17.01.2013 Views

Laboratory-based evaluation of the colorimetric VITEK-2 Compact ...

Laboratory-based evaluation of the colorimetric VITEK-2 Compact ...

Laboratory-based evaluation of the colorimetric VITEK-2 Compact ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Antimicrobial Susceptibility Studies<br />

<strong>Laboratory</strong>-<strong>based</strong> <strong>evaluation</strong> <strong>of</strong> <strong>the</strong> <strong>colorimetric</strong> <strong>VITEK</strong>-2 <strong>Compact</strong><br />

system for species identification and <strong>of</strong> <strong>the</strong> Advanced Expert System<br />

for detection <strong>of</strong> antimicrobial resistances:<br />

<strong>VITEK</strong>-2 <strong>Compact</strong> system identification and<br />

antimicrobial susceptibility testing<br />

Isamu Nakasone a, 4, Tohru Kinjo a , Nobuhisa Yamane b , Kyoko Kisanuki a , Chika M. Shiohira b<br />

Abstract<br />

a<br />

Clinical Laboratories, University Hospital <strong>of</strong> <strong>the</strong> Ryukyus, University <strong>of</strong> <strong>the</strong> Ryukyus, Nishihara-Nakagami, Okinawa 903-0215, Japan<br />

b<br />

Department <strong>of</strong> <strong>Laboratory</strong> Medicine, Graduate School and Faculty <strong>of</strong> Medicine, University <strong>of</strong> <strong>the</strong> Ryukyus, Okinawa 903-0215, Japan<br />

Received 4 October 2006; accepted 8 December 2006<br />

The newly redesigned <strong>colorimetric</strong> <strong>VITEK</strong>-2 <strong>Compact</strong> system with updated Advanced Expert System (AES) (bioMerieux, Marcy<br />

l’Etoile, France) was evaluated for its accuracy and rapidity to identify clinical isolates and to detect several antimicrobial resistances.<br />

Overall, <strong>the</strong> <strong>VITEK</strong>-2 gave 95.8% <strong>of</strong> compatibility with <strong>the</strong> reference API strips (bioMerieux) in <strong>the</strong> identifications (IDs) <strong>of</strong> Gram-positive<br />

cocci (GPC), Gram-negative rods (GNR), and yeasts. The accuracy was finally estimated to 98.3% through additional confirmatory tests.<br />

Also, N90% <strong>of</strong> IDs <strong>of</strong> GPC and GNR were obtained within 7 h <strong>of</strong> incubations. The <strong>VITEK</strong> AES correctly detected 97.7% <strong>of</strong> antimicrobial<br />

resistances, including extended-spectrum h-lactamases, oxacillin and inducible clindamycin resistances in staphylococci, vancomycin<br />

resistance in enterococci, and penicillin and erythromycin resistances in Streptococcus pneumoniae. The most resistant isolates were<br />

identified within 12 h <strong>of</strong> incubations. In conclusion, <strong>the</strong> new <strong>colorimetric</strong> <strong>VITEK</strong>-2 <strong>Compact</strong> system with AES greatly improved its accuracy<br />

in species ID and detection <strong>of</strong> antimicrobial resistances, and it will be highly acceptable to clinical microbiology laboratory function.<br />

D 2007 Elsevier Inc. All rights reserved.<br />

Keywords: <strong>VITEK</strong>-2 <strong>Compact</strong> system; Advanced Expert System; Antimicrobial resistance<br />

1. Introduction<br />

A series <strong>of</strong> <strong>the</strong> <strong>VITEK</strong> systems (bioMerieux, Marcy<br />

l’Etoile, France) has been a fully automated instrument that<br />

provides species identification (ID) and antimicrobial<br />

susceptibility testing (AST) for a variety <strong>of</strong> clinical isolates,<br />

and are presently used in many clinical microbiology<br />

laboratories worldwide. During <strong>the</strong> past 3 decades, several<br />

revisions have been introduced to <strong>the</strong> system, resulting in a<br />

Presented in part at <strong>the</strong> 106th General Meeting <strong>of</strong> American Society for<br />

Microbiology, Orlando, FL, May 2006, Abstract Current #C-008.<br />

4 Corresponding author. Tel.: +81-98-895-3331x3332; fax: +81-98-<br />

895-463.<br />

E-mail address: isamu@jim.u-ryukyu.ac.jp (I. Nakasone).<br />

0732-8893/$ – see front matter D 2007 Elsevier Inc. All rights reserved.<br />

doi:10.1016/j.diagmicrobio.2006.12.008<br />

Diagnostic Microbiology and Infectious Disease 58 (2007) 191–198<br />

www.elsevier.com/locate/diagmicrobio<br />

stepwise improvement <strong>of</strong> <strong>the</strong> system performance. Recently,<br />

extensive revisions, including reintroduction <strong>of</strong> <strong>colorimetric</strong><br />

reading in lieu <strong>of</strong> fluorescence technology, and addition <strong>of</strong><br />

several biochemical substrates and taxa covered by <strong>the</strong><br />

broadened database comparable with <strong>the</strong> well-established<br />

API series (bioMerieux) are created (Funke and Funke-<br />

Kissling, 2004; Funke and Funke-Kissling, 2005; Aubertine<br />

et al., 2006). The efforts have been focused upon <strong>the</strong><br />

accurate ID, in particular, to solve its inherent weakness in<br />

<strong>the</strong> IDs <strong>of</strong> glucose-nonfermentative Gram-negative rods<br />

(GNR) and members <strong>of</strong> <strong>the</strong> family Streptococcaceae<br />

(Joyanes et al., 2001; Gavin et al., 2002). In this communication,<br />

we describe <strong>the</strong> results to evaluate <strong>the</strong> accuracy <strong>of</strong><br />

ID by <strong>the</strong> respective <strong>VITEK</strong> test cards on <strong>the</strong> <strong>VITEK</strong>-2<br />

<strong>Compact</strong> system and to detect several antimicrobial


192<br />

Table 1<br />

Accuracy in species ID by <strong>the</strong> <strong>VITEK</strong>-2 <strong>Compact</strong> system<br />

