17.01.2013 Views

Effects of blue light on the biochemical composition and ... - Archimer

Effects of blue light on the biochemical composition and ... - Archimer

Effects of blue light on the biochemical composition and ... - Archimer

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Please note that this is an author-produced PDF <str<strong>on</strong>g>of</str<strong>on</strong>g> an article accepted for publicati<strong>on</strong> following peer review. The definitive publisher-au<strong>the</strong>nticated versi<strong>on</strong> is available <strong>on</strong> <strong>the</strong> publisher Web site<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Phycology<br />

In Press<br />

http://dx.doi.org/10.1007/s10811-012-9844-y<br />

© Springer Science+Business Media B.V. 2012<br />

The original publicati<strong>on</strong> is available at http://www.springerlink.com<br />

<strong>Archimer</strong><br />

http://archimer.ifremer.fr<br />

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>blue</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>biochemical</strong> compositi<strong>on</strong> <strong>and</strong> photosyn<strong>the</strong>tic<br />

activity <str<strong>on</strong>g>of</str<strong>on</strong>g> Isochrysis sp. (T-iso)<br />

Julie Marchetti 1 , Gaël Bougaran 1 , Thierry Jauffrais 1 , Sébastien Lefebvre 2 , Ca<strong>the</strong>rine Rouxel 1 , Bruno<br />

Saint-Jean 1 , Ewa Lukomska 1 , René Robert 3 <strong>and</strong> Jean Paul Cadoret 1<br />

1<br />

Laboratoire Physiologie et Biotechnologie des Algues, Ifremer, rue de l’île d’Yeu, BP 21105, 44311 Nantes<br />

cedex 3, France<br />

2<br />

Laboratoire d’Océanologie et Géosciences (LOG), UMR CNRS 8187, Stati<strong>on</strong> Marine de Wimereux, Université<br />

de Lille 1, 28 avenue Foch, 62930 Wimereux, France<br />

3<br />

Laboratoire de Physiologie et Écophysiologie des Mollusques Marins, Stati<strong>on</strong> Expérimentale d’Argent<strong>on</strong>,<br />

Ifremer, Presqu’île du vivier, 29840 Argent<strong>on</strong> en L<strong>and</strong>unvez, France<br />

*: Corresp<strong>on</strong>ding author : G. Bougaran, email address : gael.bougaran@ifremer.fr<br />

Abstract:<br />

In aquaculture, particularly in bivalve hatcheries, <strong>the</strong> <strong>biochemical</strong> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> algal diets has a<br />

str<strong>on</strong>g influence <strong>on</strong> larval <strong>and</strong> post-larval development. Biochemical compositi<strong>on</strong> is known to be<br />

related to culture c<strong>on</strong>diti<strong>on</strong>s, am<strong>on</strong>g which <str<strong>on</strong>g>light</str<strong>on</strong>g> represents a major source <str<strong>on</strong>g>of</str<strong>on</strong>g> variati<strong>on</strong>. The effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>blue</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g> <strong>on</strong> <strong>biochemical</strong> compositi<strong>on</strong> <strong>and</strong> photosyn<strong>the</strong>tic rate <str<strong>on</strong>g>of</str<strong>on</strong>g> Isochrysis sp. (T-iso) CCAP 927/14<br />

were assessed in chemostat at a single irradiance (300 μmol phot<strong>on</strong>s m −2 s −1 ) <strong>and</strong> compared with<br />

white <str<strong>on</strong>g>light</str<strong>on</strong>g>. Two different diluti<strong>on</strong> (renewal) rates were also tested: 0.7 <strong>and</strong> 0.2 d −1 . Relative<br />

carbohydrate c<strong>on</strong>tent was lower under <str<strong>on</strong>g>blue</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g> than under white <str<strong>on</strong>g>light</str<strong>on</strong>g> at both diluti<strong>on</strong> rates, whereas<br />

chlorophyll a <strong>and</strong> photosyn<strong>the</strong>sis activity were higher. In c<strong>on</strong>trast, carb<strong>on</strong> quota was lower <strong>and</strong> protein<br />

c<strong>on</strong>tent higher under <str<strong>on</strong>g>blue</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g> than under white <str<strong>on</strong>g>light</str<strong>on</strong>g>, but <strong>on</strong>ly at 0.7 d −1 . Despite <strong>the</strong>se metabolic<br />

differences, cell productivity was not significantly affected by <strong>the</strong> spectrum. However, <strong>the</strong> nitrogen to<br />

carb<strong>on</strong> ratio <strong>and</strong> photosyn<strong>the</strong>tic activity were higher at 0.7 d −1 than at 0.2 d −1 , while carb<strong>on</strong> quota <strong>and</strong><br />

carbohydrate c<strong>on</strong>tent were lower. Our results show that <str<strong>on</strong>g>blue</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g> may influence microalgal<br />

metabolism without reducing productivity for a given growth rate, a result that should be <str<strong>on</strong>g>of</str<strong>on</strong>g> great<br />

interest for microalgal producti<strong>on</strong> in aquaculture.<br />

Keywords: Isochrysis – Blue <str<strong>on</strong>g>light</str<strong>on</strong>g> – Photosyn<strong>the</strong>sis – Proximate compositi<strong>on</strong> – Chemostat<br />

1


1. Introducti<strong>on</strong><br />

The applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> microalgae have exp<strong>and</strong>ed <strong>and</strong> diversified in recent years. As <strong>the</strong>se<br />

organisms have found uses in a broad range <str<strong>on</strong>g>of</str<strong>on</strong>g> fields, such as healthcare, cosmetics,<br />

envir<strong>on</strong>mental management, energy producti<strong>on</strong> <strong>and</strong> aquaculture, microalgal metabolic<br />

orientati<strong>on</strong> has become a major c<strong>on</strong>cern for <strong>the</strong> scientific community <strong>and</strong> industry. Indeed, by<br />

<strong>the</strong> manipulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolic pathways through <strong>the</strong> modulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental factors or<br />

genetic engineering, cellular functi<strong>on</strong>s can be redirected toward <strong>the</strong> syn<strong>the</strong>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> desired endproducts<br />

<strong>and</strong> exp<strong>and</strong> <strong>the</strong> processing capabilities <str<strong>on</strong>g>of</str<strong>on</strong>g> microalgae (Rosenberg et al., 2008). In<br />

aquaculture, a supply <str<strong>on</strong>g>of</str<strong>on</strong>g> live microalgae is essential for growth <strong>and</strong> survival <str<strong>on</strong>g>of</str<strong>on</strong>g> aquatic<br />

species <str<strong>on</strong>g>of</str<strong>on</strong>g> commercial interest. Cultured shellfish larvae require microalgae in <strong>the</strong> form <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

multi-species diets (O' C<strong>on</strong>nor <strong>and</strong> Heasman, 1997; Rico-Villa et al., 2006), but qualitative<br />

specificati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir needs are still lacking. This complicates <strong>the</strong> task <str<strong>on</strong>g>of</str<strong>on</strong>g> choosing <strong>the</strong><br />

appropriate proporti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> different microalgal species, <strong>and</strong> a fur<strong>the</strong>r level <str<strong>on</strong>g>of</str<strong>on</strong>g> complexity is<br />

introduced by variati<strong>on</strong> in nutriti<strong>on</strong>al values between cultures <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> same species. Many<br />

envir<strong>on</strong>mental factors affect <strong>the</strong> metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g> cultured microalgae <strong>and</strong>, thus, <strong>the</strong>ir nutriti<strong>on</strong>al<br />

qualities: temperature (Berges et al., 2002; Chen et al., 2008), nutriment source (Fabregas et<br />

al., 1986) <strong>and</strong> c<strong>on</strong>centrati<strong>on</strong> in <strong>the</strong> medium (Fabregas et al., 1985; Durmaz, 2007), <strong>and</strong><br />

irradiance (Falkowski et al., 1985; Sukenik <strong>and</strong> Wahn<strong>on</strong>, 1991; Anning et al., 2000).<br />

Most studies <strong>on</strong> <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g> have focused exclusively <strong>on</strong> <strong>the</strong> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> irradiance,<br />

although it has been shown that algal metabolism <strong>and</strong> growth can be also affected by<br />

spectrum (Gostan et al., 1986; Wynne <strong>and</strong> Rhee, 1986; Rivkin, 1989). Fur<strong>the</strong>rmore,<br />

spectrum quality is known to influence <strong>biochemical</strong> compositi<strong>on</strong>, pigment c<strong>on</strong>tent <strong>and</strong><br />

photosyn<strong>the</strong>sis rate <str<strong>on</strong>g>of</str<strong>on</strong>g> various species (Voskresenskaya, 1972; Humphrey, 1983; Sanchez-<br />

Saavedra <strong>and</strong> Voltolina, 1996). More specifically, when compared with red or white <str<strong>on</strong>g>light</str<strong>on</strong>g>, <str<strong>on</strong>g>blue</str<strong>on</strong>g><br />

<str<strong>on</strong>g>light</str<strong>on</strong>g> radiati<strong>on</strong> induces a higher producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> amino acids <strong>and</strong> lower carbohydrate c<strong>on</strong>tent<br />

(Wynne <strong>and</strong> Rhee, 1986; Sanchez-Saavedra <strong>and</strong> Voltolina, 2006).<br />

In our approach for <str<strong>on</strong>g>light</str<strong>on</strong>g> effects, <strong>the</strong> experimental design must avoid any c<strong>on</strong>founding effects<br />

between <str<strong>on</strong>g>light</str<strong>on</strong>g> spectrum distributi<strong>on</strong> <strong>and</strong> any o<strong>the</strong>r factor, particularly irradiance itself.<br />

Adequately c<strong>on</strong>trolled c<strong>on</strong>diti<strong>on</strong>s would be nearly impossible to achieve in batch cultures,<br />

where irradiance, ambient nutrient c<strong>on</strong>centrati<strong>on</strong> <strong>and</strong> growth rate c<strong>on</strong>tinuously vary with time.<br />

While most <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> previous studies were c<strong>on</strong>ducted in batch cultures, here we propose to<br />

assess <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>light</str<strong>on</strong>g> spectrum distributi<strong>on</strong> under c<strong>on</strong>tinuous-flow cultures where <strong>the</strong><br />

growth c<strong>on</strong>diti<strong>on</strong>s can be more readily <strong>and</strong> independently c<strong>on</strong>trolled. Specifically, chemostat<br />

cultures <str<strong>on</strong>g>of</str<strong>on</strong>g> Isochrysis sp. (T-iso) were used to compare <strong>the</strong> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>blue</str<strong>on</strong>g> <strong>and</strong> white <str<strong>on</strong>g>light</str<strong>on</strong>g><br />

<strong>on</strong> <strong>the</strong> <strong>biochemical</strong> compositi<strong>on</strong>, photosyn<strong>the</strong>tic activity <strong>and</strong> growth performances <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

microalga at two different diluti<strong>on</strong> (renewal) rates. T-iso is a small Prymnesiophyceae (4-6<br />

µm) comm<strong>on</strong>ly used in shellfish hatcheries (Borowitzka, 1997; Brown, 2002), where it is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten<br />

used as part <str<strong>on</strong>g>of</str<strong>on</strong>g> a mixed diet with o<strong>the</strong>r microalgae such as Chaetoceros sp.<br />

