23.01.2013 Views

spg mitteilungen communications de la ssp - Schweizerische ...

spg mitteilungen communications de la ssp - Schweizerische ...

spg mitteilungen communications de la ssp - Schweizerische ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Nr. 37<br />

Mai 2012<br />

SPG MITTEILUNGEN<br />

COMMUNICATIONS DE LA SSP<br />

The location of this year's annual meeting on the<br />

Hönggerberg Campus.<br />

Picture © Ralph Bensberg/ETH Zürich<br />

The interesting re<strong>la</strong>tion between Albert<br />

Einstein and Georges Lemaître, two pioneers<br />

of mo<strong>de</strong>rn cosmology, is adressed in<br />

the article "From Static to Expanding Mo<strong>de</strong>ls<br />

of the Universe" on page 43.<br />

Im vergangenen Herbst erhielt Martin<br />

Gutzwiller <strong>de</strong>n Doktor honoris causa <strong>de</strong>r<br />

Universität Freiburg; ein willkommener An<strong>la</strong>ss<br />

für die SPG, die wissenschaftlichen<br />

Verdienste dieses grossen Schweizer Physikers<br />

zu würdigen. Ab S. 34 berichten wir<br />

über Gutzwillers grundlegen<strong>de</strong> Arbeiten<br />

auf <strong>de</strong>n Gebieten <strong>de</strong>s Quantenchaos und<br />

<strong>de</strong>r korrelierten Elektronen.<br />

Public lectures<br />

The program of this year's annual meeting inclu<strong>de</strong>s two public highlights:<br />

Nobel <strong>la</strong>ureate Samuel C. C. Ting (CERN & MIT) will talk about space-borne<br />

<strong>de</strong>tectors for cosmic rays, a key technology worth mentioning at the centennial<br />

of the discovery of cosmic rays.<br />

Gebhard F. X. Schertler (ETH Zürich & PSI) will exp<strong>la</strong>in in a public tutorial<br />

about "Ultrafast Biology" (organised by NCCR MUST and ETH FAST), how<br />

experiments at the SwissFEL will help to better un<strong>de</strong>rstand biological processes.<br />

Annual Meeting of the<br />

SwiSS PhySical Society<br />

June 21 - 22, 2012 , ETH Zürich<br />

General information: page 11, preliminary program: page 15


SPG Mitteilungen Nr. 37<br />

Inhalt - Contenu - Contents<br />

Jahrestagung <strong>de</strong>r SPG in Zürich, 21. - 22. Juni 2012 - Réunion annuelle <strong>de</strong> <strong>la</strong> SSP à Zürich, 21 - 22 juin 2012 3<br />

Vorwort - Avant-propos 3<br />

Preisverleihung und Generalversammlung 2012 - Cérémonie <strong>de</strong> remise <strong>de</strong>s prix et assemblée générale 2012 3<br />

Statistik - Statistique 4<br />

Jahresbericht <strong>de</strong>s Präsi<strong>de</strong>nten - Rapport annuel du prési<strong>de</strong>nt 5<br />

Protokoll <strong>de</strong>r Generalversammlung 2011 in Lausanne - Protocole <strong>de</strong> l'assemblée générale 2011 à Lausanne 5<br />

Jahresrechnung 2011 - Bi<strong>la</strong>n annuel 2011 7<br />

Anpassung <strong>de</strong>r Statuten - Modification <strong>de</strong>s statuts 9<br />

Neue Sektion und Kommission - Nouvelle section et commission 10<br />

Allgemeine Tagungsinformationen - Informations générales sur <strong>la</strong> réunion 11<br />

Vorläufige Programmübersicht - Résumé préliminaire du programme 15<br />

Aussteller - Exposants 27<br />

Kurz<strong>mitteilungen</strong> 27<br />

Progress in Physics (28): SATW Forum "Advanced Optoceramics" 28<br />

Progress in Physics (29): Un<strong>de</strong>rstanding exchange bias in thin films 30<br />

The legacy of Martin Gutzwiller 34<br />

Martin Gutzwiller and his periodic orbits 34<br />

Martin Gutzwiller and his wave function 37<br />

Physik und Gesellschaft: "Lead-User-Workshops" für effizientes Innovations- & Produktvariantenmanagement 41<br />

History of Physics (4): From Static to Expanding Mo<strong>de</strong>ls of the Universe 43<br />

Über <strong>de</strong>n Einfluss <strong>de</strong>s Lichtes auf <strong>de</strong>n Menschen 47<br />

Nicht-visuelle Lichtwirkungen beim Menschen 47<br />

Lighting Application for Non-Visual Effects of Light 49<br />

Präsi<strong>de</strong>nt / Prési<strong>de</strong>nt<br />

Dr. Christophe Rossel, IBM Rüschlikon, rsl@zurich.ibm.com<br />

Vize-Präsi<strong>de</strong>nt / Vice-Prési<strong>de</strong>nt<br />

Dr. Andreas Schopper, CERN, Andreas.Schopper@cern.ch<br />

Sekretär / Secrétaire<br />

Dr. MER Antoine Pochelon, EPFL-CRPP, antoine.pochelon@epfl.ch<br />

Kassier / Trésorier<br />

Dr. Pierangelo Gröning, EMPA Thun, pierangelo.groening@empa.ch<br />

Kon<strong>de</strong>nsierte Materie / Matière Con<strong>de</strong>nsée (KOND)<br />

Dr. Urs Staub, PSI, urs.staub@psi.ch<br />

Angewandte Physik / Physique Appliquée (ANDO)<br />

Dr. Ivo Furno, EPFL-CRPP, ivo.furno@epfl.ch<br />

Astrophysik, Kern- und Teilchenphysik /<br />

Astrophysique, physique nucléaire et corp. (TASK)<br />

Prof. Martin Pohl, Uni Genève, martin.pohl@cern.ch<br />

Theoretische Physik / Physique Théorique (THEO)<br />

Prof. Gian Michele Graf, ETH Zürich (ad interim), gmgraf@phys.ethz.ch<br />

Physik in <strong>de</strong>r Industrie / Physique dans l‘industrie<br />

Dr. Kai Hencken, ABB Dättwil, kai.hencken@ch.abb.com<br />

Atomphysik und Quantenoptik /<br />

Physique Atomique et Optique Quantique<br />

Prof. Antoine Weis, Uni Fribourg, antoine.weis@unifr.ch<br />

Impressum:<br />

Vorstandsmitglie<strong>de</strong>r <strong>de</strong>r SPG / Membres du Comité <strong>de</strong> <strong>la</strong> SSP<br />

Die SPG Mitteilungen erscheinen ca. 2-4 mal jährlich und wer<strong>de</strong>n an alle Mitglie<strong>de</strong>r abgegeben.<br />

Abonnement für Nichtmitglie<strong>de</strong>r:<br />

CHF 20.- pro Jahrgang (In<strong>la</strong>nd; Aus<strong>la</strong>nd auf Anfrage), incl. Lieferung <strong>de</strong>r Hefte sofort nach Erscheinen frei Haus. Bestellungen<br />

bzw. Kündigungen jeweils zum Jahresen<strong>de</strong> sen<strong>de</strong>n Sie bitte formlos an folgen<strong>de</strong> Adresse:<br />

Ver<strong>la</strong>g und Redaktion:<br />

<strong>Schweizerische</strong> Physikalische Gesellschaft, Klingelbergstr. 82, CH-4056 Basel, sps@unibas.ch, www.sps.ch<br />

Redaktionelle Beiträge und Inserate sind willkommen, bitte wen<strong>de</strong>n Sie sich an die obige Adresse.<br />

Namentlich gekennzeichnete Beiträge geben grundsätzlich die Meinungen <strong>de</strong>r betreffen<strong>de</strong>n Autoren wie<strong>de</strong>r. Die SPG übernimmt hierfür<br />

keine Verantwortung.<br />

Druck:<br />

Werner Druck AG, Kanonengasse 32, 4001 Basel<br />

2<br />

Physikausbildung und -för<strong>de</strong>rung /<br />

Education et encouragement à <strong>la</strong> physique<br />

Dr. Tibor Gyalog, Uni Basel, tibor.gyalog@unibas.ch<br />

Geschichte <strong>de</strong>r Physik / Histoire <strong>de</strong> <strong>la</strong> Physique<br />

Prof. Jan Lacki, Uni Genève, jan.<strong>la</strong>cki@unige.ch<br />

SPG Administration / Administration <strong>de</strong> <strong>la</strong> SSP<br />

Allgemeines Sekretariat (Mitglie<strong>de</strong>rverwaltung, Webseite, Druck, Versand, Redaktion Bulletin<br />

& SPG Mitteilungen) /<br />

Secrétariat générale (Service <strong>de</strong>s membres, internet, impression, envoi, rédaction Bulletin<br />

& Communications <strong>de</strong> <strong>la</strong> SSP)<br />

S. Albietz, SPG Sekretariat, Departement Physik,<br />

Klingelbergstrasse 82, CH-4056 Basel<br />

Tel. 061 / 267 36 86, Fax 061 / 267 37 84, sps@unibas.ch<br />

Buchhaltung / Service <strong>de</strong> <strong>la</strong> comptabilité<br />

F. Erkadoo, SPG Sekretariat, Departement Physik,<br />

Klingelbergstrasse 82, CH-4056 Basel<br />

Tel. 061 / 267 37 50, Fax 061 / 267 13 49, francois.erkadoo@unibas.ch<br />

Sekretärin <strong>de</strong>s Präsi<strong>de</strong>nten / Secrétaire du prési<strong>de</strong>nt<br />

Susanne Johner, SJO@zurich.ibm.com<br />

Wissenschaftlicher Redakteur/ Rédacteur scientifique<br />

Dr. Bernhard Braunecker, Braunecker Engineering GmbH,<br />

braunecker@bluewin.ch


3<br />

Communications <strong>de</strong> <strong>la</strong> SSP No. 37<br />

Jahrestagung <strong>de</strong>r SPG in Zürich, 21. - 22. Juni 2012<br />

Réunion annuelle <strong>de</strong> <strong>la</strong> SSP à Zürich, 21 - 22 juin 2012<br />

