floods for many countries <strong>of</strong> the world necessitates the international<br />

scientific co-operation on the problem <strong>of</strong> flood flow<br />

computation.


621<br />

This co-operation is in particular exercised under the auspices<br />

<strong>of</strong> UNESCO and WMO <strong>with</strong>in the framework <strong>of</strong> the IIID programme.<br />

For this purpose the Co-ordinating Council €or the IHD<br />

established the Ciorking grou:, on floods and their compuation.<br />

This Working group has studied and generalized, to some extent,<br />

the international experience in the field <strong>of</strong> research and<br />

computation <strong>of</strong> flood flow.<br />

A great contribution was made by the International Symposium<br />

on floods and their computation held in Leningrad at the initiative<br />

<strong>of</strong> UNESCO and <strong>with</strong> the participation <strong>of</strong> \YMO and IAkIS.<br />

The proceedings <strong>of</strong> this Symposium were published, therefore<br />

there is no need to cite and consider them here /18, 26/.<br />

The review made by WMO on meteorological aspects in computing<br />

flood flow is rather useful. ‘ïiiic review made up a technical<br />

note on this problem /25/.<br />

The results <strong>of</strong> processing <strong>of</strong> observation data on floods made<br />

at the network <strong>of</strong> IHD stations also appear to be valuable. Taking<br />

into account that in some large areas covered by the network<br />

<strong>of</strong> IIID stations outstanding floods, may always occur. The<br />

UNESCO IHD Working group on floods and their computation prepared<br />

and published the technical note on collection and processing<br />

<strong>of</strong> data on floods /27/.<br />

The Working group also developed the programme for the<br />

World Catalogue <strong>of</strong> very large floods, according to which a<br />

riiimber <strong>of</strong> countries were entrusted to collect, process and<br />

publish the data on large floods.<br />

Besides, the Working group considered it necessary to study<br />

and generalize the international experience in the field <strong>of</strong><br />

floods covputation and is now preparing for publication the<br />

Technical Note (Casebook), wiiich would reflect a great experience<br />

in computation <strong>of</strong> flood flow, gained in many countries.<br />

These pub lications together <strong>with</strong> the Proceedings <strong>of</strong> the Lenin<br />

grad Symposium on floods will serve as a good basis to improve<br />

methods <strong>of</strong> flood flow computation, which in its turn will<br />

contribute to a more rational and economical selection <strong>of</strong><br />

parameters for hydraulic structures on rivers, their durability<br />

and resistance to floods.<br />

R E F E R E N C E S<br />

Alexeev G.A. (1 966). Sklema raschetov maximainyh dozhdevyh<br />

raskhodov vody PO formule predelnoy intensivnosti stoka,<br />

(Computation <strong>of</strong> maximum rainfall discharge by means <strong>of</strong><br />

the formula <strong>of</strong> extreme run<strong>of</strong>f intensity). Transactions<br />

<strong>of</strong> the GGI, vol. 134.<br />

Befani A.N. (1958) Osnovy teorii protsessov stoka i puti<br />

dalneishykh issledovaniy. (Theory <strong>of</strong> run<strong>of</strong>f processes and<br />

directions <strong>of</strong> further research). Transactions <strong>of</strong> OGMI,<br />

vol. 15.


622<br />

3. Velikanov M.A. (1931) GidromekhanichesQ analiz poverhnostnobo<br />

stoka. (Hyaromechanical analysis <strong>of</strong> the surface run<strong>of</strong>f).<br />

Geophysics Nos. 1-2.<br />

4. Voskresenski K.E. (1956) Gidrologicheskie raschety pri proektirovmii<br />

sooruzheniy na malyh rekah, ruchjah i vremennyk<br />

vodotokakh (Method osn. i prakt) (Hydrological computations<br />

for structures on small rivers and temporary water<br />

courses), Leningrad, GIMIZ.<br />

5. Kalinin G.P., Milukov ?.I. (1958) Priblizhennyi raschet neust<br />

anovivshe go sy a dvi zhenia v o w h mass . (Approximate<br />

estimation <strong>of</strong> the unsteady water motion), Transactions <strong>of</strong><br />

TsW, vol. 66.<br />

6. Kovzel A.G. (1951) Opyt projektirovania hydrografa vesennego<br />

stoka dlya malogo vodosbora. (The designing <strong>of</strong> the hydrograph<br />

<strong>of</strong> spring run<strong>of</strong>f on small watersheds) .Tr.<strong>of</strong> GGI,v.31(85)<br />

7. Kuzmin P.E. (1961) Protsess tayania snezhnogo pokrova.<br />

(Snow cover melting) Hydrometeorological Publishing House.<br />

8. Lvovich M.I. (L34-ö) Protsessy formirovania pavodkov.(Flood<br />

formation), Transactions <strong>of</strong> GGI, vol. 10.<br />

9. Moklyak V.I. (1965) Pormirovanie maximalnyh raskhodov ot<br />

talyh vod i ih raskhoày (Formation <strong>of</strong> maximum snowmelt<br />

discharges), Kiev.<br />

10. l'rotoãyakonov M.M. (1966). Opredelenie maksimalnogo stoka<br />

poverhnostnyh vod s malyh vodosborov. (Determination <strong>of</strong><br />

maximum surface run<strong>of</strong>f on small watersheds) Hydrometeos<br />

raological Publishing House Leningrad.<br />

11. Sokoiov A.A. (1963) Maximalnyi stok talyh vod elementarnyh<br />

bassainov i priroda ego reduktsii. (Maximum snowmelt<br />

run<strong>of</strong>i on elementary basins and the nature <strong>of</strong> its reduction).<br />

Transactions <strong>of</strong> GGI, vol. 107.<br />

12. Sokolov A.A. (1966) Metodika rascheta maximalnyh raskhodov<br />

talyh vod pri otsutstvii ili nedostatochnosti gidrometricheskikh<br />

dannykh (Computation <strong>of</strong> maximum discharges <strong>of</strong><br />

snowmelt water in case <strong>of</strong> the absence or inadequacy <strong>of</strong><br />

hydrometric data) Transactions <strong>of</strong> GGI, vol. 134.<br />

13. Sokolovsky D.L. (1937) Normy maximalnogo stoka vesennikh<br />

pavodkov rek SSSH i metodika ikh rascheta. (Norms <strong>of</strong><br />

maximum spring flood run<strong>of</strong>f <strong>of</strong> the USSR rivers and the<br />

technique <strong>of</strong> their computation). Hyarometeorological<br />

Publishing House.<br />

14. Sokolovse D.L. (1948) Metodika postroenia hydrografa liv-<br />

nevogo stoka PO osaäkam (Plotting <strong>of</strong> rainfall run<strong>of</strong>f hydro-<br />

graph on the basis <strong>of</strong> rainfall aata). Transactions <strong>of</strong><br />

GGI, vol. 14.<br />

15. Sokolovsky D.L., Shiklomanov I.A. (1965). Haschety hydrografov<br />

pavoàkov s primeneniem elektronnyh modeliruyshchih<br />

UStroiStV. (Computation <strong>of</strong> flood hydrographs by means <strong>of</strong><br />

electronic modelling devices). Transactions <strong>of</strong> LGMI,<br />

voi. 23.<br />

16. Sokolovslry D.L. (1968). Hechnoi stok, (River flovi). 3rd<br />

edition, Hydrometeorological Publishing House, Leningrad.


623<br />

17. Stroitelnye normy i pravila. (19661,Chast II, rasàel II,<br />

glava 7. Raschetnye maximalnye raskhody vody pri proektirovanii<br />

gidrotehnichesmh sooruzheniy. (Norms and<br />

instructions for civil engineering. Part II, section<br />

II, chapter 7. Maximum design discharges for hydrotechnical<br />

structures). Normy proektivania (CH i II<br />

II - 4. 7-65). MOSCOW.<br />

18. Mezhdynarodnyi simposium PO pavocikairi i ili raschetam.<br />

(1969). (International symposium on floods ana their<br />

computation) I and II, Leningrad, 15-22, August, 1967.<br />

Hyàrome teorological Publishing House, Leningrad.<br />

19. Ukasania po opredeleniu raschotnyh maximalnyh raskhodov<br />

talyh vod pri otsutstvii ili nedostatochnosti gidrometricheskih<br />

nabludeniy. (1966) (Instructions for<br />

the determination <strong>of</strong> maximum design snow melt discharce<br />

in case <strong>of</strong> the absence or inadequacy <strong>of</strong> hyarometric<br />

data). CH 356-66. Hydrometeorological Publishing<br />

House, Leningrad.<br />

20. Ukasania po opreaeleniu raschetnyh hydrologicheskih kharac-<br />

teristik, CH 435-72 (1972). (Instructions for the esti-<br />

mation <strong>of</strong> the hydrological design values CH 435-72).<br />

Hydrometeorological Publishing House, Leningrad.<br />

21. Ukasatel literatury PO pavodkam i ih raschetam (1967)<br />

(Bibliography on floods and their computation)<br />

Hydrometeorological YuDlishing House.<br />

22. Chegodaev N.N. (1953). Haschet poverhnostnogo stoka s<br />

mlyh vodosborov. (Estimation <strong>of</strong> surface run<strong>of</strong>f from<br />

su.311 watersheds). Tranzheldorizdat.<br />

23. Shiklomanov I.A. (1964). Kaschet transformatsii pavodkov<br />

vodokhranilishchami i prudami pri pomoshchi electron-<br />

nogo modeliruyushchego ustroistva (Computation <strong>of</strong><br />

flood transformation by ponds and reservoirs by means<br />

<strong>of</strong> electronic modelling devices). Transactions <strong>of</strong> LGMI,<br />

vol. 26.<br />

24. Alexeev G.A. ana Sokolov A.A. General principles and<br />

methods for the computation <strong>of</strong> flood discharges applied<br />

in the USAR. Atti del convegno internazionale (Roma,<br />

23-30 November 1969). Roma, ANDL! pp. 735-747.<br />

25. Estimation <strong>of</strong> maximum floods. Technical Note No. 98.<br />

LNO v No. 233, TP. 126, T;MO, Geneva (1969).<br />

26. Floods and their computation. Proceedings <strong>of</strong> the Leningrad<br />

Symposium. August, vol. 1 and 2. UNESCO/USH (1969).<br />

27. Flood studies: an international scuiae for collection ~ and ~~-..<br />

processing <strong>of</strong> data. Technica1"papers in hydrology No.8,<br />

UNUSCO. Paris (1971).<br />

28. Gray D-M. -Synthetic-Unit-Hydrographs for Small <strong>Water</strong>sheäs.<br />

Proc. Am. Soc. Civ. Eng., vol. 87.<br />

29. Linsley R.X., Kohler M.A. and Paulhus L.N. (1949). Applied<br />

<strong>Hydrology</strong> McGrow Hill Book Company N.Y.<br />

30. Morgan and Johnson (1962). Analysis <strong>of</strong> Unit-Graph Method.<br />

Journal or Hydraulic Division, 88, NY-5.<br />

31. Sherman L.R. (1932) Stream-Flow Rainfall by Unit- Graph<br />

Method ¡in . Mews Record.<br />

32. Snyder F.F. f1938) Synthetic Unit-Graphs. Trans. Am.<br />

Geophys. Union, vol. 19.


ABSTRACT<br />

COMPUTATION OF PROBABILISTIC VALUES<br />

OF LOW FLOW FOR UNGAUGED RIVERS<br />

Vladimirov A. M., Chebotarev A. I.<br />

State Hydrological Institute<br />

Leningrad, U.S.S.R.<br />

The main characteristics <strong>of</strong> low flow (minimum daily, mon-<br />

thly and seasonal flows) are investigated. The computation methods<br />

are Sased on a combined use <strong>of</strong> geographical interpolation and pro-<br />

bability analysis and considering the main factors affecting the<br />

volume aiid regime <strong>of</strong> low flow. Principal characteristics <strong>of</strong> low<br />

flow for mkdium-size rivers are determined by maps <strong>of</strong> flow isoli-<br />

nes, those for small rivers are determined by regional empirical<br />

correlation. <strong>Design</strong> flow is established by means <strong>of</strong> transition<br />

coefficients. The principal computation methods discussed are deve<br />

loped for U.S.S.R. rivers.<br />

Les auteurs analysent les caractéristiques principales des<br />

débits de basses eaux (journaliers? mensuels, minimum saisonnier).<br />

Les méthodes $e calcul font appel a la fois à l'interpolation géo-<br />

graphique et a l'analyse statistique, compte tenu des facteurs<br />

principaux qui influencent l'abondance et le régime des débits de<br />

basses eaux. Les principales caractéristiques des débits d'étiages<br />

des rivières moyennes font l'objet d'une représentation cartogra-<br />

phique; pour les petites rivières on les traduit par des relations<br />

empiriques régionales. Les débits correspondant à la fréquence<br />

choisie pour le projet sont établis en utilisant des coefficients<br />

de transfert. Les auteurs présentent les principales méthodes de<br />

calcul utilisées en URSS.


2 6<br />

Low flow is one <strong>of</strong> the principal phases <strong>of</strong> the hydrological river<br />

regime. During the dry periods, when precipitation is usually at its<br />

lowest, rivers have rather stable and relatively small discharges. Their<br />

variations in the flow hydrograph tend to approximate a horizontal line.<br />

The lowest flow observed during a certain period is generally called the<br />

minimum flow during that period.<br />

Separation <strong>of</strong> low-flow period in river flow hydrographs<br />

On rivers <strong>with</strong> distinctly expressed spring snowmelt floods and<br />

autumn floods the period <strong>of</strong> low flow is observed during winter and summerautumn<br />

seasons. Its beginning in summer is determined by the end <strong>of</strong><br />

spring high-water period, i.e. when the intensive rate <strong>of</strong> decrease <strong>of</strong><br />

discharge tends to become smaller. The summer period <strong>of</strong> low flow ends <strong>with</strong><br />

the arrival <strong>of</strong> the autumn floods or the appearance <strong>of</strong> ice in the river.<br />

In the latter case the low-flow period is called the summer-autumn period.<br />

The winter low-flow period begins at the appearance <strong>of</strong> ice events<br />

in the river and continues until spring high-water period begins. In<br />

case <strong>of</strong> no ice phenomena in the river the winter low-flow period is<br />

assumed to be a period from the average data <strong>of</strong> air temperature falling<br />

down contii:vously through O°C and below it up to the beginning <strong>of</strong> the<br />

spring high-wcter period.<br />

The low-flow period includes also floods if the volume <strong>of</strong> each<br />

<strong>of</strong> them does not exceed 10-15 per cent <strong>of</strong> the flow volume for preceding<br />

and subsequent lol.:-flow periods, <strong>with</strong>out taking into account the volumes<br />

<strong>of</strong> floods already included. If the flow hydrograph has the form <strong>of</strong> a<br />

saw-like curve (frequent floods <strong>of</strong> various magnitudes), the period <strong>of</strong><br />

low-flow includes floods <strong>with</strong> maximum discharges that are 3-5 times<br />

greater than preceding daily minimum discharges (depending on the<br />

volume <strong>of</strong> the flood peak).<br />

These criteria facilitate the plotting <strong>of</strong><br />

river low-flow periods, although they slightly overestimate the volume<br />

<strong>of</strong> low flow.<br />

In the U.S.S.R. low flow may be expressed as minimum daily,<br />

minimum monthly (30-day) or minimum seasonal flow.<br />

Seasonal flow is the average value <strong>of</strong> discharge (specific discharge)<br />

for winter or summer-autumn seasons. The minimum monthly flow<br />

is the average during the lowest calendar month in the given season.<br />

On rivers <strong>with</strong> flood regime during winter or summer-autumn seasons when<br />

the low-flow period is <strong>of</strong> less than two month duration or is interrupted<br />

by large floods, the smallest <strong>of</strong> the average discharges during a calendar<br />

month may appear 1,5-2 times bigger than the minimum discharge. In such


627<br />

a case it is necessary to introduce a temporary correction taking into<br />

account not a calendar month, but a 30-day period <strong>with</strong> the lowest flow.<br />

If frequent and considerable floods make it difficult to find out the<br />

30-day period <strong>of</strong> minimum flow, it may be reduced to 25-23 days in order<br />

to exclude the influence <strong>of</strong> floods.<br />

This secures the genetic homogeneity<br />

<strong>of</strong> the minimum flow <strong>of</strong> years <strong>with</strong> varying water volumes, which is impor-<br />

tant in the determination <strong>of</strong> minimum flows for ungauged rivers.<br />

Physiographic factors <strong>of</strong> low flow<br />

The duration and volume <strong>of</strong> low flow depend on physiographic<br />

factors which may be divided into two groups: (1) climatic conditions<br />

and (2) factors <strong>of</strong> underlying surface.<br />

lhe water resources <strong>of</strong> a certain basin depend on the climatic<br />

conditions prevailing in that basin. Precipitation contributes to the<br />

increase <strong>of</strong> ground water supply, while evaporation decreases its recharge<br />

and supply. In winter low-air temperatures cause a considerable freezing<br />

<strong>of</strong> soils and subsoils and contribute to the decrease <strong>of</strong> underground<br />

flow into rivers. Climatic factors determine areal low-flow distribution<br />

in accordance <strong>with</strong> the low <strong>of</strong> geographical zonation.<br />

1.i some cases and for small rivers particularly, low flow is<br />

greatly intluenced by local (azonal) factors <strong>of</strong> the underlying surface,<br />

i.e. the surface and underground flow contributions (lakes, swamps, soils<br />

and subsoils, karst, etc.).<br />

The influence <strong>of</strong> these factors may be so considerable and<br />

exceeds the influence <strong>of</strong> the climatic conditions.<br />

The most essential factor is the permeability <strong>of</strong> soils and subsoils.<br />

They serve as underground flow reservoirs, detaining water during<br />

high-water periods and releasing it during low-water periods. The<br />

capacity <strong>of</strong> underground storage is determined by the geological structure<br />

<strong>of</strong> the area and its hydrogeological conditions. Loose and porous or<br />

crevassed deposits (sandstone, limestone, shingle, and the like) create<br />

favourable Conditions for underground storage <strong>of</strong> water and far its subsequent<br />

release during the low-flow periods in rivers. Solid clay or<br />

monolithic crystal rocks (granite, gneiss) near the surface decrease the<br />

regulating capacity <strong>of</strong> the storage and reduce the low flow. The influence<br />

<strong>of</strong> karst-affected rocks on the regime and volume <strong>of</strong> low flow is determined<br />

by their absorption capacity und the rate <strong>of</strong> water yield - the bigger<br />

it is, the less is their influence an the low flow.


628<br />

The contribution <strong>of</strong> underground water reservoirs to the flow in<br />

rivers is a factor <strong>of</strong> extreme importance in the study <strong>of</strong> low flows. In<br />

this respect due consideration should be given to the number water con-<br />

tent and regime <strong>of</strong> aquifers contributions to river flow and the dynamics<br />

<strong>of</strong> underground flow into rivers. These factors determine the contribu-<br />

tion <strong>of</strong> underground aquifers to the flow in rivers.<br />

The study <strong>of</strong> factors affecting the volume and regime <strong>of</strong> low flow<br />

is a necessary prerequisite for the successful development <strong>of</strong> the com-<br />

putation methods.<br />

The analysis <strong>of</strong> the influence <strong>of</strong> main factors on conditions <strong>of</strong><br />

low flow formation necessitates the division <strong>of</strong> rivers into small and<br />

middle-size rivers when developing computation methods since the process<br />

<strong>of</strong> low flow formation is different for the two types <strong>of</strong> rivers. Large<br />

rivers are not considered here.<br />

Differentiation <strong>of</strong> small and middle-size rivers<br />

The quantitative characteristics <strong>of</strong> a small river may be assumed<br />

to be the value indicating the extent <strong>of</strong> aquifers discharge contribution<br />

to total flow, i.e. the erosion depth <strong>of</strong> river channels. The determination<br />

<strong>of</strong> its îharacteristic is the ratio between the erosion channel depth<br />

and the aquifeis depth feeding the river along its length up to the outlet.<br />

Th.e quantitative estimation <strong>of</strong> the influence <strong>of</strong> main hydrogeological factors<br />

on low flow is difficult to make, while developing low flow computation<br />

methods involve additional characteristics: correlations between<br />

the capacity <strong>of</strong> underground storage and drainage densities. In similar<br />

regions there is a definite relationship between the volume <strong>of</strong> underground<br />

storage, river channel erosion depths, watershed boundaries and<br />

drainage areas.<br />

Therefore the value <strong>of</strong> river basin area provides an<br />

integrated indicator <strong>of</strong> morphological and hydrological conditions <strong>of</strong> low<br />

flow.<br />

In this case, a criterion for the term "small river" may be the<br />

largest (critical) area <strong>of</strong> the basin responsible for the complete drainage<br />

<strong>of</strong> aquifers feeding the river and <strong>with</strong> the e<strong>nl</strong>argement <strong>of</strong> which no varia-<br />

tion <strong>of</strong> low flow modulus is observed. The value <strong>of</strong> the critical area is<br />

established by graphs <strong>of</strong> relationship <strong>of</strong> minimum 30-day flow modulus <strong>with</strong><br />

river basin area for the physiographically similar regions.<br />

For the U.S.S.R. rivers, the critical area <strong>of</strong> the basin ranges<br />

from 1, O00 to 1,500 km2 in flat wet regions and in all mountain regions.<br />

In semi humid zones it rises to 2, 000-2, 500 km2 due to the lower depths<br />

<strong>of</strong> uquifers drained by rivers. In semi arid areas rivers <strong>with</strong> 5,,000-<br />

10, O00 km2 basin area are classified as small rivers.