2. Materials <strong>and</strong> methods<br />

2.1. Culture <str<strong>on</strong>g>of</str<strong>on</strong>g> microalgae<br />

The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>blue</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g> <strong>on</strong> <strong>biochemical</strong> compositi<strong>on</strong> <strong>and</strong> photosyn<strong>the</strong>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> Isochrysis sp. (Tiso)<br />

CCAP 927/14 in c<strong>on</strong>tinuous culture was determined using two 3.5-L photobioreactors<br />

(PBR). These PBR were made <str<strong>on</strong>g>of</str<strong>on</strong>g> two transparent Polymethylmetacrylate (PMMA) columns<br />

(60 mm diameter) c<strong>on</strong>nected by two flanges (for design reference, see <strong>the</strong> single module in<br />

Loubiere et al. (2009)).<br />

Inocula were pre-acclimated to <strong>the</strong> experimental spectra for 5 days at 25°C in 2-L glassflasks<br />

c<strong>on</strong>taining 1.5 L natural 0.22-µm filtered seawater enriched with 1 mL L -1 C<strong>on</strong>way<br />

medium (Walne, 1966). Inocula were c<strong>on</strong>tinuously aerated <strong>and</strong> maintained under c<strong>on</strong>stant<br />

2


irradiance from white (OSRAM FQ54W/965HO cool day<str<strong>on</strong>g>light</str<strong>on</strong>g>) or <str<strong>on</strong>g>blue</str<strong>on</strong>g> (OSRAM FQ54W/67HO<br />

<str<strong>on</strong>g>blue</str<strong>on</strong>g>) fluorescent tubes at 100 µmol phot<strong>on</strong>s m -2 s -1 .<br />

PBRs were sterilized with 5‰ peroxyacetic soluti<strong>on</strong> for 20 min before use <strong>and</strong> <strong>the</strong>n filled with<br />

pre-acclimated cultures at 10 6 cell mL -1 in C<strong>on</strong>way-enriched sea water (3 mL L -1 , in order to<br />

prevent nutrient limitati<strong>on</strong>). One culture was c<strong>on</strong>ducted for each diluti<strong>on</strong> <strong>and</strong> <str<strong>on</strong>g>light</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>.<br />

Cultures were <strong>the</strong>rmoregulated at 26±1°C by air c<strong>on</strong>diti<strong>on</strong>ing <strong>and</strong> pH was maintained by<br />

automated CO2 injecti<strong>on</strong>s at 7.2±0.1 with a pH measurement loop (electrode Inpro<br />

4800/225/PT1000, Mettler Toledo <strong>and</strong> HPT 63, LTH electr<strong>on</strong>ics LTD). Light was c<strong>on</strong>tinuously<br />

delivered by six dimmable fluorescent tubes (<str<strong>on</strong>g>blue</str<strong>on</strong>g> or white ; for reference, see above), which<br />

incident irradiance was set at 300 µmol phot<strong>on</strong>s m -2 s -1 using a dimming device. This amount<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> irradiance was selected <strong>on</strong> <strong>the</strong> basis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> results <str<strong>on</strong>g>of</str<strong>on</strong>g> Marchetti et al. (2012) who reported<br />

that, under 300 µmol phot<strong>on</strong>s m -2 s -1 , growth rate was more than 90% <str<strong>on</strong>g>of</str<strong>on</strong>g> maximal growth rate<br />

<strong>and</strong> that no photoinhibiti<strong>on</strong> occurred. Irradiance <strong>and</strong> spectral distributi<strong>on</strong> (Figure 1) were<br />

measured outside <strong>the</strong> PBR, between columns <strong>and</strong> at middle height <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> PBR, using a<br />

spherical quantum sensor (LI-250 <str<strong>on</strong>g>light</str<strong>on</strong>g> meter, LI-COR, 3 mm diameter) <strong>and</strong> a<br />

spectroradiometer (USB 200+, Ocean Optic Inc, equipped with a L2 collecti<strong>on</strong> lens ; detector<br />

range : 200-1000 nm), respectively. Additi<strong>on</strong>ally, attenuati<strong>on</strong> was checked for PMMA for both<br />

<str<strong>on</strong>g>light</str<strong>on</strong>g> sources <strong>and</strong> did not notably modify <strong>the</strong> emissi<strong>on</strong> spectrum. PBR illuminated with white<br />

day<str<strong>on</strong>g>light</str<strong>on</strong>g> was c<strong>on</strong>sidered as a c<strong>on</strong>trol, while PBR illuminated with <str<strong>on</strong>g>blue</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g> was <strong>the</strong><br />

experimental PBR. In order to evaluate <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> diluti<strong>on</strong> rate <strong>on</strong> metabolism under <strong>the</strong><br />

two <str<strong>on</strong>g>light</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s, two diluti<strong>on</strong> rates (0.7 d -1 or 0.2 d -1 ) were applied with a dosing pump<br />

(KNF stepdos), for both <str<strong>on</strong>g>light</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s <strong>and</strong> checked daily by weighing <strong>the</strong> harvested<br />

volume.<br />

Cellular c<strong>on</strong>centrati<strong>on</strong> was assessed daily by two methods (cell counts <strong>and</strong> <str<strong>on</strong>g>light</str<strong>on</strong>g> absorbance<br />

measurements) to provide accurate growth m<strong>on</strong>itoring <strong>and</strong> establish steady state reliably.<br />

Cell counting was performed by image analysis (IPS 32, Unilog <strong>and</strong> microscope Diaplan,<br />

307-148001, Leitz; 3CCD color visi<strong>on</strong> camera module, D<strong>on</strong>pisha) with Malassez slides <strong>and</strong><br />

Lugol staining soluti<strong>on</strong>. To evaluate chlorophyll a (chl a) c<strong>on</strong>tent <strong>and</strong> cellular c<strong>on</strong>centrati<strong>on</strong>,<br />

absorbances were measured at 680 <strong>and</strong> 800 nm, respectively (µQuant spectrophotometer,<br />

Bio-tek instruments. Inc). Cultures were assumed to be at steady state when <strong>the</strong> cellular<br />

c<strong>on</strong>centrati<strong>on</strong> <strong>and</strong> absorbances were stable for at least three c<strong>on</strong>secutive days with less than<br />

10% variati<strong>on</strong>. Once at steady state, cultures were sampled daily for <strong>biochemical</strong> analyses<br />

for 3 c<strong>on</strong>secutive days, at least.<br />

2.2. Productivity<br />

For each diluti<strong>on</strong> rate (D), 0.2 <strong>and</strong> 0.7 d -1 , cellular productivity (Pc) was calculated at steady<br />

state according to equati<strong>on</strong> 1.<br />

Pc = X.D equati<strong>on</strong> 1<br />

Where X is <strong>the</strong> steady-state cell c<strong>on</strong>centrati<strong>on</strong> (cell mL -1 ) measured by image analysis.<br />

2.3. Total carb<strong>on</strong> <strong>and</strong> nitrogen<br />

At steady state, approximately 100 10 6 cells were filtered through pre-combusted Whatman<br />

GF/C glass filters <strong>and</strong> dried at 70°C for 48 h. Particulate nitrogen (QN) <strong>and</strong> carb<strong>on</strong> (QC) were<br />

determined by elemental analysis (EAGER 300, Thermo Scientific, CHN analyzer) <strong>and</strong> QN<br />

<strong>and</strong> QC were computed <strong>on</strong> <strong>the</strong> basis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mean cell c<strong>on</strong>centrati<strong>on</strong> at steady state (X).<br />

3


2.4. Total chlorophyll a<br />

Chlorophyll a (Chl a) was determined using 150 10 6 cells previously filtered <strong>on</strong> a GF/C precombusted<br />

(450°C) glass-filter. Filter was introduced in a 15mL–tube with 10 mL 90%<br />

acet<strong>on</strong>e. Then, filter was grinded <strong>and</strong> sample was fur<strong>the</strong>r kept 24 hours in dark at 4°C for<br />

complete pigment extracti<strong>on</strong>. Quantificati<strong>on</strong> was performed following <strong>the</strong> Lorenzen (1967)<br />

spectrophotometric method.<br />

2.5. Photosyn<strong>the</strong>tic activity<br />

Photosyn<strong>the</strong>tic activity was measured at steady state using a DW3 Oxylab unit (Hansatech,<br />

UK) fitted with a Clark electrode disc <strong>and</strong> a 36 red LED array LH36/2R (λ=660 nm). After<br />

electrode calibrati<strong>on</strong>, nitrogen was flushed for 1 min into <strong>the</strong> sample to lower oxygen<br />

c<strong>on</strong>centrati<strong>on</strong> to 50% <str<strong>on</strong>g>of</str<strong>on</strong>g> saturati<strong>on</strong>. Oxygen producti<strong>on</strong> was measured in 1.3 mL <str<strong>on</strong>g>of</str<strong>on</strong>g> sample (5<br />

10 6 cells mL -1 ) mixed with 0.055 mL <str<strong>on</strong>g>of</str<strong>on</strong>g> a 144 mmol L -1 NaHCO3 soluti<strong>on</strong>. Then, 20 min<str<strong>on</strong>g>light</str<strong>on</strong>g>/10<br />

min-dark cycles were applied, with different levels <str<strong>on</strong>g>of</str<strong>on</strong>g> irradiance (I) ranging from 0 to<br />

361 µmol phot<strong>on</strong>s m -2 s -1 within <strong>the</strong> sample.<br />

To evaluate photosyn<strong>the</strong>tic activity (P) <strong>and</strong> to take photoinhibiti<strong>on</strong> into account, experimental<br />

data were fitted with a Haldane model, as modified by Papacek et al. (2010) (equati<strong>on</strong> 2).<br />

I<br />

P = P ×<br />

−<br />

m<br />

2 Rd<br />

K + S I + I K<br />

equati<strong>on</strong> 2<br />

i<br />

where Pm is <strong>the</strong> maximal photosyn<strong>the</strong>tic capacity (µmol O2 chl a -1 h -1 ), Ki <strong>the</strong> inhibiti<strong>on</strong><br />

c<strong>on</strong>stant (µmol phot<strong>on</strong>s m -2 s -1 ), Ks <strong>the</strong> half-saturati<strong>on</strong> c<strong>on</strong>stant (µmol phot<strong>on</strong>s m -2 s -1 ) <strong>and</strong> Rd<br />

<strong>the</strong> dark respirati<strong>on</strong>, expressed as an oxygen c<strong>on</strong>sumpti<strong>on</strong> (µmol O2 chl a -1 h -1 ).<br />

Light-saturated photosyn<strong>the</strong>tic rate Pmax (µmol O2 chl a -1 h -1 ), initial slope <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> P-I curve at<br />

limiting irradiance α (µmol O2 chl a -1 h -1 (µmol phot<strong>on</strong>s m -2 s -1 ) -1 ), <str<strong>on</strong>g>light</str<strong>on</strong>g> saturati<strong>on</strong> index Ik<br />

(µmol phot<strong>on</strong>s m -2 s -1 ), <str<strong>on</strong>g>light</str<strong>on</strong>g> saturati<strong>on</strong> irradiance Is, <strong>and</strong> compensati<strong>on</strong> irradiance Ic were<br />

<strong>the</strong>n calculated according to equati<strong>on</strong>s 3 to 7 (Papacek et al., 2010).<br />

