18.01.2013 Views

The future of CO2 cooling in particle physics - Www Group Slac ...

The future of CO2 cooling in particle physics - Www Group Slac ...

The future of CO2 cooling in particle physics - Www Group Slac ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

verlaat@nikhef.nl<br />

bverlaat@nikhef.nl<br />

bverlaat@nikhef.nl<br />

Evaporative CO 2 <strong>cool<strong>in</strong>g</strong> for thermal<br />

control <strong>of</strong> scientific equipments<br />

SLAC Advanced Instrumentation Sem<strong>in</strong>ars<br />

March 28, 2012, 1:30 PM, Kavli 3rd floor<br />

Bart Verlaat<br />

(Nikhef/CERN)<br />

1


verlaat@nikhef.nl<br />

CO 2 Cool<strong>in</strong>g Sem<strong>in</strong>ar<br />

• Introduction to 2phase <strong>cool<strong>in</strong>g</strong> and fluid<br />

trade-<strong>of</strong>f<br />

• CO 2 <strong>cool<strong>in</strong>g</strong> model<strong>in</strong>g<br />

• Introduction to the 2PACL CO 2 circulation<br />

method.<br />

• CO 2 <strong>cool<strong>in</strong>g</strong> <strong>in</strong> the AMS-Experiment.<br />

• CO 2 <strong>cool<strong>in</strong>g</strong> <strong>in</strong> the LHCb Velo Detector<br />

• Ongo<strong>in</strong>g projects.<br />

• Conclusions<br />

2


verlaat@nikhef.nl<br />

Temperature (°C)<br />

Pressure (Bar)<br />

90<br />

60<br />

30<br />

0<br />

-30<br />

What happens <strong>in</strong>side a <strong>cool<strong>in</strong>g</strong> tube?<br />

Heat<strong>in</strong>g a flow from liquid to gas<br />

Liquid<br />

Liquid<br />

Superheat<strong>in</strong>g<br />

Enthalpy (J/kg)<br />

Low ΔT<br />

2-phase<br />

Target flow condition<br />

Isotherm<br />

Sub cooled liquid 2-phase liquid / vapor<br />

Dry-out zone<br />

Gas<br />

Increas<strong>in</strong>g ΔT<br />

(Dry-out)<br />

3<br />

Super heated vapor


verlaat@nikhef.nl<br />

Cool<strong>in</strong>g efficiently scientific<br />

equipment.<br />

• What do we expect <strong>in</strong> general from a 2phase flow<br />

<strong>in</strong> scientific equipment?<br />

– Inside the equipment (Evaporator):<br />

• Small additional <strong>cool<strong>in</strong>g</strong> hardware (small diameter tub<strong>in</strong>g)<br />

• Large heat removal capacity<br />

• Low temperature gradients<br />

– Low gradient from tube wall to fluid<br />

– Low gradient over tube length (Isothermal)<br />

– Outside the equipment (Circulation system)<br />

• Stable temperature<br />

• Control over fluid condition <strong>in</strong> side evaporator<br />

• Which fluid is most suitable?<br />

4


Temperature<br />

bverlaat@nikhef.nl<br />

Temperature pr<strong>of</strong>iles<br />

• To compare different fluids it must be understood which mechanism<br />

contributes to the thermal performance.<br />

ΔT(ΔP)<br />

(Reduced<br />

diameter)<br />

ΔT(ΔP)<br />

Tube length<br />

ΔT(HTC)<br />

(Reduced<br />

diameter)<br />

ΔT(HTC)<br />

ΔT(ΔP+HTC)<br />

(Reduced<br />

diameter)<br />

ΔT(ΔP+HTC)<br />

• For efficient heat transfer: ΔT(ΔP+HTC) as small as possible<br />

• For isothermal heat transfer: ΔT(ΔP) as small as possible<br />

• As <strong>in</strong> general small <strong>cool<strong>in</strong>g</strong> tubes are preferred, so lets <strong>in</strong>troduce a new<br />

property to dist<strong>in</strong>guish the heat transfer relative to the needed volume<br />

Overall Volumetric Heat<br />

Q<br />

V tube*ΔT(ΔP+HTC))<br />

Isothermal Volumetric Heat<br />

Transfer Conduction (W/m3K): Transfer Conduction (W/m 3 K): V tube*ΔT(ΔP))<br />

Q<br />

5


verlaat@nikhef.nl Fluid<br />

• Fluid trade-<strong>of</strong>f regard<strong>in</strong>g<br />

temperature gradients, for<br />

simplicity:<br />

– Pressure drop: Friedel<br />

correlation<br />

– Heat transfer gradients:<br />

Kandlikar correlation.<br />

Temperature<br />

ΔT(ΔP)<br />

(Reduced<br />

diameter)<br />

ΔT(ΔP)<br />

Tube length<br />

Trade-<strong>of</strong>f (1)<br />

CO 2<br />

Heat Transfer<br />

dT(HTC)<br />

(Dashed l<strong>in</strong>es)<br />

ΔT(HTC)<br />

(Reduced<br />

diameter)<br />

Heat transfer gradients (°C)<br />

ΔT(HTC)<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Heat transfer temperature gradients<br />

L=1 m, Q=100 W, T=-20 °C, VQ=0.5<br />

Total dT(dP+HTC)<br />

(Thick l<strong>in</strong>es)<br />

Pressure drop<br />

dT(dP)<br />

<strong>CO2</strong> (19.7 bar)<br />

Ethane (14.2 bar)<br />

R116 (10.5 bar)<br />

Propane (2.4 bar)<br />

R218 (2 bar)<br />

Ammonia (1.9 bar)<br />

R134a (1.3 bar)<br />

0<br />

0 1 2 3 4 5 6 7 8 9 10<br />

Tube diameter (mm)<br />

ΔT(ΔP+HTC)<br />

(Reduced<br />

diameter)<br />

ΔT(ΔP+HTC)<br />

6


Volumetric heat transfer conduction (W/mm 3 K)<br />

0.035<br />

0.03<br />

0.025<br />

0.02<br />

0.015<br />

0.01<br />

0.005<br />

bverlaat@nikhef.nl<br />

Overall volumetric heat transfer conduction<br />

L=1 m, Q=500 W, T=-20 °C, VQ=0.5<br />

CO 2<br />

Overall<br />

0<br />

0 1 2 3 4 5 6 7 8 9 10<br />

Tube diameter (mm)<br />

Fluid Trade-<strong>of</strong>f (2)<br />

<strong>CO2</strong> (19.7 bar)<br />

Ethane (14.2 bar)<br />

R116 (10.5 bar)<br />

Propane (2.4 bar)<br />

R218 (2 bar)<br />

Ammonia (1.9 bar)<br />

R134a (1.3 bar)<br />

Volumetric heat transfer conduction (W/mm 3 K)<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Isothermal volumetric heat transfer conduction<br />

