16.01.2013 Views

Effect of Projection Height on Projection - American Welding Society

Effect of Projection Height on Projection - American Welding Society

Effect of Projection Height on Projection - American Welding Society

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

W E L D I N G R E S E A R CH<br />

SUPPLEMENT TO THE WELDING JOURNAL, SEPTEMBER 2001<br />

Sp<strong>on</strong>sored by the <strong>American</strong> <strong>Welding</strong> <strong>Society</strong> and the <strong>Welding</strong> Research Council.<br />

<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Projecti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Height</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>Projecti<strong>on</strong></str<strong>on</strong>g><br />

Collapse and Nugget Formati<strong>on</strong> — A Finite<br />

Element Study<br />

An incrementally coupled analysis procedure can be used to develop improved<br />

procedures for determining weld c<strong>on</strong>diti<strong>on</strong>s<br />

ABSTRACT. <str<strong>on</strong>g>Projecti<strong>on</strong></str<strong>on</strong>g> welding is a variati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> resistance welding in which current<br />

flow is c<strong>on</strong>centrated at the point <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>tact with a local geometric extensi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e (or both) <str<strong>on</strong>g>of</str<strong>on</strong>g> the parts being<br />

welded. These projecti<strong>on</strong>s are used to<br />

c<strong>on</strong>centrate heat generati<strong>on</strong> at the point<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tact, and, therefore, to generate a<br />

weld nugget faster and at a lower current<br />

l e vel compared to c<strong>on</strong>venti<strong>on</strong>al spot<br />

welding. Many factors affect the heat<br />

generati<strong>on</strong> and projecti<strong>on</strong> collapse <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

projecti<strong>on</strong> welding process. The effects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> some <str<strong>on</strong>g>of</str<strong>on</strong>g> these factors, such as welding<br />

current, electrode force, and sheet material<br />

properties, have been studied using<br />

the coupled finite element simulati<strong>on</strong><br />

procedures in an earlier study by the author<br />

(Ref. 1). This paper is a sequel to the<br />

previous effort. It investigates the effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

projecti<strong>on</strong> height <strong>on</strong> projecti<strong>on</strong> collapse<br />

and nugget formati<strong>on</strong>. Three projecti<strong>on</strong><br />

designs with different projecti<strong>on</strong> heights<br />

were selected for 0.059-in., cold-rolled,<br />

low-carb<strong>on</strong> steel according to Ref. 2. The<br />

corresp<strong>on</strong>ding heat generati<strong>on</strong> processes<br />

using <strong>on</strong>e set <str<strong>on</strong>g>of</str<strong>on</strong>g> welding parameters were<br />

simulated using an incrementally coupled,<br />

thermal-electrical-mech a n i c a l<br />

modeling procedure (Refs. 1, 3). The predicted<br />

heating patterns were compared<br />

with the weld cross secti<strong>on</strong>s obtained<br />

from an earlier experimental approach<br />

using high-speed moti<strong>on</strong> photogra p hy<br />

X. SUN is with Battelle Memorial Institute,<br />

Columbus, Ohio.<br />

(up to 6000 frames/s). The study <str<strong>on</strong>g>of</str<strong>on</strong>g>fers<br />

fundamental understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

process physics for different projecti<strong>on</strong><br />

designs and dem<strong>on</strong>strates again the effectiveness<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> an incrementally coupled<br />

modeling procedure.<br />

Introducti<strong>on</strong><br />

BY X. SUN<br />

<str<strong>on</strong>g>Projecti<strong>on</strong></str<strong>on</strong>g> welding is an electrical resistance<br />

welding process in wh i ch resistance<br />

welds are produced at localized<br />

points in workpieces held under pressure<br />

between suitable electrodes. The projecti<strong>on</strong>s<br />

are usually dome or c<strong>on</strong>e shaped<br />

and are made with different designs according<br />

to recommendati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> some<br />

standards. Although tests indicate satisfactory<br />

welds can be produced over a<br />

wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> projecti<strong>on</strong> shapes, there is<br />

some ambiguity c<strong>on</strong>cerning optimum designs<br />

(Ref. 2). For example, a wide va r i e t y<br />

KEY WORDS<br />

<str<strong>on</strong>g>Projecti<strong>on</strong></str<strong>on</strong>g> <strong>Welding</strong><br />

Finite Element Analysis<br />

<str<strong>on</strong>g>Projecti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Height</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Projecti<strong>on</strong></str<strong>on</strong>g> Design<br />

<strong>Welding</strong> Process<br />

Modeling<br />

<str<strong>on</strong>g>Projecti<strong>on</strong></str<strong>on</strong>g> Collapse<br />

