18.01.2013 Views

Huang-Jen Chiu

Huang-Jen Chiu

Huang-Jen Chiu

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Huang</strong>-<strong>Jen</strong> <strong>Chiu</strong><br />

Dept. of Electronic Engineering<br />

National Taiwan University of<br />

Science and Technology<br />

Office: EE502-1<br />

Tel: 02-2737-6419<br />

E-mail: hjchiu@mail.ntust.edu.tw


Power Electronics<br />

--Converters, Applications, and Design<br />

Third Edition<br />

Textbook<br />

Mohan / Undeland / Robbins<br />

民全書局 02-23657999 02-3651662<br />

Midterm: 50% Final: 50%


� Power Electronic Systems<br />

Outlines<br />

� Overview of Power Semiconductor Switches<br />

� Switch-Mode DC/DC Converters<br />

� Switch-Mode DC/AC Inverters<br />

� Resonant Converters<br />

� Switching DC Power Supplies<br />

� Power Conditioners and Uninterruptible Power Supplies<br />

� Practical Converter Design Considerations


Chapter 1<br />

Power Electronic Systems


Power Electronic Systems


Linear Power Supply<br />

� Series transistor as an adjustable resistor<br />

� Low Efficiency<br />

� Heavy and bulky


Switch-Mode Switch Mode Power Supply<br />

• Transistor as a switch<br />

• High Efficiency<br />

• High-Frequency Transformer


Basic Principle of<br />

Switch-Mode Switch Mode Synthesis<br />

• Constant switching frequency<br />

• Pulse width controls the average<br />

• L-C filters the ripple


Application<br />

in Adjustable Speed Drives<br />

• Conventional drive wastes energy across the<br />

throttling valve to adjust flow rate<br />

• Using power electronics, motor-pump speed is<br />

adjusted efficiently to deliver the required flow rate


Scope and Applications


Scope and Applications


Classification of Power Converters<br />

� ac-dc converters (controlled rectifiers)<br />

� dc-dc converters (dc choppers)<br />

� dc-ac converters (inverters)<br />

� ac-ac converters (ac voltage controllers)


Power Processor as a<br />

Combination of Converters<br />

• Most practical topologies require an energy<br />

storage element, which also decouples the input<br />

and the output side converters


Power Flow through Converters<br />

• Converter is a general term<br />

• An ac/dc converter is shown here<br />

• Rectifier Mode of operation when power from ac to dc<br />

• Inverter Mode of operation when power from ac to dc


AC Motor Drive<br />

• Converter 1 rectifies line-frequency ac into dc<br />

• Capacitor acts as a filter; stores energy; decouples<br />

• Converter 2 synthesizes low-frequency ac to motor<br />

• Polarity of dc-bus voltage remains unchanged<br />

– ideally suited for transistors of converter 2


Matrix Converter<br />

• Very general structure<br />

• Would benefit from bi-directional and bi-polarity switches<br />

• Being considered for use in specific applications


Interdisciplinary Nature of<br />

Power Electronics


Chapter 2 Overview of<br />

Power Semiconductor Devices


Diodes<br />

• On and off states controlled by the power circuit


Diode Turn-Off Turn Off<br />

• Fast-recovery diodes have a small reverse-recovery time


Thyristors<br />

• Semi-controlled device<br />

• Latches ON by a gate-current pulse if forward biased<br />

• Turns-off if current tries to reverse


Thyristor in a Simple Circuit<br />

• For successful turn-off, reverse voltage required for<br />

an interval greater than the turn-off interval


Generic Switch Symbol<br />

• Idealized switch symbol<br />

• When on, current can flow only in the direction of the arrow<br />

• Instantaneous switching from one state to the other<br />

• Zero voltage drop in on-state<br />

• Infinite voltage and current handling capabilities


Switching Characteristics<br />

(linearized)<br />

Switching Power Loss is proportional to:<br />

• switching frequency<br />

1<br />

V I<br />

• turn-on and turn-off times s =<br />

d o<br />

P fs<br />

(tc(on)<br />

+ tc(off)<br />

2<br />

)


Bipolar Junction Transistors (BJT)<br />

• Used commonly in the past<br />

• Now used in specific applications<br />

• Replaced by MOSFETs and IGBTs


Various Configurations of BJTs


MOSFETs<br />

• Easy to control by the gate<br />

• Optimal for low-voltage operation at high switching frequencies<br />

• On-state resistance a concern at higher voltage ratings


Gate-Turn Gate Turn-Off Off Thyristors (GTO)<br />

• Slow switching speeds<br />

• Used at very high power levels<br />

• Require elaborate gate control circuitry


GTO Turn-Off Turn Off<br />

• Need a turn-off snubber


Insulated Gate Bipolar Transistor<br />

(IGBT)


MOS-Controlled<br />

MOS Controlled Thyristor<br />

(MCT)<br />

• Simpler Drive and faster switching speed than those of GTOs.<br />

• Current ratings are significantly less than those of GTOs.


Comparison of Controllable Switches


Summary of Device Capabilities


Rating of Power Devices


Chapter 3<br />

Review of Basic Electrical and<br />

Magnetic Circuit Concepts


Sinusoidal Steady State<br />

P<br />

PF =<br />

=<br />

S<br />

cosφ


Three-Phase Three Phase Circuit


Steady State in Power Electronics


Fourier Analysis<br />

∞<br />

1<br />

f(t) = F0<br />

+ ∑ fh<br />

(t) = a0<br />

+ ∑ h + h ω<br />

2<br />

∞<br />

h=<br />

1<br />

h=<br />

1<br />

{ a cos(hωt)<br />

b sin(h t) }


PF<br />

Distortion in the Input Current<br />

P I<br />

= = s1 cosφ1<br />

=<br />

S I<br />

s<br />

DPF<br />

• Voltage is assumed to be sinusoidal<br />

1 + THD<br />

• Subscript “1” refers to the fundamental<br />

I<br />

I<br />

s1<br />

s<br />

=<br />

DPF<br />

• The angle is between the voltage and the current fundamental<br />

1<br />

2<br />

i


Phasor Representation


Response of L and C<br />

v<br />

L =<br />

L<br />

di<br />

dt<br />

L<br />

i<br />

c =<br />

C<br />

dv<br />

dt<br />

c


Inductor Voltage and Current<br />

in Steady State<br />

• Volt-seconds over T equal zero.


Capacitor Voltage and Current<br />

in Steady State<br />

• Amp-seconds over T equal zero.


Ampere’s Ampere s Law<br />

∫<br />

H<br />

dl<br />

=<br />

∑<br />

• Direction of magnetic field due to currents<br />

• Ampere’s Law: Magnetic field along a path<br />

i


Direction of Magnetic Field<br />

B =<br />

μH


B-H H Relationship; Saturation<br />

• Definition of permeability


Continuity of Flux Lines<br />

φ + φ + φ =<br />

0<br />

1 2 3


Concept of Magnetic Reluctance<br />

• Flux is related to ampere-turns by reluctance


Analogy between Electrical and<br />

Magnetic Variables


Analogy between Equations in<br />

Electrical and Magnetic Circuits


Faraday’s Faraday s Law and Lenz’s Lenz s Law<br />

dφ<br />

e = N =<br />

dt<br />

L<br />

di<br />

dt


Inductance L<br />

• Inductance relates flux-linkage to current


Analysis of a Transformer


Transformer Equivalent Circuit


Including the Core Losses<br />

L ' = (<br />

l2<br />

N<br />

N<br />

N<br />

R 2'<br />

=<br />

(<br />

N<br />

1<br />

2<br />

1<br />

2<br />

)<br />

)<br />

2<br />

2<br />

R<br />

L<br />

2<br />

l2


Chapter 4<br />

Computer Simulation


System to be Simulated<br />

• Challenges in modeling power electronic systems


Large-Signal Large Signal System Simulation<br />

• Simplest component models


Small-Signal<br />

Small Signal Linearized Model<br />

for Controller Design<br />

• System linearized around the steady-state point


Closed-Loop Closed Loop Operation:<br />

Large Disturbances<br />

• Simplest component models<br />

• Nonlinearities, Limits, etc. are included


Modeling of Switching Operation<br />

• Detailed device models<br />

• Just a few switching cycles are studied


Modeling of a Simple Converter<br />

⎡<br />

⎢<br />

⎢<br />

⎢<br />

⎣<br />

di<br />

dv dt<br />

dt<br />

L<br />

c<br />

⎤<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

=<br />

r<br />

i<br />

L<br />

L<br />

⎡ rL<br />

⎢<br />

-<br />

L<br />

⎢ 1<br />

⎢<br />

⎣ C<br />

di<br />

iL<br />

+ L<br />

dt<br />

dv<br />

- C c -<br />

dt<br />

L<br />

1<br />

-<br />

L<br />

1<br />

-<br />

CR<br />

+<br />

vc<br />

R<br />

⎤<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

⎡<br />

⎢<br />

⎣<br />

v<br />

=<br />

i<br />

v<br />

c<br />

L<br />

c<br />

0<br />

=<br />

⎤<br />

⎥<br />

⎦<br />

v<br />

+<br />

oi<br />

⎡<br />

⎢<br />

⎢<br />

⎣<br />

0 L<br />

1<br />

⎤<br />

⎥ v<br />

⎥<br />

⎦<br />

oi


Modeling using PSpice<br />

• Schematic approach is far superior


PSpice-based PSpice based Simulation<br />

• Simulation results


Simulation using MATLAB


Chapter 5<br />

Diode Rectifiers


Diode Rectifier Block Diagram<br />

• Uncontrolled utility interface (ac to dc)