L=1 m, Q=500 W, T=-20 °C, VQ=0.5<br />

Isothermal<br />

CO 2<br />

<strong>CO2</strong> (19.7 bar)<br />

Ethane (14.2 bar)<br />

R116 (10.5 bar)<br />

Propane (2.4 bar)<br />

R218 (2 bar)<br />

Ammonia (1.9 bar)<br />

R134a (1.3 bar)<br />

0<br />

0 1 2 3 4 5 6 7 8 9 10<br />

Tube diameter (mm)<br />

• Translat<strong>in</strong>g the temperature gradients to the volumetric heat transfer<br />

conductance<br />

– Clearly visible: CO 2 is a w<strong>in</strong>ner <strong>in</strong> both overall and isothermal.<br />

– Another <strong>in</strong>terest<strong>in</strong>g phenomena: <strong>The</strong> higher the pressure the more<br />

efficient. Is this maybe the simple answer to the perfect fluid?<br />

7


verlaat@nikhef.nl<br />

Is high pressure the answer to<br />

an efficient <strong>cool<strong>in</strong>g</strong> fluid?<br />

• In fact it is, the higher the pressure:<br />

– <strong>The</strong> more the vapor stays compressed<br />

– <strong>The</strong> smaller the needed volume<br />

– But as well: lower gas speeds mean lower pressure<br />

drop.<br />

• Other properties are also important:<br />

– High latent heat (=less flow)<br />

– Low viscosity (=low pressure drop)<br />

– CO 2 is favorable for both properties.<br />

• And on top <strong>of</strong> that pressure drop is less significant<br />

at high pressures as it doesn’t effect the boil<strong>in</strong>g<br />

pressure as it would do at low pressure fluids.<br />

8


verlaat@nikhef.nl<br />

CO 2 a perfect <strong>cool<strong>in</strong>g</strong> fluid<br />

for scientific use<br />

• As shown, CO 2 is a really good candidate <strong>cool<strong>in</strong>g</strong> fluid<br />

if the follow<strong>in</strong>g properties are required (In general for<br />

scientific and high-tech equipment):<br />

– Low mass and low volume <strong>cool<strong>in</strong>g</strong> pipes<br />

– Isothermal behavior<br />

– High heat removal capacity<br />

• <strong>The</strong> stability <strong>in</strong> time is a merit <strong>of</strong> the attached <strong>cool<strong>in</strong>g</strong><br />

plant, here fore the 2PACL pr<strong>in</strong>ciple was <strong>in</strong>vented for<br />

<strong>particle</strong> detector <strong>cool<strong>in</strong>g</strong>.<br />

– However high pressure fluids are less sensitive to<br />

pressure changes, so <strong>in</strong> fact they are as well beneficial for<br />

stable temperature systems.<br />

9


verlaat@nikhef.nl CO<br />

2 heat transfer and<br />

pressure drop model<strong>in</strong>g<br />

• Nowadays good prediction models <strong>of</strong> CO 2 are<br />

available. Especially the models <strong>of</strong> J. Thome from<br />

EPFL Lausanne (Switzerland)<br />

– See SLAC’s Advanced Instrumentation Sem<strong>in</strong>ar talk by<br />

J.Thome @ 9 feb 2011<br />

• Models are flow pattern based and are reasonably well<br />

predict<strong>in</strong>g the flow conditions and the related heat<br />

transfer and pressure drop.<br />

• <strong>The</strong> Thome models are successfully used to predict<br />

the complex thermal behavior <strong>of</strong> <strong>particle</strong> detector<br />

<strong>cool<strong>in</strong>g</strong> circuits.<br />

• A simulation program called CoBra is developed to<br />

analyze full detector <strong>cool<strong>in</strong>g</strong> branches.<br />

10


verlaat@nikhef.nl<br />

Experimental heat transfer<br />

data (measured at SLAC)<br />

Interest<strong>in</strong>g research on<br />

heat transfer is done at<br />

SLAC <strong>in</strong> a jo<strong>in</strong>t effort<br />

with Nikhef.<br />

M. Oriunno (SLAC) &<br />

G. Hemm<strong>in</strong>k (Nikhef)<br />

11


verlaat@nikhef.nl<br />

P x,H x<br />

CoBra Calculator<br />

(<strong>CO2</strong> BRAnch Calculator)<br />

Q x = Q applied + Q environment +Q exchanged<br />

dP x= f(D,Q 1,MF,VQ,P,T) or f(Cv)<br />

dH x= Q tot/MF or pump work<br />

dP pump=∑dP all<br />

dH condenser = ∑dH all<br />

P x+1 = P x - dP x<br />

H x+1 = H x + dH x<br />

T x,VQ xand properties<br />

derived from Refprop<br />

• Iterative method chopp<strong>in</strong>g a long l<strong>in</strong>e <strong>in</strong> small elements (~1mm).<br />

• Model can read simple configuration files giv<strong>in</strong>g simple tube<br />

geometry<br />

• Heat leak and <strong>in</strong>ternal heat exchange between elements can be<br />

taken <strong>in</strong>to account.<br />

• CoBra is a very helpful tool for predict<strong>in</strong>g the complex behavior <strong>of</strong> 2phase<br />

flow.<br />

12<br />

Q x+1<br />

dP x+1<br />

dH x+1<br />

P x+2,H x+2


verlaat@nikhef.nl<br />

CoBra example calculation<br />

2mmID x 5m tube temperature and pressure pr<strong>of</strong>ile. MF=0.3g/s, Tsp=-30ºC, Q=90, x end =0.99<br />