Nugget Growth<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> standards are recommended by different<br />

technical groups such as the <strong>American</strong><br />

<strong>Welding</strong> <strong>Society</strong> and Internati<strong>on</strong>al Institute<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Welding</strong>. In additi<strong>on</strong>, different<br />

industries tend to establish their own projecti<strong>on</strong><br />

design guidelines. It is intuitive<br />

that for different projecti<strong>on</strong> designs, the<br />

current paths will vary and this will, in<br />

turn, affect both projecti<strong>on</strong> collapse and<br />

the pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> nugget formati<strong>on</strong>. How e ve r,<br />

due to the complex flow paths for heat<br />

and electrical current and variati<strong>on</strong>s in<br />

material properties with temperature and<br />

phase changes, the projecti<strong>on</strong> welding<br />

process is difficult to analyze. When<br />

s t u dying the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> projecti<strong>on</strong> design <strong>on</strong><br />

weld formati<strong>on</strong> and weld quality, many<br />

earlier researchers had to rely <strong>on</strong> experimental<br />

techniques such as c<strong>on</strong>secutive<br />

cross secti<strong>on</strong>ing and high-speed moti<strong>on</strong><br />

p h o t o g ra p hy (Refs. 2, 4).<br />

With recent developments in finite element<br />

analysis and advances in computer<br />

tech n o l o g y, it is now possible to<br />

model the projecti<strong>on</strong> welding process<br />

and study current flow, heat generati<strong>on</strong>,<br />

and projecti<strong>on</strong> collapse in quantitative<br />

detail. For example, the projecti<strong>on</strong> welding<br />

process was simulated with a coupled<br />

electrical-thermal-mech a n i c a l<br />

analysis procedure in Ref. 1, and the effects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> different welding para m e t e r s ,<br />

such as material grade, welding current,<br />

and electrode force, were investigated in<br />

great detail. In this study, the incrementally<br />

coupled analysis procedure developed<br />

in Refs. 1 and 3 was used to study<br />

WELDING RESEARCH SUPPLEMENT | 211-s


Fig. 1 — Cross secti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the three projecti<strong>on</strong> shapes studied. Fig. 2 — Illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> welding parameters.<br />

Fig. 3 — Typical finite element model for standard projecti<strong>on</strong> height.<br />

the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> projecti<strong>on</strong> height <strong>on</strong> heat<br />

g e n e rati<strong>on</strong> and projecti<strong>on</strong> collapse for<br />

three different projecti<strong>on</strong> designs. A similar<br />

modeling procedure was also used to<br />

simulate the processes <str<strong>on</strong>g>of</str<strong>on</strong>g> resistance spot<br />

welding; it proved to be an effective tool<br />

in analyzing fundamental process<br />

physics.<br />

To compare simulati<strong>on</strong> with existing<br />

experimental results, the projecti<strong>on</strong> designs<br />

and sheet material studied in this<br />

work are the same as the <strong>on</strong>es examined<br />

in Ref. 2 using high-speed movies. Three<br />

projecti<strong>on</strong> heights were adopted for the<br />

H&R (Harris and Riley) projecti<strong>on</strong> in<br />

welding <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.059-in., cold-rolled, low -<br />

carb<strong>on</strong> steel. This study’s objective was to<br />

examine the current flow and heat generati<strong>on</strong><br />

process for the three projecti<strong>on</strong><br />

heights in quantitative detail. This would,<br />

in turn, <str<strong>on</strong>g>of</str<strong>on</strong>g>fer some insights <strong>on</strong> the optimizati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> projecti<strong>on</strong> heights and selec-<br />

212-s | SEPTEMBER 2001<br />

ti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> different welding para m e t e r s .<br />

Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> predicted results with<br />

previous experimental measurements<br />

using high-speed moti<strong>on</strong> photogra p hy<br />

(Ref. 2) also served as further validati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the modeling procedure.<br />

<str<strong>on</strong>g>Projecti<strong>on</strong></str<strong>on</strong>g> Geometry<br />

and Model Descripti<strong>on</strong><br />

Figure 1 shows cross secti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

three projecti<strong>on</strong> shapes for 0.059-in.,<br />

SAE1010 cold-rolled steel as studied in<br />

Ref. 2. <str<strong>on</strong>g>Projecti<strong>on</strong></str<strong>on</strong>g> heights vary from 0.02<br />

to 0.06 in., and they are obtained by<br />

using H&R punch and die set T-4 (Refs.<br />

2, 11). Notice the low projecti<strong>on</strong> is nearly<br />

uniform in thickness throughout, wh i l e<br />

higher projecti<strong>on</strong>s showed increasingly<br />

thinner necked-down regi<strong>on</strong>s.<br />

The sheet material SAE 1010 had a<br />

room temperature nominal yield strength<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 270 MPa, ultimate strength <str<strong>on</strong>g>of</str<strong>on</strong>g> 310<br />

MPa, and el<strong>on</strong>gati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 32% (Refs. 10,<br />

14). Its physical (electrical and thermal)<br />

and mechanical properties in eleva t e d<br />

temperatures were found in Refs. 5–7. A<br />

true stress and strain curve was used with<br />

no strain rate sensitivity (Ref. 1). It should<br />

also be menti<strong>on</strong>ed the analysis did not<br />

take into c<strong>on</strong>siderati<strong>on</strong> the residual stress<br />

states in the projecti<strong>on</strong> area due to the<br />

punching process, nor did it c<strong>on</strong>sider the<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> work hardening <strong>on</strong> the material<br />

around the projecti<strong>on</strong> area.<br />

The electrodes used were flat-faced<br />

RWMA Class III electrodes with a face radius<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 0.16 in. (4 mm). The same welding<br />

parameters were used for the three<br />

projecti<strong>on</strong> designs: welding current <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