A Simple Circuit<br />

• Resistive load


A Simple Circuit (R-L (R L Load)<br />

• Current continues to flows for a while even<br />

after the input voltage has gone negative


A Simple Circuit<br />

(Load has a dc back-emf) back emf)<br />

• Current begins to flow when the input voltage exceeds the dc back-emf<br />

• Current continues to flows for a while even after the input voltage has<br />

gone below the dc back-emf


Single-Phase Single Phase Diode Rectifier Bridge<br />

• Large capacitor at the dc output for filtering and energy storage


Diode-Rectifier Diode Rectifier Bridge Analysis


Diode-Rectifier Diode Rectifier Bridge Input Current


Current Commutation<br />

• Assuming inductance in this circuit to be zero


Current Commutation


Current Commutation<br />

in Full-Bridge Full Bridge Rectifier


Current Commutation


Rectifier with a dc-side dc side voltage


Diode-Rectifier Diode Rectifier with a Capacitor Filter<br />

• Power electronics load is represented by<br />

an equivalent load resistance


Diode Rectifier Bridge<br />

• Equivalent circuit for analysis on one-half cycle basis


Diode-Bridge Diode Bridge Rectifier: Waveforms<br />

• Analysis using PSpice


Input Line-Current Line Current Distortion<br />

• Analysis using PSpice


Line-Voltage Line Voltage Distortion<br />

• PCC is the point of common coupling


Line-Voltage Line Voltage Distortion<br />

• Distortion in voltage supplied to other loads


Voltage Doubler Rectifier<br />

• In 115-V position, one capacitor at-a-time is<br />

charged from the input.


A Three-Phase, Three Phase, Four-Wire Four Wire System<br />

• A common neutral wire is assumed


Three-Phase, Three Phase, Full-Bridge Full Bridge Rectifier<br />

• Commonly used


Three-Phase, Three Phase, Full-Bridge Full Bridge Rectifier<br />

• Output current is assumed to be dc


Three-Phase, Three Phase, Full-Bridge Full Bridge Rectifier:<br />

Input Line-Current<br />

Line Current<br />

• Assuming output current to be purely dc and<br />

zero ac-side inductance


Rectifier with a Large Filter Capacitor<br />

• Output voltage is assumed to be purely dc


Chapter 6<br />

Thyristor Converters<br />

• Controlled conversion of ac into dc


Chapter 6<br />

Thyristor Converters<br />

• Controlled conversion of ac into dc


Thyristor Converters<br />

• Two-quadrant conversion


Primitive circuits with thyristors


Thyristor Triggering


Full-Bridge Full Bridge Thyristor Converters<br />

• Single-phase and three-phase


Single-Phase Single Phase Thyristor Converters


Average DC Output Voltage<br />

is s1<br />

s3 s1<br />

( ωt)<br />

= 2I<br />

sin( ωt<br />

- ∂ ) + 2I<br />

I sin[3( ωt<br />

- ∂ )]<br />

2<br />

I s1 = 2I<br />

d =<br />

π<br />

0.9I<br />

• Assuming zero ac-side inductance<br />

d<br />

⇒ P<br />

= 0.9cos<br />

+<br />

∂<br />

...


Input Line-Current Line Current Waveforms<br />

• Harmonics, power and reactive power


1-Phase Phase Thyristor Converter


Thyristor Converter


DC Voltage versus Load Current<br />

• Various values of delay angle


Thyristor Converters:<br />

Inverter Mode<br />

• Assuming the ac-side inductance to be zero


Thyristor Converters:<br />

Inverter Mode<br />

• Family of curves at various values of delay angle


Thyristor Converters:<br />

Inverter Mode


Thyristor Converters:<br />

Inverter Mode


3-Phase Phase Thyristor Converters


Chapter 7<br />

DC-DC DC DC Switch-Mode Switch Mode Converters<br />

• dc-dc converters for switch-mode dc power supplies and<br />

dc-motor drives


Block Diagram of DC-DC DC DC Converters<br />

• Functional block diagram


Stepping Down a DC Voltage<br />

• A simple approach that shows the evolution


Pulse-Width Pulse Width Modulation in<br />

DC-DC DC DC Converters


d<br />

o<br />

Step-Down Step Down DC-DC DC DC Converter<br />

( V − V ) T = V<br />

Vo on<br />

V<br />

d<br />

on<br />

T<br />

= = D<br />

T<br />

o<br />

< 1<br />

T<br />

off


Waveforms at the boundary of<br />

Cont./ Discont. Discont.<br />

Conduction<br />

1 t<br />

T V<br />

I I on (V -V<br />

) s d<br />

LB =<br />

L, peak = d o = D(1-<br />

D) = 4ILB,<br />

maxD(1-<br />

D)<br />

2 2L<br />

2L<br />

• Critical current below which inductor current becomes<br />

discontinuous


Step-Down Step Down DC-DC DC DC Converter:<br />

Discontinuous Conduction Mode<br />

• Steady state; inductor current discontinuous<br />

V<br />

V<br />

o<br />

d<br />

=<br />

D<br />

2<br />

+<br />

1<br />

4<br />

D<br />

(<br />

I<br />

2<br />

I<br />

o<br />

LB, max<br />

)