Pm<br />

equati<strong>on</strong> 3<br />

P =<br />

−<br />

max<br />

Rd<br />

2 K SK<br />

+ 1 i<br />

I K SK<br />

i<br />

I<br />

S = equati<strong>on</strong> 4<br />

C<br />

=<br />

α =<br />

I<br />

k<br />

=<br />

P<br />

m<br />

−<br />

R<br />

d<br />

Rd I C<br />

+<br />

P − m R<br />

α<br />

d<br />

R<br />

d<br />

Pm<br />

2R<br />

( − )² − (<br />

d<br />

K<br />

i<br />

2 R<br />

2.6. Total carbohydrates<br />

d<br />

K<br />

S<br />

K<br />

) ²<br />

i<br />

equati<strong>on</strong> 5<br />

equati<strong>on</strong> 6<br />

equati<strong>on</strong> 7<br />

At steady state, 60 10 6 cells were sampled <strong>and</strong> carbohydrate c<strong>on</strong>tent was analyzed<br />

according to <strong>the</strong> sulfuric acid colorimetric method (Dubois et al., 1956), based <strong>on</strong><br />

phenolphthalein absorbance at 490 nm.<br />

4


2.7. Total proteins<br />

Protein extracti<strong>on</strong> was more complex than expected due to T-iso pigment c<strong>on</strong>tent. A new<br />

method for protein evaluati<strong>on</strong> was <strong>the</strong>refore used, based <strong>on</strong> <strong>the</strong> protocol <str<strong>on</strong>g>of</str<strong>on</strong>g> Barbarino <strong>and</strong><br />

Lourenço (2005), whereby samples (60 10 6 cells) were first centrifuged at 2,500 g for 20 min<br />

(5°C) to remove <strong>the</strong> culture medium <strong>and</strong> <strong>the</strong>n stored at -20°C.<br />

To collect total cellular protein c<strong>on</strong>tent, cells had to be broken: 0.5 mL ultra-pure water <strong>and</strong><br />

up to 2% SDS were added to each defrosted sample, which was <strong>the</strong>n s<strong>on</strong>icated for 10 min in<br />

an iced bath. After a 10-min centrifugati<strong>on</strong> step at 15,000 g (5°C), <strong>the</strong> proteins in <strong>the</strong><br />

supernatant were collected <strong>and</strong> stored at 4°C for 12 h.<br />

Proteins were <strong>the</strong>n precipitated by <strong>the</strong> additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 100% acet<strong>on</strong>e (2.5:1, v:v), s<strong>on</strong>icated for 30<br />

min in an iced bath, <strong>and</strong> collected following re-centrifugati<strong>on</strong> <strong>and</strong> eliminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

supernatant. The proteins were <strong>the</strong>n rinsed with 70% acet<strong>on</strong>e (2.5:1, v:v) <strong>and</strong> centrifuged for<br />

2 min at 15,000 g (5°C) followed by supernatant eliminati<strong>on</strong>. The proteins were finally<br />

solubilized in 0.5 mL <str<strong>on</strong>g>of</str<strong>on</strong>g> ultra-pure water.<br />

Solubilized proteins were quantified with a BCA protein assay kit (Pierce) based <strong>on</strong> alkaline<br />

copper colorimetric quantificati<strong>on</strong> at 562 nm (Lowry et al., 1951).<br />

2.8. Total lipids<br />

Samples <str<strong>on</strong>g>of</str<strong>on</strong>g> 300 10 6 cells were filtered through 450°C pre-combusted GF/C glass-filters<br />

(Whatman, diameter 47 mm). Lipids were extracted with 6 mL chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm-methanol mix (2:1<br />

v/v), following Folch et al. (1957), <strong>and</strong> stored at -20°C under nitrogen. The Bligh <strong>and</strong> Dyer<br />

protocol (1959) was used, in which, dichloromethane <strong>and</strong> ethanol were replaced by<br />

chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm <strong>and</strong> methanol, respectively, in <strong>the</strong> same solvent-mixing proporti<strong>on</strong>s. Hence, 1 mL<br />

CHCl3 <strong>and</strong> 0.9 mL water were added to 1 mL <str<strong>on</strong>g>of</str<strong>on</strong>g> Folch extract. After centrifugati<strong>on</strong>, <strong>the</strong><br />

organic phase was recovered. The water/methanol phase was rinsed twice with 1 mL CHCl3<br />

in order to collect <strong>the</strong> residual organic phases, which were <strong>the</strong>n added to <strong>the</strong> previous <strong>on</strong>e.<br />

The whole collected organic phase was <strong>the</strong>n totally dried under nitrogen flow <strong>and</strong> stored in a<br />

desiccator for 24-48 h. Lipids were weighed to 0.01 mg precisi<strong>on</strong>.<br />

2.9. Statistical analysis<br />

Following an examinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> homogeneity <str<strong>on</strong>g>of</str<strong>on</strong>g> variance <strong>and</strong> normal distributi<strong>on</strong>, a multi-factor<br />

analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> variance (5% significance level) was used to assess effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g> quality (white<br />

<strong>and</strong> <str<strong>on</strong>g>blue</str<strong>on</strong>g>) <strong>and</strong> diluti<strong>on</strong> rate (D = 0.2 <strong>and</strong> 0.7 d -1 ) treatments, as well as interacti<strong>on</strong>s. Then, a<br />

Fisher’s least significant difference (LSD) procedure was run to determine which <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

experimental c<strong>on</strong>diti<strong>on</strong>s were significantly different. To compare chlorophyll a c<strong>on</strong>tent <strong>and</strong><br />

<strong>biochemical</strong> compositi<strong>on</strong> <strong>on</strong> per-carb<strong>on</strong> <strong>and</strong> per-cell bases, linear least square regressi<strong>on</strong>s<br />

were performed with Statgraphics centuri<strong>on</strong> XV s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware. The same procedure was used for<br />

comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> photosyn<strong>the</strong>sis normalized to chlorophyll a, carb<strong>on</strong> or cells. The correlati<strong>on</strong><br />

coefficient, p-value <strong>and</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> observati<strong>on</strong>s were calculated for each regressi<strong>on</strong><br />

analysis.<br />

5


3. Results<br />

As shown in Figure 2, cell c<strong>on</strong>centrati<strong>on</strong> mean was significantly affected (Table 1) by diluti<strong>on</strong><br />

rate D <strong>and</strong> was 1.5 fold lower at 0.7 d -1 than at 0.2 d -1 (32 vs 48 10 6 cell mL -1 ). In c<strong>on</strong>trast,<br />

<str<strong>on</strong>g>light</str<strong>on</strong>g> quality did not significantly influence cell c<strong>on</strong>centrati<strong>on</strong> (Table 1).<br />

This difference in cell c<strong>on</strong>centrati<strong>on</strong> resulted in a 2.5-fold increase in productivity at 0.7 d -1<br />

compared with 0.2 d -1 (data not shown: 22 vs 10 10 9 cell L -1 d -1 ). Indeed, despite <strong>the</strong> lower<br />

cell c<strong>on</strong>centrati<strong>on</strong>, productivity was higher at 0.7 d -1 because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> increased volume<br />

collected. In c<strong>on</strong>trast, productivity remained unaffected by <str<strong>on</strong>g>light</str<strong>on</strong>g> spectrum.<br />

Cellular carb<strong>on</strong> quota QC was significantly enhanced at high D (0.7 d -1 ), as shown in Figure<br />

3a. Thus, QC was 508 fmol C cell -1 <strong>and</strong> 673 fmol C cell -1 for 0.2 <strong>and</strong> 0.7 d -1 , respectively,<br />

under white <str<strong>on</strong>g>light</str<strong>on</strong>g>, while it was 507 fmol C cell -1 <strong>and</strong> 563 fmol C cell -1 under <str<strong>on</strong>g>blue</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g>.<br />

Additi<strong>on</strong>ally a significant interacti<strong>on</strong> was found between spectrum <strong>and</strong> diluti<strong>on</strong> resulting in QC<br />

significantly lower under <str<strong>on</strong>g>blue</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g> than under white <str<strong>on</strong>g>light</str<strong>on</strong>g> at 0.7 d -1 (Table 1).<br />

Nitrogen cell quota QN (Figure 3b) was significantly enhanced at 0.7 d -1 (32 fmol N cell -1 at<br />

0.2 d -1 <strong>and</strong> 80 fmol N cell -1 at 0.7 d -1 ) but remained unaffected by <str<strong>on</strong>g>light</str<strong>on</strong>g> quality (Table 1:<br />

p>0.05). C<strong>on</strong>versely, when nitrogen quota was expressed per carb<strong>on</strong> unit (qN) (Figure 3c),<br />

<strong>the</strong> same significant effect was recorded for D (0.063 mol N mol C -1 at 0.2 d -1 <strong>and</strong> twice as<br />

much at 0.7 d -1 ) as well as a significant effect for <str<strong>on</strong>g>light</str<strong>on</strong>g> quality (Table 1) under <strong>the</strong> high diluti<strong>on</strong><br />

rate, as a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> quota enhancement under <strong>the</strong> same c<strong>on</strong>diti<strong>on</strong>s. A<br />

significant interacti<strong>on</strong> dem<strong>on</strong>strated that spectrum induced differences for qN were<br />

significantly increased under <strong>the</strong> high diluti<strong>on</strong> rate .<br />

Chlorophyll a per carb<strong>on</strong> unit (chl a:C) was significantly lower under <str<strong>on</strong>g>blue</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g> than under<br />

white <str<strong>on</strong>g>light</str<strong>on</strong>g> (Figure 4a). Again, a significant interacti<strong>on</strong> (Table 1) was found for Chl a:C :<br />

indeed, Chl a:C was <strong>on</strong>ly 60% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> value obtained under white <str<strong>on</strong>g>light</str<strong>on</strong>g> at 0.2 d -1 <strong>and</strong> this<br />

difference was reduced at 0.7 d -1 . In c<strong>on</strong>trast, when normalized to a per-cell basis (Figure<br />

4b), chlorophyll a was significantly affected by <str<strong>on</strong>g>light</str<strong>on</strong>g> quality <strong>on</strong>ly.<br />

Regardless <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> calculati<strong>on</strong> basis (carb<strong>on</strong>, cell or chlorophyll a), <strong>the</strong> same overall trends<br />

were recorded for photosyn<strong>the</strong>sis. Therefore, <strong>on</strong>ly <strong>the</strong> chlorophyll a-normalized results are<br />

discussed hereafter.<br />

In general, photosyn<strong>the</strong>tic activity increased with D, though <strong>the</strong> difference was more marked<br />

for cultures grown under <str<strong>on</strong>g>blue</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g> (Figure 5).<br />

Datasets <str<strong>on</strong>g>of</str<strong>on</strong>g> photosyn<strong>the</strong>sis <strong>on</strong> irradiance were fitted with <strong>the</strong> Haldane model (equati<strong>on</strong> 2)<br />

<strong>and</strong> <strong>the</strong> resulting parameters are given in Table 2. Rd, Pmax <strong>and</strong> α increased with D while Ic<br />

decreased by a factor <str<strong>on</strong>g>of</str<strong>on</strong>g> 3. Increase in diluti<strong>on</strong> rate resulted in striking enhancements in Pmax<br />

