18.01.2013 Views

EMI Testing Using Spectrum Analyzers vs. Test Receivers

EMI Testing Using Spectrum Analyzers vs. Test Receivers

EMI Testing Using Spectrum Analyzers vs. Test Receivers

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>EMI</strong> <strong><strong>Test</strong>ing</strong> <strong>Using</strong> <strong>Spectrum</strong> <strong>Analyzers</strong><br />

<strong>vs</strong>. <strong>Test</strong> <strong>Receivers</strong><br />

Vic Hudson<br />

Rohde&Schwarz


IEEE-LI Presentation<br />

�� Topic of the Meeting Description<br />

⇒ <strong>Spectrum</strong> <strong>Analyzers</strong> (SA)<br />

⇒ <strong>Test</strong> <strong>Receivers</strong> (TR)<br />

Uses and descriptions of each<br />

�� Reasons for using either or both units<br />

� Advantages and disadvantages<br />

�� Making accurate measurements


Q&A<br />

�� Who uses what ?<br />

⇒ <strong>Spectrum</strong> <strong>Analyzers</strong> (SA)<br />

⇒ <strong>Test</strong> <strong>Receivers</strong> (TR)<br />

�� Commercial, MIL-STD or Automotive?<br />

�� Software or front panel ?<br />

�� Novice, Capable, Fluent or Expert ?


Overview<br />

�� <strong>EMI</strong> Equipment in general<br />

⇒ <strong>Spectrum</strong> <strong>Analyzers</strong> (SA)<br />

⇒ <strong>Test</strong> <strong>Receivers</strong> (TR)<br />

�� Two Most common tools are SA / TR


<strong>Spectrum</strong> <strong>Analyzers</strong> for <strong>EMI</strong>


<strong>Spectrum</strong> <strong>Analyzers</strong> for <strong>EMI</strong><br />

Level [dBµV]<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

-20<br />

0<br />

30M 50M 70M 100M 200M 300M 500M 700M 1G<br />

�� SA Settings for <strong>EMI</strong> measurements<br />

- Span, Reference Level, RBW, VBW and detector<br />

- Span is the Stop – Start Frequency<br />

- Ref Level is typically the Highest point SA can measure<br />

- Coupling with VBW usually some multiple of the RBW<br />

- RBW usually selected per required standard


<strong>Spectrum</strong> <strong>Analyzers</strong> for <strong>EMI</strong><br />

�� Reasons for <strong>Using</strong> SA for <strong>EMI</strong><br />

Measurements<br />

⇒ Versatility: Wide range of uses<br />

⇒ Familiarity<br />

⇒ Speed … real or imagined<br />

⇒ Price … real or imagined


<strong>Spectrum</strong> <strong>Analyzers</strong> for <strong>EMI</strong><br />

Level [dBµV]<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

-20<br />

0<br />

30M 50M 70M 100M 200M 300M 500M 700M 1G<br />

�� SA setup for <strong>EMI</strong> Example<br />

- Set Span, RBW and detector<br />

- Span of 970 MHz / 500 points = 2 MHz resolution !<br />

- x samples within RBW are stored<br />

- samples are weighted by some detector<br />

- Common <strong>EMI</strong> detectors are QP, Ave, Pk, RMS


<strong>Spectrum</strong> <strong>Analyzers</strong> for <strong>EMI</strong><br />

�� Question<br />

- What was wrong with the previous setup?<br />

�� Answer<br />

- Frequency and amplitude accuracy depend on many<br />

samples falling within each RBW filter width.<br />

- set this parameter with frequency span


Level [dBµV]<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

-20<br />

0<br />

<strong>Spectrum</strong> <strong>Analyzers</strong> for <strong>EMI</strong><br />

30M 50M 70M 100M 200M 300M 500M 700M 1G<br />

�� Issue # 1 Subranging Required<br />

- Span of 970 MHz / 500 = 2 MHz resolution<br />

- If using 120 KHz RBW, CISPR recommends<br />

60 KHz sample points (17 x finer than 1 MHz)<br />

- Solution: subrange in the span


Level [dBµV]<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

-20<br />

0<br />

<strong>Spectrum</strong> <strong>Analyzers</strong> for <strong>EMI</strong><br />

30M 50M 70M 100M 200M 300M 500M 700M 1G<br />

�� Subrange Issue Revisited<br />

- Per CISPR ½ RBW recommendation<br />

- For unit with 500 point unit = 30 MHz Spans<br />

- Solution: 970 MHz Span = 32 Spans required!