Computation <strong>of</strong> normal low flow <strong>of</strong> small rivers<br />

In the U.S.S.R. computation practice for determining mean low<br />

flow <strong>of</strong> small ungauged rivers, the following equation relating the dis-<br />

charge to the river basin area is most widely used:<br />

where Q is discharge (seasonal minimum) in m3/sec; A is river basin<br />

area in km2; f is either a regional impermeable mean area or a<br />

permeable contributing area outside the drainage basin. In the first<br />

case, the parameter f has the sign minus (-), in the second case it has<br />

the sign plus (+). Under usual conditions and permanent flow available<br />

f = O. a, n are regional parameters characterizing conditions <strong>of</strong> low<br />

flow formation.<br />

629<br />

The determination <strong>of</strong> the parameters <strong>of</strong> design equation (1) is made<br />

for the regions selected on the base <strong>of</strong> a careful study <strong>of</strong> hydrogeological<br />

conditions <strong>of</strong> the basins under study and on the analysis <strong>of</strong> principal<br />

physiographic conditions. For instance, while dividing the territory <strong>of</strong><br />

the U.S.S.R. into regions the following were used:<br />

water beating formations by rivers, hydrological descriptions <strong>of</strong> conditions<br />

favouiing the formation <strong>of</strong> underground flows <strong>of</strong> regions, ground flow<br />

map <strong>of</strong> the intcnsive water exchange zone, map <strong>of</strong> underground flow in percentage<br />

<strong>of</strong> the total river flow and coefficients <strong>of</strong> underground flow in<br />

percentage <strong>of</strong> precipitation.<br />

precipitation for warm and cold seasons, data on evaporation, air temperature<br />

for the winter season in ice melt regions, topographic map <strong>of</strong> the<br />

U.S.S.R., hydrological regionalization <strong>of</strong> the U.S.S.R., map <strong>of</strong> physiogra-<br />

phic regionalization <strong>of</strong> the U.S.S.R.<br />

account as much as possible all the characteristic features under which<br />

low flow <strong>of</strong> selected regions is formed. The boundaries <strong>of</strong> regions <strong>with</strong><br />

similar low-flow conditions during winter and summer-autumn, were plotted<br />

along the boundaries <strong>of</strong> sharp change <strong>of</strong> hyd2logical conditions. For<br />

instance, when in some river basins the change <strong>of</strong> hydrogeological and<br />

other conditions take place, the change in the volume <strong>of</strong> river flow will<br />

not be observed immediately, but gradually while the most notable change<br />

will take place at the confluence <strong>of</strong> two rivers.<br />

map <strong>of</strong> drainage <strong>of</strong><br />

Also used are maps <strong>of</strong> annual river flow,<br />

All these allowed to take into<br />

In this case the<br />

region boundary follows the watershed divide between these river catchments<br />

across the point <strong>of</strong> their confluence.<br />

Formula (1) may be used for the computation <strong>of</strong> flow <strong>of</strong> flat and<br />

semi-mountainous rivers <strong>with</strong> the average accuracy <strong>of</strong> 152% (for 1 500<br />

points on the U.S.S.R. rivers the deviation <strong>of</strong> computed minimum mean<br />

long-term 30-day discharge was 17-2w <strong>of</strong> the actual flow for the summer-<br />

autumn season, and for 750 points in winter it was 15%). Taking into


630<br />

account the accuracy <strong>of</strong> determining the actual data, use <strong>of</strong> formula (1)<br />

may be recommended for the computation <strong>of</strong> low flows <strong>of</strong> rivers <strong>of</strong> basin<br />

areas not less than 20 km2 for humid zones not less than 50 km2 for<br />

semi-arid zones, where the low flow volume is rather small and the in-<br />

fluence <strong>of</strong> various local factors is most evident.<br />

In regions <strong>with</strong> very<br />

complicated conditions <strong>of</strong> low-flow formation the area should be not less<br />

that 100 km2.<br />

A wide use <strong>of</strong> formula (i) in the designing practice (5, 6) paoved<br />

it reliable.<br />

In high mountain areas the altitude <strong>of</strong> the catchment may be <strong>of</strong><br />

a great significance as the factor reflecting the influence <strong>of</strong> vertical<br />

zonation upon the conditions <strong>of</strong> low flow formation. Therefore, the low<br />

flow modulus for regions similar in hydrogeology etc., is related to<br />

mean basin altitude.<br />

Determination <strong>of</strong> low flow for middle-size rivers<br />

The low flow volume <strong>of</strong> middle-size rivers, i.e. those <strong>with</strong> area<br />

larger than the above stated critical area, but not more than 75 O00 km2,<br />

is formea under principal influence <strong>of</strong> zonal factors. The flow modulus <strong>of</strong><br />

these rivers varies smoothly and in accordance <strong>with</strong> geographical zonation<br />

(1-atitudinal or vertical) over the area. Therefore, low flow <strong>of</strong> middlesize<br />

rivers can be determined by maps <strong>of</strong> flow isolines, made for a certain<br />

characteristic <strong>of</strong> low flow. The flow modulus relates to the catchment<br />

centre, the interval between isolines is given in accordance <strong>with</strong> the map<br />

scale and the value <strong>of</strong> flow variation over the area. In mountain regions<br />

the average catchment altitude is taken into account; flow isolines may<br />

not be closed, but end on the side <strong>of</strong> the mountain ridge <strong>with</strong>out passing<br />

over to the other side (due to a great difference in wetness <strong>of</strong> slopes).<br />

Maps are plotted both for the mean and for flows <strong>of</strong> various frequencies.<br />

For instance, for the U.S.C.R. territory there are plotted maps <strong>of</strong> the mean<br />

and S-frequency <strong>of</strong> minimum. 30-day winter and summer-autumn flows,<br />

which allows to determine the flow <strong>with</strong> the average accuracy <strong>of</strong> 10-20$.<br />

Computation <strong>of</strong> low flow <strong>of</strong> different frequencies<br />

For designing purposes the characteristics <strong>of</strong> low flows <strong>of</strong> different<br />

frequencies are <strong>of</strong> the highest importance. In the U.S.S.R. design<br />

flow <strong>of</strong> 75-97$ frequency is mai<strong>nl</strong>y used. Necessary values may be determined<br />

<strong>with</strong> the help <strong>of</strong> three parameters: mean flow La), coefficient<br />

variation <strong>of</strong> !Cv ' and skewness coefficient (CS).


631<br />

The second way is by the use <strong>of</strong> a transition coefficient from one<br />

fixed frequency (e.g. 75 or 8%) to another. This method has been lately<br />

more and more widely used in the U.S.S.R., especially in its application<br />

to low flow, since it is more accurate and simple than the method <strong>of</strong> three<br />

parameters, and since available hydrometric data allow to generalize for<br />

almost the whole territory <strong>of</strong> the U.S.S.R.<br />

The advantage <strong>of</strong> the transition coefficients method is proved<br />

by the mere fact thót in this case the total mean square root error will<br />

consist <strong>of</strong> the error <strong>of</strong> the flow <strong>of</strong> fixed frequency (u 1 and the error<br />

'P<br />

<strong>of</strong> transition coefficient A , i.e.<br />

terms:<br />

i.e.<br />

When using three parameters, the same error will consist <strong>of</strong> three<br />

standard error (Qn), error <strong>of</strong> Cv (c($ and error <strong>of</strong> Cs (, Cc,),<br />

Tt is evident that the error in the second instance will be<br />

greater, and if we take into account unreliable methods for determining<br />

coefficients C,, and Cs for any rivers, then the advantages <strong>of</strong> the method<br />

<strong>of</strong> transition coefficients become quite obvious. It is the more so,<br />

as in the range <strong>of</strong> frequencies under consideration (7597%) the curves <strong>of</strong><br />

low-flow frequencies are rather stable, gently sloping and quite reliable<br />

in most cases.<br />

This stipulates a rather small (for the given frequency)<br />

variability <strong>of</strong> transition coefficient for the area and season and, con-<br />

sequently, its high reliability. Thus, for the U.S.S.R. rivers the value<br />

<strong>of</strong> transition coefficient from the minimum 30-day discharge <strong>of</strong> 8% fre-<br />

quency to the discharge <strong>of</strong> 75% frequency varies from 1.03-1.06, and for<br />

transition to the discharge <strong>of</strong> 9056 frequency - from 0.83-0.91, i.e. the<br />

value <strong>of</strong> coefficient xchanges o<strong>nl</strong>y by 5-1056 and may be averaged for the<br />

given frequency over a large area. Its value varies significantly o<strong>nl</strong>y<br />

for episodically drying or freezing rivers.<br />

The flow <strong>of</strong> fixed frequency is established by formula (1) or by<br />

maps <strong>of</strong> flow isolines, plotted for this frequency. Thus, for the U.S.S.R.<br />

territory there are plotted maps <strong>of</strong> the minimum 30-day flow <strong>of</strong> 8056 frequency<br />

(for winter and summer-autumn periods separately) and the maps <strong>of</strong><br />

flow <strong>of</strong> limiting season <strong>of</strong> 75% frequency.<br />

Also determined are the<br />

parameters in formula (i) for the 30-day discharge <strong>of</strong> 8w and 7546 fre-<br />

quency.


63 2<br />

To determine flow <strong>of</strong> other frequencies, a table <strong>of</strong> transition<br />

coefficients ;I has been prepared.<br />

Computation <strong>of</strong> minimum daily flow is made by relationship <strong>with</strong> the<br />

value <strong>of</strong> minimum 30-day flow (normal or fixed frequency flow for selected<br />

regions) :<br />

Q = K , Q<br />

P p,30<br />

where Op is minimum daily discharge <strong>of</strong> design frequency. Qp30 is minimum<br />

30-day discharge <strong>of</strong> corresponding frequency, determined by maps <strong>of</strong> isolines<br />

or by formula (1). k is the regional transition coefficients for the<br />

given season.<br />

For the U.S.S.R. territory the value <strong>of</strong> coefficient k, when<br />

determining the minimum daily discharge <strong>of</strong> 8C$ frequency, varies from<br />

0.59 to 0.90 in winter and from 0.45 to 0.86 in summer-autumn seasons.<br />

Its value depends on the degree <strong>of</strong> river flow depletion for the period<br />

under study and on the volume <strong>of</strong> run<strong>of</strong>f during low-flow periods.<br />

Determination <strong>of</strong> minimum daily flow <strong>of</strong> design frequency is made<br />

by using ti:s above-mentioned coefficients A , since the frequency curve<br />

<strong>of</strong> daily and 30-day discharges vary practically in the same manner.<br />

The stated methods for the computation <strong>of</strong> probability values<br />

<strong>of</strong> river low flow are given in Gosstroy Standards <strong>of</strong> the U.S.S.R.<br />

/5,6/ and are widely used by designing organizations <strong>of</strong> the Soviet<br />

Union.


REFERENCES<br />

1. Vladimirov, A. M.: Minimalny stok rek SSSR (Minimum flow<br />

<strong>of</strong> the U.S.S.R. rivers) Hydrometeorological Publishing<br />

House, Leningrad, 1970, p. 214.<br />

2. Vladimirov, A. M.: Raschetnye minimalnye raskhody vody<br />

(<strong>Design</strong> minimum discharges) Trans. <strong>of</strong> GGI, v. 188,<br />

Hydrometeorological Publishing House, Leningrad,<br />

1972, p. 244-272.<br />

3. Kudelin, B. I. (ed.): Podzemny stok na territorii SSSR<br />

(Underground flow in the U.S.S.R. territory), MGU<br />

Publishing House, 1966, p. 303.<br />

4. Popov, O. V.: Podzemnoe pitanie rek (Underground river<br />

recharge) Hydrometeorological Publishing House,<br />

Leningrad, 1968, p. 291.<br />

5.<br />

6.<br />

633<br />

Ukazania PO opredelenia raschetnykh minimalnykh raskhodov<br />

vody rek pri stroitelnom prooktirovanii (Instructions<br />

for determination <strong>of</strong> design minimum discharges <strong>of</strong><br />

rivers in engineering projects). CH 346-66, Hydrometeoxdogical<br />

Publishing House, Leningrad, 1966, p. 17.<br />

Ukazania PO opredeleniu raschetnykh gidrologicheskikh<br />

’ kharakteristik (Instructions for determination <strong>of</strong><br />

design hydrological characteristics), CH 435-72.<br />

Hydrometeorological Publishing House, Leningrad, 1972,<br />

p. 18.


ABSTRACT<br />

A STUDY ON MAXIMUM FLOOD DISCHARGE FORMULAS<br />

Tae Sang Won, PhD.CE., Dr. En.${<br />

This paper describes a new formula for the calculation <strong>of</strong><br />

approaching velocity <strong>of</strong> rain water, and a number <strong>of</strong> new formulas<br />

for the estimation <strong>of</strong> maximum flood discharge which have been deve-<br />

loped by the author.<br />

Many empirical formulas, which have limited application,<br />

exist. However, in devising his formulas, the author derived theo-<br />

retically the form <strong>of</strong> the basic maximum discharge formula for the<br />

case <strong>of</strong> rivers <strong>with</strong> no tributaries, and determined stochastically<br />

the value <strong>of</strong> the coefficients in his basic formulas using the re-<br />

cords <strong>of</strong> observed measurements. Then the author derived theoretic2<br />

lly many differe,it formulas for the case <strong>of</strong> rivers <strong>with</strong> tributa-<br />

ries to fit in the actual localities <strong>of</strong> the site under considera-<br />

tion, besides the basic formulas. So the author's formulas would<br />

be widely applicable for rivers or sewer nets, and also for any<br />

regions, countries, <strong>with</strong> different locality. The author could con<br />

firm these facts through the numerical examples. The author's fo:<br />

mulas may be used not o<strong>nl</strong>y for estimating the design flood, but<br />

also in flood routing. The author believes that his formulas would<br />

be very helpful in the planning <strong>of</strong> water resources development pro<br />

jects -specially for those <strong>with</strong> inadequate data.<br />

RESUME<br />

L'auteur présente une nouvelle formule pour la vitesse de con<br />

centration d'un bassin et en suggere d'autres pour le calcul du dg bit de la crue maximale.<br />

On trouve de nombreuses formules empiriques dans de nombreux<br />

manuels, mais ces formules sont d'une application limitée. L'auteur<br />

parvient cependant à asseoir la forme de sa formule sur des bases<br />

théoriques, lorsqu'il s'agit de cours d'eau sans affluents; il pro<br />

cede à l'évaluation des paramètres qu'elle contient par ajustement<br />

statistique aux données d'observation disponibles. I1 generalise<br />

ensuite à différents cas de cours d'eau avec affluents. Les formu-<br />

les proposées de'vraient pouvoir être appliquées n'importe où,<br />

aussi bien pour les cours d'eau naturels que pour les réseaux<br />

d'assainissement; c'es ce que l'auteur peut confirmer par des<br />

applications numériques. Les formules peuv:nt servir non seulement<br />

au calcul des crues de projet, mais aussi a celui de la propagation<br />

des crues. L'auteur pense que ses formules devraient rendre de<br />

grands services dans la planification de l'aménagement des eaux,<br />

spécialement lorsque les données disponibles sont insuffisantes.<br />

fg Pr<strong>of</strong>essor <strong>of</strong> Civil Engineering, Seoul National University, Seoul,<br />

Korea.<br />

1


636<br />

I e XNTR001';TION<br />

a<br />

Charles F. Ruff defin& Bmximm probable floodn as follows.<br />

"The maximum probable flood does not mean the largest flood possible<br />

but a flood so large that the chance <strong>of</strong> its being exceeded is no<br />

greater than the hazards normal to all <strong>of</strong> man's activities." The<br />

author will use here the term <strong>of</strong> 'maximum flood discharge" <strong>with</strong> the<br />

same meaning <strong>of</strong> "maximum probable flood" as defined by Ruff.<br />

It is very important to calculate maximum flood discharge cor-<br />

rectly, and also it i5 a very difficult problem theoretically and<br />

practically. It m y be impossible to establish a plan for flood con-<br />

trol an8 water resources development or sewer nets projects <strong>with</strong>out<br />

reckoning correctly the maximum flood discharge or the design flood.<br />

There are many methods for calculation <strong>of</strong> maximum flood dis-<br />

charge, and we have to adopt the most suitable method in accordance<br />

<strong>with</strong> the completeness <strong>of</strong> the data. However,the method <strong>of</strong> calculation<br />

by the maximum flood discharge formulas,especially for the case <strong>of</strong><br />

those <strong>with</strong> inadequate data, is easy and simple for practicing engi-<br />

nßers. There are many empirical formulas devised by many authors<br />

such 88 Kuichling,Mead,KresnikeDickens,Metcalf and Eddy,Brix,Lauter-<br />

burg,Possenti,Buerkli-Ziegler,Dr.Hisanaga,Kajiyama,and many others.<br />

These old fosmulas have been devised empirioally and have limited<br />

application. It will be clear that one may be unable to apply them<br />

generallj.. Aliso it will not be strange to obtain results which may<br />

be 10 or liio time8 <strong>of</strong> the correct values, according to selection OP<br />

the coefficieqts in these formulais when these formulas are actually<br />

applied to practical problems.<br />

Generally speaking,the flood discharge depends upon the shape<br />

<strong>of</strong> catchment,drainage area,amount <strong>of</strong> rainfall and the position at-<br />

taoked by the heavy rainfall,pemneability,slope <strong>of</strong> the catchment,<br />

shape <strong>of</strong> the water cours6,status <strong>of</strong> the surface,geological status,<br />

etc. Strictly epeaking,such statua <strong>of</strong> catchment differs from others<br />

from se68on to season,for every floo8,even in the same catchment as<br />

well as in different draimge basins. In other words,flood disoharge<br />

üepends also upon the inteneity <strong>of</strong> Fainfall which causes the flood,<br />

duration <strong>of</strong> the rainfall and the position <strong>of</strong> the oater <strong>of</strong> the lows,<br />

or statua <strong>of</strong> the ground in case <strong>of</strong> heavy rainfall,vie.,dry ground or<br />

saturated qround,etc.<br />

As the maximum flood discharge depends upon many factors, as<br />

stated above, it may be very difficult to express it in a formula.<br />

However,if we can consider theoretioally correct value <strong>of</strong> approaching<br />

velocity <strong>of</strong> rain water and intensity <strong>of</strong> rainfall, we may deduct<br />

the maximum probable flood by getting the rainfall for a certain districtc<br />

The principle <strong>of</strong> derivation <strong>of</strong> the author's formulas belongs<br />

to this process, and it may be said that this is an approach differe.it<br />

from many scholars who had derived the old formulas.<br />

~<br />

* Ruff,Charles F.;nMaximuni probable floods in Pennsylvania Streamst'<br />

Transactions ,American Society <strong>of</strong> Civil Engineers .Vol .i06,1g4l ,p . 11 53


637<br />

In the first step, the author thought out a method to ascertain<br />

correctly the approaching velocity <strong>of</strong> rain water. At the same time,<br />

the author found that the Rizha's (Germany) formula,the o<strong>nl</strong>y complete<br />

one for this purpose, could not be applicable to solve practical<br />

problem8 as it gives too small values. In the second step, the author<br />

studied the rainfall intensity curve comprehensively, and found out<br />

theoretically when the maximum flood discharge may occur. In the<br />

third step, the author has theoretically derived the maximum dia,<br />

charge formulas for rivers <strong>with</strong> many tributaries by appljing the<br />

general rules which he has determined by the first and second step.<br />

In the fourth step, the author determined the discharge coefficient<br />

in his formula from the actual records. The author was then able to<br />

calculate the value <strong>of</strong> the discharge coefficient, <strong>with</strong> a great degree<br />

<strong>of</strong> acouracy, <strong>of</strong> the rivers in Korea and Manchuria.<br />

II. APPROACHING VELOCITY OF RAIN WATER<br />

The approaohing velocity <strong>of</strong> rain water (U) is defined as the<br />

mean velocity <strong>of</strong> rain, water approaching from the farthest point F in<br />

a river basin to the point O where the maximum flood discharge is to<br />

be ascertained,in other words, the mean velocity <strong>of</strong> flow between F<br />

and O (Fig-1). There is o<strong>nl</strong>y one formula to find such approaching<br />

velocity so far expressed in equation, given by Rizha,Germany, and a<br />

table given by Kraven,Germany.<br />

1) RIZYA'S FORMULA<br />

0" 72 So'' (1)<br />

where<br />

a= Approaching velocity <strong>of</strong> rain water (km/hr)<br />

s = H/L<br />

H = Difference <strong>of</strong> elevation <strong>of</strong> height between O and F<br />

L = Distance <strong>of</strong> OF (Length <strong>of</strong> water course)<br />

2) KRAVEN'S TABLE<br />

- C above 0.01 0.01 0.005 below 0.005<br />

w (kln/hr) 12.6 10.8 7.56<br />

Kraven had expressed o<strong>nl</strong>y about approximate limite <strong>of</strong> Cd , the<br />

author tried to formulate his table, to pass through the medium<br />

points as follows.<br />

3) THE AUTHOR'S FORMULA<br />

The author succeasfully devised a new method to determine the<br />

approaching velocity <strong>of</strong> rain water e3 ,theoretically which may be<br />

applicable for rivers where the hydrographic surveying was completed.<br />

Neglecting the principle and the process <strong>of</strong> derivation here, the result<br />