Limits of Cont./ Discont. Discont.<br />

Conduction<br />

V<br />

V<br />

o<br />

d<br />

=<br />

D<br />

2<br />

+<br />

1<br />

4<br />

D<br />

(<br />

I<br />

2<br />

V<br />

V<br />

I<br />

o =<br />

d<br />

o<br />

LB, max<br />

D : CCM<br />

)<br />

:<br />

DCM


ΔQ<br />

Δ Vo<br />

=<br />

=<br />

C<br />

Output Voltage Ripple<br />

ΔI<br />

LT<br />

8C<br />

s


d<br />

Step-Up Step Up DC-DC DC DC Converter<br />

V T = ( V −V<br />

) T<br />

= > 1<br />

on<br />

o<br />

d<br />

off<br />

• Output voltage must be greater than the input<br />

V<br />

V<br />

o<br />

d<br />

1<br />

1<br />

− D


Limits of Cont./ Discont. Discont.<br />

Conduction<br />

1 t T V<br />

I I on V s o<br />

LB = L, peak = d = D(1-<br />

D) = 4ILB,<br />

maxD(1-<br />

D)<br />

2 2L 2L<br />

TsVo<br />

2 27 2<br />

I oB =<br />

(1-<br />

D)ILB<br />

= D(1-<br />

D) = D(1-<br />

D) IoB,<br />

max<br />

2L<br />

4


D =<br />

4<br />

27<br />

V<br />

V<br />

o<br />

d<br />

V<br />

(<br />

V<br />

Discont. Discont.<br />

Conduction<br />

o<br />

d<br />

-1)<br />

I<br />

I<br />

o<br />

oB, max


V<br />

V<br />

o<br />

d<br />

Limits of Cont./ Discont. Discont.<br />

1<br />

= : CCM<br />

1−<br />

D<br />

Conduction<br />

D =<br />

4<br />

27<br />

V<br />

V<br />

o<br />

d<br />

V<br />

(<br />

V<br />

o<br />

d<br />

-1)<br />

I<br />

I<br />

o<br />

oB, max<br />

: DCM


Output Ripple<br />

ΔV<br />

o<br />

=<br />

I<br />

o<br />

t<br />

C<br />

on<br />

=<br />

V<br />

o<br />

R<br />

DT<br />

C<br />

s


Step-Down/Up Step Down/Up DC-DC DC DC Converter<br />

V T =<br />

d<br />

on<br />

V<br />

o<br />

T<br />

off<br />

D<br />

− D<br />

• The output voltage can be higher or lower than<br />

the input voltage<br />

V<br />

V<br />

o<br />

d<br />

= 1


Limits of Cont./ Discont. Discont.<br />

Conduction<br />

1 t T V<br />

I I on V s o<br />

LB = L, peak = d = (1-<br />

D) = ILB,<br />

max(1-<br />

D)<br />

2 2L 2L<br />

TsVo<br />

2<br />

2<br />

I oB =<br />

(1-<br />

D)ILB<br />

= (1-<br />

D) = IoB,<br />

max(1-<br />

D)<br />

2L


Discontinuous Conduction Mode<br />

V<br />

D =<br />

V<br />

o<br />

d<br />

I<br />

I<br />

o<br />

oB, max<br />

• This occurs at light loads


V o<br />

V d<br />

Limits of Cont./ Discont. Discont.<br />

= 1<br />

D<br />

− D<br />

:<br />

Conduction<br />

CCM<br />

V<br />

D =<br />

V<br />

o<br />

d<br />

I<br />

I<br />

o<br />

oB, max<br />

: DCM


Output Voltage Ripple<br />

• ESR is assumed to be zero<br />

ΔV<br />

o<br />

=<br />

I<br />

o<br />

t<br />

C<br />

on<br />

=<br />

V<br />

o<br />

R<br />

DT<br />

C<br />

s


• The output voltage can<br />

be higher or lower than<br />

the input voltage<br />

Cuk DC-DC DC DC Converter


Converter for DC-Motor DC Motor Drives


Converter Waveforms


Output Ripple in Converters for<br />

DC-Motor DC Motor Drives


Switch Utilization<br />

in DC-DC DC DC Converters<br />

• It varies significantly in various converters


Reversing the Power Flow<br />

in DC-DC DC DC Converters


Chapter 8<br />

Switch-Mode Switch Mode DC-AC DC AC Inverters<br />

• Converters for ac motor drives and<br />

uninterruptible power supplies


Switch-Mode Switch Mode DC-AC DC AC Inverter


Switch-Mode Switch Mode DC-AC DC AC Inverter


V<br />

m =<br />

a<br />

m =<br />

f<br />

Synthesis of a Sinusoidal Output<br />

^<br />

control<br />

^<br />

Vtri<br />

f<br />

f<br />

s<br />

1<br />

by PWM


Details of a Switching Time Period<br />

• Small m f (m f ≤21): Synchronous PWM<br />

• Large m f (m f >21): Asynchronous PWM


Harmonics in the DC-AC DC AC Inverter<br />

Output Voltage<br />

• Harmonics appear around the carrier frequency and its multiples


Harmonics due to Over-modulation<br />

Over modulation<br />

• These are harmonics of the fundamental frequency


Square-Wave Square Wave Mode of Operation<br />

• Harmonics are of the fundamental frequency<br />

• Less switching losses in high power applications<br />

• The DC input voltage must be adjusted


Half-Bridge Half Bridge Inverter<br />

• Capacitors provide the mid-point


Single-Phase Single Phase Full-Bridge Full Bridge DC-AC DC AC Inverter<br />

• Consists of two inverter legs


PWM to Synthesize Sinusoidal Output


Analysis assuming Fictitious Filters<br />

• Small fictitious filters eliminate the switching-frequency<br />

related ripple


DC-Side DC Side Current


Uni-polar Uni polar Voltage Switching


DC-Side DC Side Current<br />

in a Single-Phase Single Phase Inverter


Sinusoidal Synthesis by Voltage Shift<br />

• Phase shift allows voltage cancellation to synthesize a<br />

1-Phase sinusoidal output


Square-Wave Square Wave and PWM Operation<br />

• PWM results in much smaller ripple current


Push-Pull Push Pull Inverter<br />

• Only one switch conducts at any instant of time<br />

• High efficiency for low-voltage source applications


Three-Phase Three Phase Inverter<br />

• Three inverter legs; capacitor mid-point is fictitious


Three-Phase Three Phase PWM Waveforms


Three-Phase Three Phase Inverter Harmonics


Three-Phase Three Phase Inverter Output


Square-Wave Square Wave and PWM Operation<br />

• PWM results in much smaller ripple current


DC-Side DC Side Current<br />

in a Three-Phase Three Phase Inverter<br />

• The current consists of a dc component and the<br />

switching-frequency related harmonics


Effect of Blanking Time<br />

• Results in nonlinearity


Effect of Blanking Time<br />

ΔV<br />

o<br />

⎧ 2t<br />

⎪ T<br />

= s<br />

⎨<br />

2t<br />

⎪-<br />

⎪⎩<br />

T<br />

> 0<br />

< 0<br />

• Voltage jump when the current reverses direction<br />

Δ<br />

Δ<br />

s<br />

V<br />

d<br />

V<br />

d<br />

, i<br />

o<br />

, i<br />

o


Effect of Blanking Time<br />

• Effect on the output voltage


Programmed Harmonic Elimination<br />

• Angles based on the desired output


Tolerance-Band Tolerance Band Current Control<br />

• Results in a variable frequency operation


Fixed-Frequency Fixed Frequency Operation<br />

• Better control is possible using dq analysis


Chapter 9<br />

Zero-Voltage Zero Voltage or Zero-Current<br />

Zero Current Switchings<br />

• converters for soft switching


Hard Switching Waveforms<br />

• The output current can be positive or negative


Turn-on Turn on and Turn-off Turn off Snubbers


Switching Trajectories<br />

• Comparison of Hard versus soft switching


Undamped<br />

Undamped Series<br />

Series-Resonant Circuit<br />

Resonant Circuit<br />

L<br />

c<br />

r<br />

d<br />

c<br />

L<br />

r<br />

i<br />

dt<br />

dv<br />

C<br />

V<br />

v<br />

dt<br />

di<br />

L<br />

=<br />

=<br />

+<br />

)<br />

t<br />

t<br />

(<br />

sin<br />

I<br />

Z<br />

)<br />

t<br />

-<br />

(t<br />

)cos<br />

V<br />

-<br />

(V<br />

-<br />

V<br />

(t)<br />

v<br />

)<br />

t<br />

t<br />

(<br />

sin<br />

Z<br />

V<br />

-<br />

V<br />

)<br />

t<br />

-<br />

(t<br />

cos<br />

I<br />

(t)<br />

i<br />

o<br />

o<br />

Lo<br />

o<br />

o<br />

o<br />

co<br />

d<br />

d<br />

c<br />

o<br />

o<br />

o<br />

co<br />

d<br />

o<br />

o<br />

Lo<br />

L<br />

−<br />

+<br />

=<br />

−<br />

+<br />

=<br />

ω<br />

ω<br />

ω<br />

ω<br />

V d


Series<br />

Series-Resonant Circuit<br />

Resonant Circuit<br />

with Capacitor<br />

with Capacitor-Parallel Load<br />

Parallel Load<br />

o<br />

L<br />

c<br />

r<br />

c<br />

d<br />

c<br />

L<br />

r<br />

I<br />

-<br />

i<br />

dt<br />

dv<br />

C<br />

i<br />

V<br />

v<br />

dt<br />

di<br />

L<br />

=<br />

=<br />

=<br />

+<br />

)<br />

t<br />

t<br />

(<br />

sin<br />

)<br />

I<br />

-<br />

(I<br />

Z<br />

)<br />

t<br />

-<br />

(t<br />

)cos<br />

V<br />

-<br />

(V<br />

-<br />

V<br />

(t)<br />

v<br />

)<br />

t<br />

t<br />

(<br />

sin<br />

Z<br />

V<br />

-<br />

V<br />

)<br />

t<br />

-<br />

(t<br />

)cos<br />

I<br />

-<br />

(I<br />

I<br />

(t)<br />

i<br />

o<br />

o<br />

o<br />

Lo<br />

o<br />

o<br />

o<br />

co<br />

d<br />

d<br />

c<br />

o<br />

o<br />

o<br />

co<br />

d<br />

o<br />

o<br />

o<br />

Lo<br />

o<br />

L<br />

−<br />

+<br />

=<br />

−<br />

+<br />

+<br />

=<br />

ω<br />

ω<br />

ω<br />

ω


Impedance of a Series-Resonant Series Resonant Circuit<br />

Q<br />

=<br />

ω<br />

L<br />

R<br />

1<br />

C<br />

o r = =<br />

ω o r R<br />

Z<br />

R<br />

o<br />

• The impedance is capacitive below the resonance frequency


Undamped<br />

Undamped Parallel<br />

Parallel-Resonant Circuit<br />

Resonant Circuit<br />

dt<br />

di<br />

L<br />

v<br />

I<br />

dt<br />

dv<br />

C<br />

i<br />

L<br />

r<br />

c<br />

d<br />

c<br />

r<br />

L<br />

=<br />

=<br />

+<br />

)<br />

t<br />

t<br />

(<br />

cos<br />

V<br />

)<br />

t<br />

-<br />

(t<br />

)sin<br />

I<br />

-<br />

(I<br />

Z<br />

(t)<br />

v<br />

)<br />

t<br />

t<br />

(<br />

sin<br />

Z<br />

V<br />

)<br />

t<br />

-<br />

(t<br />

)cos<br />

I<br />

-<br />

(I<br />

I<br />

(t)<br />

i<br />

o<br />

o<br />

o<br />

c<br />

o<br />

o<br />

Lo<br />

d<br />

o<br />

c<br />

o<br />

o<br />

o<br />

co<br />

o<br />

o<br />

d<br />

Lo<br />

d<br />

L<br />

−<br />

+<br />

=<br />

−<br />

+<br />

+<br />

=<br />

ω<br />

ω<br />

ω<br />

ω


Impedance of a Parallel-Resonant Parallel Resonant Circuit<br />

R<br />

Q = ω<br />

o RC r = =<br />

ω L<br />

o<br />

r<br />

R<br />

Z<br />

o<br />

• The impedance is inductive at below the resonant frequency


Series-Loaded Series Loaded Resonant (SLR) Converter<br />

2ωs


SLR Converter Waveforms<br />

1/2ωo


ZVS, ZCS<br />

SLR Converter Waveforms<br />

ωs >ωo Turn<br />

Large<br />

on<br />

with<br />

turn - off<br />

ZVS<br />

and<br />

switching<br />

Controllable<br />

switches used<br />

ZCS<br />

losses


Lossless Snubbers in SLR Converters<br />

• The operating frequency is above the resonance frequency


SLR Converter Characteristics<br />

• The operating frequency is varied to regulate the output voltage


SLR Converter Control<br />

• The operating frequency is varied to regulate the output voltage


ZCS<br />

Parallel-Loaded Parallel Loaded Resonant (PLR) Converter<br />

No turn - on and turn - off<br />

losses<br />

ZVS, ZCS<br />

ω ≤<br />

s<br />

1<br />

ω<br />

2<br />

o


No<br />

PLR Converter Waveforms<br />

turn - off<br />

losses<br />

ZVS, ZCS<br />

1<br />

ω o < ω s <<br />

2<br />

ω<br />

o


No<br />

ZVS<br />

PLR Converter Waveforms<br />

turn<br />

- on<br />

losses


PLR Converter Characteristics<br />

• Output voltage as a function of operating frequency<br />

for various values of the output current


Hybrid-Resonant Hybrid Resonant DC-DC DC DC Converter<br />

• Combination of series- and parallel-loaded resonances<br />

• A SLR offers an inherent current limiting under short-circuit conditions and<br />