9.7 kA with bilinear up-slope c<strong>on</strong>trol and<br />

c<strong>on</strong>stant electrode force <str<strong>on</strong>g>of</str<strong>on</strong>g> 500 lb — Fig.<br />

2. The current is an approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

current pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile documented in Fig. 2 <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Ref. 2. By specifying the c<strong>on</strong>stant electrode<br />

force, perfect machine follow - u p<br />

was assumed. Only 8 cycles <str<strong>on</strong>g>of</str<strong>on</strong>g> weld time<br />

were used, as opposed to 30 cycles used<br />

in Ref. 2. This was because projecti<strong>on</strong><br />

collapse occurred <strong>on</strong>ly during the early<br />

stage <str<strong>on</strong>g>of</str<strong>on</strong>g> the welding process. For all three<br />

cases, projecti<strong>on</strong> collapse was completed<br />

by the eighth cycle and nugget<br />

growth bey<strong>on</strong>d that point was similar to<br />

that <str<strong>on</strong>g>of</str<strong>on</strong>g> the resistance spot welding<br />

process.<br />

The theoretical framework and associated<br />

finite element modeling procedure<br />

using commercial code [e . g .,<br />

A BAQUS (Ref. 13)] for the projecti<strong>on</strong><br />

welding process are presented in Refs. 1<br />

and 3. A typical finite element mesh is<br />

shown in Fig. 3 for the standard projecti<strong>on</strong><br />

with three-node linear elements in<br />

the projecti<strong>on</strong> area and four-node linear


Fig. 4 — Stress σ22 c<strong>on</strong>tour <strong>on</strong> deformed shape for electrode-sheet assembly<br />

after squeeze cycle.<br />

elements used elsewhere in the model.<br />

Only half <str<strong>on</strong>g>of</str<strong>on</strong>g> the electrode-sheet assembly<br />

was modeled with an axisymmetric<br />

c<strong>on</strong>diti<strong>on</strong> being assumed.<br />

The squeeze cycle was first modeled<br />

by mechanical analysis. Uniformly distributed<br />

pressure calculated according to<br />

the specified electrode force was applied<br />

<strong>on</strong> the top <str<strong>on</strong>g>of</str<strong>on</strong>g> the upper electrode, and the<br />

bottom <str<strong>on</strong>g>of</str<strong>on</strong>g> the lower electrode was restrained<br />

from moti<strong>on</strong> in the vertical directi<strong>on</strong>.<br />

C<strong>on</strong>tact surface interacti<strong>on</strong>s between<br />

the electrode-sheet interfaces and<br />

the faying interface were modeled with<br />

the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tact pair. C<strong>on</strong>tact pair<br />

is an opti<strong>on</strong> for modeling surface interacti<strong>on</strong>s<br />

in ABAQUS (Ref. 13). Instead <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

introducing a fictitious layer <str<strong>on</strong>g>of</str<strong>on</strong>g> solid interface<br />

elements at the c<strong>on</strong>tact surface,<br />

c<strong>on</strong>tact pair is a surface c<strong>on</strong>cept in which<br />

the master and slave surfaces <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>tact<br />

are defined. Details <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>tact<br />

pair formulati<strong>on</strong> can be found in Ref. 13.<br />

Results generated from the squeezing<br />

cycle mechanical analysis, including de-<br />

formed shape and coordinates, c<strong>on</strong>tact<br />

pressure, c<strong>on</strong>tact radius, element groups<br />

in and not in c<strong>on</strong>tact, etc., are extracted<br />

and passed into the next-step electricalthermal<br />

analysis in wh i ch the welding<br />

current is applied.<br />

In the electrical-thermal analysis, the<br />

deformed shape <str<strong>on</strong>g>of</str<strong>on</strong>g> the electrode-sheet<br />

assembly calculated from the previous<br />

mechanical analysis was used. Zero electrical<br />

potential was imposed <strong>on</strong> the bottom<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the lower electrode tip. Distributed<br />

current density input calculated<br />

from the current input value was applied<br />

<strong>on</strong> the top <str<strong>on</strong>g>of</str<strong>on</strong>g> the upper electrode. All free<br />

surfaces <str<strong>on</strong>g>of</str<strong>on</strong>g> the electrode and sheet assembly<br />

not in c<strong>on</strong>tact at that time increment<br />

were assumed to have free c<strong>on</strong>vecti<strong>on</strong><br />

with the surrounding air, and the two<br />

electrodes were assumed to be wa t e r<br />

cooled with a forced-c<strong>on</strong>vecti<strong>on</strong> coefficient<br />

specified <strong>on</strong> their upper and lower<br />

free edges.<br />

The surface electrical resistivity <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

f aying interface and electrode-sheet in-<br />

Fig. 5 — Faying interface c<strong>on</strong>tact radius evoluti<strong>on</strong> for the three cases<br />