Vorwort<br />

Die erfolgreichen Tagungen <strong>de</strong>r letzten Jahre haben gezeigt,<br />

daß die SPG auf <strong>de</strong>m richtigen Pfad ist. Sowohl die Beteiligung<br />

<strong>de</strong>r verschie<strong>de</strong>nen NCCRs alle 2 Jahre, als auch die<br />

Kooperation mit unseren österreichischen Nachbarn er<strong>la</strong>uben<br />

eine exzellente Vernetzung und <strong>de</strong>n Austausch über<br />

Fachbereichs- und Lan<strong>de</strong>sgrenzen hinweg. Nicht zuletzt<br />

die Zusammenarbeit mit Fachgesellschaften, die einen<br />

starken Bezug zur Physik haben, er<strong>la</strong>ubt auch immer wie<strong>de</strong>r<br />

<strong>de</strong>n Blick über <strong>de</strong>n Tellerrand <strong>de</strong>s eigenen Wirkens.<br />

In diesem Jahr ist z.B. das 100jährige Jubiläum <strong>de</strong>r Ent<strong>de</strong>ckung<br />

<strong>de</strong>r Röntgenbeugung durch Max von Laue An<strong>la</strong>ß für<br />

die <strong>Schweizerische</strong> Gesellschaft für Kristallographie (SGK),<br />

sich mit einer Sitzung an unserer Tagung zu beteiligen.<br />

Der Einbezug von <strong>la</strong>nge vernachlässigten Fachgebieten ist<br />

ebenfalls geglückt, wie z.B. die nun bereits fest etablierte<br />

Sitzung zur Geschichte <strong>de</strong>r Physik zeigt. Die letztjährige Sitzung<br />

zur Geophysik gibt sogar An<strong>la</strong>ß, das Gebiet in diesem<br />

Jahr in einen erweiterten Rahmen unter "Physik <strong>de</strong>r Er<strong>de</strong>,<br />

Atmosphäre und Umwelt" einzubetten und eine gleichnamige<br />

Sektion zu grün<strong>de</strong>n.<br />

Im folgen<strong>de</strong>n fin<strong>de</strong>n Sie die wichtigsten Tagungsinformationen<br />

sowie eine vorläufige Programmübersicht. Das <strong>de</strong>finitive<br />

Programm wird in Kürze auf <strong>de</strong>r SPG-Webseite verfügbar<br />

sein.<br />

In diesem Sinne hoffen wir auf eine rege Beteiligung an <strong>de</strong>r<br />

diesjährigen Tagung und freuen uns auf Ihren Besuch.<br />

Avant-propos<br />

Le succès <strong>de</strong>s réunions <strong>de</strong>s années <strong>de</strong>rnières a démontré<br />

que <strong>la</strong> SSP est sur <strong>la</strong> bonne voie. Autant <strong>la</strong> participation <strong>de</strong>s<br />

différents NCCRs tous les <strong>de</strong>ux ans que notre coopération<br />

avec nos voisins autrichiens, favorisent le développment<br />

d’un excellent réseau et l’échange au <strong>de</strong>là <strong>de</strong>s spécialités et<br />

<strong>de</strong>s frontières. La col<strong>la</strong>boration avec les sociétés savantes<br />

qui ont un fort lien avec <strong>la</strong> physique, permet aussi <strong>de</strong> jeter<br />

régulièrement un coup d’oeil sur les domaines adjacents à<br />

nos propres activités.<br />

Cette année, <strong>la</strong> célébration du centenaire <strong>de</strong> <strong>la</strong> découverte<br />

<strong>de</strong> <strong>la</strong> diffraction <strong>de</strong>s rayons X par Max von Laue, est<br />

l’occasion pour <strong>la</strong> Société Suisse <strong>de</strong> Crystallographie <strong>de</strong><br />

participer avec une session à notre réunion annuelle.<br />

L’incorporation <strong>de</strong> domaines longtemps négligés est tout<br />

aussi réussie, tel que le montre par ex. <strong>la</strong> session désormais<br />

soli<strong>de</strong>ment établie sur l’Histoire <strong>de</strong> <strong>la</strong> Physique. La<br />

séance sur <strong>la</strong> Géophysique <strong>de</strong> l’année <strong>de</strong>rnière nous a<br />

incité à é<strong>la</strong>rgir le sujet vers <strong>la</strong> "Physique du Globe et <strong>de</strong><br />

l’Environnement", et à fon<strong>de</strong>r une nouvelle section du<br />

même nom.<br />

Dans les pages suivantes vous trouverez les informations<br />

essentielles sur <strong>la</strong> conférence ainsi que le programme provisoire.<br />

La version finale sera prochainement accessible sur<br />

notre site internet.<br />

Nous comptons donc sur une participation active et nombreuse<br />

à notre réunion annuelle et nous réjouissons <strong>de</strong> votre<br />

visite.<br />

Preisverleihung und Generalversammlung 2012 -<br />

Cérémonie <strong>de</strong> remise <strong>de</strong>s prix et assemblée générale 2012<br />

Donnerstag 21. Juni 2012, 11:30h - Jeudi 21 juin 2012, 11:30h<br />

ETH Zürich, Hönggerberg, Gebäu<strong>de</strong> HPH, Hörsaal G 1<br />

11:30 Preisverleihung Cérémonie <strong>de</strong> remise <strong>de</strong>s prix<br />

11:50 Generalversammlung Assemblée générale<br />

1. Protokoll <strong>de</strong>r Generalversammlung vom Procès-verbal <strong>de</strong> l'assemblée générale du<br />

16. Juni 2011<br />

16 juin 2011<br />

2. Kurzer Bericht <strong>de</strong>s Präsi<strong>de</strong>nten Bref rapport du prési<strong>de</strong>nt<br />

3. Rechnung 2011, Revisorenbericht Bi<strong>la</strong>n 2011, rapport <strong>de</strong>s vérificateurs <strong>de</strong>s<br />

comptes<br />

4. Anpassung <strong>de</strong>r Statuten Modification <strong>de</strong>s statuts<br />

5. Neue Sektion und Kommission Nouvelle section et commission<br />

6. Projekte Projets<br />

7. Wahlen Elections<br />

8. Diverses Divers


SPG Mitteilungen Nr. 37<br />

Neue Mitglie<strong>de</strong>r 2011 -<br />

Nouveaux membres en 2011<br />

Allenspach Rolf, Ammann Stephan, Anabitarte Miguel, Andritsch<br />

Florian, Balzan Riccardo, Becker Henrik, Bednorz<br />

J. Georg, Birrer Simon, Boil<strong>la</strong>t Bénédicte, Boss Jens Michael,<br />

Bräm Beat, Braitsch Daniel, Braun Johannes, Büchel<br />

Samuel, Bunk Oliver, Capelli Achille, Cedzich Christopher,<br />

Chang Johan, Chop<strong>de</strong>kar Rajesh Vi<strong>la</strong>s, Chowdhuri Zema,<br />

Christandl Matthias, Ciganovic Niko<strong>la</strong>, Conrad Roberta, Dahin<strong>de</strong>n<br />

Fabienne, Debus Pascal, Diebold Andreas, Donner<br />

Tobias, Eggenschwiler Fe<strong>de</strong>rico, Ehrbar Stefanie, El Bakkali<br />

Issam, El Moussaoui Souliman, Falke Johannes, Flöry<br />

Niko<strong>la</strong>us, Flühmann Christa, Gauvin Neal, Gehrig Jeffrey,<br />

Gehrmann-De Rid<strong>de</strong>r Au<strong>de</strong>, Gersdorf Thomas, Göldi Damian,<br />

Gomes Gerber Isabel, Grimm Alexan<strong>de</strong>r, Häberli Florian,<br />

Hälg Sebastian, Häusler Samuel, Herrmann Andreas,<br />

Howald Ludovic, Huber Felix, Iacobucci Giuseppe, Imamoglu<br />

Atac, Jenatsch Sandra, Jochum Johanna, Jusufi Abas,<br />

Kambly Dania, Kamleitner Josef, Kangeldi Selim, Kasprzak<br />

Malgorzata, Keller Stefan, Khaw Kim Siang, Kläui Mathias,<br />

K<strong>la</strong>user Christine, Kobayashi Masaki, Korppi Maria, Koulialias<br />

Dimitrios, Krempasky Juraj, Kreslo Igor, Kwuida-Manthey<br />

Katarina, Leimer Pascal, Löffler Jörg F., Lüthi Florian,<br />

Maetz Marc, Maghrbi Yasser, Marsik Premysl, Minkowski<br />

Peter, Mirzaei Seyed Imam, Mokso Rajmund, Moser Christophe,<br />

Nico<strong>la</strong> Andrina, Oberle Markus, Ockeloen Caspar,<br />

Orsi Silvio, Pagani Kurt, Papariello Luca, Parrinello Michele,<br />

Patthey Luc, Pavuna Davor, Pfefferle David, Piamonteze<br />

Cinthia, Pikulski Marek, Pilet Nico<strong>la</strong>s, Plumb Nicho<strong>la</strong>s, Prsa<br />

Krunos<strong>la</strong>v, Radovic Mi<strong>la</strong>n, Reichert Julia, Riedo Andreas,<br />

Rocco Gau<strong>de</strong>nzi, Rodriguez Alvarez José, Rose Ruben,<br />

Ruffieux Silvia, Rutar Giada, Schäfer Vera, Schmidt Alexan<strong>de</strong>r,<br />

Schnoz Sebastian, Schönherr Peggy, Schopper Andreas,<br />

Schulthess Thomas, Schumann Marc, Sehner Michael,<br />

Sei<strong>de</strong>l Mike, Sellerio Alessandro Luigi, Shiroka Toni, Stamm<br />