a PLR regulating its voltage at no load with a high-Q resonant tank is not a<br />

problem


Parallel-Resonant<br />

Parallel Resonant<br />

Current-Source Current Source Converter<br />

Induction<br />

Coil<br />

Resistive<br />

Capacitive<br />

• Basic circuit to illustrate the operating principle at the<br />

fundamental frequency


Parallel-Resonant<br />

Parallel Resonant<br />

Current-Source Current Source Converter<br />

• Using thyristors; for induction heating


Single-switch<br />

ZCS Turn-on<br />

Class-E Class E Converters<br />

ZVS Turn-off<br />

Used<br />

for<br />

electronic<br />

Sin-wave Current<br />

High<br />

No<br />

peak<br />

high<br />

-<br />

ballasts<br />

switching<br />

volatge<br />

frequency<br />

and<br />

losses<br />

current


Class-E Class E Converters


Resonant Switch Converters


ZCS Turn-on<br />

ZCS Resonant-Switch Resonant Switch Converter<br />

ZCS Turn-off<br />

Voltage is regulated by varying<br />

the switching frequency


ZCS Turn-on<br />

ZCS Resonant-Switch Resonant Switch Converter<br />

Accelerating diode<br />

ZCS Turn-off<br />

Discharge slowly at light load


ZVS Resonant-Switch Resonant Switch Converter<br />

ZVS Turn-off<br />

ZVS Turn-on


MOSFET Internal Capacitances<br />

ZVS is preferable over ZCS at<br />

high switching frequencies<br />

• These capacitances affect the MOSFET switching


ZVS-CV ZVS CV DC-DC DC DC Converter<br />

ZVS Turn-on<br />

• The inductor current must reverse direction<br />

during each switching cycle


ZVS-CV ZVS CV DC-DC DC DC Converter


ZVS-CV ZVS CV Principle Applied to<br />

DC-AC DC AC Inverters


Three-Phase Three Phase ZVS-CV ZVS CV DC-AC DC AC Inverter<br />

• Very large ripple in the output current


Output Regulation by Voltage Control<br />

• Each pole operates at nearly 50% duty-ratio


ZVS-CV ZVS CV with Voltage Cancellation<br />

• Commonly used


Resonant DC-Link DC Link Inverter<br />

• The dc-link voltage is made to oscillate<br />

ZVS Turn-on


Three-Phase Three Phase Resonant DC-Link DC Link Inverter<br />

• Modifications have been proposed


High-Frequency<br />

High Frequency-Link Link Inverter<br />

• Basic principle for selecting integral half-cycles of<br />

the high-frequency ac input


High-Frequency<br />

High Frequency-Link Link Inverter<br />

• Low-frequency ac output is synthesized by selecting<br />

integral half-cycles of the high-frequency ac input


High-Frequency<br />

High Frequency-Link Link Inverter<br />

• Shows how to implement such an inverter


Chapter 10<br />

Switching DC Power Supplies<br />

• One of the most important applications of power electronics


Linear Power Supplies<br />

• Very poor efficiency and large weight and size


Switching DC Power Supply<br />

• High efficiency and small weight and size


Switching DC Power Supply:<br />

Multiple Outputs<br />

• In most applications, several dc voltages are required,<br />

possibly electrically isolated from each other


Transformer Analysis<br />

• Needed to discuss high-frequency isolated supplies


PWM to Regulate Output


Flyback Converter<br />

• Derived from buck-boost; very power at small power<br />

(> 50 W ) power levels


Flyback Converter<br />

• Switch on and off states (assuming incomplete<br />

core demagnetization)


Flyback Converter<br />

• Switching waveforms (assuming incomplete<br />

core demagnetization)


Other Flyback Converter Topologies


Forward Converter<br />

• Derived from Buck; idealized to assume that the<br />

transformer is ideal (not possible in practice)


Forward Converter: in Practice<br />

• Switching waveforms (assuming incomplete<br />

core demagnetization)


Forward Converter:<br />

Other Possible Topologies<br />

• Two-switch Forward converter is very commonly used


Push-Pull Push Pull Inverter<br />

• Leakage inductances become a problem


Half-Bridge Half Bridge Converter<br />

• Derived from Buck


Full-Bridge Full Bridge Converter<br />

• Used at higher power levels (> 0.5 kW )


