18.01.2013 Views

Neoclassical electron transport in tokamaks with neutral-beam ...

Neoclassical electron transport in tokamaks with neutral-beam ...

Neoclassical electron transport in tokamaks with neutral-beam ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Neoclassical</strong> <strong>electron</strong> <strong>transport</strong> <strong>in</strong> <strong>tokamaks</strong> <strong>with</strong> <strong>neutral</strong>-<strong>beam</strong> <strong>in</strong>jection<br />

P. Helander and R. J. Akers<br />

Euratom/UKAEA Fusion Association, Culham Science Centre, Ab<strong>in</strong>gdon, Oxfordshire OX14 3DB,<br />

United K<strong>in</strong>gdom<br />

�Received 29 November 2004; accepted 7 January 2005; published onl<strong>in</strong>e 11 March 2005�<br />

The collisional <strong>in</strong>teraction between <strong>neutral</strong>-<strong>beam</strong> ions and bulk plasma <strong>electron</strong>s leads to convective<br />

<strong>transport</strong> of particles and energy similar to the well-known Ware p<strong>in</strong>ch. These <strong>transport</strong> fluxes are<br />

calculated, and it is found that the particle flux is outward when the <strong>neutral</strong> <strong>beam</strong>s are <strong>in</strong> the same<br />

direction as the plasma current and <strong>in</strong>ward otherwise, while the opposite holds for the <strong>electron</strong> heat<br />

<strong>transport</strong>. This effectively shifts the <strong>neutral</strong>-<strong>beam</strong> fuel<strong>in</strong>g profile approximately one fast-ion banana<br />

width outward dur<strong>in</strong>g co<strong>in</strong>jection and <strong>in</strong>ward dur<strong>in</strong>g counter<strong>in</strong>jection, and could help to expla<strong>in</strong> why<br />

very different plasma behavior is sometimes observed when the direction of the plasma current is<br />

reversed. �DOI: 10.1063/1.1864074�<br />

I. INTRODUCTION<br />

Over the years, it has been reported from a number of<br />

<strong>tokamaks</strong> that plasma behavior can change dramatically if<br />

the direction of the <strong>neutral</strong>-<strong>beam</strong> <strong>in</strong>jection �NBI� is reversed<br />

<strong>with</strong> respect to the plasma current, even if the amount of<br />

current driven by the <strong>beam</strong>s is low. Most recently this phenomenon<br />

has been observed <strong>in</strong> the Mega-Ampère Spherical<br />

Tokamak �MAST�, 1 where revers<strong>in</strong>g the <strong>beam</strong>s has an even<br />

greater effect than the transition from low �L� to high �H�<br />

mode conf<strong>in</strong>ement. 1 The density profile is much more peaked<br />

<strong>in</strong> plasmas <strong>with</strong> counter<strong>in</strong>jection, while the temperature profile<br />

is flatter. Similar behavior had earlier been observed <strong>in</strong><br />

the impurity study experiment ISX-B, 2 the axially symmetric<br />

divertor experiment, ASDEX, 3 and the Japan Atomic Energy<br />

Research Institute Fusion Torus, JFT-2M, 4 but does not seem<br />

prevalent <strong>in</strong> experiments <strong>with</strong> higher plasma temperature.<br />

These observations provide the motivation for the<br />

present paper, where we reexam<strong>in</strong>e the effect of fast ions on<br />

neoclassical <strong>electron</strong> <strong>transport</strong>. Three decades ago, Connor<br />

and Cordey 5 discovered that friction between NBI ions and<br />

bulk plasma <strong>electron</strong>s gives rise to a convective <strong>electron</strong><br />

flux, qualitatively similar to the Ware p<strong>in</strong>ch but <strong>in</strong> the opposite<br />

direction �for cocurrent NBI�. A more complete calculation<br />

of fast-ion driven <strong>transport</strong> was outl<strong>in</strong>ed by Kim, Callen,<br />

and Hamnén, 6 who also obta<strong>in</strong>ed an accompany<strong>in</strong>g heat flux.<br />

Unfortunately these results appear to have been largely forgotten.<br />

In the present paper, we show that the <strong>transport</strong> coefficients<br />

describ<strong>in</strong>g <strong>electron</strong> <strong>transport</strong> driven by fast-ion<br />

friction are actually identical to other coefficients <strong>in</strong> the neoclassical<br />

<strong>transport</strong> matrix and can therefore easily be accounted<br />

for <strong>in</strong> exist<strong>in</strong>g <strong>transport</strong> codes. The k<strong>in</strong>etic equation<br />

describ<strong>in</strong>g the effect of fast-ion friction on <strong>electron</strong> <strong>transport</strong><br />

is of the same form as that for ord<strong>in</strong>ary neoclassical diffusion<br />