Delta T (`C) & Delta P(Bar)<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Liquid<br />

5mx1.5mmID tube (4m heated), Mass flow=0.3g/s, Q=90Watt , T=-30ºC<br />

Slug<br />

Annular<br />

dT Tube wall (ºC)<br />

dT Fluid (ºC)<br />

dP Fluid (Bar)<br />

Dry-out<br />

1<br />

-1<br />

0<br />

2<br />

0.5 1 1.5 2 2.5 3 3.5 4<br />

3<br />

4.5<br />

4<br />

5<br />

Branch length (m)<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

• CoBra is able to analyze complex thermal<br />

behavior <strong>of</strong> CO 2 <strong>in</strong> long tubes<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

Bubbly<br />

Slug<br />

Stratified<br />

Annular<br />

Process path<br />

Stratified Wavy<br />

Dry-<br />

out<br />

Mist<br />

13


Delta T (`C) & Delta P(Bar)<br />

bverlaat@nikhef.nl<br />

Internal heat exchange and<br />

IBL temperature and pressure pr<strong>of</strong>ile. MF=0.8g/s, Tsp=-40ºC, Q=101.8, x end =0.5<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

Stave TFoM: 13ºC*cm 2 /W<br />

Pixel maximum temperature:<br />

-24.2ºC<br />

Capillary<br />

Boil<strong>in</strong>g starts<br />

0<br />

1 2 3 4 56 78 9 10 11 12<br />

-2<br />

0 5 10 15 20 25<br />

Branch length (m)<br />

ambient heat<strong>in</strong>g<br />

dT Tube wall (ºC)<br />

dT Fluid (ºC)<br />

dP Fluid (Bar)<br />

dT Pixel Chip (ºC)<br />

IBL temperature and pressure pr<strong>of</strong>ile. MF=0.8g/s, Tsp=-40ºC, Q=101.8, x end =0.41<br />

0<br />

1 2 3 4 56 78 9 10 11 12<br />

-2<br />

0 5 10 15 20 25<br />

Figure 7: CoBra calculation example <strong>of</strong> the IBL <strong>cool<strong>in</strong>g</strong> tube. <strong>The</strong> branch has a 1mm <strong>in</strong>let (1-4), a 1.5 mm <strong>cool<strong>in</strong>g</strong> tube (4-<br />

8), a 2mm outlet (8-9) followed by a 3mm outlet (9-12). <strong>The</strong> dashed temperature pr<strong>of</strong>ile is the actual sensor temperature<br />

tak<strong>in</strong>g <strong>in</strong>to account the conductance <strong>of</strong> the support structure. <strong>The</strong> graph on the left has no <strong>in</strong>ternal heat exchange, the<br />

right graph takes <strong>in</strong>ternal heat exchange <strong>of</strong> the <strong>in</strong> and outlet tube <strong>in</strong>to account.<br />

Delta T (`C) & Delta P(Bar)<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

Stave TFoM: 13ºC*cm 2 /W<br />

Pixel maximum temperature:<br />

-24.4ºC<br />

No Boil<strong>in</strong>g<br />

Branch length (m)<br />

Boil<strong>in</strong>g starts<br />

Figures from: DESIGN CONSIDERATIONS OF LONG LENGTH EVAPORATIVE <strong>CO2</strong> COOLING LINES<br />

Bart Verlaat and Joao Noite, GL-209, 10th IIF/IIR Gustav Lorentzen Conference on Natural Work<strong>in</strong>g Fluids, Delft, <strong>The</strong> Netherlands 2012<br />

dT Tube wall (ºC)<br />

dT Fluid (ºC)<br />

dP Fluid (Bar)<br />

dT Pixel Chip (ºC)<br />

14


verlaat@nikhef.nl<br />

Comparison to test results<br />

m = 1.48g/s | Q total = 256.87W | P <strong>in</strong> = 26.40Bar | T <strong>in</strong> = -17.40°C | dP = 6.33Bar | dT = 10.86°C<br />

Temperature [°C]<br />

-6<br />

-8<br />

-10<br />

-12<br />

-14<br />

-16<br />

-18<br />

Electronics (1.8mm)<br />

CMS-B-PIX<br />

Inlet tube (1.8mm)<br />

CMS detector<br />

(1.4mm)<br />

Exp. Wall Temperature<br />

<strong>The</strong>ory Wall Temperature<br />

<strong>The</strong>ory CO 2 Temperature<br />

<strong>The</strong>ory CO 2 Pressure<br />

-20<br />

0 5 10 15<br />

Loop Length [m]<br />

20<br />

Outlet tube (1.8mm)<br />

27<br />

26<br />

25<br />

24<br />

23<br />

22<br />

21<br />

IBL temperature and pressure pr<strong>of</strong>ile. MF=1.1g/s, Tsp=-26.71ºC, Q=73.5, x end =0.36<br />

12<br />

-1<br />

0 5<br />

3 4<br />

10<br />

56 78 9<br />

15<br />

10<br />

20<br />

1112<br />

25<br />

Branch length (m)<br />

Figure 8: Temperature and pressure test results <strong>of</strong> the CMS pixel upgrade <strong>cool<strong>in</strong>g</strong> branch (left) and the Atlas IBL<br />

<strong>cool<strong>in</strong>g</strong> branch (right). Comparison with the CoBra calculator showed that the calculator is a promis<strong>in</strong>g tool for<br />

predict<strong>in</strong>g the temperature and pressure gradients over long length <strong>cool<strong>in</strong>g</strong> branches.<br />

Pressure [Bar]<br />

Delta T (`C) & Delta P(Bar)<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Inlet tube<br />

(1mm)<br />

Atlas-IBL<br />

Detector<br />

(1.5mm)<br />

Outlet tube (2mm)<br />

dT Tube wall (ºC)<br />

dT Fluid (ºC)<br />

dP Fluid (Bar)<br />

Outlet tube<br />

(3mm)<br />

Figures from: DESIGN CONSIDERATIONS OF LONG LENGTH EVAPORATIVE <strong>CO2</strong> COOLING LINES<br />

Bart Verlaat and Joao Noite, GL-209, 10th IIF/IIR Gustav Lorentzen Conference on Natural Work<strong>in</strong>g Fluids, Delft, <strong>The</strong> Netherlands 2012<br />