Current-Source Current Source Converter<br />

• More rugged (no shoot-through) but both switches must<br />

not be open simultaneously


Ferrite Core Material<br />

• Several materials to choose from based on applications


Core Utilization in Various<br />

Converter Topologies<br />

• At high switching frequencies, core losses limit excursion<br />

of flux density


Control to Regulate Voltage Output<br />

• Linearized representation of the feedback control system


⎪⎩<br />

⎪<br />

⎨<br />

⎧<br />

−<br />

+<br />

=<br />

+<br />

=<br />

•<br />

•<br />

s<br />

d<br />

s<br />

d<br />

T<br />

d<br />

v<br />

B<br />

x<br />

A<br />

x<br />

dT<br />

v<br />

B<br />

x<br />

A<br />

x<br />

)<br />

1<br />

(<br />

,<br />

,<br />

2<br />

2<br />

1<br />

1<br />

⎩<br />

⎨<br />

⎧<br />

−<br />

=<br />

=<br />

s<br />

o<br />

s<br />

o<br />

T<br />

d<br />

x<br />

C<br />

v<br />

dT<br />

x<br />

C<br />

v<br />

)<br />

1<br />

(<br />

,<br />

,<br />

2<br />

1<br />

⎪⎩<br />

⎪<br />

⎨<br />

⎧<br />

−<br />

+<br />

=<br />

−<br />

+<br />

+<br />

−<br />

+<br />

=<br />

⇒<br />

•<br />

x<br />

d<br />

C<br />

d<br />

C<br />

v<br />

v<br />

d<br />

B<br />

d<br />

B<br />

x<br />

d<br />

A<br />

d<br />

A<br />

x<br />

o<br />

d<br />

)]<br />

1<br />

(<br />

[<br />

)]<br />

1<br />

(<br />

[<br />

)]<br />

1<br />

(<br />

[<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

d<br />

V<br />

d<br />

D<br />

B<br />

d<br />

D<br />

B<br />

x<br />

X<br />

d<br />

D<br />

A<br />

d<br />

D<br />

A<br />

x<br />

X )]<br />

(<br />

1<br />

[<br />

)<br />

(<br />

[<br />

)<br />

)]}(<br />

(<br />

1<br />

[<br />

)<br />

(<br />

{<br />

~<br />

2<br />

~<br />

1<br />

~<br />

~<br />

2<br />

~<br />

1<br />

~<br />

+<br />

−<br />

+<br />

+<br />

+<br />

+<br />

+<br />

−<br />

+<br />

+<br />

=<br />

+<br />

•<br />

•<br />

d<br />

V<br />

d<br />

B<br />

D<br />

B<br />

d<br />

B<br />

D<br />

B<br />

x<br />

X<br />

d<br />

A<br />

D<br />

A<br />

d<br />

A<br />

D<br />

A ]<br />

)<br />

1<br />

(<br />

[<br />

)<br />

](<br />

)<br />

1<br />

(<br />

[<br />

~<br />

2<br />

2<br />

~<br />

1<br />

1<br />

~<br />

~<br />

2<br />

2<br />

~<br />

1<br />

1<br />

−<br />

−<br />

+<br />

+<br />

+<br />

+<br />

−<br />

−<br />

+<br />

+<br />

=<br />

~<br />

~<br />

2<br />

1<br />

~<br />

2<br />

1<br />

~<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

)<br />

(<br />

)]<br />

1<br />

(<br />

[<br />

]<br />

)<br />

(<br />

)<br />

[(<br />

)]<br />

1<br />

(<br />

[<br />

)]<br />

1<br />

(<br />

[<br />

x<br />

d<br />

A<br />

A<br />

x<br />

D<br />

A<br />

D<br />

A<br />

d<br />

V<br />

B<br />

B<br />

X<br />

A<br />

A<br />

V<br />

D<br />

B<br />

D<br />

B<br />

X<br />

D<br />

A<br />

D<br />

A d<br />

d<br />

−<br />

+<br />

−<br />

+<br />

+<br />

−<br />

+<br />

−<br />

+<br />

−<br />

+<br />

+<br />

−<br />

+<br />

=<br />

Linearization of the Power Stage<br />

Linearization of the Power Stage


Linearization of the Power Stage<br />

Linearization of the Power Stage<br />

~<br />

2<br />

1<br />

2<br />

1<br />

~<br />

~<br />

]<br />

)<br />

(<br />

)<br />

[( d<br />

V<br />

B<br />

B<br />

X<br />

A<br />

A<br />

x<br />

A<br />

BV<br />

AX<br />

x<br />

X d<br />

d<br />

−<br />

+<br />

−<br />

+<br />

+<br />

+<br />

≈<br />

+<br />

•<br />

•<br />

~<br />

2<br />

1<br />

2<br />

1<br />

~<br />

~<br />

]<br />

)<br />

(<br />

)<br />

[( d<br />

V<br />

B<br />

B<br />

X<br />

A<br />

A<br />

x<br />

A<br />

x d<br />

−<br />

+<br />

−<br />

+<br />

=<br />

⇒<br />

•<br />

d<br />

BV<br />

AX<br />

X +<br />

=<br />

=<br />

•<br />

0<br />

Θ<br />

~<br />

~<br />

2<br />

1<br />

~<br />

2<br />

1<br />

~<br />

2<br />

1<br />

2<br />

1<br />

~<br />

~<br />

2<br />

~<br />

1<br />

~<br />

)<br />

(<br />

)]<br />

1<br />

(<br />

[<br />

]<br />

)<br />

[(<br />

)]<br />

1<br />

(<br />

[<br />

]<br />

)][<br />

(<br />

1<br />

[<br />

)<br />

(<br />

{<br />

d<br />

x<br />

C<br />

C<br />

x<br />

D<br />

C<br />

D<br />

C<br />

d<br />

X<br />

C<br />

C<br />

X<br />

D<br />

C<br />

D<br />

C<br />

x<br />

X<br />

d<br />

D<br />

C<br />

d<br />

D<br />

C<br />

v<br />

V o<br />

o<br />

−<br />

+<br />

−<br />

+<br />

+<br />

−<br />

+<br />

−<br />

+<br />

=<br />

+<br />

+<br />

−<br />

+<br />

+<br />

=<br />

+<br />

~<br />

~<br />

2<br />

1<br />

~<br />

]<br />

)<br />

[( x<br />

C<br />

d<br />

X<br />

C<br />

C<br />

CX<br />

v<br />

V o<br />

o<br />

+<br />

−<br />

+<br />

≈<br />

+<br />

CX<br />

V o =<br />

Θ<br />

~<br />

2<br />

1<br />

~<br />

~<br />

]<br />

)<br />

[( d<br />

X<br />

C<br />

C<br />

x<br />

C<br />

v o<br />

−<br />

+<br />

=<br />


•<br />

Linearization of the Power Stage<br />

X = 0 = AX + BV<br />

and Vo<br />

= CX<br />

~<br />

~<br />

d<br />

V<br />

⇒<br />

V<br />

o<br />

d<br />

= −CA<br />

−1<br />

B<br />

•<br />

~ ~<br />

x = Ax+<br />

A1<br />

− A2<br />

) X + ( B1<br />

−B2<br />

) Vd<br />

Steady-state<br />

[( ] d<br />

⇒s<br />

x(<br />

s)<br />

= Ax(<br />

s)<br />

+ [( A1<br />

− A2<br />

) X + ( B1<br />

−B2<br />

) Vd<br />

] d(<br />

s)<br />

~<br />

−1<br />

⇒ x( s)<br />

= [ sI − A]<br />

[( A1<br />

− A2<br />

) X + ( B1<br />

−B2<br />

) Vd<br />

] d(<br />

s)<br />

⇒<br />

~<br />

DC voltage transfer ratio<br />

vo(<br />

s)<br />

−1<br />

( s)<br />

= = C[<br />

sI − A]<br />

[( A1<br />

− A2<br />

) X + ( B1<br />

−B2<br />

) V ] + ( C1<br />

−C2)<br />

X<br />

~<br />

d(<br />

s)<br />

Tp d<br />

~<br />

~<br />

~<br />

~<br />

vo ~<br />

=<br />

Cx+<br />

[( C −C<br />

) X]<br />

d<br />

1<br />

2<br />

~


Forward Converter: An Example<br />

Forward Converter: An Example<br />

⎪⎩<br />

⎪<br />

⎨<br />

⎧<br />

=<br />

−<br />

+<br />

+<br />

−<br />

=<br />

−<br />

+<br />

+<br />

+<br />

−<br />

•<br />

•<br />

•<br />

•<br />

0<br />

)<br />

(<br />

0<br />

)<br />

(<br />

2<br />

1<br />

2<br />

2<br />

2<br />

1<br />

1<br />

1<br />

x<br />

C<br />

x<br />

R<br />

x<br />

Cr<br />

x<br />

x<br />

C<br />

x<br />

R<br />

x<br />

r<br />

x<br />

L<br />

V<br />

c<br />

L<br />

d<br />

d<br />

c<br />

c<br />

c<br />

c<br />

L<br />

c<br />

L<br />

c<br />

V<br />

L<br />

x<br />

x<br />

r<br />

R<br />

C<br />

r<br />

R<br />

C<br />

R<br />

r<br />

R<br />

L<br />

R<br />

r<br />

R<br />

L<br />

r<br />

r<br />

Rr<br />

Rr<br />

x<br />

x<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

+<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎣<br />

⎡<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

+<br />

−<br />

+<br />

+<br />

−<br />

+<br />

+<br />

+<br />

−<br />

=<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

•<br />

•<br />

0<br />

1<br />

)<br />

(<br />

1<br />

)<br />

(<br />

)<br />

(<br />

)<br />

(<br />

2<br />

1<br />

2<br />

1<br />

A 1 =A 2 B1<br />

B 2 =0


R >> r + ) ⇒<br />

( C rL<br />

v<br />

o<br />

= R(<br />

x<br />

1<br />

1<br />

•<br />

−C<br />

x<br />

2<br />

⎡ Rrc<br />

) = ⎢<br />

⎣R<br />

+ r<br />

1<br />

c<br />

R<br />

R+<br />

r<br />

⇒ A = A , B = B D , C = C<br />

A=<br />

A<br />

1<br />

=<br />

A<br />

2<br />

⎡ rc<br />

+ r<br />

⎢−<br />

≈ L<br />

⎢ 1<br />

⎢<br />

⎣ C<br />

L<br />

1 ⎤<br />

−<br />

L ⎥<br />

1 ⎥<br />

− ⎥<br />

CR⎦<br />

1<br />

c<br />

⎤⎡x1<br />

⎤<br />

⎥⎢<br />

⎥<br />

⎦⎣x2⎦<br />

C 1 =C 2<br />

C = C = C ≈<br />

1 2 c<br />

[ r 1]<br />

⎡1/<br />

L⎤<br />

B = B1D<br />

= ⎢ ⎥D ⎣ 0 ⎦


⎥<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

+<br />

−<br />

−<br />

−<br />

+<br />

+<br />

=<br />

−<br />

L<br />

r<br />

r<br />

C<br />

L<br />

CR<br />

R<br />

r<br />

r<br />

LC<br />

A<br />

L<br />

c<br />

L<br />

c<br />

1<br />

1<br />

1<br />

/<br />

)<br />

(<br />

1<br />

1 D<br />

r<br />

r<br />

R<br />

r<br />

R<br />

D<br />

V<br />

V<br />

L<br />

c<br />

c<br />

d<br />

o ≈<br />

+<br />

+<br />

+<br />

=<br />

⇒<br />

)<br />

(<br />

{ } 2<br />

2<br />

2<br />

2<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

1<br />