<strong>in</strong> the banana regime, and the correspond<strong>in</strong>g <strong>transport</strong> coefficients<br />

are therefore the same. We also show that the net<br />

effect of the <strong>beam</strong>-driven p<strong>in</strong>ch is to shift the effective particle<br />

source of the NBI by approximately one poloidal gyroradius<br />

outward <strong>in</strong> the case of co<strong>in</strong>jection and <strong>in</strong>ward <strong>in</strong> the<br />

case of counter<strong>in</strong>jection. It appears likely that this could help<br />

PHYSICS OF PLASMAS 12, 042503 �2005�<br />

1070-664X/2005/12�4�/042503/5/$22.50 12, 042503-1<br />

to expla<strong>in</strong> some of the experimental observations mentioned<br />

above.<br />

II. KINETIC EQUATION<br />

We consider an axisymmetric tokamak plasma <strong>with</strong> a<br />

number of different ion species <strong>in</strong> a magnetic field B<br />

=I�����+ ��� ��, where � is the toroidal angle, � is the<br />

poloidal flux, and I���=RB �, <strong>with</strong> R denot<strong>in</strong>g the major radius.<br />

The angle � is measured <strong>in</strong> the direction of the plasma<br />

current so that � <strong>in</strong>creases <strong>with</strong> m<strong>in</strong>or radius. For simplicity,<br />

we assume that the plasma rotates slowly enough that the<br />

densities of all species are flux functions and standard neoclassical<br />

theory applies. The drift k<strong>in</strong>etic equation for <strong>electron</strong>s<br />

<strong>in</strong> a constant magnetic field is approximately 7<br />

� f e<br />

� f e<br />

�t + �v� + vd� · � fe − ev�E� �U = Ce�f e�, �1�<br />

where v � denotes the parallel velocity, v d is the drift velocity,<br />

E �=−�B/B�·�A/�t is the parallel component of the <strong>in</strong>ductive<br />

electric field, and C e is the <strong>electron</strong> collision operator. The<br />

gradient is taken at constant magnetic moment and energy<br />

U=m ev 2 /2−e�, where � is the electrostatic potential. Expand<strong>in</strong>g<br />

f e= f e0+ f e1+¯ <strong>in</strong> the smallness of the gyroradius <strong>in</strong><br />

the usual way �assum<strong>in</strong>g small �/�t and E �� gives 8–10<br />

v�� �f e0 = C e�f e0� �2�<br />

<strong>in</strong> lowest order, imply<strong>in</strong>g a Maxwellian f e0���. In next order<br />

v�� �f e1 + �v d · � �� � f e0<br />

�� + ev�E� fe0 = Ce�f e1�, �3�<br />

where the cross-field drift is v d· ��=Iv�� ��v�/� e� and the<br />

gyrofrequency � e=−eB/m e. Hence,<br />

T e<br />

v���g + ev�E� fe0 = Ce�F + g�, �4�<br />

Te where f e1=F+g and<br />

Downloaded 25 Aug 2011 to 194.81.223.66. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions


042503-2 P. Helander and R. J. Akers Phys. Plasmas 12, 042503 �2005�<br />

F =− Iv�<br />

� e<br />

� fe0 . �5�<br />

��<br />

The l<strong>in</strong>earized collision operator is<br />

C e�f e1� = C ee�f e1� + � a<br />

�<br />

ea�L�f D e1� + mev� Va�f e0�, �6�<br />

Te where the first term on the right describes <strong>electron</strong>-<strong>electron</strong><br />

collisions and L is the pitch-angle scatter<strong>in</strong>g operator. The<br />

sum is taken over all ion species a and<br />

2 4<br />

ea naZae ln �<br />

�D = 2 2 3 4��0mav is the <strong>electron</strong> scatter<strong>in</strong>g rate <strong>in</strong> collisions <strong>with</strong> those ions.<br />

Their mass is denoted by m a, their charge by Z ae, and their<br />

parallel velocity by V a�. It is assumed that the thermal speed<br />

of the <strong>electron</strong>s exceeds that of all ion species, <strong>in</strong>clud<strong>in</strong>g the<br />