Species ID<br />

by API strip<br />

(no. <strong>of</strong> isolates<br />

tested)<br />

No. <strong>of</strong><br />

tests<br />

agreed<br />

I. Nakasone et al. / Diagnostic Microbiology and Infectious Disease 58 (2007) 191–198<br />

Discrepant<br />

ID by <strong>the</strong><br />

<strong>VITEK</strong>-2<br />

(no. <strong>of</strong> cases)<br />

Final ID<br />

<strong>VITEK</strong>-2<br />

was correct<br />

or incorrect<br />

(no. <strong>of</strong> cases)<br />

S. aureus (21) 19 S. caprae (2) a<br />

S. caprae (2) correct b<br />

S. capitis (14) 14<br />

S. caprae (7) 7<br />

Staphylococcus<br />

cohnii (2)<br />

2<br />

Staphylococcus<br />

epidermidis (18)<br />

18<br />

Staphylococcus<br />

haemolyticus (9)<br />

9<br />

Staphylococcus<br />

hominis (1)<br />

1<br />

Staphylococcus<br />

lugdunensis (10)<br />

10<br />

Staphylococcus<br />

saprophyticus (1)<br />

1<br />

Staphylococcus<br />

schleiferi (3)<br />

3<br />

Staphylococcus<br />

sciuri (2)<br />

2<br />

S. simulans (1) 0 S. capitis (1) S. capitis (1) correct<br />

Staphylococcus<br />

warneri (1)<br />

1<br />

Enterococcus avium (8) 8<br />

E. casseliflavus (8) 8<br />

Enterococcus durans (1) 1<br />

E. faecalis (14) 14<br />

E. faecium (10) 10<br />

E. gallinarum (13) 12 E. faecium (1) E. faecium (1) correct<br />

Streptococcus 15 S. dysgalactiae (1) S. dysgalactiae<br />

agalactiae (16)<br />

(1) correct<br />

Streptococcus 14 S. parasanguis (1) S. parasanguis<br />

anginosus (15)<br />

(1) correct<br />

S. constellatus (4) 3 Streptococcus S. constellatus<br />

gordonii (1) (1) incorrect<br />

S. dysgalactiae (5) 5<br />

Streptococcus 20 Streptococcus S. oralis (1) incorrect<br />

mitis/oralis (21)<br />

sanguis (1)<br />

Streptococcus<br />

mutans (1)<br />

1<br />

S. parasanguis (2) 2<br />

S. pneumoniae (11) 11<br />

Streptococcus<br />

pyogenes (11)<br />

11<br />

Streptococcus<br />

salivarius (3)<br />

3<br />

S. sanguis (2) 1 S. parasanguis (1) S. parasanguis<br />

(1) correct<br />

Citrobacter freundii (7) 7<br />

Citrobacter koseri (5) 5<br />

Enterobacter<br />

aerogenes (5)<br />

5<br />

Enterobacter<br />

cloacae (6)<br />

6<br />

E. coli (12) 12<br />

Klebsiella<br />

oxytoca (5)<br />

5<br />

K. pneumoniae (7) 7<br />

Morganella<br />

morganii (5)<br />

5<br />

Table 1 (continued)<br />

Species ID<br />

by API strip<br />

(no. <strong>of</strong> isolates<br />

tested)<br />

No. <strong>of</strong><br />

tests<br />

agreed<br />

Discrepant<br />

ID by <strong>the</strong><br />

<strong>VITEK</strong>-2<br />

(no. <strong>of</strong> cases)<br />

Final ID<br />

<strong>VITEK</strong>-2<br />

was correct<br />

or incorrect<br />

(no. <strong>of</strong> cases)<br />

Proteus<br />

mirabilis (5)<br />

5<br />

Proteus<br />

vulgaris (5)<br />

5<br />

Providencia<br />

rettgeri (1)<br />

1<br />

Providencia<br />

stuartii (5)<br />

5<br />

Salmonella<br />

spp. (13)<br />

13<br />

Serratia<br />

marcescens (12)<br />

12<br />

Acinetobacter<br />

baumannii (11)<br />

11<br />

Acinetobacter<br />

junii (4)<br />

4<br />

A. lw<strong>of</strong>fii (2) 0 Alcaligenes A. lw<strong>of</strong>fii<br />

faecalis (2) (2) incorrect<br />

Aeromonas<br />

hydrophila (8)<br />

8<br />

Aeromonas<br />

sobria (2)<br />

2<br />

A. faecalis (5) 5<br />

Alcaligenes<br />

xylosoxidans (16)<br />

16<br />

Burkholderia<br />

cepacia (2)<br />

2<br />

Chryseobacterium<br />

indologenes (4)<br />

4<br />

Chryseobacterium<br />

meningosepticum (4)<br />

4<br />

Ochrobactrum 2 R. radiobacter (2) R. radiobacter<br />

anthropi (4)<br />

(2) correct<br />

P. aeruginosa (15) 15<br />

P. fluorescens (2) 0 P. aeruginosa (1), P. aeruginosa<br />

A. baumannii (1) (1) correct,<br />

P. fluorescens<br />

(1) incorrect<br />

Pseudomonas<br />

1 P. aeruginosa (1), P. aeruginosa<br />

putida (4)<br />

P. fluorescens (2) (1) correct,<br />

P. fluorescens<br />

(2) incorrect<br />

P. stutzeri (1) 0 S. paucimobilis (1) P. stutzeri<br />

(1) incorrect<br />

R. radiobacter (3) 3<br />

Sphingobacterium 0 S. paucimobilis (1) S. paucimobilis<br />

multivorum (1)<br />

(1) correct<br />

Candida albicans (24) 24<br />

Candida glabrata (9) 9<br />

Candida intermedia (1) 1<br />

Candida krusei (1) 1<br />

Candida<br />

parapsilosis (15)<br />

15<br />

Candida tropicalis (6) 6<br />

Trichosporon asahii (2) 2<br />

a Indicates <strong>the</strong> species identification (no. <strong>of</strong> cases) by <strong>the</strong> <strong>VITEK</strong>-2 but<br />

disagreed with <strong>the</strong> reference API identification.<br />

b Indicates <strong>the</strong> final identification with additional phenotypic testing<br />

and whe<strong>the</strong>r <strong>the</strong> ID results by <strong>the</strong> <strong>VITEK</strong>-2 was correct or incorrect.


esistances by <strong>the</strong> updated <strong>VITEK</strong> Advanced Expert System<br />