during the first two cycles.<br />

Fig. 6 — Lower electrode-sheet interface c<strong>on</strong>tact radius evoluti<strong>on</strong> for<br />

the three cases during the first two cycles.<br />

terface were calculated using the formulati<strong>on</strong><br />

in Ref. 8 by assuming the maximum<br />

temperatures, T s (Equati<strong>on</strong> 10 in<br />

Ref. 3), for the faying interface and the<br />

electrode-sheet interface as 1500 and<br />

500°C, respectively (Ref. 1). T s used at the<br />

faying interface was the solidus <str<strong>on</strong>g>of</str<strong>on</strong>g> bare<br />

steel. T s used at the electrode-sheet interface<br />

was lower than the eutectoid temperature<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the Fe-Cu alloy (Ref. 8). This<br />

is because the cooling water positi<strong>on</strong> <strong>on</strong><br />

the electrodes was not clearly indicated<br />

in Ref. 2, and, in the current study, the<br />

water-cooling c<strong>on</strong>vecti<strong>on</strong> coefficient was<br />

applied <strong>on</strong>ly at the free edges <str<strong>on</strong>g>of</str<strong>on</strong>g> the electrode<br />

ends. By using a lower value <str<strong>on</strong>g>of</str<strong>on</strong>g> T s<br />

<strong>on</strong> the electrode-sheet interface, the effect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cooling water was compensated.<br />

The c<strong>on</strong>tact radii for the electrodesheet<br />

interfaces and faying interface are<br />

extracted from the previous mechanical<br />

analysis results to be used in the calculati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> electrical c<strong>on</strong>tact resistivity. The<br />

temperature distributi<strong>on</strong> computed from<br />

the above electrical-thermal analysis for<br />

WELDING RESEARCH SUPPLEMENT | 213-s


Fig. 7 — Temperature distributi<strong>on</strong> at the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the sec<strong>on</strong>d welding cycle.<br />

a certain time increment was then imposed<br />

as thermal loading c<strong>on</strong>diti<strong>on</strong>s for<br />

the subsequent thermal-mech a n i c a l<br />

analysis module. This updating procedure<br />

repeated itself for every 1 ⁄1 6 cy c l e<br />

(Ref. 1), until the entire welding cy c l e<br />

was totally completed.<br />

Analysis Results<br />

Squeeze Cycle<br />

At the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the squeeze cycle, cold<br />

collapse <str<strong>on</strong>g>of</str<strong>on</strong>g> the projecti<strong>on</strong> occurred and<br />

an area <str<strong>on</strong>g>of</str<strong>on</strong>g> intimate mechanical c<strong>on</strong>tact<br />

<strong>on</strong> the faying interface was established<br />

for the subsequent electrical current to<br />

pass through. The amount <str<strong>on</strong>g>of</str<strong>on</strong>g> cold collapse<br />

depends <strong>on</strong> the electrode force and<br />

the individual projecti<strong>on</strong> design. For example,<br />

Fig. 4 shows the c<strong>on</strong>tour plots <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the stress comp<strong>on</strong>ent <strong>on</strong> the deformed<br />

shapes for the three projecti<strong>on</strong> heights<br />

after squeeze cycle. As illustrated in Fig.<br />

4, the faying interface c<strong>on</strong>tact radius established<br />

due to the squeezing force decreases<br />

with increasing projecti<strong>on</strong><br />

heights. For the lowest projecti<strong>on</strong> height,<br />

214-s | SEPTEMBER 2001<br />

the projecti<strong>on</strong> collapsed<br />

almost entirely<br />

and the c<strong>on</strong>tact<br />

pressure at the<br />

upper electrodeprojecti<strong>on</strong><br />

interface<br />

o b s e r ved the highest value am<strong>on</strong>g the<br />

three cases c<strong>on</strong>sidered.<br />

Initial <strong>Welding</strong> Cycles<br />

and <str<strong>on</strong>g>Projecti<strong>on</strong></str<strong>on</strong>g> Collapse<br />

Because <str<strong>on</strong>g>of</str<strong>on</strong>g> the differences in the established<br />

faying interface c<strong>on</strong>tact area for<br />

the three projecti<strong>on</strong> heights, the corresp<strong>on</strong>ding<br />

current density distributi<strong>on</strong>s,<br />

and therefore the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> heat generati<strong>on</strong>,<br />

were also different for the three cases<br />

c<strong>on</strong>sidered in the initial welding cycles.<br />

The evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the faying interface c<strong>on</strong>tact<br />

radius during the first two cycles is<br />

compared in Fig. 5 for the three cases<br />

c<strong>on</strong>sidered. For all three projecti<strong>on</strong><br />

shapes, the c<strong>on</strong>tact radius <strong>on</strong> the faying<br />

interface increased m<strong>on</strong>ot<strong>on</strong>ically with<br />

time during the first two cycles. This was<br />

another manifestati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the gradual projecti<strong>on</strong><br />

collapse process. The lowest pro-<br />

Fig. 8 — Current density distributi<strong>on</strong> at the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the sec<strong>on</strong>d welding<br />

cycle.<br />

jecti<strong>on</strong> c<strong>on</strong>sistently had the highest c<strong>on</strong>tact<br />