<strong>beam</strong> ions. For all thermal species, it follows from standard<br />

neoclassical theory that V a� is of the form 8–10<br />

�7�<br />

Va� =− I d� I dpa −<br />

B d� naeB d� + ua���B, �8�<br />

where p a���=n a���T a��� is the pressure of species a and<br />

u a���B � is its poloidal velocity. The <strong>beam</strong> ions �subscript b�<br />

are different because of their high energy and wide orbits,<br />

and are therefore regarded as a separate species from the<br />

majority bulk ions �subscript i�.<br />

The presence of <strong>beam</strong> ions affects the <strong>electron</strong> collision<br />

operator �6� <strong>in</strong> two ways: directly through the <strong>beam</strong>-<strong>electron</strong><br />

friction force �i.e., the term conta<strong>in</strong><strong>in</strong>g V b�� and <strong>in</strong>directly by<br />

chang<strong>in</strong>g the friction exerted on the <strong>electron</strong>s by the other<br />

ion species �i.e., by chang<strong>in</strong>g the other V a��. The first of these<br />

effects is more important than the second. This is readily<br />

established by estimat<strong>in</strong>g the change of V i� caused by collisions<br />

between <strong>beam</strong> and bulk ions as<br />

�Vi� � �ii Vb�, �9�<br />

�ib where �ii is the bulk ion collision time and �ib is the bulk<strong>beam</strong><br />

ion collision time. �This estimate follows either from<br />

consult<strong>in</strong>g Ref. 11 or from balanc<strong>in</strong>g poloidal flow damp<strong>in</strong>g,<br />

which occurs on the time scale �ii, <strong>with</strong> the drive from <strong>beam</strong>ion<br />

friction, i.e., �Vi�/� ii�V b�/� ib.� It now follows that the<br />

correspond<strong>in</strong>g change <strong>in</strong> the <strong>electron</strong> collision operator �6� is<br />

smaller than that result<strong>in</strong>g from <strong>beam</strong>-<strong>electron</strong> friction, i.e.,<br />

ei<br />

� �Vi� D<br />

eb �<br />

� Vb� D �ii ni �� �ib nb v 3<br />

Ti<br />

� 1, �10�<br />

Vb�� where v Ti=�2T i/m i� 1/2 is the bulk ion thermal speed.<br />

The k<strong>in</strong>etic equation �4� can be written as<br />

Iv�<br />

�e� d ln pe e d�<br />

−<br />

d�<br />

v���g − Ce��g� =−Ce�� d� Te +� U<br />

−<br />

Te 5<br />

2� d ln Te�f e0�<br />

d�<br />

+ � a<br />

� D ea m ev�<br />

T e<br />

Va�f e0 − ev�E� fe0, �11�<br />

Te ea<br />

where Ce�=C ee+� DL and �D=� a�D . The driv<strong>in</strong>g terms appear<strong>in</strong>g<br />

on the right are the <strong>electron</strong> pressure and temperature<br />

gradients, the ion flow velocities Va�, and the electric field.<br />

S<strong>in</strong>ce the equation is l<strong>in</strong>ear and the driv<strong>in</strong>g terms appear<br />

additively, we need only consider the contribution from the<br />

<strong>beam</strong> ions. 12 For reasons that will become clear, we also<br />

<strong>in</strong>clude the driv<strong>in</strong>g term from the <strong>electron</strong> pressure gradient,<br />

i.e., we consider the equation<br />

v�� �g − C e ��g� = � DIv�<br />

� e �<br />

d ln p e<br />

d� − Z bj bB<br />

p eIZ eff�f e0, �12�<br />

where j b=Z ben bV b� is the <strong>beam</strong>-ion current,<br />

Zeff = 1<br />

� ne a<br />

2<br />

naZa, �13�<br />

eb 2<br />

and we have used �D =�nbZ b/neZ<br />

eff��D and<br />

C e ��<br />

Iv�<br />

� e<br />

III. TRANSPORT<br />

d ln pe d� fe0� =−�D Iv�<br />

� e<br />

d ln p e<br />

d� f e0. �14�<br />

Once Eq. �12� has been solved for g, the neoclassical<br />

cross-field <strong>transport</strong> is obta<strong>in</strong>ed from the flux-friction<br />

relation 8–10<br />

�n eV e · � �� = I�� m ev�<br />

eB C e�F + g�d 3 v − n eE �<br />

B �, �15�<br />

where angular brackets denote flux-surface averages and the<br />

collision operator is aga<strong>in</strong> given by Eq. �6�. Here,<br />

I<br />

eb<br />

�Cee�F� + �DL�F� + �D B mev� Vb�f e0�d3 v�<br />

e�� m ev�<br />

=− meI2Zeff e2 �B<br />

�ee −2� dpe d� + meIZb e2�ee� jb �16�<br />

B�,<br />

if only the pressure gradient term <strong>in</strong> F is reta<strong>in</strong>ed as discussed<br />

above. The cross-field particle flux can thus be written<br />

as<br />

�n eV e · � �� = I�� m ev�<br />

eB C e ��g�d3 v − n eE �<br />

B �<br />

− peI2 −2<br />

Zeff��e �<br />

me�ee + m eIZ b<br />

e 2 � ee ��<br />

j b<br />

T e<br />

� � ln p e<br />

B� −� 1<br />

�� − Zb/Zeff �jbB�� peI B2��j bB��, �17�<br />

where the <strong>electron</strong> collision time is def<strong>in</strong>ed <strong>in</strong> the usual way,<br />