(AES) (Sanders et al., 2000; Barry et al., 2003).<br />

2. Materials and methods<br />

2.1. Isolates and testing by Vitek-2 <strong>Compact</strong> system<br />

I. Nakasone et al. / Diagnostic Microbiology and Infectious Disease 58 (2007) 191–198 193<br />

A total <strong>of</strong> 474 clinical isolates comprising 235 <strong>of</strong> Grampositive<br />

cocci (GPC), 181 <strong>of</strong> GNR, and 58 yeasts were<br />

included in <strong>the</strong> ID study. In addition, a total <strong>of</strong> 321 clinical<br />

isolates including 96 strains <strong>of</strong> Enterobacteriaceae, 107 <strong>of</strong><br />

staphylococci, 61 <strong>of</strong> enterococci, and 57 <strong>of</strong> S. pneumoniae<br />

were used for <strong>the</strong> detection <strong>of</strong> specific antimicrobial<br />

resistances. All <strong>the</strong> isolates were <strong>the</strong> collection <strong>of</strong> clinical<br />

isolates stored 80 8C and were subcultured twice onto <strong>the</strong><br />

Columbia agar plates supplemented with 5% sheep blood<br />

before testing. The inoculum suspension was prepared in<br />

0.45% saline, giving <strong>the</strong> equivalent <strong>of</strong> a 0.5-McFarland<br />

turbidity. The following respective <strong>VITEK</strong> test cards were<br />

filled with cell suspension according to <strong>the</strong> manufacturer’s<br />

instruction: GP for ID <strong>of</strong> GPC, GN for ID <strong>of</strong> GNR, YE for<br />

ID <strong>of</strong> yeasts, AST-N034 for AST <strong>of</strong> Enterobacteriaceae,<br />

AST-P546 for AST <strong>of</strong> staphylococci and enterococci, and<br />

AST-P518 for AST <strong>of</strong> S. pneumoniae. In this study, <strong>VITEK</strong>-<br />

2 <strong>Compact</strong> system with <strong>the</strong> s<strong>of</strong>tware version V2C 1.01<br />

was used.<br />

2.2. Reference methods<br />

All <strong>the</strong> isolates included in ID study were identified by<br />

<strong>the</strong> respective API test strips as follows: ID 32 STAPH for<br />

staphylococci, RAPID ID 32 STREP for streptococci and<br />

enterococci, RAPID ID 32 E for Enterobacteriaceae, ID<br />

32 GN for glucose-nonfermentative GNR and members <strong>of</strong><br />

<strong>the</strong> genus Aeromonas, and ID 32 C for yeasts. The API test<br />

strips were read by <strong>the</strong> autoreader, mini API (bioMerieux),<br />

and its database version 1.3.1. was used. When <strong>the</strong> <strong>VITEK</strong>-<br />

2 gave <strong>the</strong> discrepant ID result compared with <strong>the</strong> respective<br />

API strip, additional phenotypic tests were performed<br />

according to <strong>the</strong> algorithm established (Ru<strong>of</strong>f, 2003;<br />

Schreckenberger and Wong; 2003). The flowcharts, <strong>based</strong><br />

on Gram stain characteristics and a selected number <strong>of</strong><br />

additional easily performed enzymatic, biochemical, and<br />

biologic tests, determined which ID results were correct.<br />

The specific antimicrobial resistances evaluated include<br />

extended-spectrum h-lactamase (ESBL)–producing isolates<br />

<strong>of</strong> Escherichia coli and Klebsiella pneumoniae, oxacillin<br />

resistance and inducible clindamycin resistance among<br />

staphylococci, vancomycin resistance among enterococci,<br />

and penicillin resistance and erythromycin resistance among<br />

S. pneumoniae. As <strong>the</strong> reference, ESBL-producing isolates<br />

were first screened according to <strong>the</strong> initial disk screen test<br />

described (Clinical and <strong>Laboratory</strong> Standards Institute<br />

[CLSI], 2005, formerly National Committee for Clinical<br />

<strong>Laboratory</strong> Standards), <strong>the</strong>n confirmed and classified on <strong>the</strong><br />

basis <strong>of</strong> DNA amplification <strong>of</strong> <strong>the</strong> respective target genes by<br />

polymerase chain reaction (PCR) and agarose gel electro-<br />

phoresis <strong>of</strong> <strong>the</strong> PCR products. Detection <strong>of</strong> <strong>the</strong> bla gene<br />

sequences coding <strong>the</strong> TEM, SHV, and CTX-M enzymes were<br />

performed as previously described using <strong>the</strong> specific primer<br />

pairs (Yagi et al., 2000). For oxacillin-resistant staphylococci,<br />

detection <strong>of</strong> penicillin-binding protein 2a (PBP2a) by <strong>the</strong><br />

latex agglutination, MRSA-Screen test (Denka-Seiken,<br />

Tokyo, Japan), was used (Cavassini et al., 1999; Horstkotte<br />

et al., 2001). Inducible clindamycin resistance was first<br />

phenotypically determined by an erythromycin (15-Ag disk)–<br />

clindamycin (2-Ag disk) double-disk test (D-zone test) and<br />

<strong>the</strong>n was genetically confirmed for <strong>the</strong> presence <strong>of</strong> specific<br />

genes coding ermA and ermC by PCR as described (Khan<br />

et al., 1999; Volokhov et al., 2003). Vancomycin resistances<br />

among enterococci were determined by significant growth<br />

on vancomycin resistance enterococci screening agar plates<br />

(CLSI, 2003) and by PCR to detect vanA and vanB genes<br />

(Woodford et al., 1995). Penicillin resistance and erythromycin<br />

resistance <strong>of</strong> S. pneumoniae were determined by PCR<br />

for <strong>the</strong> respective genes <strong>of</strong> pbp1a, pbp2x, pbp2b, mefA, and<br />

ermB using <strong>the</strong> commercially available test reagents,<br />

penicillin-resistant S. pneumoniae gene detection version<br />

2.0 (Wakunaga Pharmaceutical, Hiroshima, Japan) (Ubukata<br />

et al., 1996; Ubukata et al., 2003).<br />

3. Results<br />

3.1. ID <strong>of</strong> clinical isolates by <strong>the</strong> <strong>VITEK</strong>-2 <strong>Compact</strong> system<br />

Table 1 shows <strong>the</strong> results when <strong>the</strong> <strong>VITEK</strong>-2 and <strong>the</strong><br />

respective API strips comparatively identified a total <strong>of</strong><br />

474 clinical isolates. Of 474 isolates tested, 454 (95.8%)<br />

were comparable IDs, resulting in 20 discrepant results<br />

comprising 9 <strong>of</strong> GPC and 11 <strong>of</strong> GNR. For <strong>the</strong> isolates<br />

belonging to Enterobacteriaceae and yeasts, all <strong>the</strong> ID<br />

results were completely identical to each o<strong>the</strong>r. For <strong>the</strong><br />

Fig. 1. Cumulative distribution <strong>of</strong> time to require for final ID by <strong>the</strong><br />

<strong>VITEK</strong>-2 <strong>Compact</strong> system. ! – ! = staphylococci; E–E = enterococci;<br />

z–z = streptococci; o–o = Enterobacteriaceae; 5–5 = glucosenonfermentative<br />

GNR. The isolates <strong>of</strong> Aeromonas spp. were included in<br />

glucose-nonfermentative GNR.