<strong>Spectrum</strong> <strong>Analyzers</strong> for <strong>EMI</strong><br />

�� Frequency Accuracy of SA<br />

- SA resolution is far too course for <strong>EMI</strong><br />

without subranging the CISPR span<br />

- SA frequency accuracy when exploring peaks<br />

influenced by Span, RBW, VBW, marker accuracy<br />

�� Amplitude Accuracy of SA<br />

- 6 dB (<strong>EMI</strong>) filters <strong>vs</strong>. 3 dB<br />

- QP and AVE detector times are observed<br />

- Data correction for system transducers<br />

- EUT specific timing issues are considered<br />

- Subranges set properly for sample #<br />

- RF and IF stages are not overloaded


<strong>Spectrum</strong> <strong>Analyzers</strong> for <strong>EMI</strong><br />

�� Issue # 2 Proper QP and Average Detectors<br />

⇒ Is QP / AVE Detector CISPR-16-1 Compliant?<br />

�� Issue # 3 Correct CISPR RBW Filters<br />

- Typical SA have 1-3-5 Steps RBW<br />

- <strong>EMI</strong> Filters ..200 Hz, 9 kHz, 120 kHz


<strong>Spectrum</strong> <strong>Analyzers</strong> for <strong>EMI</strong><br />

�� Issue # 4 Dwell Time<br />

- Sweep Time <strong>vs</strong>. Span<br />

- Max Hold<br />

�� Issue # 5 Lack of Preselection/ Overload Protection<br />

-<strong>EMI</strong> Can be very high – wide<br />

-Real Signal or not?<br />

-How to protect your measurement/ SA<br />

-Verify RF and IF stages are not overloaded


<strong>Spectrum</strong> <strong>Analyzers</strong> for <strong>EMI</strong><br />

� Has � Has to be a better way!


<strong>Test</strong> <strong>Receivers</strong> for <strong>EMI</strong>


<strong>Test</strong> <strong>Receivers</strong> for <strong>EMI</strong><br />

�� What exactly is a <strong>EMI</strong> <strong>Test</strong> Receiver?<br />

- Fixed Tuned receiver versus Swept Tuned<br />

- Built-in Firmware for doing only <strong>EMI</strong>


<strong>Test</strong> <strong>Receivers</strong> for <strong>EMI</strong><br />

�� Controls for Recievers<br />

- Frequency Span (start / stop)<br />

- RBW Filter and detector<br />

- DWELL TIME at each measurement point<br />

- FREQUENCY INCRIMENT (step size)<br />

- TR adjusts sample x depending on span<br />

- x is often 16,000 – 100,000+<br />

- Span / x = frequency resolution


120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

50.00<br />

40.00<br />

30.00<br />

20.00<br />

10.00<br />

0.00<br />

<strong>Test</strong> <strong>Receivers</strong> for <strong>EMI</strong><br />

30M 50M 70M 100M 200M 300M 500M 700M 1G<br />

Level [dBµV]<br />

57.00<br />

79.94M 85M 90M 95M 100M 109.63M<br />

Frequency [Hz]