Christian, Stelzer Carol, Stöckl Quirin S., Timpu F<strong>la</strong>via<br />

C<strong>la</strong>udia, Tortschanoff Andreas, Tschirky Thomas, Verzetti<br />

Mauro, Viereck Julian, von Baussnern Samuel, Wacker Kay,<br />

Wágner Dávid, Wallny Rainer, Walt Roger, Waltar Kay, Ward<br />

Simon, Watts Benjamin, Weigele Pirmin, Wenzler Dominic,<br />

Wertnik Melina, Winkler János, Winterhalter Car<strong>la</strong>, Wittwer<br />

Peter, Witzemann Ama<strong>de</strong>us, Yarar Hevjin, Zai Anja<br />

Ehrenmitglie<strong>de</strong>r - Membres d'honneur<br />

Prof. Hans Beck (2010)<br />

Dr. J. Georg Bednorz (2011)<br />

Prof. Jean-Pierre B<strong>la</strong>ser (1990)<br />

Prof. Jean-Pierre Borel (2001)<br />

Prof. Jean-Pierre Eckmann (2011)<br />

Prof. Charles P. Enz (2005)<br />

Prof. Øystein Fischer (2010)<br />

Prof. Hans Frauenfel<strong>de</strong>r (2001)<br />

Prof. Jürg Fröhlich (2011)<br />

Prof. Hermann Grun<strong>de</strong>r (2001)<br />

Prof. Hans-Joachim Güntherodt (2010)<br />

Dr. Martin Huber (2011)<br />

Prof. Verena Meyer (2001)<br />

Statistik - Statistique<br />

4<br />

Prof. K. Alex Müller (1991)<br />

Prof. Hans Rudolf Ott (2005)<br />

Prof. T. Maurice Rice (2010)<br />

Dr. Heinrich Rohrer (1990)<br />

Prof. Louis Sch<strong>la</strong>pbach (2010)<br />

Assoziierte Mitglie<strong>de</strong>r - Membres associés<br />

A) Firmen<br />

• F. Hoffmann-La-Roche AG, 4070 Basel<br />

• Oerlikon Leybold Vacuum Schweiz AG, 8050 Zürich<br />

B) Universitäten, Institute<br />

• Albert-Einstein-Center for Fundamental Physics, Universität<br />

Bern, 3012 Bern<br />

• Département <strong>de</strong> Physique, Université <strong>de</strong> Fribourg,<br />

1700 Fribourg<br />

• Departement Physik, Universität Basel, 4056 Basel<br />

• Departement Physik, ETH Zürich, 8093 Zürich<br />

• EMPA, 8600 Dübendorf<br />

• Lab. <strong>de</strong> Physique <strong>de</strong>s Hautes Energies (LPHE), EPFL,<br />

1015 Lausanne<br />

• Paul Scherrer Institut, 5332 Villigen PSI<br />

• Physik-Institut, Universität Zürich, 8057 Zürich<br />

• Section <strong>de</strong> Physique, Université <strong>de</strong> Genève, 1211 Genève<br />

4<br />

C) Stu<strong>de</strong>ntenfachvereine<br />

• AEP - Association <strong>de</strong>s Etudiant(e)s en Physique, Université<br />

<strong>de</strong> Genève, 1211 Genève 4<br />

• Fachschaft Physik und Astronomie, Universität Bern,<br />

3012 Bern<br />

• Fachschaft Physique, Université <strong>de</strong> Fribourg, 1700 Fribourg<br />

• Fachverein Physik <strong>de</strong>r Universität Zürich (FPU),<br />

8057 Zürich<br />

• FG 14 (Fachgruppe für Physik-, Mathematik- und Versicherungswissenschaft),<br />

Universität Basel, 4056 Basel<br />

• Les Irrotationnels, EPFL, 1015 Lausanne<br />

• Verein <strong>de</strong>r Mathematik- und Physikstudieren<strong>de</strong>n an<br />

<strong>de</strong>r ETH Zürich (VMP), 8092 Zürich<br />

Verteilung <strong>de</strong>r Mitgliedskategorien -<br />

Répartition <strong>de</strong>s catégories <strong>de</strong> membres<br />

(31.12.2011)<br />

Or<strong>de</strong>ntliche Mitglie<strong>de</strong>r 697<br />

Doktoran<strong>de</strong>n 37<br />

Stu<strong>de</strong>nten 78<br />

Doppelmitglie<strong>de</strong>r DPG, ÖPG o<strong>de</strong>r APS 193<br />

Doppelmitglie<strong>de</strong>r PGZ 38<br />

Mitglie<strong>de</strong>r auf Lebenszeit 150<br />

Assoziierte Mitglie<strong>de</strong>r 16<br />

Bibliotheksmitglie<strong>de</strong>r 2<br />

Ehrenmitglie<strong>de</strong>r 18<br />

Beitragsfreie (Korrespon<strong>de</strong>nz) 10<br />

Total 1239


5<br />

Communications <strong>de</strong> <strong>la</strong> SSP No. 37<br />

Jahresbericht 2011 <strong>de</strong>s Präsi<strong>de</strong>nten - Rapport annuel 2011 du prési<strong>de</strong>nt<br />

Once again, one of the highlights of 2011 for the SPS<br />

was its successful annual meeting organized at the EPFL<br />

in Lausanne on 15-17 June 2011, jointly with the Austrian<br />

Physical Society (ÖPG), and both national societies of Astronomy<br />

and Astrophysics (SSAA and ÖGAA). It was very<br />

well atten<strong>de</strong>d with about 650 participants, 10 plenary talks,<br />

470 contributions spread over 10 parallel sessions and one<br />

<strong>la</strong>rge poster session. The commercial exhibitions reached<br />

a record number of 22 company booths. One can c<strong>la</strong>im<br />

without any doubt that the formu<strong>la</strong> of having our meeting<br />

every other year with our Austrian colleagues is a success.<br />

The meeting 2013 is therefore already p<strong>la</strong>nned in Vienna for<br />

early September.<br />

The organization of the alternating meetings with the Swiss<br />

NCCRs and other invited learned societies has also proven<br />

to be an excellent and appreciated means to make this<br />

event attractive to the Swiss community. A <strong>de</strong>tailed review<br />

of the meeting 2011 was published in the SPS Communications<br />

No 35 and on our website.<br />

Worth remembering is the celebration of the centennial of<br />

the discovery of superconductivity with <strong>de</strong>dicated talks, a<br />

lively round table in presence of the two Nobel Laureates K.<br />

A. Müller and J. G. Bednorz and a special exhibition.<br />

Based on the success of the session on Geophysics, it was<br />

proposed to create a new section named "Earth, Atmosphere<br />

and Environmental Physics". A <strong>de</strong>dicated session on<br />

this topic is p<strong>la</strong>nned in our next annual meeting at the ETHZ<br />

on 21-22 June 2012 (see page 10 in this issue for <strong>de</strong>tails).<br />

During the joint award ceremony the three SPS awards as<br />

well as several prizes of the ÖPG were attributed. During<br />

this ceremony the honorary membership was conferred to<br />

four new members.<br />

At the General Assembly, two new board members have<br />

been elected; several others have been reelected (see minutes<br />

on the next page).<br />

It is with pleasure that the SPS endorsed also the new<br />

membership of CHIPP, the Swiss Institute of Particle Physics,<br />

presi<strong>de</strong>d by Martin Pohl, within SCNAT. It trusts that<br />

this sister organization will strengthen science in general<br />

and physics in particu<strong>la</strong>r in association with the SPS.<br />

The number of individual members keeps increasing steadily<br />

with about 1250 by the end of 2011. This enjoyable trend<br />

goes in parallel with the strong increase of collective members<br />

- renamed ‘associate’ members in the future - found<br />

among the different <strong>de</strong>partments of physics, research organizations<br />

and physics stu<strong>de</strong>nt associations.<br />

Because of improved financial incomes (membership, exhibition)<br />

but also because of stronger control of our expenses<br />

(reduction of publication and mailing costs) the negative<br />

trend of the <strong>la</strong>st three years has been stopped and our budget<br />

2011 en<strong>de</strong>d again in the b<strong>la</strong>ck with a slight earning.<br />

Thanks to the excellent work of our scientific editor B.<br />

Braunecker, the SPS Bulletin continues to be a valuable<br />

source of information with society news, and the now well<br />

established topical rubriques 'Progress in Physics', 'Physics<br />

and Society' and 'Physics Anecdotes'.<br />

In our col<strong>la</strong>boration with the Physikalische Gesellschaft Zurich<br />

(PGZ), a joint Symposium on "Careers for Physicists"<br />

was organized on the 25 October 2011. The stu<strong>de</strong>nt associations<br />

of the SPS Young Physicists Forum (YPF), VMP<br />

(ETHZ), FPU (Uni. Zürich) and FG14 (Uni. Basel) participated<br />

in this successful symposium. In fact the YPF remains<br />

active and continues to organize special events, such as<br />

visits of research centers or institutes for its stu<strong>de</strong>nt members.<br />