194<br />

Table 2<br />

Accuracy to detect specific resistant isolates by <strong>the</strong> <strong>VITEK</strong> AES<br />

Antimicrobial resistance and<br />

clinical isolates tested<br />

Nos. <strong>of</strong><br />

isolates<br />

tested<br />

Interpretation by <strong>VITEK</strong> AES<br />

Enterobacteriaceae Staphylococci<br />

ESBL Non-ESBL MLSB<br />

inducible<br />

MLSB<br />

inducible<br />

negative<br />

Modification<br />

<strong>of</strong> PBP<br />

ESBLs<br />

E. coli (TEM type) 21 20 1<br />

E. coli (SHV type) 2 2<br />

E. coli (CTX-M type) 3 3<br />

K. pneumoniae (TEM type) 21 21<br />

K. pneumoniae (SHV type) 1 1<br />

K. pneumoniae<br />

(TEM and SHV type)<br />

Non-ESBL<br />

3 3<br />

E. coli 24 24<br />

K. pneumoniae<br />

D-zone test–positive and ermA<br />

and/or ermC-positive<br />

staphylococci<br />

21 21<br />

S. aureus 33 32 1<br />

S. epidermidis 8 8<br />

S. haemolyticus 3 3<br />

S. hominis 2 2<br />

D-zone test–negative and ermA- and<br />

ermC-negative S. aureus<br />

Oxacillin-resistant and<br />

PBP2a-positive staphylococci<br />

16 16<br />

S. aureus 27 27<br />

S. capitis 4 4<br />

S. epidermidis 30 30<br />

S. haemolyticus 3 3<br />

S. hominis 2 2<br />

S. lugdunensis 1 1<br />

S. simulans 1 1<br />

S. warneri<br />

Oxacillin-susceptible and<br />

PBP2a-negative<br />

staphylococci<br />

1 1<br />

S. aureus 22 22<br />

S. capitis 8 8<br />

S. hominis 2 2<br />

S. lugdunensis 5 5<br />

S. warneri 1 1<br />

Antimicrobial<br />

resistance and<br />

clinical isolates<br />

tested<br />

I. Nakasone et al. / Diagnostic Microbiology and Infectious Disease 58 (2007) 191–198<br />

Nos. <strong>of</strong><br />

isolates<br />

tested<br />

Interpretation by <strong>VITEK</strong> AES<br />

Enterococci S. pneumoniae<br />

Vancomycin resistance Modification <strong>of</strong> PBP<br />

VanA like VanB like Wild (VanC) High-level<br />

resistance<br />

vanA-positive enterococci<br />

E. casseliflavus 1 1<br />

E. faecalis 1 1<br />

E. faecium 18 18<br />

E. gallinarum<br />

vanB-positive enterococci<br />

1 1<br />

E. casseliflavus 3 3<br />

E. faecalis 14 14<br />

E. faecium 11 11<br />

E. gallinarum<br />

vanA- and vanB-positive<br />

enterococci<br />

1 1<br />

Low-level<br />

resistance<br />

Nonmodification<br />

<strong>of</strong> PBP<br />

Resistant<br />

(MLSB)<br />

Wild


I. Nakasone et al. / Diagnostic Microbiology and Infectious Disease 58 (2007) 191–198 195<br />

Table 2 (continued)<br />

Antimicrobial<br />

Nos. <strong>of</strong> Interpretation by <strong>VITEK</strong> AES<br />

resistance and<br />

clinical isolates<br />

tested<br />

isolates<br />

tested<br />

Enterococci<br />

Vancomycin resistance<br />

S. pneumoniae<br />

Modification <strong>of</strong> PBP<br />

VanA like VanB like Wild (VanC) High-level Low-level Resistant Wild<br />

resistance resistance (MLSB)<br />

E. faecium 1 1<br />

E. gallinarum<br />

vanA- and vanB-negative<br />

enterococci<br />

3 3<br />

E. casseliflavus 1 1<br />

E. gallinarum<br />

Penicillin-resistant<br />

mutant<br />

6 6<br />

S. pneumoniae<br />

Penicillin-susceptible, wild<br />

40 28 12<br />

S. pneumoniae<br />

Erythromycin-resistant<br />

mutant<br />

17 2 15<br />

S. pneumoniae<br />

Erythromycin-susceptible,<br />

wild<br />

44 42 2<br />

S. pneumoniae 13 13<br />

discrepant results, additional phenotypic characterizations<br />

were performed and determined, in which ID result was<br />

correct. Of <strong>the</strong> 9 discrepant results for GPC, 7 ID results by<br />

<strong>VITEK</strong>-2 were correct, but <strong>the</strong> API ID 32 STAPH and<br />

RAPID ID 32 STREP resulted in misidentifications. Two<br />

isolates <strong>of</strong> Staphylococcus aureus, which were identified by<br />

ID 32 STAPH, resulted in <strong>the</strong> ID as Staphylococcus caprae<br />

by <strong>VITEK</strong>-2, and <strong>the</strong> IDs <strong>of</strong> <strong>VITEK</strong>-2 consisted <strong>of</strong> negative<br />

coagulase, negative clumping factor, and positive urease<br />

results. Also, one isolate was identified as Staphylococcus<br />

simulans by ID 32 STAPH, but <strong>VITEK</strong>-2 identified it as<br />

Staphylococcus capitis. Additional biochemical testing, acid<br />

from lactose, positive urease, and negative h-galactosidase<br />

supported <strong>the</strong> <strong>VITEK</strong>-2 ID result. One isolate <strong>of</strong> Enterococcus<br />

gallinarum, which was identified by RAPID ID<br />

32 STREP, resulted in Enterococcus faecium by <strong>VITEK</strong>-2,<br />

and nonmotility and not producing yellow pigment simply<br />

supported <strong>the</strong> <strong>VITEK</strong>-2 ID result. There were 5 discrepant<br />

results for streptococci. Of <strong>the</strong>se, 3 results by <strong>VITEK</strong>-2,<br />