<strong>Test</strong> <strong>Receivers</strong> for <strong>EMI</strong><br />

�� <strong>EMI</strong> TR Advantages<br />

- Measurement Points<br />

- Tune and Dwell Time method<br />

- DWELL TIME at each measurement point<br />

- FREQUENCY INCRIMENT (step size)<br />

- TR adjusts sample x depending on span<br />

- <strong>EMI</strong> Specificity<br />

- Automatic Control – ATT, Preselection, Filters


<strong>Test</strong> <strong>Receivers</strong> for <strong>EMI</strong><br />

�� Conclusion<br />

⇒ TR incorporates <strong>EMI</strong> control parameters<br />

- STEP SIZE between measurement points<br />

- DWELL TIME at each measurement point<br />

- # of sample points as necessary for accuracy<br />

�� Time Penalty ?<br />

- Time dependant on detector and EUT, not<br />

measurement speed of instruments


Best Instrument for <strong>EMI</strong>?<br />

�� Pros and Cons of Each<br />

- SA is faster for initial preview<br />

- SA can also be used for RX and TX measurements<br />

- TR has little use outside <strong>EMI</strong>, expensive<br />

unit for one use<br />

- SA subranging negates any speed<br />

advantage over TR for <strong>EMI</strong><br />

- SA amplitude accuracy easily skewed by<br />

improper settings and interpretation


Which one to use?<br />

�� TR is optimum for final<br />

(dwell time &<br />

auto attenuator)<br />

�� Use SA or TR for hit list<br />

Use SA or TR for maximization<br />

Att 30 dB AUTO<br />

RBW 120 kHz<br />

MT 1 s<br />

PREAMP ON<br />

FREQUENCY 931.9200000 MHz<br />

LEVEL QPK dBµV<br />

10 20 30 40 50 60 70 80 90<br />

dBµV 100 MHz<br />

60<br />

50<br />

200 MHz 300 MHz 400 MHz 500 MHz 600 MHz 700 MHz 800 MHz 900 MHz<br />

1 PK<br />

FCC15RB<br />

40<br />

CLRWR 30<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

30 MHz 1 GHz<br />

Date: 8.SEP.2003 14:13:12<br />

SGL


Making accurate measurements<br />

Overload protection<br />

Detectors for <strong>EMI</strong><br />

RBW Filters for <strong>EMI</strong><br />

Preamps


Accurate Measurement<br />

�� Background<br />

�� Dynamic Range of SA / TR is ~ 160 dB<br />

�� EMC engineers don’t know what signals<br />

they are looking for initially<br />

�� Accuracy killers<br />

- Overloads<br />

- Incorrect detector settings<br />

- PRF & directivity of EUT emissions<br />

- Transducer correction factors


Ref Level<br />

0dB<br />

amplitude<br />

Samples and pixels<br />

detector<br />

peak<br />

QP<br />

Ave<br />

Min Peak<br />

Display Pixel n<br />

samples<br />

amplitude<br />

detector<br />

peak<br />

QP<br />

Ave<br />

Min Peak<br />

Display Pixel n + 1


120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Sample Points Example<br />

30M 50M 70M 100M 200M 300M 500M 700M 1G<br />

Level [dBµV]<br />

57.00<br />

50.00<br />

40.00<br />

30.00<br />

20.00<br />

10.00<br />

0.00<br />

79.94M 85M 90M 95M 100M 109.63M<br />

Frequency [Hz]<br />

�� Example: TR <strong>vs</strong>. SA sample points


1 SA<br />

AVG<br />

RF Overload Example<br />

MARKER 1<br />

RBW 3 MHz<br />

496 MHz<br />

VBW 10 MHz<br />

Ref 0 dBm 1 * Att 10 dB SWT 10 ms<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