In a well established tradition, the SPS sponsored also the<br />

Swiss Physics Olympiads and the Swiss Young Physicists<br />

Tournament in their respective activities. The best male and<br />

female finalists of the SwissPhO were awar<strong>de</strong>d with SPS<br />

prizes (http://www.swi<strong>ssp</strong>ho.ch/en/winners2011).<br />

The SPS is actively represented via its presi<strong>de</strong>nt or other<br />

members in different EPS groups and commissions, in particu<strong>la</strong>r<br />

the editorial board of Europhysics News, Europhysics<br />

Letters, the Forum Physics and Society, the Technology<br />

group and the Energy group. The meeting of the <strong>la</strong>tter<br />

took p<strong>la</strong>ce at the Akershus Energy Park, close to Oslo on<br />

6-7 October 2011. In addition to energy issues specific to<br />

Norway (hydro-energy, Thorium reactors), reports on radioactive<br />

waste disposal techniques and the status of disposals<br />

in EU nuclear energy countries including Switzer<strong>la</strong>nd<br />

(Nagra) were presented.<br />

As a member organization of the Swiss Aca<strong>de</strong>my of Science<br />

SCNAT, the SPS is part of the p<strong>la</strong>tform Mathematics,<br />

Astronomy and Physics. We acknowledge here the organizational<br />

and financial support of SCNAT in the pursuit of<br />

our tasks and activities. The support of the Swiss Aca<strong>de</strong>my<br />

of Engineering Science SATW is also acknowledged and<br />

hopefully our interaction will be further <strong>de</strong>veloped on important<br />

issues such as energy, resources and sustainability,<br />

information technology, nanotechnology, education as well<br />

as the training of the physicists in industry and aca<strong>de</strong>mia.<br />

Christophe Rossel, Presi<strong>de</strong>nt, March 2012<br />

Protokoll <strong>de</strong>r Generalversammlung vom 16.06.2011 in Lausanne<br />

Protocole <strong>de</strong> l'assemblée générale du 16.06.2011 à Lausanne<br />

Traktan<strong>de</strong>n<br />

1. Protokoll <strong>de</strong>r Generalversammlung vom 22.6.2010<br />

2. Bericht <strong>de</strong>s Präsi<strong>de</strong>nten<br />

3. Rechnung 2010 & Revisorenbericht<br />

4. Wahlen<br />

5. Projekte<br />

6. Diverses<br />

Der Präsi<strong>de</strong>nt, Christophe Rossel, eröffnet die Generalversammlung<br />

um 12:10 Uhr. Anwesend sind 31 Mitglie<strong>de</strong>r.<br />

1. Protokoll <strong>de</strong>r Generalversammlung vom 22.6.2010<br />

Das Protokoll <strong>de</strong>r letzten Generalversammlung in Basel<br />

wird kommentarlos genehmigt.


SPG Mitteilungen Nr. 37<br />

2. Bericht <strong>de</strong>s Präsi<strong>de</strong>nten<br />

Auf Seite 5 <strong>de</strong>r „SPG Mitteilungen Nr. 34“ wur<strong>de</strong> <strong>de</strong>r Jahresbericht<br />

<strong>de</strong>s Präsi<strong>de</strong>nten bereits veröffentlicht.<br />

• Zur Jahrestagung vom 21.-22. Juni 2010 in Basel mit<br />

NCCR ManEP, NANO, QP, CCMX, POLYCOLL (SCG) kamen<br />

rund 500 Teilnehmer und 17 Aussteller.<br />

• An <strong>de</strong>r Generalversammlung 2010 wur<strong>de</strong>n fünf neue Ehrenmitglie<strong>de</strong>r<br />

ernannt: Profs. H. Beck, O. Fischer, H.-J.<br />

Güntherodt, T. M. Rice, L. Sch<strong>la</strong>pbach.<br />

• Die GV 2010 schuf neue Mitglie<strong>de</strong>rkategorien und<br />

passte sowohl die Statuten an, wie teilweise auch die<br />

seit acht Jahren unverän<strong>de</strong>rten Mitglie<strong>de</strong>rbeiträge.<br />

• Als Werbeaktion erhielten alle Schweizer Physikprofessoren<br />

<strong>de</strong>n neuen SPG-Flyer zum Verteilen an die Studieren<strong>de</strong>n.<br />

• Folgen<strong>de</strong> Institutionen konnten als Kollektivmitglie<strong>de</strong>r<br />

gewonnen wer<strong>de</strong>n: Die Physik-Departemente <strong>de</strong>r Universitäten<br />

Basel, Genf und Zürich, <strong>de</strong>r ETH Zürich, das<br />

LPHE <strong>de</strong>r EPF Lausanne sowie die Stu<strong>de</strong>ntenvereine<br />

VMP (ETHZ), FPU (Uni ZH), AEP (Uni Genf).<br />

Der Präsi<strong>de</strong>nt informiert die Anwesen<strong>de</strong>n, dass <strong>de</strong>r Vorstand<br />

die missverständliche Bezeichnung "Kollektivmitgliedschaft"<br />

durch "Assoziierte Mitgliedschaft" ersetzen<br />

möchte. Die erfor<strong>de</strong>rliche Statutenän<strong>de</strong>rung wird nächstes<br />

Jahr auf die Traktan<strong>de</strong>nliste gesetzt und <strong>de</strong>r GV<br />

2012 zur Abstimmung vorgelegt.<br />

• Die dreimal jährlich erscheinen<strong>de</strong>n "SPG Mitteilungen"<br />

wer<strong>de</strong>n noch interessanter: Zu <strong>de</strong>n bisherigen Rubriken<br />

"Fortschritt in <strong>de</strong>r Physik", "Physik & Gesellschaft" und<br />

"Physik-Anekdoten" kommt die neue Serie "Geschichte<br />

<strong>de</strong>r Physik".<br />

Beson<strong>de</strong>re Anlässe im vergangenen Vereinsjahr waren:<br />

• Öffentlicher, von SPS und PGZ gemeinsam organisierter<br />

An<strong>la</strong>ss "DIE WISSENSEXPLOSION – Chancen und Risiken<br />

– Wissenschaftskommunikation im Zeitalter elektronischer<br />

Medien", Sa. 02.10.2010, Uni Zürich.<br />

• 50 Jahre Laser: Der Tanz <strong>de</strong>r Photonen, vom 10.-<br />

12.06.2010 an <strong>de</strong>r Universität Bern und vom 19.-<br />

20.11.2010 an <strong>de</strong>r Universität Fribourg.<br />

• Im Rahmen unseres neuen Young Physicists Forums<br />

(VMP) organisierte <strong>de</strong>r VMP (Verein Mathematik- &<br />

Physik-Studieren<strong>de</strong>r <strong>de</strong>r ETH Zürich) folgen<strong>de</strong> gut besuchte<br />

Exkursionen: PSI Villigen (4.5.2010), EPFL-CRPP<br />

(22.11.2010), ABB (18.4.2011) und IBM Research<br />

(30.5.2011).<br />

• Als Sponsor <strong>de</strong>r Schweiz. Physik-Olympia<strong>de</strong>n stiftet die<br />

SPG jeweils zwei Nachwuchspreise zu je CHF 500, welche<br />

<strong>de</strong>r Präsi<strong>de</strong>nt an <strong>de</strong>r Schlussfeier vom 3.4.2011 in<br />

Aarau überreichte.<br />

• Weiterhin ist die SPG Sponsor <strong>de</strong>s Swiss Young Physicists<br />

Tournament (PSI, April 2011) und <strong>de</strong>s Schweizer<br />

Teams am International Young Physicists Tournament<br />

(Teheran, Juli 2011).<br />

3. Rechnung 2010 & Revisorenbericht<br />

Der Kassier, Pierangelo Gröning, präsentiert die Jahresrechnung<br />

2010, die <strong>de</strong>tailliert in <strong>de</strong>n "SPG-Mitteilungen Nr.<br />

34" veröffentlicht wur<strong>de</strong>. Sie schliesst mit einem Verlust von<br />

CHF 25'777, bei einem Vereinsvermögen per 31.12.2010<br />

von CHF 19'406.50.<br />

6<br />

Nach<strong>de</strong>m <strong>de</strong>r Revisorenbericht vorgelesen wor<strong>de</strong>n ist,<br />

stimmt die Generalversammlung <strong>de</strong>r Jahresrechnung 2010<br />

und <strong>de</strong>r Ent<strong>la</strong>stung <strong>de</strong>s Vorstands zu.<br />

4. Wahlen<br />

Der Präsi<strong>de</strong>nt dankt <strong>de</strong>n bei<strong>de</strong>n ausschei<strong>de</strong>n<strong>de</strong>n Vorstandsmitglie<strong>de</strong>rn<br />

für ihren Einsatz: Prof. K<strong>la</strong>us Kirch, 6<br />

Jahre Leiter <strong>de</strong>r SPG-Sektion "Astro-, Kern- Teilchenphysik"<br />

und Prof. Ulrich Straumann, 2 Jahre Vize-Präsi<strong>de</strong>nt <strong>de</strong>r<br />

SPG.<br />

In corpore wer<strong>de</strong>n einstimmig neu resp. wie<strong>de</strong>r gewählt:<br />

• Vize-Präsi<strong>de</strong>nt (neu): Dr. Andreas Schopper, CERN<br />

• Astro-, Kern- Teilchenphysik (neu): Prof. Martin Pohl,<br />

Universität Genf<br />

• Atomphysik & Quantenoptik (bisher): Prof. Antoine Weis,<br />

Universität Fribourg<br />

• Physik in <strong>de</strong>r Industrie (bisher): Dr. Kai Hencken, ABB<br />

• Theoretische Physik (bisher): Prof. Dionys Baeriswyl,<br />

Universität Fribourg<br />

• Angewandte Physik (bisher): Dr. Ivo Furno, EPFL<br />

• Physikausbildung & -för<strong>de</strong>rung (bisher): Dr. Tibor Gyalog,<br />

Universität Basel<br />

5. Projekte<br />

• Das "Young Physicists Forum" wird mit <strong>de</strong>n Stu<strong>de</strong>nten-<br />

Fachschaften weitere Aktivitäten, Betriebsbesichtigungen<br />

und Exkursionen für Stu<strong>de</strong>nten organisieren.<br />

• Zusammen mit <strong>de</strong>m PGZ p<strong>la</strong>nt die SPG im September<br />

2011 in Zürich ein Symposium über <strong>de</strong>n Physiker-Beruf.<br />

6. Diverses<br />

• An <strong>de</strong>r letzten GV wünschte ein Mitglied, die SPG solle<br />

<strong>de</strong>m Anglizismus entgegentreten und dafür sorgen, dass<br />

vermehrt <strong>de</strong>utschsprachige Beiträge gedruckt wer<strong>de</strong>n.<br />