<strong>and</strong> α, which were more than 10 fold <strong>and</strong> 3.8 fold higher, respectively, at 0.7 d -1 compared<br />

with 0.2 d -1 .<br />

Only Rd <strong>and</strong> Pmax were significantly affected by <str<strong>on</strong>g>light</str<strong>on</strong>g> quality, while o<strong>the</strong>r parameters were not<br />

modified. We recorded a significant interacti<strong>on</strong> for Pmax , reflecting that Pmax was more<br />

sensitive to D under <str<strong>on</strong>g>blue</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g>. Besides, photoinhibiti<strong>on</strong> was more pr<strong>on</strong>ounced under <str<strong>on</strong>g>blue</str<strong>on</strong>g><br />

<str<strong>on</strong>g>light</str<strong>on</strong>g> (Figure 5) <strong>and</strong> this was c<strong>on</strong>firmed by <strong>the</strong> low Ki recorded under <str<strong>on</strong>g>blue</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g> at 0.7 d -1<br />

(Table 2).<br />

Biochemical compositi<strong>on</strong> is presented both <strong>on</strong> a per-cell basis (pg cell -1 ) <strong>and</strong> <strong>on</strong> a per-carb<strong>on</strong><br />

basis (pg pg C -1 ) in Table 3. A significant linear correlati<strong>on</strong> was found between <strong>the</strong> two<br />

calculati<strong>on</strong> basis used for <strong>the</strong> <strong>biochemical</strong> compositi<strong>on</strong> (lipids: p


carbohydrates: p


Dunaliella tertiolecta (Wallen <strong>and</strong> Geen, 1971). Although <strong>the</strong>se studies were carried out in<br />

batch culture where <str<strong>on</strong>g>light</str<strong>on</strong>g> changed c<strong>on</strong>tinuously during growth, preventing rigorous <str<strong>on</strong>g>light</str<strong>on</strong>g><br />

measurement, similar biomasses were produced under <str<strong>on</strong>g>blue</str<strong>on</strong>g> <strong>and</strong> white <str<strong>on</strong>g>light</str<strong>on</strong>g>.<br />

4.2. Proximate compositi<strong>on</strong><br />

In <strong>the</strong> following, carb<strong>on</strong> <strong>and</strong> nitrogen quota are discussed through qN, <strong>the</strong> nitrogen quota <strong>on</strong> a<br />

per-carb<strong>on</strong> basis. The range <str<strong>on</strong>g>of</str<strong>on</strong>g> variati<strong>on</strong> we found for qN was c<strong>on</strong>sistent with previous results<br />

recorded for Isochrysis galbana, where qN ranged from 0.10 to 0.08 mole N mole C -1 in batch<br />

cultures (Fidalgo et al., 1998).<br />

In <strong>the</strong> present study, qN increased with D, s<str<strong>on</strong>g>light</str<strong>on</strong>g>ly more under <str<strong>on</strong>g>blue</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g> than under white <str<strong>on</strong>g>light</str<strong>on</strong>g><br />

(0.06 at 0.2 d -1 for both spectra <strong>and</strong> 0.12 <strong>and</strong> 0.15 at 0.7 d -1 under white <strong>and</strong> <str<strong>on</strong>g>blue</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g>,<br />

respectively). These trends were difficult to compare with o<strong>the</strong>r studies, since most that dealt<br />

with qN c<strong>on</strong>cerned nutrient-limited (Chalup <strong>and</strong> Laws, 1990; Elrifi <strong>and</strong> Turpin, 1985;<br />

Sakshaug et al., 1989; Terry, 1980; Terry et al., 1985). Increase for qN resulted from <strong>the</strong><br />

differential increase in QN <strong>and</strong> QC. Indeed, we recorded that QC also increased with D, mainly<br />

under white <str<strong>on</strong>g>light</str<strong>on</strong>g>. This result has already been reported by Laws <strong>and</strong> Bannister (1980) for<br />

Thalassiosira fluviatilis under <str<strong>on</strong>g>light</str<strong>on</strong>g> limitati<strong>on</strong>, where a linear relati<strong>on</strong>ship was found. We can<br />

assume that, since cultures were <str<strong>on</strong>g>light</str<strong>on</strong>g>-limited in <strong>the</strong> present study, increase in D (i.e.<br />

increase in <str<strong>on</strong>g>light</str<strong>on</strong>g> availability) resulted in higher C fixati<strong>on</strong> rate, <strong>and</strong> higher QC. This assumpti<strong>on</strong><br />

was fur<strong>the</strong>r c<strong>on</strong>firmed by increased Pmax under high D. It is unclear why increase in QC was<br />

lower under <str<strong>on</strong>g>blue</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g>, as high<str<strong>on</strong>g>light</str<strong>on</strong>g>ed by <strong>the</strong> significant interacti<strong>on</strong> (Table 1), although Pmax<br />

was higher. The apparent discrepancy could be solved assuming that stocked Carb<strong>on</strong> was<br />

utilized to support <strong>the</strong> higher metabolic rate under <str<strong>on</strong>g>blue</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g>, as suggested by <strong>the</strong> lower<br />

carbohydrate c<strong>on</strong>tent.<br />

Changes in qN were c<strong>on</strong>sistent with <strong>the</strong> <strong>biochemical</strong> alterati<strong>on</strong> we recorded. Under white<br />

<str<strong>on</strong>g>light</str<strong>on</strong>g>, qN increased with D, while <strong>the</strong> relative amount <str<strong>on</strong>g>of</str<strong>on</strong>g> carbohydrate, <strong>the</strong> main energy<br />

storage material in T-iso (Sukenik <strong>and</strong> Wahn<strong>on</strong>, 1991), decreased with D. Similarly, qN<br />

increased with D under <str<strong>on</strong>g>blue</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g> <strong>and</strong> was closely related to protein enhancement <strong>and</strong> a<br />

c<strong>on</strong>comitant reducti<strong>on</strong> in carbohydrate, whereas lipids were unchanged. These results are in<br />

agreement with observati<strong>on</strong>s reported elsewhere for higher plants (Voskresenskaya, 1972),<br />

macroalgae (Korbee et al., 2005), diatoms (Gostan et al., 1986; Sanchez-Saavedra <strong>and</strong><br />

Voltolina, 1994) <strong>and</strong> o<strong>the</strong>r marine phytoplankt<strong>on</strong>ic species (Wynne <strong>and</strong> Rhee, 1986; Rivkin,<br />

1989). Decrease in carbohydrate c<strong>on</strong>tent under <str<strong>on</strong>g>blue</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g> was already reported by Sanchez-<br />

Saavedra <strong>and</strong> Voltolina (1994) for Chaetoceros sp. Besides, Rivkin (1989) observed in<br />

Dunaliella tertiolecta <strong>and</strong> Thalassiosira rotula, that <str<strong>on</strong>g>blue</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g> allows higher photosyn<strong>the</strong>tic<br />

carb<strong>on</strong> incorporati<strong>on</strong> into protein than white <str<strong>on</strong>g>light</str<strong>on</strong>g>. According to Zhou et al. (2009), <strong>the</strong> protein<br />

increase under <str<strong>on</strong>g>blue</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g> could be related to <strong>the</strong> enhancement <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>light</str<strong>on</strong>g> collecti<strong>on</strong> system,<br />

i.e., <strong>the</strong> structural protein <str<strong>on</strong>g>of</str<strong>on</strong>g> PSII (Miyachi et al., 1978). However, this phenomen<strong>on</strong> has not<br />

been c<strong>on</strong>clusively dem<strong>on</strong>strated <strong>and</strong> must be treated with cauti<strong>on</strong>.<br />

The changes in proximate compositi<strong>on</strong> we recorded here agree with earlier studies<br />

performed in semi-c<strong>on</strong>tinuous cultures at different D (Chrismadha <strong>and</strong> Borowitzka, 1994 ;<br />

Fabregas et al., 1996 ; Otero et al., 1997 ), although <str<strong>on</strong>g>light</str<strong>on</strong>g>-limited cultures have rarely been<br />

used to measure <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> D <strong>on</strong> <strong>biochemical</strong> compositi<strong>on</strong>. O<strong>the</strong>r studies using <str<strong>on</strong>g>light</str<strong>on</strong>g>-limited<br />

cultures reported c<strong>on</strong>flicting results <strong>on</strong> <strong>the</strong> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> irradiance <strong>on</strong> <strong>biochemical</strong> compositi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> different microalgae: carbohydrate c<strong>on</strong>tent str<strong>on</strong>gly increased with irradiance in<br />

Chaetoceros protuberans (Gostan et al., 1986; Rivkin, 1989), but decreased in Thalassiosira<br />

rotula <strong>and</strong> Dunaliella tertiolecta (Rivkin 1989); in T-iso, protein c<strong>on</strong>tent could be negatively<br />

affected by irradiance (Rivkin, 1989) or not at all (Sukenik et al., 1990). However, <strong>the</strong>se<br />

differing modificati<strong>on</strong>s in <strong>biochemical</strong> compositi<strong>on</strong> in relati<strong>on</strong> to irradiance could be<br />

interpreted as being due to (1) species-dependent photo-acclimati<strong>on</strong>, as already<br />

dem<strong>on</strong>strated by (Falkowski et al., 1985; Dubinsky <strong>and</strong> Stambler, 2009)), <strong>and</strong>/or (2) <strong>the</strong><br />

8


different bases used for computati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>biochemical</strong> compositi<strong>on</strong> (per C, per cell or as a<br />

percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> dry weight).<br />

4.3. Photosyn<strong>the</strong>sis activity<br />

In <strong>the</strong> opposite way to qN, a decreasing chla:C ratio was observed under white <str<strong>on</strong>g>light</str<strong>on</strong>g> when D<br />

was higher, i.e., with increasing <str<strong>on</strong>g>light</str<strong>on</strong>g> availability, as it has already been reported by o<strong>the</strong>r<br />

authors (Laws <strong>and</strong> Bannister, 1980; Rivkin, 1989 ; Anning et al., 2000; Dubinsky <strong>and</strong><br />

Stambler, 2009). Indeed, under low irradiance, <strong>the</strong> <str<strong>on</strong>g>light</str<strong>on</strong>g> collecti<strong>on</strong> apparatus (mainly chla:C)<br />

is enhanced, as previously reported in Phaeodactylum tricornutum <strong>and</strong> Skelet<strong>on</strong>ema<br />

costatum (Beardall <strong>and</strong> Morris, 1976; Anning et al., 2000). However, no significant change<br />

could be recorded for chla:C under <str<strong>on</strong>g>blue</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g>. This difference between <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> two<br />

<str<strong>on</strong>g>light</str<strong>on</strong>g> spectra was already reported for Thalassiosira rotula <strong>and</strong> Dunaliella tertiolecta by Rivkin<br />

(1989), who recorded a smaller difference in chla:C ratio in relati<strong>on</strong> to <str<strong>on</strong>g>light</str<strong>on</strong>g> availability under<br />

<str<strong>on</strong>g>blue</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g> than under white <str<strong>on</strong>g>light</str<strong>on</strong>g>. In <strong>the</strong> present work, we found that chl a c<strong>on</strong>tent (per cell <strong>and</strong><br />

per C) was higher under white <str<strong>on</strong>g>light</str<strong>on</strong>g> than under <str<strong>on</strong>g>blue</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g>, which c<strong>on</strong>trasts with some previous<br />

studies (Wynne <strong>and</strong> Rhee, 1986; Rivkin, 1989 ; Sanchez-Saavedra <strong>and</strong> Voltolina, 1994 ;<br />

