19.01.2013 Views

For consideration of publication in American Journal of Physiology ...

For consideration of publication in American Journal of Physiology ...

For consideration of publication in American Journal of Physiology ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Articles <strong>in</strong> PresS. Am J Physiol Cell Physiol (March 12, 2003). 10.1152/ajpcell.00497.2002<br />

Alp<strong>in</strong>i et al. 1<br />

C-00497-2002.R2<br />

<strong>For</strong> <strong>consideration</strong> <strong>of</strong> <strong>publication</strong> <strong>in</strong> <strong>American</strong> <strong>Journal</strong> <strong>of</strong> <strong>Physiology</strong> February 3, 2003<br />

Increased Susceptibility <strong>of</strong> Cholangiocytes to Tumor Necrosis Factor-α Cytotoxicity after Bile Duct<br />

Ligation<br />

Gianfranco Alp<strong>in</strong>i, Ph. D. 1, 4, 5<br />

Yoshiyuki Ueno, M. D., Ph. D. 3<br />

Laura Tadlock, M. H. S. M. 2<br />

Shannon S Glaser, M. S. 2<br />

Gene LeSage, M.D. 1<br />

Heather Francis, B. S. 2<br />

Silvia Taffetani, M. D. 2<br />

Marco Marzioni, M. D. 4<br />

Domenico Alvaro, M. D. 6<br />

Tushar Patel, M.D. 1<br />

1 From the Department <strong>of</strong> Internal Medic<strong>in</strong>e and 4 Medical <strong>Physiology</strong>, 2 Division <strong>of</strong> Research and<br />

Education, Scott & White Hospital and The Texas A&M University System Health Science Center,<br />

College <strong>of</strong> Medic<strong>in</strong>e and 5 Central Texas Veterans Health Care System, Temple, TX 76504, 6 Division<br />

<strong>of</strong> Gastroenterology, University <strong>of</strong> Rome, "La Sapienza", Rome, Italy, and 3 Division <strong>of</strong><br />

Gastroenterology, Tohoku University School <strong>of</strong> Med, Aobaku, Sendai, Japan, 6 Div Gastroenterol,<br />

University <strong>of</strong> Rome, "La Sapienza", Rome, Italy. This work was supported by a grant award to Dr.<br />

Patel, Dr. LeSage and Dr. Alp<strong>in</strong>i from Scott & White Hospital and The Texas A&M University<br />

System, by Grant-<strong>in</strong>-Aid for Scientific Research (C) (13670488) from JSPS to Dr. Ueno, by Grant<br />

from MURST 40%(MM06215421/2) progetto nazionale 2000 to Dr. Domenico Alvaro, by a NIH<br />

grants DK 02678 and DK 60637 to Dr. Patel, by an NIH grant DK 54208 to Dr. LeSage and by a VA<br />

Merit Award and an NIH grant DK 58411 to Dr. Alp<strong>in</strong>i.<br />

Short Title: TNF-α <strong>in</strong>duction <strong>of</strong> bile duct <strong>in</strong>jury<br />

Key words: Apoptosis; bile flow; <strong>in</strong>trahepatic biliary epithelium; proliferation; secret<strong>in</strong>.<br />

Abbreviations: BDL = bile duct ligation; BSA = bov<strong>in</strong>e serum album<strong>in</strong>; cAMP = adenos<strong>in</strong>e 3', 5’monophosphate;<br />

CK-19 = cytokerat<strong>in</strong>-19; KRH = Krebs R<strong>in</strong>ger Henseleit; γ-GT = γglutamyltranspeptidase;<br />

MTS = 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2- (4sulfophenyl)-2H-tetrazolium,<br />

<strong>in</strong>ner salt; PCNA = proliferat<strong>in</strong>g cellular nuclear antigen.<br />

Address Correspondence to Tushar Patel, M.D..<br />

Associate Pr<strong>of</strong>essor <strong>of</strong> Internal Medic<strong>in</strong>e and<br />

Division <strong>of</strong> Gastroenterology<br />

Scott & White Cl<strong>in</strong>ic<br />

Texas A&M University Health Science Center<br />

2401 South 31 th Street<br />

Temple, Texas 76502<br />

Phone: 254-724-2237<br />

Fax: 254-724-8276<br />

E-mail: tpatel@medic<strong>in</strong>e.tamu.edu<br />

Copyright (c) 2003 by the <strong>American</strong> Physiological Society.


Abstract<br />

Alp<strong>in</strong>i et al. 2<br />

C-00497-2002.R2<br />

Tumor necrosis factor (TNF)- α plays a critical role <strong>in</strong> epithelial cell <strong>in</strong>jury. However, the role <strong>of</strong><br />

TNF- α <strong>in</strong> mediat<strong>in</strong>g cholangiocyte <strong>in</strong>jury under physiological or pathophysiological conditions are<br />

unknown. Thus, we assessed the effects <strong>of</strong> TNF- α alone or follow<strong>in</strong>g sensitization by act<strong>in</strong>omyc<strong>in</strong> D<br />

on cell apoptosis, proliferation and basal and secret<strong>in</strong>-stimulated ductal secretion <strong>in</strong> cholangiocytes<br />

from normal or bile duct ligated (BDL) rats. Cholangiocytes from normal or BDL rats were highly<br />

resistant to TNF- α alone. However, pre-sensitization by act<strong>in</strong>omyc<strong>in</strong> D <strong>in</strong>creased apoptosis <strong>in</strong><br />

cholangiocytes follow<strong>in</strong>g BDL, and was associated with an <strong>in</strong>hibition <strong>of</strong> proliferation and secret<strong>in</strong>-<br />

stimulated ductal secretion. Thus, TNF- α mediates cholangiocyte <strong>in</strong>jury and altered ductal secretion<br />

follow<strong>in</strong>g bile duct ligation. These observations suggest that cholestasis may enhance susceptibility to<br />

cytok<strong>in</strong>e-mediated cholangiocyte <strong>in</strong>jury.


Introduction<br />

Alp<strong>in</strong>i et al. 3<br />

C-00497-2002.R2<br />

Bile flow orig<strong>in</strong>ates from both hepatocyte and cholangiocyte secretion (5, 41). Cholangiocytes modify<br />

canalicular bile by a series <strong>of</strong> reabsorptive and secretory events regulated by gastro<strong>in</strong>test<strong>in</strong>al hormones<br />

(5, 15, 20, 31, 39) and bile salts (4). The hormone secret<strong>in</strong> plays an important role by stimulat<strong>in</strong>g<br />

ductal secretion (3, 5-8, 24, 25, 39) by <strong>in</strong>teraction with specific receptors on cholangiocytes (9) through<br />

an <strong>in</strong>crease <strong>in</strong> <strong>in</strong>tracellular adenos<strong>in</strong>e 3', 5’-monophosphate (cAMP) levels (3, 4, 7, 20, 25, 30, 32-34).<br />

The <strong>in</strong>crease <strong>in</strong> cAMP levels leads to the open<strong>in</strong>g <strong>of</strong> Cl - channels (16), activation <strong>of</strong> the Cl - -<br />

/HCO3 exchanger (7) with subsequent secretion <strong>of</strong> bicarbonate <strong>in</strong>to bile (5).<br />

In normal physiological conditions, cholangiocytes are mitotically quiescent (3, 32) but undergo<br />

proliferation/loss <strong>in</strong> response to <strong>in</strong>jury/tox<strong>in</strong>s such as bile duct ligation (BDL) (3, 5, 19, 30), partial<br />

hepatectomy (32) or acute carbon tetrachloride (CCl 4 ) adm<strong>in</strong>istration (34). Cholangiocyte<br />

proliferation [e.g., after BDL (3, 5, 19, 30) or partial hepatectomy (32)] is associated with <strong>in</strong>creased<br />

secret<strong>in</strong>-stimulated ductal secretion (3, 5, 20, 30, 32), whereas cholangiocyte loss (e.g., after acute CCl 4<br />

adm<strong>in</strong>istration) is associated with a loss <strong>of</strong> secret<strong>in</strong>-<strong>in</strong>duced cholangiocyte secretion (34). Cholestasis,<br />

def<strong>in</strong>ed as impaired bile flow, can be due to functional impairment <strong>of</strong> either hepatocyte or<br />

cholangiocyte function (5, 6, 13). Chronic cholestasis is a feature <strong>of</strong> many diverse chronic liver<br />

diseases such as biliary strictures (52), scleros<strong>in</strong>g cholangitis (27), as well as biliary (51) or pancreatic<br />

(11) malignancies. Recent studies have provided <strong>in</strong>sights <strong>in</strong>to the role <strong>of</strong> impaired canalicular<br />

membrane transport function as well as the effects <strong>of</strong> impaired bile flow and bile salt accumulation on<br />

hepatocyte <strong>in</strong>jury (21, 28, 29, 53). Although cholangiocyte <strong>in</strong>jury and dysfunction may also contribute<br />

to cholestasis, the mechanisms <strong>of</strong> cholangiocyte <strong>in</strong>jury dur<strong>in</strong>g chronic cholestasis rema<strong>in</strong> unclear.<br />

Death receptors such as TNF-α are members <strong>of</strong> a super-family characterized by <strong>in</strong>tracellular doma<strong>in</strong>s<br />

that mediate death <strong>in</strong> response to extracellular stimuli. TNF- α plays a critical role <strong>in</strong> epithelial cell<br />

<strong>in</strong>jury as well as <strong>in</strong> immune-mediated cholangiocyte <strong>in</strong>jury (44). Immune mediated <strong>in</strong>jury has been<br />

implicated <strong>in</strong> the pathogenesis <strong>of</strong> chronic cholestatic diseases affect<strong>in</strong>g the biliary tract such as primary<br />

biliary cirrhosis or primary scleros<strong>in</strong>g cholangitis (6). Systemic levels <strong>of</strong> TNF- α are <strong>in</strong>creased<br />

follow<strong>in</strong>g biliary obstruction <strong>in</strong> mice (12). Furthermore, TNF- α (<strong>in</strong> comb<strong>in</strong>ation with other


Alp<strong>in</strong>i et al. 4<br />

C-00497-2002.R2<br />

<strong>in</strong>flammatory cytok<strong>in</strong>es) <strong>in</strong>hibits cholangiocyte secretory function <strong>in</strong> vitro (50). However, the<br />

contribution <strong>of</strong> TNF- α and the role <strong>of</strong> death receptor signal<strong>in</strong>g <strong>in</strong> cholangiocyte <strong>in</strong>jury and their effect<br />

on cholangiocyte function dur<strong>in</strong>g chronic cholestasis are unknown.<br />

The aim <strong>of</strong> our study was to assess the role played by the death receptor TNF-α <strong>in</strong> mediat<strong>in</strong>g<br />

cholangiocyte <strong>in</strong>jury <strong>in</strong> normal physiological conditions and dur<strong>in</strong>g extrahepatic cholestasis <strong>in</strong>duced<br />

by BDL. We asked the follow<strong>in</strong>g questions: Does death receptor mediated signal<strong>in</strong>g enhance cell<br />

death <strong>in</strong> cholangiocytes dur<strong>in</strong>g experimental biliary tract obstruction? Does TNF- α modulate<br />

cholangiocyte growth or apoptosis <strong>in</strong> vivo dur<strong>in</strong>g experimental bile duct ligation? Does TNF- α<br />

contribute to functional impairment <strong>of</strong> ductal bile secretion <strong>in</strong> vivo? What are the cellular mechanisms<br />

by which cholangiocytes are susceptible to death receptor mediated cytotoxicity?<br />

MATERIALS AND METHODS<br />

Materials<br />

Reagents were purchased from Sigma Chemical (St Louis, MO) unless otherwise <strong>in</strong>dicated. Porc<strong>in</strong>e<br />

secret<strong>in</strong> was purchased from Pen<strong>in</strong>sula Laboratories (Belmont, CA). RIA kits for the determ<strong>in</strong>ation <strong>of</strong><br />

<strong>in</strong>tracellular cAMP levels were purchased from Amersham (Arl<strong>in</strong>gton Heights, IL). The substrate for<br />

γ-glutamyltranspeptidase (γ-GT), N (γ-L-glutamyl)-4-methoxy-2-naphthylamide, was purchased from<br />

Polysciences (Warr<strong>in</strong>gton, PA). The mouse anti-cytokerat<strong>in</strong> 19 (CK-19) antibody was purchased<br />

from Amersham (Arl<strong>in</strong>gton Heights, IL). The monoclonal mouse antibody aga<strong>in</strong>st proliferat<strong>in</strong>g<br />

cellular nuclear antigen (PCNA) was purchased from DAKO (Kyoto, Japan). The tetrazolium<br />

bioreduction assay was purchased from Promega (Madison, WI). Recomb<strong>in</strong>ant TNF- α was<br />

purchased from R&D (M<strong>in</strong>neapolis, MN). The monoclonal mouse antibodies aga<strong>in</strong>st the TNF- α R-<br />

1 receptor were obta<strong>in</strong>ed from Santa Cruz Biotechnology, Santa Cruz, CA. The monoclonal mouse<br />

antibody aga<strong>in</strong>st the full-length human caspase-3 prote<strong>in</strong> was purchased from Oncogene Research<br />

Products, San Diego, CA.