~<br />

~<br />

2<br />

/<br />

1<br />

]<br />

/<br />

)<br />

(<br />

/<br />

1<br />

[<br />

1<br />

)<br />

(<br />

]<br />

)<br />

(<br />

)<br />

[(<br />

]<br />

[<br />

)<br />

(<br />

)<br />

(<br />

)<br />

(<br />

o<br />

o<br />

z<br />

z<br />

o<br />

d<br />

L<br />

c<br />

c<br />

d<br />

d<br />

o<br />

p<br />

s<br />

s<br />

s<br />

V<br />

LC<br />

L<br />

r<br />

r<br />

CR<br />

s<br />

s<br />

LC<br />

C<br />

sr<br />

V<br />

X<br />

C<br />

C<br />

V<br />

B<br />

B<br />

X<br />

A<br />

A<br />

A<br />

sI<br />

C<br />

s<br />

d<br />

s<br />

v<br />

s<br />

T<br />

ω<br />

ξω<br />

ω<br />

ω<br />

ω<br />

+<br />

+<br />

+<br />

=<br />

+<br />

+<br />

+<br />

+<br />

+<br />

≈<br />

−<br />

+<br />

−<br />

+<br />

−<br />

−<br />

=<br />

=<br />


Forward Converter:<br />

Transfer Function Plots<br />

T<br />

p<br />

( s)<br />

=<br />

V<br />

d<br />

2<br />

ωo<br />

ω<br />

z<br />

s<br />

2<br />

s+<br />

ωz<br />

+ 2ξω<br />

s+<br />

ω<br />

o<br />

2<br />

o


Flyback Converter:<br />

Transfer Function Plots<br />

T<br />

p<br />

( 1+<br />

s/<br />

ωz1<br />

)( 1−s<br />

/ ωz2)<br />

( s)<br />

= Vd<br />

f ( D)<br />

2<br />

as + b s+<br />

c<br />

o


Linearizing the PWM Block<br />

~<br />

d(<br />

s)<br />

1<br />

vo(<br />

s)<br />

vo(<br />

s)<br />

d(<br />

s)<br />

T m(<br />

s)<br />

= = ⇒T<br />

( ) ( )<br />

~ ^<br />

l ( s)<br />

= = = T s T s<br />

~ ~ ~ p m<br />

v ( s)<br />

V<br />

v ( s)<br />

d(<br />

s)<br />

v ( s)<br />

c<br />

r<br />

~<br />

c<br />

~<br />

~<br />

c


Typical Gain and Phase Plots of the<br />

Open-Loop Open Loop Transfer Function<br />

• Definitions of the crossover frequency, phase and gain margins


A General Amplifier for<br />

Error Compensation<br />

• Can be implemented using a single op-amp


Type-2 Type 2 Error Amplifier<br />

• Shows phase boost at the crossover frequency


Feedback-Loop Feedback Loop Stabilization


Feedback-Loop Feedback Loop Stabilization<br />

F<br />

F<br />

co K =<br />

=<br />

z<br />

F<br />

F<br />

p<br />

co


Feedback-Loop Feedback Loop Stabilization<br />

θ<br />

total<br />

lag<br />

= 270 ° − tan<br />

K<br />

+<br />

tan<br />

−1<br />

−1<br />

F<br />

F<br />

co K = =<br />

1<br />

K<br />

z<br />

F<br />

F<br />

p<br />

co


L<br />

C<br />

F<br />

F<br />

o<br />

o<br />

o<br />

esr<br />

=<br />

Compensator Design Example<br />

3V<br />

I<br />

o<br />

on<br />

T<br />

= 65×<br />

10<br />

=<br />

2π<br />

1<br />

L<br />

=<br />

−6<br />

o<br />

esr<br />

�� Vo 5V<br />

�� Io(nom) o(nom)<br />

10A<br />

�� Io(min) o(min)<br />

1A<br />

�� Switching frequency 100kHz<br />

�� Minimum output ripple 50mV<br />

C<br />

3 × 5 × 10 × 10<br />

10<br />

dI<br />

V<br />

o<br />

or<br />

o<br />

=<br />

= 65×<br />

10<br />

806<br />

Hz<br />

−6<br />

−6<br />

×<br />

= 15 μH<br />

2<br />

0.<br />

05<br />

1<br />

1<br />

6<br />

2 R C 2 65 10<br />

=<br />

= =<br />

−<br />

π<br />

π × ×<br />

= 2600μF<br />

2.<br />

5<br />

kHz<br />

50mV P-P


Compensator Design Example<br />

G<br />

m<br />

=<br />

G m + G s<br />

0.<br />

5(<br />

V<br />

sp<br />

3<br />

− 1)<br />

=<br />

0.<br />

5 × ( 11 − 1)<br />

3<br />

= + 4.<br />

5dB<br />

2.<br />

5<br />

= 4. 5 + 20 log( ) = 4.<br />

5 − 6 = −1.<br />

5dB<br />

5<br />

R = R × 100(<br />

40dB)<br />

= 1k<br />

× 100 = 100kΩ<br />

2<br />

1


F<br />

1<br />

Fco = Fs<br />

5<br />

z<br />

F<br />

F<br />

co<br />

esr<br />

EA<br />

=<br />

Compensator Design Example<br />

20 k<br />

= = 8 ⇒ lag = 97°<br />

2.<br />

5k<br />

F<br />

K<br />

lag<br />

co<br />

=<br />

F p = K × Fco<br />

=<br />

20 kHz<br />

= 360 − 45 − 97 = 218 ° ⇒ K =<br />

20<br />

4<br />

=<br />

= 5kHz<br />

⇒<br />

C1<br />

=<br />

4<br />

1<br />

2π<br />

( 100 k )( 5k<br />

)<br />

=<br />

318<br />

pF<br />

1<br />

4 × 20 = 80 kHz ⇒ C 2 =<br />

=<br />

2π<br />

( 100 k )( 80 k )<br />

20<br />

pF


Voltage Feed-Forward<br />

Feed Forward<br />

• Makes converter immune from input voltage variations


Voltage versus Current Mode Control


Various Types of Current Mode Control


Peak Current Mode Control<br />

• Slope compensation is needed


A Typical PWM Control IC


Current Limiting


Implementing Electrical Isolation<br />

in the Feedback Loop


Implementing Electrical Isolation<br />

in the Feedback Loop


Input Filter<br />

• Needed to comply with the EMI and harmonic limits


ESR of the Output Capacitor<br />

• ESR often dictates the peak-peak voltage ripple


Chapter 11<br />

Power Conditioners and<br />

Uninterruptible Power Supplies<br />

• Becoming more of a concern as utility de-regulation proceeds


Distortion in the Input Voltage<br />

• The voltage supplied by the utility may not be sinusoidal


Typical Voltage Tolerance<br />

Envelope for Computer Systems<br />

• This has been superceded by a more recent standard


Typical Range of Input Power Quality


Electronic Tap Changers<br />

• Controls voltage magnitude by connecting the output to<br />

the appropriate transformer tap


Uninterruptible Power Supplies<br />

(UPS)<br />

• Block diagram; energy storage is shown to be in<br />

batteries but other means are being investigated


UPS: Possible Rectifier Arrangements<br />

• The input normally supplies power to the load as well<br />

as charges the battery bank


UPS: Another Possible Rectifier<br />

Arrangement<br />

• Consists of a high-frequency isolation transformer


UPS: Another Possible Input<br />

Arrangement<br />

• A separate small battery charger circuit


Battery Charging Waveforms as<br />

Function of Time<br />

• Initially, a discharged battery is charged with a constant current


UPS: Various Inverter Arrangements<br />

• Depends on applications, power ratings


UPS: Control<br />

• Typically the load is highly nonlinear and the voltage output<br />

of the UPS must be as close to the desired sinusoidal<br />

reference as possible


UPS Supplying Several Loads<br />

• With higher power UPS supplying several loads,<br />

malfunction within one load should not disturb the other<br />

loads


Another Possible UPS Arrangement<br />

• Functions of battery charging and the inverter are combined


UPS: Using the Line Voltage as Backup<br />

• Needs static transfer switches


Chapter 16<br />

Residential and Industrial Applications<br />

• Significant in energy conservation; productivity


Inductive Ballast of Fluorescent Lamps<br />

• Inductor is needed to limit current


Rapid-Start Rapid Start Fluorescent Lamps<br />

• Starting capacitor is needed


Electronic Ballast for Fluorescent Lamps<br />

• Lamps operated at ~40 kHz


Induction Cooking<br />

• Pan is heated directly by circulating currents – increases<br />

efficiency


Industrial Induction Heating<br />

• Needs sinusoidal current at the desired frequency: two options


Welding Application


Switch-Mode Switch Mode Welders<br />

• Can be made much lighter weight


Chapter 17<br />

Electric Utility Applications<br />

• These applications are growing rapidly


HVDC Transmission<br />

• There are many such systems all over the world


Control of HVDC Transmission System<br />

• Inverter is operated at the minimum extinction angle<br />

and the rectifier in the current-control mode


HVDC Transmission: AC-Side AC Side Filters<br />

Tuned for the lowest (11 th and the 13 th harmonic)<br />

frequencies


Effect of Reactive Power on<br />

Voltage Magnitude


Thyristor-Controlled Thyristor Controlled Inductor (TCI)<br />

• Increasing the delay angle reduces the reactive power<br />

drawn by the TCI


Thyristor-Switched Thyristor Switched Capacitors (TSCs ( TSCs)<br />

• Transient current at switching must be minimized


Instantaneous VAR Controller (SATCOM)<br />

• Can be considered as a reactive current source


Characteristics of Solar Cells<br />

• The maximum power point is at the knee of the characteristics


Photovoltaic Interface<br />

• This scheme uses a thyristor inverter


Harnessing of Wing Energy<br />

• A switch-mode inverter may be needed on<br />

the wind generator side also


Active Filters for Harmonic Elimination<br />

• Active filters inject a nullifying current so that the current<br />

drawn from the utility is nearly sinusoidal


Chapter 18<br />

Utility Interface<br />

• Power quality has become an important issue


Various Loads Supplied by<br />

the Utility Source<br />