Der Vorstand hat das Anliegen diskutiert, sieht jedoch<br />

keinen Handlungsbedarf. Bei einem Mitglie<strong>de</strong>rmagazin<br />

wie <strong>de</strong>n "SPG Mitteilungen" muss in erster Linie <strong>de</strong>r<br />

Inhalt stimmen – in welcher Sprache ist weniger wichtig.<br />

Was an<strong>de</strong>re Publikationen betrifft, kann und will <strong>de</strong>r<br />

SPG-Vorstand keinen Einfluss auf redaktionelle Entschei<strong>de</strong><br />

nehmen.<br />

• Die nächste SPG-Jahrestagung wird am 21./22. Juni<br />

2012 an <strong>de</strong>r ETH Zürich stattfin<strong>de</strong>n. Weitere Einzelheiten<br />

erscheinen <strong>de</strong>mnächst auf <strong>de</strong>r SPG-Internetseite (www.<br />

sps.ch).<br />

Der Präsi<strong>de</strong>nt dankt <strong>de</strong>n Anwesen<strong>de</strong>n für ihr Erscheinen<br />

sowie <strong>de</strong>n Delegierten und seinen Vorstandskollegen für Ihren<br />

Einsatz und die gute Zusammenarbeit im vergangenen<br />

Amtsjahr.<br />

En<strong>de</strong> <strong>de</strong>r Generalversammlung: 11:15 Uhr.<br />

Lausanne, 16. Juni 2011<br />

Die Protokollführerin: Susanne Johner


Jahresrechnung 2011 - Bi<strong>la</strong>n annuel 2011<br />

Bi<strong>la</strong>nz per 31.12.2011<br />

Aktiven Passiven<br />

Um<strong>la</strong>ufsvermögen<br />

Postscheckkonto 19233,53<br />

Bank - UBS 230-627945.M1U 12575,54<br />

Debitoren - Mitglie<strong>de</strong>r 2017,50<br />

Debitoren - SCNAT/SATW u.a.m. 56851,00<br />

Transitorische Aktiven 1049,70<br />

An<strong>la</strong>gevermögen<br />

Beteiligung EP Letters 15840,00<br />

Mobilien 1,00<br />

Fremdkapital<br />

Mobiliar 1,00<br />

Mitglie<strong>de</strong>r Lebenszeit 59824,50<br />

Transitorische Passiven 11135,90<br />

Eigenkapital<br />

Verfügbares Vermögen 19406,51<br />

Total Aktiven Passiven 107568,27 90367,91<br />

Gewinn 17200,36<br />

Total 107568,27 107568,27<br />

Verfügbares Vermögen per 31.12.11 nach Gewinnzuweisung 36606,87<br />

Erfolgsrechnung per 31.12.2011<br />

Aufwand Ertrag<br />

Gesellschaftsaufwand<br />

EPS - Membership 15634,30<br />

SCNAT - Membership 7903,00<br />

SATW-Mitglie<strong>de</strong>rbeitrag 1750,00<br />

SCNAT & SATW Verpflichtungskredite<br />

SPG-Jahrestagung 37766,26<br />

Schweizer Physik Olympia<strong>de</strong> 4000,00<br />

SPG Young Physicist's Forum 7133,15<br />

EGA-43 Kongress 2011, Fribourg 4000,00<br />

100 Jahre Supraleitung 11851,00<br />

SCNAT/SPG Bulletin 5500,00<br />

SCNAT Periodika (SPG-Mitteilungen, Druckkosten) 19444,20<br />

SCNAT Int. Young Phys. Tournament 5500,00<br />

Betriebsaufwand<br />

Löhne 11732,64<br />

Sozialleistungen 863,25<br />

Porti/Telefonspesen/WWW- und PC-Spesen 908,75<br />

Versand (Porti Massensendungen) 5334,00<br />

Unkosten 3130,30<br />

Büromaterial 321,60<br />

Bankspesen 163,00<br />

Debitorenverluste Mitglie<strong>de</strong>r 1971,00<br />

Debitorenverlust SCNAT/SATW u.a.m. 5149,00<br />

Sekretariatsaufwand extern 9675,00<br />

Ertrag<br />

Mitglie<strong>de</strong>rbeiträge 87670,35<br />

Inserate/Flyerbei<strong>la</strong>gen SPG Mitteilungen 200,00<br />

Aussteller 24771,69<br />

Zinsertrag 125,90<br />

Ertrag aus EP Letters Beteiligung 2162,87<br />

SCNAT & SATW Verpflichtungskredite<br />

SPG-Jahrestagung (SCNAT) 15000,00<br />

Schweizer Physik Olympia<strong>de</strong> 4000,00<br />

SPG Young Physicist's Forum 7000,00<br />

EGAS-43 Kongress 2011, Fribourg 4000,00<br />

100 Jahre Supraleitung 12000,00<br />

SATW, 100 Jahre Tieftemperatur und Supraleitung/Session Géophysique 5000,00<br />

SPG Bulletin (SCNAT) 5500,00<br />

Periodika (SPG-Mitteilungen, Druckkosten) (SCNAT) 4000,00<br />

SCNAT Int. Young Phys. Tournament 5500,00<br />

Total Aufwand/Ertrag 159730,45 176930,81<br />

Gewinn 17200,36<br />

Total 176930,81 176930,81<br />

7<br />

Communications <strong>de</strong> <strong>la</strong> SSP No. 37


SPG Mitteilungen Nr. 37<br />

Revisorenbericht zur Jahresrechnung 2011<br />

Die Jahresrechnung 2011 <strong>de</strong>r SPG wur<strong>de</strong> von <strong>de</strong>n unterzeichneten Revisoren geprüft und<br />

mit <strong>de</strong>n Belegen in Übereinstimmung befun<strong>de</strong>n.<br />

Die Revisoren empfehlen <strong>de</strong>r Generalversammlung <strong>de</strong>r SPG, die Jahresrechnung zu<br />

genehmigen und <strong>de</strong>n Kassier mit bestem Dank für die gute Rechnungsführung zu<br />

ent<strong>la</strong>sten.<br />

Die Revisoren <strong>de</strong>r SPG:<br />

Prof. Dr. Philipp Aebi Dr. Pascal Ruffieux<br />

Basel, 15. März 2012<br />

F. Erkadoo, SPG Büro, Departement Physik, Klingelbergstrasse 82, CH-4056 Basel<br />

Tel : 061 / 267 37 50, Fax : 061 / 267 13 49, Email : francois.erkadoo@unibas.ch<br />

8


Anpassung <strong>de</strong>r Statuten - Modification <strong>de</strong>s statuts<br />

Seit <strong>de</strong>r letzten Än<strong>de</strong>rung vor zwei Jahren ist <strong>de</strong>r Vorstand<br />

auf zwei kleine Unschönheiten in <strong>de</strong>n Statuten aufmerksam<br />

gemacht wor<strong>de</strong>n. Diese betreffen <strong>de</strong>n Begriff "Kollektivmitglie<strong>de</strong>r",<br />

<strong>de</strong>r verschie<strong>de</strong>ntlich zu Mißverständnissen geführt<br />

hat. Ferner wird die Definition <strong>de</strong>r Kollektivmitglie<strong>de</strong>r Gruppe<br />

B als zu eng gefasst angesehen, da z.B. eine überstaatliche<br />

Organisation wie das CERN danach nicht Mitglied<br />

wer<strong>de</strong>n kann.<br />

Es wird daher über die folgen<strong>de</strong>n kleinen Än<strong>de</strong>rungen abgestimmt:<br />

- Der Begriff "Kollektivmitglie<strong>de</strong>r" wird ersetzt durch "Assoziierte<br />

Mitglie<strong>de</strong>r". Dies betrifft Artikel 2 und Anhang 1.<br />

- Die Definition <strong>de</strong>r Gruppe B in Artikel 2 wird erweitert.<br />

Die bisherige Fassung <strong>de</strong>r Statuten fin<strong>de</strong>n Sie auf www.<br />

sps.ch ->SPG ->Statuten.<br />

Art. 2<br />

Die Gesellschaft besteht aus or<strong>de</strong>ntlichen Mitglie<strong>de</strong>rn, aus<br />

stu<strong>de</strong>ntischen Mitglie<strong>de</strong>rn (Stu<strong>de</strong>nten), aus Ehrenmitglie<strong>de</strong>rn<br />

und aus Assoziierten Mitglie<strong>de</strong>rn.<br />

Als Stu<strong>de</strong>nten gelten Personen, welche an einer Universität<br />

immatrikuliert sind und noch keinen Diplom-/Masterabschluß<br />

haben.<br />

Assoziierte Mitglie<strong>de</strong>r wer<strong>de</strong>n in folgen<strong>de</strong> Gruppen eingeteilt:<br />

A) Firmen<br />

B) Universitäten bzw. <strong>de</strong>ren Untereinheiten (z.B. Institute,<br />

Forschungs<strong>la</strong>bore) o<strong>de</strong>r anerkannte staatliche,<br />

überstaatliche bzw. internationale Forschungseinrichtungen<br />

C) Stu<strong>de</strong>ntenorganisationen / Fachgruppen an Schweizer<br />

Hochschulen<br />

[...]<br />

Art. 24<br />

Die gegenwärtige Version <strong>de</strong>r Statuten <strong>de</strong>r <strong>Schweizerische</strong>n<br />

Physikalischen Gesellschaft wur<strong>de</strong> an <strong>de</strong>r Generalversammlung<br />

vom 21. Juni 2012 in Zürich angenommen.<br />

Sie annulliert alle vorherigen Bestimmungen.<br />

A Letters JournAL<br />

expLoring the Frontiers<br />

oF physics<br />

www.epl journal.org<br />

Publish your cutting-edge research with EPL<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