radius am<strong>on</strong>g the three cases. Th e<br />

c<strong>on</strong>tact radius <str<strong>on</strong>g>of</str<strong>on</strong>g> the standard projecti<strong>on</strong><br />

was higher than the highest projecti<strong>on</strong><br />

during the squeeze cycle and subsequent<br />

first cycle <str<strong>on</strong>g>of</str<strong>on</strong>g> welding. After the first cycle,<br />

the c<strong>on</strong>tact radius for the highest projecti<strong>on</strong><br />

caught up with the standard projecti<strong>on</strong><br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> local heating-induced<br />

material s<str<strong>on</strong>g>of</str<strong>on</strong>g>tening al<strong>on</strong>g the periphery <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the faying interface.<br />

The change <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tact radius during<br />

the first two cycles for the lower electrode-sheet<br />

interface is shown in Fig. 6<br />

for the three cases c<strong>on</strong>sidered. The trend<br />

was fundamentally different from that <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

spot welding using flat-faced electrodes<br />

(Ref. 8). Before the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the first welding<br />

cycle, the electrode-sheet interface<br />

radius increased with time due to the projecti<strong>on</strong><br />

collapse process and the corresp<strong>on</strong>ding<br />

increase <str<strong>on</strong>g>of</str<strong>on</strong>g> the faying interface<br />

c<strong>on</strong>tact area.


After the first cycle, the faying interface<br />

heating became more intensive. The<br />

heat generated at the interface caused<br />

thermal expansi<strong>on</strong> in the vicinity <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tact<br />

interface. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> thermal expansi<strong>on</strong><br />

<strong>on</strong> the faying interface was <str<strong>on</strong>g>of</str<strong>on</strong>g>fset<br />

by the projecti<strong>on</strong> collapse process; therefore,<br />

no decrease in c<strong>on</strong>tact radius was<br />

o b s e r ved for the faying interface, as<br />

shown in Fig. 5. However, as a result <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the faying interface thermal expansi<strong>on</strong>,<br />

the c<strong>on</strong>tact radii <strong>on</strong> the lower electrodesheet<br />

interface were reduced.<br />

Am<strong>on</strong>g the three cases c<strong>on</strong>sidered, the<br />

l owest projecti<strong>on</strong> experienced the slowest<br />

heat generati<strong>on</strong> because it had the<br />

largest faying interface c<strong>on</strong>tact area; the<br />

highest projecti<strong>on</strong> had the fastest heat<br />

g e n e rati<strong>on</strong> because <str<strong>on</strong>g>of</str<strong>on</strong>g> its initial smallest<br />

c<strong>on</strong>tact area and, therefore, the highest<br />

current density distributi<strong>on</strong> al<strong>on</strong>g the faying<br />

interface. Figure 7 shows, at the end<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the sec<strong>on</strong>d cycle, the temperature distributi<strong>on</strong>s<br />

and projecti<strong>on</strong> collapse patterns<br />

for the three projecti<strong>on</strong> designs c<strong>on</strong>sidered.<br />

Figure 8 compares the current<br />

density distributi<strong>on</strong>s for the three projecti<strong>on</strong><br />

shapes at the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the sec<strong>on</strong>d cycle.<br />

The predicted temperature distributi<strong>on</strong>s<br />

and projecti<strong>on</strong> collapse patterns<br />

s h own in Fig. 7 compare very well with<br />

the experimental results depicted in Fig. 3<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Ref. 2, wh i ch were obtained by highspeed<br />

movies. For example, at the end <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the sec<strong>on</strong>d cycle, both Fig. 7 and Fig. 3 <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Ref. 2 show the projecti<strong>on</strong> had totally collapsed<br />

for the lowest projecti<strong>on</strong> and collapsed<br />

more than 50% <str<strong>on</strong>g>of</str<strong>on</strong>g> its original<br />

height for the highest projecti<strong>on</strong>. The predicted<br />

temperature c<strong>on</strong>tours are also in<br />

good agreement with the c<strong>on</strong>tours depicted<br />

in Fig. 3 <str<strong>on</strong>g>of</str<strong>on</strong>g> Ref. 2. Only localized<br />

melting occurred for the highest projecti<strong>on</strong>,<br />

and the peak faying interface temp<br />

e rature increased with increasing projecti<strong>on</strong><br />

height, as shown in both studies.<br />

The current density c<strong>on</strong>centrated at the<br />

outer ring locati<strong>on</strong> <strong>on</strong> the faying interface<br />

and, therefore, initial heating was generated<br />

primarily at these locati<strong>on</strong>s for all<br />

three cases — Fig. 8 and Ref. 2. How e ve r,<br />

the magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the temperature generated<br />

was different for the three cases because<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the different levels <str<strong>on</strong>g>of</str<strong>on</strong>g> current<br />