Downloaded 25 Aug 2011 to 194.81.223.66. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions


042503-3 <strong>Neoclassical</strong> <strong>electron</strong> <strong>transport</strong> <strong>in</strong> <strong>tokamaks</strong>… Phys. Plasmas 12, 042503 �2005�<br />

�ee = 3�2��3/2 1/2 3/2 2<br />

me Te �0<br />

nee4 . �18�<br />

ln �<br />

In Eq. �17�, we have added and subtracted a term proportional<br />

to �jbB�. This is convenient because the pressure gradient<br />

appears <strong>in</strong> comb<strong>in</strong>ation <strong>with</strong> such a term <strong>in</strong> Eq. �21� for<br />

g below. The neoclassical heat <strong>transport</strong> is evaluated <strong>in</strong> a<br />

similar way from<br />

�qe · � �� = ITe�� e mev�� B mev 2<br />

−<br />

2Te 5<br />

e�F + g�d<br />

2�C 3 v�,<br />

�19�<br />

and is conveniently written as<br />

�qe · � �� = ITe�� e mev�� B mev 2<br />

−<br />

2Te 5<br />

e��g�d 2�C 3 v�<br />

A. Banana regime<br />

+ 3peTeI2 −2<br />

Zeff��e �<br />

2me�ee − 3m eT eIZ b<br />

2e 2 � ee ��<br />

j b<br />

� � ln p e<br />

B� −� 1<br />

�� − Zb/Zeff �jbB�� peI B 2��j bB��. �20�<br />

In the banana regime of low collisionality, Eq. �12� is<br />

solved by expand<strong>in</strong>g g=g 0+g 1+¯ <strong>in</strong> the smallness of the<br />

collision frequency. The lowest-order term vanishes <strong>in</strong> the<br />

trapped region of velocity space and is determ<strong>in</strong>ed by the<br />

constra<strong>in</strong>t equation<br />

� B<br />

Ce��g 0�� =−<br />

v�<br />

�DmeI� e d ln pe d� − Zb�jbB��f e0<br />

peIZeff �21�<br />

<strong>in</strong> the pass<strong>in</strong>g region. It is clear from this equation that the<br />

<strong>beam</strong>-ion contribution is of the same form as that from the<br />

<strong>electron</strong> pressure gradient: the effect of the <strong>beam</strong> ions upon g<br />

can be expressed by mak<strong>in</strong>g the replacement<br />

d ln pe d� → d ln pe d� − Zb�jbB� . �22�<br />

peIZeff This circumstance has earlier been exploited <strong>in</strong> an elegant<br />

calculation of NBI current-drive efficiency 13 and can also be<br />

used to calculate the cross-field <strong>transport</strong> given by Eqs. �17�<br />

and �20�. In these equations, the term conta<strong>in</strong><strong>in</strong>g the <strong>electron</strong><br />

pressure gradient �second term on the right� has also been<br />

comb<strong>in</strong>ed <strong>with</strong> the <strong>beam</strong> current <strong>in</strong> the same way as <strong>in</strong> Eq.<br />

�22�. It follows that if the neoclassical <strong>electron</strong> <strong>transport</strong> <strong>in</strong> a<br />

plasma <strong>with</strong>out <strong>beam</strong>s is given by <strong>transport</strong> laws of the form<br />

�neVe · � �� =− peI2 −2<br />

Zeff��e �<br />

me�ee �l d ln pe 11<br />

d� + l d ln Te 12<br />

d�<br />

a<br />

+ ��l 11<br />

a d ln pa d� + l a<br />

12<br />

d ln Ta�� d�<br />

− l13neI �E�B� �B2 , �23�<br />

�<br />

�q e · � ��<br />

T e<br />

=− peI2 −2<br />

Zeff��e �<br />

me�ee �l d ln pe 21<br />

d� + l d ln Te 22<br />

d�<br />

a<br />

+ ��l 21<br />

a d ln pa d� + l a<br />

22<br />

d ln Ta�� d�<br />

− l23neI �E�B� �B2 , �24�<br />

�<br />

a<br />

where ljk and ljk are dimensionless coefficients and the sum<br />

is taken over all ion thermal species a, then the correspond<strong>in</strong>g<br />