<strong>of</strong> the author's formula is illustrated as follows.<br />

(2)


638<br />

The value <strong>of</strong> for rivers in Manchuria calculated using eq(3) is<br />

shown in Table-i. As we see Table-1, the value <strong>of</strong> lies between 133<br />

and í77, and we may be able to recognize that the Rizhass formula wil<br />

not be <strong>of</strong> practical use because <strong>of</strong> the reason that the salue <strong>of</strong> iCt in<br />

his formula is too smll,apparently,compared <strong>with</strong> the normal salues.<br />

ide can also see from Table-1 that the value <strong>of</strong> K represents the<br />

bottom slope OP the hydraulic siope <strong>of</strong> the river, and this fact coin-<br />

cides <strong>with</strong> practice. Also it can be seen that the value <strong>of</strong> &, de-<br />

ureases gradually according aa approaching the downstream <strong>of</strong> a river,<br />

and this fact skok's that the bottom slope or the hydraulic slope <strong>of</strong><br />

a rivep generally decreases gradually as we approach the downstream.<br />

III. RAPFALL INTENSITY CURVE<br />

h'e can express the rainfall intensity by the following equation.<br />

Table-I. The values <strong>of</strong> & and others fop rivers in Manchuria<br />

Name <strong>of</strong> Rivers<br />

/c Range <strong>of</strong> S<br />

(400)<br />

Tumen 8.<br />

277 4.82 - 8,06 33,400 487.6 68.50. .LW<br />

Whancheng R.<br />

207 6.72 - 9.64 4,000 160.7 24.92 .l52<br />

Rohe H.<br />

177 3.54 - 4.22 31,455 444.0 70.84 -159<br />

Seasamorin R.<br />

171 2.81 - 2.97 29,927 412.0 72.64 .i76<br />

Sealeog R.<br />

149 8.37 - 3.48 510165 767.0 66.71 .O86<br />

Tongleog 3.<br />

207 1.70 - 3.16 10,318 33345 313.13 -093<br />

The upatrean <strong>of</strong> the 150 1.83 - 2.30 178,699 . 1040.5 171.74 .O65<br />

min Lacg R.<br />

The middle <strong>of</strong> the Leog 158 1.62 - 1.77 187,250 1199.0 157.49 0132<br />

GhsnF: R.<br />

159 3.90 - 5.51 4,958 163.0 30 . 42 .i86<br />

Icwaslg R.<br />

137 4-36 - 5.26 2,129 94.0 22.65 231<br />

Van R.<br />

149 7.07 -18,66 1,072 102.5 10.46 .lo2<br />

Pa B.<br />

150 3.68 4.06 2,361 178.0 13.26 e 074<br />

Csnkai R.<br />

134 1.43 - 1.96 515 51.0 10.10 .198<br />

F:catchmtmt area<br />

I = ß/(t + 1 ( 4) L:length <strong>of</strong> main water oourse<br />

wher0<br />

t= Bwatim<br />

I = Average intensity <strong>of</strong> rainfall during duration t<br />

OC,,^ = Any-constant<br />

Eq(4) represents a kind <strong>of</strong> hyperbola, and the constants a ar3.B can<br />

be found by eq(5) by the principles <strong>of</strong> the method <strong>of</strong> the least squame<br />

n(12t) - (ï)(ït)<br />

d= LI)' - n(I')<br />

B=<br />

(Il(P2t) - (It)(12)<br />

(I)~ - n(I')<br />

E= nwnber <strong>of</strong> observations<br />

Next let R be total. amount <strong>of</strong> rainfall aurin$ the buration t,<br />

R = It = p t/(t + QL 1 (4)


639<br />

T~ble-2 illustrates the values <strong>of</strong> the constants d and fi in eq(4)<br />

for various regions. In this table, those for the regions <strong>of</strong> Korea<br />

and Manchuria show the absolute maximum rainfall intensity curves<br />

during those periods, Those for the regions marked <strong>with</strong> the asterisk<br />

(*I were calculated by the author himself by the records <strong>of</strong> the re-<br />

cording gauges.<br />

IV. THE AUTHOR'S MAXIMUM FLOOD DISCHARGE FORMULAS<br />

1) FUNDAMENTAL FORMULA FOR THE CASE OF A RIVER WITH NON-TRIBUTARY<br />

(a) Retardation <strong>of</strong> Run-<strong>of</strong>f<br />

Table-2. The values <strong>of</strong> cc and P in eq(4)<br />

Region d a<br />

(min) (hour)<br />

P b the records (minutes)<br />

Period taken Range <strong>of</strong> t<br />

Seoul ,K 59 0.938 7,860 131 1905 - 1920 5-60 min<br />

Inchon , K 37.5 0.625 8,640 144 ditto 5-240<br />

PymgYanR , K 41 0.683 6,000 100 1914 - 1920 ditto<br />

Pusan , K 106.1 1.77 14,015 233.6 1914 - 1953 10min-24hr<br />

Wonsan , K 75 1.250 7,740 129. 1914 - 1920 5-240 min<br />

Taegu,K * 40.2 0.67 8,711 145.2 1929 - 1953 10min-24hr<br />

Chonj:i,K * 81.1 1.35 15,160 252.7 1918 - 1954 ditto<br />

Kwangju,K * 90.4 1.51 10,866 181.2 1938 - 1954 ditto<br />

Mokpo,K * 101.8 1.70 11,398 190 1916 - 1953 ditto<br />

ChmgCheng,): * 40.5 0.675 5,929 98.8 1937 - 1943 10min-48hr<br />

Sping,r? * 45.1 0.752 8,487 141.4 i934 - 1944 ditto<br />

Tokyo, J 50 0.833 5,500 91.6 1891 - 1911 5-60min<br />

where a d/60 b P 1'3 /60 KæKorea M=Manchuria JsJapan<br />

Prior to deecribing the flood discharge formula, the definition<br />

<strong>of</strong> "retardationR must be understood. Now let O and F be the point<br />

under coneiäeration and the farthest point <strong>of</strong> a catchment respective-<br />

ly, 1 be the length <strong>of</strong> water course between O and F , CL) the approaoh-<br />

ing velocity <strong>of</strong> rain water flowing from F to O, tc the time <strong>of</strong> con-<br />

centration,i.s.,the time necessary for reaching O from F, tr the du-<br />

ration OP rainfall,i.e.,the perlob between the beginning and enâing<br />

<strong>of</strong> a reinfall (see Fig-i), then,<br />

t, = l/Ld (79<br />

T tr + t c * tr + l/W í 8)<br />

where T P The time <strong>of</strong> the period between the beginning <strong>of</strong> a rain-<br />

fall and the ending <strong>of</strong> the run-<strong>of</strong>f due to the rainfall<br />

at the point O<br />

It may be better to use the author's formula for determining tc<br />

When it becomes tr


640<br />

falling at F reached O, the rainfall would have ceased. In other<br />

words, the rainfall causing the maximum flood discharge is the rain-<br />

fall which falls in a part <strong>of</strong> the catchment.<br />

(b) Fundamental Formula for the case <strong>of</strong> non-Retardation<br />

The fundamental principles <strong>of</strong> the author's maximum flood dis-<br />

charge formulas have already been described. The author adopted de-<br />

ductive and inductive theories for the derivation.<br />

Since it is unable to derive the rational equation <strong>of</strong> the flood<br />

discharge hydrograph, the author expressed the peak <strong>of</strong> the flood<br />

discharge hydrograph for the case <strong>of</strong> non-tributary and non-retardation<br />

by the following equation.<br />

- T = Duration <strong>of</strong> flood tr+ tc<br />

qm- 9. a CfA R / T (9)<br />

where<br />

qm = Peak discharge in flood time<br />

qo = Discharge <strong>of</strong> run-<strong>of</strong>f in normal time<br />

tr = Duration <strong>of</strong> rainfall<br />

tc = Approaching time or time <strong>of</strong> concentration<br />

R = Total amount <strong>of</strong> rainfall during duration <strong>of</strong> tr<br />

A = Catchment area<br />

9 = Average run-<strong>of</strong>f factor<br />

C P A coefficient depending upon the shape <strong>of</strong> the flood<br />

discharge hydrograph<br />

Now let Fig-,? show a discharge hydrograph during a flood period.Then<br />

the, peak disoharge qm-qO may be represented by eq(9)and the product<br />

AR <strong>of</strong> eq(9) shows the total run-<strong>of</strong>f during the period <strong>of</strong> flood<br />

T. As this also represents the area <strong>of</strong> DMED <strong>of</strong> Fig-2 geometrically,<br />

we may affirm that the authorls fundamental formula is reasonable<br />

anal tically or graphically. Replacing the value <strong>of</strong> R <strong>of</strong> eq(6) into<br />

ea(9 9 ,<br />

qm - qo=C 9 AB / T = C 9 A b tr /(tr + t, )(tr+ a (10)<br />

We h ow through eq(1O) that the peak discharge is a function <strong>of</strong> tr,<br />

anä it will take a limiting value to make the peak discharge maximum.<br />

So differentiating eq(l0) <strong>with</strong> respect to tr<br />

and.<br />

tr = (unit in hours) (11)<br />

T=t,+ tG= 6 +t, (12)<br />

Hence we know that the maximum flood discharge will occur when the<br />

duration <strong>of</strong> rainfall t r satisfies eq(l1). Up-to-datesue have taken tr<br />

generally <strong>with</strong>out definite reason as follows: 5 or 10 minutes for de-<br />

sign <strong>of</strong> sewers, 3 or 4 hours for small rivers flowing the vicinity <strong>of</strong><br />

a city, 24 home or more for big rivers. However aceording to the<br />

author's theory, the value <strong>of</strong> tr must satisfy eq(l1) to cause the<br />

maximum flood discharge. Substituting eq(l1) into eq(lO),


641<br />

If we express in metric units,i.e. ,A(km2),R(~) ,t (hr) ,q (cms), (13)<br />

becomes,<br />

qm-q,= 0.2778C 9 b a A / (t,+fic)( a+<br />

1<br />

where (14)<br />

a,b = any constants depending upon rainfall (see Table-2)<br />

The value <strong>of</strong> tc can be found from eq(3) .(see Table-1)<br />

(c) The value <strong>of</strong> the coefficient C<br />

As stated above, the coefficient C in eq(9) depends upon the<br />

8hape <strong>of</strong> the discharge hydrograph <strong>of</strong> the region . The relation be-<br />

tween the kinds <strong>of</strong> the cuPve consisting the discharge hydrograph and<br />

the value <strong>of</strong> C is illustrated deductively as fOllOW6.<br />

Table-3. The value <strong>of</strong> C found by deduction<br />

Kind <strong>of</strong> curve C kind <strong>of</strong> curve C<br />

parabol a 1.5 cosine curve 2.0<br />

triangle(strai ht 2.0 probability 2.394<br />

1 ins? curve<br />

Also the value <strong>of</strong> C can be calculated inductively from a dis-<br />

charge hydrograph by using eq(91,whioh gives,<br />

C 0 (qhi-Qo)T /$ARa(Qm=Q,)T/ V<br />

(15)<br />

nhere<br />

V = The volume <strong>of</strong> run-<strong>of</strong>f represented by the area DMED <strong>of</strong> Fig-2.<br />

The value <strong>of</strong> C for the rivers in Manchuria found by the author using<br />

eq(l5) are given in Table-4.<br />

Table-4. The value <strong>of</strong> C for Manchrian rivers found by induction<br />

Name <strong>of</strong> river Site <strong>of</strong> Duration <strong>of</strong> flood taken Value Value<br />

measurement from the records<br />

<strong>of</strong>' T <strong>of</strong> .c<br />

( hr , day-hr ,day, month, r<br />

Tongleog Ho Tidathergtse 15,3rd-21 ,4th,Aug,l9ii 30 1.664<br />

n<br />

Sankankeu 12,10 .e 5,21 ,Sep,1939 257 1 .697<br />

Whan Ho P eidakeng 15,24. -1 9 , 27, AUg,l94O 76 1.543<br />

Main stream C hengs enkong 19,2nd- 6,6th,Sep,1939 83 2.090<br />

<strong>of</strong> Leog Ho<br />

ditto<br />

ditto 797th- 7,103 Se~r1939 72 1.966<br />

Taitse Ho Whelongbo 12,31Jul-3,3~,Aug,1940 63 1.754<br />

n<br />

n<br />

9,4th-i7,6th,A~g,l 940 56 1 0975<br />

I<br />

n<br />

16,6th-l9,8th, I<br />

51 1.087<br />

n<br />

n<br />

17,2nd- 8 s 5thSSQp ,1939 63 2.137<br />

n<br />

H<br />

9,jth-l6,9th, " " 103 1.806<br />

n<br />

5,6th-l3,9th, Jul , 80 2 . 204*<br />

* show6 the value oalculated by estimation because <strong>of</strong> non-measurement<br />

at the vicinity <strong>of</strong> the peak discharge.<br />

(d) The fundamental formula for the case <strong>of</strong> retardation <strong>of</strong> flow


642<br />

The basic formula for the case Of non-retarclation ,mentioned<br />

above, is applicable for the case <strong>of</strong> retardation <strong>of</strong> flow,too. But it<br />

is necessary to multiply the coefficientp due to retardation, viz.,<br />

q,-qo=yCpbf& A /(tc+GL )(a+ Gc 1 (16)<br />

p = f(tc/tr) (17)<br />

It is clear that the value <strong>of</strong> the Coefficient /3 equals to 1 for the<br />

case <strong>of</strong> non-retardation, but it beoomes less than 1 for the case <strong>of</strong><br />

retardation. The value <strong>of</strong> p varies inversely <strong>with</strong> that <strong>of</strong> tc / t, .<br />

It is necessary to find out a general form <strong>of</strong> f(tc/tr) for<br />

practical calculation. So the author tried to find out the general<br />

form <strong>of</strong> the function f(tL/ty) atoohastically using some data ob tained for rivers in Korea by some other methods. The author would<br />

like to assume the general form <strong>of</strong> the function <strong>of</strong>p as follows.<br />

J)= (1 + k 1 / ( tc/t,+ k 1<br />

where k = Any constant<br />

Finding the value <strong>of</strong> k in above equation by the method <strong>of</strong> the least<br />

squares, we get k = 4.802 . Accordingly,<br />

p= 5.802 / (tc /tr+ 4.802) (18)<br />

2) 'THE MAXIYUM FLOOD DISCHARGE FORMULAS FOR THE CASE OF RIVERS<br />

WITH TRIBCTARIES<br />

(a) The maximum flood discharge st the confluence <strong>of</strong> a trlbutary<br />

The author found that existence <strong>of</strong> tributaries affect greatly<br />

the peak discharge <strong>of</strong> flood flow at the proposed site <strong>of</strong> the main<br />

stream. Su the author derived many different formulas <strong>of</strong> maximum dis-<br />

charm for the case <strong>of</strong> rivers <strong>with</strong> tributaries, besides the basic<br />

formula for the case <strong>of</strong> thoee <strong>with</strong> non-tributary. Therefore it would<br />

be said that this is a great approach different from many scholars<br />

who never considered the Influence <strong>of</strong> tributaries in their tradition-<br />

al formulas.<br />

KOW assume one <strong>of</strong> the simplest case as Fig-3. The discharge<br />

hydrograph for this case may be illustrated as Fig-&. The value <strong>of</strong> q,<br />

in ~ig-4 shows the peak discharge <strong>of</strong> the triùutaryíI), and the value<br />

<strong>of</strong> q2 shows that <strong>of</strong> the main river (II) alone,excluding that <strong>of</strong> the<br />

tributary(1) , also Qm shows that <strong>of</strong> the composed maximum discharge<br />

to be occurred at the proposed site. The rational equation <strong>of</strong> the<br />

curve ,i.e.,the true shape <strong>of</strong> the discharge hydrograph is unknown.<br />

But the author would like to discuss about the shape <strong>of</strong> the curve in<br />

the following. Let us consider two cases, one <strong>of</strong> them the simplest<br />

case,i.e.,the case assumed that the discharge hydrograph consista <strong>of</strong><br />

an isosceles triangle, and the other the case assumed that it consists<br />

<strong>of</strong> a parabolio ourve, to seek the effect <strong>of</strong> the nature <strong>of</strong> the<br />

discharge hydrograph which influences on the peak disoharge Qn


(i) 'The case <strong>of</strong> an isosceles triangle<br />

In this case, it evident from Fig-5,<br />

TE<br />

Um" qp+q,(2 --1<br />

T,<br />

(ii) The case <strong>of</strong> a parabola<br />

(19)<br />

643<br />

Since it is evident as the nature <strong>of</strong> the parabola,at Fig-6,<br />

q = 4qot/T - 4q,(t/TI2 í a)<br />

we can get the following equation for Fig-?,<br />

and by dQ/dt = O Q,/TI + q2 /T2<br />

to= 2 (q,/T,' + q,/T:)<br />

Accordingly, substituting eq( 201 into eq( b) , we get<br />

NUMERlCAL EXAMPLE<br />

(20)<br />

An ilìwtration is given here to compare the degree <strong>of</strong> accuracy<br />

<strong>of</strong> the two cbses mentioned above.<br />

Given T2 = 26 hr, TI = 20 hr, = 5000 cms, q = 3000 cms . Then since<br />

Te/T,= 26/20 = 1.3 from eq81) , the case <strong>of</strong> assuming as parabolic<br />

curve, &TA= (5000 + jOOOx1.3<br />

/( 5000 + 3000x1.3x1.3 1 -<br />

7865 cms<br />

Next from eq(19), the straight line formula,<br />

Qm = 5000 + 3000x(2 - 1.3) = 7100 cms<br />

Hence,we h ow that there is not any remarkable difference on the re-<br />

sults <strong>of</strong> calculation <strong>of</strong> the maximum discharge whether we assume the<br />

discharge hydrograph as straight lines or a parabolic curve through<br />

this numerical example. Aliso we can imagine that we shall obtain the<br />

similar results <strong>with</strong> this numerical example even in the cases we<br />

adopt Borne other ourves else than parabola for the discharge hydro-<br />

graph,e.g.,cosine or probability curve. But adopting the oase as-<br />

sumed as a parabolic curve is safer,easier to handle,& reasonable.<br />

So the author would like to suggest those <strong>of</strong> the parabolic curve as<br />

the general formula in this paper.<br />

(b) The maximum flood discharge formula at the confluence for the<br />

oaee <strong>of</strong> a river where n-1 tributaries flow into the confluence<br />

(F ig-8 1<br />

If we assme the discharge hydrograph consists <strong>of</strong> a parabolic<br />

curve, by the srne priciple <strong>with</strong> that in the previous paragraph, we<br />

(0) The maximum flood discharge at the proposed site which is<br />

located the downstream <strong>of</strong> a tributary


644<br />

Now let O is the proposed site, O' the confluence <strong>of</strong> the tributary<br />

in Fig-10, and t, is the necesssry tirne for reaching <strong>of</strong> rain<br />

water from O' to O. If we assume the discharge hydrograph consists<br />

<strong>of</strong> a parabolic curve.FiR-11 ,then<br />

Q = Q;,+ qiez4q, (t-t, 1 /TI - 4 qi( t - t , l2 / TF+4 qr t/T+ - 4 kt2 /Ti (<br />

(d) The maximum flood discharge at 8 proposed site where n-1 tribu-<br />

taries join to the main river at its upstream side.(Fig-12)<br />

if we assume the discharge hydrograph consists <strong>of</strong> 8 parabolic<br />

curve, by the same principle <strong>with</strong> that in the previous paragraph, we<br />

(e) The ma>;Smum flood discharge at a proposed site where m tribu-<br />

taies flow into this site and n-1 tributaries join to the<br />

main river at its upetream side. (Fig-14)<br />

This is the most general case. If we assume the discharge hydro-<br />

graph consists <strong>of</strong> a parabolic curve, by the same principles, we get<br />

V. CONCLUSION<br />

The maximum flood discharge generally increase toward âown-<br />

stream, a6 the result <strong>of</strong> increment <strong>of</strong> the drainage area. But as the<br />

approaching time also increases approaching down stream,in other<br />

words,ss the nearer approaching downstrem,the greater effect <strong>of</strong> re-<br />

tardatlon. Accordingly the rate <strong>of</strong> increment <strong>of</strong> the peak discharge<br />

decreases generally approaching downstream; and sometimes,i.e.,in<br />

such oa8e18 where the approaching time remarkably increases compared<br />

<strong>with</strong> the inorement <strong>of</strong> the drainage area, not o<strong>nl</strong>y the rate but also<br />

the actual absolute value <strong>of</strong> the peak discharge decreases at the dom<br />

stream than those <strong>of</strong> the upstream. These fsots are experienced some-<br />

times in practice, In such cases,it was impossible to expreee this<br />

fa& by the old formulas. However by the author's formulas, it is<br />

ìGYi


645<br />

easy am2 theoretically sound to express this fact. Because as we see<br />

the author's basic formulas-eq( 9)-(14) , which represent the drainage<br />

area A in the numerator and the factor <strong>of</strong> the approaching time tc in<br />

the denominator. So it may also be said that the author's formulas<br />

are very theoretical from the point <strong>of</strong> view <strong>of</strong> this fact.<br />

As mentioned above,the author derived theoretically,i.e.,ration-<br />

ally or stochastically many formulas <strong>of</strong> maximum flood discharge- the<br />

basic formulas for the case <strong>of</strong> a river <strong>with</strong> non-tributary and many<br />

other different formulas for the case <strong>of</strong> rivers <strong>with</strong> tributaries. Be-<br />

cause the author found that the existence <strong>of</strong> tributaries affect great-<br />

ly not o<strong>nl</strong>y the peak discharge but also the entire shape <strong>of</strong> the dis-<br />

charge hydrograph at the proposed site <strong>of</strong> the downstream. Consequent-<br />

ly it may be posaible,by applying the author's formulas,to find the<br />

real shape <strong>of</strong> the discharge hydrograph at the point under consider-<br />

ation to be occurreti in some flood time.<br />

Some scholars advocate that the actual shape <strong>of</strong> the flood dia-<br />

charge hydrograph resembles to ~ig-16. On the other hand,some other<br />

scholars insist that it should be resembled to Fig-17. But the author<br />

should say that these theories both advocated by the traditional<br />

scholars are those have not been touched to the core <strong>of</strong> the true theo-<br />

ries. The real shape <strong>of</strong> the discharge hydrograph depends upon the lo-<br />

cality Qf the point under consideration,in other words, it depends on<br />

the relat4ve position <strong>of</strong> the proposed point and those <strong>of</strong> the conflu-<br />

ences <strong>of</strong> th? tributaries on the mainstream under consideration. Conse-<br />

quently it is resembled to ~ig-16 in some cases, and also it takes a<br />

shape resembleel to Fig-17 in some casessin accordance <strong>with</strong> the locali-<br />

ty <strong>of</strong> the point under consideration. As stated above,it would be able<br />

to show the real shape <strong>of</strong> the discharge hydrgraph just fitted in the<br />

locality <strong>of</strong> the proposed site by applying the author's formulas.<br />

The author's formulas also would be applicable not o<strong>nl</strong>y for the<br />

purpose <strong>of</strong> reckoning <strong>of</strong> the design flood, but also for that <strong>of</strong> esti-<br />

mation <strong>of</strong> the flood routing for some floods. In the case <strong>of</strong> flood<br />

routing,it would be possible to obtain more correct results by taking<br />

the real value fop tr instead <strong>of</strong> that calculated from eq(l1) in some<br />

cases,i.e.,the real value <strong>of</strong> tr is greatly different from that calcu-<br />

lated from eq(i1).<br />

The author's formulas would be widely applicable for rivers or<br />

sewer nets,& also for any regions,countries <strong>with</strong> different locality,<br />

and it would be possible to obtain correct and accurate results by<br />

selecting or assuming the values <strong>of</strong> the coefficieuits in his fQrUIUlaS<br />

appropriately. Aceoräingly the author should like to suggest that the<br />

author's formulas shall be applied in practioe in many regions and<br />

also for many purpose8 as far as possible.