Animal model<br />

Alp<strong>in</strong>i et al. 5<br />

C-00497-2002.R2<br />

Male Fisher 344 rats (175-200 gm) were purchased from Charles River (Wilm<strong>in</strong>gton, MA),<br />

ma<strong>in</strong>ta<strong>in</strong>ed <strong>in</strong> a temperature-controlled environment (20-22°C) with a 12:12-hour light-dark cycle, and<br />

fed ad libitum standard rat chow. Rats had free access to dr<strong>in</strong>k<strong>in</strong>g water. The <strong>in</strong> vivo studies on<br />

cholangiocyte apoptosis, proliferation and secretion were performed <strong>in</strong> liver sections and pure<br />

cholangiocytes from normal rats and rats that, follow<strong>in</strong>g BDL or bile duct <strong>in</strong>cannulation [BDI, for bile<br />

collection (5)] for 7 days, were treated by a s<strong>in</strong>gle IP <strong>in</strong>jection with: (i) 0.9% NaCl; (ii) act<strong>in</strong>omyc<strong>in</strong> D<br />

(100 µg/Kg body weight)]; (iii) TNF-α (50 ng/Kg body weight); or (iv) act<strong>in</strong>omyc<strong>in</strong> D (100 µg/Kg<br />

body weight) + TNF- α (50 ng/Kg body weight). Twenty-four hours later, the animals were used for<br />

the selected experiments (e.g., preparation <strong>of</strong> liver blocks, isolation <strong>of</strong> cholangiocytes or collection <strong>of</strong><br />

bile). The <strong>in</strong> vitro studies were performed <strong>in</strong> pure cholangiocytes isolated from normal rats and rats<br />

with BDL for 8 days as described below. BDL or BDI were performed as described (5). Before each<br />

experimental procedure, the animals were anaesthetised with pentobarbital sodium (50 mg/kg weight,<br />

IP) accord<strong>in</strong>g to the regulations <strong>of</strong> the panel on euthanasia <strong>of</strong> the <strong>American</strong> Veter<strong>in</strong>arian Medical<br />

Association.<br />

Purification <strong>of</strong> Cholangiocytes<br />

The isolation <strong>of</strong> pure cholangiocytes from the selected group <strong>of</strong> animals was achieved by<br />

immunoaff<strong>in</strong>ity separation us<strong>in</strong>g a mouse monoclonal gMantibody (k<strong>in</strong>dly provided by Dr. R. Faris,<br />

Brown University, Providence, RI) aga<strong>in</strong>st an unidentified membrane antigen expressed by all rat<br />

<strong>in</strong>trahepatic cholangiocytes (23). Cell number and viability was assessed by trypan blue exclusion.<br />

Cholangiocyte purity was assessed by histochemistry for γ-GT (48).<br />

In Vivo Effect <strong>of</strong> Acute Adm<strong>in</strong>istration <strong>of</strong> Act<strong>in</strong>omyc<strong>in</strong> D, TNF-α or Act<strong>in</strong>omyc<strong>in</strong> D + TNF-<br />

α on Cholangiocyte Apoptosis, Proliferation and Ductal Functional Activity<br />

We performed studies to determ<strong>in</strong>e if <strong>in</strong> vivo adm<strong>in</strong>istration <strong>of</strong> act<strong>in</strong>omyc<strong>in</strong> D + TNF- α <strong>in</strong>duces<br />

damage <strong>of</strong> bile ducts with loss <strong>of</strong> proliferative and secretory activity <strong>of</strong> cholangiocytes <strong>of</strong> BDL but not


Alp<strong>in</strong>i et al. 6<br />

C-00497-2002.R2<br />

normal rats. Normal rats and rats with BDL or BDI for 7 days were treated by a s<strong>in</strong>gle IP <strong>in</strong>jection <strong>of</strong>:<br />

(i) 0.9% NaCl; (ii) act<strong>in</strong>omyc<strong>in</strong> D (100 µg/Kg body weight)]; (iii) TNF- α (50 ng/Kg body weight);<br />

or (iv) TNF- α (50 ng/Kg body weight) + act<strong>in</strong>omyc<strong>in</strong> D (100 µg/Kg body weight). Twenty four<br />

hours later, we evaluated: (i) duct damage by TUNEL analysis; (ii) cholangiocyte proliferation by<br />

quantitative measurement <strong>of</strong> the number <strong>of</strong> PCNA- or CK-19-positive cholangiocytes <strong>in</strong> liver sections<br />

(33) and PCNA prote<strong>in</strong> expression by immunoblots (19) <strong>in</strong> purified cholangiocytes; and (iii) ductal<br />

functional activity by measurement <strong>of</strong> secret<strong>in</strong>-stimulated bicarbonate rich choleresis <strong>in</strong> bile fistula rats<br />

(5) and secret<strong>in</strong>-<strong>in</strong>duced cAMP levels <strong>in</strong> purified cholangiocytes. When <strong>in</strong>jected <strong>in</strong>to the hepatic<br />

artery, secret<strong>in</strong> <strong>in</strong>duces an <strong>in</strong>crease <strong>in</strong> bicarbonate <strong>of</strong> normal rats (22). However, s<strong>in</strong>ce secret<strong>in</strong> does<br />

not <strong>in</strong>duces choleresis <strong>in</strong> normal rats when adm<strong>in</strong>istered <strong>in</strong>travenously (5, 32), we evaluated the <strong>in</strong> vivo<br />

effect <strong>of</strong> secret<strong>in</strong> on bile and bicarbonate secretion <strong>in</strong> BDI but not normal rats.<br />

a. Measurement <strong>of</strong> Cholangiocyte Apoptosis and Proliferation<br />

Cholangiocyte apoptosis was evaluated by TUNEL analysis <strong>in</strong> liver sections (33) and measurement <strong>of</strong><br />

caspase 3 prote<strong>in</strong> expression by immunoblots and caspase 3 activity <strong>in</strong> purified cholangiocytes by a<br />

commercially availbale kit. TUNEL analysis was also performed us<strong>in</strong>g a commercially available kit<br />

(Wako Chemicals, Tokyo, Japan). Follow<strong>in</strong>g countersta<strong>in</strong><strong>in</strong>g with Hematoxyl<strong>in</strong> solution, sections<br />

were exam<strong>in</strong>ed by light microscopy with an Olympus BX-40 microscope equipped with a CCD<br />

camera. Approximately 200 cells per slide were counted <strong>in</strong> a coded fashion <strong>in</strong> seven non-overlapp<strong>in</strong>g<br />

fields. The activity <strong>of</strong> caspase 3 <strong>in</strong> purified cholangiocytes was measured as follows. Pure<br />

cholangiocytes from the selected group <strong>of</strong> animals were centrifuged at 1,500 rpm for 10 m<strong>in</strong>utes,<br />

<strong>in</strong>cubated <strong>in</strong> lysis buffer on ice for 10 m<strong>in</strong>utes, and centrifuged at 10,000 g for 10 m<strong>in</strong>utes. Follow<strong>in</strong>g<br />

centrifugation, the supernatant, conta<strong>in</strong><strong>in</strong>g the cytosolic fraction, was transferred to a clean tube. <strong>For</strong><br />

each sample, 100 µg <strong>of</strong> prote<strong>in</strong>s or BSA (negative control) were added to 50 ml <strong>of</strong> 2x Reaction Buffer.<br />

Caspase activity was measured by proteolytic cleavage <strong>of</strong> the caspase-3 like substrate, DEVD-pNA.<br />

The assay is based on the photometric detection <strong>of</strong> the chromophore p-nitroanilide (pNA) after<br />

cleavage from the substrates. The pNA light emission was quantified us<strong>in</strong>g a microtiter plate reader at<br />

406 nm. The quantitative prote<strong>in</strong> expression <strong>of</strong> caspase 3 <strong>in</strong> purified cholangiocytes was evaluated by


Alp<strong>in</strong>i et al. 7<br />

C-00497-2002.R2<br />

immunoblots. Prote<strong>in</strong>s (10 µg/lane) were resolved by SDS-7.5% polyacrylamide gel electrophoresis<br />

and transferred onto a nitrocellulose membrane. After block<strong>in</strong>g, the membrane was <strong>in</strong>cubated<br />

overnight at 4 o C with a mouse antibody aga<strong>in</strong>st the full-length human caspase-3 prote<strong>in</strong> (1:500)<br />

(Oncogene Research Products) followed by <strong>in</strong>cubation with an HRP-Goat-Anti-Mouse IgG + A+M<br />

(1:2000) (Zymed, San Fransisco, CA). Follow<strong>in</strong>g several washes, the membrane was visualized us<strong>in</strong>g<br />

chemilum<strong>in</strong>escence (ECL Plus kit, Amersham Life Science, Little Chalfont, Buck<strong>in</strong>ghamshire,<br />

England). The <strong>in</strong>tensity <strong>of</strong> the bands was determ<strong>in</strong>ed us<strong>in</strong>g the ChemiImager TM 4000 low light<br />

imag<strong>in</strong>g system (Alpha Innotech Corp., San Leandro, CA).<br />

To detect the number <strong>of</strong> PCNA- or CK-19 positive cholangiocytes, we performed<br />

immunohistochemistry <strong>in</strong> liver sections (n=3) from the selected group <strong>of</strong> animals (33). Sections were<br />

countersta<strong>in</strong>ed with hematoxyl<strong>in</strong> and exam<strong>in</strong>ed under a light microscope (Olympus Optical Co., BX<br />

40, Tokyo, Japan). Approximately 200 cells per slide were counted <strong>in</strong> a coded fashion <strong>in</strong> seven non-<br />

overlapp<strong>in</strong>g fields. Immunoblots for PCNA <strong>in</strong> purified cholangiocytes from the selected group <strong>of</strong><br />

animals was performed as described (19). Prote<strong>in</strong>s (10 µg/lane) were resolved by SDS-7.5%<br />

polyacrylamide gel electrophoresis and transferred onto a nitrocellulose membrane. After block<strong>in</strong>g,<br />

the membrane was <strong>in</strong>cubated overnight at 4 o C with a rabbit anti-PCNA antibody (1:200) followed by<br />

<strong>in</strong>cubation with an anti-rabbit biot<strong>in</strong>ylated anti-mouse immunoglobul<strong>in</strong> (ECL kit, Amersham Life<br />

Science, Little Chalfont, Buck<strong>in</strong>ghamshire, England) diluted 1:100,000 with TBST. Follow<strong>in</strong>g several<br />

washes, the membrane was visualized us<strong>in</strong>g chemilum<strong>in</strong>escence (ECL Plus kit, Amersham Life<br />