Mercado et al., 2004). However, Aidar et al. (1994) reported that <str<strong>on</strong>g>blue</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g> resulted in<br />

chlorophyll a decrease in Tetraselmis gracilis, while it remained c<strong>on</strong>stant in Thalassiosira<br />

gravida <strong>and</strong> Phaeodactylum tricornutum (Holdsworth (1985). As far as we know, <strong>the</strong>re is no<br />

c<strong>on</strong>sensus <strong>on</strong> chl a c<strong>on</strong>tent behaviour am<strong>on</strong>g microalgal species with respect to <strong>the</strong>ir<br />

potential for chromatic adaptati<strong>on</strong>.<br />

Results associated to PI curves dem<strong>on</strong>strated that under high D, <strong>the</strong> irradiance amount used<br />

in our experiment was photoinhibiting. It is unclear why photoinhibiti<strong>on</strong> occurred here for<br />

irradiance higher than 150 µmol phot<strong>on</strong>s m -2 s -1 , since previous study dem<strong>on</strong>strated that<br />

photoinhibiti<strong>on</strong> did not occur for irradiance as high as 300 µmol phot<strong>on</strong>s m -2 s -1 (Marchetti et<br />

al., 2012). However, direct comparis<strong>on</strong> between <strong>the</strong>se two experiments suffers from<br />

methodological differences (such as different <str<strong>on</strong>g>light</str<strong>on</strong>g> spectra, l<strong>on</strong>g-term turbidostat versus<br />

short-term photosyn<strong>the</strong>sis experiments) that may give rise to inc<strong>on</strong>sistencies. Never<strong>the</strong>less,<br />

from <strong>the</strong> results reported here, we may assume that reducing irradiance to 150 µmol phot<strong>on</strong>s<br />

m -2 s -1 would increase productivity as well as protein c<strong>on</strong>tent. Indeed, Terry et al (1983)<br />

reported that photoinhibiting c<strong>on</strong>diti<strong>on</strong>s decreased syn<strong>the</strong>sis rate for protein in<br />

4.4. Phaeodactylum tricornutum<br />

Photosyn<strong>the</strong>tic activity increased with D, revealing a higher carb<strong>on</strong> fixati<strong>on</strong> rate at higher<br />

diluti<strong>on</strong>. Photosyn<strong>the</strong>tic parameters showed different trends with D. First, Pmax was enhanced<br />

at high D, as previously reported for Skelet<strong>on</strong>ema costatum (Anning et al., 2000). Since <str<strong>on</strong>g>light</str<strong>on</strong>g><br />

availability <strong>and</strong> D are closely related in <str<strong>on</strong>g>light</str<strong>on</strong>g>-limited chemostat, this result is c<strong>on</strong>sistent with<br />

<strong>the</strong> report by (Dubinsky <strong>and</strong> Stambler, 2009) that Pmax increases under bright <str<strong>on</strong>g>light</str<strong>on</strong>g> in<br />

correlati<strong>on</strong> with <strong>the</strong> decreasing quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> photosyn<strong>the</strong>tic units.<br />

On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, we recorded a negative correlati<strong>on</strong> between chl a specific photosyn<strong>the</strong>sis<br />

efficiency (α) <strong>and</strong> chla:C. Increase in α was due to variati<strong>on</strong> in both Ic <strong>and</strong> Rd. Indeed, Ic<br />

decrease with increasing D was c<strong>on</strong>comitant with Rd enhancement. The sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> Rd to<br />

D has already been shown in several studies, with a positive correlati<strong>on</strong> between Rd <strong>and</strong> D at<br />

steady state for <str<strong>on</strong>g>light</str<strong>on</strong>g>-limited cultures (Laws <strong>and</strong> Bannister, 1980; Falkowski et al., 1985;<br />

Anning et al., 2000). The increase <str<strong>on</strong>g>of</str<strong>on</strong>g> Rd <strong>and</strong> <strong>the</strong> parallel decrease in carbohydrate c<strong>on</strong>tent is<br />

thus c<strong>on</strong>sistent with <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> carbohydrate as energy to support high growth rates.<br />

A general enhancement in photosyn<strong>the</strong>tic activity was recorded when microalgae were<br />

exposed to <strong>the</strong> <str<strong>on</strong>g>blue</str<strong>on</strong>g> spectrum. The highest Pmax was recorded under <str<strong>on</strong>g>blue</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g>, as already<br />

reported for some o<strong>the</strong>r marine microalgae (Wallen <strong>and</strong> Geen, 1971; Humphrey, 1983; Vogel<br />

<strong>and</strong> Sager, 1985), indicating that cultures grown under <str<strong>on</strong>g>blue</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g> were more<br />

9


photosyn<strong>the</strong>tically active at saturating irradiance. According to Voskresenskaya (1972), this<br />

might result from activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> photosyn<strong>the</strong>tic electr<strong>on</strong> transfer chain reacti<strong>on</strong>s <strong>and</strong> a high<br />

activity <str<strong>on</strong>g>of</str<strong>on</strong>g> ribulose-1,5-diphosphate carboxylase (Rubisco). Indeed, <strong>the</strong> increase in Rubisco<br />

syn<strong>the</strong>sis under <str<strong>on</strong>g>blue</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g> has already been shown in plants <strong>and</strong> microorganisms (Senger,<br />

1982), but also in green algae (Roscher <strong>and</strong> Zetsche, 1986) where <strong>the</strong> <str<strong>on</strong>g>light</str<strong>on</strong>g> promoter effect<br />

was c<strong>on</strong>firmed for wavelengths ranging from 430 to 510 nm <strong>and</strong> <strong>the</strong> maximal effect was at<br />

460 nm. Blue <str<strong>on</strong>g>light</str<strong>on</strong>g> also increased <strong>the</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> mRNA for <strong>the</strong> large <strong>and</strong> small subunits <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

this enzyme (Roscher <strong>and</strong> Zetsche, 1986) <strong>and</strong> nitrate-reductase activity (Figueroa et al.,<br />

1995), explaining <strong>the</strong> higher protein <strong>and</strong> nitrogen quota reported here.<br />

In <strong>the</strong> literature, modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> P <strong>on</strong> I curve <str<strong>on</strong>g>of</str<strong>on</strong>g>ten relies <strong>on</strong> <strong>the</strong> Michaelis-Menten model,<br />

where <strong>the</strong> initial slope α is computed from <strong>the</strong> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> Pmax to Ik (Aidar et al., 1994; Anning et<br />

al., 2000; Dubinsky <strong>and</strong> Stambler, 2009). Using this modeling approach, computati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

α from our data set resulted in higher α under <str<strong>on</strong>g>blue</str<strong>on</strong>g> relative to white <str<strong>on</strong>g>light</str<strong>on</strong>g>, as already reported<br />

in Scenedesmus obliqus (Brinkmann <strong>and</strong> Senger, 1978), Prorocentrum mariae lebouriae<br />

(Vogel <strong>and</strong> Sager, 1985), Dunaliella tertiolecta <strong>and</strong> Cyclotella nana (Wallen <strong>and</strong> Geen,<br />

1971). C<strong>on</strong>versely, use <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Haldane model (equati<strong>on</strong> 2) did not reveal any significant<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> spectrum <strong>on</strong> α. According to equati<strong>on</strong> 6, this result is in c<strong>on</strong>tradicti<strong>on</strong> with <strong>the</strong><br />

c<strong>on</strong>stancy <str<strong>on</strong>g>of</str<strong>on</strong>g> Ic <strong>and</strong> <strong>the</strong> increase in Rd under <str<strong>on</strong>g>blue</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g>. However, it should be stressed that α<br />

increased significantly in <str<strong>on</strong>g>blue</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g> at 0.7 d -1 (Table 2). Hence, <strong>the</strong> lack <str<strong>on</strong>g>of</str<strong>on</strong>g> an overall<br />

significant effect <str<strong>on</strong>g>of</str<strong>on</strong>g> spectrum <strong>on</strong> α might reflect <strong>the</strong> str<strong>on</strong>gly reduced photosyn<strong>the</strong>tic activity at<br />

0.2 d -1 <strong>and</strong> <strong>the</strong> resulting lack <str<strong>on</strong>g>of</str<strong>on</strong>g> precisi<strong>on</strong> in α assessment. An increased number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

observati<strong>on</strong>s in <strong>the</strong> subsaturating regi<strong>on</strong> would have circumvented this issue.<br />

Thus, in <strong>the</strong> present study, Pmax <strong>and</strong> α were enhanced by <str<strong>on</strong>g>blue</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g> at 0.7 d -1 while Ik was not<br />

affected, showing <strong>the</strong> “Ik-independent” variability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> P vs I curve for T-iso (Behrenfeld et<br />

al., 2004). Physiological bases <str<strong>on</strong>g>of</str<strong>on</strong>g> this phenomen<strong>on</strong> are poorly known but appear to result<br />

from growth-rate-dependent variability in <strong>the</strong> metabolic processing <str<strong>on</strong>g>of</str<strong>on</strong>g> photosyn<strong>the</strong>tically<br />

generated reducing agents (Behrenfeld et al., 2004). Blue <str<strong>on</strong>g>light</str<strong>on</strong>g> also enhanced Rd under <str<strong>on</strong>g>blue</str<strong>on</strong>g><br />

<str<strong>on</strong>g>light</str<strong>on</strong>g>, as previously reported for Scenedesmus obliquus (Brinkmann <strong>and</strong> Senger, 1978),<br />

Rhodom<strong>on</strong>as salina (Hammer et al., 2002) or Dunaliella tertiolecta <strong>and</strong> Thalassiosira rotula<br />

(Rivkin, 1989), c<strong>on</strong>firming a higher rate <str<strong>on</strong>g>of</str<strong>on</strong>g> carbohydrate degradati<strong>on</strong> in <str<strong>on</strong>g>blue</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g>.<br />

In summary, <str<strong>on</strong>g>blue</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g> resulted in an enhancement <str<strong>on</strong>g>of</str<strong>on</strong>g> photosyn<strong>the</strong>tic activity as well as an<br />

alterati<strong>on</strong> in carb<strong>on</strong> metabolism in close relati<strong>on</strong> with an increase in protein syn<strong>the</strong>sis. Newlysyn<strong>the</strong>sized<br />

proteins that allow high growth rate <strong>and</strong> favour photosyn<strong>the</strong>tic structures could<br />

be involved in enzyme producti<strong>on</strong> (Senger, 1982; Mercado et al., 2004).<br />

4.5. Implicati<strong>on</strong>s for mollusk feeding<br />

In spite <str<strong>on</strong>g>of</str<strong>on</strong>g> numerous studies <strong>on</strong> mollusk requirements, optimal <strong>biochemical</strong> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

microalgae required for improving mollusks rearing is still unclear (Brown et al., 1989; Knauer<br />

et al., 1999). However, requirement <str<strong>on</strong>g>of</str<strong>on</strong>g> mollusk larvae for proteins seems to be higher relative<br />

to that required by adults. In additi<strong>on</strong>, protein-enriched microalgae (30-60% <str<strong>on</strong>g>of</str<strong>on</strong>g> cell weight)<br />

seem to meet requirement for larvae (Brown et al., 1989; Utting, 1986). Therefore, we<br />

assume that protein increase in T-iso, resulting from a high D under <str<strong>on</strong>g>blue</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g>, will be<br />

appropriate for feeding mollusks, especially larvae. In order to increase rearing performance,<br />

aquaculturist faces two possibilities : first, a high cell c<strong>on</strong>centrati<strong>on</strong> with a low protein c<strong>on</strong>tent<br />