(p<br />

646<br />

F ¡y -I<br />

e<br />

c, 3<br />

O<br />

Fig- 7<br />

e<br />

t<br />

-+<br />

O<br />

Fi 9 -2<br />

Fig- 8<br />

Y<br />

ot P<br />

O<br />

Fìg -9<br />

Fij-3<br />

t


647


THE COST-EFFECTIVENESS OF WATER RESOURCES SYSTEMS<br />

CONSIDERING INADEQUATE HYDROLOGICAL DATA<br />

Nathan Buras, Ph.D.<br />

The Lowdermilk Faculty <strong>of</strong> Agricultural Engineering<br />

Technion - Israel Institute <strong>of</strong> Technology, Haifa, Israel<br />

Introduction.<br />

The question <strong>of</strong> how much hydrological information is<br />

necessary for the design <strong>of</strong> water resources systems has not<br />

been answered satisfactorily as yet. Perhaps this question<br />

does not admit <strong>of</strong> a unique answer, but rather <strong>of</strong> a range <strong>with</strong>-<br />

in which the specific solution to a given situation may be<br />

found .<br />

In general, one can state intuitively that the cost <strong>of</strong><br />

a water resources project decreases <strong>with</strong> the amount <strong>of</strong> avail-<br />

able hydrological data. For example, a longer hydrological<br />

trace at a given reservoir site will yield improved estimates<br />

<strong>of</strong> mean annual discharges and <strong>of</strong> extreme flows, so that the<br />

dimensions <strong>of</strong> the dam and <strong>of</strong> the spillway may be reduced for<br />

a given probability <strong>of</strong> failure during the same period <strong>of</strong> time.<br />

On the other hand, additional hydrological data irivolve in-<br />

creased cost, not o<strong>nl</strong>y in terms <strong>of</strong> more gauging stations and<br />

<strong>of</strong> the attendant manpower, but also in terms qf 'osts incurred<br />

to the society by delaying the design and the covistruction <strong>of</strong><br />

the project until more data is collected and processed. Schem-<br />

atically, one can show these two cost functions as two curves<br />

intersecting in the data-cost space (Figure 1). However, <strong>of</strong><br />

practical importance are not the individual cost curves, but<br />

the parabola which is the sum <strong>of</strong> the two functions. We shall<br />

define, therefore, as adequate hydrological data the amount<br />

<strong>of</strong> hydrological information corresponding to tho niinimum<br />

ordinate <strong>of</strong> the total cost curve. This definition impli-s<br />

that hydrological data in excess <strong>of</strong> this amount are as '.nade-<br />

quate as those which are short <strong>of</strong> it: indeed, the effort put<br />

in obtaining this additional information may increase the total<br />

cost <strong>of</strong> the project. For this reason, we recommend the use <strong>of</strong><br />

the terms insufficient data for the information less than ade-<br />

quate, and redundant data for the information in excess <strong>of</strong> the<br />

point <strong>of</strong> adequacy.<br />

The problem <strong>of</strong> adequate hydrological data is part <strong>of</strong> the<br />

broader issue <strong>of</strong> planning water resource; s@erns. Within this<br />

e<strong>nl</strong>arged context, the hydrological data is but one <strong>of</strong> the<br />

several planning variables, the others being socio-economic<br />

considerations, organizational and i.nstitutiona1 structures,<br />

political constraints, and so on. The role <strong>of</strong> the hydrological<br />

data in a complex water resources system was investigated relative<br />

to the water quality in the Potomac estuary [I]. In this<br />

analysis, four planning variables were considered: (a) hydrological<br />

inputs; (b) models <strong>of</strong> the dissolved oxygen fluctuations


650<br />

in the estuary; (c) economic projections <strong>of</strong> the region serviced<br />

by the water resources system; (d) water quality objectives in<br />

the estuary. Under the specific conditions <strong>of</strong> the Potomac, it<br />

was found that the performance <strong>of</strong> the planned water resources<br />

system was most sensitive to the economic projections, and<br />

least sensitive to the hydrological planning variable (10-<br />

year and 50-year sequences <strong>of</strong> hydrological data).<br />

Sufficiency <strong>of</strong> hydrological data.<br />

It does not seem that there is today a generally accepted<br />

method for the evaluation <strong>of</strong> the amount <strong>of</strong> hydrological data<br />

<strong>with</strong> respect to their adequacy for planning water resources<br />

systems. However, the problem was recognized for some time and<br />

several approaches toward its solution were developed. One such<br />

approach, based on the concept <strong>of</strong> information content <strong>of</strong> the<br />

observed data [2], is oriented toward the determination <strong>of</strong> an<br />

opt,imal .letwork <strong>of</strong> hydrological stations in a region. A some-<br />

what similar approach is based on minimizing the sum <strong>of</strong> variances<br />

<strong>of</strong> the estimates <strong>of</strong> the mean flows at gaging stations in a hydro-<br />

logical network subject to a budgetary constraint [3]. All these<br />

approaches attempt, in fact, to devise optimal strategies <strong>of</strong><br />

hydrc logical sampling.<br />

However, when considering the L msequences <strong>of</strong> inadequate<br />

h,droiogical data on the cost and effectiveness <strong>of</strong> water resources<br />

Ftrur?l,!res anfi FroJects, it secas thnt the scope <strong>of</strong> the analysis<br />

Iza> to be broadened. This analysis takes into account not o<strong>nl</strong>y<br />

ali pcc:;ible sample results, but also computes the expected<br />

worth 3r expected opportunity loss) <strong>of</strong> a strategy which assumes<br />

that the best decisions (regarding the various components <strong>of</strong> a<br />

water resouI-ces system - to construrit or not to construct) are<br />

dependent upon the information content <strong>of</strong> the observed sample.<br />

This approach is called preposterior anal sis [4], because,<br />

&hough carried out before the sample + in ormation is obtained,<br />

it attempis + assesserior probabilities derived on a particular<br />

sapl e rutcome.<br />

A simple example will illustrate the preposterior analysis.<br />

Suppose that the Development Authority <strong>of</strong> region Aleph is considering<br />

thF construction <strong>of</strong> a major dam. However, the Authority<br />

wants ils~ to appraise the advisability <strong>of</strong> obtaining additional<br />

hydrological data thus delaying the planning and implementation<br />

schedule by a few years. It is estimated that total costs involved<br />

in obtaining the additional data, including costs generated by the<br />

non-availability <strong>of</strong> water and water derivatives at the dam site


651<br />

6<br />

during the additional time period, are 15 x 10 Monetary Units<br />

(in short, 15 MMü). The contemplated structure needs an invest-<br />

ment <strong>of</strong> 160 MMU, while the present value <strong>of</strong> the stream <strong>of</strong> net<br />

benefits generated by it would add up to 200 W.<br />

The Authority has two options:<br />

al: build the dam<br />

a2:<br />

do not build the dam<br />

<strong>with</strong> the possible outcomes<br />

el: the project is successful<br />

9,: the project is a failure.<br />

On the basis <strong>of</strong> past experience and <strong>with</strong> the help <strong>of</strong> a<br />

firm <strong>of</strong> consulting engineers, the Authority reaches the con-<br />

clusion that the prior probabilities <strong>of</strong> success or failure are<br />

p(el) = 0.25<br />

p(e2) = 0.75.<br />

On the basis <strong>of</strong> the existing data the prior expected<br />

opportunity losses (EOL) can be computed as follows:<br />

Table 1.<br />

Calculation <strong>of</strong> Prior Expected 0pportimj.ty Losses<br />

a,: build the dam<br />

Probability Opportunity Loss, Wej-giited Oppor-<br />

Out come p(e; - MMu tunity Loss, MNRT<br />

el: success O<br />

û2: failure 150<br />

O<br />

120<br />

m<br />

EOL (u,) -- 120 MMU<br />

a,: do not build the dam<br />

Outcome<br />

Probability<br />

p(e4 - )<br />

Opportunity Loss,<br />

ndMu<br />

Weighted Opportunity<br />

LGSS, MMU<br />

el: success<br />

û2: failure<br />

200<br />

O<br />

50<br />

O<br />

EOL (a,) = 50 MMü<br />

opt EOL = EOL (a,) = 50 MMü<br />

5u


652<br />

Thus, <strong>with</strong> no additional information, the best decision<br />

would be not to build the dam. In this way, region Aleph would<br />

forfeit o<strong>nl</strong>y 50 NIMU, the expected opportunity loss.<br />

Now the Development Authority turns to its Hydrological<br />

Service asking its advice regarding the nature and usefulness<br />

<strong>of</strong> the additional information which may be obtained& the cost<br />

<strong>of</strong> 15 MMU. The attitude <strong>of</strong> the Hydrological Service is that. by<br />

and large the additional data would yield one <strong>of</strong> the following<br />

three types <strong>of</strong> indications regarding the effectiveness <strong>of</strong> the<br />

reservoir (in terms <strong>of</strong> streamflow regulation, hydropower gener-<br />

ation, flood contral, etc.):<br />

X1: increase in effectiveness<br />

X2: no change<br />

X3: decrease in effectiveness.<br />

These variables could have been measured o<strong>nl</strong>y when projects were<br />

constructed, whether successful or not. Thus, the Hydrological<br />

Service had in its records a set <strong>of</strong> joint probabilities P(X.1)gi)<br />

as follows:<br />

J<br />

out co1iie<br />

Table 2.<br />

Joint Probabili ties<br />

P( XJW; )<br />

'i x1 x2 x3<br />

0,: project successful 0.20 0.05 0.05<br />

û2: project unsuccessful 0.05 0.10 0.55<br />

- - 7<br />

To taï<br />

To tal 0.25 O. 15 0.60 1 .o0<br />

Of course, the column totals represent the mar inal proba-<br />

bilities <strong>of</strong> .the usefulness <strong>of</strong> the additional data: PTX,) = 0.25,<br />

P(X,) = 0.15, P(X3) = 0.60.<br />

The expected value <strong>of</strong> the information which may be obtained<br />

by the additional hydrological data is reached by means <strong>of</strong>' a dia-<br />

gram, as shown in Figure 2. The set <strong>of</strong> probabilities appearing<br />

in the last branches <strong>of</strong> the decision tree are conditional probabi-<br />

lities p(eiJxj),


653<br />

The amount <strong>of</strong> 28.9 MMU appearing at the node (a) in the<br />

decision tree represents the expected opportunity loss if it is<br />

decided to obtain additional hydrological information and if<br />

optimal decisions would be made on the basis <strong>of</strong> the new data.<br />

Comparingbhis amount <strong>with</strong> the 50 MMU obtained under Itno additional<br />

data" policy (Table I), it appears that it is worth spending<br />

50.0 -'.2&9 = 21.1 MMU in getting more hydrological information.<br />

The difference between the outcomes <strong>of</strong> the two policies is called<br />

the expected value <strong>of</strong> sample information. The expected net gain<br />

<strong>of</strong> sample information is 21.1 - 15 = 6.1 MMU, i.e., the expected<br />

value <strong>of</strong> the sample information exceeds the costs incurred in<br />

obtaining it. The Development Authority concludes, on the basis<br />

<strong>of</strong> preposterior analysis, that it is worthwhile to get the addi-<br />

tional hydrological information.<br />

Cost-effectiveness.<br />

Cost-effectiveness is, in fact, engineering economics<br />

[5]. It is concerned <strong>with</strong> evaluation <strong>of</strong> a system worth, before<br />

the decision is made to construct the system. Thus cost-effectiveness<br />

is future oriented, and because <strong>of</strong> it its mode <strong>of</strong><br />

expression is in terms <strong>of</strong> probabilities and expectations.<br />

With reference to the situation represmted by Figure 1 ,<br />

one can relate cost-effectiveness <strong>with</strong> the reciprocal <strong>of</strong> Cost,<br />

i.e., l/(cost). In this way, the lower the cost <strong>of</strong> a project,<br />

the higher would be its cost-effectiveness (which wculd also be<br />

a measure <strong>of</strong> its worth).<br />

Now, the cost-effectiveness <strong>of</strong> a system (as measured by<br />

its worth) increases <strong>with</strong> the amount <strong>of</strong> information available<br />

at the time when the system is designed. In other words, this<br />

is a re-statement <strong>of</strong> the truism that the more we know about the<br />

universe <strong>with</strong>in which we design a system, the better the chances<br />

to produce a good design. The increase in the cost-effectiveness<br />

can then be observed <strong>with</strong> respect to two major aspects.<br />

(a) Flexibility in plarmin . Because <strong>of</strong> hydrological,<br />

economic, an-gacing the planner <strong>of</strong> a water<br />

resources system, it is desirable to produce a flexible system.<br />

In this context, byYlexibilitytl is understood one or more <strong>of</strong><br />

the following attributes:


654<br />

(i) The possibility <strong>of</strong> increasing the capacity <strong>of</strong> the<br />

system by adding additional components <strong>of</strong> the same kind (e.g.,<br />

pwnp stations in a pipeline network).<br />

(ii) The possibility <strong>of</strong> altering operating policies so<br />

that the system may respond to a broader range <strong>of</strong> demands.<br />

(iii) The possibility <strong>of</strong> modifying the system when the<br />

nature <strong>of</strong> the demand changes, e.g., when there is a traasition<br />

from irrigation to domestic and industrial uses <strong>of</strong> water.<br />

(iv) The possibility <strong>of</strong> constructing the system in<br />

stages, so as to respond to increases in the demand for water.<br />

(b) Reversible vs. irreversible decisions. The design<br />

<strong>of</strong> a system or <strong>of</strong> a component is a one-stage decision process:<br />

the size and dimensions are established. If the system is im-<br />

plemented, the design decision may have irreversible effects<br />

upon the emironment, such as the transformation <strong>of</strong> a canyon<br />

<strong>of</strong> unique scenic beauty into a man-made lake <strong>of</strong> doubtful<br />

esthetic value. The decision to delay implementation is<br />

reversible, since it keeps open the alternative to construct the<br />

system. In addition, until the first decision is reversed,<br />

additional information may affect several planning details, ar-d<br />

also technologies may be improved in the interim.<br />

As an example <strong>of</strong> the introduction <strong>of</strong> these two aspects<br />

in the planning process, one can indicate thi. Israel <strong>Water</strong><br />

Scheme. The planning process was oriented toward increasing<br />

the cost-effectiveness <strong>of</strong> the system, especially <strong>with</strong> respect<br />

to flexibility in design and to the reversibility oî decisions [6].<br />

The development <strong>of</strong> water resources progressed from local ground<br />

water schemes, to regional groundwater projects, finally to the<br />

construction <strong>of</strong> the major component related to surface water<br />

resources - the National <strong>Water</strong> Carrier.<br />

Planning and design <strong>with</strong> inadequate data.<br />

The adequacy <strong>of</strong> hydrological data as defined by Figne 1<br />

represents one aspect <strong>of</strong> the general problem <strong>of</strong> the consequences<br />

<strong>of</strong> inadequate hydrological dataon the cost and effectiveness <strong>of</strong><br />

water resources structures and projects. Although this aspect<br />

can be quantified, it is still somewhat mechanistic.<br />

Another aspect would stress the linkage between data<br />

and decisions in the planning process. Although this aspect


655<br />

also lends itself to'quantification, at least as far as the<br />

data are concerned, it seems that it reflects also the quality<br />

<strong>of</strong> the ensuing design (and operating) decisions.<br />

It would be perhaps beyond the scope <strong>of</strong> this paper to<br />

survey the state <strong>of</strong> the art in the planning and the design <strong>of</strong><br />

water resources systems <strong>with</strong> inadequate data. However, it<br />

would be instructive to mention two <strong>of</strong> the more recent contributions<br />

to this problem: one dealing primarily <strong>with</strong> surface<br />

water, and another related to groundwater.<br />

Wallis and Matalas [7] consider the problem <strong>of</strong> deter-<br />

mining the capacity <strong>of</strong> a surface reservoir such that a given level<br />

<strong>of</strong> demand be satisfied. Observed hydrological data were used to<br />

generate synthetic flow sequences, using two different sequence-<br />

generating mechanisms: (a) a well-known model based on the<br />

Markovian process; (b) a model developed recently [8] which<br />

assumes the process to have a finite memory length M and the<br />

Hurst coefficient h; this is called the filtered type 2 process.<br />

It seems that for streamflow regulation <strong>of</strong> up to 80$ <strong>of</strong> the mean<br />

annual flow, the Markovian model may be quite useful for the<br />

determination <strong>of</strong> the minimum necessary storage; for higher degrees<br />

<strong>of</strong> streamflow regulation, the filtered type 2 model <strong>with</strong> h 7 2<br />

should be used.<br />

Maddock [g] used mixed integer programming methods for<br />

evolving a planning and management model <strong>of</strong> a groimd water<br />

development project. The model is oriented toward deterqining<br />

three components <strong>of</strong> the overall system: (a) least cost operation<br />

<strong>of</strong> existing wells; (b) least cost spatial and temporal schedule<br />

for installing new weììs; (c) least cost transport system to.<br />

convey the pumped water to a central demand point. The methodo-<br />

logy developed is tested on a hypothetical sample problem in<br />

which ground water development has to satisfy the demands for<br />

water <strong>of</strong> a town. The concept <strong>of</strong> expected value <strong>of</strong> opportunity<br />

loss (similar to the expected opportunity loss encountered in<br />

the preposterior analysis) is used as a measure <strong>of</strong> how much<br />

the errors inherent in estimating the model parameters will<br />

affect the cost <strong>of</strong> the project in terms <strong>of</strong> overdevelopment or<br />

underdevelopment. The results <strong>of</strong> the analysis indicate that the<br />

reduction <strong>of</strong> uncertainty for the purpose <strong>of</strong> decreasing the<br />

expected value <strong>of</strong> the opportunity loss should be a balanced<br />

activity, i.e., beyond F- given point, further reduction <strong>of</strong> the<br />

hydrological uncertainty will not improve the decision-making<br />

process u<strong>nl</strong>ess the economic uncertainty is alao diminished.