Science, Little Chalfont, Buck<strong>in</strong>ghamshire, England). The <strong>in</strong>tensity <strong>of</strong> the bands was determ<strong>in</strong>ed<br />

us<strong>in</strong>g the ChemiImager TM 4000 low light imag<strong>in</strong>g system (Alpha Innotech Corp.).<br />

b. Measurement <strong>of</strong> Ductal Functional Activity<br />

Basal and secret<strong>in</strong>-stimulated <strong>in</strong>tracellular cAMP levels [an <strong>in</strong>dex <strong>of</strong> cholangiocyte proliferation and<br />

cholangiocyte secretion (3, 19, 30)] were determ<strong>in</strong>ed <strong>in</strong> pure cholangiocytes from the selected group <strong>of</strong><br />

animals. Follow<strong>in</strong>g purification, cholangiocytes were <strong>in</strong>cubated for 1 hour at 37 o C to restore surface<br />

prote<strong>in</strong>s damaged by treatment with proteolytic enzymes and subsequently stimulated with 0.2% BSA<br />

(basal) or secret<strong>in</strong> (100 nM) <strong>in</strong> the presence <strong>of</strong> 0.2% BSA for 5 m<strong>in</strong>utes at 22°C (3, 7, 19, 20, 23, 25,


Alp<strong>in</strong>i et al. 8<br />

C-00497-2002.R2<br />

30, 32-34). Follow<strong>in</strong>g ethanol extraction, cAMP levels were measured by RIA us<strong>in</strong>g a commercially<br />

available kit (Amersham) (3, 7, 19, 23, 25, 30, 32-34).<br />

Follow<strong>in</strong>g anaesthesia, rats were surgically prepared for bile collection (5). When steady-state bile<br />

flow was achieved, secret<strong>in</strong> (100 nM) was <strong>in</strong>fused for 30 m<strong>in</strong>utes followed by a f<strong>in</strong>al <strong>in</strong>fusion <strong>of</strong><br />

Krebs R<strong>in</strong>ger Henseleit (KRH) for 30 m<strong>in</strong>utes. Bile was collected at 10-m<strong>in</strong>ute <strong>in</strong>tervals, placed <strong>in</strong><br />

pre-weighed tubes and immediately stored at -70 o C before determ<strong>in</strong><strong>in</strong>g bicarbonate concentration.<br />

Bicarbonate concentration (measured as total CO 2 ) <strong>in</strong> bile from the selected group <strong>of</strong> animals was<br />

determ<strong>in</strong>ed by a Natelson microgasometer apparatus (Scientific Industries, Bohemia, NY).<br />

In Vitro Effect <strong>of</strong> TNF- α on Apoptosis <strong>of</strong> Purified Cholangiocytes from Normal and BDL<br />

Rats<br />

Next, we performed <strong>in</strong> vitro experiments <strong>in</strong> purified cholangiocytes aimed to: (i) demonstrate that<br />

act<strong>in</strong>omyc<strong>in</strong> D + TNF- α <strong>in</strong> vivo effects on cholangiocyte apoptosis are due to a direct <strong>in</strong>teraction with<br />

cholangiocytes rather than an effect on other liver cells; and (ii) elucidate the mechanisms by which<br />

act<strong>in</strong>omyc<strong>in</strong> D + TNF- α <strong>in</strong>duces bile duct damage. Freshly isolated cholangiocytes from normal rats<br />

and rats with BDL for 8 days were treated for 18 hours with vary<strong>in</strong>g concentrations <strong>of</strong> TNF- α (0.1-<br />

100 ng/ml) <strong>in</strong> the presence or absence <strong>of</strong> pre<strong>in</strong>cubation with the RNA synthesis <strong>in</strong>hibitor, act<strong>in</strong>omyc<strong>in</strong><br />

D (1 µM) for 30 m<strong>in</strong>utes. The number <strong>of</strong> viable cells was then assessed us<strong>in</strong>g the 3-(4,5-<br />

dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2- (4-sulfophenyl)-2H-tetrazolium, <strong>in</strong>ner salt<br />

(MTS) assay (37).<br />

Death Receptor Expression <strong>in</strong> Purified Cholangiocytes from Normal and BDL Rats<br />

The expression <strong>of</strong> TNF- α R-1 receptor <strong>in</strong> pure cholangiocytes from normal and BDL rats was<br />

measured by immunoblots (19). The cells were sonicated six times <strong>in</strong> RIPA buffer (50 mM Tris, pH<br />

7.5, 150 mM NaCl, 1% NP-40, 0.5% deoxycholic acid, 0.1% sodium dodecyl sulfate (SDS), 2 mM<br />

EDTA, 10 mM NaF, 10 µg/ml leupept<strong>in</strong>, 20 µg/ml aprot<strong>in</strong><strong>in</strong>, and 1 mM phenylmethylsulfonyl<br />

fluoride). Prote<strong>in</strong>s (10 µg for each sample) were resolved by SDS-7.5% polyacrylamide gel


Alp<strong>in</strong>i et al. 9<br />

C-00497-2002.R2<br />

electrophoresis (PAGE) and transferred onto a nitrocellulose membrane (BioRad, Hercules, CA). The<br />

membrane was blocked us<strong>in</strong>g a 5% solution <strong>of</strong> nonfat dry milk <strong>in</strong> Tris-buffered sal<strong>in</strong>e (TBST). The<br />

membrane was then <strong>in</strong>cubated overnight with rotation at 4 o C anti-TNF-α R-1 receptor antibody diluted<br />

1:500 with TBST-5% milk. The membrane was then washed five times with TBST and <strong>in</strong>cubated for<br />

1 hour with rotation at room temperature with anti-rabbit IgG-HRP (Santa Cruz Biotechnology, Santa<br />

Cruz, CA) diluted 1:2,000 with TBST-5% milk. The comparability <strong>of</strong> the prote<strong>in</strong> used was assessed<br />

by immunoblots for beta-act<strong>in</strong>, the <strong>in</strong>ternal control (8). The membrane was washed aga<strong>in</strong> three times<br />

with TBST and prote<strong>in</strong>s were visualized us<strong>in</strong>g chemilum<strong>in</strong>escence (ECL kit, Amersham Life Science,<br />

Little Chalfont, Buck<strong>in</strong>ghamshire, England). The <strong>in</strong>tensity <strong>of</strong> the bands was determ<strong>in</strong>ed us<strong>in</strong>g the<br />

ChemiImager TM 4000 low light imag<strong>in</strong>g system, (Alpha Innotech Corp.).<br />

Statistical Analysis<br />

All data are expressed as mean ± SEM (standard error). The differences between groups were<br />

analysed by Student's t-test when two groups were analysed or analysis <strong>of</strong> variance (ANOVA) if<br />

more than two groups were analyzed.<br />

RESULTS<br />

In Vivo Acute Adm<strong>in</strong>istration <strong>of</strong> Act<strong>in</strong>omyc<strong>in</strong> D + TNF- α Increases Apoptosis and Inhibits<br />

Cholangiocyte Proliferation and Ductal Functional Activity <strong>of</strong> BDL but not Normal Rats<br />

a. Cholangiocyte Apoptosis and Proliferation<br />

To assess the role <strong>of</strong> TNF- α <strong>in</strong>duced cholangiocyte <strong>in</strong>jury <strong>in</strong> vivo, we measured cholangiocyte<br />

apoptosis by TUNEL analysis <strong>in</strong> liver sections from normal and 1 week BDL rats 24 hours after the<br />

adm<strong>in</strong>istration <strong>of</strong> a s<strong>in</strong>gle dose <strong>of</strong> NaCl, act<strong>in</strong>omyc<strong>in</strong> D, TNF-α, or TNF- α with act<strong>in</strong>omyc<strong>in</strong> D. A<br />

s<strong>in</strong>gle dose <strong>of</strong> NaCl, act<strong>in</strong>omyc<strong>in</strong> D, TNF- α or act<strong>in</strong>omyc<strong>in</strong> D + TNF- α did not alter cholangiocyte<br />

apoptosis <strong>of</strong> normal rats (Figure 1 a). However, a significant <strong>in</strong>crease <strong>in</strong> cholangiocyte apoptosis was<br />

observed <strong>in</strong> liver sections from 1 week BDL rats treated with act<strong>in</strong>omyc<strong>in</strong> D + TNF- α as compared to<br />

liver sections from BDL rats treated with NaCl (Figure 1 b). When adm<strong>in</strong>istered alone, neither


Alp<strong>in</strong>i et al. 10<br />

C-00497-2002.R2<br />

act<strong>in</strong>omyc<strong>in</strong> D nor TNF- α affected cholangiocyte apoptosis <strong>in</strong> liver sections from 1 week BDL rats<br />

(Figure 1 b). Although TNF-α is <strong>in</strong>creased <strong>in</strong> serum follow<strong>in</strong>g BDL <strong>in</strong> experimental animals (12),<br />

there may be considerable variation <strong>in</strong> levels. The temporal discordance between the actual TNF-α<br />

levels and the adm<strong>in</strong>istration <strong>of</strong> act<strong>in</strong>omyc<strong>in</strong> D may account for the lack <strong>of</strong> significant effects<br />

follow<strong>in</strong>g a s<strong>in</strong>gle IP adm<strong>in</strong>istration <strong>of</strong> act<strong>in</strong>omyc<strong>in</strong> D <strong>in</strong> these studies.<br />

To beg<strong>in</strong> to understand the <strong>in</strong>tracellular mechanisms by which TNF-α <strong>in</strong>duces apoptosis <strong>of</strong><br />

cholangiocytes from BDL rats, we measured, <strong>in</strong> purified cholangiocytes, prote<strong>in</strong> expression and<br />

activity <strong>of</strong> caspase 3, which is considered to be the common caspase end po<strong>in</strong>t for apoptotic stimuli<br />

(42). Consistent with the concept that a s<strong>in</strong>gle <strong>in</strong>jection <strong>of</strong> act<strong>in</strong>omyc<strong>in</strong> D + TNF-α to BDL rats<br />

<strong>in</strong>duces bile duct apoptosis, we found <strong>in</strong>creased activity (Figure 2 a) and prote<strong>in</strong> expression (Figure 2<br />

b) for caspase 3 <strong>in</strong> purified cholangiocytes from these animals compared to cholangiocytes isolated<br />

from BDL rats treated with sodium chloride.<br />

Consistent with the concept that normal cholangiocytes are mitotically quiescent (3, 32), there were no<br />

PCNA-positive cholangiocytes <strong>in</strong> liver sections from normal rats (Figure 3 a). Adm<strong>in</strong>istration <strong>of</strong><br />

act<strong>in</strong>omyc<strong>in</strong> D, TNF- α or act<strong>in</strong>omyc<strong>in</strong> D + TNF- α to normal rats did not alter the number <strong>of</strong><br />

PCNA- (Figure 3 a) and CK-19-positive cholangiocytes (Figure 4 a) and PCNA prote<strong>in</strong> expression<br />

(Figure 5 a) as compared to normal rats treated with NaCl. The number <strong>of</strong> PCNA and CK-19 positive<br />

cholangiocytes assessed from act<strong>in</strong>omyc<strong>in</strong> D + TNF- α treated rats was decreased as compared to<br />

liver sections from BDL rats treated with NaCl (Figures 3 b and 4 b). Similarly, we found that a s<strong>in</strong>gle<br />

<strong>in</strong>jection <strong>of</strong> act<strong>in</strong>omyc<strong>in</strong> D + TNF- α significantly decreased PCNA prote<strong>in</strong> expression <strong>in</strong> purified<br />

cholangiocytes compared with cholangiocytes isolated from 1 week BDL rats treated with a s<strong>in</strong>gle<br />

dose <strong>of</strong> NaCl (Figure 5 b). When adm<strong>in</strong>istered alone, neither act<strong>in</strong>omyc<strong>in</strong> D nor TNF- α altered the<br />

number <strong>of</strong> PCNA or CK-19 positive cholangiocytes (Figures 3 b and 4 b) or PCNA prote<strong>in</strong><br />

expression (Figure 5 b) <strong>of</strong> 1 week BDL rats.<br />

b. Measurement <strong>of</strong> Ductal Functional Activity<br />

Basal cAMP levels <strong>of</strong> normal and BDL control rats were similar to that <strong>of</strong> previous studies (Figure 6<br />

a-b) (19, 20, 32). Intracellular basal cAMP levels <strong>of</strong> cholangiocytes from BDL rats were significantly


