17.01.2013 Views

WAMS WACS.pdf - Nelson Martins

WAMS WACS.pdf - Nelson Martins

WAMS WACS.pdf - Nelson Martins

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Wide-Area Monitoring and Control,<br />

<strong>WAMS</strong> and BPA’s <strong>WACS</strong>, for<br />

Enhanced Performance and Resilience<br />

to Power Blackouts<br />

Carson W. Taylor<br />

Bonneville Power Administration (retired)<br />

cwtaylor@ieee.org<br />

CEPEL Roadmap Workshop<br />

Florianópolis, SC. Brazil<br />

20 May 2006


What is <strong>WAMS</strong>?<br />

■ <strong>WAMS</strong> is monitoring of power system dynamic<br />

performance:<br />

• Mainly electromechanical and voltage dynamics<br />

• RMS values or phasors, typical sampling at 20–60 Hz<br />

• Fault recorders, oscillographs, power quality instruments<br />

typically not part of <strong>WAMS</strong><br />

• Oriented towards centralized or networked monitoring<br />

• Oriented towards continuous recording with archiving of<br />

interesting events<br />

• Term “<strong>WAMS</strong>” originated at BPA in late 1980s<br />

• “<strong>WAMS</strong>” includes test and analysis techniques such as<br />

the Fourier and Prony methods for system identification?<br />

2


Better Information Supports Better Decisions<br />

Disturbances<br />

System planning<br />

System operation<br />

Automatic control<br />

Source: John Hauer<br />

Decision<br />

Processes<br />

Power<br />

System<br />

Information<br />

Unobserved response<br />

Observed response<br />

Measurement<br />

Based<br />

Information<br />

System<br />

3


<strong>WAMS</strong> is More than Data<br />

Wisdom<br />

Knowledge<br />

Information<br />

Data<br />

Operator needs<br />

information, not data.<br />

4


Source: John Hauer<br />

WECC Phasor Network in<br />

2005 (<strong>WAMS</strong>)<br />

60 Phasor Measurement Units<br />

(PMUs)<br />

382 voltage or current phasors,<br />

plus bus frequencies<br />

8 Phasor Data Concentrators<br />

(PDCs) at control centers<br />

BCH<br />

BPA<br />

CAISO<br />

PG&E<br />

SCE<br />

APS/SRP<br />

PNM<br />

WAPA<br />

4 inter company data links<br />

5


BPA Phasor Measurement System<br />

V - I - F<br />

Measurement<br />

- substations<br />

PMU<br />

PMU<br />

PMU<br />

Direct<br />

exchange with<br />

other utilities<br />

Source: Ken Martin<br />

Data input &<br />

management<br />

- control center<br />

Phasor Data<br />

Concentrator<br />

(PDC)<br />

Correlates data,<br />

feeds selected<br />

applications,<br />

monitors system<br />

PDC<br />

Operations<br />

monitors – display<br />

& alarms<br />

SCADA - Voltage,<br />

angle & frequency<br />

Other displays -<br />

Power World, etc.<br />

StreamReader<br />

Display & recording<br />

Data storage<br />

System<br />

controls<br />

Real-time<br />

controls:<br />

Voltage &<br />

reactive<br />

stability;<br />

interarea<br />

angle limits<br />

6


BPA StreamReader, Loss of Colstrip, 6 Sept. 01<br />

LabVIEW software, real-time display on PC. StreamReader computes<br />

active and reactive power from phasors, etc.<br />

7


BPA StreamReader: Time and Frequency Domain<br />

Ambient activity, 7 June 2000. Source: John Hauer, PNNL<br />

8


Eastern Interconnection Phasor Project<br />

■ August 14, 2003 blackout reports had strong<br />

recommendations for synchronized measurements<br />