1 <strong>of</strong> Streptococcus dysgalactiae and 2 <strong>of</strong> Streptococcus<br />

parasanguis, were regarded as being correct IDs by <strong>the</strong><br />

additional biochemical testing: negative CAMP test and<br />

nonfermentation <strong>of</strong> sorbitol, and positive h-glucosidase and<br />

fermentation <strong>of</strong> trehalose for S. dysgalactiae, and negative<br />

Voges–Proskauer test, and positive h-glucosidase and<br />

h-galactosidase for S. parasanguis. Finally, <strong>the</strong> <strong>VITEK</strong>-2<br />

correctly identified 233 (99.1%) isolates <strong>of</strong> GPC, compared<br />

with 228 (97.0%) isolates by <strong>the</strong> reference API strips, ID 32<br />

STAPH and RAPID ID 32 STREP.<br />

For GNR, a total <strong>of</strong> 11 discrepant results were obtained<br />

by <strong>the</strong> <strong>VITEK</strong>-2, and all <strong>the</strong> discrepant results came from<br />

<strong>the</strong> isolates <strong>of</strong> glucose-nonfermentative bacteria. Of <strong>the</strong>se,<br />

5 ID results by <strong>VITEK</strong>-2 were finally concluded as being<br />

correct: 2 isolates <strong>of</strong> Rhizobium radiobacter with negative<br />

gas production from nitrate, positive nitrate reduction, and<br />

positive O-nitrophenyl-h-d-galactopyranoside; 2 isolates <strong>of</strong><br />

Pseudomonas aeruginosa with significant growth at 428C,<br />

positive hydrolysis <strong>of</strong> acetamide, and gas production from<br />

nitrate; and 1 isolate <strong>of</strong> Sphingomonas paucimobilis with<br />

positive motility, positive urease, and susceptibility to<br />

polymyxin B. However, <strong>the</strong>re remained 6 misidentifications<br />

confirmed, and <strong>the</strong>y were 2 isolates <strong>of</strong> Acinetobacter lw<strong>of</strong>fii,<br />

3 isolates <strong>of</strong> Pseudomonas fluorescens, and 1 isolate <strong>of</strong><br />

Pseudomonas stutzeri. Overall, <strong>the</strong> <strong>VITEK</strong>-2 correctly<br />

identified 175 (96.7%) isolates <strong>of</strong> GNR, compared with<br />

176 (97.2%) isolates by <strong>the</strong> reference API, RAPID ID 32 E<br />

and ID 32 GN.<br />

Fig. 1 indicated <strong>the</strong> cumulative distribution <strong>of</strong> time to<br />

require for final ID by <strong>the</strong> <strong>VITEK</strong>-2 <strong>Compact</strong> system for <strong>the</strong><br />

respective bacterial groups. For all <strong>the</strong> groups <strong>of</strong> <strong>the</strong> isolates<br />

tested, N50% <strong>of</strong> ID results were obtained within 4 to 6 h,<br />

and all <strong>the</strong> final ID results were completed after 7- to 10-h<br />

incubation cycles.<br />

3.2. Detection <strong>of</strong> specific antimicrobial resistances by<br />

<strong>the</strong> AES<br />

The interpretation results by <strong>the</strong> <strong>VITEK</strong> AES to detect<br />

specific antimicrobial resistances were summarized in<br />

Table 2. Of 51 ESBL-producing isolates <strong>of</strong> E. coli and<br />

K. pneumoniae, <strong>the</strong> <strong>VITEK</strong> AES correctly identified<br />

50 isolates (98.0%) and missed 1 isolate <strong>of</strong> TEM-type<br />

ESBL-positive E. coli, which was interpreted as an acquired<br />

penicillinase plus cephalosporinase-producing isolate. However,<br />

all <strong>the</strong> ESBL-nonproducing isolates were correctly<br />

interpreted as being non-ESBL isolates, results indicating<br />

98.0% sensitivity and 100% specificity. Also, <strong>the</strong> <strong>VITEK</strong><br />

AES produced highly correlative interpretations to detect<br />

positive D-zone test associated with macrolide, lincosamide,


196<br />

I. Nakasone et al. / Diagnostic Microbiology and Infectious Disease 58 (2007) 191–198<br />

Fig. 2. Cumulative distribution <strong>of</strong> time to detect <strong>the</strong> respective antimicrobial<br />

resistance by <strong>the</strong> <strong>VITEK</strong> AES. ! – ! = ESBL-producing isolate; n–n =<br />

inducible clindamycin-resistant staphylococci positive for D-zone test and<br />

ermA and/or ermC genes; E–E = oxacillin-resistant staphylococci<br />

positive for PBP2a; z–z = vancomycin-resistant enterococci; o–o =<br />

penicillin-resistant S. pneumoniae; 5–5 = erythromycin-resistant<br />

S. pneumoniae.<br />

and type B streptogramin (MLSB) resistance coded by<br />

ermA and/or ermC genes and oxacillin resistance positive<br />

for PBP2a among staphylococci. Of <strong>the</strong> 46 isolates <strong>of</strong><br />

staphylococci positive for D-zone test and also positive for<br />

ermA and/or ermC genes, 45 (97.8%) were correctly<br />

interpreted as bMLSB inducibleQ by <strong>VITEK</strong> AES, whereas<br />

all <strong>the</strong> 16 isolates, which were negative in <strong>the</strong> respective<br />

reference tests, were reported as bMLSB inducible negativeQ.<br />

One remaining isolate positive for both D-zone test<br />

and ermA gene was reported as being constitutively resistant<br />

to macrolide and streptogramin. A total <strong>of</strong> 69 oxacillinresistant<br />

staphylococcal isolates positive for PBP2a and<br />

38 oxacillin-susceptible isolates negative for PBP2a were<br />

tested by <strong>VITEK</strong>-2, <strong>the</strong> AES interpretations giving none <strong>of</strong><br />