<strong>transport</strong> laws <strong>in</strong> a plasma <strong>with</strong> NBI must be<br />

�neVe · � �� =− peI2 −2<br />

Zeff��e �<br />

me�ee �q e · � ��<br />

T e<br />

� l 11� d ln p e<br />

d� − Z b�j bB�<br />

p eIZ eff �<br />

d ln Te + l12 d� + a ��l 11<br />

a d ln pa d�<br />

a<br />

+ l12 d ln Ta�� d� − l13neI �E�B� �B2� + m eIZ b<br />

e 2 � ee ��<br />

j b<br />

=− peI2 −2<br />

Zeff��e �<br />

me�ee B� −� 1<br />

B 2��j bB��, �25�<br />

� l 21� d ln p e<br />

d� − Z b�j bB�<br />

p eIZ eff �<br />

d ln Te + l22 d� + a ��l 21<br />

a d ln pa d� + l22 a d ln Ta�� d�<br />

2e2 �� �ee jb − l23neI �E�B� �B2� − 3meIZb B� −� 1<br />

B 2�<br />

��j bB��. �26�<br />

Therefore it is not necessary to solve any new k<strong>in</strong>etic equation<br />

to calculate the <strong>transport</strong> caused by the presence of NBI<br />

ions. Apart from the last terms <strong>in</strong> Eqs. �25� and �26�, the<br />

<strong>beam</strong>-driven <strong>transport</strong> has the same <strong>transport</strong> coefficient as<br />

the ord<strong>in</strong>ary neoclassical diffusion. This conclusion holds regardless<br />

of the number of different ion species <strong>in</strong> the plasma<br />

and their relative densities or collisionalities, as long as the<br />

<strong>electron</strong>s are <strong>in</strong> the banana regime. This is useful s<strong>in</strong>ce the<br />

<strong>transport</strong> coefficients l 11 and l 21 can be looked up <strong>in</strong> the<br />

literature and are calculated by numerous codes. They depend<br />

<strong>in</strong> a complicated way on the magnetic geometry and the<br />

densities and temperatures of all the species present <strong>in</strong> the<br />

plasma.<br />

It is <strong>in</strong>terest<strong>in</strong>g to compare the magnitude of the <strong>beam</strong>driven<br />

particle p<strong>in</strong>ch <strong>with</strong> the usual Ware p<strong>in</strong>ch, which is<br />

given by the term proportional to l 13 <strong>in</strong> Eq. �25�. The electric<br />

field is related to the Ohmic current density j � by the neoclassical<br />

Ohm’s law<br />

�j�B� = �1−l33��ˆ nee2�ee �E�B�, �27�<br />

Zeffme where �ˆ is the normalized Spitzer resitivity and l 33 the correction<br />

due to particle trapp<strong>in</strong>g. The <strong>beam</strong>-driven and Ware<br />

Downloaded 25 Aug 2011 to 194.81.223.66. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions


042503-4 P. Helander and R. J. Akers Phys. Plasmas 12, 042503 �2005�<br />

p<strong>in</strong>ch terms <strong>in</strong> Eq. �25� can thus be written as<br />

�neVe · � ��p<strong>in</strong>ch = IZ −2<br />

eff��e ��<br />

me�ee l13 −<br />

�ˆ �1−l33� l11Zb �jbB� Zeff �j �B�<br />

�B −2 ��B 2 � + Z b<br />

Zeff� �jb/B� �B−2� − �j bB���. �28�<br />

S<strong>in</strong>ce the dimensionless coefficients <strong>in</strong> this expression are all<br />

of order unity, it follows that the <strong>beam</strong>-driven p<strong>in</strong>ch is <strong>in</strong><br />

general comparable to the Ware p<strong>in</strong>ch if the <strong>beam</strong> current is<br />

comparable to the Ohmic current. To make this more explicit,<br />

consider a standard circular-flux-surface equilibrium<br />

<strong>with</strong> <strong>in</strong>verse aspect ratio ��1 and Z eff=1. The <strong>transport</strong> coefficients<br />

are then �ˆ =1.96, l 11=1.53f t, l 13=1.66f t, and l 33<br />

=1.31f t, where f t=1.46� 1/2 is the trapped-particle fraction.<br />

To lowest order <strong>in</strong> � 1/2 we thus obta<strong>in</strong><br />

�neVe · � ��p<strong>in</strong>ch � ftmeR e2 �1.53jb − 0.85j��. �29�<br />

�ee The comparison can also be made <strong>in</strong> terms of the <strong>beam</strong>driven<br />