15


Temperature (°C)<br />

Pressure (Bar)<br />

Pressure<br />

90<br />

60<br />

30<br />

0<br />

-30<br />

bverlaat@nikhef.nl What<br />

Liquid Vapor<br />

2-phase<br />

Enthalpy<br />

What happens <strong>in</strong>side a <strong>cool<strong>in</strong>g</strong> tube?<br />

Heat<strong>in</strong>g a flow from liquid to gas<br />

Liquid<br />

Liquid<br />

Superheat<strong>in</strong>g<br />

Enthalpy (J/kg)<br />

Low ΔT<br />

2-phase<br />

Target flow condition<br />

Sub cooled liquid 2-phase liquid / vapor<br />

circulation method can we use?<br />

Isotherm<br />

Dry-out zone<br />

Gas<br />

Increas<strong>in</strong>g ΔT<br />

(Dry-out)<br />

3<br />

Super heated vapor<br />

Refrigeration method:<br />

(Atlas)<br />

Compressor<br />

Cool<strong>in</strong>g plant<br />

BP. Regulator<br />

Vapor compression system<br />

Warm transfer<br />

Heater<br />

Detector<br />

If we remember slide 3, we see that proper<br />

<strong>cool<strong>in</strong>g</strong> takes place on the liquid side, while<br />

compressors need gas as <strong>in</strong>put. It is better to<br />

<strong>in</strong>vent a cycle stay<strong>in</strong>g on the liquid side.<br />

=> externally cooled pump cycle.


Pressure<br />

bverlaat@nikhef.nl New cycle for <strong>particle</strong> detectors: 2PACL<br />

(<strong>The</strong> 2-Phase Accumulator Controlled Loop )<br />

Liquid Vapor<br />

2-phase<br />

Enthalpy<br />

2PACL method:<br />

(LHCb)<br />

Compressor<br />

Chiller Liquid circulation<br />

Pumped liquid system,<br />

cooled externally<br />

Cold transfer<br />

• <strong>The</strong> 2PACL has the follow<strong>in</strong>g advantages:<br />

– Cycle stays on the liquid side, no heat required (experiment can be cooled unpowered<br />

and no control heaters required)<br />

– Evaporator pressure=(temperature) controlled with a 2-phase vessel away from the<br />

experiment. No local control nor sens<strong>in</strong>g needed!<br />

– All control hardware <strong>in</strong> a distant accessible <strong>cool<strong>in</strong>g</strong> plant<br />

– Primary <strong>cool<strong>in</strong>g</strong> can be anyth<strong>in</strong>g, no accurate temperature control needed as long as it<br />

is colder than the 2PACL 2-phase temperature.<br />

– Inlet fluid state def<strong>in</strong>ed by <strong>physics</strong> => saturated liquid.<br />