■ EIPP organization (http://phasors.pnl.gov):<br />

• AEP, TVA, Entergy, Ameren, NYPA, DoE, NERC, PNNL, etc.<br />

■ Four state estimator integration projects<br />

• State measurements<br />

• Texas A&M finding – Accuracy of state estimation<br />

drastically improves by strategically placing PMUs at 10% of<br />

the network buses<br />

■ On-line efforts:<br />

• Angular separation analysis and alarming<br />

• Interarea oscillations<br />

• Real-time stability applications<br />

Source: Bob Cummings, NERC<br />

9


EIPP Progress, 2005<br />

■ 57 PMUs in Eastern Interconnection<br />

• 24 more in next 12 months<br />

• Over 400 digital relays – extending capability<br />

■ 5 Phasor Data Concentrators<br />

• Entergy, TVA, AEP, NYISO, Ameren<br />

• Internet VPNs for communications<br />

■ TVA Super PDC Operational<br />

• Other PDCs connected<br />

• 24 PMUs connected<br />

■ On-Line Applications in testing<br />

Source: Bob Cummings, NERC<br />

10


Summary: Wide-Area Measurements [6]<br />

■ Purpose: avoid system problems, not just record them.<br />

■ Value: information has the same value as decisions<br />

based upon it. Insurance against operational<br />

uncertainties.<br />

■ Applications: should support tests and analysis, and<br />

real-time system operations<br />

■ Event detection logic: trigger snapshot recordings or<br />

apply to archived records.<br />

• Continuous recording preferred; difficult to detect distant<br />

events<br />

■ Costs: Hardware is cheap, engineering time expensive<br />

11


Power System Stability Controls<br />

Local and Wide-Area<br />

Power System<br />

Disturbances<br />

switch capacitor/reactor banks<br />

direct<br />

detection<br />

(SPS) trip generators/loads<br />

Discontinuous<br />

Controls<br />

response detection<br />

(<strong>WACS</strong>)<br />

Power<br />

System<br />

Dynamics<br />

Continuous<br />

Feedback<br />

Controls<br />

(generators)<br />

12<br />

∆ y


Event-Based Wide-Area Stability Controls<br />

■ Special Protection System (SPS)/Remedial Action<br />

Scheme (RAS)/Emergency Control<br />

■ Many schemes in service, fast and reliable<br />

■ Direct detection of pre-selected outages:<br />

• Feedforward control<br />

• Signal to central logic, then signal to power plant or<br />

substation for action<br />

• Generator/load tripping, reactive power compensation<br />

switching<br />

■ Complex, 24/7 RAS dispatcher<br />

■ Expensive (high redundancy, hardware for each<br />

potential outage). Recent cost of $575K for lineloss<br />

logic at both ends of line with transfer trip to<br />

two control centers.<br />

13


Response-Based Wide-Area Stability Controls<br />

■ Detect any disturbance by measured response<br />

(feedback)<br />

■ Improved observability and controllability<br />

compared to local control<br />

• Example: load shedding based on several voltages and<br />

generator reactive power outputs rather than local<br />

voltage<br />

■ Continuous versus discontinuous controls<br />

■ Continuous:<br />

• “Wide-area PSS”<br />

• Remote signals for control of HVDC, SVC, TCSC<br />

14


Response-Based Wide-Area Stability Controls<br />

■ Facilitated by IT:<br />

• Digital sensors, communications, controllers<br />

• Fiber optic communications<br />

■ Time delays/latencies pose challenges:<br />