Alp<strong>in</strong>i et al. 11<br />

C-00497-2002.R2<br />

(p < 0.05) higher than those <strong>of</strong> normal cholangiocytes (Figure 6 a-b). Consistent with the concept that<br />

act<strong>in</strong>omyc<strong>in</strong> D + TNF- α <strong>in</strong>duces damage <strong>of</strong> cholangiocytes from BDL but not normal rats, secret<strong>in</strong><br />

<strong>in</strong>creased cAMP levels <strong>of</strong> cholangiocytes from normal rats treated with NaCl, act<strong>in</strong>omyc<strong>in</strong> D, TNF- α<br />

or act<strong>in</strong>omyc<strong>in</strong> D + TNF- α (Figure 6 a). Secret<strong>in</strong> <strong>in</strong>creased cAMP levels <strong>of</strong> cholangiocytes purified<br />

from 1 week BDL rats treated <strong>in</strong> vivo with NaCl, act<strong>in</strong>omyc<strong>in</strong> D or TNF- α alone (Figure 6 b). Basal<br />

and secret<strong>in</strong>-stimulated cAMP levels <strong>of</strong> cholangiocytes from BDL rats treated with a s<strong>in</strong>gle IP<br />

<strong>in</strong>jection <strong>of</strong> act<strong>in</strong>omyc<strong>in</strong> D or TNF- α were similar to that <strong>of</strong> cholangiocytes from BDL rats treated<br />

with NaCl (Figure 6 b). Secret<strong>in</strong> did not <strong>in</strong>crease cAMP levels <strong>in</strong> cholangiocytes purified from 1 week<br />

BDL rats treated with a s<strong>in</strong>gle IP <strong>in</strong>jection <strong>of</strong> act<strong>in</strong>omyc<strong>in</strong> D + TNF- α (Figure 6 b).<br />

Basal bile flow, bicarbonate concentration and secretion <strong>of</strong> BDL control rats were similar to that <strong>of</strong><br />

previous studies (Table 1) (5, 20). Basal bile flow, bicarbonate concentration and secretion <strong>of</strong> 1 week<br />

BDL rats treated with act<strong>in</strong>omyc<strong>in</strong> D, TNF- α or act<strong>in</strong>omyc<strong>in</strong> D + TNF- α was similar from that <strong>of</strong> 1<br />

week BDL rats treated with NaCl (Table 1). Secret<strong>in</strong> <strong>in</strong>creased bile flow and bicarbonate<br />

concentration and secretion <strong>of</strong> 1 week BDL rats treated with act<strong>in</strong>omyc<strong>in</strong> D or TNF- α alone (Table<br />

1). Secret<strong>in</strong> failed to <strong>in</strong>crease bile flow and bicarbonate concentration and secretion <strong>of</strong> 1 week BDL<br />

rats treated with a s<strong>in</strong>gle IP <strong>in</strong>jection <strong>of</strong> act<strong>in</strong>omyc<strong>in</strong> D + TNF- α (Table 1).<br />

In Vitro Studies <strong>in</strong> Purified Cholangiocytes from Normal and BDL Rats<br />

a. Act<strong>in</strong>omyc<strong>in</strong> D Sensitized Cholangiocytes from BDL (but not Normal) Rats to TNF-<br />

Mediated Toxicity<br />

The <strong>in</strong> vitro cytotoxicity <strong>of</strong> TNF- α on isolated cholangiocytes was evaluated by measur<strong>in</strong>g the<br />

number <strong>of</strong> viable cells us<strong>in</strong>g the MTS assay. Similar to previous reports (38), cholangiocytes from<br />

normal rats were resistant to TNF- α over a wide concentration range (Figure 7 a). Pre-<strong>in</strong>cubation<br />

with act<strong>in</strong>omyc<strong>in</strong> D did not sensitize normal cholangiocytes to TNF- α toxicity (Figure 7 a). Similar<br />

to normal cholangiocytes, cholangiocytes from BDL rats were resistant to TNF- α mediated toxicity<br />

(Figure 7 b). However, pre-<strong>in</strong>cubation with act<strong>in</strong>omyc<strong>in</strong> D sensitized cholangiocytes from BDL rats<br />

to TNF- α mediated toxicity (Figure 7 b).


Alp<strong>in</strong>i et al. 12<br />

C-00497-2002.R2<br />

b. The Expression <strong>of</strong> TNF- Receptor Increases <strong>in</strong> Purified Cholangiocytes follow<strong>in</strong>g<br />

BDL<br />

Immunoblot analysis shows that follow<strong>in</strong>g BDL, there was an <strong>in</strong>crease <strong>in</strong> TNF- α receptor prote<strong>in</strong><br />

expression <strong>in</strong> purified cholangiocytes as compared to normal cholangiocytes (Figure 8).<br />

DISCUSSION<br />

In this novel study we have shown that a s<strong>in</strong>gle <strong>in</strong>traperitoneal <strong>in</strong>jection <strong>of</strong> act<strong>in</strong>omyc<strong>in</strong> D + TNF- α<br />

<strong>in</strong>duces a marked <strong>in</strong>crease <strong>in</strong> cholangiocyte apoptosis <strong>in</strong> BDL, but not normal rats. In BDL rats, the<br />

<strong>in</strong>crease <strong>in</strong> cholangiocyte apoptosis was associated with decreased cholangiocyte proliferation and<br />

<strong>in</strong>hibition <strong>of</strong> secret<strong>in</strong>-stimulated ductal secretion. By <strong>in</strong> vitro experiments, we found that<br />

cholangiocytes from normal and BDL rats were resistant to TNF- α. Co-<strong>in</strong>cubation with act<strong>in</strong>omyc<strong>in</strong><br />

D sensitized cholangiocytes from BDL (but not normal) rats to TNF- α toxicity. These observations<br />

suggest that dur<strong>in</strong>g chronic cholestasis, the <strong>in</strong>creased proliferative and secretory activities <strong>of</strong><br />

<strong>in</strong>trahepatic cholangiocytes are highly sensitive to the toxic effects <strong>of</strong> TNF- α.<br />

TNF- α is a multifunctional cytok<strong>in</strong>e that plays a critical role <strong>in</strong> both hepatic regeneration and <strong>in</strong>jury<br />

(26). Cholangiocytes are known to express TNF- α, and biliary levels <strong>of</strong> TNF- α are <strong>in</strong>creased <strong>in</strong><br />

patients with cholangitis follow<strong>in</strong>g biliary tract obstruction (47). Cholangiocytes are the primary<br />

epithelial source <strong>of</strong> TNF- α (35), a key mediator <strong>of</strong> hepatic regeneration follow<strong>in</strong>g partial hepatectomy<br />

<strong>in</strong> rats (35). However, there is considerable variability <strong>in</strong> target cell responses to TNF- α, and the<br />

effects <strong>of</strong> <strong>in</strong>creased local or circulat<strong>in</strong>g TNF- α on cholangiocyte growth or function have not<br />

previously been reported. Our results show that cholangiocytes are sensitized to TNF- α cytotoxicity<br />

follow<strong>in</strong>g biliary tract obstruction. These observations are highly germane to the pathophysiology <strong>of</strong><br />

cholestasis <strong>in</strong> <strong>in</strong>flammatory cholangiopathies or dur<strong>in</strong>g biliary tract obstruction.<br />

In normal rat liver, cholangiocytes are mitotically dormant (3, 32) but markedly proliferate <strong>in</strong> response<br />

to pathological maneuvers <strong>in</strong>clud<strong>in</strong>g BDL (3-6, 8, 19, 30-34). The BDL rat model is widely used for<br />

study<strong>in</strong>g the mechanisms <strong>of</strong> cholangiocyte hyperplasia, secret<strong>in</strong>-stimulated ductal secretion and<br />

cholangiocyte <strong>in</strong>jury (3, 5, 6, 19, 20, 30). The rationale for us<strong>in</strong>g the BDL model for evaluat<strong>in</strong>g the


Alp<strong>in</strong>i et al. 13<br />

C-00497-2002.R2<br />

mechanisms <strong>of</strong> action by which TNF- α modulates cholangiocyte apoptosis, proliferation and<br />

secretion is based on: (i) ductal hyperplasia after BDL is devoid <strong>of</strong> apoptosis (30), which allows for a<br />

precise evaluation <strong>of</strong> the changes <strong>in</strong> cholangiocyte apoptosis and/or proliferation follow<strong>in</strong>g TNF- α<br />

treatment; (ii) cholangiocytes from BDL rats reta<strong>in</strong> normal phenotypes <strong>of</strong> biliary l<strong>in</strong>eage (1); (iii)<br />

secret<strong>in</strong> <strong>in</strong>duces no choleresis <strong>in</strong> normal rats when <strong>in</strong>fused <strong>in</strong>travenously (5); (iv) follow<strong>in</strong>g BDL there<br />

is a marked <strong>in</strong>crease <strong>in</strong> basal and secret<strong>in</strong>-stimulated ductal secretion (3, 5, 6, 9, 19, 20, 30), which<br />

allows for better evaluation <strong>of</strong> the changes <strong>in</strong> basal and secret<strong>in</strong>-stimulated cholangiocyte secretion.<br />

Dur<strong>in</strong>g <strong>in</strong>trahepatic cholestasis, there is an <strong>in</strong>creased production <strong>of</strong> basal and/or endotox<strong>in</strong> <strong>in</strong>duced<br />

TNF- α, which has been l<strong>in</strong>ked with severity <strong>of</strong> liver damage; <strong>in</strong> that TNF- α is considered a crucial<br />

mediator <strong>in</strong> <strong>in</strong>duc<strong>in</strong>g and process<strong>in</strong>g the <strong>in</strong>flammatory cascade (43, 49). Dur<strong>in</strong>g experimental<br />

cholestasis (49) as well as <strong>in</strong> primary biliary cirrhosis (17), an <strong>in</strong>creased expression <strong>of</strong> TNF- α and<br />

related receptors occurs <strong>in</strong> cholangiocytes but their role <strong>in</strong> mediat<strong>in</strong>g cholangiocyte <strong>in</strong>jury have been<br />

not yet elucidated. With this background we evaluated the effect <strong>of</strong> TNF- α adm<strong>in</strong>istration on the<br />

proliferative, apoptotic and secretory activities <strong>of</strong> cholangiocytes <strong>in</strong> BDL rats. Our f<strong>in</strong>d<strong>in</strong>gs<br />

demonstrate that <strong>in</strong> BDL but not normal rats, a s<strong>in</strong>gle dose <strong>of</strong> TNF- α impairs cholangiocyte<br />

proliferative and secretory activities and activated apoptosis but only when an <strong>in</strong>hibitor <strong>of</strong> prote<strong>in</strong><br />

synthesis (i.e., act<strong>in</strong>omyc<strong>in</strong> D) was adm<strong>in</strong>istered together with TNF- α. This <strong>in</strong>dicates that: (i)<br />

proliferat<strong>in</strong>g cholangiocytes, typical <strong>of</strong> obstructive cholestasis, are more sensitive to TNF- α mediated<br />

cell <strong>in</strong>jury and this is consistent with the <strong>in</strong>creased expression <strong>of</strong> TNF- α receptor and basal caspase<br />

activities <strong>of</strong> cholangiocytes from BDL rats; (ii) the <strong>in</strong>creased sensitivity to TNF- α mediated <strong>in</strong>jury is<br />

blunted by a parallel activation <strong>of</strong> unidentified rescue mechanisms and <strong>in</strong>deed only when prote<strong>in</strong><br />

synthesis is blocked by act<strong>in</strong>omyc<strong>in</strong> D, activation <strong>of</strong> apoptosis, <strong>in</strong>hibition <strong>of</strong> cell proliferation and<br />

secretion was evident.<br />

A balance between apoptosis/proliferation regulates <strong>in</strong>trahepatic ductal mass <strong>in</strong> a number <strong>of</strong> chronic<br />

cholestatic liver diseases (6). Associated with TNF- α <strong>in</strong>duced damage <strong>of</strong> bile ducts <strong>of</strong> BDL rats,