– Large temperature range (typical from room temperature down to -40°C)<br />

17<br />

Pump<br />

Cool<strong>in</strong>g plant Detector


verlaat@nikhef.nl<br />

Cool<strong>in</strong>g plant (controls &<br />

actuators) <strong>in</strong> a safe and<br />

accessible area<br />

HFC Chiller<br />

P 7<br />

1<br />

Condenser<br />

2PACL application <strong>in</strong> a<br />

2-Phase<br />

Accumulator<br />

Heat <strong>in</strong><br />

Pump<br />

<strong>particle</strong> detector<br />

Shield<strong>in</strong>g wall<br />

Long distance<br />

(50-100m)<br />

6<br />

2 3<br />

Transfer l<strong>in</strong>e<br />

(Heat exchanger)<br />

5<br />

Only passive pip<strong>in</strong>g <strong>in</strong><br />

detector area. Manifolds<br />

<strong>in</strong> accessible locations.<br />

Capillaries (3-4)<br />

for flow distribution<br />

Evaporator <strong>in</strong>side<br />

detector (4-5)<br />

4<br />

P 4-5<br />

18


verlaat@nikhef.nl<br />

Pressure control<br />

with accumulator.<br />

Change set-po<strong>in</strong>t.<br />

1<br />

7<br />

2-Phase Accumulator Controlled Loop<br />

(2PACL)<br />

7<br />

Pump<br />

Pressure<br />

6<br />

2<br />

1<br />

Liquid<br />

2<br />

6<br />

3<br />

4&5<br />

2-phase<br />

(Evaporation)<br />

Red dot (detector)<br />

on saturation l<strong>in</strong>e.<br />

Isothermal l<strong>in</strong>e<br />

3<br />

5<br />

4<br />

Gas<br />

Enthalpy<br />

19


verlaat@nikhef.nl<br />

Lower<strong>in</strong>g saturation<br />

pressure<br />

7<br />

Cool<strong>in</strong>g 7<br />

1<br />

2-Phase Accumulator Controlled Loop<br />

(2PACL)<br />

Pump<br />

Pressure<br />

6<br />

2<br />

1<br />

Liquid<br />

2<br />

6<br />

3<br />

4&5<br />

2-phase<br />

(Evaporation)<br />

Isothermal l<strong>in</strong>e<br />

3<br />

5<br />

4<br />

Gas<br />

Red dot (detector)<br />

follows saturation l<strong>in</strong>e.<br />

Enthalpy<br />

20


verlaat@nikhef.nl<br />

Lower<strong>in</strong>g saturation<br />

pressure<br />

7<br />

Cool<strong>in</strong>g 7<br />

1<br />

2-Phase Accumulator Controlled Loop<br />

(2PACL)<br />

Pump<br />

Pressure<br />

6<br />

2<br />

1<br />

Liquid<br />

2<br />

6<br />

3<br />

4&5<br />

2-phase<br />

(Evaporation)<br />

Isothermal l<strong>in</strong>e<br />

3<br />

5<br />

4<br />

Gas<br />

Red dot (detector)<br />

follows saturation l<strong>in</strong>e.<br />

Enthalpy<br />

21


verlaat@nikhef.nl<br />

Lower<strong>in</strong>g saturation<br />

pressure<br />

7<br />

Cool<strong>in</strong>g 7<br />

1<br />

2-Phase Accumulator Controlled Loop<br />

(2PACL)<br />

Pump<br />

Pressure<br />

6<br />

2<br />

1<br />

Liquid<br />

2<br />

6<br />

3<br />

4&5<br />

2-phase<br />

(Evaporation)<br />

Isothermal l<strong>in</strong>e<br />

3<br />

5<br />

4<br />

Gas<br />

Red dot (detector)<br />

follows saturation l<strong>in</strong>e.<br />

Enthalpy<br />

22


verlaat@nikhef.nl<br />

Set po<strong>in</strong>t reached<br />

1<br />

7<br />

2-Phase Accumulator Controlled Loop<br />

(2PACL)<br />

7<br />

Pump<br />

Pressure<br />

6<br />

2<br />

1<br />

Liquid<br />

2<br />

6<br />

3<br />

4&5<br />

2-phase<br />

(Evaporation)<br />

Isothermal l<strong>in</strong>e<br />

3<br />

5<br />

4<br />

Gas<br />

Enthalpy<br />

23


verlaat@nikhef.nl<br />

Increas<strong>in</strong>g saturation<br />

pressure<br />

7<br />

Heat<strong>in</strong>g<br />

1<br />

7<br />

2-Phase Accumulator Controlled Loop<br />

(2PACL)<br />

Pump<br />

Pressure<br />

6<br />

2<br />

1<br />

Liquid<br />

2<br />

6<br />

3<br />

4&5<br />

2-phase<br />

(Evaporation)<br />

Isothermal l<strong>in</strong>e<br />

3<br />

5<br />

4<br />

Gas<br />

Red dot (detector)<br />

follows saturation l<strong>in</strong>e.<br />

Enthalpy<br />

24


verlaat@nikhef.nl<br />

Increas<strong>in</strong>g saturation<br />

pressure 7<br />

Heat<strong>in</strong>g 7<br />

1<br />

2-Phase Accumulator Controlled Loop<br />

(2PACL)<br />

Pump<br />

Pressure<br />

6<br />

2<br />

1<br />

Liquid<br />

2<br />

6<br />

3<br />

4&5<br />

2-phase<br />

(Evaporation)<br />

Isothermal l<strong>in</strong>e<br />

3<br />

5<br />

4<br />

Gas<br />

Red dot (detector)<br />

follows saturation l<strong>in</strong>e.<br />

Enthalpy<br />

25


verlaat@nikhef.nl<br />

Increas<strong>in</strong>g saturation<br />

pressure<br />

7<br />

Heat<strong>in</strong>g 7<br />

1<br />

2-Phase Accumulator Controlled Loop<br />

(2PACL)<br />

Pump<br />

Pressure<br />

6<br />

2<br />

1<br />

Liquid<br />

2<br />

6<br />

3<br />

4&5<br />

2-phase<br />

(Evaporation)<br />

Isothermal l<strong>in</strong>e<br />

3<br />

5<br />

4<br />

Gas<br />

Red dot (detector)<br />

follows saturation l<strong>in</strong>e.<br />

Enthalpy<br />

26


verlaat@nikhef.nl<br />

Set po<strong>in</strong>t reached<br />

1<br />

7<br />

2-Phase Accumulator Controlled Loop<br />

(2PACL)<br />

7<br />

Pump<br />

Pressure<br />

6<br />

2<br />

1<br />

Liquid<br />

2<br />

6<br />

3<br />

4&5<br />

2-phase<br />

(Evaporation)<br />

Isothermal l<strong>in</strong>e<br />

3<br />

5<br />

4<br />

Gas<br />

Enthalpy<br />

27


verlaat@nikhef.nl<br />

Switch<strong>in</strong>g on detector<br />

1<br />

7<br />

2-Phase Accumulator Controlled Loop<br />

(2PACL)<br />

7<br />

Pump<br />

Pressure<br />

6<br />

2<br />

1<br />

Liquid<br />

2<br />

6<br />

3<br />

4&5<br />

2-phase<br />

(Evaporation)<br />

Red dot (detector)<br />

evaporation starts.<br />

Isothermal l<strong>in</strong>e<br />

3<br />

5<br />

4<br />

Gas<br />

Enthalpy<br />

Heat<br />

28


verlaat@nikhef.nl<br />

Power<strong>in</strong>g detector<br />

Cool<strong>in</strong>g 7<br />

1<br />

2-Phase Accumulator Controlled Loop<br />

(2PACL)<br />

7<br />

Pump<br />

Pressure<br />

6<br />

2<br />

1<br />

Liquid<br />

2<br />

6<br />

3<br />

4 5<br />

2-phase<br />

(Evaporation)<br />

Isothermal l<strong>in</strong>e<br />