9<br />

Communications <strong>de</strong> <strong>la</strong> SSP No. 37<br />

Après les <strong>de</strong>rnières modifications d'il y a <strong>de</strong>ux ans, le comité<br />

a été rendu attentif à <strong>de</strong>ux petites imprécisions dans<br />

les statuts. Elles concernent le terme <strong>de</strong> 'membre collectif'<br />

qui a conduit à quelques malentendus. De plus <strong>la</strong> définition<br />

du groupe B <strong>de</strong>s membres collectifs est considérée comme<br />

trop limitée. Ainsi une organisation internationale comme le<br />

CERN ne pourrait pas <strong>de</strong>venir membre <strong>de</strong> <strong>la</strong> SSP.<br />

Pour ces raisons il sera nécéssaire <strong>de</strong> se prononcer sur les<br />

petits amen<strong>de</strong>ments suivants:<br />

- le terme "membres collectifs" est remp<strong>la</strong>cé par "membres<br />

associés" dans les Article 2 et Annexe 1.<br />

- <strong>la</strong> définition du groupe B dans l'Article 2 est é<strong>la</strong>rgie.<br />

La version actuelle <strong>de</strong>s statuts se trouve sous www.sps.ch<br />

-> SSP -> Statuts.<br />

Art. 2<br />

La Société se compose <strong>de</strong> membres ordinaires, <strong>de</strong> membres<br />

étudiants, <strong>de</strong> membres honoraires et <strong>de</strong> membres associés.<br />

Comme étudiants sont considérées les personnes immatriculées<br />

dans une université et qui n’ont pas encore obtenu<br />

<strong>de</strong> Diplôme ou Master.<br />

Les membres associés se composent <strong>de</strong>s groupes suivants:<br />

A) Compagnies commerciales<br />

B) Universités et leurs unités (par ex. instituts, <strong>la</strong>boratoires<br />

<strong>de</strong> recherche) ainsi que les institutions nationales, supranationales<br />

ou internationales <strong>de</strong> recherche.<br />

C) Organisations ou associations d’étudiants liées à une<br />

université suisse<br />

[...]<br />

Art. 24<br />

La présente version <strong>de</strong>s statuts <strong>de</strong> <strong>la</strong> Société Suisse <strong>de</strong><br />

Physique a été adoptée par l’assemblée générale à Zürich,<br />

le 21 juin 2012. Elle annule toutes les dispositions antérieures.<br />

Quality – The 50+ Co-Editors, who are experts in their fields, oversee the entire peer-review<br />

process, from selection of the referees to making all final acceptance <strong>de</strong>cisions.<br />

Impact Factor – The 2010 Impact Factor is 2.753; your work will be in the right p<strong>la</strong>ce to be<br />

cited by your peers.<br />

Speed of processing – We aim to provi<strong>de</strong> you with a quick and efficient service; the median<br />

time from acceptance to online publication is 29 days.<br />

High visibility – All articles are free to read for 30 days from online publication date.<br />

International reach – More than 2000 institutions have access to EPL, enabling your work to<br />

be read by your peers in more than 100 countries.<br />

Open Access – If you are required to publish your research as open access, we offer this<br />

service for a one-off author payment.<br />

If you would like further information about our author service, or EPL in general, please<br />

visit www.epljournal.org, e-mail us at info@epljournal.org or scan this barco<strong>de</strong>.<br />

Impact Factor<br />

2.753*<br />

* As listed in ISI®’s 2010 Science<br />

Citation In<strong>de</strong>x Journal citation reports<br />

More than<br />

624 000<br />

full-text downloads<br />

in 2011<br />

29 days<br />

median acceptance to<br />

online publication in 2011<br />

Visit<br />

our booth<br />

at the Annual<br />

Meeting,<br />

21–22 June


SPG Mitteilungen Nr. 37<br />

New Section "Earth, Atmosphere and Environmental Physics"<br />

Neue Sektion "Physik <strong>de</strong>r Er<strong>de</strong>, Atmosphäre und Umwelt"<br />

Nouvelle section "Physique du Globe et <strong>de</strong> l’Environnement"<br />

In 2012, the SPS starts up a new section, Earth, Atmosphere<br />

and Environmental Physics, following formally the<br />

2011 sessions on geophysics (From P<strong>la</strong>netary to Engineering<br />

Geophysics).<br />

Earth, atmosphere and environmental physics can be <strong>de</strong>scribed<br />

in terms of the <strong>la</strong>ws of physics. Examples inclu<strong>de</strong><br />

a number of environmental issues such as global warming,<br />

waste <strong>de</strong>positories, ozone <strong>la</strong>yer <strong>de</strong>pletion, energy crisis and<br />

renewable energy sources, air, soil and water pollution, etc.<br />

This section pays tribute to the emphasis p<strong>la</strong>ced on monitoring<br />

and un<strong>de</strong>rstanding processes, as well as predicting<br />

changes of our physical world. The un<strong>de</strong>rlying topics may<br />

be regar<strong>de</strong>d as Earth- or geo-sciences oriented, being a<br />

particu<strong>la</strong>r combination of physical, chemical, and biological<br />

processes linking and <strong>de</strong>termining every components of<br />

the Earth system on a wi<strong>de</strong> variety of spatial and temporal<br />

scales.<br />

Earth Physics encompasses a number of topics from the<br />

geophysics of the globe (p<strong>la</strong>te tectonics, geomagnetism,<br />

solid state at high pressures, seismology, geo<strong>de</strong>sy, cosmic<br />

New Commission "Young Physicists Forum"<br />

Until now, the Young Physicists Forum (YPF) is a loose<br />

compound of nearly all Swiss physics stu<strong>de</strong>nts organizations<br />

– namely the associations from École polytechnique<br />

fédérale <strong>de</strong> Lausanne, ETH Zürich, Uni Basel, Uni Bern, Uni<br />

Fribourg and Uni Genève.<br />

Everything started at our first meeting in May 2011, where<br />

the representatives of the different stu<strong>de</strong>nts organizations<br />

agreed on the fact that there is a need for better connection<br />

amongst the physics stu<strong>de</strong>nts and between stu<strong>de</strong>nts and<br />

experienced physicists. To work out our aims and goals<br />

more precisely we started to meet regu<strong>la</strong>rly, each semester<br />

at a different university, to force initially the exchange<br />

amongst our board members. Since our first meeting the<br />

SPS supported us and offered their help.<br />

As a result of our efforts, the main goal of the YPF is to build<br />

up a network and encourage the exchange of information<br />

and experience amongst our stu<strong>de</strong>nts, but also with other<br />

physicists. This we want to reach e.g. by organizing joint<br />

events like visits of research institutions, companies etc.<br />

Starting to inclu<strong>de</strong> the members of our associations, our<br />

web-forum was released in April 2012 and as a first event<br />

we p<strong>la</strong>n to visit CERN this summer. To foster the communication<br />

between our members and "real-life physicists" the<br />

SPS turns out to be the i<strong>de</strong>al p<strong>la</strong>tform as they already combine<br />

reasearch and industrial interests, covering all areas<br />

of physics. In addition the SPS offers a stable framework<br />

within which the YPF can <strong>de</strong>velop and grow. After consul-<br />

10<br />

rays, extra-terrestrial geophysics,…) to engineering geophysics,<br />

applied geophysics (analysis of geological resources,<br />

of geomaterials, of geological hazards, of geological<br />

barriers for waste storage, monitoring of contaminated<br />

sites), aiming at a <strong>de</strong>scription from first principles.<br />

Atmospheric Physics is concerned with the structure and<br />

evolution of the p<strong>la</strong>netary atmospheres and with the wi<strong>de</strong><br />

range of phenomena that occur within them, with a particu<strong>la</strong>r<br />

focus on the Earth’s atmosphere interacting with other<br />

components such as the lithosphere, the biosphere, the hydrosphere<br />

and the cryosphere.<br />

Environmental Physics involves the many aspects of physics<br />

that perva<strong>de</strong> environmental processes in our everyday<br />

lives and in naturally occurring phenomena. This inclu<strong>de</strong>s<br />

energy supply and resources issues, which growing needs<br />

and use can impact on environment. It aims at un<strong>de</strong>rstanding<br />

the various links between topics such as, e.g.: sustainability,<br />

contribution of renewable sources, efficiency,<br />

wastes and pollution, CO 2 , climatic impact.<br />

tation with the board of the SPS we think that all involved<br />

parties can profit if the YPF is formaly foun<strong>de</strong>d as a commission<br />

of the SPS.<br />

In a first step all participating stu<strong>de</strong>nts organizations joined<br />

the SPS as Associated Members. The next step is our formal<br />

application at the General Assembly at the SPS annual<br />

meeting in June 2012, to accept the YPF as a commission.<br />

If our inquiry is accepted, we see it as our responsibility to<br />

bring our stu<strong>de</strong>nts in contact with the SPS so they get an<br />

impression of the wi<strong>de</strong> range of possibilities they will have<br />

when finishing their studies. Thus we want to spark interest<br />

of young physics stu<strong>de</strong>nts in the SPS as soon as possible.<br />

We are looking forward to a productive and successful cooperation<br />

and many new acquaintances.<br />

List of YPF founding members:<br />

Les Irrotationnels, Association <strong>de</strong>s étudiants en physique<br />

<strong>de</strong> l'EPFL, http://irrotationnels.epfl.ch<br />

Verein <strong>de</strong>r Mathematik- und Physikstudieren<strong>de</strong>n an <strong>de</strong>r<br />

ETH Zürich (VMP), www.vmp.ethz.ch<br />

Uni Basel, Fachgruppe 14 (FG 14), www.fg14.unibas.ch<br />

Uni Bern, Fachschaft Physik und Astronomie (FPA), http://<br />

www.fpa.unibe.ch<br />

Uni Fribourg, Fachschaft Physique (FPF)<br />

Uni Genève, Association <strong>de</strong>s Etudiant(e)s en Physique<br />

(AEP), http://www.asso-etud.unige.ch/aep/<br />

Julia Reichert and Talitha Weiss, YPF, Universität Basel


11<br />

Communications <strong>de</strong> <strong>la</strong> SSP No. 37<br />

Allgemeine Tagungsinformationen - Informations générales sur <strong>la</strong> réunion<br />