Alp<strong>in</strong>i et al. 14<br />

C-00497-2002.R2<br />

there was a marked decrease <strong>in</strong> cholangiocyte proliferation isolated from BDL rats, as assessed by a<br />

decreased number <strong>of</strong> PCNA- and CK-19 positive cholangiocytes <strong>in</strong> liver sections and <strong>in</strong>hibition <strong>of</strong><br />

PCNA prote<strong>in</strong> expression <strong>in</strong> purified cholangiocytes. The decrease <strong>in</strong> cholangiocyte proliferative<br />

capacity with TNF-α−<strong>in</strong>duced cholangiocyte apoptosis is consistent with our previous studies<br />

show<strong>in</strong>g enhanced cholangiocyte apoptosis <strong>in</strong>duced by vagotomy <strong>in</strong> BDL rats is associated with loss<br />

<strong>of</strong> cholangiocyte DNA synthesis and loss <strong>of</strong> <strong>in</strong>trahepatic bile ducts (30). Similarly, a s<strong>in</strong>gle dose <strong>of</strong><br />

CCl 4 <strong>in</strong>duces cholangiocyte apoptosis <strong>in</strong> bile ducts <strong>of</strong> BDL rats, an event that was associated with<br />

decreased cholangiocyte proliferation and number <strong>of</strong> ducts (34). Gastr<strong>in</strong> <strong>in</strong>hibits cholangiocarc<strong>in</strong>oma<br />

growth through Ca 2+ - and PKC-α-regulated activation <strong>of</strong> cholangiocyte apoptosis (24). Follow<strong>in</strong>g<br />

cessation <strong>of</strong> α-naphthylisothiocyanate feed<strong>in</strong>g, regression <strong>of</strong> ductal hyperplasia is associated with<br />

<strong>in</strong>creased apoptosis (33). Treatment <strong>of</strong> BDL rats with the anti-estrogens, tamoxifen or ICI 182,780,<br />

<strong>in</strong>hibited cholangiocyte growth and <strong>in</strong>duced overexpression <strong>of</strong> Fas antigen and apoptosis <strong>in</strong><br />

cholangiocytes (10). We next evalauted if the TNF- α <strong>in</strong>crease <strong>in</strong> cholangiocyte apoptosis and<br />

decrease <strong>in</strong> cholangiocyte proliferation are associated with <strong>in</strong>hibition <strong>of</strong> secret<strong>in</strong>-stimulated ductal<br />

secretion. Secret<strong>in</strong> receptor expression and secret<strong>in</strong>-stimualted ductal secretion are important<br />

physiological markers <strong>of</strong> cholangiocyte proliferation and bile duct <strong>in</strong>tegrity (3-6, 8, 9, 19, 20, 25, 30-<br />

34). In a variety <strong>of</strong> animal models <strong>of</strong> ductal <strong>in</strong>jury, cholangiocyte proliferation is associated with<br />

<strong>in</strong>creased secret<strong>in</strong>-regulated ductal bile secretion whereas cholangiocyte loss is coupled with decreased<br />

secret<strong>in</strong>-stimulated ductal secretion (2-6, 8, 9, 19, 20, 25, 30-34). Consistent with these previous<br />

studies, concomitant with <strong>in</strong>creased ductopenia and <strong>in</strong>hibition <strong>of</strong> cholangiocyte proliferation, we found<br />

that a s<strong>in</strong>gle adm<strong>in</strong>istration <strong>of</strong> act<strong>in</strong>omyc<strong>in</strong> D + TNF- α <strong>in</strong>duced <strong>in</strong>hibition <strong>of</strong> secret<strong>in</strong>-stimulated<br />

ductal secretion.<br />

The concept that secret<strong>in</strong> and its receptor may be important <strong>in</strong> the modulation <strong>of</strong> cholangiocyte<br />

proliferation/loss is also supported by studies <strong>in</strong> patients with cholangiopathies (18). <strong>For</strong> example,<br />

enhanced secret<strong>in</strong>-stimulated bile flow and bicarbonate secretion is observed <strong>in</strong> patients with ductal<br />

hyperplasia <strong>in</strong>duced by hepatic cirrhosis (14). Furthermore, positron emission tomography scann<strong>in</strong>g<br />

-<br />

<strong>of</strong> patients with primary biliary cirrhosis follow<strong>in</strong>g adm<strong>in</strong>istration <strong>of</strong> labeled HCO 3 and secret<strong>in</strong>


Alp<strong>in</strong>i et al. 15<br />

C-00497-2002.R2<br />

shows a lack <strong>of</strong> secret<strong>in</strong> response, which is restored by ursodeoxycholate treatment (45, 46).<br />

TNF- α has been implicated <strong>in</strong> many different physiological processes, and subserves multiple cell-<br />

type or tissue-specific functions (36, 40, 53). Cytotoxicity from TNF- α can <strong>in</strong>volve oxidative stress<br />

and result <strong>in</strong> either cell necrosis or apoptosis (54). The essential requirement for de novo prote<strong>in</strong><br />

synthesis for manifestation <strong>of</strong> TNF cytotoxicity suggests that TNF- α expresses cytoprotective gene<br />

products <strong>in</strong> cholangiocytes. Identification <strong>of</strong> these protective factors <strong>in</strong> cholangiocytes may potentially<br />

be valuable <strong>in</strong> reduc<strong>in</strong>g the adverse effects <strong>of</strong> cholestasis dur<strong>in</strong>g biliary tract obstruction and<br />

<strong>in</strong>flammation. We propose that TNF- α activates both cytoprotective and cytotoxic cellular responses<br />

<strong>in</strong> rat cholangiocytes. In normal cholangiocytes, the former predom<strong>in</strong>ates and cholangiocytes are<br />

resistant to TNF- α toxicity. Follow<strong>in</strong>g BDL, there is a shift towards the cytotoxic pathway. We<br />

hypothesize that this shift may occur <strong>in</strong> a variety <strong>of</strong> ways. BDL is accompanied by alterations <strong>in</strong> bile<br />

acid concentrations, which may alter <strong>in</strong>tracellular signal<strong>in</strong>g, as well as by <strong>in</strong>creased oxidative stress,<br />

which may overwhelm protective cellular antioxidant defenses. Additional studies to evaluate the role<br />

<strong>of</strong> bile acids <strong>in</strong> mediat<strong>in</strong>g TNF- α cytotoxicity as well as cellular oxidative stress <strong>in</strong> vivo and <strong>in</strong> vitro,<br />

and the effect <strong>of</strong> antioxidants is thus warranted.<br />

REFERENCES<br />

1. Alp<strong>in</strong>i, G, Aragona E, Dabeva M, Salvi R, Shafritz DA, and Tavoloni N. Distribution<br />

<strong>of</strong> album<strong>in</strong> and alpha-fetoprote<strong>in</strong> mRNAs <strong>in</strong> normal, hyperplastic, and preneoplastic rat liver. Am J<br />

Pathol 141: 623-632, 1992.<br />

2. Alp<strong>in</strong>i, G, Glaser S, Alvaro D, Ueno Y, Marzioni M, Francis H, Baiocchi L, Stati T,<br />

Barbaro B, Ph<strong>in</strong>izy JL, Mauld<strong>in</strong> J, and LeSage G. Bile acid depletion and repletion regulate<br />

cholangiocyte growth and secretion by a phosphatidyl<strong>in</strong>ositol 3-k<strong>in</strong>ase-dependent pathway <strong>in</strong> rats.<br />

Gastroenterology 123: 1226-1237, 2002.<br />

3. Alp<strong>in</strong>i, G, Glaser S, Ueno, Pham L, Podila PV, Caligiuri A, LeSage G, and LaRusso<br />

NF. Heterogeneity <strong>of</strong> the proliferative capacity <strong>of</strong> rat cholangiocytes after bile duct ligation. Am J<br />

Physiol 274: G767-G775, 1998.


Alp<strong>in</strong>i et al. 16<br />

C-00497-2002.R2<br />

4. Alp<strong>in</strong>i, G, Glaser S, Ueno Y, Rodgers R, Ph<strong>in</strong>izy JL, Francis H, Baiocchi L, Holcomb<br />

L, Caligiuri A, and LeSage G. Bile acid feed<strong>in</strong>g <strong>in</strong>duces cholangiocyte proliferation and secretion:<br />

evidence for bile acid-regulated ductal secretion. Gastroenterology 116: 179-186., 1999.<br />

5. Alp<strong>in</strong>i, G, Lenzi R, Sarkozi L, and Tavoloni N. Biliary physiology <strong>in</strong> rats with bile<br />

ductular cell hyperplasia. Evidence for a secretory function <strong>of</strong> proliferated bile ductules. J Cl<strong>in</strong> Invest<br />

81: 569-578, 1988.<br />

6. Alp<strong>in</strong>i, G, Prall RT, and LaRusso NF. The pathobiology <strong>of</strong> biliary epithelia. In: The Liver:<br />

Biology & Pathobiology (4th ed.), edited by Arias IM, Boyer JL, Chisari FV, Fausto N, Jakoby W,<br />

Schachter D, and Shafritz DA. Philadelphia, PA: Lipp<strong>in</strong>cott, Williams & Wilk<strong>in</strong>s, 2001, p. 421-435.<br />

7. Alp<strong>in</strong>i, G, Roberts SK, Kuntz SM, Ueno Y, Gubba S, Podila P, LeSage G, and<br />

LaRusso NF. Morphological, molecular and functional heterogeneity <strong>of</strong> cholangiocytes from normal<br />

rat liver. Gastroenterology 110: 1636-1643, 1996.<br />

8. Alp<strong>in</strong>i, G, Ueno Y, Glaser S, Marzioni M, Ph<strong>in</strong>izy JL, Francis H, and LeSage G. Bile<br />

acid feed<strong>in</strong>g <strong>in</strong>creased proliferative activity and apical bile acid transporter expression <strong>in</strong> both small<br />

and large rat cholangiocytes. Hepatology 34: 868-876, 2001.<br />

9. Alp<strong>in</strong>i, G, Ulrich II C, Phillips J, Pham L, Miller L, and LaRusso NF. Upregulation <strong>of</strong><br />

secret<strong>in</strong> receptor gene expression <strong>in</strong> rat cholangiocytes after bile duct ligation. Am J Physiol 266:<br />

G922-G928, 1994.<br />

10. Alvaro D, Alp<strong>in</strong>i G, Onori P, Perego L, Baroni-Svegliati G, Franchitto A, Baiocchi L,<br />

Glaser S, Le Sage G, Folli F, and Gaudio E. Estrogens stimulate proliferation <strong>of</strong> <strong>in</strong>trahepatic<br />

biliary epithelium <strong>in</strong> rats. Gastroenterology 119: 1681-1691, 2000.<br />

11. Arguedas, MR, Heudebert GH, St<strong>in</strong>nett AA, and Wilcox CM. Biliary stents <strong>in</strong> malignant<br />

obstructive jaundice due to pancreatic carc<strong>in</strong>oma: a cost-effectiveness analysis. Am J Gastroenterol 97:<br />

898-904, 2002.<br />

12. Bemelmans, MH, Gouma DJ, Greve JW, and Buurman WA. Cytok<strong>in</strong>es tumor necrosis<br />

factor and <strong>in</strong>terleuk<strong>in</strong>-6 <strong>in</strong> experimental biliary obstruction <strong>in</strong> mice. Hepatology 15: 1132-1136, 1992.