656<br />

Concluding; remarks.<br />

The consequences <strong>of</strong> inadequate hydrological data on the<br />

cost and effectivepeas <strong>of</strong> water resources structures and pro-<br />

jects were assumed to have a parabolic shape in the data-cost<br />

space. The abscissa <strong>of</strong> the minimum point <strong>of</strong> thìs vertical<br />

parabola defines the adequacy <strong>of</strong> data.<br />

There are several methods for the evaluation <strong>of</strong> hydro-<br />

logical data <strong>with</strong> respect to their adequacy for planning. One<br />

such method using the preposterios analysis is presented in<br />

some detail. This method enables the calculation <strong>of</strong> expected<br />

opportunity loss generated by a program designed to obtain<br />

additional hydrological data, as well as the expected value<br />

<strong>of</strong> the sample information. If the expected net gain <strong>of</strong> sample<br />

information is positive, it is an indication that the existing<br />

hydrologic& data are insufficient.<br />

Cost-effectiveness <strong>of</strong> projects is briefly discussed,<br />

<strong>with</strong> some emphasis on its aspects regarding the flexibility in<br />

planning and the irreversibility<strong>of</strong> some design decisions. As<br />

an example <strong>of</strong> these asepcts, the Israel <strong>Water</strong> Scheme illustrates<br />

a planning process oriented toward increasing the cost-effectiveness<br />

<strong>of</strong> the system.<br />

Fi,nally, how to plan and design water resources systems<br />

<strong>with</strong> less th&? adequate hydrological data was illustrated by<br />

two examples. In the first example, synthetic hydrology was<br />

used to determine the capacity <strong>of</strong> the reservoir, but the design<br />

was sensitive to the type <strong>of</strong> model used to generate the synthe-<br />

tic sequence. The second example related to a ground water<br />

development project.<br />

Ref erences .,<br />

1. James, II, I.C., Bower, B.T. and latalas, N.C. (1969)<br />

Relative importance <strong>of</strong> variables in water rescurces planning,<br />

<strong>Water</strong> <strong>Resources</strong> Research, 5( 6), pp. 1165-1173.<br />

2. Matalab, N.C. (1968) Optimum gaging station location,<br />

Proceedings, IBM Scientific Computing Symposium, <strong>Water</strong> and<br />

Air Resource Management, White Plains, N.Y., pp. 85-94.<br />

3. Fiering, P.B. (1965) An optimization scheme for gaging,<br />

<strong>Water</strong> <strong>Resources</strong> Research, 1(4), pp. 463-469.


4. Hamburg, M. (1970) Statistical analysis for decision<br />

making, N.ew York, Harcourt, Brace & World.<br />

657<br />

5. English, J.M. (1968) Cost-effectiveness, New York, Wiley.<br />

6. Buras, N. (1971) Utilization <strong>of</strong> ground water resources in<br />

Israel, Atti, Convegno Internationale sulle Acque Soterranee,<br />

Palermo, pp. 674-680.<br />

7. Wallis, J.R. and Matalas, N.C. (1972) Sensitivity <strong>of</strong><br />

reservoir design to the generating mechanism <strong>of</strong> inflows,<br />

<strong>Water</strong> <strong>Resources</strong> Research, 8( 3), pp. 634-641.<br />

8. Mataïas, N.C. and Wallis, J.R. (1971) Statistical pro-<br />

perties <strong>of</strong> multivariate fractional noise processes, <strong>Water</strong><br />

<strong>Resources</strong> Research, 7( 6), pp. 1460 - 1468.<br />

9. Maddock, III, T. (1972) A ground-water planning model<br />

basis for a data collection network, International Symposium<br />

on Uncertainties in Hydrologic and <strong>Water</strong> <strong>Resources</strong> Systems,<br />

Tucson, Arizonp, pp. 6.3-1 - 6.3-26.


658<br />

cost,<br />

Monetary<br />

Units<br />

~~ ~ ~~~<br />

Amount <strong>of</strong> hydrological data<br />

Figure 1. The data-cost space.


\<br />

3<br />

R. A<br />

Figure 2.<br />

o. 20/0<br />

659<br />

Decision diagram for preposterior analysis, MMU.


OPTIMIZATION OF WATER RESOURC ES DEVELOPMENT PROJECTS<br />

ZN CASE OF INARE2UATE HYDROLOGIC VATA.<br />

A. Filetti' ) , G. Faank ' 1, C. Pahvuleb eu' ' I<br />

Bucuhebti, Romania<br />

----<br />

I n t h o d u c t i o n .<br />

The phoblemb which have to be bolved by hydhaulic<br />

engineeh4 ahe 06 g hed diveaitq and deeibionb in theih<br />

dieldb o 6 actiuity o@en imply a conbidehable hen ponb abi-<br />

lity, not o<strong>nl</strong>y in hebpect to the economic conbequenceb,<br />

but albo to the bocial and ecologic eddectb 06 buch de-<br />

cibionb. Being heeded to the mabtehing 06 cehtain natuh-<br />

al phenomena, mobtly huled by btochabtic lam, the con-<br />

ception as well a¿ the opehation od wateh hebouhceb de-<br />

velopment dthuctuheb depend on the deghee od knowledge a-<br />

vailable on natuhal data, ebpecially on thobe helated to<br />

hydhologic euenth. The hydhologic hecohdb necebbahy to<br />

hydaaufic engineehs ahc not condined to data &elated to<br />

liquid blow, though data 06 thib type ahe ebbenaal doh<br />

theih acLluity, but ah0 concehn bed-load phocebbeb ,hiveh<br />

and bank dynamics, wintea phenomena etc. Euidently,due to<br />

the aleatohq chahactes ob mobt hydhologic occuhenceb,even<br />

long ~recohdb 04 pat hydhologic phenomena cannot oddeh an<br />

abbolute baáety a¿ hegahdb avoiding ehhohb and deviation<br />

@om the altehnaZiue which could be phoved ab optimal. lt<br />

,i¿ neuehthelesb unanimoubly accepted that, ab the volume<br />

and quality 06 in6ohmation on tlecohded hydhologie events<br />

incheas eh, in conditionb o 6 i tlb cohhect intehphetation,<br />

the phobability 06 cohhect ebtimation od dutute occuhencc<br />

ob hydirologic phenomena inchease4 and, a2 the bame time,<br />

the hhkb abbumed in taking deCihion6 decaease.<br />

~<br />

'1 Vocto~-Engineeh,ChCed Engineeh od the Rebeahch and Ve-<br />

bign Inbtitute doh Wateir RebOuhCeb Engineehing.<br />

I') Engineea, Team leadeh at the Inbtitute doh tlydsoetec-<br />

thic SXudied and Vebign.<br />

11') Voctak-Engineeh, Section leadeh at the Rebeakeh and<br />

Debign Indtitute doh Wateh Reb ouhceb Engineehing .


66 2<br />

It muAt be undeiraned that the indluence 06 incom-<br />

plete hydirologic data on the pobbibieity 06 coirirectlg de-<br />

teamining the technological, duncL¿onal and economic pa-<br />

irameteu 06 wateir heb ouirceb development piroject¿ depend¿<br />

in gheat meabuhe to the hydirologic chahacteh 06 the iriuez<br />

bain, on the natuire 06 wateir Ubeb, on the type 06 bthuC-<br />

tuheb etc. Theaedohe,any opL¿mizaL¿on method mubt be con-<br />

bidehed in the fight od the condition4 in which thib me-<br />

thod ib apptied; the bpecidic 4itUafiOnb and the tenden-<br />

cieb in bolving the phoblemb menaoncd in thib papeh must<br />

be looked at o<strong>nl</strong>y ab typical exampleb.<br />

Undeh conditionb o6 incomplete hydhologic indoirmat-<br />

ion, the methodb Ubually appfied ahe no longeir clbe~jul and<br />

it i8 necebbahy eitheh to adapt thebe methodb to the a-<br />

vailable data oh to adopt bimpleh phoceduheb which aire<br />

conbibtent <strong>with</strong> thebe data. In belecting buch methodb,<br />

6oÆlowing itemb mubt be taken into account:<br />

- the methodb mubt mahe integhal ube 04 the auaila-<br />

ble volume 06 indohrnaL¿on.At the bame L¿me it mubt<br />

be kept in mind ithat no phocebbing id able to cire-<br />

ate quantitatively new in~ohmation and thehedoh it<br />

lb ubetebb to thy genehafing in6ohrnat.ion not con-<br />

tained in the basic data;<br />

- bebideh hydhologic data irecoirded in the aiueir ba-<br />

din bubject to analybib, it i4 pobbible to take<br />

advantage 06 additional indohmaL¿on irecoirded in<br />

neighbouhing hiveir babinb. Indihect hydirology may<br />

be ubed ebpecially in ohdeir to obtain quafitufive<br />

indohmation hegairding the beabona1 oh annual dib-<br />

thibufion 06 dlow, the pobbibifity od occuirence 06<br />

cehtain hydhologic phenomena in vaaiou4 pehiodb od<br />

the yeah, etc;<br />

- the method mut not lead to an ampfi6icaLLon od<br />

ehhou od the hydhologic basic data but,ab much ab<br />

pobbible to theiir attenuation.<br />

A gheat diveuity 06 bituationb exibtb conceirning a-<br />

vailable hydhologic data, covehing the whole dietd dirom


663<br />

total lack to an acceptable volume od in6okmation. Theke-<br />

dohe, tkying to bet up cefitain methodb o6 gcneaat appbic-<br />

ation ib haadly to be hecommended. In painciple, it<br />

would be make cokhect to talk about gkoupb ok typed 06<br />

methodo having a common p~ncipîe. Thebe have to be adap-<br />

ted to concirete conditionb and objectiveb 06 each inveb-<br />

tigated pkoject. The methods which can be appLied in cabe<br />

06 inadequate hydkological data may be ceabbidied ab dol-<br />

LoWb :<br />

- methodb baoed on the genekation 06 bynthetic hy-<br />

dkologic bequenceb, btakting ('ron1 given btatibtic-<br />

al pazameteu od hydkologic phenomena [ Monte Cak-<br />

to methods);<br />

- methodo based on the genekation 06 hydhologic be-<br />

quenceb by comelation <strong>with</strong> kaindall data;<br />

- method¿ based on the genehalization o6 kebultb od<br />

watea he6 oukceo engineeking computation4 ;<br />

- methods based on the theoky od gameb.<br />

Thib kepoht intend6 to pkebent the wayd in which<br />

thebe method4 can be appaed'in dome key pkoblemb 06<br />

watek ire4 ouaced engineeking .<br />

Dimenbioning 06 kivek blow hegulating<br />

wokkh debigned dok rneefing ~atek<br />

demandb.<br />

Une od the mobt ubual paobtemb, cohkebponding to an<br />

incipient phue 06 watek keboukceb development, i¿ to ed-<br />

timate the capability 06 unhegulated UVC CM to meet u b e ~<br />

watek demand.<br />

The bolution od thib type 06 pkoblemb id based lebb<br />

on the detekmination 06 avekage @ow and dependendb gnea-<br />

tty on tow watehb and on chakactehibtic minimum valued 06<br />

dibcchakgeb; thebe valued can pkebent a gkeat benditivity<br />

to the quantity 06 available in6okmatiav1, to the methodb<br />

06 dikect oh indikect detekmination od dtow valued and to<br />

the degkee to which ba~ic data have been extkapolated.<br />

Theke6oke, the tack 06 adequate hydkotogic data and


664<br />

pahticulahly 04 batib dactohy hydhomethic hecohdb can be,<br />

in thh cue, the bouhce od impohtant ehhoh4. The w e 06<br />

cohhelative methoda d6 hibky, as the helative valueb 06<br />

low wate~ depend on the individual bupply 06 each wateh<br />

couue. On the otheh hand, the u4e o6 bimulated 6low beqU12MCe4,<br />

wually applied doh genehating mean monthly<br />

dib chahgeb, cannot be batib dactohy, bince daily valueb<br />

od minimum dibchahge can<br />

monthly valueb.<br />

conóidehably did6eh dhOm mean<br />

The dub-unitahy Ratio 06 minimum daily dibchahge to<br />

mean monthly dibchahge i4 wually bmalleh id the phobability<br />

o6 exceeding the dibchahge incheaeb and the buhdace<br />

od the hiuek basin decheaeb.<br />

The ehhoM which can be made in buch cabe4 can be<br />

one 06 the dollowing:<br />

- oueh-evalua-ting available low dlow,which can lead<br />

to a bmalleh phobability od being able to meet<br />

wateh demand od ue~; thib phobabifity might not<br />

be acceptable becaube 06 the excebbive lobbeb due<br />

to dhequency and bevehity od wateh bhohtage. It<br />

i4 Wohth mentionning that in bome counthieb (as in<br />

the U.S.S.R. ,Czechoblouahia, Romania and othehs 1<br />

the phobabifity 04 being able to meet demand A<br />

ebtablibhed by btandahdb and A ,thehedohe, compulb<br />

ohy;<br />

- undeheualuating available low dlow,which can lead<br />

to a da&e conclubion, that the hiVeh i4 not able<br />

to meet demand <strong>with</strong>out blow hegutation and that<br />

a stohage hCbehU0ih Oh a diuehbion dhom otheh excedentahy<br />

hiueu h a to be budX.Thib would imply<br />

u4eleb4 expenbeb Oh, in the bebt Ca4e,UbelQbb immobifibation<br />

od capital.<br />

Ab wateh demand ghowb in compahibon to available<br />

wakeh hebOUhCQ6, the neCCbbahY deghee od blow hegula-tion<br />

incheu eb and mutationb emehge concehning the bignidicance<br />

06 vahiou categohieh od hydhologic indohmation. In<br />

thib benbe, the data helated to the auehage inalow doh


665<br />

longeh L¿me pe&¿odb: monthb, beabonb, yeah4 oh even be-<br />

quenceb ad yeau begin to play an ebbential pmt in de-<br />

tehmining the pahametehb 06 btohage hequihed.<br />

The indtuence 04 genehat hydhologic data on the va-<br />

tue 06 thebe puhameteu i4 heuealed by the geneaal phac-<br />

-Lice 04 wateh hebouhceb engineehb a4 well a4 by home<br />

Apecial hebeahch phoghamb. Thib inbluenee iA made evid-<br />

ent by invehtigating :<br />

- the genehat hetations between the chahacteaibtic<br />

blow panameteu and the bpecidic deghee 06 deue-<br />

topment 06 wateh hebouhceb;<br />

- the ben&¿tiVitLj od hebUltb concehn.¿ng blow hegut-<br />

dion at vahiou4 degheeb 06 apphoximation od the<br />

inadequate hydhologic data.<br />

Thub, a diut aspect 06 thib anatybib concehnb ihe<br />

cohhelaXion bemeen the main puhametehb chahactehib.tiC<br />

doh dtow dL¿thLbution: the vahiation coeddicient Cu, 2he<br />

coeddicient 06 bkewnebb Cb and the coe6dicien.t od sehial<br />

cohhelation ir on one hand and the net volume od necebba-<br />

hy ótohage hebehV0iJr.b and theih opehating policieh on<br />

the otheh.<br />

Vahiou4 sepohth conceaning genehatized Jab ultb on<br />

the connection befween thebe patameteu and the magnit-<br />

ude 06 the ove&-annual component 04 the nequihed btohage<br />

doh a given bade yield have been pubfibhed 111, 121 .<br />

Rebula 06 buch hebeahch ib beAt made evident by<br />

diagrramb phebenting the comelation between the coedtjic-<br />

iena a, p and B, 06 which an example ib shown in diguhe<br />

i. Following bymboeb have been uded :<br />

- a, the blow aegulation coeddicient 04 the deve-<br />

lopment, deiined ab the ha.t.io 06 the bade yield<br />

od the dtohage hebehvoih to the auehage dibchahge<br />

06 the wateh COUILA~ ;<br />

- p id the phobabieity od meeLing wateh demand, de-<br />

dined ab the &mit 06 the hatio 06 the numbeh 06<br />

yeau in which no wateh bhohtage appeau to the<br />

total numbeh 06 yeau invebtigated;<br />

- 0 c6 the btohage coeddicient, dedined ah the hu-


666<br />

tio 06 the oveh-annual component 06 Atohage to<br />

the avesage yeaaly dibchahge 06 the hegulated ti-<br />

Veh.<br />

lt mUbt be kept in mind that the bame avehage<br />

dib-<br />

chahge 2 could occuh in vahioub beqUQnceb 06 bingutarr<br />

dibchahgeb 06 the hivet; thib can be made evident by an<br />

analybd 06 hecohded beqUenCeb 06 dibchahgeb 06 hivehb<br />

phebenting vahioub Valued 06 the pahameteu cv,Cb and 4.<br />

Folîowing conc~ubionb may be dhawn dhom hebeahch deveto-<br />

ped in thib 6ield:<br />

- the vatiadon coed{i&ent Cv ha4 a dihect inblu-<br />

ence on the volume 06 the btohage hebehvoih, the<br />

Atohage coe6bicient B being the gheateh, the m o u<br />

the vahiation coe6,jicien.t incheabeb ; genehaîly<br />

the helaAive ghowthb 06 ß ahe gheateh, sometimes<br />

even benbibly ghedek, than the gaowth 06 Cv, i6<br />

the valuta 06 a a m high. On the con;titahy,6oh low<br />

valued 06 a the gaowth 06 the necebbahy volume 06<br />

btoaage in lebb hapid than the ghowth 06 the va-<br />

hiaiSon coe66icient [ 6iguhe 2) ;<br />

- the coe{,jicient 06 bkewnebb cb ha an inveme in-<br />

ence ce on the volume 06 the btohage hebehvoih;<br />

Zhu, i6 cb incheabeb the volume decheaseb coh-<br />

hebpondingly. Genetally, pehcentual heduciSonb 06<br />

B avre Amalleh than the pehcentual ghowthb 06 Ch;<br />

- the coedbicient 06 betial cohhelation h has a di-<br />

heet in6luence on the value 06 the btoaage; thub,<br />

the incheabing 06 h leadb to ghowthb 04 B, peh-<br />

centual ghowthb 06 both parrametem being 06 the<br />

bame ohdeh 06 magnitude.<br />

Similah conbidehationb can a do be made in connect-<br />

ion to the beabonal component lyemly component) 06 the<br />

heqdhed btohage. Evidently, in thib cabe, the coe66ic-<br />

Leni2 06 vatiation, o6 bhewnebb and 06 behiat cohhelat-<br />

ion mubt be based on daily, decadal oh monthly avehage<br />

dib chahgeb .<br />

A beeond inteaesting aspect concehnb the inbluenee<br />

06 the intehval taken in account 60k debign iday,decade,


667<br />

month etc) oh the Lime intehval doh which hydhologic data<br />

ahe ebtimated and wateh balance computations ahe undehtaken<br />

on the hequihed btohage volume.<br />

Vehy 06ten,waZeh balance id ebtablibhed on a monthly<br />

bad&, taking into account a bequence 06 mean monthly<br />

dlowb COVehing a pehiod 06 ¿evehat qeah4, doh which hecohded<br />

oh indihectly detehmined hydhologic dda ahe a-<br />

vailable. Thib way 06 dealing <strong>with</strong> the phoblem imptieb<br />

the assumpLion that the dhchahge od the Jbiveh and the<br />

demand o{ the ueh ahe baihey conbtant duhing a month.<br />

Thib asbumption ib neveh abbolutely cohhect doh the di&chahge<br />

od the hive&, nOh bometimeb {oh the Watch demand.<br />

ZnvutigaLionb undehtaken in thib 6ieÆd bhowed that<br />

in cehtain cabe6 the ,time pehiod taken into account hab<br />

a gheat indluence on the hebultb obtained concehning the<br />

volume 06 hequihed btOhUge.lt has been pobbible to utabtibh<br />

cohheîationb bemeen btohageb cohhebponding to<br />

,time pehiodb od a month oh a day ubed in wateh balance<br />

calculations. An example 06 buch an intehdependence ib<br />

bhown in biguhe 2.The genehat conclubion od the tedeahch<br />

i& tha.t bhoht pehiodb, o6 a day, mubt be ubed 46 badie<br />

ame intehvaÆ o<strong>nl</strong>y i6 the heqLUhed btohage,hebulted dhom<br />

pheaminahy computation4 ubing monthly UVehUge valueb c4<br />

Amall. foh gheateh 4tOhage volume4,the indluence 06 bhoht<br />

Lime pedo& id negtigeable.<br />

16 the invebtigation 06 lahge-bcale phoject.4 i4 undehtaken,<br />

u6e od 6 yntheLic stheam- {low bequenceb had<br />

btahted to impobe itbet6 even in cae4 in which the volume<br />

06 availabÆe hydhologic indohmation would have been<br />

conbidehed adequate. Stheam-dlOW genehation methodb,<br />

oh Monte Cahlo techniqueb, btah-t dohm cehtdn comphehenhive<br />

hydhologic PaharneteM buch ab avehage dibchahge,<br />

coeddicient 06 VahiatiOn, coe66icien.t 06 behiat cohhelation<br />

etc, ebtimated on the babib od a minimum 06 dihect<br />

hecohdb oh by genchalizing hebultb od hydhologic inveb-<br />

LigatiOnb in bimilah (Meu. Ahtidici& time behieb o6<br />

hundhed and even thouband4 od hydhologic yeau ahe genehated;<br />

thebe include a multitude 06 pobbible bequenceb


66 8<br />

06 day, wet and aveirage yemb, which condeh a high heliability<br />

on the hebultb 06 watch balance<br />

calculationb e<br />

and btohage<br />

Such methodb, babed on bynthea2c btneam-6low bequenceb,<br />

a m applied on a lahge ¿cale in the U.S.S.R.<br />

l4I,l5/, the U.S.A. 161 and otheh counthieb. ln Romania,<br />

1101 thib method .d being applied doh the btudy o6 the<br />

development 06 lahge hive& babinh.<br />

A hecent hebeahch 131 ib conceancd <strong>with</strong> the iniluence<br />

06 the length 06 the heal hecohd on the hequihed<br />

stotrage,in 06 a seasonal oh yeuly dlow hegulation.<br />

The teseahch phogham covehed a gheat vahiety od bituationh,<br />

including di66ehent typeb 06 dlow dibthibufion<br />

and bevehal VatUeb 06 berrial cohhelaZLon and btoirage<br />

coeddicienfi.<br />

The hebultb o6 thih hebeahch Lead to the conclubion<br />

(bee diguhea 3 and 4) that the hequihed btohage incheabeb<br />

<strong>with</strong> the length 06 the bequence. The inchease .&<br />

dabteh doil higheh valued 06 the behial<br />

stohage cae66icienh.<br />

cohhelation and<br />

Though thib invehtigation w a ~ concetned o<strong>nl</strong>y <strong>with</strong><br />