Konferenzwebseite und Anmeldung<br />

Alle Teilnehmeranmeldungen wer<strong>de</strong>n über die Konferenzwebseite<br />

vorgenommen.<br />

www.sps.ch -> Veranstaltungen<br />

Anmel<strong>de</strong>schluß: 1. Juni 2012<br />

Tagungsort<br />

ETH Zürich, Hönggerberg, Gebäu<strong>de</strong> HPH / HCI<br />

Tagungssekretariat<br />

Das Tagungssekretariat befin<strong>de</strong>t sich im Foyer <strong>de</strong>s HPH<br />

direkt neben <strong>de</strong>m Haupteingang.<br />

Öffnungszeiten:<br />

Mittwoch 20. Juni 16:00 - 19:00<br />

Donnerstag 21. Juni 08:00 - 18:00<br />

Freitag 22. Juni 08:00 - 15:00<br />

Alle Tagungsteilnehmer mel<strong>de</strong>n sich bitte vor <strong>de</strong>m Besuch<br />

<strong>de</strong>r ersten Veranstaltung beim Sekretariat an, wo<br />

Sie ein Namensschild und allfällige weitere Unter<strong>la</strong>gen<br />

erhalten sowie die Tagungsgebühr bezahlen.<br />

Wichtig: Ohne Namensschild ist kein Zutritt zu einer<br />

Veranstaltung möglich.<br />

Wir empfehlen Ihnen, wenn möglich <strong>de</strong>n Mittwoch<br />

Nachmittag für die Anmeldung zu nutzen. So können<br />

Sie am Donnerstag direkt ohne Wartezeiten die Vorträge<br />

besuchen.<br />

Achtung: Das Tagungssekretariat gibt kein technisches<br />

o<strong>de</strong>r Büromaterial ab. Je<strong>de</strong>r Teilnehmer ist für seine<br />

Ausrüstung (Mobilrechner, Laserpointer, Adapter, Schere,<br />

Reissnägel, Folien usw.) selber verantwortlich !<br />

Hörsäle<br />

In allen Hörsälen stehen Beamer und Hellraumprojektoren<br />

zur Verfügung. Bitte bringen Sie Ihre eigenen Mobilrechner<br />

und evtl. Adapter und USB Stick/CD mit.<br />

Postersession<br />

Die Postersession fin<strong>de</strong>t am Donnerstag Abend und<br />

am Freitag während <strong>de</strong>r Mittagspause im Foyer HPH<br />

statt. Bitte bringen Sie Befestigungsmaterial (Reissnägel,<br />

Klebestreifen) selbst mit. Die Posterwän<strong>de</strong> sind<br />

entsprechend diesem Programm numeriert, sodaß je<strong>de</strong>r<br />

Teilnehmer "seine" Wand leicht fin<strong>de</strong>n sollte. Alle Poster<br />

sollen an bei<strong>de</strong>n Tagen präsentiert wer<strong>de</strong>n.<br />

Maximale Postergröße: A0 Hochformat<br />

Zahlung<br />

Wir bitten Sie, die Tagungsgebühren im Voraus zu bezahlen.<br />

Sie verkürzen damit die Wartezeiten am Tagungssekretariat,<br />

erleichtern uns die Arbeit und sparen<br />

darüber hinaus noch Geld !<br />

Sie können auf das folgen<strong>de</strong> Konto einzahlen / überweisen:<br />

Postkonto <strong>de</strong>r <strong>Schweizerische</strong>n Physikalischen<br />

Gesellschaft, CH-4056 Basel,<br />

Kontonummer 80-8738-5<br />

Site web <strong>de</strong> <strong>la</strong> conférence et inscription<br />

L' inscription <strong>de</strong>s participants se fait sur le site web <strong>de</strong><br />

<strong>la</strong> conférence.<br />

www.sps.ch -> Evènements<br />

Dé<strong>la</strong>i d'inscription: 1 er juin 2012<br />

Lieu <strong>de</strong> <strong>la</strong> conférence<br />

ETH Zürich, Hönggerberg, bâtiment HPH / HCI<br />

Secrétariat <strong>de</strong> <strong>la</strong> conférence<br />

Le secrétariat <strong>de</strong> <strong>la</strong> réunion se trouve dans le foyer du<br />

bâtiment HPH juste à l'entrée.<br />

Heures d'ouverture :<br />

Mercredi 20 juin 16:00 - 19:00<br />

Jeudi 21 juin 08:00 - 18:00<br />

Vendredi 22 juin 08:00 - 15:00<br />

Tous les participants doivent se présenter en premier<br />

lieu au secrétariat <strong>de</strong> <strong>la</strong> conférence afin <strong>de</strong> recevoir leur<br />

badge et les divers documents ainsi que pour le paiement<br />

<strong>de</strong>s frais d'inscription.<br />

Attention: Sans badge, l'accès aux sessions <strong>de</strong> <strong>la</strong> manifestation<br />

sera refusé.<br />

Nous vous recommandons <strong>de</strong> vous inscrire déjà mercredi<br />

après-midi afin d'éviter <strong>de</strong>s temps d'attente inutiles<br />

jeudi matin.<br />

Attention: Le secrétariat <strong>de</strong> <strong>la</strong> conférence ne rend aucun<br />

matériel technique ni matériel <strong>de</strong> bureau. Chaque<br />

participant est responsable <strong>de</strong> son équipement (ordinateur,<br />

pointeur <strong>la</strong>ser, adaptateurs, ciseaux, punaises, ...) !<br />

Auditoires<br />

Les auditoires disposent tous d’un projecteur multimédia<br />

(beamer) et d'un projecteur pour transparents.<br />

Veuillez apporter votre ordinateur portable ainsi que<br />

d'éventuels accessoires tels que clé USB ou CD.<br />

Séance posters<br />

Les posters seront présentés dans le foyer HPH le jeudi<br />

soir et pendant <strong>la</strong> pause <strong>de</strong> midi <strong>de</strong> vendredi. Veuillez<br />

amener vous-même le matériel nécessaire pour fixer<br />

les posters (punaises, ruban adhésif). Les panneaux <strong>de</strong><br />

posters seront numérotés suivant le numéro <strong>de</strong> l'abstract<br />

indiqué dans le programme. Tous les posters pourront<br />

rester installés pendant les <strong>de</strong>ux jours.<br />

Dimension maximale: A0, format portrait<br />

Paiement<br />

Nous vous prions <strong>de</strong> régler d'avance vos frais d'inscription<br />

par virement postal ou bancaire. De cette manière<br />

vous éviterez <strong>de</strong>s files d'attente et vous nous facilitez<br />

notre travail. En plus vous pourrez faire <strong>de</strong>s économies !<br />

Vous pouvez effectuer votre virement sur le compte suivant:<br />

Compte postale <strong>de</strong> <strong>la</strong> Société Suisse <strong>de</strong> Physique,<br />

CH-4056 Basel,<br />

Numéro 80-8738-5


SPG Mitteilungen Nr. 37<br />

Für Zahlungen aus <strong>de</strong>m Aus<strong>la</strong>nd verwen<strong>de</strong>n Sie<br />

bitte folgen<strong>de</strong> Angaben:<br />

IBAN: CH59 0900 0000 8000 8738 5<br />

SWIFT/BIC: POFI CH BE XXX<br />

Bitte achten Sie darauf, daß Ihr Name und <strong>de</strong>r Zahlungszweck<br />

angegeben wer<strong>de</strong>n. (Es reicht nicht, wenn als Absen<strong>de</strong>r<br />

beispielsweise nur "Uni Basel" erscheint, da wir<br />

eine solch allgemeine Angabe nicht einer Einzelperson<br />

zuordnen können.)<br />

Am Tagungssekretariat kann nur bar bezahlt wer<strong>de</strong>n (in<br />

CHF). Kreditkarten können lei<strong>de</strong>r nicht akzeptiert wer<strong>de</strong>n.<br />

ACHTUNG: Tagungsgebühren können nicht zurückerstattet<br />

wer<strong>de</strong>n.<br />

Kaffeepausen, Mittagessen<br />

Die Kaffeepausen, <strong>de</strong>r zur Postersitzung gehören<strong>de</strong><br />

Apéro am Donnerstag Abend sowie das Lunchbuffet am<br />

Freitag fin<strong>de</strong>n in Foyer HPH bei <strong>de</strong>r Poster- und Händlerausstellung<br />

statt. Diese Leistungen sind in <strong>de</strong>r Konferenzgebühr<br />

enthalten.<br />

Für das Mittagessen am Donnerstag stehen die Mensen<br />

auf <strong>de</strong>m Campus Hönggerberg zur Verfügung (www.<br />

gastro.ethz.ch).<br />

Grillparty<br />

Die Grillparty fin<strong>de</strong>t am Donnerstag im Anschluß an die<br />

Postersession statt. Der Preis beträgt CHF 90.- pro Person<br />

(beinhaltet Essen und Getränke) Bitte registrieren<br />

Sie sich unbedingt im Voraus, damit wir disponieren<br />

können. Eine Anmeldung vor Ort ist nicht möglich !<br />

Spezia<strong>la</strong>ngebot für "Noch-Nicht" SPG-Mitglie<strong>de</strong>r<br />