3<br />

5<br />

4<br />

Gas<br />

Red l<strong>in</strong>e (detector)<br />

<strong>in</strong> evaporation.<br />

Enthalpy<br />

Heat<br />

29


verlaat@nikhef.nl<br />

Power<strong>in</strong>g detector<br />

Cool<strong>in</strong>g 7<br />

1<br />

2-Phase Accumulator Controlled Loop<br />

(2PACL)<br />

7<br />

Pump<br />

Pressure<br />

6<br />

2<br />

1<br />

Liquid<br />

2<br />

3<br />

2-phase<br />

(Evaporation)<br />

4 5<br />

6<br />

Isothermal l<strong>in</strong>e<br />

3<br />

5<br />

4<br />

Gas<br />

Red l<strong>in</strong>e (detector)<br />

<strong>in</strong> evaporation.<br />

Enthalpy<br />

Heat<br />

30


verlaat@nikhef.nl<br />

Detector is on<br />

1<br />

7<br />

2-Phase Accumulator Controlled Loop<br />

(2PACL)<br />

7<br />

Pump<br />

Pressure<br />

6<br />

2<br />

1<br />

Liquid<br />

2<br />

3<br />

2-phase<br />

(Evaporation)<br />

4 5<br />

6<br />

Isothermal l<strong>in</strong>e<br />

3<br />

5<br />

4<br />

Gas<br />

Red l<strong>in</strong>e (detector)<br />

<strong>in</strong> evaporation.<br />

Enthalpy<br />

Heat<br />

31


verlaat@nikhef.nl<br />

Unpower<strong>in</strong>g detector<br />

Heat<strong>in</strong>g 7<br />

1<br />

2-Phase Accumulator Controlled Loop<br />

(2PACL)<br />

7<br />

Pump<br />

Pressure<br />

6<br />

2<br />

1<br />

Liquid<br />

2<br />

6<br />

3<br />

4 5<br />

2-phase<br />

(Evaporation)<br />

Isothermal l<strong>in</strong>e<br />

3<br />

5<br />

4<br />

Gas<br />

Red l<strong>in</strong>e (detector)<br />

Evaporates.<br />

Enthalpy<br />

32


verlaat@nikhef.nl<br />

Detector power is <strong>of</strong>f<br />

1<br />

7<br />

2-Phase Accumulator Controlled Loop<br />

(2PACL)<br />

7<br />

Pump<br />

Pressure<br />

6<br />

2<br />

1<br />

Liquid<br />

2<br />

6<br />

3<br />

4&5<br />

2-phase<br />

(Evaporation)<br />

Isothermal l<strong>in</strong>e<br />

3<br />

5<br />

4<br />

Gas<br />

Enthalpy<br />

33


verlaat@nikhef.nl<br />

CO 2 <strong>cool<strong>in</strong>g</strong> projects <strong>in</strong><br />

<strong>particle</strong> <strong>physics</strong><br />

• 2 CO 2 <strong>cool<strong>in</strong>g</strong> systems have successfully been built for<br />

<strong>particle</strong> detectors<br />

– AMS-Tracker experiment on the International Space Station<br />

– LHCb-Velo experiment for the Large Hadron Collider at CERN<br />

• Many <strong>future</strong> CO 2 <strong>cool<strong>in</strong>g</strong> systems are under design:<br />

– Atlas Inner B-layer @ CERN<br />

– CMS upgrade pixel @ CERN<br />

– Belle-2 @ KEKb (Japan)<br />

• Some are foreseen for the far <strong>future</strong>:<br />

– CMS upgrade tracker @ CERN<br />

– Atlas upgrade pixel and tracker @ CERN<br />

– LC-TPC for the <strong>future</strong> L<strong>in</strong>ear Collider<br />

34


verlaat@nikhef.nl<br />

<strong>The</strong> 1 st CO 2 <strong>cool<strong>in</strong>g</strong> system <strong>in</strong> Space!<br />

A CO 2 <strong>cool<strong>in</strong>g</strong> system for Alpha Magnetic Spectrometer (AMS)<br />

Tracker Detector on the International Space station (ISS)<br />

CO 2 <strong>cool<strong>in</strong>g</strong><br />

radiator<br />

AMS <strong>in</strong> the Shuttle<br />

(STS-134, May 2011)<br />

AMS on the ISS<br />

35


verlaat@nikhef.nl<br />

MAGNETE<br />

AMS-Tracker <strong>The</strong>rmal Control System<br />

(AMS-TTCS)<br />

144 WATT<br />

TRD<br />

TOF<br />

TRACKER<br />

TOF<br />

RICH<br />

ECAL<br />

RADIATORE<br />

150 Watt detector with<br />

evaporator r<strong>in</strong>gs<br />

condensatori<br />

Primary <strong>cool<strong>in</strong>g</strong> not<br />

needed <strong>in</strong> space as<br />

environment is cold.<br />

Direct radiation to space<br />

Cool<strong>in</strong>g system<br />

component boxes<br />

(1 redundant)<br />

36


verlaat@nikhef.nl<br />

Tracker connections<br />

Inner plane silicon<br />

ladders<br />

AMS-Tracker with<br />

CO 2 <strong>cool<strong>in</strong>g</strong> r<strong>in</strong>gs.<br />

Inner plane thermal<br />

bars and hybrids<br />

Inner plane<br />

evaporator r<strong>in</strong>gs<br />

37


verlaat@nikhef.nl<br />

Temperature (°C)<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

AMS TTCS Cool<strong>in</strong>g<br />

performance <strong>in</strong> space (1)<br />

Evaporator partly s<strong>in</strong>gle<br />

phase (gradients)<br />

Heat<br />

exchanger<br />

heat<strong>in</strong>g<br />

1 orbit (~1.5hour)<br />

Accumulator<br />

set po<strong>in</strong>t<br />

change<br />

Evaporator<br />

fully 2-phase<br />

13:00 15:00 17:00 19:00 21:00 23:00 01:00<br />

Pump <strong>in</strong>let (PT02_P)<br />

Accumulator (PT01_P)<br />

Evaporator <strong>in</strong>let (DS13-P)<br />

Evap 1 (SensE)<br />

Evap 2 (SensG)<br />

Evap 3 (SensF)<br />

Vary<strong>in</strong>g CO 2 liquid<br />

due to orbital<br />

fluctuations<br />

Time(HH:MM)<br />

38


verlaat@nikhef.nl<br />

Temperature (°C)<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

-30<br />

08/06/11<br />

Soyuz<br />

dock<strong>in</strong>g<br />

AMS TTCS Cool<strong>in</strong>g<br />

performance <strong>in</strong> space (2)<br />

10/06/11<br />

12/06/11<br />

14/06/11<br />

Detector<br />

switched-<strong>of</strong>f<br />

Solar Panel<br />

orientation<br />

change<br />

16/06/11<br />

18/06/11<br />

20/06/11<br />

Pump <strong>in</strong>let (PT02_P)<br />

Accumulator (PT01_P)<br />

Evaporator <strong>in</strong>let (DS13-P)<br />

Evap 1 (SensE)<br />

Evap 2 (SensG)<br />

Evap 3 (SensF)<br />

Magnet Average<br />

Date (DD/MM/YY)<br />

39


verlaat@nikhef.nl<br />

AMS TTCS Cool<strong>in</strong>g<br />

performance <strong>in</strong> space (3)<br />

6 month stable at 0⁰C despite cold low beta periods<br />

40


verlaat@nikhef.nl<br />

VELO detector: 1.5 kW@-30°C<br />

(Runn<strong>in</strong>g successfully s<strong>in</strong>ce 2007)<br />

CO 2 <strong>cool<strong>in</strong>g</strong> projects <strong>in</strong> LHC<br />