discrepant result with <strong>the</strong> reference tests.<br />

Some significant discrepant results by <strong>the</strong> <strong>VITEK</strong> AES<br />

were demonstrated in detecting vancomycin resistance<br />

among enterococci. All <strong>the</strong> 25 isolates positive for vanA<br />

gene, including 4 isolates positive for both vanA and vanB,<br />

were correctly identified as bVanA-likeQ. Also, 25 vanBpositive<br />

isolates <strong>of</strong> Enterococcus faecalis and E. faecium<br />

gave consistent interpretations. However, 3 isolates <strong>of</strong><br />

Enterococcus casseliflavus and 1 <strong>of</strong> E. gallinarum positive<br />

for vanB gene were incorrectly identified as bwild (VanC)Q<br />

by <strong>the</strong> <strong>VITEK</strong> AES. The MICs determined by <strong>the</strong> <strong>VITEK</strong>-2<br />

were 32 Ag/mL (2 strains) and 8.0 Ag/mL (1 strain) for<br />

E. casseliflavus and 32 Ag/mL for E. gallinarum. For<br />

<strong>the</strong> penicillin resistance among S. pneumoniae, all <strong>the</strong><br />

isolates with mutations on penicillin-binding protein genes,<br />

pbp1a, pbp2x, and/or pbp2b, were correctly identified as<br />

bmodification <strong>of</strong> PBPQ with ei<strong>the</strong>r high-level or low-level<br />

resistances. However, 2 <strong>of</strong> 17 wild susceptible isolates were<br />

incorrectly interpreted as low-level resistance with modification<br />

<strong>of</strong> PBP. Also, all <strong>the</strong> 13 wild susceptible isolates <strong>of</strong><br />

S. pneumoniae for <strong>the</strong> erythromycin resistance determinant<br />

genes were correctly identified as bwildQ, but 2 isolates<br />

positive for ermB gene resulted in incorrect interpretations,<br />

bwildQ.<br />

Fig. 2 indicated <strong>the</strong> cumulative distribution <strong>of</strong> time to<br />

detect antimicrobial resistances by <strong>the</strong> <strong>VITEK</strong> AES. More<br />

than 50% <strong>of</strong> all <strong>the</strong> resistant isolates were interpreted within<br />

7 to 9 h <strong>of</strong> incubation cycles. The testing <strong>of</strong> GPC, in general,<br />

required longer incubation period; however, most resistant<br />

isolates, including vancomycin-resistant enterococci and<br />

oxacillin-resistant staphylococci, were correctly determined<br />

within 12 h <strong>of</strong> incubations.<br />

4. Discussion<br />

Overall, <strong>the</strong> <strong>evaluation</strong> results <strong>of</strong> <strong>the</strong> newly redesigned<br />

<strong>colorimetric</strong> <strong>VITEK</strong>-2 ID impressed us by <strong>the</strong> performance<br />

because more than 98% <strong>of</strong> <strong>the</strong> isolates were correctly<br />

identified to <strong>the</strong> species level without any fur<strong>the</strong>r additional<br />

tests. Also, our obtained results indicated that <strong>the</strong> current<br />

<strong>VITEK</strong>-2 has overcome its inherent weakness in IDs <strong>of</strong><br />

streptococci and glucose-nonfermentative GNR. Until<br />

present, API test strips has been long considered as <strong>the</strong><br />

bgold standardQ in ID test (Fortin et al., 2003; Aubertine<br />

et al., 2006), but <strong>the</strong> accuracy <strong>of</strong> <strong>the</strong> <strong>VITEK</strong>-2 was finally<br />

estimated to be 98.3%, compared with 97.5% by <strong>the</strong><br />

respective API test strips. Our obtained results were highly<br />

consistent with a series <strong>of</strong> <strong>evaluation</strong> results recently<br />

published for GPC (Funke and Funke-Kissling, 2005),<br />

GNR (Funke and Funke-Kissling, 2004), and yeast<br />

(Aubertine et al., 2006). When compared with <strong>the</strong> previous<br />

<strong>VITEK</strong> ID <strong>based</strong> on fluorescent technology, <strong>the</strong> current<br />

<strong>VITEK</strong>-2 ID broadened <strong>the</strong> database concerning <strong>the</strong><br />

relativity to reaction tests and taxa identified; <strong>the</strong> expanded<br />

database corresponds to GP containing 43 tests for 115 taxa,<br />

GN containing 47 tests for 159 taxa, and YE containing<br />

46 tests for 53 species and 14 genera. Although our<br />

<strong>evaluation</strong> study did not cover all <strong>the</strong> taxa included in <strong>the</strong><br />

database and very small numbers <strong>of</strong> <strong>the</strong> clinical isolates for<br />

some species were included, it became apparent that <strong>the</strong><br />

extension <strong>of</strong> <strong>the</strong> database led significantly improved ID<br />

accuracy ra<strong>the</strong>r than poorer ID results. However, <strong>the</strong>re are<br />

still several misidentifications in <strong>the</strong> results <strong>of</strong> isolates<br />

belonging to <strong>the</strong> family Streptococcaceae and glucosenonfermentative<br />

GNR: 1 isolate each <strong>of</strong> Streptococcus<br />

constellatus and Streptococcus oralis in GP, 2 isolates <strong>of</strong><br />

A. lw<strong>of</strong>fii, 3<strong>of</strong>P. fluorescens, and 1 <strong>of</strong> P. stutzeri in GN.<br />

Both bacterial groups are taxonomically diverse and are still<br />

problematic in phenotypic ID tests. Gene sequence analysis<br />

<strong>of</strong> 16S ribosomal DNA or RNA demonstrates considerable<br />

heterogeneity, and <strong>the</strong> original classification <strong>of</strong> <strong>the</strong> genera<br />

has undergone extensive revision (Kawamura et al., 1995;<br />

Kersterns et al., 1996). Although <strong>the</strong> current <strong>VITEK</strong>-2 also


has inherent limitations in <strong>the</strong> ID <strong>of</strong> <strong>the</strong> abovementioned<br />

groups, addition <strong>of</strong> biochemical reactions and broadened<br />

database enable us to provide more accurate ID results<br />

comparable with <strong>the</strong> up-to-date taxonomy.<br />

The <strong>VITEK</strong> AES has been created to analyze <strong>the</strong> AST<br />

results using <strong>the</strong> well-established knowledge base <strong>of</strong><br />

approximately 100 species and 20000 ranges <strong>of</strong> MIC to<br />

detect more than 2300 phenotypic antimicrobial resistances.<br />

<strong>VITEK</strong>-2 and AES have been evaluated in several countries<br />

(Sanders et al., 2000; Barry et al., 2003), <strong>the</strong> results<br />

described indicating that <strong>the</strong> AES detected and interpreted<br />

resistance mechanisms appropriately and would provide aids<br />

for <strong>the</strong>rapeutic choice and accurate epidemiologic analysis.<br />