yeahly (low rregulation, the hebula obtained doh high<br />

valueb o6 the btohage coeddicient (maximum 1.0) phove<br />

that the length od the dihect hecohd and the bequence<br />

06 wet and day pehiod~ have a bignidicant indluence alho<br />

in the cabe 06 oveh-annual atohage.<br />

A bthiking example in this ben~e was uphedented by<br />

the evolution od btohage hequihed 60s the wateh bupply<br />

06 a big induthial plant in Romania. Wateh balance calculationb,<br />

6ihbt undextaken in the eahly 1960-ieb Wehe<br />

based on dihect dlow hecohdb covehing o<strong>nl</strong>y a pehiod od<br />

15 yeah6, btmfing @om 1947148. Extending thib bequence<br />

by cohhelation <strong>with</strong> hecohdb in neighbouhing babinb genehated,<br />

intek alia, an exthemely dhy hydhoîogic yeair<br />

(/942/43). 76 thib yeah wab included in the hecohd ued<br />

a~ babib doh htonage calculationb, the hequihed btoaage<br />

wab neahly the double (220 million cubic meteu) 06 the<br />

btoxage which would have deemed necebbahy i6 thib yeah


669<br />

had not been included into the hecohd (120 million cub-<br />

ic meteu). Ab a matteh 06 dact, the additionat hecohdb<br />

06 the 6ottowing ten yeau beem to indihm the indihect<br />

data obtained doh the yeah 1942143; it wad thehedohe de-<br />

cided not to include thib yeah into the invebtigated be-<br />

quence when btohage caÆcutaL¿onb wehe again undehtaken<br />

on the basi4 06 a .tongeh dcquence 06 dihect hecohdb.<br />

In buch bituationb , behideb the ub ual methodb 06 ex-<br />

tending the hydhotogic time behieb by bimilahity <strong>with</strong><br />

otheh hiveh badinb, modehn techniques can be applied doh<br />

detehmining the optimum decndionb. A botution might be<br />

dound i6 the theohy 06 game4 id applied; the hecommended<br />

de&ion lead& in thib cade to minimum heghet, taking<br />

into account on one had the cobtb ad the btohage hueh-<br />

voi& and on the otheh hand the pobbibte damageb. Thib ib<br />

a cla6bica.î cade 06 a game againbt natuhe. Natuke’b se-<br />

action ib not indluenced by the phevioub dechion4 con-<br />

cehning the management od wateh hebouhceb and ib eitheh<br />

aleatohy oh huled by an asbumed pkobabilibtic law 06<br />

dib t&ib utio n .<br />

06 couue, the methodb based on the theohy 04 gameb<br />

do not bolve the inadequacy 06 hyditotogic data. Ubing<br />

them maheb howeveh the minimization 06 adveue e66ec.tb<br />

06 inadequate data po4bible. Theh~,joke, buch methods<br />

bhould not be phebented in oppobifion to thobe based on<br />

the genehation 06 new data oh on the genehatizaaSon o6<br />

cehfain heb uttb od watek heb ouhceb engineehing calculat-<br />

ionb. Both technique4 can be bimultaneoubly applied.<br />

One 06 the advantageb o6 the theoky 06 gameb ib the<br />

pobbibifity 06 taking into account any inadequate data,<br />

not o<strong>nl</strong>y od hydhologic chairacte& (do& example, data &e-<br />

dcilning to the dUtUhQ development o{ watek ue~).<br />

Noticing the ub e o 6 cohhelaLionb between hydirologic<br />

pahameteu and Othe& chahacteJùbtic elemenX.4 06 the hi-<br />

ve& basin: aveaage haindall, altitude, adtjoheAta,tion,<br />

btope etc. bome engineeu thied to ebtablihh genehatized<br />

helaZionbhipb be&een wateir heb ouhceb engineehing paha-<br />

meteu, buch ah the kequiheb btohage, and geo-meteoholo-<br />

gic elemena. Such hebeahch has been cashied out in Po-


670<br />

land. Methodb 06 thib type have, nevehthelebb, a limited<br />

appficability, geneaalizationb being pobbible o<strong>nl</strong>y at a<br />

&regional beale. They may, evidently, give a view on the<br />

bize 06 necebbahy Wdeh hebOUhCeib development WOhkb and<br />

can be 06 help doh the phefiminahy debign 06 ceht&n<br />

bmall btohage damb. Theih ube, <strong>with</strong>out a camparribon <strong>with</strong><br />

othes mom elaboaate methodb id howeveh not to be hecorn-<br />

mended in the inwedtigation 06 impohtant btohage. hebeh-<br />

VOihb.<br />

Uimenbioning od hydhoelecthic Noirkb.<br />

The utilization 06 wateh poweh id, evidently, hela-<br />

ted to the cohhect knowledge 06 the natuhal potential<br />

and o6 the conditionb 06 developing it. in thib conned-<br />

ion, hydhologic data ahe necebbahy not o<strong>nl</strong>y in ohdes to<br />

detekmine the genehal e66ect and edbiciency 06 poweh<br />

plana2 but albo t o ebtablhh the development bcheme, the<br />

enehgetic parrameteu and the charractexibtics 06 the<br />

bthuctuhes. Fah plana luith no btohage oh having a low<br />

deghee 04 6low heguldtion a6 well c~6 {oh the intake4 06<br />

becondahy watch divehhionb it can be parrticulahly impoh-<br />

tant to ebtimate c~hhectly the daily, and dometimed even<br />

the momentarry blow hégime. Condthuction 06 irégime and<br />

dlow dukation cuhveb , chahacte&ibtlc doh kelatively long<br />

pehiod6,may be necebbahy. Such cuhueb alre uded in ohdeh<br />

to ebtablibh the deghee 06 utilization 06 the avehage<br />

yeahly dh chahge and to detekmine the inbtalled capacit-<br />

ieb<br />

The value4 06 the hydhologic pahameteu mentionned<br />

in the phevioub chapteh: auehage d.ib chahge, coe66icient<br />

06 vahiation, coe6dicien.t 06 bkewnebb and coe6dicient 06<br />

behial comelation, ahe necebbahy in ohdeh to ebtablibh<br />

the inbluenee 06 vadoub Atohage volumed on the magnitude<br />

and quality 06 electtic po~eh phoduction and on the<br />

enehgetic conditions 06 btohage hydhoelectaic plan&. On<br />

thib bahib, the opfimization o6 the volume 06<br />

age hebehv~ikb cb aho podbible.<br />

the btoh-


FOR. mote advanced dlow conthol, the avehage multian-<br />

nual dibchakge i6 the hydaologic etement whobe indluence<br />

on the economic eddiciency 06 hydhoelecthic plant6 i4<br />

gheatest. In paht, thi6 ib due al60 to the opehation 06<br />

hydhoeÆecthic plana2 <strong>with</strong>in 6taong poweh dydtemb , genehal-<br />

ly <strong>with</strong> inteknational linkd. In buch 6Ybtem4, the e66ect<br />

o 6 individual hydaologic 6ituationd i6 attenuated and the<br />

whole hydhoelecthic poweh available can actually be uded<br />

in the dybtem, even id o<strong>nl</strong>y doh the dilling o6 the hebeh-<br />

voim 06 pumped 6tohage powek plana.<br />

Re6eahch on the indluence 06 the length 06 the hecoird<br />

on the value 06 the aveirage dibchahge hevealed that,<br />

604 m o ~ t eutopean wateh couh6e6, time behie6 covehing a<br />

dequence 06 30 yeam ahe u6ually batihbactohy. Conclubiond<br />

Reached at in inve6tigating data concehning the a-<br />

veaage didchaqe doh Recoaded Lime behie6 06 vahiou6<br />

length6 at the OIL6ova gauge on the Danube can be bahen<br />

a6 an example. On the basib od 133 yeah long hecoad6<br />

(1838 - 19701 the avehage value 604 di66ehent 64 . ~ e b 06<br />

a given Length, covehing 10 - 40 con6ecuL¿ve yeau wehe<br />

calculated and the highebt and Lowe62 value6 o6 thehe a-<br />

vehage6 wehe examined. The irebutRb alre phedented in the<br />

dollowing table:<br />

10 124 6090 4520 12.5 -16.5 0.36<br />

15 119 5910 4760 9.2 -12.0 0.28<br />

20 114 5770 4850 6.7 -10.2 0.22<br />

25 109 5660 5040 4.6 -6.8 0.17<br />

30 104 5670 5200 4.1 -3.9 0.13<br />

40 94 5650 5230 4.4 -3.3 0.11<br />

Thehedohe, i6 the hydhotogic data ahe not adequate<br />

doh the de6ign 06 hydhoelecthic developemntb, a6 a huÆe,<br />

thebe data dhoutd be extended to a 25-35 yeah6 long time


672<br />

behie, by analogy <strong>with</strong> othek watek couhdeb ok <strong>with</strong> kain-<br />

ball. longeh extenhionb 06 hecohdb by bimulation ate<br />

veky kcvrely applied.<br />

Debign and opehation 06 blood<br />

conakol developmenth .<br />

Flood canx7ca.t developmen;td ake kelated not o<strong>nl</strong>y to<br />

economic bene6itb but aedo to the becuhity 06 bocial<br />

Lide in wide axeab. At the same time, ab álood conthol<br />

bthuctuheb ane debigned to {ace hydhologic bituatioptb<br />

exceeding extheme hibtohicaî hecohdb, the ube 06 cxthe-<br />

mely accuhate data ib, in phinciple, necebbahy.<br />

A ptoblem ahibing most dhequently id helated to the<br />

debign 06 outle& o6 6low hegulating bthuctuheb. Othe&<br />

impoatant phoblemb, buch ab the debign ,od bhidgeb oh 06<br />

othes btkuctuheb chobbing hivetb, 06 dykeb and 06 blood<br />

detenfion hehehvoitb axe aedo helated to dlood hydhol-<br />

OgY *<br />

Except vehy hahe cab eb, debign hydhologic conditionb<br />

have nevek been hecohded and have to be ebtablhhed<br />

by bpecLal computationb. In thih hebpect, ,two tendencieb<br />

may be kemairhed:<br />

- the extkapolation 06 phobabifity dibtkibufion<br />

cuhvcb 06 maximum aecokded ,$toodb ubing mathematical<br />

btatibticat methodb; thib extkapolation has<br />

to keach imposed debign paobabilitiea . Othe& methodb,<br />

ubed in o.theh hydhologic pkoblemb 6011 the<br />

extension 06 tecohded fime bekieb ,buch ab bynthefie<br />

blow genekation,ubing Monte-Cakto techniqueb.<br />

MQ applied at a bah amalleh bcale bok 6lood conak0l;<br />

- the geneha~on 06 valueb 06 maximum dibchakgeb<br />

and 06 ,$laod waveb by hain6altlhun-od6 cohhelation;<br />

thib apphoach thiea to compenbate the lack<br />

06 hydhologic data by uning hain{all oh Othe& metheohologic<br />

magnituded doh which, UA ually, longea<br />

hecohdb ake available. ln theih dimplest 60hm,


67 3<br />

thebe methodb hephe4enZ ha.in6attlhun-od6 depen-<br />

dencie6 which have been wed doh a long time in<br />

hydhologic indihect btudie6 .Duhing the lut yeah6<br />

thebe methodb have been extended, 6ohmeh 6impte<br />

dependencieb being developed into phy6ioghaphic<br />

haintjalllhun-066 mode&. Thebe mode& have been<br />

ubed ebpecially in the U.S.A. and in Fhance.Theih<br />

eidiciency wab pkoved e6pecially doh the htudy 06<br />

dlood conthot phoblem6 .<br />

The majoh did6iculty haAed by applying genetic mo-<br />

de& conbi6t.h in a pheviou6 detehmknation 06 the pahame-<br />

teu 06 each model. FOh thi6 pukpo6c,aecohded dl00d6 ahe<br />

houted thhough the model. Theiredom, ube o6 h&n6all/<br />

hun-066 modeh implie6 the exhtence 06 a minimum o6 hy-<br />

dhologic hecohdb; it ib, howeveh, ju6t data on dlood6<br />

which ahe dhequently mi6bing @om hecohd6.<br />

ln the abbence 06 adequate hydhologic data, oveh6i-<br />

zing most dtood conthol 6thuctuhe6 i6 to be hecommended,<br />

even ifj it’6 con~equence i6 a ubete66 inve~tment o6 ca-<br />

pital, in ohdeir to avoid the hibh 06 ovehtopping and 06<br />

eventual bucceeding 6ailuhe od 6thuctuhQ6 181. Thi6 po-<br />

&cy h juhtidied by the exponential ghowth 06 the den6-<br />

ity 06 economic and 6ocia.t objecaXve6 placed in the ama<br />

in Which dtood COnthOt ~66e~tb 06 thebe bthUCtUhC6 i6<br />

he6ented. Eventual damage6 due to exceedence 06 de6ign<br />

pahameteh6 will Zhu6 be exponentially incheahed in compahibon<br />

Stood.<br />

to actual damage6 cohhehponding to the 6ame<br />

Thub, adteh the hydirologic excedentahg peiriod 06<br />

the la62 yeah6 and pahticu.tah.ty aóteh the 7970 and 7972<br />

iloodh, the conclubion wa6 dhawn in Romania that 6lood<br />

detention volume6 hebehved in 6tohage lahel, which, a6 a<br />

hule, Wehe phteViOU6ly 06 the ûhdeh 06 b - 12 % 06 the a-<br />

vehage annual blow a m knbuddicient; incireahing the6e<br />

volume6 in butuhe up to 20 8 06 the aveaage annual dlow<br />

i4 hecommended. Except 4 ome i6 olated ea6 e6, the execut-<br />

ion 06 hubrneuible dyke6 has been completely abandoned<br />

bivice 1960.


674<br />

In the debign 06 dyke6, the gkowth 06 blood levea<br />

due to eliminating the natukal deterifion o6 Blood in<br />

the dtood plain and to kiVeh bed dynamic¿, pahticulahlg<br />

the haióing od the base 04 ehobion, obbehved on many wu-<br />

tek couhbeb 06 the plain hegiOMb. At the tail watekd 06<br />

cehtain btohage kebehvoihb located in countkied <strong>with</strong> de-<br />

vem climate, inadequate knowledge 06 wintek phenornena<br />

may lead to undehebtimafing the backwatek phoduced by<br />

the mas4 06 ice and to undokbeen dlooding, .i6 no phe-<br />

cauLion4 ate taken.<br />

Finally, bok the cased whehe data on the genebis 06<br />

6loodb ahe lacking, it i4 pobbible to apply methodb od<br />

the theohy 06 gamed. Such methodb have been applied in<br />

Romania 604 bevekal pkojech 171.<br />

Some aspecÁ2 o 6 multi-puhpob e<br />

wutek ked ouhceb development.<br />

One 06 the chahac$ehib.i.ics 06 the contempokahy wa-<br />

tek he6 Oukceb engineehing conbibtb in the multipuhpob e<br />

and comphehen6ive development 06 hiWh buinb, <strong>with</strong>in<br />

an ebtablibhed development bcheme. VaGoub pko jectb ake<br />

phomoted a¿ bepahate deÜeÆopment btages 06 the genehat<br />

bcheme, all phojecÁ2 being based on unitaky methodolog-<br />

ieb and being conceived bo as to meet the kequikemenÁ2<br />

06 d l wateh ubeIL4 u well as 04 the COnthOl 06 deb-<br />

thucfive eddech 06 wateh. The btep by step development<br />

06 a hiveh basin i4 impohtant to the phoblem dibcubbed<br />

in thib hepoht because 06 it'd pobitive conbequenceb he-<br />

dlected in the pobbibility 06 cokhecfing emou, 06 he-<br />

ducing exaggehated hibkb and even 06 attenuafing bail-<br />

ukeb by the way 06 conceiving Bututre phOjUÁ2 developed<br />

in the bame hiveh basin. Thió i4 helated to the 6act<br />

that the unitahg management 06 the watek kebouhceb ob<br />

a hiveh basin cheateb a lebb 4thLc.t dependence 06 each<br />

phoject on the dibffkibufion 06 the dlow 06 the main hi-<br />

veh among vahiou4 thibutahieb and heduceb the benbitiv-<br />

ity to emohb in evaluating hydhaulic hCbOUhCe6 in each


675<br />

~pecibic bite. Thib i.4 impohtant, ab global ebtimation<br />

od the hCAOUhCeA 06 a kiveh bain i4 UbUal.& leAb hub-<br />

ject to ehhohb than the ebamation od the heAouhceb 06<br />

the thibutahieb. On the otheh hand,the btep by btep de-<br />

velopment o 6 bthuctuheA doh wateir heb ouhced management<br />

makes changed in the pahametea od ultehioh phojectb<br />

pobbible, Ao ab to COhJLect ~46ectb 06 Oveh oh undeh-<br />

hizing the 4-thuctuheA built at phevioub development<br />

A tag eb .<br />

In the cae 06 pkojecth doh which decibionb ahe<br />

made undeh condifionb od inadequate basic data, inveb-<br />

tigai2on 06 the pobbibifitieb 06 butuhe sxtenbion od<br />

bh’iUC~UReb d od gheat crteirebt.Such podbibilitied eliminate<br />

the necedbity 06 immobilizing capital doh the<br />

development 06 initially oveh~izc! d bthuctuheb, deaigned<br />

in thib way in ohdeh not to loo¿e the pobbibifitieb 06<br />

an advantageou dite.<br />

EhhohA committed due to inadequate hydhologic<br />

data ahC not fimited to the design btage o6 hydhaufic<br />

AthUCtUheb. FOh the conception od buch bthUCtuheb<br />

the lack 06 dihecz hydhologic data can obten not<br />

be avoided. 76 the implementation od an adequate hydhometeOhOlOgic<br />

6ohecabting nekwohk, including the meaAuhing,<br />

thanhmibbion and data ph0Cchbing equipment d advibable<br />

in Ohdeh to Opehate a CQhtLn hebChVOih, .¿A puhely<br />

an economic phoblem. In thib benbe, the technical<br />

oh economic analyAib 06 opehating conditionb 06 vahiOUA<br />

lahge Acate pkojech and the indluence 06 a good doheca6i2ng<br />

aybtem on theiir opehation Achedule4 lead invatiably<br />

to the conclubion that thebe Aybtemb<br />

culahly e 4 bicient.<br />

ahc pahti-<br />

Thib L¿ not o<strong>nl</strong>y the cabe whehe hydhaufic Aybtemb<br />

debigned 604 dtood canthot oh doh bade yield ahe addected<br />

by the lack od adequate indohmation oh dohecabzb<br />

at Auch exteint, that theih opehation accohding<br />

to b chedule d phactically impohbible <strong>with</strong>out imphovcng<br />

the indoirmational bybtem. The advantage id evident


67 6<br />

ado when a betteh knowledge 06 the phobable pahame-<br />

tehb o6 butuhe hydhologic even22 leadb o<strong>nl</strong>y to opehat-<br />

ional imphovemenX.6. Thib cb, doh inbtance, the cabe 06<br />

hydkoelectk-ic plana.<br />

An illwthative example 06 an in6OhmatiOnal and<br />

donecabX.ln9 netwohk concehnb khe lhon Gate¿ hydhoelec-<br />

thiC plant on the Danube. The wateh level 06 the bfoh-<br />

age hcbehVOih at the dam vahiable, opehating bchedu-<br />

&A phoviding doa an ab conbtant ah pobbible wateh le-<br />

vel & the tail 06 the Atohage hebChVOih, Upbtheani 06<br />

the IhOn Gates gohgeb. Thib policy cb due to the con-<br />

cenakation in thib ahea o6 bthuctuheb debigned doh the<br />

photection 06 hipak-ian land and otheh development¿,<br />

bthuctuheb which would be oventopped at higheh leve&.<br />

Conbcquently, the hydhoelecthic plant bhould hegul&e<br />

the wateh level & the dam bon an expected inblow, bo<br />

UA to obtain the maximum u.ti.lizable head, to avoid, U<br />

much ah pobbible, the 0vehhpit.ling o6 Waxeh and,& the<br />

bame time, to avoid the exceedence 06 the badety level<br />

in the photected aheu. Vue to a good dohecabtin9 netwohb<br />

on the Danube and on the main thibttahiebp upbtlream<br />

o6 the phojecf, it w u pobbible,even duk-ing the<br />

dihbt WO yeahb od opehaL¿ng, to hegutate the daily<br />

powea genetation in buch mannet that the deviaLion<br />

6hOm the theohea2ca.t optimu did not exceed 1.2 %.<br />

The utility 06 the exPendituaeh intended to bet<br />

up and maintain an adequate 6onecasLing bybtem, pahticutaaly<br />

<strong>with</strong>in hiveh bain6 whehe dlood deten.tion heb<br />

eh<br />

oiha ahe located has not any mohe to be demonsthated.<br />

Situation¿ may be met in which an inadequate opehation<br />

od OUtkkX.6 dhom Atohage hebehVOihb clln OvehpObe<br />

nohmally buccebbive blood waved, leading to an aggnavakion<br />

06 the bituation which would<br />

unhegulded b&eamb.<br />

have occuhed in


C o n c t u b i o n b .<br />

677<br />

The accukacy o6 the dolutionb 06 debign and opekat-<br />

ion 06 hydkauîic wokkb depend not o<strong>nl</strong>y on hydhologic<br />

in6akmation, bu.2 albo on the degtee o6 cokkect ebtimat-<br />

ion 05 a multitude 06 otheir 6actou, 60ir inbtance the e-<br />

conomic and conjectukal condixXonb ,the wateir demand etc.<br />

Thebe iactok obten aire much m o u uncektain than hydholo-<br />

gic evenh. in thib context, in cae 06 ceirtain ubeb 06<br />

hydkautic bthuctukeb, Auch ab hydkoelecakic powea pko-<br />

ducfion, watea tkanópokt, low dlow kegulaaon boa watek<br />

ueb, the hydhological in6oirmatian bhouLd be consideked<br />

in the hame way a6 othen uncektain basic data, the qua-<br />

îity 06 which h a a gtobaî inbluenee on the p04bibiti-<br />

ty 06 op~mizing bOLUtiOn4. in buch cabeb, the necebbaky<br />

accukacy 06 hydiroLogical data mubt be Looked at in cok-<br />

helaZion <strong>with</strong> the accukacy o6 othek elemenh kelevant to<br />

the decibion. Them ake howevea alho othek typed 06 hy-<br />

dkaulic b&uc.twreb,buch a6 thobe debigned 60k dlood con-<br />

thol, 60ir which global analybib 06 accukacy 06 basic da-<br />

ta i~ tebb impoatant and hydkologic data have to be ta-<br />

hen bepaately into account.<br />

R E F E R E N C E<br />

1.- PLESHKOV, 1.F. Reguliirovanija kechnogo btoba -<br />

GWdkometeoizdat, Uobkow, I96 1.<br />

2.- DYCK,S.; SCHRAMM,M. Stochabtibche Methoden 6Ük die<br />

Bemebb ung deb Wasb eupeichekhaumeb.<br />

- Mitteilungen deb in-<br />

AZifUteb {Ük W a b eir~ikt.6 cha@,<br />

Nk.28, BekÆLn, 1968.<br />

3.- STEGARUZU, P. CokectiiLe de debite zilnice in<br />

calcuîeÆe de gobpodairike a apeloir.<br />

- Hidkotehnica, Nk. 111972.<br />

4.- SVANIDZE, G.G. ûbnovy k a chety keguîikovanija<br />

aechnogo btoka metodom i\lonte -<br />

Kaalo.- Tbiîibbi, L964.