density caused by different projecti<strong>on</strong><br />

heights. Figure 7B shows greater temperature<br />

development in the projecti<strong>on</strong> than<br />

Fig. 7A, indicating the standard projecti<strong>on</strong><br />

attained substantial heating elsewhere<br />

in additi<strong>on</strong> to just at the interface<br />

(Ref. 2). The highest projecti<strong>on</strong> design<br />

g e n e rated the highest interface temperature<br />

and the “hot spots” are located<br />

around the c<strong>on</strong>tact periphery <str<strong>on</strong>g>of</str<strong>on</strong>g> the faying<br />

interface — Fig. 7C. This was an extreme<br />

case, as current c<strong>on</strong>centrati<strong>on</strong> had<br />

become quite high in the thin regi<strong>on</strong>s, re-<br />

Fig. 9 — Predicted projecti<strong>on</strong> collapse and nugget formati<strong>on</strong> process.<br />

sulting in much higher temperatures and<br />

some premature melting. As will be<br />

s h own later, these hot spots around the<br />

c<strong>on</strong>tact periphery became hotter as the<br />

welding process c<strong>on</strong>tinued because <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> bulk heating. If the projecti<strong>on</strong><br />

had been too high, the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> projecti<strong>on</strong><br />

collapse could not catch up with the ra t e<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> excessive local heating and liquid<br />

metal expulsi<strong>on</strong> would have occurred.<br />

Subsequent <strong>Welding</strong> Cycles<br />

Once the projecti<strong>on</strong> completely collapsed,<br />

the subsequent projecti<strong>on</strong> welding<br />

process closely resembled the spot<br />

welding process. For illustrati<strong>on</strong>, Fig. 9<br />

s h ows, at selective time frames, the<br />

molten z<strong>on</strong>e size and projecti<strong>on</strong> collapse<br />

patterns for the three projecti<strong>on</strong> designs<br />

during the welding simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the first<br />

eight welding cycles.<br />

For all three cases c<strong>on</strong>sidered, melting<br />

initiated in the form <str<strong>on</strong>g>of</str<strong>on</strong>g> a small ring <strong>on</strong> the<br />

faying interface as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> high current<br />

density at these locati<strong>on</strong>s. However, the<br />

rate <str<strong>on</strong>g>of</str<strong>on</strong>g> projecti<strong>on</strong> collapse and heat generati<strong>on</strong><br />

was c<strong>on</strong>siderably different for the<br />

three cases c<strong>on</strong>sidered. From the comparis<strong>on</strong>s<br />

shown in Fig. 9, it is clear the<br />

l owest projecti<strong>on</strong> had the earliest total<br />

projecti<strong>on</strong> collapse and the highest projecti<strong>on</strong><br />

had the fastest rate <str<strong>on</strong>g>of</str<strong>on</strong>g> heat generati<strong>on</strong>.<br />

Initial melting occurred at the end<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the sec<strong>on</strong>d cycle for the highest projecti<strong>on</strong>,<br />

while no melting was predicted<br />

until the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the sixth cycle for the<br />

lowest projecti<strong>on</strong>.<br />

For the highest projecti<strong>on</strong>, the analysis<br />

diverged at the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the fourth weld-<br />

ing cycle because <str<strong>on</strong>g>of</str<strong>on</strong>g> excessive heating<br />

and thermal expansi<strong>on</strong> at the faying interface<br />

c<strong>on</strong>tact periphery and lack <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>tact pressure to c<strong>on</strong>tain the liquid<br />

metal <strong>on</strong> the interface. This indicated the<br />

rate <str<strong>on</strong>g>of</str<strong>on</strong>g> projecti<strong>on</strong> collapse lagged behind<br />

the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> heat generati<strong>on</strong> <strong>on</strong> the faying<br />

interface. From a numerical point <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

view, analysis would fail if temperature<br />

exceeding melting point had been predicted<br />

for a point <strong>on</strong> the c<strong>on</strong>tact surface<br />

with no c<strong>on</strong>tact pressure. In actual welding<br />

practice, excess metal expulsi<strong>on</strong> usually<br />

resulted in a weaker and inc<strong>on</strong>sistent<br />

weld, and was detrimental to the weld’s<br />

engineering performance (Refs. 2, 9 and<br />

12). Thus, the dynamic balance between<br />

the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> heat generati<strong>on</strong> and projecti<strong>on</strong><br />

collapse should be taken into c<strong>on</strong>siderati<strong>on</strong><br />

when selecting a projecti<strong>on</strong> design<br />

and corresp<strong>on</strong>ding welding parameters.<br />

The heat generati<strong>on</strong> pattern and<br />

nugget formati<strong>on</strong> process after the complete<br />

projecti<strong>on</strong> collapse were similar to<br />

those <str<strong>on</strong>g>of</str<strong>on</strong>g> the resistance spot welding<br />

process with flat-faced electrodes. At the<br />

end <str<strong>on</strong>g>of</str<strong>on</strong>g> the sixth cycle <str<strong>on</strong>g>of</str<strong>on</strong>g> the standard projecti<strong>on</strong>,<br />

the molten regi<strong>on</strong> spread rapidly<br />

toward the weld center, and the molten<br />

z<strong>on</strong>e was c<strong>on</strong>nected at the center <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

weld at the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the eighth cycle. From<br />

that point <strong>on</strong>, the molten z<strong>on</strong>e became<br />

ellipsoidal in shape and grew progressively<br />

in size as the welding process c<strong>on</strong>tinued.<br />

The predicted nugget diameter at<br />

the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the eighth cycle for the standard<br />

projecti<strong>on</strong> was approximately 0.23<br />

in., wh i ch compared reas<strong>on</strong>ably well<br />

with the experimental measurement documented<br />

in Fig. 5 <str<strong>on</strong>g>of</str<strong>on</strong>g> Ref. 2. A shallower<br />

