22.01.2013 Views

analysis of transient heat conduction in different geometries - ethesis ...

analysis of transient heat conduction in different geometries - ethesis ...

analysis of transient heat conduction in different geometries - ethesis ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

23. James R. K<strong>in</strong>gsley-Rowe, Gary D. Lock and J. Michael Owen, “Transient <strong>heat</strong> transfer<br />

measurements us<strong>in</strong>g thermochromic liquid crystal: lateral-<strong>conduction</strong> error”,<br />

International Journal <strong>of</strong> Heat and Fluid Flow, 26, (2005), 256–263<br />

24. Shang-Sheng Wu, Ch<strong>in</strong>-L<strong>in</strong> Shiu and Wen-Jyi Wu, “Analysis on tra<strong>in</strong>sient <strong>heat</strong> transfer<br />

<strong>in</strong> a annular f<strong>in</strong>s or various shapes with their bases subjected to a <strong>heat</strong> flux vary<strong>in</strong>g as a<br />

s<strong>in</strong>usoidal time function”, Computers and Structures, 61, (1996), 725-734<br />

25. S.K. Sahu, P.K. Das and S. Bhattacharyya, “Rewett<strong>in</strong>g <strong>analysis</strong> <strong>of</strong> hot surfaces with<br />

<strong>in</strong>ternal <strong>heat</strong> source by the <strong>heat</strong> balance <strong>in</strong>tegral method”, Heat Mass Transfer, 44,<br />

(2008), 1247–1256<br />

26. Faruk Yigit, “Approximate analytical solution <strong>of</strong> a two-dimensional <strong>heat</strong> <strong>conduction</strong><br />

problem with phase-change on a s<strong>in</strong>usoidal mold”, Applied Thermal Eng<strong>in</strong>eer<strong>in</strong>g, 28,<br />

(2008), 1196–1205<br />

27. J.S. Vrentas and C.M. Vrentas, “Axial <strong>conduction</strong> with boundary conditions <strong>of</strong> the mixed<br />

type”, Chemical Eng<strong>in</strong>eer<strong>in</strong>g Science, 62, (2007), 3104 – 3111<br />

28. S. Cheroto, S.M. Silva, Guigon,J.W.Ribeiro and R. M. Cotta, “Lumped <strong>different</strong>ial<br />

formulations for dry<strong>in</strong>g <strong>in</strong> capillary porous media”, Dry<strong>in</strong>g Technology, 15(3&4), (1997),<br />

81 1-835<br />

29. Jan A. Koøodziej and Tomasz Strezk, “Analytical approximations <strong>of</strong> the shape factors for<br />

conductive <strong>heat</strong> flow <strong>in</strong> circular and regular polygonal cross-sections”, International<br />

Journal <strong>of</strong> Heat and Mass Transfer, 44, (2001), 999-1012<br />

30. Zheng Tan a, Ge Sua and Jian Su b, “Improved lumped models for comb<strong>in</strong>ed convective<br />

and radiative cool<strong>in</strong>g <strong>of</strong> a wall”, Applied Thermal Eng<strong>in</strong>eer<strong>in</strong>g, (2009)<br />

31. M.G. Teixeira, M.A. R<strong>in</strong>con b and I.-S. Liu, “Numerical <strong>analysis</strong> <strong>of</strong> quench<strong>in</strong>g – Heat<br />

<strong>conduction</strong> <strong>in</strong> metallic materials”, Applied Mathematical Modell<strong>in</strong>g, 33, (2009), 2464–<br />

2473<br />

32. J. I. Frankel and Brian Vick and M. N. Ozisik, General formulation and <strong>analysis</strong> <strong>of</strong><br />

hyperbolic <strong>heat</strong> <strong>conduction</strong> <strong>in</strong> composite media, Int. J. Heat Mass Transfer, Vol. 30,<br />

(1987), 1293-1305<br />

57

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!