In our <strong>evaluation</strong>, we included 6 clinically important<br />

antimicrobial resistances well characterized by genetic and<br />

phenotypic reference methods. The accuracy <strong>of</strong> AES was<br />

estimated to be 97.7%, and 10 isolates, comprising 1 isolate<br />

each <strong>of</strong> TEM-type ESBL-producing E. coli and inducible<br />

MLSB-resistant S. aureus, 2 isolates each <strong>of</strong> penicillinsusceptible<br />

wild S. pneumoniae and erythromycin-resistant<br />

S. pneumoniae, and 4 isolates <strong>of</strong> VRE, were misidentified.<br />

In particular, all <strong>the</strong> 4 isolates <strong>of</strong> E. casseliflavus and<br />

E. gallinarum positive for vanB gene were interpreted as<br />

wild (VanC). AES uses enterococcal ID and MICs against<br />

vancomycin and teicoplanin to characterize VRE isolates.<br />

The MIC results for <strong>the</strong> above 4 isolates were interpreted to<br />

be resistant to vancomycin and susceptible to teicoplanin<br />

similar to <strong>the</strong> o<strong>the</strong>r vanB-positive E. faecalis and E. faecium.<br />

However, when <strong>the</strong> <strong>VITEK</strong> identifies <strong>the</strong> test isolate as being<br />

E. casseliflavus or E. gallinarum, <strong>the</strong> <strong>VITEK</strong> AES automatically<br />

reports <strong>the</strong> message bwildQ (VanC). Both VanA and<br />

VanB phenotypes are most commonly detected in E. faecalis<br />

and E. faecium but have been found in o<strong>the</strong>r species (Clark<br />

et al., 1993). Also, discrepancy between VanB phenotype<br />

and vanA genotype was recently reported (Song et al., 2006).<br />

Thus, refinements in AES algorithm should be urgent to<br />

improve accuracy to detect a variety <strong>of</strong> VRE phenotypes.<br />

5. Conclusions<br />

I. Nakasone et al. / Diagnostic Microbiology and Infectious Disease 58 (2007) 191–198 197<br />

The <strong>colorimetric</strong> <strong>VITEK</strong>-2 <strong>Compact</strong> system achieved<br />

an excellent performance to provide accurate species ID<br />

results. In <strong>the</strong> <strong>evaluation</strong>, 466 (98.3%) <strong>of</strong> 474 clinical<br />

isolates, including a variety <strong>of</strong> species <strong>of</strong> staphylococci,<br />

enterococci, streptococci, Enterobacteriaceae, glucose-nonfermentative<br />

GNR, and yeast, were correctly identified. Also,<br />

<strong>the</strong> <strong>VITEK</strong> AES provided interpretations comparable with<br />

phenotypic and genotypic characterizations to determine<br />

specific antimicrobial resistances such as ESBL, inducible<br />

MLSB- and oxacillin-resistant staphylococci, VRE, and<br />

penicillin- and erythromycin-resistant S. pneumoniae. Overall,<br />

<strong>the</strong> accuracy to detect antimicrobial resistances evaluated<br />

was estimated to be 431 <strong>of</strong> 440 (98.0%). Although our study<br />

has limitations on <strong>the</strong> taxa and on <strong>the</strong> numbers <strong>of</strong> <strong>the</strong> isolates<br />

included, it can be concluded that <strong>the</strong> current <strong>colorimetric</strong><br />

<strong>VITEK</strong>-2 combined with AES will greatly contribute to<br />

laboratory function in <strong>the</strong> field <strong>of</strong> clinical microbiology.<br />

Acknowledgments<br />

The authors thank Miyako Higa and Fusako Furugen for<br />

<strong>the</strong>ir valuable technical assistance and Yukiko Izumi for her<br />

help in <strong>the</strong> preparation <strong>of</strong> <strong>the</strong> manuscript.<br />

References<br />

Aubertine CL, Rivera M, Rohan SM, Larone DH (2006) Comparative study<br />

<strong>of</strong> <strong>the</strong> new <strong>colorimetric</strong> <strong>VITEK</strong> 2 yeast identification card versus <strong>the</strong><br />

older fluorometric card and <strong>of</strong> CHROMagar Candida as a source<br />

medium with <strong>the</strong> new card. J Clin Microbiol 44:227–228.<br />

Barry J, Brown A, Ensor V, Lakhani U, Petts D, Warren C, Winstanley T<br />

(2003) Comparative <strong>evaluation</strong> <strong>of</strong> <strong>the</strong> <strong>VITEK</strong> 2 Advanced Expert<br />

System (AES) in five UK hospitals. J Antimicrob Chemo<strong>the</strong>r 51:<br />

1191–1202.<br />

Cavassini M, Wenger A, Jaton K, Blanc DS, Bille J (1999) Evaluation <strong>of</strong><br />

MRSA-Screen, a simple anti-PBP 2a slide latex agglutination kit, for<br />

a rapid detection <strong>of</strong> methicillin resistance in Staphylococcus aureus.<br />

J Clin Microbiol 37:1591–1594.<br />

Clark NC, Cooksey RC, Hill BC, Swenson JM, Tenover FC (1993)<br />

Characterization <strong>of</strong> glycopeptide-resistant enterococci from U.S. hospitals.<br />

Antimicrob Agents Chemo<strong>the</strong>r 37:2311 – 2317.<br />

Clinical and <strong>Laboratory</strong> Standards Institute (2003) Methods for dilution<br />

antimicrobial susceptibility tests for bacteria that grow aerobically sixth<br />

edition M7-A6. Wayne, (PA)7 CLSI.<br />

Clinical and <strong>Laboratory</strong> Standards Institute (2005) Performance standards<br />

for antimicrobial susceptibility testing fifteenth edition M100-S15.<br />

Wayne, (PA)7 CLSI.<br />

Fortin M, Messier S, Pare J, Higgins R (2003) Identification <strong>of</strong> catalasenegative,<br />

non–beta-hemolytic, Gram-positive cocci isolated from milk<br />

samples. J Clin Microbiol 41:106–109.<br />

Funke G, Funke-Kissling P (2004) Evaluation <strong>of</strong> <strong>the</strong> new <strong>VITEK</strong> 2 card<br />

for identification <strong>of</strong> clinically relevant Gram-negative rods. J Clin<br />