67 u<br />

5. L’EZNlKOVSKll, A.A.<br />

Vodnoenehgetichebhie ha6 chety<br />

metodom Monte-Kahlo - Enehgija,<br />

idobbow, 1969.<br />

Stheamdtow Synthedib . - MacMil-<br />

6. FlERlNG, M.B.<br />

7. - VORVEA, A. ; Fl LOTT i, A.<br />

lan, London-Melbouhne, 1967.<br />

PhObleme de gOdpOdahihe a apeloh<br />

CU aplicatic? la bazinul<br />

Bahlu&. -1nbtitutul penthu Planuhi<br />

de Amenajahe bi Consthue-<br />

8.- FILOTTZ, A.<br />

tii Hidtotehnice ílPACHl.15 ani<br />

de activitate. Bucutebti, 7968,<br />

pp. 85 - 96.<br />

Dib cubbiòn deb happohh concehnant<br />

la photcefion de4 eaux en<br />

9. - TEODORESCU, 1.<br />

ea6 de cûtabthûpheb. -GeWabbehbchutz<br />

im Katasttophen~all.Sympobnum<br />

vom 23 - 26 Ohtobeh in<br />

Flohenz. Födehafion Euhopäib cheh<br />

Gewabbehbchutz, Vol. 15, Ziihich,<br />

1969, pp- 92 - 96.<br />

Gobpodahihea Apeloh. - Ceheb,<br />

FILOTTI ,A.; CHlRl AC V.%ucuhebti, 19 73.<br />

10. -S?MON, A; Vl LAN. A GenehcZhea bihUhil0h hidhalogice<br />

daha aUtOcOhe&ltie. - Studii de<br />

Economia Apeloh, Vol. 1. lnbtitutul<br />

de Studii bi Cehceta~<br />

penau Zmbunatatihi Funciahe<br />

bi Gobpodahihea Apeloh, BuCuhebti,<br />

1971, pp.311 - 366.


ß, 1<br />

IO<br />

Fig.1.<br />

n<br />

0.5<br />

. .<br />

0,s<br />

C"<br />

ß<br />

20<br />

LO<br />

1.0<br />

cv<br />

as 0.5<br />

. [r=45; c,=2c,<br />

- 1<br />

I5<br />

ZD<br />

10<br />

CV Ci I<br />

, ß<br />

C"<br />

2. o<br />

LO<br />

ß<br />

20<br />

ZO<br />

'n<br />

cv<br />

2.0<br />

%O<br />

C"<br />

ß<br />

28<br />

10<br />

679<br />

C" CV<br />

0.5<br />

ß<br />

2. o<br />

W<br />

CV<br />

ß<br />

2A)<br />

0;s<br />

cv<br />

r ia I I I<br />

cv


6 80


O /O0<br />

pigc4. Average required etorage a8 a function<br />

<strong>of</strong> record,for<br />

-<br />

different degrees <strong>of</strong><br />

regulation8<br />

c= 0,5 I r 0.3<br />

681


ItRELATIONS BETWEEN PROJECT ECONOMICS AND HYDROLOGICAL DATA"<br />

by<br />

A. Pobedimsky<br />

Economic Commission for Europe<br />

Introduction<br />

In e::ce;j:;, water ilhich is very <strong>of</strong>ten considered as a source o;" wealth, m y<br />

cause considerable damage or äisaster and impose a heavy burden on a country's<br />

economy. sorn&jimez it may affect a goup <strong>of</strong> borderine countries (as for example,<br />

those locate6 in the Danube and Rhine river basins).<br />

The accelzrating rate <strong>of</strong> population eowth in the EC3 countries and the<br />

economic proLpcss in Lechnologicrì changes, during recent years, causing the<br />

depletion <strong>of</strong> natural resources have all rapidly increased the importance <strong>of</strong><br />

water resources development which, curing the last few decades, hac, become one<br />

<strong>of</strong> the doninnting factors in the national economy <strong>of</strong> most stoLintries. All this<br />

has obliged countries to improve their water resources nanagement so as to achieve<br />

proper flexibility a d effectiveness corresponding to modern requirerncnts <strong>of</strong> national<br />

e conomie s.<br />

Mater Phnagement, deals o-lher things <strong>with</strong> a verj importent component -<br />

hydrological data which define the available water resources to me& national or<br />

regional demnds.<br />

The mtcliing <strong>of</strong> the bdznce or water resources md. neecls, as vel1 as the<br />

planning and implementation <strong>of</strong> eppropriatc masures to provide the nececjsa.0 liater<br />

cupply for a region, have become &ieslionr <strong>of</strong> hi& priority,<br />

The belances oi' water resources and needs mentioned above, which serve to<br />

elaborate the measures io be taken to avoid ne,r;etive c.onsequences for ths populaLion<br />

and the regional economy, are now Peing used as a effective tool in mqv LC3<br />

countries. The first internationa!. l4anue.l for the compilation <strong>of</strong> these balances,<br />

now beiny: completed by the ZCg Conrmi-kLeé on idater Problems g d groups <strong>of</strong> national<br />

experts, emphasizes that in regions <strong>with</strong> I.imited va-ler re::ouxces a high degree <strong>of</strong><br />

accuracy in their assessment is an essential condition ror e. rational economy.<br />

The E.'mual enphasizes the importtince <strong>of</strong> the earliest possible organization <strong>of</strong><br />

hydrological studies in a river basin or 8 region where an intensive growth oi<br />

uater needs is in prospect. ?he Phniisl defines in the following WP.~ the economic<br />

impact <strong>of</strong> reliable hydrological daCC. on ua-ter resources dcvelopnent in particular<br />

cnd on the national evonoq in gener<strong>nl</strong>c ?he more reliable the iiatter zupply, thi:<br />

smaller i.iill be the damage resultin, from cutr in periods <strong>of</strong> water shortagetf. By<br />

cornparin: losses anU expenditure, it vili, in prlnciple, be poosi'ule to determino<br />

the economic optimum.<br />

Sufficient and accurate hydrological data promote effective vater management and<br />

the prevention or didnuation <strong>of</strong> damage caused by such hydrological phcnomna as<br />

severe floods , ice jm, rnuàflotis, intemive oedirnents, dangerous va.ter pollution etc.


684<br />

On the other hand, the intensification <strong>of</strong> human activities in river basins<br />

r<strong>nl</strong> :,Lcii, watersheds including the increased anount <strong>of</strong> untreated effluents<br />

uic .liarged FnLo the water couse, during recen.'c decades, uraently calls for the<br />

re1iai;l.e esse:;smnt <strong>of</strong> available wa-tor resources. The ECS Nanual mentioned above<br />

states that the consequences <strong>of</strong> h w n activities make advanced hydrolo$cal<br />

research imperative.<br />

considered important.<br />

A relevant improvement <strong>of</strong> hydrological methods is<br />

5Je understand that this topic is <strong>of</strong> considerable interest to hydrological<br />

services which must strike a balance between tho cost <strong>of</strong> gauging stations and<br />

the probable futvre benefit that will result from the information to be obtained.<br />

TakTng into account the special importance <strong>of</strong> hydrological data for water<br />

resources management, various aspects <strong>of</strong> the development <strong>of</strong> hydrological networks<br />

were discussed thoroughly at the ESE Seninar on Selected <strong>Water</strong> Problems in Southern<br />

Europe convened in Zagreb, Yugoslavia, in October 1971. Certain conclusions<br />

concerning the design <strong>of</strong> hydrological networks and their improvement were<br />

reflected in the recommendations adopted by the ECE Codttee on <strong>Water</strong> Problems.<br />

Taking all this into account it is generally recognized that hydrological data<br />

and well planned hydrological networks are prerequisites for efficient and sound<br />

water resources planning.<br />

The purpose <strong>of</strong> this paper is to appraise the possible economic effect <strong>of</strong><br />

insufficient hydrological data on the effectiveness <strong>of</strong> water planning and the<br />

design <strong>of</strong> hydraulic engineering structures and their operation.<br />

It is suggested to consider the following main aspects <strong>of</strong> the subject:<br />

The economic consequences <strong>of</strong> a deficiency <strong>of</strong> hydrological data on water<br />

planning, construction and operation,<br />

"he impact <strong>of</strong> a deficiency <strong>of</strong> hydrological data on main water users.<br />

The economic consesuences <strong>of</strong> a deficiency <strong>of</strong> hydroloaical data on water<br />

P ~ construction ~ P and operation<br />

The following questions could be raised in connexion <strong>with</strong> this aspect:<br />

what is the extent <strong>of</strong> the economic impact <strong>of</strong> insufficient hydrological<br />

records on a project and its subsequent operation?<br />

in particular, what is the possible effect on investment in economic<br />

development if hydrological data are not accurate enough and the records<br />

are insufficient?<br />

is the predominantly quantitative character <strong>of</strong> hydrological data sufficient<br />

for modern intensive water resources development?<br />

is it reasonable to postpone the initiating <strong>of</strong> water project planning and<br />

the construction <strong>of</strong> water projects if the hydrological observations are<br />

insufficient?<br />

The available information on the experience and research in the ECE region<br />

shows the following facts which could be emphasized in an attempt to answer the<br />

above questions.


Economic -acts Qf insufficient hydrological data and difficulties caused at<br />

the key stages <strong>of</strong> water resources development:<br />

Mater planning and desim<br />

Generally speaking, poor hydrological data and forecasts made on this basis<br />

can lead to inappropriate proposals for investment in water engineering works and<br />

the economic development <strong>of</strong> the region concerned.<br />

The importance <strong>of</strong> sufficient<br />

data at the following staget <strong>of</strong> planning and designing can be pointed out.<br />

The elaboration <strong>of</strong> schemes for niltipurpose development <strong>of</strong> water resources<br />

is greatly dependent on accurate hydrometrical data.<br />

according to which a scheme is to be designed cannot be derived from incorrect<br />

hydrological data.<br />

The appropriate conclusions<br />

It should be underlined that possibilities <strong>of</strong> considerable miscalculations<br />

exist in preinvestment studies as well as in further stages <strong>of</strong> planning and design<br />

<strong>of</strong> engineering structures.<br />

characteristic river discharges, approximake methods and empirical fornulas<br />

are used and the length <strong>of</strong> time <strong>of</strong> hydrological observation is relatively short<br />

(considerably less than 30-40 years).<br />

They may be especially acute when, to estimate<br />

Taking this into account, approximate<br />

methods are being limited to the preliminary estimations for the elaboration <strong>of</strong><br />

schemes <strong>of</strong> development, but are not reconmiended for the design <strong>of</strong> water structures.<br />

Appropriate attention to this matter has been given in the ECL i.ianual<br />

mentioned above.<br />

Different research during recent years has also analysed the importance <strong>of</strong><br />

hydrological data for large scale, long-term investment for general economic<br />

development.<br />

The conclusions <strong>of</strong> some <strong>of</strong> these studies may be summarised as follows:<br />

It is considered that, if the period during which hydrological records have been<br />

kept is not sufficiently long or the data are not sufficiently accurate, then the<br />

investment in the economic development will be larger than is necessary, or the<br />

possible production <strong>of</strong> the plant will be less, due to its smaller size. In both<br />

cases the result will be a loss to the overall econon&.<br />

Experience shows that various hydrologic parameters could have economic<br />

importance for different stages and purposes <strong>of</strong> water resources development.<br />

For example - flow variability and drought occurence for the design <strong>of</strong> storage<br />

reservoirs; flood occurences for the design <strong>of</strong> spillways and other control works;<br />

lesser importance is attached to the mean flow.<br />

one a uthod<br />

However, as can be cited after<br />

r/ D. Johanovic. Abstract. Vhe Role <strong>of</strong> I-Qrdrologg and Hydromteorolow in the<br />

Economic Development <strong>of</strong> Africat! Ma, No. 301, 1971.<br />

2/<br />

K.C. Wilson Cost-benefit approach to hydrometric network planningtt <strong>Water</strong> Res.<br />

Research. October 1972.<br />

685


686<br />

Wariation <strong>of</strong> mean annual flow, depending upon hydrologic data, and length <strong>of</strong><br />

observation leads to overestimation or underestimation in determination <strong>of</strong><br />

sizes <strong>of</strong> water engineering structures, determination <strong>of</strong> regimes, capacities<br />

<strong>of</strong> plants, irrigated areas" etc.<br />

In fact the following implication <strong>of</strong> an underestimation <strong>of</strong> the mean annual<br />

flow in the planning <strong>of</strong> water resources developnient might ba indicated:<br />

(a) Smaller sizes <strong>of</strong> water storage capacity resulting in limited possibilities<br />

<strong>of</strong> regulation <strong>of</strong> flows <strong>with</strong> subsequent adverse impact on:<br />

(i) possibilities <strong>of</strong> self purification <strong>of</strong> water;<br />

(ii) availabilities <strong>of</strong> water supply for drinking and industrial purnoses;<br />

(Xi) potential <strong>of</strong> production by hydro-electrical plants;<br />

(iv) quantity <strong>of</strong> water for irrigated areas;<br />

(v) navigationaï capaciw <strong>of</strong> rivers;<br />

(Vi) inadequacy <strong>of</strong> water storage size:: requires additional investments for<br />

increasing dans, canals, etc. at a later stase.<br />

On the other hand, over-estimtion <strong>of</strong> inem annui flow can lead to the following<br />

implications :<br />

(i) oversizing <strong>of</strong> iiriter engineering strictures, low efficiency <strong>of</strong> their<br />

operation, larger investments in conparison <strong>with</strong> normal;<br />

(ii) insufficiency <strong>of</strong> water for designated irrigation area3<br />

(iii) energy production below planned target;<br />

(iv) lesser dilution <strong>of</strong> effluents discharged and slower processes <strong>of</strong> self<br />

purification <strong>of</strong> water.<br />

Studies <strong>of</strong> the value <strong>of</strong> hydrological data are being carried out in several<br />

countries. Comprehensive studies were conducted jointly by the United States Corps<br />

<strong>of</strong> Engineers and the Geological Survey (1970) <strong>with</strong> the purpose <strong>of</strong> evaluaiing the<br />

iiorth or" hydrological data for determination <strong>of</strong> the optimum water storage conserva.tion<br />

capacity. Some American researchers have developad a mathematical relation betireen<br />

the llworthll <strong>of</strong> data and the length <strong>of</strong> periods during which they were recorded.<br />

Some research has been carried out to estimate the possible loss due to<br />

inperfect information. The research, for instance considering optimal reservoir<br />

design, analytically defines the opportunity loss as the difference between net<br />

benefits associated <strong>with</strong> different hydrological data depending upon streamflow<br />

record length. Reservoir designs are obtained by simulating flovs and selecting<br />

that combination <strong>of</strong> storage capacity and target yield which gives the greatest<br />

net benefits. Graphic functions obtained by this research shou that opportunity<br />

losses decrease rapidly due to increasing the length <strong>of</strong> streamflow observation,<br />

achiedng very small magnitude beyond thirty years <strong>of</strong> observation; this conforms<br />

to many practical observations. Various types <strong>of</strong> reseaxch and observations show<br />

that the cost <strong>of</strong> obtaining addition& hydrological data i.e. increasing the length<br />

<strong>of</strong> observation is insignificant in relation tothe reduction <strong>of</strong> the esrected


opportunity lox.<br />

687<br />

Some CanaCZan research developing generalized computer programmes to relate the<br />

costs <strong>of</strong> operating and intensif'ying a hydrometric network to the resulting increases<br />

in the accurecp oi: the three parameters mentioned above should be noted.<br />

The available experience <strong>of</strong> differenct ECL countries confirms to an extent the<br />

conclusions <strong>of</strong> the research mentioned.<br />

-<br />

-<br />

As ior example in the USSR, it is considered:<br />

the economic benefits <strong>of</strong> the hydrometeorological service due to which the<br />

hydrological and meteorological observations can be obtained are a high as<br />

one billion roubles, i.e. 4-5 tines the amount that is spent on maintaining<br />

this semice;<br />

the introduction <strong>of</strong> the use <strong>of</strong> hydrological forecasts in national planning<br />

made it possible to raise by 10-15 per cent the efficiency <strong>of</strong> water<br />

installations and to obtain correspondingly higher pr<strong>of</strong>its2/.<br />

In the UnLted Kingdom and France, the relrvant benefits are estimated to exceed<br />

the national hydrometeorological budgets at least 20 timed.<br />

However, in many countries, especially in the developing ones, the povement<br />

agencies responsible for h@rological observations do not have sufficient funds<br />

available for the development <strong>of</strong> adequate nationwide hydrological network$. This<br />

insufficiency <strong>of</strong> financial resources for the collection <strong>of</strong> hydrological data was<br />

also emphasized at the ECE Seminar on certain uater problems, convened in Zagreb<br />

in 1971.<br />

The USSR experiences show that in the absence <strong>of</strong> hydrometeorological observation<br />

data in an area selected for construction, a special hydrometeorological investigation<br />

should be conducted <strong>with</strong> an expenditure <strong>of</strong> 2-3 thousand roubles for each million<br />

roubles invested. This amount is considered to be an econom if, as a result,<br />

sufficient hydrometeorological data proved to be available. Experience in other<br />

countries confirms that the expense <strong>of</strong> acquired adãitional hydrological data<br />

is much less than the losses involved in water engineering construction,the design<br />

<strong>of</strong> which is based on inaccurate data. In this connexion as a positive experience,<br />

a considerable extension <strong>of</strong> national and regional hydrological networks is taking<br />

place. It should also be noted that in some countries the application <strong>of</strong> automatic<br />

monitoring stations to control the quality and quantity <strong>of</strong> a river flow has<br />

considerably extended during recent years. This modernization increases the<br />

reliability <strong>of</strong> recorded data indispensable for accurate planning and design.<br />

2/ E.J. Tolstikov, Vhe Benefits <strong>of</strong> Hydroirieteoroloefc Services in the UcsRtt<br />

'dl40 Vhe Economic Benefit <strong>of</strong> National Meteorologic Services'World Weather<br />