<strong>and</strong>, sec<strong>on</strong>d, a lower cell c<strong>on</strong>centrati<strong>on</strong> but protein-enriched. It was previously shown that<br />

larval ingesti<strong>on</strong> rate was an hyperbolic functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> phytoplankt<strong>on</strong> density, with a<br />

maximum ingesti<strong>on</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 50 10 3 cells larvae -1 d -1 for a density <str<strong>on</strong>g>of</str<strong>on</strong>g> 25 phytopklankt<strong>on</strong> cells<br />

mL -1 (Rico-Villa et al., 2009). Hence, we may assume that <strong>the</strong> maximum density <str<strong>on</strong>g>of</str<strong>on</strong>g> proteinenriched<br />

cells, should favour larval rearing. Fur<strong>the</strong>r experiments <strong>on</strong> larvae remain to be<br />

carried out in order to test this assumpti<strong>on</strong>.<br />

10


C<strong>on</strong>clusi<strong>on</strong>s<br />

The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g> quality <strong>and</strong> diluti<strong>on</strong> rate <strong>on</strong> <strong>the</strong> <strong>biochemical</strong> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> T-iso were<br />

assessed at steady state. Spectrum quality did not alter T-iso productivity, but resulted in<br />

metabolic changes. Indeed, under <str<strong>on</strong>g>blue</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g>, chlorophyll a-specific photosyn<strong>the</strong>tic activity <strong>and</strong><br />

respirati<strong>on</strong> were enhanced, resulting in higher carb<strong>on</strong> fixati<strong>on</strong> rates, with photosynthates<br />

preferentially incorporated into proteins. Protein syn<strong>the</strong>sis was c<strong>on</strong>sequently enhanced at <strong>the</strong><br />

expense <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> storage compounds.<br />

Growing T-iso at high D resulted in enhanced productivity, with biomass c<strong>on</strong>taining more<br />

protein <strong>and</strong> less carbohydrate than at low D.<br />

Different combinati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g> quality <strong>and</strong> D resulted could lead to a 3-fold increase in <strong>the</strong><br />

carbohydrate to protein ratio. This large change in <strong>biochemical</strong> compositi<strong>on</strong> could be a<br />

starting point for future studies aiming to examine <strong>the</strong> nutriti<strong>on</strong>al needs <str<strong>on</strong>g>of</str<strong>on</strong>g> mollusks, since <strong>the</strong><br />

nutriti<strong>on</strong>al value <str<strong>on</strong>g>of</str<strong>on</strong>g> microalgae is a key point for larval development <strong>and</strong> survival (Brown et<br />

al., 1993) .<br />

Acknowledgments<br />

This work was made possible by technical <strong>and</strong> financial support from a Cifre fellowship <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

French commercial oyster hatchery “Vendée Naissain” (www.francenaissain.com).<br />

11


Figures<br />

Figure 1<br />

Figure 1 White <strong>and</strong> <str<strong>on</strong>g>blue</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g> spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fluorescent sources used during <strong>the</strong> experiment.<br />

Blue <str<strong>on</strong>g>light</str<strong>on</strong>g> (solid line) showed higher phot<strong>on</strong> counts in <strong>the</strong> range 420-500 nm, while white<br />

<str<strong>on</strong>g>light</str<strong>on</strong>g> source (dashed line) mainly emitted radiati<strong>on</strong> below 580 nm.<br />

Relative intensity<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

x 10 4<br />

0<br />

400 500 600 700<br />

Wavelength (nm)<br />

12


Figure 2<br />

Figure 2 Cell c<strong>on</strong>centrati<strong>on</strong> as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> diluti<strong>on</strong> rate D (0.2 or 0.7 d -1 ) <strong>and</strong> spectrum<br />

quality. White bars : white <str<strong>on</strong>g>light</str<strong>on</strong>g> ; grey bars : <str<strong>on</strong>g>blue</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g>.<br />

X (x10 6 cell mL -1 )<br />

60<br />

40<br />

20<br />

0<br />

a a<br />

0.2 0.7<br />

D (d -1 )<br />

b<br />

b<br />

13


Figure 3<br />

Figure 3 Cellular carb<strong>on</strong> quota QC (a), cellular nitrogen quota QN (b) <strong>and</strong> nitrogen quota per<br />

carb<strong>on</strong> qN (c) as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> D (0.7 or 0.2 d -1 ) <strong>and</strong> spectrum quality. White bars : white <str<strong>on</strong>g>light</str<strong>on</strong>g><br />

; grey bars : <str<strong>on</strong>g>blue</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g>. Values with <strong>the</strong> same letter are not significantly different (p>0.05).<br />

QC (fmol C cell -1 )<br />

QN (fmol N cell -1 )<br />

q N (mol N mol C -1 )<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

a<br />

a a<br />

0.2 0.7<br />

D (d -1 )<br />

a<br />

0.2 0.7<br />

D (d -1 )<br />

a a<br />

b<br />

c<br />

b b<br />

0.2 0.7<br />

D (d -1 )<br />

b<br />

c<br />

a<br />

b<br />

c<br />

14


Figure 4<br />

Figure 4 Chlorophyll a c<strong>on</strong>tent expressed <strong>on</strong> a per-carb<strong>on</strong> basis (a) or <strong>on</strong> a per-cell basis (b)<br />

as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> D (0.7 or 0.2 d -1 ) <strong>and</strong> spectrum quality (white or <str<strong>on</strong>g>blue</str<strong>on</strong>g>). White bars : white<br />

<str<strong>on</strong>g>light</str<strong>on</strong>g> ; grey bars : <str<strong>on</strong>g>blue</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g>. Values with <strong>the</strong> same letter are not significantly different<br />

(p>0.05).<br />

Chl a:C ( g g -1 )<br />

Chla (pg cell -1 )<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

a<br />

a<br />

b b<br />

0.2 0.7<br />

D (d -1 )<br />

b<br />

0.2 0.7<br />

D (d -1 )<br />

c<br />

a<br />

b<br />

a<br />

b<br />

15


Figure 5<br />

Figure 5 Photosyn<strong>the</strong>tic activity (μmol O2 mg chl a -1 h -1 ) for <strong>the</strong> four c<strong>on</strong>diti<strong>on</strong>s as a functi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> irradiance. Data points <strong>and</strong> error bars represent mean values <strong>and</strong> st<strong>and</strong>ard errors <str<strong>on</strong>g>of</str<strong>on</strong>g> three<br />

independent replicates. Solid <strong>and</strong> dotted lines represent <strong>the</strong> fitting <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Haldane model<br />

(equati<strong>on</strong> 3) to experimental data for <str<strong>on</strong>g>blue</str<strong>on</strong>g> <strong>and</strong> white <str<strong>on</strong>g>light</str<strong>on</strong>g>, respectively.<br />

Net Photosyn<strong>the</strong>sis (µmol O 2 mg Chl a -1 h -1 )<br />

200<br />

100<br />

0<br />

Blue 0.7 White 0.7 Blue 0.2 White 0.2<br />

-50<br />

0 100 200 300 400<br />

Irradiance (µmol phot<strong>on</strong>s m -2 s -1 )<br />

16


Figure 6<br />

Figure 6 Relative gross <strong>biochemical</strong> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> T-iso as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> D (0.2 or 0.7 d -1 )<br />

<strong>and</strong> spectrum quality (<str<strong>on</strong>g>blue</str<strong>on</strong>g> or white). Dark grey : lipids ; <str<strong>on</strong>g>light</str<strong>on</strong>g> grey : carbohydrates ; white :<br />

proteins.<br />

White 0.2<br />

White 0.7<br />

Blue 0.2<br />

Blue 0.7<br />

17


Tables<br />

Table 1 Multifactor ANOVA for cell c<strong>on</strong>centrati<strong>on</strong>, cellular quota <strong>and</strong> chlorophyll a c<strong>on</strong>tent.<br />

Probabilities (p) are given for α=0.05; numbers in bold type denote a significant effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

corresp<strong>on</strong>ding factor.<br />

X QC QN N :C Chl a:C<br />

D (d -1 ) p (α=0.05) 0.0000 0.0001 0.0000 0.0000 0.0143<br />

Spectrum p (α=0.05) 0.7043 0.0051 0.9271 0.0041 0.0001<br />

Interacti<strong>on</strong> p (α=0.05) 0.0830 0.0057 0.1855 0.00432 0.0157<br />

Table 2 Estimated parameters (Ks, Ki, Rd <strong>and</strong> Pm) from Haldane modeling for <strong>the</strong> four<br />

experimental c<strong>on</strong>diti<strong>on</strong>s. Pmax, α, Ek, Is <strong>and</strong> Ic were computed according to equati<strong>on</strong>s 14 to<br />

18. St<strong>and</strong>ard deviati<strong>on</strong>s are presented in brackets. A multifactor ANOVA analysis provided<br />

<strong>the</strong> probabilities (p) for α = 0.05. Numbers in bold type denote a significant effect for <strong>the</strong><br />

corresp<strong>on</strong>ding factor.<br />

D (d -1 ) Spectrum Ks Ki Rd Pm Pmax α Ik Is Ic<br />

B 16 (15) 6213<br />

0.2<br />

2<br />

27 (2) 49 (17) 12 (6) 1.4 (0.6) 58 (21) 211 (88) 21 (8)<br />

W 11 (5)<br />

(5069)<br />

1317 2 (692) 13 (3) 23 (1) 6 (4) 1.1 (0.9) 49 (32) 120 (56) 19 (14)<br />

B 74 (37) 279 (97) 36 (4) 422 163 (14) 5.4 (0.7) 88 (40) 135 (5) 7 (1)<br />

0.7<br />

(136)<br />

W 45 (17) 819 2 Multifactor ANOVA<br />

(781) 29 (6) 204 (31) 100 (2) 4.2 (0.9) 59 (17) 164 (39) 7(1)<br />

D (d -1 ) p(α = 0.05) 0.0061 0.0634 0.0009 0.0001 0.0000 0.0001 0.2716 0.6474 0.0239<br />

Spectrum p(α = 0.05) 0.2036 0.1827 0.0022 0.0171 0.0001 0.1313 0.2914 0.3601 0.8709<br />

Interacti<strong>on</strong> p(α = 0.05) 0.3518 0.1063 0.2311 0.0454 0.0002 0.3339 0.5486 0.1017 0.8500<br />

1 -2 -1 2 -1 -1 3 -1 -1 -2 -1<br />

µmol phot<strong>on</strong>s m s ; µmol O2. mg chl a h ; µmol O2 mg chl a h (µmol phot<strong>on</strong>s m s )<br />