Microbiol 42:4067–4071.<br />

Funke G, Funke-Kissling P (2005) Performance <strong>of</strong> <strong>the</strong> new <strong>VITEK</strong> 2 GP<br />

card for identification <strong>of</strong> medically relevant Gram-positive cocci in a<br />

routine clinical laboratory. J Clin Microbiol 43:84– 88.<br />

Gavin PJ, Warren JR, Obias AA, Collins SM, Peterson LR (2002)<br />

Evaluation <strong>of</strong> <strong>the</strong> Vitek 2 system for rapid identification<br />

<strong>of</strong> clinical isolates <strong>of</strong> Gram-negative bacilli and members <strong>of</strong><br />

<strong>the</strong> family Streptococcaceae. Eur J Clin Microbiol Infect Dis<br />

21:869–874.<br />

Horstkotte MA, Knobloch JKM, Rohde H, Mack D (2001) Rapid detection<br />

<strong>of</strong> methicillin resistance in coagulase-negative staphylococci by a<br />

penicillin-binding protein 2a-specific latex agglutination test. J Clin<br />

Microbiol 39:3700–3702.<br />

Joyanes P, del Carmen Conejo M, Martinez-Martinez L, Perea E (2001)<br />

Evaluation <strong>of</strong> <strong>the</strong> <strong>VITEK</strong> 2 system for <strong>the</strong> identification and<br />

susceptibility testing <strong>of</strong> three species <strong>of</strong> nonfermenting Gram-negative<br />

rods frequently isolated from clinical samples. J Clin Microbiol<br />

39:3247–3253.<br />

Kawamura Y, Hou X-G, Sultana F, Miura H, Ezaki T (1995) Determination<br />

<strong>of</strong> 16S rRNA sequences <strong>of</strong> Streptococcus mitis and Streptococcus<br />

gordonii and phylogenetic relationships among members <strong>of</strong> <strong>the</strong> genus<br />

Streptococcus. Int J Syst Bacteriol 48:921–927.<br />

Kersterns K, Ludwig W, Vancanneyt M, De Vos P, Gillis M, Schleifer KH<br />

(1996) Recent changes in <strong>the</strong> classification <strong>of</strong> <strong>the</strong> pseudomonads: an<br />

overview. Syst Appl Microbiol 19:465–477.<br />

Khan SA, Nawaz MS, Khan AA, Cerniglia CE (1999) Simultaneous<br />

detection <strong>of</strong> erythromycin-resistant methylase genes ermA and ermC


198<br />

I. Nakasone et al. / Diagnostic Microbiology and Infectious Disease 58 (2007) 191–198<br />

from Staphylococcus spp. by multiplex-PCR. Mol Cell Probes<br />

13:381–387.<br />

Ru<strong>of</strong>f KL (2003) Algorithm for identification <strong>of</strong> aerobic Gram-positive<br />

cocci. In: Manual <strong>of</strong> Clinical Microbiology. (8th ed.). Eds, PR<br />

Murray, EJ Baron, JH Jorgensen, MA Pfaller, and RH Yolken.<br />

Washington (DC)7 American Society for Microbiology, pp. 331–333.<br />

Sanders CC, Peyret M, Moland ES, Shubert C, Thomson KS, Boeufgras<br />

J-M, Sanders WE, Jr (2000) Ability <strong>of</strong> <strong>the</strong> <strong>VITEK</strong> 2 Advanced<br />

Expert System to identify h-lactam phenotypes in isolates <strong>of</strong><br />

Enterobacteriaceae and Pseudomonas aeruginosa. J Clin Microbiol<br />

38:570–574.<br />

Schreckenberger PC, Wong JD (2003) Algorithm for identification <strong>of</strong><br />

aerobic Gram-negative bacteria. In: Manual <strong>of</strong> Clinical Microbiology.<br />

(8th ed.). Eds, PR Murray, EJ Baron, JH Jorgensen, MA<br />

Pfaller, and RH Yolken. Washington (DC)7 American Society for<br />

Microbiology, pp. 337–342.<br />

Song JH, Ko KS, Oh WA, Park S, Heo ST, Kwon KT, Ryu Sy, Peck KR,<br />

Lee NY (2006) High frequency <strong>of</strong> vancomycin-resistant Enterococcus<br />

faecium isolates with VanB phenotype and vanA genotype in Korean<br />

hospitals. Diagn Microbiol Infect Dis [Electronic Publication ahead<br />

<strong>of</strong> print].<br />

Ubukata K, Asahi Y, Yamane A, Konno M (1996) Combinational detection<br />

<strong>of</strong> autolysin and penicillin-binding protein 2B genes <strong>of</strong> Streptococcus<br />

pneumoniae by PCR. J Clin Microbiol 34:592–596.<br />

Ubukata K, Iwasa S, Sunakawa K (2003) In vitro activities <strong>of</strong> new ketolide,<br />

telithromycin, and eight o<strong>the</strong>r macrolide antibiotics against Streptococcus<br />

pneumoniae having mefA and ermB genes that mediate macrolide<br />

resistance. J Infect Chemo<strong>the</strong>r 9:221–226.<br />

Volokhov D, Chizhikov V, Chumakov K, Rasooly A (2003) Microarray<br />

analysis <strong>of</strong> erythromycin resistance determinants. J Appl Microbiol<br />

95:787–798.<br />

Woodford N, Johnson AP, Morrison D, Speller DC (1995) Current<br />

perspectives on glycopeptide resistance. Clin Microbiol Rev<br />

8:585–615.<br />

Yagi T, Kurokawa H, Shibata N, Shibayama K, Arakawa Y (2000) A<br />

preliminary survey <strong>of</strong> extended-spectrum h-lactamases (ESBLs) in<br />

clinical isolates <strong>of</strong> Klebsiella pneumoniae and Escherichia coli in<br />

Japan. FEMS Microbiol Lett 184:53–56.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!