27 km<br />

CMS pixel: 15 kW@-20°C<br />

(Operational 2014)<br />

LHC<br />

Atlas IBL: 1.5 kW@-40°C<br />

(Operational 2013)<br />

Ca. 100m<br />

41


verlaat@nikhef.nl<br />

LHCb-Velo <strong>The</strong>rmal Control System<br />

(LHCb-VTCS)<br />

Transfer tube<br />

Concentric assembly<br />

Evaporator<br />

Passive tub<strong>in</strong>g only Cool<strong>in</strong>g Plant<br />

All active hardware<br />

Cool<strong>in</strong>g capacity: 1.5 kW@-30°C<br />

42


verlaat@nikhef.nl VTCS<br />

Evaporator<br />

43


gas<br />

2-phase<br />

R507a<br />

chiller<br />

gas<br />

2-phase<br />

bverlaat@nikhef.nl<br />

Start–up <strong>of</strong> the VTCS dur<strong>in</strong>g October<br />

80<br />

2009 commission<strong>in</strong>g:<br />

8:40 - Start-up with set-po<strong>in</strong>t -5°C<br />

11:10 - Detector switched on<br />

60<br />

12:50 – Set po<strong>in</strong>t to -15°C<br />

15:30 - Set po<strong>in</strong>t to -25°C<br />

50<br />

17:10 - Set po<strong>in</strong>t to -30°C<br />

18:20 - Set po<strong>in</strong>t to -35°C (System Limit)<br />

19:10 - Set po<strong>in</strong>t to -34°C 40<br />

19:30 - Set po<strong>in</strong>t to -25°C<br />

20:00 - Detector Switched <strong>of</strong>f<br />

Condenser<br />

10<br />

Accumulator<br />

Transfer l<strong>in</strong>es<br />

Cool<strong>in</strong>g plant area (Ca. 10 50m) VELO area<br />

9<br />

Pump<br />

1 2<br />

8<br />

Accumulator Set-po<strong>in</strong>t temperature Silicon temperature (°C) (°C) Pump liquid Accumulator temperature Set-po<strong>in</strong>t (°C) temperature Evaporator (°C) saturation Pump liquid temperature (°C)<br />

Temperature(°C), Level(%)<br />

70<br />

30<br />

20<br />

0<br />

-10<br />

-20<br />

Concentric tube<br />

7<br />

3<br />

Restriction<br />

VTCS Commission<strong>in</strong>g results:<br />

Start-up and operation<br />

ator Set-po<strong>in</strong>t temperature (°C) Pump liquid temperature (°C) Evaporator saturation temperature (°C) Accumulator liquid level (%) Detector heat load (W)<br />

Temperature(°C), Level(%)<br />

4<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

-50<br />

-60<br />

09:00 12:00 15:00 18:00 21:00<br />

01-Oct-2009<br />

-25<br />

Time (hh:mm)<br />

5<br />

Silicon temperature (°C) Accumulator Set-po<strong>in</strong>t temperature (°C) Pump liquid temperature (°C) Evaporator saturation temperature (°C) Accumulator liquid<br />

Evaporator / Modules<br />

6<br />

10-Accu liquid level<br />

10-Accumulator set-po<strong>in</strong>t<br />

A<br />

Temperature(°C), Level(%)<br />

-26.4286<br />

-27.8571<br />

-29.2857<br />

-30.7143<br />

-32.1429<br />

-33.5714<br />

-35<br />

-36.4286<br />

-37.8571<br />

-39.2857<br />

-40.7143<br />

-42.1429<br />

Detector power<br />

A-Silicon temperature<br />

9-Pumped liquid<br />

-30°C SP<br />

-35°C SP<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

-34°C SP<br />

44<br />

Heatload (W)


Pressure (Bar)<br />

SP=21°C<br />

(Start-up)<br />

SP=-5°C<br />

bverlaat@nikhef.nl<br />

Freez<strong>in</strong>g<br />

(Solid/Liquid)<br />

SP=-15°C<br />

SP=-25°C<br />

SP=-30°C<br />

SP=-35°C<br />

VTCS Commission<strong>in</strong>g results:<br />

Start-up and operation <strong>in</strong> the PH-diagram<br />

T=-40°C<br />

9-Pump <strong>in</strong>let<br />

Liquid<br />

Enthalpy (kJ/kg)<br />

2-Phase<br />

(Liquid/Vapor)<br />

T=-40°C<br />

T=20°C<br />

T=0°C<br />

T=-20°C<br />

Start-up sequence<br />

1. Increase pressure to<br />

make liquid.<br />

2. Pump at high pressure<br />

and cool down <strong>in</strong> liquid<br />

mode<br />

3. Lower pressure to<br />

desired set-po<strong>in</strong>t<br />

4. Power-up detector<br />

Switch-<strong>of</strong>f detector<br />

Lowest possible set-po<strong>in</strong>t<br />

(liquid approaches<br />

saturation l<strong>in</strong>e)<br />

45


verlaat@nikhef.nl<br />

IBL detector:<br />

• Ø80mm x 800mm<br />

• 1.5 kW @ -40°C<br />

• 14 staves with 1 <strong>cool<strong>in</strong>g</strong> pipe<br />

New detector with smaller beam<br />

pipe <strong>in</strong> space <strong>of</strong> current beam pipe<br />

Atlas IBL-<strong>cool<strong>in</strong>g</strong> system (1)<br />

Carbon foam structure<br />

1.5mm ID titanium <strong>cool<strong>in</strong>g</strong> pipe<br />

Pixel detector<br />

chips<br />

(70watt/stave)<br />

46


verlaat@nikhef.nl<br />

CMS upgrade pixel <strong>cool<strong>in</strong>g</strong><br />

system<br />

• Replacement and<br />

upgrade <strong>of</strong> current<br />

pixel detector<br />

• 15kW @ -20ºC<br />

• Very long serial l<strong>in</strong>es<br />

with relative high heat<br />

flux<br />

F-PIX<br />

(Forward)<br />

47


verlaat@nikhef.nl<br />

KEK Belle-2 SVD and PXD<br />

Belle-2 PXD and SVD, 1.5 kW@-30ºC<br />

Common CO 2 <strong>cool<strong>in</strong>g</strong> plant<br />

development with Atlas IBL<br />

Belle-II SVD<br />

detector<br />

Belle-II pixel detector<br />

(Rapid Prototyp<strong>in</strong>g heat s<strong>in</strong>k)<br />

48


verlaat@nikhef.nl CO<br />

2 <strong>cool<strong>in</strong>g</strong> support<br />

Traci Cora Marco<br />

• To support the CO 2 <strong>cool<strong>in</strong>g</strong> projects <strong>in</strong> <strong>particle</strong> <strong>physics</strong> several test systems are under<br />