• But control feasible for interarea oscillations<br />

■ Example—low frequency mode with 3 second<br />

period:<br />

• Need first swing stabilization<br />

• Impulse (short circuit) response peak at 0.75 second<br />

• Step (line/generator outage) response peak at 1.5 second<br />

15


Discontinuous Wide-Area Stability Controls<br />

■ Response-based to stabilize large disturbances:<br />

• First swing stabilization<br />

• Reduce stress for improved damping<br />

• Region of attraction/post-disturbance equilibrium<br />

■ Generator/load tripping, capacitor/reactor bank<br />

switching—powerful control actions:<br />

• BPA has 550-kV capacitor banks up to 460 MVAr<br />

■ Single switching action, or<br />

■ True feedback—observe response, take action,<br />

observe effect, take further action if necessary<br />

■ SAFER than continuous control<br />

• Biological system analogy—stimuli must be above<br />

activation threshold<br />

16


BPA Wide-Area Control System (<strong>WACS</strong>)<br />

■ On-line demonstration uses existing wide-area<br />

measurement systems (<strong>WAMS</strong>)<br />

• Synchronized phasor measurement units (PMUs)<br />

• Fiber optic communications<br />

• 30 packets per second data rate (60 per second future?)<br />

■ Existing Remedial Action Scheme (RAS) transfer trip<br />

from control center to power plants and substations<br />

available:<br />

• Generator tripping and capacitor/reactor bank switching<br />

■ Control computer(s) at control center(s):<br />

• LabVIEW RT hardware and software (www.ni.com)<br />

• Currently on-line at control center with real-time phasor<br />

measurement inputs (monitor mode)<br />

17


Latest Generation PMU<br />

•Based on digital protective relay hardware and software<br />

•60 packets/second data rate, adjustable data rate and filtering<br />

•Used for new BPA installations — several vendors<br />

18


Flexible Platform for Control<br />

GPS<br />

voltage phasors<br />

current phasors<br />

frequencies<br />

fiber optics<br />

SCADA<br />

control center LAN<br />

control<br />

computers<br />

BPA<br />

control<br />

center(s)<br />

power<br />

system<br />

generator/load<br />

tripping<br />

reactive power<br />

switching<br />

Other actions


<strong>WACS</strong> — Flexible Platform for Control<br />

20


Fiber Optic Latency<br />

Delay in packets from Slatt PMU to control center PDC over one minute period.<br />

PDC processing adds 5–6 ms.<br />

21


<strong>WACS</strong> Computers, NI LabVIEW RT<br />

RT Engine (Networked to<br />

the Power System Phasor<br />

Measurement Units)<br />

Connection Interface to the<br />

Transfer Trip<br />

Communications Network<br />

Host PC (Networked to the<br />

RT Engine)<br />

22


<strong>WACS</strong> Laboratory Installation<br />

23


Source: John Hauer<br />

<strong>WACS</strong> Inputs<br />

12 PMU voltage magnitude<br />

measurements from:<br />

Malin<br />

Captain Jack (2 busses)<br />

Summer Lake (2 busses)<br />

Slatt (2 busses)<br />

Ashe (2 busses)<br />

John Day<br />

McNary 500 (2 busses)<br />

PMU-derived generator reactive<br />

power measurements from:<br />

John Day (4 generator lines)<br />

Big Eddy (4 generator lines)<br />

McNary (5 generator lines)<br />

Ashe (Columbia Gen. Station)<br />

Slatt (Boardman plant)<br />

Calpine Hermiston<br />

BPA fiber optic communications<br />

(SONET)