Watch No. 27 - i968<br />

i/<br />

Richard D.A. Kill IXydrological and Hydrometeorological data as essential<br />

parameters for design or economic development projectsf! - ld4l Eo. 301


68 8<br />

In spite <strong>of</strong> the sound persuasiveness <strong>of</strong> all the research mentioned above,<br />

armther trend <strong>of</strong> research should be pointed out. Several studies and research<br />

have been devoted to Solve the problem <strong>of</strong> whether it is desirable and pr<strong>of</strong>itable<br />

to postpone the development <strong>of</strong> water resources or the construction <strong>of</strong> certain water<br />

cngineering projects if the hydrological data for the river or particular site<br />

investigated are insufficient. It is considered by some <strong>of</strong> the authors that, by<br />

postponing the construction, the realization <strong>of</strong> the net benefits <strong>of</strong> that construction<br />

is also being postponed.<br />

The available results <strong>of</strong> research conclude that the risk <strong>of</strong> such postponement<br />

must be carefully evaluated. Nore than that, some research clearly rejects<br />

postponement as a protitable course <strong>of</strong> action. It is considered that o<strong>nl</strong>y an<br />

exceedingly loid discount rate makes the minimum total cost <strong>of</strong> postponement<br />

e.g. for one year, equal to the cost <strong>with</strong>out postponement.<br />

Taking into account the definite discrepancy between these conclusions and<br />

those previously mentioned we feel that further research should be continued,<br />

emphasizing not o<strong>nl</strong>y purely economic aspects, but also taking into account social<br />

and technical aspects, including first <strong>of</strong> all the problem <strong>of</strong> safety <strong>of</strong> structures<br />

and subsequently <strong>of</strong> the population. The lack <strong>of</strong> unaniixi~iy, even in a purely<br />

economic approach, concerning the postponement <strong>of</strong> projects is to be noted.<br />

Some authors concludeb/:<br />

tlSince demand for project outputs is presumably growing over time, the more a<br />

project is deferred, the more quickly it is likely to be used, and the greater the<br />

benefits generated per time period <strong>of</strong> project life will be.”<br />

The conclusion seems to he very sensible.<br />

Pldn,? and desiminn <strong>of</strong> flood protection<br />

This cspect deserves special attention, bearing in mind that economic losses<br />

due to floods in the river basins <strong>of</strong> the world continue to be very high. Noreover,<br />

the further extent <strong>of</strong> the economic development <strong>of</strong> regions being threatened by high<br />

flows leads to further growth <strong>of</strong> economic damage from floods. Just one example, fron<br />

the experience <strong>of</strong> the United States, shows that the frequency <strong>of</strong> floods, causing<br />

major roperty damage <strong>of</strong> $50 million or more were increased aimst three times since<br />

19L&d Based on the currßnt status <strong>of</strong> flood control works and project conditions<br />

<strong>of</strong> flood pldm use and development the total annual floodcbage potential for the<br />

nation is anticipated to increase from $1.7 billion in 1966 to $5.0 billion in 20Zoz/.<br />

It is considered that, for elaboration <strong>of</strong> efficient national flood proLection<br />

policies, the data on distribution <strong>of</strong> river flow durine a year, asml1 as the exact<br />

characteristics <strong>of</strong> floods including maximum discharge, duration, tlme <strong>of</strong> flood end<br />

volume <strong>of</strong> the flood flow are <strong>of</strong> considerable importance.<br />

However, the determination <strong>of</strong> these characteristics becomes verydifficult if<br />

hydrological observations are insufficient, as was mentioned above.<br />

m e s<br />

Geophysical Union, bJashington D.C. 1971<br />

IfThe Nations <strong>Water</strong> <strong>Resources</strong>11 W.R.S. United States, 1968, 5-2-2.<br />

1/<br />

\J. IIowe naenefit-Cost Analysis for <strong>Water</strong> System PlanningIl - American


Experience shows that the frequency <strong>of</strong> peak floods, determined on the basis<br />

6 89<br />

<strong>of</strong> a short ceriod <strong>of</strong> observations cm be several times lower than the adequate<br />

vdue, and that leads to considerable damage and to catastrophiee. The foll-owing<br />

consequences <strong>of</strong> inaccurate flood forecasting should be pointed out as regards<br />

water resources development and planning and designing <strong>of</strong> flood protection.<br />

(a) Overestimation <strong>of</strong> flood discharge - leads to unnecessary expenses in<br />

weter engineering construction;<br />

(b) Underestimation <strong>of</strong> flood discharge - leads to full dektruction <strong>of</strong> the<br />

sl.r.ucture, resulting in damage and possibly in loss <strong>of</strong> human lives in<br />

the region.<br />

Thus, proper estimation <strong>of</strong> possible flood peak, depending upon the quality<br />

and accuracy <strong>of</strong> hydrological data is very important. At the samc tine the<br />

experience <strong>of</strong> many countries still shows that: the continuing groi.rth <strong>of</strong> economic<br />

damage to individuals and to the national economy in many regionu <strong>of</strong> the world,<br />

caused by river floods, can be explained not oniy by the spontaneity <strong>of</strong> the flood<br />

phenomena, but also by the lack <strong>of</strong> adeguate organization, insufficient hydrologic<br />

observation and the necessary financial means, which very <strong>of</strong>ten are considerab1.y<br />

less than the value <strong>of</strong> the damage caused. Talcing this into account the ECZ<br />

Cohtiee on <strong>Water</strong> Problems has recently initiated studies on the available<br />

experience in rational methods <strong>of</strong> flood control planning in river basin<br />

development <strong>with</strong> the purpose <strong>of</strong> extending this experience to al1 ECd countries.<br />

In spite <strong>of</strong> the concept generally adopted that the development <strong>of</strong> sufficient<br />

hydrological observation is very important for the planning <strong>of</strong> proper flood<br />

protection and the organization <strong>of</strong> adequate operational measures to prevent<br />

considerable damage, nevertheless the available infornation from some countricc<br />

indicates :<br />

- a lack <strong>of</strong> reliable data regarding rainfall intensities and corresponding<br />

stream flow;<br />

-<br />

-<br />

insufficient studg <strong>of</strong> floods based on a detailed analysis <strong>of</strong> recorded flows<br />

so that water management authorities in some river basins or their parts are<br />

unable to arrive at more realistic estimates <strong>of</strong> expected floods;<br />

the insufficiency <strong>of</strong> the empirical and rather arbitarg methods used up to<br />

now in some countries for estimating peak floods; inadequecy <strong>of</strong> such methods<br />

has been proved and should no longer)%cceptable, in dew <strong>of</strong> the magnitude<br />

and importance <strong>of</strong> the projects undertaken.<br />

It is also indicated in some countries that from the point <strong>of</strong> view <strong>of</strong><br />

safety and also from the economlc angle, the necessity for current study and<br />

evaluation <strong>of</strong> the magnitude and frequency <strong>of</strong> the occurence <strong>of</strong> floods in<br />

connexion <strong>with</strong> the economic development <strong>of</strong> Tiver basins has become essential.<br />

The existence <strong>of</strong> dams in the vicinity <strong>of</strong> populated areas necessitates the closest<br />

study <strong>of</strong> the anticipated probably floods, in order to provide adequate spillway<br />

capacity for the safety <strong>of</strong> the dams, and the downstream areas.


690<br />

In some countries flood forecasts are not yet <strong>of</strong> the desired accuracy, thus<br />

increasing Lhe danger <strong>of</strong> economic damage or reducing the efficiency <strong>of</strong> water storages<br />

down the river, while accurate flood forecasting can increase the overall potentialitie:<br />

<strong>of</strong> a multi-purpose project.<br />

The disoytrous floods which occurred in several regions <strong>of</strong> the world in the recent<br />

decade, causing considerable loss <strong>of</strong> life an9 treinendous economic damage, pointed to<br />

the need to extenä flood forecasting and warning syotems in many countries, especially<br />

in their m.ìt vulnerable river basins. Relevant units established by national kjdro-<br />

meteorological services or by central water and power agencies confirm their<br />

effectivenes: It is considered that ths expenses for the maintenance <strong>of</strong> these unita<br />

is o<strong>nl</strong>y <strong>of</strong> mciest cost compared <strong>with</strong> the peins achieved by timely forece-sting. As<br />

an example, considerable economic benefits are accrued in mqv countries when flood<br />

forecast? nre usea to enable protective measures to be taken against the affects <strong>of</strong><br />

floods. In these cases, the economic benefits through iorecasts are caisulô.ted as<br />

the differenw between pr<strong>of</strong>its from proteoted zoner or areas.<br />

The use <strong>of</strong> flood forecasts in the IJSCR reduces the cost <strong>of</strong> damage äue (* floods<br />

by 20-30 per 'cent. merience in the Uni'reä -:-cates sonfirms that, the redudion <strong>of</strong><br />

flooe .iamagt aione would far outweigh the tow?. cost <strong>of</strong> .the hydrolo@.cai forecasting<br />

serviqe, including the proposed network.:-'.<br />

8,<br />

A:$ participants were informed at the<br />

Uniteu Nations inter-regional Seminar .,r, '?loo6 DamP-Ze Prevention Measures and<br />

Management, convened in Saptenber 1969 i,. Tbidsi, ITSSR, the annual savings due<br />

to the exlsting flood warning systems in the United States exceed $30 million a year.<br />

Experience in India also confirms that the early expenditure on the maintenace <strong>of</strong><br />

the unit in the central water and power commission as well as the cost <strong>of</strong> the necessary<br />

equipment - is o<strong>nl</strong>y a very moderate investment compared <strong>with</strong> the benefits which have<br />

been brought by forecasting.<br />

Importance <strong>of</strong> accurate data to show flow formation regardinp human activity at<br />

watersheds <strong>of</strong> rivers<br />

Attention should be drawn to the importance <strong>of</strong> strengthening research to analyse<br />

the influence <strong>of</strong> human activity in watersheds on river flow. It is considered in some<br />

countries that the euccessful design and operation <strong>of</strong> water engineering structures<br />

could be possible if sufficiently accurate data to show the hydrological characteristic<br />

<strong>of</strong> river basins under natural conditions <strong>of</strong> flow formation, <strong>with</strong> regard to the scale<br />

and direction <strong>of</strong> changes caused by humans, were available. The importance <strong>of</strong> this<br />

aspect has been emphasized among other publications by the ECE Manual mentioned in<br />

the first part <strong>of</strong> this paper.<br />

8/<br />

s/<br />

M.A. Kohïer (United States National Weather Service) Wasebook on Hydrological<br />

Network <strong>Design</strong> Practicet' - WMO No. 324, 1972<br />

Sh.M. Manshard (Central <strong>Water</strong> and Power Codssion) tTlood Forecasting and<br />

Flood Warning in India". Seventh Symposium - The Civil and Hydraulic Engineering<br />

Dept. <strong>Water</strong> <strong>Resources</strong>. May 1971.


II. The inpact <strong>of</strong> a deficiency <strong>of</strong> i1ydrolopicai data on main water users<br />

The impact on the following water users is considered:<br />

(a) 1)onestic water supply<br />

(b) mdustrial water supply<br />

(c) Xydro-power generation and thermal power plant water supply<br />

(d) irrigation<br />

(e) 1knigation<br />

(f) Fisheries<br />

(g) in-ter pollution control<br />

Ex'üen3.ve research was carried out in i?ariy AC3 countries devoted to t'ne appreisal<br />

<strong>of</strong> the impact <strong>of</strong> a deficient river flow aroused, among other reasons, by the lack <strong>of</strong><br />

hydrological obsorvations and insufficiently accurate forecasts. One such research<br />

project has been carried out during -the recent decade 'by the central research institute<br />

on water problems in the USSR (btinsl~)~. Analysing dieierent nethodx <strong>of</strong> estimation<br />

for the appraisal <strong>of</strong> the impact <strong>of</strong> d<strong>of</strong>icient water flow, the authors indicate that, in<br />

so<strong>nl</strong>e case:, estbation becomes difficillt by reason <strong>of</strong> too 5hoi-t a period ol 1iyarologica.l<br />

obsemration:;. It is aïs0 pointed out that special estimation techniqucr to be applied<br />

in cases <strong>of</strong> short available periods oi hydrological observations, which could be applied<br />

for economic analysis, have not yet been created.<br />

However available results <strong>of</strong> research carried out in the same corntry suggest<br />

some methoas for use under conditions <strong>of</strong> deTiCient hydrological dataJ.<br />

11<br />

They atter-pt<br />

to find a relztion between the extent <strong>of</strong> limitation <strong>of</strong> the water siipply and the<br />

reduction <strong>of</strong> economic activities (e.g. the industrFal output) <strong>of</strong> a certain enterprize<br />

in order to asress the economic damage caused by water shortages.<br />

Domestic water supplx<br />

It is generally adopted that domestic uater supply does not allow in-Lerruptions<br />

i.e. the pyaranteed water supply for these consumers must be doze to 100 per cent.<br />

Industrial water siipply<br />

It is considered that the magnitude <strong>of</strong> economic damage connected. <strong>with</strong> stoppage<br />

or partial reduction <strong>of</strong> water supply is considerably influenced by the quality <strong>of</strong><br />

hydrological prognosis.<br />

Some researchers in countries <strong>with</strong> a centrally planned econoqv suggest to<br />

subdivide the dmages, as followsw:<br />

o/ 1.1. I-fechetov, V.N. Pluzhnikov, L.J. Popov IfBalance <strong>of</strong> <strong>Water</strong> <strong>Resources</strong> and Needs -<br />

the method <strong>of</strong> optimal planning <strong>of</strong> water ressurces dsvelopmentl~ Multiqurpose water<br />

resources development and conservation. Minsk. 196û.<br />

Ir/ V. Andreyanov IiInternal distribution <strong>of</strong> river flowl'. Gidrometizdat. USSR.<br />

Centrcrl Research Institute <strong>of</strong> <strong>Water</strong> F'roblecis. USSR. Minsk. "Miilti-purpose<br />

development and quality conservation <strong>of</strong> water resources" - 1968.<br />

6 91


692<br />

(a) direct damages (expressed by direct cost <strong>of</strong> unproductive forms <strong>of</strong> enterprises<br />

due to water stoppage or shortace);<br />

(b) indirect - measured by the loss <strong>of</strong> pr<strong>of</strong>it during the time <strong>of</strong> stoppage or<br />

reduction <strong>of</strong> water supply.<br />

The lack or insufficiency <strong>of</strong> research to define a relation between -Lhe extent<br />

<strong>of</strong> the limitation <strong>of</strong> the water supply and the relevant economic damago to clifrerent<br />

tLJhnological processes is being noted in some branches <strong>of</strong> production.<br />

Generation <strong>of</strong> electric enerpy by hydro-electric plants and themai power plants<br />

Proper flow predictions are important +o obtain optimum utilization <strong>of</strong> *dro-electi<br />

Timely 8n.d accurate ïlood forecasting in periods <strong>of</strong> lieais.<br />

and tharml. power plants.<br />

rains increase:. tlie overall potentiality <strong>of</strong> a multi-purpose project. Accurate<br />

forecasting is especially important bearing in nind tho fact that hyciro-power<br />

resources, depcnd on neteorological m u hydrological conditions vhich


693<br />

Il, is emphasized that not o<strong>nl</strong>x the entent <strong>of</strong> reduction o€ water supply is important<br />

here but also .the seasonal period <strong>of</strong> this reduction which could be -


69b<br />

pollutant to the river in a period uith lower flow could create dangerous pollution<br />

concentrzìions in the lower reaches <strong>of</strong> the -river. %u hydrological forecasting<br />

has therefore aezome more iraportant fÒP watcr quality control in the river basin.<br />

The other nspect - is the importahce <strong>of</strong> better organization and modern<br />

instmntation <strong>of</strong> water quality contrbl trg hyd.rolo~&cal sedces. The ECE Manual<br />

mentioned above gives particular at4ention to water- qdity/data and research<br />

simultaneously <strong>with</strong> hyàrological resáárch, reqtliring the extehsion and hprovement<br />

<strong>of</strong> the system <strong>of</strong> observations on water”qua1ity in streams and reservoirs.<br />

Information from the ECE countries, posticulariy diseussed at the ECE Sendnar<br />

in Zagreb, 1971, points out khat considerable improvement in these functions is<br />

being iqîemented in mmy countries,<br />

As regards the assessment <strong>of</strong> economic danage caused by water quality<br />

deterioration due to flow reductionsin rivers, including reasons caused by<br />

untimely and inaccurate hydrological forecasts, there are as yet no methods<br />

<strong>of</strong> assessment generally recognized or adopted. In some <strong>of</strong> the ECE countries<br />

it is considered that the infringemant <strong>of</strong> sanitary water conditions in a river<br />

basin, due to low flow, and the relevant damage dee economi=. assessment.<br />

Further comprehensive studies seem to be necessary in tlis field.<br />

The same is said <strong>of</strong> the economic assessment <strong>of</strong> the impact <strong>of</strong> water quality<br />

deterioration on water recreation. Correspondingly it 1s considered that it is<br />

difficult to substantiate economically permissible standards <strong>of</strong> concentration <strong>of</strong><br />

polluters in a river basin.<br />

However, there is no unanimity on this point. Research in some other ECE<br />

countries show Lliat the increase in the present value <strong>of</strong> direct quantifiable<br />

recreation benefits <strong>of</strong> inproved water quality, for example in the Delaware River<br />

bacin could be as high as $300-350 niillion for the highest water quaïity clase<br />

adoptadw.<br />

Sediment control<br />

In e:cicnding and further improving hydrological services and their forecasting,<br />

sediment control shodd not be neglected.<br />

Further water resources development and growth <strong>of</strong> human activity on the watersheds<br />

m e s quantitative and qualitative sediment data very important as a part <strong>of</strong><br />

hydrologic controls for different periods <strong>of</strong> the year. The iniportance <strong>of</strong> this<br />

problem could be seen fromthe experience <strong>of</strong> q ECE countries.<br />

It has been recognized by nany countries, that accumulation <strong>of</strong> sediments in<br />

niagy cases ohortcns the effective economic life <strong>of</strong> water engineering structures such<br />

as water-storagc ’, causes ii tensive wearing <strong>of</strong> pumps and turbines, requiring in all<br />

cases new capiti investments. As Is known, the problem can be grcatly mitigated<br />

by cidensive and complex control measures, including inproved forecasting.<br />

12/ A.B. Iïneese and B.T. Bower. AnaJYSeS conducted by the University <strong>of</strong> Pennsylvenia.<br />

Wanaging water quality’t. John Xopkins Press, Baltimore, 1968.


Experience in the United States shows that the damage from sediments to water<br />

management and national econow reaches more than $500 million a nnuala.<br />

Data on ice and slush ice conditions<br />

Inaccurate forecasting and warning ice and ice slush conditions cause<br />

considerable damage to hydro-electric plants and the energy consumers,<br />

causing reduction <strong>of</strong> industrial production in some <strong>of</strong> the regions <strong>of</strong> the middle<br />

climatic and rmuntainous zones.<br />

1.<br />

Conclueions<br />

In conclusion we would Uke to emphasise the following:<br />

Available experience and research being carried out in ECE countries clearly<br />

demonstrate the considerable impact <strong>of</strong> insufficient hydrological data and<br />

forecasting in all phases <strong>of</strong> planning <strong>of</strong> water resources development and use,<br />

which in their turn could have an *act on economic development <strong>of</strong> certain<br />

regions.<br />

2.<br />

695<br />

assess the value <strong>of</strong> hydrological data already have achieved certain positive effects,<br />

for example the development OP mathematical relations between the present value <strong>of</strong><br />

the value <strong>of</strong> data and the length <strong>of</strong> their record, as well as development <strong>of</strong> some<br />

methodology to assess the impact on main water users.<br />

3. Available research clearly shows that the cost <strong>of</strong> additional hydrological data -<br />

i.e. increasing the length <strong>of</strong> observation - is imd@ficant in relation to the<br />

expected losses due to insufficient data.<br />

in many countries, especially developing countries, are very <strong>of</strong>ten evaluated as<br />

inadequate for proper development <strong>of</strong> hydrological networks as was revealed and<br />

emphasized by different conferenoes.<br />

4. In spite <strong>of</strong> considerable research being carried out in ECE and other countries,<br />

as veli as various studies by specialized organizations, the following main<br />

deficiencies in hydrological observations and research are noted in different<br />

countries, which render a certain negative impact on water resources development<br />

-<br />

Available attempts in ECE countries to create and improve &.sting methods to<br />

and effective use:<br />

However, insufficient funds available<br />

the lack <strong>of</strong> reliable data on rainfall intensities and corresponding streamflowsj<br />

practical usage <strong>of</strong> empirical and sometimes rather arbitary methods for estimating<br />

peak floods; the lack <strong>of</strong> scientific studies on evaluation <strong>of</strong> the magnitudes<br />

and frequency <strong>of</strong> the occurrence <strong>of</strong> floods; insufficient studies and research to<br />

assess t h impact <strong>of</strong> human activity in watersheds on waterflow; lack <strong>of</strong><br />

special estimation techniques to be applied for economic analysis in cases<br />

<strong>of</strong> available short periods <strong>of</strong> hydrolo,.Lcal observations; deficiencies <strong>of</strong><br />

u "Xnvironmental Problems". Monograph presented by the United States Government<br />

to ECE. January 1970.


696<br />

available methods <strong>of</strong> long-tem hydrologi.cal forecasts; insufficiency <strong>of</strong><br />

research to define a relationship between the extent <strong>of</strong> the limitation <strong>of</strong><br />

,he water supply and the relevant economic damage to different technological<br />

processes; lack <strong>of</strong> generally recognized methods <strong>of</strong> assessment <strong>of</strong> economic<br />

damage caused by water quality detexioration.<br />

Strengthening <strong>of</strong> the research regarding the deficiencies listed above Is<br />

considered as important and urgent.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!