Alp<strong>in</strong>i et al. 17<br />

C-00497-2002.R2<br />

13. Beuers, U, Nathanson MH, Isales CM, and Boyer JL. Tauroursodeoxycholic acid<br />

stimulates hepatocellular exocytosis and mobilizes extracellular Ca 2+ mechanisms defective <strong>in</strong><br />

cholestasis. J Cl<strong>in</strong> Invest 92: 2984-2993, 1993.<br />

14. Bode, C, Zelder O, Goebell H, and Neuberger HO. Choleresis <strong>in</strong>duced by secret<strong>in</strong>:<br />

dist<strong>in</strong>ctly <strong>in</strong>creased response <strong>in</strong> cirrhotics. Scand J Gastroenterol 7: 697-699, 1972.<br />

15. Cho, WK, and Boyer JL. Vasoactive <strong>in</strong>test<strong>in</strong>al polypeptide is a potent regulator <strong>of</strong> bile<br />

secretion from rat cholangiocytes. Gastroenterology 117: 420-428, 1999.<br />

16. Fitz, JG, Basavappa S, McGill J, Melhus O, and Cohn JA. Regulation <strong>of</strong> membrane<br />

chloride currents <strong>in</strong> rat bile duct epithelial cells. J Cl<strong>in</strong> Invest 91: 319-328, 1993.<br />

17. Floreani, A, Guido M, Bortolami M, Della Zentil G, Venturi C, Pennelli N, and<br />

Naccarato R. Relationship between apoptosis, tumour necrosis factor, and cell proliferation <strong>in</strong> chronic<br />

cholestasis. Dig Liver Dis 33: 570-575, 2001.<br />

18. Fukumoto, Y, Okita K, Yasunaga M, Konishi T, Yamasaki T, Ando M, Shirasawa H,<br />

Fuji T, and Takemoto T. A new therapeutic trial <strong>of</strong> secret<strong>in</strong> <strong>in</strong> the treatment <strong>of</strong> <strong>in</strong>trahepatic<br />

cholestasis. Gastroenterol Jpn 24: 298-307, 1989.<br />

19. Glaser, S, Benedetti A, Marucci L, Alvaro D, Baiocchi L, Kanno N, Caligiuri A,<br />

Ph<strong>in</strong>izy JL, Chowdhury U, Papa E, LeSage G, and Alp<strong>in</strong>i G. Gastr<strong>in</strong> <strong>in</strong>hibits cholangiocyte<br />

growth <strong>in</strong> bile duct-ligated rats by <strong>in</strong>teraction with cholecystok<strong>in</strong><strong>in</strong>-B/Gastr<strong>in</strong> receptors via D-myo-<br />

<strong>in</strong>ositol 1,4,5-triphosphate-, Ca( 2+ )-, and prote<strong>in</strong> k<strong>in</strong>ase C alpha-dependent mechanisms. Hepatology<br />

32: 17-25., 2000.<br />

20. Glaser, S, Rodgers R, Ph<strong>in</strong>izy JL, Robertson WE, Lasater J, Caligiuri A, Tretjak Z,<br />

LeSage G, and Alp<strong>in</strong>i G. Gastr<strong>in</strong> <strong>in</strong>hibits secret<strong>in</strong>-<strong>in</strong>duced ductal secretion by <strong>in</strong>teraction with<br />

specific receptors on rat cholangiocytes. Am J Physiol 273: G1061-G1070, 1997.<br />

21. Green, RM, Gollan JL, Hagenbuch B, Meier PJ, and Beier DR. Regulation <strong>of</strong> hepatocyte<br />

bile salt transporters dur<strong>in</strong>g hepatic regeneration. Am J Physiol 273: G621-G627, 1997.<br />

22. Hirata, K, and Nathanson MH. Bile duct epithelia regulate biliary bicarbonate excretion <strong>in</strong><br />

normal rat liver. Gastroenterology 121: 396-406, 2001.


Alp<strong>in</strong>i et al. 18<br />

C-00497-2002.R2<br />

23. Ishii, M, Vroman B, and LaRusso NF. Isolation and morphological characterization <strong>of</strong> bile<br />

duct epithelial cells from normal rat liver. Gastroenterology 97: 1236-1247, 1989.<br />

24. Kanno, N, Glaser S, Chowdhury U, Ph<strong>in</strong>izy JL, Baiocchi L, Francis H, LeSage G, and<br />

Alp<strong>in</strong>i G. Gastr<strong>in</strong> <strong>in</strong>hibits cholangiocarc<strong>in</strong>oma growth through <strong>in</strong>creased apoptosis by activation <strong>of</strong><br />

Ca 2+ -dependent prote<strong>in</strong> k<strong>in</strong>ase C-alpha. J Hepatol 34: 284-291, 2001.<br />

25. Kato, A, Gores GJ, and LaRusso NF. Secret<strong>in</strong> stimulates exocytosis <strong>in</strong> isolated bile duct<br />

epithelial cells by a Cyclic AMP-mediated mechanism. J Biol Chem 267: 15523-15529, 1992.<br />

26. Kirillova, I, Chaisson M , and Fausto N. Tumor necrosis factor <strong>in</strong>duces DNA replication<br />

<strong>in</strong> hepatic cells through nuclear factor kappaB activation. Cell Growth Differ 10: 819-828, 1999.<br />

27. Kowdley, KV. Ursodeoxycholic acid therapy <strong>in</strong> hepatobiliary disease. Am J Med 108: 481-<br />

486, 2000.<br />

28. Kullak-Ublick, GA, B Stieger, B Hagenbuch, and PJ Meier. Hepatic transport <strong>of</strong> bile<br />

salts. Sem<strong>in</strong> Liver Dis 20: 273-292, 2000.<br />

29. Lee, J, Azzaroli F, Wang L, Soroka CJ, Gigliozzi A, Setchell KD, Kramer W, and<br />

Boyer JL. Adaptive regulation <strong>of</strong> bile salt transporters <strong>in</strong> kidney and liver <strong>in</strong> obstructive cholestasis <strong>in</strong><br />

the rat. Gastroenterology 121: 1473-1484, 2001.<br />

30. LeSage, G, Alvaro D, Benedetti A, Glaser S, Marucci L, Baiocchi L, Eisel W, Caligiuri<br />

A, Ph<strong>in</strong>izy JL, Rodgers R, Francis H, and Alp<strong>in</strong>i G. Chol<strong>in</strong>ergic system modulates growth,<br />

apoptosis, and secretion <strong>of</strong> cholangiocytes from bile duct-ligated rats. Gastroenterology 117: 191-199,<br />

1999.<br />

31. LeSage, G, Glaser S, and Alp<strong>in</strong>i G. Regulatory mechanisms <strong>of</strong> ductal bile secretion. Dig<br />

Liver Dis 32: 563-566, 2000.<br />

32. LeSage, G, Glaser S, Gubba S, Robertson WE, Ph<strong>in</strong>izy JL, Lasater J, Rodgers R, and<br />

Alp<strong>in</strong>i G. Regrowth <strong>of</strong> the rat biliary tree after 70% partial hepatectomy is coupled to <strong>in</strong>creased<br />

secret<strong>in</strong>-<strong>in</strong>duced ductal bile secretion. Gastroenterology 111: 1633-1644, 1996.<br />

33. LeSage, G, Glaser S, Ueno Y, Alvaro D, Baiocchi L, Kanno N, Ph<strong>in</strong>izy JL, Francis H,<br />

and Alp<strong>in</strong>i G. Regression <strong>of</strong> cholangiocyte proliferation after cessation <strong>of</strong> ANIT feed<strong>in</strong>g is coupled<br />

with <strong>in</strong>creased apoptosis. Am J Physiol Gastro<strong>in</strong>test Liver Physiol 281: G182-G190, 2001.


Alp<strong>in</strong>i et al. 19<br />

C-00497-2002.R2<br />

34. LeSage, G, Glaser S, Marucci L, Benedetti A, Ph<strong>in</strong>izy JL, Rodgers R, Caligiuri A,<br />

Papa E, Tretjak Z, Jezequel AM, Holcomb L, and Alp<strong>in</strong>i G. Acute carbon tetrachloride feed<strong>in</strong>g<br />

<strong>in</strong>duces damage <strong>of</strong> large but not small cholangiocytes from BDL rat liver. Am J Physiol 276: G1289-<br />

G1301, 1999.<br />

35. L<strong>of</strong>freda, S, Rai R, Yang SQ, L<strong>in</strong> HZ, and Diehl AM. Bile ducts and portal and central<br />

ve<strong>in</strong>s are major producers <strong>of</strong> tumor necrosis factor alpha <strong>in</strong> regenerat<strong>in</strong>g rat liver. Gastroenterology<br />

112: 2089-2098, 1997.<br />

36. Luster, MI, Simeonova PP, Gallucci R, and Matheson J. Tumor necrosis factor alpha and<br />

toxicology. Crit Rev Toxicol 29: 491-511., 1999.<br />

37. Ly, LH, Zhao XY, Holloway L, and Feldman D. Liarozole acts synergistically with<br />

1alpha,25-dihydroxyvitam<strong>in</strong> D3 to <strong>in</strong>hibit growth <strong>of</strong> DU 145 human prostate cancer cells by block<strong>in</strong>g<br />

24-hydroxylase activity. Endocr<strong>in</strong>ology 140: 2071-2076, 1999.<br />

38. Mano, Y, Ishii M, Okamoto H, Igarashi T, Kobayashi K, and Toyota T. Effect <strong>of</strong> tumor<br />

necrosis factor alpha on <strong>in</strong>trahepatic bile duct epithelial cell <strong>of</strong> rat liver. Hepatology 23: 1602-1607,<br />

1996.<br />

39. Marzioni, M, Glaser S, Francis H, Ph<strong>in</strong>izy JL, LeSage G, and Alp<strong>in</strong>i G. Functional<br />

heterogeneity <strong>of</strong> cholangiocytes. Sem<strong>in</strong> Liver Dis 22: 227-240, 2002.<br />

40. McDermott, MF. TNF and TNFR biology <strong>in</strong> health and disease. Cell Mol Biol 47: 619-635,<br />

2001.<br />

41. Nathanson, MH, and Boyer JL. Mechanisms and regulation <strong>of</strong> bile secretion. Hepatology<br />

14: 551-566, 1991.<br />

42. Natori, S, Selzner M, Valent<strong>in</strong>o KL, Fritz LC, Sr<strong>in</strong>ivasan A, Clavien PA, and Gores<br />

GJ. Apoptosis <strong>of</strong> s<strong>in</strong>usoidal endothelial cells occurs dur<strong>in</strong>g liver preservation <strong>in</strong>jury by a caspase-<br />

dependent mechanism. Transplantation 68: 89-96, 1999.<br />

43. Neuman, M, Angulo P, Malkiewicz I, Jorgensen R, Shear N, Dickson ER, Haber J,<br />

Katz G, and L<strong>in</strong>dor K. Tumor necrosis factor-alpha and transform<strong>in</strong>g growth factor-beta reflect<br />

severity <strong>of</strong> liver damage <strong>in</strong> primary biliary cirrhosis. J Gastroenterol Hepatol 17: 196-202, 2002.