current, which differs from j b by the current-drive<br />

efficiency,<br />

�j NBCDB�<br />

�j bB�<br />

accord<strong>in</strong>g to Ref. 13. Thus,<br />

=1− Zb �1−l31� �30�<br />

Zeff �neVe · � ��p<strong>in</strong>ch � ftmeR e2 �0.63�<br />

�ee −1/2jNBCD − 0.85j�� �31�<br />

and it follows that the <strong>beam</strong>-driven p<strong>in</strong>ch per unit of NBIdriven<br />

current is somewhat larger than the Ware p<strong>in</strong>ch per<br />

unit of Ohmic current. Moreover, the directions are different:<br />

whereas the Ware p<strong>in</strong>ch is always <strong>in</strong>ward, the <strong>beam</strong>-driven<br />

particle p<strong>in</strong>ch is outward <strong>with</strong> co<strong>in</strong>jection and <strong>in</strong>ward <strong>with</strong><br />

counter<strong>in</strong>jection. The friction between co<strong>in</strong>jected �counter<strong>in</strong>jected�<br />

<strong>beam</strong> ions and bulk <strong>electron</strong>s cause the latter to move<br />

radially outward �<strong>in</strong>ward�. Note that this is <strong>in</strong> the opposite<br />

direction to the motion of the <strong>in</strong>jected ions upon ionization.<br />

�A co<strong>in</strong>jected ion moves <strong>in</strong>ward from where it was ionized; a<br />

counter<strong>in</strong>jected one moves outward.�<br />

Entirely similar conclusions hold for the <strong>beam</strong>-driven<br />

heat flux, except that the signs are reversed because l 21 and<br />

l 31 are negative. The Ware heat flux is outward, whereas the<br />

analogous <strong>beam</strong>-driven heat flux is <strong>in</strong>ward <strong>with</strong> co<strong>in</strong>jection<br />

and outward <strong>with</strong> counter<strong>in</strong>jection.<br />

B. Pfirsch–Schlüter regime<br />

The situation is slighly different for f<strong>in</strong>ite <strong>electron</strong> collisionality.<br />

In order to calculate the <strong>transport</strong> <strong>in</strong> this case, it is<br />

convenient to write the solution of Eq. �12� as g=g 0+g 1,<br />

where g 0 satisfies<br />

v���g0 − Ce��g 0� = �DIv�� �e d ln pe d� − Zb�jbB��f e0. �32�<br />

peIZeff This is the same equation as Eq. �12� except that a fluxsurface<br />

average has been taken of the bracket on the righthand<br />

side, so that g0 is the banana-regime solution considered<br />

<strong>in</strong> the preced<strong>in</strong>g section and g1 satisfies<br />

v���g1 − Ce��g 1� =− �DZbv� �jbB − �jbB��f e0. �33�<br />

�epeZeff In the Pfirsch–Schlüter regime, the first term on the left can<br />

be neglected and it follows that the friction associated <strong>with</strong><br />

g 1 is<br />

� mev�Ce��g 1�d3 v = Zb �jbB − �jbB��. �34�<br />

�e�ee The accompany<strong>in</strong>g particle flux,<br />

I<br />

=− meIZb e�� m ev�<br />

B C e ��g 1�d 3 v�<br />

e 2 � ee ��<br />

jb B� −� 1<br />

B2� ��j bB��, �35�<br />

is added to Eq. �25�, where it has the effect of cancel<strong>in</strong>g the<br />

last term. The total flux thus becomes<br />

�neVe · � �� =− peI2 −2<br />

Zeff��e �<br />

me�ee � l 11� d ln p e<br />

d� − Z b�j bB�<br />

p eIZ eff �<br />

d ln Te + l12 d� + a ��l 11<br />

a d ln pa d�<br />

a<br />

+ l12 d ln Ta�� d� − neI� �E�B� �B2� −� E� B��,<br />

�36�<br />

where we have modified the term <strong>in</strong>volv<strong>in</strong>g E � to be appropriate<br />

for the Pfirsch–Schlüter regime. 8–10 The heat flux calculation<br />

is analogous and gives<br />

�q e · � ��<br />

T e<br />

=− peI2 −2<br />

Zeff��e �<br />

me�ee � l 21� d ln p e<br />

d� − Z b�j bB�<br />

p eIZ eff �<br />

d ln Te + l22 d� + a ��l 21<br />

a d ln pa d�<br />

a<br />

+ l22 d ln Ta�� . �37�<br />

d�<br />

IV. DISCUSSION AND CONCLUSIONS<br />

As we have seen, the friction <strong>with</strong> <strong>beam</strong> ions �or any<br />

population of fast ions <strong>with</strong> a net parallel flow� drives convective<br />

cross-field <strong>transport</strong> of bulk plasma <strong>electron</strong>s given<br />

by Eqs. �25� and �26� <strong>in</strong> the banana regime and Eqs. �36� and<br />