2 high values for Ki indicate that no photoinhibiti<strong>on</strong> occured. In <strong>the</strong>se cases a M<strong>on</strong>od model would advantageously<br />

replace <strong>the</strong> Haldane formulati<strong>on</strong><br />

Table 3 Gross compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> T-iso as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> diluti<strong>on</strong> rate (0.2 <strong>and</strong> 0.7 d -1 ) <strong>and</strong> <str<strong>on</strong>g>light</str<strong>on</strong>g><br />

spectral quality (<str<strong>on</strong>g>blue</str<strong>on</strong>g>, B, <strong>and</strong> white, W). Results are expressed <strong>on</strong> a per-cell <strong>and</strong> a percarb<strong>on</strong><br />

basis <strong>and</strong> st<strong>and</strong>ard deviati<strong>on</strong>s given in brackets. Numbers in bold type denote a<br />

significant effect for <strong>the</strong> corresp<strong>on</strong>ding factor.<br />

pg cell -1 pg pg C -1<br />

D (d -1 ) Spectrum Lipids Carbohyd. Proteins Lipids Carbohyd. Proteins<br />

B<br />

0.53<br />

0.2<br />

W<br />

5.19 (0.30) 5.16 (0.57) 3.25 (0.14) 0.85 (0.05) 0.85 (0.11) (0.04)<br />

0.47<br />

5.81 (0.50) 6.58 (0.17) 2.86 (0.13) 0.95 (0.07) 1.08 (0.06) (0.03)<br />

B<br />

0.72<br />

0.7<br />

W<br />

6.26 (1.30) 3.19 (0.33) 4.81 (0.40) 0.92 (0.14) 0.47 (0.03) (0.10)<br />

0.40<br />

6.74 (1.28) 5.15 (0.40) 3.23 (0.47) 0.83 (0.16) 0.64 (0.06) (0.06)<br />

Multifactor ANOVA<br />

D (d -1 ) p (α=0.05) 0.1066 0.0001 0.0020 0.7243 0.0000 0.2132<br />

Spectrum p (α=0.05) 0.3509 0.0001 0.0017 0.9323 0.0017 0.0014<br />

Interacti<strong>on</strong> p (α=0.05) 0.9073 0.3041 0.0240 0.2023 0.4772 0.0134<br />

18


References<br />

Aidar E, Gianesellagalvao SMF, Sigaud TCS, Asano CS, Liang TH, Rezende KRV, Oishi<br />

MK, Aranha FJ, Milani GM, S<strong>and</strong>es MAL (1994) <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g> quality <strong>on</strong> growth,<br />

<strong>biochemical</strong> compositi<strong>on</strong> <strong>and</strong> photosyn<strong>the</strong>tic producti<strong>on</strong> in Cyclotella caspia Grunow <strong>and</strong><br />

Tetraselmis gracilis (Kylin) Butcher. J Exp Mar Biol Ecol 180 (2) : 175-187<br />

Anning T, MacIntyre HL, Pratt SM, Sammes PJ, Gibb S, Geider RJ (2000) Photoacclimati<strong>on</strong><br />

in <strong>the</strong> marine diatom Skelet<strong>on</strong>ema costatum. Limnol Oceanogr 45 (8) : 1807-1817<br />

Beardall J, Morris I (1976) The c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g> intensity adaptati<strong>on</strong> in marine phytoplankt<strong>on</strong>:<br />

Some experiments with Phaeodactylum tricornutum. Mar Biol 37 (4) : 377-387<br />

Behrenfeld MJ, Prasil O, Babin M, Bruyant F (2004) In search <str<strong>on</strong>g>of</str<strong>on</strong>g> a physiological basis for<br />

covariati<strong>on</strong>s in <str<strong>on</strong>g>light</str<strong>on</strong>g>-limited <strong>and</strong> <str<strong>on</strong>g>light</str<strong>on</strong>g>-saturated photosyn<strong>the</strong>sis. J Phycol 40 (1) : 4-25<br />

Berges JA, Varela DE, Harris<strong>on</strong> PJ (2002) <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature <strong>on</strong> growth rate, cell<br />

compositi<strong>on</strong> <strong>and</strong> nitrogen metabolism in <strong>the</strong> marine diatom Thalassiosira pseud<strong>on</strong>ana<br />

(Bacillariophyceae). Mar Ecol Prog Ser 225 : 139-146<br />

Bligh EG, Dyer WJ (1959) A rapid method <str<strong>on</strong>g>of</str<strong>on</strong>g> total lipid extracti<strong>on</strong> <strong>and</strong> purificati<strong>on</strong>. Can J<br />

Biochem Physiol 37 (8) : 911-917<br />

Borowitzka MA (1997) Microalgae for aquaculture : opportunities <strong>and</strong> c<strong>on</strong>straints. J Appl<br />

Phycol 9 (5) : 393–401<br />

Brinkmann G, Senger H (1978) The development <str<strong>on</strong>g>of</str<strong>on</strong>g> structure <strong>and</strong> functi<strong>on</strong> in chloroplasts <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

greening mutants <str<strong>on</strong>g>of</str<strong>on</strong>g> Scenedesmus IV. Blue <str<strong>on</strong>g>light</str<strong>on</strong>g>-dependent carbohydrate <strong>and</strong> protein<br />

metabolism. Plant Cell Physiol 19 (8) : 1427-1437<br />

Brown MR, Garl<strong>and</strong> CD, Jeffrey SW, James<strong>on</strong> ID, Leroi JM (1993) The gross <strong>and</strong> amino acid<br />

compositi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> batch <strong>and</strong> semi-c<strong>on</strong>tinuous cultures <str<strong>on</strong>g>of</str<strong>on</strong>g> Isochrysis sp. (cl<strong>on</strong>e T.Iso), Pavlova<br />

lu<strong>the</strong>ri <strong>and</strong> Nannochloropsis oculata. J Appl Phycol 5 (3) : 285-296<br />

Brown MR (2002) Nutriti<strong>on</strong>al value <strong>and</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> microalgae in aquaculture. Avances en<br />

Nutrición Acuícola VI. Memorias del VI Simposium Internaci<strong>on</strong>al de Nutrición Acuícola. N.<br />

Simoes. Cancún, Quintana Roo, México : 281-292<br />

Chalup MS, Laws EA (1990) A test <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> assumpti<strong>on</strong>s <strong>and</strong> predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> recent microalgal<br />

growth models with <strong>the</strong> marine phytoplankter Pavlova lu<strong>the</strong>ri. Limnol Oceanogr 35 (3) : 583-<br />

596<br />

Chen GQ, Jiang Y, Chen F (2008) Variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lipid class compositi<strong>on</strong> in Nitzschia laevis as a<br />

resp<strong>on</strong>se to growth temperature change. Food Chem 109 (1) : 88-94<br />

Chrismadha T, Borowitzka MA (1994) Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> cell density <strong>and</strong> irradiance <strong>on</strong> growth,<br />

proximate compositi<strong>on</strong> <strong>and</strong> eicosapentaenoic acid producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Phaeodactylum tricornutum<br />

grown in a tubular photobioreactor. J Appl Phycol 6 (1) : 67-74<br />

Dubinsky Z, Stambler N (2009) Review : Photoacclimati<strong>on</strong> processes in phytoplankt<strong>on</strong>:<br />

mechanisms, c<strong>on</strong>sequences, <strong>and</strong> applicati<strong>on</strong>s. Aquat Microb Ecol 56 (2-3) : 163-176<br />

Dubois M, Gilles K A, Hamilt<strong>on</strong> J K, Reber, P A, Smith F (1956) Colorimetric method for<br />

determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sugars <strong>and</strong> related substances. Anal Chem 28 (3) : 350-356<br />

Durmaz Y (2007). Vitamin E (alpha-tocopherol) producti<strong>on</strong> by <strong>the</strong> marine microalgae<br />

Nannochloropsis oculata (Eustigmatophyceae) in nitrogen limitati<strong>on</strong>. Aquaculture 272 (1-4) :<br />

717-722<br />

Elrifi IR, Turpin DH (1985) Steady-state luxury c<strong>on</strong>sumpti<strong>on</strong> <strong>and</strong> <strong>the</strong> c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> optimum<br />

nutrient ratios : a study with phosphate <strong>and</strong> nitrate limited Selenastrum minutum<br />

(Chlorophyta). J Phycol 21 (4) : 592-602<br />

Fabregas J, Herrero C, Abalde J, Cabezas B (1985) Growth, chlorophyll a <strong>and</strong> protein <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

marine microalga Isochrysis galbana in batch cultures with different salinities <strong>and</strong> high<br />

nutrient c<strong>on</strong>centrati<strong>on</strong>s. Aquaculture 50 (1-2) : 1-11<br />

Fabregas J, Herrero C, Cabezas B, Abalde J (1986) Biomass producti<strong>on</strong> <strong>and</strong> <strong>biochemical</strong><br />

compositi<strong>on</strong> in mass cultures <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> marine microalga Isochrysis galbana Parke at varying<br />

nutrient c<strong>on</strong>centrati<strong>on</strong>s. Aquaculture 53 (2) : 101-113<br />

19


Fabregas J, Patino M, Morales E, Dominguez AR, Otero A (1996) Distinctive c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

metabolic pathways by Chlorella autotrophica in semic<strong>on</strong>tinuous culture. Can J Microbiol 42<br />

(11) : 1087-1090<br />

Falkowski PG, Dubinsky Z, Wyman K (1985) Growth-irradiance relati<strong>on</strong>ships in<br />

phytoplankt<strong>on</strong>. Limnol Oceanogr 30 (2) : 311-321<br />

Fidalgo JP, Cid A, Torres E, Sukenik A, Herrero C (1998) <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen source <strong>and</strong><br />

growth phase <strong>on</strong> proximate <strong>biochemical</strong> compositi<strong>on</strong>, lipid classes <strong>and</strong> fatty acid pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

marine microalga Isochrysis galbana. Aquaculture 166 : 105-116<br />

Figueroa FL, Aguilera J, Jimenez C, Vergara JJ, Robles MD, Niell FX (1995) Growth,<br />

pigment syn<strong>the</strong>sis <strong>and</strong> nitrogen assimilati<strong>on</strong> in <strong>the</strong> red alga Porphyra sp (Bangiales,<br />

Rhodophyta) under <str<strong>on</strong>g>blue</str<strong>on</strong>g> <strong>and</strong> red <str<strong>on</strong>g>light</str<strong>on</strong>g>. Sci Mar 59 : 9-20<br />

Folch J, Lees M, Sloane Stanley GH (1957) A simple method for <strong>the</strong> isolati<strong>on</strong> <strong>and</strong> purificati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> total lipids from animal tissues. J Biol Chem 226 (1)<br />

Gostan J, Lechugadeveze C, Lazzara L (1986) Does <str<strong>on</strong>g>blue</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g> affect <strong>the</strong> growth <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Chaetoceros protuberans (Bacillariophyceae)?. J Phycol 22 (1) : 63-71<br />

Hammer A, Schumann R, Schubert H (2002) Light <strong>and</strong> temperature acclimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Rhodom<strong>on</strong>as salina (Cryptophyceae): photosyn<strong>the</strong>tic performance. Aquat Microb Ecol 29 (3)<br />

: 287-296<br />

Holdsworth ES (1985) Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> growth factors <strong>and</strong> <str<strong>on</strong>g>light</str<strong>on</strong>g> quality <strong>on</strong> <strong>the</strong> growth, pigmentati<strong>on</strong><br />

<strong>and</strong> photosyn<strong>the</strong>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> two diatoms, Thalassiosira gravida <strong>and</strong> Phaeodactylum tricornutum.<br />

Mar Biol 86 (3) : 253-262<br />

Humphrey GF (1983) The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> spectral compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> growth, pigments,<br />

<strong>and</strong> photosyn<strong>the</strong>tic rate <str<strong>on</strong>g>of</str<strong>on</strong>g> unicellular marine algae. J Exp Mar Biol Ecol 66 (1) : 49-67<br />