Alp<strong>in</strong>i et al. 20<br />

C-00497-2002.R2<br />

44. Patel, T, Roberts LR, Jones BA, and Gores GJ. Dysregulation <strong>of</strong> apoptosis as a<br />

mechanism <strong>of</strong> liver disease: an overview. Sem<strong>in</strong> Liver Dis 18: 105-114, 1998.<br />

45. Prieto, J, Garcia N, Marti-Climent JM, Penuelas I, Richter JA, and Med<strong>in</strong>a JF.<br />

Assessment <strong>of</strong> biliary bicarbonate secretion <strong>in</strong> humans by positron emission tomography.<br />

Gastroenterology 117: 167-172, 1999.<br />

46. Prieto, J, Qian C, Garcia N, Diez J, and Med<strong>in</strong>a JF. Abnormal expression <strong>of</strong> anion<br />

exchanger genes <strong>in</strong> primary biliary cirrhosis. Gastroenterology 105: 572-578, 1993.<br />

47. Rosen, HR, W<strong>in</strong>kle PJ, Kendall BJ, and Diehl DL. Biliary <strong>in</strong>terleuk<strong>in</strong>-6 and tumor<br />

necrosis factor-alpha <strong>in</strong> patients undergo<strong>in</strong>g endoscopic retrograde cholangiopancreatography. Dig<br />

Dis Sci 42: 1290-1294, 1997.<br />

48. Rutemburg, AM, Kim H, Fishbe<strong>in</strong> JW, Hanker JS, Wasserkrug HL, and Seligman<br />

AM. Histochemical and ultrastructural demonstration <strong>of</strong> γ-glutamyl transpeptidase activity. J<br />

Histochem Cytochem 17: 517-526, 1969.<br />

49. Sheen-Chen, SM, Chen HS, Ho HT, Chen WJ, Sheen CC, and Eng HL. Effect <strong>of</strong> bile<br />

acid replacement on endotox<strong>in</strong>-<strong>in</strong>duced tumor necrosis factor-alpha production <strong>in</strong> obstructive jaundice.<br />

World J Surg 26: 448-450, 2002.<br />

50. Spirli, C, Nathanson MH, Fiorotto R, Duner E, Denson LA, Sanz JM, Di Virgilio F,<br />

Okolicsanyi L, Casagrande F, and Strazzabosco M. Pro<strong>in</strong>flammatory cytok<strong>in</strong>es <strong>in</strong>hibit secretion<br />

<strong>in</strong> rat bile duct epithelium. Gastroenterology 121: 156-169, 2001.<br />

51. Suzuki, S, Kurachi K, Yokoi Y, Tsuchiya Y, Okamoto K, Okumura T, Inaba K,<br />

Konno H, and Nakamura S. Intrahepatic cholangiojejunostomy for unresectable malignant biliary<br />

tumors with obstructive jaundice. J Hepatobiliary Pancreat Surg 8: 124-129, 2002.<br />

52. Theilmann, L, Kuppers B, Kadmon M, Roeren T, Notheisen H, Stiehl A, and Otto G.<br />

Biliary tract strictures after orthotopic liver transplantation: diagnosis and management. Endoscopy 26:<br />

517-522, 1994.<br />

53. Tilg, H. Cytok<strong>in</strong>es and liver diseases. Can J Gastroenterol 15: 661-668, 2001.


Alp<strong>in</strong>i et al. 21<br />

C-00497-2002.R2<br />

54. Xu, Y, Jones BE, Neufeld DS, and Czaja MJ. Glutathione modulates rat and mouse<br />

hepatocyte sensitivity to tumor necrosis factor toxicity. Gastroenterology 115: 1229-1237, 1998.<br />

LEGENDS<br />

Figure 1 Effect <strong>of</strong> a s<strong>in</strong>gle IP <strong>in</strong>jection <strong>of</strong> NaCl, act<strong>in</strong>omyc<strong>in</strong> D, TNF- α or act<strong>in</strong>omyc<strong>in</strong> D +<br />

TNF- α on cholangiocyte apoptosis (evaluated by TUNEL analysis <strong>in</strong> liver sections) <strong>of</strong> [a] normal<br />

and [b] 1 week BDL rats. [a] In normal rat liver sections, act<strong>in</strong>omyc<strong>in</strong> D, TNF- α or act<strong>in</strong>omyc<strong>in</strong> D<br />

+ TNF- α did not alter cholangiocyte apoptosis (that was virtually absent) compared with normal<br />

rats treated with NaCl. Orig. magn., X625. [b] Adm<strong>in</strong>istration <strong>of</strong> a s<strong>in</strong>gle dose <strong>of</strong> act<strong>in</strong>omyc<strong>in</strong> D +<br />

TNF- α to 1 week BDL rats <strong>in</strong>duced a significant <strong>in</strong>crease <strong>in</strong> cholangiocyte apoptosis as compared<br />

to liver sections from 1 week BDL rats treated with NaCl. Act<strong>in</strong>omyc<strong>in</strong> D or TNF- α alone did not<br />

affect cholangiocyte apoptosis, which rema<strong>in</strong>s similar to that <strong>of</strong> BDL rats treated with NaCl. Data<br />

are mean ± SEM <strong>of</strong> 3 experiments. *p < 0.05 vs. the number <strong>of</strong> apoptotic cholangiocytes from 1<br />

week BDL rats treated with a s<strong>in</strong>gle IP <strong>in</strong>jection <strong>of</strong> NaCl. Orig. magn., X625.<br />

Figure 2 Measurement <strong>of</strong> [a] activity and [b] prote<strong>in</strong> expression for caspase 3 <strong>in</strong><br />

cholangiocytes from 1 week BDL rats treated with a s<strong>in</strong>gle <strong>in</strong>jection <strong>of</strong> NaCl or TNF-α + act<strong>in</strong>omyc<strong>in</strong><br />

D. There was <strong>in</strong>creased activity [a] and prote<strong>in</strong> expression [b] for caspase 3 <strong>in</strong> purified cholangiocytes<br />

from BDL rats treated with a s<strong>in</strong>gle <strong>in</strong>jection <strong>of</strong> act<strong>in</strong>omyc<strong>in</strong> D + TNF-α compared to cholangiocytes<br />

isolated from BDL rats treated with NaCl. Data are mean ± SEM <strong>of</strong> at least 3 experiments. *p <<br />

0.05 vs. its correspond<strong>in</strong>g basal value.


Alp<strong>in</strong>i et al. 22<br />

C-00497-2002.R2<br />

Figure 3 Immunohistochemistry for PCNA <strong>in</strong> liver sections from [a] normal and [b] 1 week<br />

BDL rats treated with a s<strong>in</strong>gle IP <strong>in</strong>jection <strong>of</strong> NaCl, act<strong>in</strong>omyc<strong>in</strong> D, TNF- α or act<strong>in</strong>omyc<strong>in</strong> D +<br />

TNF- α. [a] There were no PCNA-positive cholangiocytes <strong>in</strong> liver sections from normal rats.<br />

Adm<strong>in</strong>istration <strong>of</strong> act<strong>in</strong>omyc<strong>in</strong> D, TNF- α or act<strong>in</strong>omyc<strong>in</strong> D + TNF- α to normal rats did not alter<br />

the number <strong>of</strong> PCNA-positive cholangiocytes. Orig. magn., X1,000. [b] Adm<strong>in</strong>istration <strong>of</strong><br />

act<strong>in</strong>omyc<strong>in</strong> D + TNF- α <strong>in</strong>duced a significant decrease <strong>in</strong> the number <strong>of</strong> PCNA-positive<br />

cholangiocytes <strong>in</strong> 1 week BDL rats as compared to BDL rats treated with NaCl. Act<strong>in</strong>omyc<strong>in</strong> D or<br />

TNF- α alone did not affect the number <strong>of</strong> PCNA-positive cholangiocytes, which rema<strong>in</strong> similar to<br />

that <strong>of</strong> BDL control rats. Data are mean ± SEM <strong>of</strong> 3 experiments. *p < 0.05 vs. the number <strong>of</strong><br />

PCNA-positive cholangiocytes from 1 week BDL rats treated with a s<strong>in</strong>gle IP <strong>in</strong>jection <strong>of</strong> NaCl. Orig.<br />

magn., X1,000.<br />

Figure 4 Immunohistochemistry for CK-19 <strong>in</strong> liver sections from [a] normal and [b] 1 week<br />

BDL rats treated with a s<strong>in</strong>gle IP <strong>in</strong>jection <strong>of</strong> NaCl, act<strong>in</strong>omyc<strong>in</strong> D or TNF- α or act<strong>in</strong>omyc<strong>in</strong> D +<br />

TNF- α. [a] Adm<strong>in</strong>istration <strong>of</strong> act<strong>in</strong>omyc<strong>in</strong> D, TNF- α or act<strong>in</strong>omyc<strong>in</strong> D + TNF- α to normal rats<br />

did not alter the number <strong>of</strong> CK-19 positive cholangiocytes. Data are mean ± SEM <strong>of</strong> 3 experiments.<br />

Orig. magn., X125. [b] Adm<strong>in</strong>istration <strong>of</strong> act<strong>in</strong>omyc<strong>in</strong> D + TNF- α <strong>in</strong>duced a significant decrease <strong>in</strong><br />

the number <strong>of</strong> CK-19 positive cholangiocytes <strong>in</strong> 1 week BDL rats as compared to BDL rats treated<br />

with NaCl. Act<strong>in</strong>omyc<strong>in</strong> D or TNF- α alone did not affect the number <strong>of</strong> CK-positive<br />

cholangiocytes, which rema<strong>in</strong> similar to that <strong>of</strong> BDL control rats. Data are mean ± SEM <strong>of</strong> 3<br />

experiments. *p < 0.05 vs. the number <strong>of</strong> CK-19-positive cholangiocytes from 1 week BDL rats<br />

treated with a s<strong>in</strong>gle IP <strong>in</strong>jection <strong>of</strong> NaCl. Orig. magn., X125.


Alp<strong>in</strong>i et al. 23<br />

C-00497-2002.R2<br />

Figure 5 Measurement <strong>of</strong> PCNA prote<strong>in</strong> expression <strong>in</strong> pure cholangiocytes from [a] normal rats<br />

and [b] 1 week BDL rats treated with a s<strong>in</strong>gle IP <strong>in</strong>jection <strong>of</strong> NaCl, act<strong>in</strong>omyc<strong>in</strong> D, TNF- α or<br />

act<strong>in</strong>omyc<strong>in</strong> D + TNF- α. [a] Adm<strong>in</strong>istration <strong>of</strong> NaCl, act<strong>in</strong>omyc<strong>in</strong> D, TNF- α or act<strong>in</strong>omyc<strong>in</strong> D +<br />

TNF- α to normal rats did not alter PCNA prote<strong>in</strong> expression. Immunoblots were quantified by<br />

densitometry. Data are mean ± SEM <strong>of</strong> 4 experiments. [b] A s<strong>in</strong>gle <strong>in</strong>jection <strong>of</strong> act<strong>in</strong>omyc<strong>in</strong> D +<br />

TNF- α decreased PCNA prote<strong>in</strong> expression <strong>in</strong> purified cholangiocytes compared with cholangiocytes<br />

isolated from 1 week BDL rats treated with a s<strong>in</strong>gle dose <strong>of</strong> NaCl. Act<strong>in</strong>omyc<strong>in</strong> D or TNF- α alone<br />

did not affect PCNA prote<strong>in</strong> expression, which rema<strong>in</strong>s similar to that <strong>of</strong> BDL control rats.<br />

Immunoblots were quantified by densitometry. Data are mean ± SEM <strong>of</strong> 6-26 experiments. *p <<br />

0.05 vs. PCNA prote<strong>in</strong> expression <strong>of</strong> cholangiocytes from 1 week BDL rats treated with a s<strong>in</strong>gle IP<br />

<strong>in</strong>jection <strong>of</strong> NaCl.<br />

Figure 6 Mesaurement <strong>of</strong> cAMP levels <strong>in</strong> pure cholangiocytes from [a] normal rats and [b] 1<br />

week BDL rats treated with a s<strong>in</strong>gle IP <strong>in</strong>jection <strong>of</strong> NaCl, act<strong>in</strong>omyc<strong>in</strong> D + TNF- α, act<strong>in</strong>omyc<strong>in</strong> D or<br />

TNF- α. [a] Secret<strong>in</strong> <strong>in</strong>creased cAMP levels <strong>of</strong> cholangiocytes from normal rats treated with NaCl,<br />

act<strong>in</strong>omyc<strong>in</strong> D, TNF- α or act<strong>in</strong>omyc<strong>in</strong> D + TNF- α. Data are mean ± SEM <strong>of</strong> at least 3<br />

experiments. *p < 0.05 vs. correspond<strong>in</strong>g basal value. [b] Intracellular basal cAMP levels <strong>of</strong><br />

cholangiocytes from BDL rats were significantly higher than those <strong>of</strong> normal cholangiocytes. Secret<strong>in</strong><br />

<strong>in</strong>creased cAMP levels <strong>of</strong> cholangiocytes purified from 1 week BDL rats treated with NaCl,<br />

act<strong>in</strong>omyc<strong>in</strong> D or TNF- α. Basal and secret<strong>in</strong>-stimulated cAMP levels <strong>of</strong> cholangiocytes from BDL<br />

rats treated with a s<strong>in</strong>gle IP <strong>in</strong>jection <strong>of</strong> act<strong>in</strong>omyc<strong>in</strong> D or TNF- α were similar to that <strong>of</strong><br />

cholangiocytes from BDL rats. Consistent with the concept that TNF <strong>in</strong>duces duct damage, secret<strong>in</strong><br />

did not <strong>in</strong>crease cAMP levels <strong>in</strong> cholangiocytes purified from 1 week BDL rats treated with a s<strong>in</strong>gle IP<br />

<strong>in</strong>jection <strong>of</strong> act<strong>in</strong>omyc<strong>in</strong> D + TNF- α. Data are mean ± SEM <strong>of</strong> at least 5 experiments. *p < 0.05 vs.<br />

correspond<strong>in</strong>g basal value. #p < 0.05 vs. basal cAMP levels <strong>of</strong> normal cholangiocytes.