�37� <strong>in</strong> the Pfirsch–Schlüter regime. These fluxes are comparable<br />

to the correspond<strong>in</strong>g Ware fluxes �for similar Ohmic<br />

and <strong>beam</strong> currents�, but <strong>in</strong> the opposite direction. For cocurrent<br />

NBI the particle flux is outward and will therefore ef-<br />

Downloaded 25 Aug 2011 to 194.81.223.66. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions


042503-5 <strong>Neoclassical</strong> <strong>electron</strong> <strong>transport</strong> <strong>in</strong> <strong>tokamaks</strong>… Phys. Plasmas 12, 042503 �2005�<br />

fectively result <strong>in</strong> the <strong>beam</strong> <strong>electron</strong>s be<strong>in</strong>g deposited further<br />

away from the magnetic axis than one might naively expect.<br />

In order to estimate the magnitude of this effect, we note<br />

that the flux-surface averaged <strong>electron</strong> cont<strong>in</strong>uity equation is 8<br />

�ne �t = Se − 1 �<br />

V� �� �V��neVe · � ���, �38�<br />

where V��� is the volume of the flux surface labeled by �,<br />

and Se��� is the particle source strength delivered by the<br />

<strong>beam</strong>s. Because of the last term on the right, the “average”<br />

radial position of the source,<br />

�¯ 0 =� �S edV/� S edV �39�<br />

�where the volume <strong>in</strong>tegral is taken over the entire plasma<br />

volume� is effectively shifted to � ¯ =� ¯ 0+�� ¯ , <strong>with</strong><br />

�� ¯ =−� � 1 �<br />

V� �� V��neVe · � ��dV/� SedV =� �neVe · � ��dV/� SedV, �40�<br />

where we have <strong>in</strong>tegrated by parts and ignored a boundary<br />

term, assum<strong>in</strong>g that the <strong>beam</strong> density is small at the lastclosed<br />

flux surface. The slow<strong>in</strong>g-down time for the <strong>beam</strong><br />

ions by friction on the plasma <strong>electron</strong>s is<br />

�s = mb�ee 2 , �41�<br />

meZb and the <strong>beam</strong>-driven particle p<strong>in</strong>ch can thus be written as<br />

�n eV e · � �� = l 11<br />

IZ b<br />

� b0B 0� s<br />

�n bV b�B�, �42�<br />

2 −2 where B0=1/�B � and �b0=Z beB0/m b. For simplicity, we<br />

have negelected the last term <strong>in</strong> Eq. �25�, which is small at<br />

large aspect ratio and vanishes <strong>in</strong> the Pfirsch–Schlüter regime<br />

�see Eq. �36��. Hence,<br />

�� ¯ I�nbVb�B� =� l11 dV/� SedV, �43�<br />

� b0B 0� s<br />

where the <strong>beam</strong>-ion density is of order n b�S b� s, so that<br />

�� ¯� l11ZbIVb� . �44�<br />

�b0 It follows that the particle source is effectively shifted �outward<br />

<strong>with</strong> co<strong>in</strong>jection, <strong>in</strong>ward <strong>with</strong> counter<strong>in</strong>jection� by<br />

about a <strong>beam</strong>-ion banana width, which can be quite a significant<br />

distance <strong>in</strong> many experiments �<strong>in</strong> particular, spherical<br />

<strong>tokamaks</strong>�. Insofar as the density profile depends on the fu-<br />

el<strong>in</strong>g source, one would thus expect the <strong>beam</strong>-driven p<strong>in</strong>ch<br />

to have an important effect.<br />

A similar calculation suggests that the <strong>beam</strong>-driven heat<br />

flux given by Eqs. �26� and �37� is less important. It shifts<br />

the energy deposition profile from the <strong>beam</strong>s by a distance<br />

equal to the poloidal gyroradius multiplied by T e/E b, where<br />

E b is the <strong>beam</strong> energy. S<strong>in</strong>ce E b�T e, the heat<strong>in</strong>g profile,<br />

which is already spread out over at least one <strong>beam</strong>-ion orbit<br />

width, is not much affected.<br />

Without perform<strong>in</strong>g detailed <strong>transport</strong> model<strong>in</strong>g, it is difficult<br />

to judge whether the <strong>beam</strong>-driven particle p<strong>in</strong>ch was<br />