• PCC is the point of common coupling


Diode-Rectifier Diode Rectifier Bridge


Typical Harmonics in the Input Current<br />

• Single-phase diode-rectifier bridge


Harmonic Guidelines: IEEE 519<br />

• Commonly used for specifying limits on the input current<br />

distortion


Harmonic Guidelines: IEEE 519<br />

• Limits on distortion in the input voltage supplied by the utility


Reducing the Input Current Distortion<br />

• use of passive filters


Power-Factor<br />

Power Factor-Correction Correction (PFC) Circuit<br />

• For meeting the harmonic guidelines


Power-Factor<br />

Power Factor-Correction Correction (PFC)<br />

Circuit Control<br />

• generating the switch on/off signals


Power-Factor<br />

Power Factor-Correction Correction (PFC) Circuit<br />

• Operation during each half-cycle


Switch-Mode Switch Mode Converter Interface<br />

• Bi-directional power flow; unity PF is possible


Switch-Mode Switch Mode Converter Control<br />

• DC bus voltage is maintained at the reference value


Switch-Mode Switch Mode Converter Interface


EMI: Conducted Interefence<br />

• Common and differential modes


Switching Waveforms<br />

• Typical rise and fall times


Conducted EMI<br />

• Various Standards


Conducted EMI Filter


V d<br />

-<br />

+<br />

i D F<br />

D f<br />

Turn-off Turn off Snubber<br />

I o<br />

D s<br />

Turn-off<br />

snubber<br />

I o - i<br />

S R s<br />

i<br />

w i sw<br />

C<br />

C C s<br />

s<br />

s<br />

V d<br />

C s = I o t fi<br />

2V d , ton>2.3RsCs, Vd/Rs


+<br />

V d<br />

-<br />

D f<br />

L s<br />

S w<br />

I o<br />

R Ls<br />

D Ls<br />

Turn-on Turn on Snubber<br />

D f<br />

Snubber<br />

circuit<br />

+<br />

V d<br />

-<br />

L s<br />

D f<br />

R Ls<br />

D Ls<br />

S w<br />

Δv sw = L s I o<br />

t ri toff>2.3Ls/Rs Pr=1/2LsIo^2fs<br />

I o<br />

I o<br />

i<br />

sw<br />

With<br />

snubber<br />

Without<br />

snubber<br />

di<br />

L sw<br />

s<br />

dt<br />

V d<br />

v sw


Aspects of EMC (EMI、EMS)<br />

(EMI EMS)<br />

�� EMC is concerned with the generation,<br />

transmission, and reception of<br />

electromagnetic energy<br />

�� EMI occurs if the received energy<br />

causes the receptor to behave in an<br />

undesired manner


EMI Sources and Sensors


Three Ways to Prevent Interference<br />

� Suppress the emission at its source<br />

� Make the coupling path as inefficient as<br />

possible<br />

� Make the receptor less susceptible to<br />

the emission


Four Basic EMC Problems


Other Aspects of EMC


EMC Requirements<br />

�� Those required by governmental agencies<br />

�� Those imposed by the product manufacturer


Frequency Range of<br />

EMC Requirements


National Regulations Summary


Federal Communications<br />

Commission (FCC)<br />

�� Class A – for use in a commercial, industrial<br />

or business environment<br />

�� Class B – for use in a residential<br />

environment


FCC Emission for Class B


FCC Emission for Class A


Comparison of the FCC Class A and<br />

Class B Radiated Emission Limits


Open Area Test Site


Chamber for Measurement of<br />

Radiated Emissions


Radiated EMI Test Setup


Antennas


Conducted EMI Test Setup


Line Impedance Stabilization Network<br />

(LISN)


Conducted Emissions Test Layout


Conducted Emissions Test Layout


CISPR Bandwidth Requirements


Envelope<br />

Detector<br />

Quasi-Peak<br />

Detector<br />

Average<br />

Detector<br />

Three Detection Modes


Design Constraints for Products<br />

� Product Cost<br />

� Product Marketability<br />

� Product Manufacturability<br />

� Product Development Schedule


Advantages of EMC Design<br />

� Minimizing the additional cost required<br />

by suppression elements or redesign<br />

� Maintaining the development and product<br />

announcement schedule<br />

� Insuring that the product will satisfy<br />

the regulatory requirements


Effects of Component Leads


Resistors


1000Ω, Carbon Resistor<br />

having 1/4 Inch Lead Lengths


Capacitors


470 pF Ceramic Capacitor with<br />

Short Lead Lengths


470 pF Ceramic Capacitor with<br />

1/2 Inch Lead Lengths


0.15 μF Tantalum Capacitor with<br />

Short Lead Lengths


0.15 μF Tantalum Capacitor with<br />

1/2 Inch Lead Lengths


Inductors


1.2μH Inductor


Common-Mode Common Mode Choke


Common-Mode Common Mode Choke


Frequency Response of the<br />

Relative Permeabilities of Ferrite


Ferrite Beads


Multi-Turn Multi Turn Ferrite Beads


Driver Circuit of the DC Motor


The Periodic, Trapezoidal Pulse<br />

Train Representing Clock and<br />

Data Signals<br />

The key parameters that contribute to the highfrequency<br />

spectral content of the waveform are the<br />

rise-time and fall-time of the pulse.


The Spectra of 1V, 10MHz,<br />

50% Duty Cycle Trapezoidal Pulse Trains<br />

for Rise-/Fall-time of 20ns/5ns


Spectrum Analyzer


The Effect of Bandwidth on Spectrum


The Effects of Differential-Mode<br />

Current and Common-Mode Currents<br />

� Common-mode current often produce larger radiated<br />

emissions than the differential-mode currents


Differential-Mode Current Emission<br />

E , max<br />

| | =<br />

I<br />

D<br />

Kf<br />

D 2<br />

A


Radiated Emission due to<br />

the Differential-Mode Currents


Common Mistakes that Lead to<br />

Unnecessarily Large DM Emissions


Common-Mode Current Emission<br />

|<br />

E<br />

C<br />

I<br />

,<br />

max<br />

C<br />

| =<br />

Kf L


Radiated Emission due to<br />

the Common-Mode Currents


Susceptibility Models


10V/m, 100MHz Incident<br />

Uniform Plane Wave


Measurement of Conducted Emissions


Line Impedance Stabilization Network<br />

(LISN)


Differential-Mode and Common-Mode<br />

Current Components


Methods of Reducing the Common-Mode<br />

Conducted Emissions


Definition of the Insertion Loss<br />

of a Filter


Four Simple Filters<br />

V L , wo<br />

ω<br />

L<br />

IL = 20 log ( )<br />

10 = 20 log ( )<br />

10<br />

V<br />

R + R<br />

L , w<br />

S<br />

L


Insertion Loss Tests


Conducted EMI Filter


Common-Mode Common Mode Choke


The Equivalent Circuit of the Filter<br />

for Common-Mode Common Mode Currents


The Equivalent Circuit of the Filter<br />

for Differential-Mode Differential Mode Currents


The Dominant Component of<br />

Conducted Emission<br />

^<br />

I<br />

^<br />

^<br />

Total =<br />

I C ± I<br />

D


A Device to Separate the CM<br />

and DM Conducted Emissions


Measured Conducted Emissions<br />

without Power Supply Filter


Measured Conducted Emissions<br />

with 3300pF 3300pF<br />

Line-to Line to-Ground Ground Cap.


Measured Conducted Emissions<br />

with a 0.1μF 0.1 F Line-to Line to-Line Line Cap.


Measured Conducted Emissions<br />

with a Green Wire Inductor


Measured Conducted Emissions<br />

with a Common-Mode Common Mode Choke


Nonideal Effects in Diodes


Construction of Transformers


The Effect of Primary-to<br />

Primary to-Secondary<br />

Secondary<br />

Capacitance of a Transformer


The Proper Filter Placement in the<br />

Reduction of Conducted Emissions


Crosstalk<br />

� The unintended EM coupling between wires and<br />

PCB lands that are in close proximity.<br />

� Crosstalk between wires in cables or between lands<br />

on PCBs concerns the intrasystem interference<br />

performance of the product.


Three-Conductor Three Conductor Transmission<br />

Line illustrating Crosstalk


Wire-type Wire type Line illustrating Crosstalk


PCB Transmission Lines<br />

illustrating Crosstalk


The Equivalent Circuit of TEM Wave<br />

on Three-Conductor Three Conductor Transmission Line


The Simple Inductive-Capacitive<br />

Inductive Capacitive<br />

Coupling Model


Frequency Response of the Crosstalk<br />

^<br />

NE<br />

^<br />

V S<br />

V<br />

^<br />

FE<br />

^<br />

V S<br />

V<br />

=<br />

=<br />

=<br />

=<br />

jω(<br />

R<br />

NE<br />

Transfer Functions<br />

R<br />

+<br />

NE<br />

R<br />

FE<br />

IND<br />

j ω(<br />

M +<br />

jω(<br />

−<br />

R<br />

NE<br />

NE<br />

R<br />

+<br />

FE<br />

R<br />

R<br />

M<br />

FE<br />

IND<br />

j ω(<br />

M + M<br />

FE<br />

S<br />

L<br />

+<br />

CAP<br />

NE<br />

R<br />

CAP<br />

FE<br />

m<br />

S<br />

R<br />

)<br />

L<br />

+<br />

)<br />

m<br />

L<br />

R<br />

+<br />

L<br />

R<br />

R<br />

+<br />

NE<br />

NE<br />

R<br />

R<br />

R<br />

+ R<br />

NE<br />

NE<br />

FE<br />

FE<br />

R<br />

+ R<br />

FE<br />

RLC<br />

m<br />

R + R<br />

FE<br />

S<br />

S<br />

L<br />

)<br />

RLC<br />

m<br />

R + R<br />

L<br />

)