Knauer J, Barrett SM, Volkman JK, Southgate PC (1999) Assimilati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dietary phytosterols<br />

by Pacific oyster Crassostrea gigas spat. Aquacult Nutr 5 (4) : 257-266<br />

Korbee N, Figueroa FL, Aguilera J (2005) Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g> quality <strong>on</strong> <strong>the</strong> accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

photosyn<strong>the</strong>tic pigments, proteins <strong>and</strong> mycosporine-like amino acids in <strong>the</strong> red alga Porphyra<br />

leucosticta (Bangiales, Rhodophyta). J Photochem Photobiol B 80 (2) : 71-78<br />

Laws EA, Bannister TT (1980) Nutrient- <strong>and</strong> <str<strong>on</strong>g>light</str<strong>on</strong>g>-limited growth <str<strong>on</strong>g>of</str<strong>on</strong>g> Thalassiosira fluviatilis in<br />

c<strong>on</strong>tinuous culture, with implicati<strong>on</strong>s for phytoplankt<strong>on</strong> growth in <strong>the</strong> ocean. Limnol Oceanogr<br />

25 (3) : 457-473<br />

Lorenzen CJ (1967) Determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Chlorophyll <strong>and</strong> Pheopigments: spectrophotometric<br />

equati<strong>on</strong>s. Limnol Oceanogr 12 (2) : 343-346<br />

Loubiere K, Olivo E, Bougaran G, Pruvost J, Robert R, Legr<strong>and</strong> J (2009) A new<br />

photobioreactor for c<strong>on</strong>tinuous microalgal producti<strong>on</strong> in hatcheries based <strong>on</strong> external loop<br />

airlift <strong>and</strong> swirling flow. Biotechnol Bioeng 102 (1) : 132-147<br />

Lowry OH, Rosenbrough NJ, Farr AL, R<strong>and</strong>all RJ (1951) Protein measurement with <strong>the</strong> Folin<br />

phenol reagent. J Biol Chem 193 : 265-275<br />

Marchetti J, Bougaran G, Le Dean L, Mégrier C, Lukomska E, Kaas R, Olivo E, Bar<strong>on</strong> R,<br />

Robert R, Cadoret JP (2012) Optimizing c<strong>on</strong>diti<strong>on</strong>s for <strong>the</strong> c<strong>on</strong>tinuous culture <str<strong>on</strong>g>of</str<strong>on</strong>g> Isochrysis<br />

affinis galbana relevant to commercial hatcheries. Aquaculture 326-329 (0) : 106-115<br />

Mercado JM, Sanchez-Saavedra MD, Correa-Reyes G, Lubian L, M<strong>on</strong>tero O, Figueroa F L<br />

(2004) Blue <str<strong>on</strong>g>light</str<strong>on</strong>g> effect <strong>on</strong> growth, <str<strong>on</strong>g>light</str<strong>on</strong>g> absorpti<strong>on</strong> characteristics <strong>and</strong> photosyn<strong>the</strong>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> five<br />

benthic diatom strains. Aquat Bot 78 (3) : 265-277<br />

Miyachi S, Miyachi S, Kamiya A (1978) Wavelength effects <strong>on</strong> photosyn<strong>the</strong>tic carb<strong>on</strong><br />

metabolism in Chlorella. Plant Cell Physiol 19 (2) : 277-288<br />

O' C<strong>on</strong>nor WA, Heasman MP (1997) Diets <strong>and</strong> feeding regiments for larval doughboy<br />

scallops, Mimachlamys asperrima. Aquaculture 158 (3-4) : 289-303<br />

Otero A, Garcia D, Morales ED, Aran J, Fabregas J (1997) Manipulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>biochemical</strong><br />

compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> eicosapentaenoic acid-rich microalga Isochrysis galbana in<br />

semic<strong>on</strong>tinuous cultures. Biotechnol Appl Biochem 26: 171-177<br />

Papacek S, Celikovsk S, Rehak B, Stys D (2010) Experimental design for parameter<br />

estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two time-scale model <str<strong>on</strong>g>of</str<strong>on</strong>g> photosyn<strong>the</strong>sis <strong>and</strong> photoinhibiti<strong>on</strong> in microalgae. Math<br />

Comput Simulat 80 (6): 1302-1309<br />

20


Rico-Villa B, Le Coz JR, Mingant C, Robert R (2006) Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> phytoplankt<strong>on</strong> diet mixtures<br />

<strong>on</strong> microalgae c<strong>on</strong>sumpti<strong>on</strong>, larval development <strong>and</strong> settlement <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Pacific oyster<br />

Crassostrea gigas (Thunberg). Aquaculture 256 (1-4) : 377-388<br />

Rico-Villa B, Pouvreau S, Robert R (2009) Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> food density <strong>and</strong> temperature <strong>on</strong><br />

ingesti<strong>on</strong>, growth <strong>and</strong> settlement <str<strong>on</strong>g>of</str<strong>on</strong>g> Pacific oyster larvae, Crassostrea gigas. Aquaculture 287<br />

(3-4) : 395-401<br />

Rivkin RB (1989) Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> irradiance <strong>and</strong> spectral quality <strong>on</strong> <strong>the</strong> carb<strong>on</strong> metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

phytoplankt<strong>on</strong>: 1. Photosyn<strong>the</strong>sis, chemical compositi<strong>on</strong> <strong>and</strong> growth. Mar Ecol Prog 55 (2-3):<br />

291-304<br />

Roscher E, Zetsche K (1986) The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g> quality <strong>and</strong> intensity <strong>on</strong> <strong>the</strong> syn<strong>the</strong>sis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ribulose-1,5-bisphosphate carboxylase <strong>and</strong> its mRNAs in <strong>the</strong> green alga Chlorog<strong>on</strong>ium<br />

el<strong>on</strong>gatum. Planta 167 (4): 582-586<br />

Rosenberg JN, Oyler GA, Wilkins<strong>on</strong> L, Betenbaugh MJ (2008) A green <str<strong>on</strong>g>light</str<strong>on</strong>g> for engineered<br />

algae : redirecting metabolism to fuel a biotechnology revoluti<strong>on</strong>. Curr Opin Biotechnol 19<br />

(5): 430-436<br />

Sakshaug E, Andresen K, Kiefer DA (1989) A steady state descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> growth <strong>and</strong> <str<strong>on</strong>g>light</str<strong>on</strong>g><br />

absorpti<strong>on</strong> in <strong>the</strong> marine plankt<strong>on</strong>ic diatom Skelet<strong>on</strong>ema costatum. Limnol Oceanogr 34 (1):<br />

198-205<br />

Sanchez-Saavedra MP, Voltolina D (1994) The chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Chaetoceros sp.<br />

(Bacillariophyceae) under different <str<strong>on</strong>g>light</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s. Comp Biochem Physiol B 107 (1): 39-44<br />

Sanchez-Saavedra MD, Voltolina D (1996) Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>blue</str<strong>on</strong>g>-green <str<strong>on</strong>g>light</str<strong>on</strong>g> <strong>on</strong> growth rate <strong>and</strong><br />

chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> three diatoms. J Appl Phycol 8 (2): 131-137<br />

Sanchez-Saavedra MP, Voltolina D (2006) The growth rate, biomass producti<strong>on</strong> <strong>and</strong><br />

compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Chaetoceros sp. grown with different <str<strong>on</strong>g>light</str<strong>on</strong>g> sources. Aquacult Eng 35 (2): 161-<br />

165<br />

Senger H (1982) The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>blue</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g> <strong>on</strong> plants <strong>and</strong> microorganisms. Photochem Photobiol<br />

35 (6): 911-920<br />

Sukenik A, Bennett J, Mortainbertr<strong>and</strong> A, Falkowski PG (1990) Adaptati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

photosyn<strong>the</strong>tic apparatus to irradiance in Dunaliella tertiolecta : a kinetic study. Plant Physiol<br />

92 (4): 891-898<br />

Sukenik A, Wahn<strong>on</strong> R (1991) Biochemical quality <str<strong>on</strong>g>of</str<strong>on</strong>g> marine unicellular algae with special<br />

emphasis <strong>on</strong> lipid compositi<strong>on</strong> : I. Isochrysis galbana. Aquaculture 97 (1): 61-72<br />

Terry KL (1980) Nitrogen <strong>and</strong> phosphorus requirements <str<strong>on</strong>g>of</str<strong>on</strong>g> Pavolva lu<strong>the</strong>ri in c<strong>on</strong>tinuous<br />

culture. Bot Mar 23 (12): 757-764<br />

Terry KL, Laws EA, Burns DJ (1985) Growth rate variati<strong>on</strong> in <strong>the</strong> N:P requirement ratio <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

phytoplankt<strong>on</strong>. J Phycol 21: 323-329<br />

Utting SD (1986) A preliminary study <strong>on</strong> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> Crassostrea gigas larvae <strong>and</strong> spat in<br />

relati<strong>on</strong> to dietary protein. Aquaculture 56 (2): 123-138<br />

Vogel H, Sager JC (1985) Photosyn<strong>the</strong>tic resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> Prorocentrum mariae lebouriae<br />

(Dinophyceae) to different spectral qualities, irradiances, <strong>and</strong> temperatures. Hydrobiologia<br />

128 (2): 143-153<br />

Voskresenskaya NP (1972) Blue Light <strong>and</strong> Carb<strong>on</strong> Metabolism. Annu Rev Plant Physiol<br />

Plant Mol Biol 23 (1): 219-234<br />

Wallen DG, Geen GH (1971) Light quality in relati<strong>on</strong> to growth, photosyn<strong>the</strong>tic rates <strong>and</strong><br />

carb<strong>on</strong> metabolism in two species <str<strong>on</strong>g>of</str<strong>on</strong>g> marine plankt<strong>on</strong> algae. Mar Biol 10 (1): 34-43<br />

Walne PR (1966) Experiments in <strong>the</strong> large scale culture ol th larvae <str<strong>on</strong>g>of</str<strong>on</strong>g> Ostrea edulis. L. Fish.<br />

Invest Ministr Agric Fish Food (GB) Ser. II XXV (4): 53<br />

Wynne D, Rhee GY (1986) <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g> intensity <strong>and</strong> quality <strong>on</strong> <strong>the</strong> relative N <strong>and</strong> P<br />

requirement (<strong>the</strong> optimum N:P ratio) <str<strong>on</strong>g>of</str<strong>on</strong>g> marine plankt<strong>on</strong>ic algae. J Plankt<strong>on</strong> Res 8 (1): 91-103<br />

Y<strong>on</strong>gmanitchai W, Ward OP (1991) Growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>and</strong> omega 3 fatty acid producti<strong>on</strong> by<br />

Phaeodactylum tricornutum under different culture c<strong>on</strong>diti<strong>on</strong>s. Appl Envir<strong>on</strong> Microbiol 57 (2) :<br />

419-425<br />

Zhou F, Liu S, Hu Z, Kuang T, Paulsen H, Yang C (2009) Effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

m<strong>on</strong>ogalactosyldiacylglycerol <strong>on</strong> <strong>the</strong> interacti<strong>on</strong> between photosystem II core complex <strong>and</strong> its<br />

antenna complexes in liposomes <str<strong>on</strong>g>of</str<strong>on</strong>g> thylakoid lipids. Photosynth Res 99 (3): 185-193-193<br />

21

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!