Why Not Use Voltage Phase Angles?<br />

■ Under study for future [1, Appendix III]<br />

■ Reliable, high speed signals not available from<br />

other utilities<br />

■ Voltage phase angle susceptible to GPS glitches<br />

■ Voltage magnitudes near swing center closely<br />

related to angle difference swings<br />

■ Voltage phase angles state variable for steadystate<br />

analysis (power flow program) but not for<br />

dynamics<br />

25


for high BC exports<br />

26


Two Algorithms<br />

AC Intertie<br />

Pacific NW<br />

to California<br />

First swing (spring)<br />

Vmag or VmagQ algorithm<br />

Simultaneous<br />

Transfer<br />

Nomogram<br />

North to South flow in Washington state<br />

High flow means generation farther away<br />

Ensure RoA and<br />

post disturbance<br />

secure operation<br />

VmagQ algorithm<br />

Damping (summer)<br />

Vmag or VmagQ<br />

algorithm<br />

27


Voltage Magnitude (Vmag) Algorithm<br />

■ Control accumulates volt-seconds of weighted<br />

average voltage from twelve 500-kV measurements:<br />

• Like inverse-time undervoltage relay<br />

• Accumulation (integration) starts when weighted voltage<br />

decays below threshold. No accumulation if present input is<br />

higher than previous<br />

• Control action when accumulation reaches setpoint and<br />

weighted voltage level is below a setpoint<br />

• Accumulator resets if weighted voltage recovers<br />

• Time frame of around one second<br />

■ Separate accumulators for generator tripping and<br />

500-kV reactive power compensation switching<br />

28


Vmag Algorithm Block Diagram for Simulation<br />

Voltage magnitude inputs, weights,<br />

and number of bus measurements<br />

Malin 1.0 01<br />

Captain Jack 1.0 02<br />

Summer Lake 1.0 02<br />

Slatt 0.5 02<br />

John Day 0.5 01<br />

McNary 500 0.2 02<br />

Ashe 0.2 02<br />

Sum 7.3 12<br />

V<br />

W<br />

Arrays (vectors) of 12 voltages<br />

and weights. Valid voltage<br />

ranges are 360–650 kV.<br />

∑ × Vi<br />

Wi<br />

W<br />

∑<br />

V Threshold<br />

520 kV for gen. trip,<br />

525 kV for cap./reactor switching<br />

i<br />

V Avg<br />

Notes:<br />

1. Individual computations and settings for each controlled device.<br />

Currently we use identical settings for all generator tripping locations,<br />

and different identical settings for all capacitor/reactor switching<br />

locations. Identical voltage magnitude weights are used for all devices.<br />

2. Current settings are shown. Latest settings are on ini file.<br />

3. Accumulation is blocked if present VAvg greater than VAvg of last<br />

execution cycle. Reset when VAvg recovers above VThreshold .<br />

-<br />

+<br />

0<br />

HV<br />

Gate<br />

Accumulator<br />

Setpoint<br />

4 kV-seconds for gen. trip<br />

2 kV-seconds for cap./reactor switching<br />

Σ( .<br />

)∆t<br />

Accumulator<br />

Note 3<br />

V supervise<br />

0<br />

<<br />

1<br />

&<br />

490 kV for gen. trip<br />

520 kV for cap./reactor switching<br />

Control<br />

Output<br />

29


Simulation Example: Transient Stability<br />

■ Outage of nuclear units in south:<br />

• Two Palo Verde units, 2700 MW<br />

• Inertia and governor action in north loads North–South<br />

intertie<br />

■ Use <strong>WACS</strong> to extend Pacific intertie transfer<br />

capability:<br />

• Example show gain of 300 MW (4700 MW to 5000 MW)<br />

30


for high BC exports<br />

31


Existing controls, 4700 MW intertie loading<br />

Malin<br />

500-kV voltages<br />

575 kV<br />

550 kV<br />

525 kV<br />

500 kV<br />

475 kV<br />

450 kV<br />

425 kV<br />

Two Palo Verde outage at one second (2710 MW), Reactive power switching<br />

at Malin, Fort Rock at 2.33–2.8 s.<br />

32


w/<strong>WACS</strong>, 5000 MW intertie loading<br />

Malin<br />

500-kV voltages<br />

575 kV<br />

550 kV<br />

525 kV<br />

500 kV<br />

475 kV<br />

450 kV<br />

425 kV<br />

Two Palo Verde outage at one second (2710 MW), generator dropping at<br />

Shrum and Mica (916 MW) at 2.4 s, reactive power switching a Malin, Marion,<br />

Fort Rock at 2.2–2.6 s (FACRI and <strong>WACS</strong>). Base case for sensitivities.<br />