Effect of Load Impedance


Common-impedance Common impedance Coupling<br />

^<br />

V<br />

^<br />

V<br />

^<br />

V<br />

^<br />

V<br />

NE<br />

S<br />

FE<br />

S<br />

= jω(<br />

M + M ) +<br />

IND<br />

NE<br />

IND<br />

FE<br />

CAP<br />

NE<br />

= jω(<br />

M + M ) +<br />

CAP<br />

FE<br />

M<br />

M<br />

CI<br />

NE<br />

CI<br />

FE


Time-Domain Time Domain Crosstalk for R=50Ω<br />

R=50


Time-Domain Time Domain Crosstalk for R=1KΩ<br />

R=1K


The Capacitance Equivalent for<br />

the Shielded Receptor Wire


The Lumped Equivalent Circuit for<br />

V<br />

Capacitive Coupling<br />

R<br />

^ CAP ^ CAP<br />

NE FE RS GS<br />

NE = V FE ≅<br />

jω<br />

VG<br />

DC<br />

RNE<br />

+ RFE<br />

C RS + CGS<br />

R<br />

C<br />

C


Illustration of Placing a Shield<br />

on Inductive Coupling


The Lumped Equivalent Circuit<br />

^<br />

V<br />

IND<br />

NE<br />

=<br />

for Inductive Coupling<br />

R<br />

NE<br />

R<br />

+<br />

NE<br />

R<br />

FE<br />

jωL<br />

GR<br />

^<br />

I<br />

G<br />

R<br />

SH<br />

R<br />

+<br />

SH<br />

jωL<br />

SH<br />

SF<br />

=<br />

R<br />

SH<br />

R<br />

+<br />

SH<br />

jωL<br />

SH


Explanation of the Effect<br />

of Shield Grounding


Twisted Wires


The Inductive-Capacitive<br />

Inductive Capacitive<br />

Coupling Model


Terminating a Twisted Pair


A Model for the Unbalanced<br />

Twisted Receptor Wire Pair


Explanation of the Effect<br />

of an Unbalanced Twisted Pair


The Three Levels of<br />

Reducing Inductive Crosstalk


A Coupling Model<br />

for the Balanced Termination


The Effect of Balanced<br />

and Unbalanced Terminations


Purposes of a Shield<br />

� To prevent the emissions of the electronics<br />

of the product from radiating outside the<br />

boundaries of the product<br />

� To prevent radiated emissions external to<br />

the product from coupling to the product’s<br />

electronics


Degradation of Shielding<br />

Effectiveness


Termination of a Cable Shield<br />

� The cable shield may become a monopole antenna, if<br />

the ground potential is varying<br />

� Peripheral cables such as printer cables for PC tend<br />

to have lengths of order 1.5m, which is a quarter-<br />

wavelength at 50MHz<br />

to a Noisy Point<br />

� Resonances in the radiated emissions of a product due<br />

to common-mode currents on these types of<br />

peripheral cables are frequently observed in the<br />

frequency range of 50-100MHz


dB<br />

Shielding Effectiveness<br />

SE = R + A +<br />

dB<br />

dB<br />

M<br />

dB<br />

� R represents<br />

the reflection loss<br />

� A represents<br />

the absorption loss<br />

� M represents<br />

the additional effects<br />

of multiple reflections<br />

/ transmissions


R<br />

dB<br />

≅<br />

Reflection Loss<br />

20<br />

log<br />

10<br />

� By referring to<br />

copper,<br />

R<br />

dB<br />

=<br />

168<br />

+<br />

10<br />

ηo<br />

( )<br />

4η<br />

log<br />

10<br />

≅<br />

(<br />

20<br />

σ<br />

μ<br />

log<br />

� The reflection loss is larger at lower<br />

r<br />

r<br />

f<br />

)<br />

10<br />

(<br />

1<br />

4<br />

σ<br />

ωμ<br />

frequencies and high-conductivity metals<br />

r<br />

ε<br />

o<br />

)


Absorption Loss<br />

t / δ<br />

AdB = 20 log 10 e = 131 . 4t<br />

fμ<br />

rσ<br />

r<br />

� The absorption loss increases with increasing<br />

frequencies as f


Shielding Effectiveness


Shielding Effectiveness<br />

� Reflection loss is the primary contributor to<br />

the shielding effectiveness at low frequencies<br />

� At the higher frequencies, ferrous materials<br />

increase the absorption loss and the total<br />

shielding effectiveness


Shielding Effectiveness of Metals


The Methods of Shielding against<br />

Low-Frequency Low Frequency Magnetic Fields<br />

� The permeability of ferromagnetic materials decreases<br />

with increasing frequency<br />

� The permeability of ferromagnetic materials decrease<br />

with increasing magnetic field strength


The Frequency Dependence<br />

of Various Ferromagnetic Materials


The Phenomenon of Saturation of<br />

Ferromagnetic Materials


The Bands to Reduced the<br />

Magnetic Field of Transformer<br />

Leakage Flux


Effects of Apertures<br />

Since it is not feasible to determine the direction of the<br />

induced current and place the slot direction appropriately,<br />

a large number of small holes are used instead


ESD Events<br />

� Typical rise times are of order 200ps-70ns, with a<br />

total duration of around 100ns-2μs<br />

� The peak levels may approach tens of amps for a<br />

voltage difference of 10kV<br />

� The spectral content of the arc may have large<br />

amplitudes, and can extend well into the GHz<br />

frequency range


Effects of the ESD Events<br />

� The intense electrostatic field created by<br />

the charge separation prior to the ESD arc<br />

� The intense arc discharge current


Three Techniques for Preventing<br />

Problems Caused by an ESD Event<br />

� Prevent occurrence of the ESD event<br />

� Prevent or reduce the coupling (conduction or radiation)<br />

to the electronic circuitry of the product (hardware<br />

immunity)<br />

� Create an inherent immunity to the ESD event in the<br />

electronic circuitry through software (software<br />

immunity)


Preventing the ESD Event<br />

� Electronic components such as ICs are placed in pink<br />

polyethlene bags or have their pins inserted in antistatic<br />

foam for transport<br />

� Some products can utilize charge generation prevention<br />

techniques<br />

� For example, printers constantly roll paper around a<br />

rubber platen. This causes charge to be stripped off the<br />

paper, resulting in a building of static charge on the rubber<br />

platen.<br />

� Wires brushes contacting the paper or passive ionizers<br />

prevent this charge building


Hardware Immunity<br />

� Secondary arc discharges<br />

� Direct conduction<br />

� Electric field (Capacitive) coupling<br />

� Magnetic field (Inductive) coupling


Preventing the Secondary<br />

Arc Discharges


Single-point Single point Ground


Use of Shielded Cables to<br />

Exclude ESD Coupling


The Methods of Preventing<br />

ESD-induced ESD induced Currents


Reduction of Loop Area in<br />

Power Distribution Circuits


Reduction of Loop Areas to Reduce<br />

the Pickup of Signal Lines


Software Immunity<br />

� Watchdog routines that periodically check<br />

whether program flow is correct<br />

� The use of parity bits, checksums and errorcorrecting<br />

codes can prevent the recording of<br />

ESD-corrupted data<br />

� Unused module inputs should be tied to ground<br />

or +5V to prevent false triggering by an ESD<br />

event


Packaging Consideration<br />

� A critical aspect of incorporating good EMC design is<br />

an awareness of these nonideal effects throughout<br />

the functional design process<br />

� Another critical aspect in successful EMC design of a<br />

system is to not place reliance on “brute force fixes”<br />

such as “shielding” and “grounding”


Common-impedance Common impedance Coupling


The Effect of Conductor<br />

Inductance on Ground Voltage


Segregation of Grounds


Ground Problems between<br />

Analog and Digital Grounds


The Generation and Blocking of<br />

CM Currents on Interconnect Cables


Methods for Decoupling<br />

Subsystems


Interconnection and<br />

Number of PCBs<br />

� It is preferable to have only one system PCB rather<br />

than several smaller PCBs interconnected by cables<br />

� The PCBs can be interconnected by plugging their<br />

edge connectors into the motherboard


Use of Interspersed Grounds<br />

to Reduce Loop Areas


PCB and Subsystem Placement<br />

Attention should be paid to the placement and<br />

orientation<br />

of the PCBs in the system


Decoupling Subsystems<br />

� Common-mode currents flowing between subsystems can<br />

be effectively blocked with ferrite, common-mode<br />

chokes<br />

� Another method of decoupling subsystems is insert a<br />

filter in the connection wires or lands between the<br />

subsystems. This filter can be in the form of R-C packs,<br />

ferrite beads, or a combination<br />

� High-frequency signals on the power distribution system<br />

between subsystems can be reduced by the use of<br />

decoupling capacitors


Splitting Crystal/ Oscillator Frequencies<br />

� The 16 th harmonics (32MHz and 31.696MHz) are separated by<br />

304kHz, so that they will not add in the bandwidth of the receiver<br />

� The 100 th harmonic of the 2MHz signal (200MHz) and the 101 st<br />

harmonic of the 1.981MHz signal (200.081MHz) will be within<br />

81kHz of each other and will add in the bandwidth of the receiver


Component Placement


Component Placement


A Good Layout for a<br />

Typical Digital System


Creation of a Quiet Ground<br />

where Connectors Enter a PCB


Unintentional Coupling of Signals<br />

between Chip Bonding Wires<br />

� Placing a small inductor in series with that pin to block<br />

the high-frequency signal<br />

� Ferrite beads could also be used, but their impedance is<br />

typically limited to a few hundred ohms


Use of Decoupling Capacitors


Decoupling Capacitor Placement


Minimizing the Loop Area of<br />

the Power Distribution Circuits

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!