-50<br />

-60<br />

-70<br />

-80<br />

-90<br />

-100<br />

Center 1 GHz<br />

Date: 23.JUN.2004 20:33:37<br />

200 MHz/<br />

�� Example: amplified signal at 500 MHz<br />

2<br />

Marker 1 [T1 ]<br />

3.03 dBm<br />

496.000000000 MHz<br />

Marker 2 [T1 ]<br />

-48.80 dBm<br />

996.000000000 MHz<br />

Marker 3 [T1 ]<br />

-48.60 dBm<br />

1.500000000 GHz<br />

3<br />

Span 2 GHz<br />

A


OVLD<br />

1 AP<br />

CLRWR<br />

IF Overload Example<br />

RF ATTENUATION<br />

RBW 3 MHz<br />

10 dB<br />

VBW 10 MHz<br />

Ref 0 dBm<br />

* Att 10 dB 1 SWT 5 ms<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

-50<br />

-60<br />

-70<br />

-80<br />

-90<br />

-100<br />

Center 502.0534106 MHz<br />

Date: 23.JUN.2004 20:55:20<br />

99.02160153 MHz/<br />

�� Example: +6 dBm Pulse<br />

Marker 1 [T1 ]<br />

6.13 dBm<br />

502.053410569 MHz<br />

Span 990.2160153 MHz<br />

A


Preselection Filtering<br />

�� Preselector is a “tracking” RF filter<br />

- ALL RF power (noise & signals) go into mixer<br />

- high amplitude signals outside span can<br />

influence amplitude and may be aliased<br />

�� Cure: Suppress signals before RF or IF<br />

- SA may not warn of RF or IF overdrive<br />

- IF overload won’t show on display<br />

- Signals outside display ruin amplitude reading


1 PK *<br />

CLRWR<br />

Overdrive and Preselection<br />

MARKER START FREQUENCY 1<br />

RBW 3 MHz<br />

1.000272533 600 MHz GHz<br />

VBW 10 MHz<br />

Ref 0 dBm<br />

* Att 20 dB SWT 10 ms<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

-50<br />

-60<br />

-70<br />

-80<br />

-90<br />

-100<br />

Start 400 600 MHz 141.6135906 121.6135906 MHz/ Stop 1.816135906 GHz<br />

Date: Date: 8.SEP.2003 8.SEP.2003 13:04:47<br />

13:03:46 13:04:13<br />

1<br />

1<br />

�� Example: +10 dBm signal at 500 MHz<br />

1<br />

Marker 1 [T1 ]<br />

-43.41 -62.14 dBm<br />

1.000272533 GHz<br />

Marker 2 [T1 ]<br />

-54.36 -54.58 -63.57 dBm<br />

1.501204189 GHz<br />

2<br />

2<br />

2<br />

A<br />

PS


PRF and Detectors<br />

�� EUT / Detector dwell time requirements<br />

- Must capture “worst case” emissions of EUT<br />

- Cycle time and pulse repetition frequency<br />

may require extended dwell in each subrange<br />

- Some detectors require extended<br />

dwell settings (ave, QP)


Detector Settings<br />

�� QuasiPeak ????<br />

⇒ QP is an attempt to quantify a signals<br />

Impact on a radio receiver (annoyance)<br />

- Factors: amplitude, frequency, width, PRF<br />

�� Quasipeak restrictions<br />

- Dwell time (per step or subrange) > 600 mS<br />

- PRF issues increase dwell time requirements


Detector Settings<br />

�� Peak Detector<br />

- Peak gives “worst case”<br />

- Safest detector; Fast enough to see signals<br />

even with incorrect RBW or dwell settings<br />

�� Average Detector<br />

- Above 1 GHz for FCC<br />

- dwell for ~ 100 mS<br />

- Watch RBW (1MHz or 120 KHz)


1 RM AV QP *<br />

CLRWR<br />

Detector Settings Example<br />

Ref -20 dBm Att 10 dB<br />

-20<br />

-30<br />

-40<br />

-50<br />

-50<br />

-60<br />

-60<br />

-70<br />

-70<br />

-80<br />

-80<br />

-90<br />

-90<br />

-100<br />

-100<br />

-110<br />

-110<br />

RBW RBW 120 120 kHz kHz<br />

VBW 1 MHz<br />

SWT 175 ms<br />

-120<br />

-120<br />

Start 0 Hz 50 MHz/<br />

Stop 500 MHz<br />

Start 0 Hz 50 MHz/<br />

Stop 500 MHz<br />

Date: 23.JUN.2004 21:44:41 21:45:04<br />

Date: 23.JUN.2004 21:44:15<br />

�� Example: -40 dBm signal at 280 MHz<br />

1<br />

1<br />

1<br />

Marker Marker 1 1 [T1 [T1 ] ]<br />

-49.64 -56.89 -76.57 dBm<br />

280.000000000 MHz<br />

A


Transducers and PRF<br />

�� Transducer correction<br />

- CISPR needed a way to eliminate effects of<br />

chambers, antennas and cable losses<br />

- Standards require normalization of these<br />

effects to compare results to limit line<br />

�� EUT dwell time requirements<br />

- Must capture “worst case” emissions of EUT<br />

- Cycle time and pulse repetition frequency<br />

may require extended dwell in each subrange


Conclusion<br />

�� TR <strong>vs</strong>. SA<br />

Span Subranges step size resolution<br />

dwell time overloading preselection<br />

�� RF & IF Overloads<br />

RF -> Harmonics IF -> If overload flag<br />

Attenuator Ref Level<br />

�� Preamps<br />

amplify at antenna know linear region below 1gz<br />

system check (attenuator) static


Conclusion<br />

�� Go Yankees… Enjoy the Game!<br />

Vic Hudson<br />

Rohde&Schwarz<br />

EMC Systems<br />

Ph 847 612-0618<br />

Vic.Hudson@rohde-schwarz.com

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!