Alp<strong>in</strong>i et al. 24<br />

C-00497-2002.R2<br />

Figure 7 Freshly isolated cholangiocytes from [a] normal and [b] BDL rats were treated for 18<br />

hours with vary<strong>in</strong>g concentrations <strong>of</strong> recomb<strong>in</strong>ant TNF- α <strong>in</strong> the presence or absence <strong>of</strong> 1 µM<br />

act<strong>in</strong>omyc<strong>in</strong> D for 30 m<strong>in</strong>utes. The number <strong>of</strong> viable cells was assessed us<strong>in</strong>g the MTS assay. [a]<br />

Normal cholangiocytes were resistant to TNF- α over the concentration range studied. Furthermore,<br />

pre-<strong>in</strong>cubation with act<strong>in</strong>omyc<strong>in</strong> D did not sensitize normal cholangiocytes to TNF- α toxicity. Data<br />

are mean ± SEM <strong>of</strong> at least 3 experiments. [b] Cholangiocytes from BDL rats were resistant to TNF-<br />

α mediated toxicity. However, pre-<strong>in</strong>cubation with act<strong>in</strong>omyc<strong>in</strong> D sensitized cholangiocytes from<br />

BDL rats to TNF- α mediated toxicity. *p < 0.05 vs. correspond<strong>in</strong>g value <strong>of</strong> cholangiocytes treated <strong>in</strong><br />

vitro with TNF- α. Data are mean ± SEM <strong>of</strong> at least 3 experiments.<br />

Figure 8 Western blot analysis for TNF-R1 receptor <strong>in</strong> pure cholangiocytes from normal or<br />

BDL rats. Follow<strong>in</strong>g BDL, there was an <strong>in</strong>crease <strong>in</strong> TNF- α receptor prote<strong>in</strong> expression. *p < 0.05<br />

vs. correspond<strong>in</strong>g value <strong>of</strong> normal cholangiocytes. Data are mean ± SEM <strong>of</strong> 3 experiments.


Table 1 Effect <strong>of</strong> act<strong>in</strong>omyc<strong>in</strong> D, TNF-alpha or act<strong>in</strong>omyc<strong>in</strong> D + TNF-alpha adm<strong>in</strong>istration on bile flow, bicarbonate concentration and secretion<br />

<strong>of</strong> BDI rats.<br />

Bicarbonate secretion<br />

Bicarbonate secretion<br />

Bicarbonate<br />

concentration<br />

Bicarbonate<br />

concentration<br />

Bile flow<br />

Bile flow<br />

Treatment<br />

Secret<strong>in</strong><br />

( Eq/m<strong>in</strong>/Kg body<br />

weight)<br />

Basal<br />

( Eq/m<strong>in</strong>/Kg body<br />

weight)<br />

Secret<strong>in</strong><br />

(mEq/Liter)<br />

Basal<br />

(mEq/Liter)<br />

Secret<strong>in</strong><br />

( l/m<strong>in</strong>/Kg body<br />

weight)<br />

Basal<br />

( l/m<strong>in</strong>/Kg body<br />

weight)<br />

105.76 (± 10.34) 145.01 (± 16.02)a 38.14 (± 2.12) 55.52 (± 2.18)b 4.15 (± 0.65) 8.15 (± 1.12)c<br />

BDL +<br />

NaCl<br />

118.21 (± 7.64) 155.92 (± 8.95)a 43.28 (± 2.05) 52.9 (± 3.58)b 5.18 (± 0.50) 8.06 (± 0.64)c<br />

BDL +<br />

act<strong>in</strong>omyc<strong>in</strong> D<br />

98.20 (± 5.79) 139.14 (± 7.58)a 41.25 (± 3.67) 62.58 (± 5.73)b 4.15 (± 0.65) 8.79 (± 1.15)c<br />

BDL +<br />

TNF-alpha<br />

112.40 (± 9.67) 121.29 (± 8.77)ns 50.25 (± 3.64) 57.67 (± 2.55)ns 5.77 (± 0.97) 7.15 (± 0.89)ns<br />

BDL +<br />

act<strong>in</strong>omyc<strong>in</strong> D +<br />

TNF-alpha<br />

Data are mean ± SE <strong>of</strong> at least 3 rats. a p < 0.05 vs. correspond<strong>in</strong>g value <strong>of</strong> basal bile flow. b p < 0.05 vs. correspond<strong>in</strong>g value <strong>of</strong> basal bicarbonate concentration. cp <<br />

0.05 vs. correspond<strong>in</strong>g value <strong>of</strong> basal bicarbonate secretion. ns =not significative vs. its correspond<strong>in</strong>g basal value. Data are mean ± SEM <strong>of</strong> at least 3 experiments.<br />

Statistical analysis was performed by unpaired t-student test.


Figure 1a<br />

Normal +act<strong>in</strong>omyc<strong>in</strong> D<br />

Normal + NaCl<br />

Normal + act<strong>in</strong>omyc<strong>in</strong> D + TNF-α<br />

Normal + TNF-α


BDL + NaCl BDL + act<strong>in</strong>omyc<strong>in</strong> D<br />

BDL + TNF- α<br />

Number <strong>of</strong> apoptotic cholangiocytes<br />

(per portal tracts)<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Figure 1b<br />

ns vs. control<br />

ns vs. control<br />

BDL + act<strong>in</strong>omyc<strong>in</strong> D +TNF- α<br />

NaCl Act<strong>in</strong>omyc<strong>in</strong> D TNF-α Act<strong>in</strong>omyc<strong>in</strong> D +<br />

TNF-α<br />

*


Caspase 3 activity<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

BDL +<br />

NaCl<br />

Figure 2a<br />

*<br />

BDL +<br />

act<strong>in</strong>omyc<strong>in</strong> D +<br />

TNF-α


Caspase 3<br />

prote<strong>in</strong> expression x 100<br />

β-act<strong>in</strong><br />

200<br />

100<br />

0<br />

BDL +<br />

NaCl<br />

Figure 2b<br />

*<br />

BDL +<br />

act<strong>in</strong>omyc<strong>in</strong> D +<br />

TNF-α<br />

Caspase 3<br />

32 kD<br />

β-act<strong>in</strong><br />

42 kD


Figure 3a<br />

Normal + act<strong>in</strong>omyc<strong>in</strong> D<br />

Normal + NaCl<br />

Normal + TNF-α Normal + act<strong>in</strong>omyc<strong>in</strong> D + TNF-α


BDL + NaCl<br />

BDL + TNF-α<br />

Number <strong>of</strong> PCNA-positive cholangiocytes<br />

(per portal tracts)<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Figure 3b<br />

ns vs. control<br />

BDL + act<strong>in</strong>omyc<strong>in</strong> D<br />

BDL + act<strong>in</strong>omyc<strong>in</strong> D +<br />

TNF-α<br />

ns vs. control<br />

NaCl Act<strong>in</strong>omyc<strong>in</strong> D TNF-α Act<strong>in</strong>omyc<strong>in</strong> D +<br />

TNF-α<br />

*


Normal + NaCl<br />

Normal + Act<strong>in</strong>omyc<strong>in</strong> D<br />

Normal + TNF-α Normal + Act<strong>in</strong>omyc<strong>in</strong> D<br />

+ TNF-α<br />

Number <strong>of</strong> CK-19 positive cholangiocytes<br />

(per portal tracts)<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Figure 4a<br />

ns vs. control<br />

ns vs. control<br />

ns vs. control<br />

NaCl Act<strong>in</strong>omyc<strong>in</strong> D TNF-α Act<strong>in</strong>omyc<strong>in</strong> D +<br />

TNF-α


BDL + TNF-α<br />

Number <strong>of</strong> CK-19 positive cholangiocytes<br />

(per portal tracts)<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Figure 4b<br />

BDL BDL + act<strong>in</strong>omyc<strong>in</strong> D<br />

ns vs. control<br />

BDL + act<strong>in</strong>omyc<strong>in</strong> D +<br />

TNF-α<br />

ns vs. control<br />

NaCl Act<strong>in</strong>omyc<strong>in</strong> D TNF-α Act<strong>in</strong>omyc<strong>in</strong> D +<br />

TNF-α<br />

*


prote<strong>in</strong> expression x 100 (arbitrary units)<br />

PCNA<br />

β- act<strong>in</strong><br />

40<br />

30<br />

20<br />

10<br />

0<br />

Normal +<br />

NaCl<br />

Normal<br />

Figure 5a<br />

ns vs.<br />

NaCl<br />

Normal +<br />

act<strong>in</strong>omyc<strong>in</strong> D<br />

ns vs.<br />

NaCl<br />

Normal +<br />

TNF-α<br />

ns vs.<br />

NaCl<br />

Normal +<br />

act<strong>in</strong>omyc<strong>in</strong> D +<br />

TNF-α<br />

PCNA<br />

36 kD<br />

β-act<strong>in</strong><br />

42 kD


PCNA<br />

prote<strong>in</strong> expression x 100 (arbitrary units)<br />

β-act<strong>in</strong><br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

BDL +<br />

NaCl<br />

BDL<br />

BDL +<br />

act<strong>in</strong>omyc<strong>in</strong> D<br />

Figure 5b<br />

ns vs.<br />

NaCl<br />

ns vs.<br />

NaCl<br />

BDL +<br />

TNF-α<br />

*<br />

BDL +<br />

act<strong>in</strong>omyc<strong>in</strong> D +<br />

TNF-α<br />

PCNA<br />

36 kD<br />

β-act<strong>in</strong><br />

42 kD


cAMP levels<br />

(fmol/100,000 cells)<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Normal +<br />

NaCl<br />

*<br />

Figure 6a<br />

Normal +<br />

act<strong>in</strong>omyc<strong>in</strong> D<br />

* *<br />

Normal +<br />

TNF-α<br />

Basal<br />

Secret<strong>in</strong><br />

*<br />

Normal +<br />

act<strong>in</strong>omyc<strong>in</strong> D +<br />

TNF-α


cAMP levels<br />

(fmol / 100,000 cells)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

BDL +<br />

NaCl<br />

*<br />

Figure 6b<br />

BDL +<br />

act<strong>in</strong>omyc<strong>in</strong> D<br />

*<br />

BDL +<br />

TNF-α<br />

Basal<br />

Secret<strong>in</strong><br />

* ns vs.<br />

basal<br />

BDL +<br />

act<strong>in</strong>omyc<strong>in</strong> D +<br />

TNF-α


Figure 7<br />

TNF-α<br />

Act<strong>in</strong>omyc<strong>in</strong> D<br />

+ TNF-α<br />

140<br />

TNF-α<br />

Act<strong>in</strong>omyc<strong>in</strong> D<br />

+ TNF-α<br />

120<br />

120<br />

100<br />

100<br />

80<br />

60<br />

40<br />

Cell Number, % <strong>of</strong> control<br />

80<br />

60<br />

* *<br />

40<br />

Cell Number, % <strong>of</strong> control<br />

20<br />

20<br />

0<br />

0 0.1 1 10 100<br />

0<br />

a 0 0.1 1 10 100 b<br />

[TNF-α], ng/ml [TNF-α], ng/ml


Figure 8<br />

8000<br />

*<br />

7000<br />

n =3<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

TNF-R1 prote<strong>in</strong> expression<br />

(arbitrary units)<br />

1000<br />

0<br />

TNF-R1<br />

55 kD<br />

Normal BDL

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!