development:<br />

• Cora (CO 2 Research Apparatus)<br />

– Fixed test plant for CERN based research (0-2kW, +20 to -35ºC)<br />

• Marco (Multipurpose Apparatus for Research on CO 2<br />

– Fully automatic (User friendly) CO 2 test system for general use (0-2kW, +20 to -45ºC)<br />

– Base design for <strong>future</strong> on detector <strong>cool<strong>in</strong>g</strong> plants (Atlas IBL, Belle-2)<br />

• Traci (Transportable Refrigeration Apparatus for CO 2 Investigation)<br />

– Small test system for laboratory use<br />

– New simplified 2PACL concept to reduce cost and complexity (0-350W, +20 to -40ºC)<br />

49


Experiment<br />

connection<br />

4<br />

5<br />

Experiment<br />

vent<strong>in</strong>g<br />

bverlaat@nikhef.nl TRACI<br />

Local experiment box<br />

condenser<br />

Flow regulation<br />

compressor<br />

Transportable Refrigeration Apparatus for Co 2 Investigation<br />

Concentric hose<br />

P T<br />

5<br />

Heater<br />

TEV<br />

R404a Chiller<br />

T<br />

6<br />

R404a evaporator/<br />

CO 2 condenser<br />

T<br />

1<br />

TRACI layout<br />

CO 2 pump<br />

P,T<br />

3<br />

P 10<br />

T<br />

CO 2 loop<br />

Accumulator<br />

-50<br />

9:00 10:30 12:00 13:30 15:00 16:30<br />

Time (hh:mm)<br />

• TRACI: A simplified new concept for provid<strong>in</strong>g a conditioned CO 2 flow for<br />

<strong>cool<strong>in</strong>g</strong> research.<br />

• 2PACL pr<strong>in</strong>ciple simplified (few functions have been <strong>in</strong>tegrated)<br />

– Integrated 2PACL (I-2PACL )<br />

– Patent <strong>of</strong> I-2PACL concept filed<br />

• Goal: An easy to (mass) produce user friendly system<br />

– Operational from +25⁰C to -40 ⁰C<br />

– Initial <strong>cool<strong>in</strong>g</strong> power up to 350 Watt (depend<strong>in</strong>g on m<strong>in</strong>imum temperature)<br />

Temperature (°C)<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

<strong>CO2</strong> Chart liquid temperature Title (at pump)<br />

<strong>CO2</strong> temperature<br />

Accumulator saturation temperature<br />

150 W on Power <strong>of</strong>f<br />

150 W on<br />

50


verlaat@nikhef.nl<br />

<strong>The</strong> TRACI factory<br />

• Prototypes are already “mass produced”<br />

– 2 have been build (Atlas & LHCb)<br />

– 3 under construction (Atlas, CMS & Nikhef/AIDA for<br />

development)<br />

– Investigat<strong>in</strong>g a start-up company for real production<br />

51


verlaat@nikhef.nl<br />

Commercial chiller<br />

TRACI a modular design<br />

CO 2 pip<strong>in</strong>g <strong>in</strong> a 2Dfoambox<br />

User <strong>in</strong>terface:<br />

• On/<strong>of</strong>f and reset buttons<br />

• Error <strong>in</strong>dication<br />

• Pressure controller<br />

Control: Simple<br />

conditioner and relay<br />

logic<br />

52


verlaat@nikhef.nl MARCO<br />

Multipurpose Apparatus for Research on CO 2<br />

• MARCO is prototype CO 2 2PACL<br />

system for multipurpose use.<br />

• User friendly<br />

– Automatic experiment connection<br />

– Automatic fill<strong>in</strong>g<br />

• Designed accord<strong>in</strong>g to CERN<br />

experiment standards.<br />

– Basel<strong>in</strong>e concept for the detectors IBL<br />

(CERN) and Belle-2 (KEK), common<br />

development with MPI-Munich.<br />

– PVSS-Unicos control <strong>in</strong>terface<br />

• Low temperature design<br />

– 2kW@-45ºC<br />

– Frequency controlled 2-stage chiller<br />

53


verlaat@nikhef.nl MARCO<br />

A CO 2 2PACL build <strong>in</strong> MPI<br />

production<br />

Controls build<br />

at CERN-DT<br />

2-stage chiller for IBL<br />

temperatures from<br />

ECR-Nederland<br />

54


verlaat@nikhef.nl<br />

Conclusions<br />

• CO 2 is a very good candidate fluid for applications were limited <strong>cool<strong>in</strong>g</strong><br />

space is available or limited additional mass is allowed.<br />

• CO 2 <strong>cool<strong>in</strong>g</strong> is a good candidate if high power densities are present and an<br />

isothermal heat s<strong>in</strong>k is required<br />

• CO 2 <strong>cool<strong>in</strong>g</strong> is widely accepted <strong>in</strong> Particle Physics community as the <strong>future</strong><br />

<strong>cool<strong>in</strong>g</strong> method for the <strong>in</strong>ner silicon detectors.<br />

• <strong>The</strong> 2PACL concept has proven to be a good method for controll<strong>in</strong>g<br />

evaporation conditions <strong>in</strong> distant set-ups<br />

• 2 CO 2 systems are operational <strong>in</strong> <strong>particle</strong> <strong>physics</strong> and perform well.<br />

• Several new systems are under development <strong>in</strong>clud<strong>in</strong>g systems for test<strong>in</strong>g<br />

55


verlaat@nikhef.nl<br />

It’s cold here, can you<br />

turn the <strong>cool<strong>in</strong>g</strong> <strong>of</strong>f?<br />

Questions?<br />

56

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!