WELDING RESEARCH SUPPLEMENT | 215-s


nugget penetrati<strong>on</strong> <strong>on</strong> the upper sheet<br />

was predicted for the lowest projecti<strong>on</strong><br />

than the standard projecti<strong>on</strong> because <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the lower magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> current density<br />

<strong>on</strong> the faying interface.<br />

It is interesting to note that, with increasing<br />

projecti<strong>on</strong> heights, the effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

projecti<strong>on</strong> collaring and projecti<strong>on</strong> digging<br />

(into the lower workpiece) were<br />

more prominent. That is, when a high projecti<strong>on</strong><br />

was used, some <str<strong>on</strong>g>of</str<strong>on</strong>g> the material<br />

composing the projecti<strong>on</strong> at the periphery<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the faying interface was squeezed<br />

out around the edge <str<strong>on</strong>g>of</str<strong>on</strong>g> the weld, forming<br />

an extruded collar — Figs. 7 and 8. Th i s<br />

o b s e r vati<strong>on</strong> was again c<strong>on</strong>sistent with<br />

m a ny previous experimental findings<br />

(Ref. 10).<br />

Discussi<strong>on</strong> and C<strong>on</strong>clusi<strong>on</strong>s<br />

In this paper, the incrementally coupled<br />

finite element analysis procedure is<br />

used as a modeling tool to study the effect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> projecti<strong>on</strong> design <strong>on</strong> the projecti<strong>on</strong><br />

collapse process and heat generati<strong>on</strong><br />

patterns during the early stage <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

projecti<strong>on</strong> welding process. Three projecti<strong>on</strong><br />

designs from an earlier experimental<br />

study were adopted, and the predicted<br />

results <strong>on</strong> nugget formati<strong>on</strong> and<br />

projecti<strong>on</strong> collapse compared reas<strong>on</strong>ably<br />

well with the available experimental<br />

data obtained through high-speed<br />

movies.<br />

This dem<strong>on</strong>strates again that the incrementally<br />

coupled analysis procedure<br />

developed in Refs. 1 and 3 can be used<br />

as a powerful tool to study the detailed<br />

process physics <str<strong>on</strong>g>of</str<strong>on</strong>g> a highly dy n a m i c ,<br />

coupled process such as projecti<strong>on</strong> welding,<br />

and provides some quantitative understanding<br />

and guidelines about projecti<strong>on</strong><br />

design and welding para m e t e r<br />

selecti<strong>on</strong>. With this tool, it is possible to<br />

develop improved procedures for determining<br />

weld c<strong>on</strong>diti<strong>on</strong>s, requiring <strong>on</strong>ly a<br />

nominal amount <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental work as<br />

a means <str<strong>on</strong>g>of</str<strong>on</strong>g> verificati<strong>on</strong>.<br />

It was found that interfacial c<strong>on</strong>tact<br />

b e h avior (c<strong>on</strong>tact area change due to<br />

projecti<strong>on</strong> collapse) played a critical role<br />

in the initial heating process in projecti<strong>on</strong><br />

welding. If an extremely high projecti<strong>on</strong><br />

is used, the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> localized heating is<br />

faster than the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> projecti<strong>on</strong> collapse<br />

<strong>on</strong> the periphery <str<strong>on</strong>g>of</str<strong>on</strong>g> the faying interface<br />

and as a result, weld collaring and expulsi<strong>on</strong><br />

will occur during the early welding<br />

cycles. On the other hand, if a low<br />

projecti<strong>on</strong> height is used, premature collapse<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the projecti<strong>on</strong> will cause the<br />

c<strong>on</strong>tact area to be large and, therefore,<br />

reduce the current density <strong>on</strong> the faying<br />

interface and delay nugget formati<strong>on</strong>.<br />

The dynamic balance between projecti<strong>on</strong><br />

collapse and heat generati<strong>on</strong> must<br />

216-s | SEPTEMBER 2001<br />

therefore be maintained to optimize the<br />

projecti<strong>on</strong> welding process. To this end,<br />

the analysis procedure can be used as a<br />

predictive tool to optimize the projecti<strong>on</strong><br />

design for a specific sheet material to ensure<br />

nugget size and weld quality. Another<br />

applicati<strong>on</strong> area <str<strong>on</strong>g>of</str<strong>on</strong>g> this tool is in the<br />

selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> different welding para m eters,<br />

such as welding current, electrode<br />

f o rce, and sheet material properties.<br />

These effects have been discussed in Ref.<br />

1, and will not be repeated here.<br />

It should be menti<strong>on</strong>ed that no material<br />

strain rate sensitivity was included in<br />

the current simulati<strong>on</strong> results. This wa s<br />

due to the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> rate data for the eleva t e d<br />