33


Voltage/Reactive Power (VmagQ) Algorithm<br />

■ Generator reactive power outputs are sensitive<br />

indicators of voltage problems<br />

■ Combine using fuzzy logic:<br />

• Weighted voltage magnitude measurements<br />

• Weighted generator reactive power measurements<br />

• Output accumulators similar to Vmag algorithm<br />

■ Reactive power capability is function of active power:<br />

• P, Q measurements from PMUs located at transmission side<br />

• Normalization based on max, min limits<br />

■ Time frame of second (first swing) to tens of seconds:<br />

• Longer-term dynamics: OELs, LTCs, etc.<br />

• Capacitor/reactor bank switching first, followed by generator<br />

tripping as necessary<br />

34


VmagQ Algorithm<br />

V i<br />

Station<br />

measurements<br />

Q gj<br />

Input<br />

processing<br />

u m Defuzzification<br />

(Center of<br />

Gravity)<br />

Normalization<br />

and<br />

weighted<br />

values<br />

u m *<br />

V m<br />

Q gm<br />

Accumulators<br />

and<br />

threshold<br />

logic<br />

Fuzzy<br />

logic<br />

control<br />

To<br />

compensation<br />

stations<br />

and<br />

power plants


Fuzzy Set for Weighted Voltage<br />

36


Fuzzy Set for Weighted Reactive Power<br />

37


Output Fuzzy Set<br />

38


VmagQ Algorithm Fuzzy Logic Rules<br />

Q Avg<br />

PLq<br />

PMq<br />

OKq<br />

NMq<br />

NLq<br />

PLo<br />

1.0<br />

PLo<br />

0.8<br />

PMo<br />

1.0<br />

PMo<br />

0.8<br />

PSo<br />

1.0<br />

5<br />

4<br />

3<br />

2<br />

1<br />

PLo<br />

0.8<br />

PMo<br />

0.8<br />

PSo<br />

1.0<br />

PSo<br />

0.8<br />

ZEo<br />

1.0<br />

10 15<br />

9<br />

8<br />

7<br />

6<br />

PMo<br />

0.5<br />

PSo<br />

0.5<br />

ZEo<br />

1.0<br />

ZEo<br />

1.0<br />

ZEo<br />

1.0<br />

ZEo<br />

1.0<br />

ZEo<br />

1.0<br />

ZEo<br />

1.0<br />

ZEo<br />

1.0<br />

11 16<br />

ZEo<br />

1.0<br />

ZEo<br />

1.0<br />

ZEo<br />

1.0<br />

ZEo<br />

1.0<br />

ZEo<br />

1.0<br />

21<br />

ZEo<br />

1.0<br />

VLOv LOv OKv HIv VHIv<br />

14<br />

13<br />

12<br />

20 25<br />

19<br />

18<br />

17<br />

24<br />

23<br />

22<br />

V Avg<br />

Lower case v, q, o indicate voltage,<br />

reactive power, and output<br />

VLO - Very Low<br />

LO – Low<br />

HI – High<br />

VHI – Very High<br />

NL – Negative Large<br />

NM – Negative Medium<br />

NS – Negative Small<br />

ZE – Zero<br />

PS – Positive Small<br />

PM – Positive Medium<br />

PL – Positive Large<br />

There is no control for high voltage so<br />

inactive rules are set to ZE.<br />

The large number in each cell is the<br />

Degree of Support or weight of the<br />

rule (range is 0 to 1). The small<br />

number is the rule number.<br />

39


Rulebase Editor<br />

40


I/O Characteristic, Weighted Q = 0.5 pu<br />

41


<strong>WACS</strong> Status<br />

■ R&D largely complete with proof of concept, code<br />

verification, and tuning<br />

■ Three years on-line laboratory and control center<br />

monitoring<br />

■ Playback of simulation and archived PDC data<br />

■ BPA deciding on full deployment (~$1.5M):<br />

• Business case in preparation<br />

• Design for WECC certification, new PMUs, SONET<br />

communication expansion, controllers at both control<br />

centers, O&M training, spare parts<br />

42


<strong>WACS</strong> for Voltage Stability<br />

■ Presently <strong>WACS</strong> oriented toward angle stability<br />

for export conditions; BUT…<br />

■ Flexible platform with two existing algorithms<br />

that could be used for load shedding:<br />

• Voltage magnitude based similar to inverse-time relays<br />

• Combination of voltage and generator reactive power<br />

(applicable to August 14, 2003 blackout)<br />

■ <strong>WACS</strong> could be used for other voltage collapse<br />

countermeasures:<br />

• Capacitor/reactor bank switching<br />

• Tap changer blocking, runback, or reverse control<br />

• Boost of high side voltage schedule<br />

43


<strong>WACS</strong> Business Case: Potential Benefits<br />

1. Increased reliability:<br />

• Control for disturbances anywhere in interconnection<br />

• Additional layer of defense: Defense in Depth<br />

• As feedback control, compensate for simulation and<br />

operational uncertainties<br />

• Blackouts happen and cost billions<br />

2. Increased transfer capability, ~300 MW in one<br />

example<br />

3. Flexible, open system platform for rapid control<br />

and monitoring applications<br />

• Future potential with IT advances<br />

• Use of voltage phase angles throughout interconnection<br />

4. Future partial replacement for costly event-<br />

driven RAS<br />

44


Reference<br />

1. C. W. Taylor, D. C. Erickson, K. E. Martin, R. E. Wilson, and V.<br />

Venkatasubramanian, “<strong>WACS</strong>—Wide-Area Stability and Voltage<br />

Control System: R&D and On-Line Demonstration,” Proceedings of<br />

the IEEE special issue on Energy Infrastructure Defense<br />

Systems, Vol. 93, No. 5, pp. 892–906, May 2005.<br />

45


Questions?<br />

46

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!