<strong>in</strong>deed responsible for the density peak<strong>in</strong>g observed dur<strong>in</strong>g<br />

counter-NBI <strong>in</strong> ISX-B, ASDEX, and JFT-2M as mentioned<br />

<strong>in</strong> the Introduction. In the case of MAST, such model<strong>in</strong>g �to<br />

be published separately� suggests that the Ware p<strong>in</strong>ch is certa<strong>in</strong>ly<br />

very important <strong>in</strong> shap<strong>in</strong>g the density profile, and that<br />

the <strong>beam</strong>-driven p<strong>in</strong>ch, though usually smaller, can sometimes<br />

be significant <strong>in</strong> present experiments and can be expected<br />

to become more important as the <strong>beam</strong> power is <strong>in</strong>creased<br />

<strong>in</strong> planned upgrades of the device.<br />

ACKNOWLEDGMENTS<br />

The authors would like to thank Jack Connor and Peter<br />

Catto for read<strong>in</strong>g the manuscript and Wayne Houlberg for a<br />

useful discussion.<br />

This work was funded jo<strong>in</strong>tly by EURATOM and the<br />

UK Eng<strong>in</strong>eer<strong>in</strong>g and Physical Sciences Research Council.<br />

1 R. J. Akers, J. W. Ahn, G. Y. Antar, L. C. Appel, D. Applegate, C. Brickley<br />

et al., Plasma Phys. Controlled Fusion 45, A175 �2003�.<br />

2 M. Murakami, P. H. Edmonds, G. A. Hallock, R. C. Isler, E. A. Lazarus,<br />

G. H. Neilson et al., <strong>in</strong>Plasma Physics and Controlled Fusion Research,<br />

Proceed<strong>in</strong>gs of the Tenth International Conference, London, 1984 �IAEA,<br />

Vienna, 1985�, Vol. I, p. 87.<br />

3 O. Gehre, O. Gruber, H. D. Murmann, D. E. Roberts, F. Wagner, B.<br />

Bomba et al., Phys. Rev. Lett. 60, 1502 �1988�.<br />

4 K. Ida, S.-I. Itoh, K. Itoh, S. Hidekuma, Y. Miura, H. Kawashima et al.,<br />

Phys. Rev. Lett. 68, 182�1992�.<br />

5 J. W. Connor and J. G. Cordey, Nucl. Fusion 14, 185 �1974�.<br />

6 Y. B. Kim, J. D. Callen, and H. Hamnén, <strong>in</strong> Controlled Fusion and Plasma<br />

Physics, Proceed<strong>in</strong>gs of the 14th European Conference, Madrid, 22–26<br />

June 1987, edited by F. Engelmann and J. L. Alvarez Rivas �European<br />

Physical Society, Geneva, 1987�, Vol. 3, p. 1200.<br />

7 R. D. Hazelt<strong>in</strong>e and J. C. Meiss, Plasma Conf<strong>in</strong>ement �Dover, M<strong>in</strong>eola,<br />

2003�, p. 128.<br />

8 F. L. H<strong>in</strong>ton and R. D. Hazelt<strong>in</strong>e, Rev. Mod. Phys. 48, 239�1976�.<br />

9 S. P. Hirshman and D. J. Sigmar, Nucl. Fusion 21, 1079 �1981�.<br />

10 P. Helander and D. J. Sigmar, Collisional Transport <strong>in</strong> Magnetized Plasmas<br />

�Cambridge University Press, Cambridge, 2002�.<br />

11 F. L. H<strong>in</strong>ton and Y.-B. Kim, Phys. Fluids B 5, 3012�1993�.<br />

12 The other terms contribute additively to the <strong>transport</strong>, and are calculated <strong>in</strong><br />

the usual theory. For <strong>in</strong>stance, the terms <strong>in</strong>volv<strong>in</strong>g the flow velocities Va� of thermal ions contribute to the <strong>transport</strong> by terms proportional to the ion<br />

a<br />

pressure and temperature gradients—the terms <strong>in</strong>volv<strong>in</strong>g ljk <strong>in</strong> Eqs. �25�,<br />

�26�, �36�, and �37�.<br />

13<br />

Y. R. L<strong>in</strong>-Liu and F. L. H<strong>in</strong>ton, Phys. Plasmas 4, 4179�1997�.<br />

Downloaded 25 Aug 2011 to 194.81.223.66. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!