t e m p e rature under the deformati<strong>on</strong> ra t e<br />

c<strong>on</strong>sidered. Should such data become<br />

available, it can be easily incorporated in<br />

the modeling procedure. No wo r k - h a r dening<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the projecti<strong>on</strong> material due<br />

to the punching process was taken into<br />

c o n s i d e rati<strong>on</strong> and the entire projecti<strong>on</strong><br />

was c<strong>on</strong>sidered to be stress and strain free<br />

prior to the welding process. Also, perfect<br />

electrode follow-up was assumed for the<br />

welding machine, and the magnetic stirring<br />

effect, as observed in many earlier<br />

high-speed movie studies, was not c<strong>on</strong>sidered<br />

(Ref. 4).<br />

References<br />

1. Sun, X. 2000. Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> projecti<strong>on</strong><br />

welding processes using coupled finite element<br />

analyses. <strong>Welding</strong> Journal79(9): 244-s to<br />

251-s.<br />

2. Cunningham, A., and Begeman, M. L.<br />

1966. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> projecti<strong>on</strong> height up<strong>on</strong> weld<br />

quality and strength. <strong>Welding</strong> Journal 4 5 ( 1 ) :<br />

26-s to 30-s.<br />

3. Sun, X., and D<strong>on</strong>g, P. 2000. Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

aluminum resistance spot welding processes<br />

using coupled finite element procedures.<br />

<strong>Welding</strong> Journal 79(8): 215-s to 221-s.<br />

4. Cunningham, A., and Begeman, M. L.<br />

1965. A fundamental study <str<strong>on</strong>g>of</str<strong>on</strong>g> projecti<strong>on</strong><br />

welding using high speed photography. <strong>Welding</strong><br />

Journal 44(8): 381-s to 384-s.<br />

5. Metals’ Handbook, 9th ed., Vols. 1 and<br />

2. 1978. Properties and selecti<strong>on</strong>s: Ir<strong>on</strong>s and<br />

steels.<br />

6. H i g h -Te m p e r a t u re Pro p e rty Data: Fe rrous<br />

Alloys. 1988. Metals Park, Ohio: ASM Internati<strong>on</strong>al.<br />

7. Physical C<strong>on</strong>stants <str<strong>on</strong>g>of</str<strong>on</strong>g> Some Commercial<br />

Steels at Elevated Temperatures. 1953. Edited<br />

by The British Ir<strong>on</strong> and Steel Research Associati<strong>on</strong>.<br />

L<strong>on</strong>d<strong>on</strong> U.K.: Butterworths Scientific<br />

Publicati<strong>on</strong>s.<br />

8. Li, M. V., D<strong>on</strong>g, P., and Kimchi, M.<br />

1997. Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tact resistance during<br />

resistance spot welding. Proc. 7th Int. C<strong>on</strong>f. <strong>on</strong><br />

Computer Tech. in We l d i n g . Ed. T. Siewert.<br />

NIST Special Publicati<strong>on</strong> 923, U.S. Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Commerce, pp. 423–435.<br />

9. Hess, W. F., Childs, W. J., and Underhill,<br />

R. F., Jr. 1949. Further studies in projecti<strong>on</strong><br />

welding. <strong>Welding</strong> Journal 28(1): 15-s to 23-s.<br />

10. Hess, W. F., and Childs, W. J. 1947. A<br />

study <str<strong>on</strong>g>of</str<strong>on</strong>g> projecti<strong>on</strong> welding. <strong>Welding</strong> Journal<br />

27(12): 712-s to 723-s.<br />

11. Harris, J. F., and Riley, J. J. 1961. <str<strong>on</strong>g>Projecti<strong>on</strong></str<strong>on</strong>g><br />

welding low-carb<strong>on</strong> steel using embossed<br />

projects. <strong>Welding</strong> Journal 40(4): 363-s–376-s.<br />

12. Adams, J. V., Matthews, G. N., and<br />

Begeman, M. L. 1965. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> projecti<strong>on</strong><br />

geometry up<strong>on</strong> weld quality and strength.<br />

<strong>Welding</strong> Journal 44(10): 466-s to 470-s.<br />

13. ABAQUS/Standard and ABAQUS/Explicit<br />

User’s Manuals, Versi<strong>on</strong> 5.8. Hibbitt,<br />

Karlss<strong>on</strong> & Sorensen, Inc.<br />

14. Nippes, E. F., and Gerken, J. M. 1952.<br />

<str<strong>on</strong>g>Projecti<strong>on</strong></str<strong>on</strong>g> welding <str<strong>on</strong>g>of</str<strong>on</strong>g> steel in heavy gages and<br />

in dissimilar thicknesses. <strong>Welding</strong> Journal<br />

31(3): 113-s to 125-s.<br />

REPRINTS REPRINTS<br />

To Order Custom Reprints<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Articles in the<br />

<strong>Welding</strong> Journal<br />

Call Denis Mulligan<br />

at (800) 259-0470<br />

REPRINTS REPRINTS

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!