P<strong>la</strong>nen Sie, an unserer Tagung teilzunehmen sowie Mitglied<br />

<strong>de</strong>r SPG zu wer<strong>de</strong>n ? Sie können nun bei<strong>de</strong>s für<br />

einen äusserst günstigen Preis von nur CHF 150.- (CHF<br />

170.- nach <strong>de</strong>m 1. Juni). Dieser Betrag <strong>de</strong>ckt die Konferenzgebühr<br />

sowie die Mitgliedschaft für 2012. Verpassen<br />

Sie dieses Angebot nicht ! Wählen Sie einfach bei<br />

<strong>de</strong>r Online Registrierung die Kategorie "Special Offer",<br />

<strong>la</strong><strong>de</strong>n Sie das Anmel<strong>de</strong>formu<strong>la</strong>r ( http://www.sps.ch/<br />

uploads/media/anmel<strong>de</strong>formu<strong>la</strong>r_d-f-e.pdf ) für neue<br />

Mitglie<strong>de</strong>r herunter, drucken es aus und schicken o<strong>de</strong>r<br />

faxen es ausgefüllt an das SPG-Sekretariat.<br />

12<br />

Pour <strong>de</strong>s paiements en provenance <strong>de</strong> l'étranger<br />

veuillez utiliser les données suivantes:<br />

IBAN: CH59 0900 0000 8000 8738 5<br />

SWIFT/BIC: POFI CH BE XXX<br />

N'oubliez pas d'indiquer votre nom et le motif <strong>de</strong> votre<br />

paiement (<strong>la</strong> mention "Uni Bâle", par exemple, est trop<br />

générale et ne suffit pas à i<strong>de</strong>ntifier l'auteur du virement.)<br />

Les paiements lors <strong>de</strong> <strong>la</strong> conférence ne pourront être<br />

effectués qu'en espèces (CHF). Les cartes <strong>de</strong> crédit ne<br />

pourront malheureusement pas être acceptées.<br />

ATTENTION: Les frais d'inscription ne pourront pas être<br />

remboursés.<br />

Preise gültig bei Zahlung bis 1. Juni - Prix va<strong>la</strong>ble pour <strong>de</strong>s paiements avant le 1er juin<br />

Kategorie - Catégorie CHF<br />

SPG-Mitglie<strong>de</strong>r, Doktoran<strong>de</strong>n - Membres <strong>de</strong> <strong>la</strong> SSP, Doctorants 100.-<br />

Stu<strong>de</strong>nten VOR Master/Diplom Abschluß - Etudiants AVANT le <strong>de</strong>gré master/diplôme 30.-<br />

Plenar-/Einge<strong>la</strong><strong>de</strong>ne Sprecher, Preisträger - Conférenciers pléniers / invités, <strong>la</strong>uréats 0.-<br />

An<strong>de</strong>re Teilnehmer - Autres participants 140.-<br />

Spezia<strong>la</strong>ngebot für "Noch-nicht-SPG-Mitglie<strong>de</strong>r" (s.u.) - Offre spéciale pour "Non-membres <strong>de</strong> <strong>la</strong> SSP" (voir<br />

ci-<strong>de</strong>ssous.)<br />

150.-<br />

Grillparty 90.-<br />

Zusch<strong>la</strong>g für Zahlungen nach <strong>de</strong>m 1. Juni sowie Barzahler an <strong>de</strong>r Tagung -<br />

Supplément pour paiements effectués après le 1er juin et pour paiements en espèces à <strong>la</strong> conférence<br />

20.-<br />

Pauses café, repas <strong>de</strong> midi<br />

Les pauses café, l'apéro accompagnant <strong>la</strong> séance<br />

posters du jeudi soir et le buffet <strong>de</strong> midi du vendredi<br />

se dérouleront dans le foyer HPH près <strong>de</strong>s posters et<br />

exposants. Ces prestations sont inclues dans les frais<br />

d'inscription.<br />

Pour le repas <strong>de</strong> midi du jeudi les restaurants du campus<br />

Hönggerberg sont à votre disposition (www.gastro.<br />

ethz.ch).<br />

Grillparty<br />

La grillparty se tiendra le jeudi soir après <strong>la</strong> séance posters.<br />

Le prix est <strong>de</strong> CHF 90.- par personne (repas et<br />

boissons inclus). Veuillez s.v.p. absolument vous enregistrer<br />

d'avance pour <strong>de</strong>s raisons d'organisation. Il n'est<br />

plus possible <strong>de</strong> s'inscrire sur p<strong>la</strong>ce.<br />

Offre spéciale pour les non-membres <strong>de</strong> <strong>la</strong> SSP<br />

Voulez-vous participer à <strong>la</strong> conférence et <strong>de</strong>venir aussi<br />

membre <strong>de</strong> <strong>la</strong> SSP ? Profitez <strong>de</strong> notre offre avantageuse<br />

! Pour <strong>la</strong> somme <strong>de</strong> CHF 150.- (CHF 170.- après<br />

le 1 er juin) nous vous offrons l’inscription ainsi que <strong>la</strong> cotisation<br />

<strong>de</strong> membre <strong>de</strong> <strong>la</strong> SSP jusqu’à fin 2012. Ne ratez<br />

pas cette occasion! Cochez simplement <strong>la</strong> case « Special<br />

Offer » lors <strong>de</strong> votre inscription en ligne, téléchargez<br />

le formu<strong>la</strong>ire d’admission à <strong>la</strong> SSP <strong>de</strong> http://www.sps.<br />

ch/uploads/media/anmel<strong>de</strong>formu<strong>la</strong>r_d-f-e.pdf , imprimez-le,<br />

et renvoyez-le dûment rempli par courrier ou par<br />

fax au secrétariat <strong>de</strong> <strong>la</strong> SSP.


(Dieses Angebot gilt nicht für Stu<strong>de</strong>nten o<strong>de</strong>r Doktoran<strong>de</strong>n.<br />

Diese profitieren sowieso von <strong>de</strong>r Gratis-Mitgliedschaft<br />

im ersten Mitgliedsjahr, und zahlen nur die in <strong>de</strong>r<br />

Tabelle angegebene Konferenzgebühr.)<br />

Hotels<br />

Hotelreservierungen können direkt über Zürich Tourismus<br />

(www.zuerich.com) vorgenommen wer<strong>de</strong>n.<br />

Anreise<br />

Unter http://www.ethz.ch/about/location/hoengg fin<strong>de</strong>n<br />

Sie ausführliche Hinweise zur Anreise mit verschie<strong>de</strong>nen<br />

Verkehrsmitteln. Auf <strong>de</strong>m Campus folgen Sie einfach<br />

<strong>de</strong>n Hinweisschil<strong>de</strong>rn.<br />

13<br />

Communications <strong>de</strong> <strong>la</strong> SSP No. 37<br />

(Cette offre n’est pas va<strong>la</strong>ble pour les étudiants et les<br />

doctorants. Ceux-ci profitent en effet d’une affiliation<br />

gratuite à <strong>la</strong> SSP pendant <strong>la</strong> première année, et ne<br />

paient que les frais d’inscription indiqués dans le tableau<br />

ci-<strong>de</strong>ssus.)<br />

Hôtels<br />

Les réservations d'hôtel peuvent être effectuées sur <strong>la</strong><br />

page internet <strong>de</strong> Zürich Tourisme (www.zuerich.com).<br />

Arrivée<br />

http://www.ethz.ch/about/location/hoengg/in<strong>de</strong>x_EN<br />

vous donne les informations détaillées sur l'arrivée avec<br />

les différents moyens <strong>de</strong> transport. Au campus veuillez<br />

suivre les panneaux <strong>de</strong> <strong>la</strong> conférence.


SPG Mitteilungen Nr. 37<br />

Schauenbergstrasse<br />

ETH Zürich – Standort Hönggerberg (Campus Science City)<br />

A B 37/80 C D<br />

Emil-Klöti-Strasse<br />

P<br />

Bushaltestelle<br />

ETH-Pen<strong>de</strong>lbus «Science City Link»<br />

Mensa<br />

Cafeteria<br />

Parking entry<br />

G<strong>la</strong>ubtenstrasse<br />

Einsteinstrasse<br />

Schafmattstrasse<br />

Science City Welcome Desk (Telefon +041 44 633 64 44)<br />

Alle Gebäu<strong>de</strong> und Parkgaragen sind rollstuhlgängig. Weitere Informationen am Science City Welcome Desk.<br />

Herausgeberin: ETH Zürich, Hochschulkommunikation, Mai 2011<br />

Kartenmaterial: Institut für Kartographie <strong>de</strong>r ETH Zürich, bearbeitet von Immobilien,<br />

Stab Portfoliomanagement und Hochschulkommunikation<br />

Wolfgang-Pauli-Strasse<br />

14<br />

P<br />

conference<br />

37/69/80


15<br />

Communications <strong>de</strong> <strong>la</strong> SSP No. 37<br />

Vorläufige Programmübersicht - Résumé préliminaire du programme<br />

Das vollständige Programm wird allen Teilnehmern am Tagungssekretariat<br />

abgegeben sowie auf <strong>de</strong>r SPG-Webseite<br />

publiziert.<br />

Hinweise:<br />

- Je Beitrag wird nur <strong>de</strong>r präsentieren<strong>de</strong> Autor aufgeführt.<br />

- Die Postersitzung ist am Donnerstag von 18:30 - ca.<br />

20:00 (mit Apéro) sowie am Freitag von 12:00 - 13:30<br />

(mit Lunchbuffet)<br />

- (p) = Plenarsprecher, (i) = einge<strong>la</strong><strong>de</strong>ner Sprecher<br />

Plenary Session<br />

Thursday, 21.06.2012, HPH G 1<br />

Time ID Plenary SeSSion i<br />

Chair: Christophe Rossel, IBM Rüschlikon<br />

08:55 Welcome note of the SPS Presi<strong>de</strong>nt<br />

09:00 1 From the QHE to Topological Insu<strong>la</strong>tors and on to<br />

Cosmic Magnetic Fields - a Unified Perspective<br />

Jürg Fröhlich, ETH Zürich (p)<br />

09:40 2 Quantum physics in one dimension<br />

Thierry Giamarchi, Uni Genève (p)<br />

10:20 Coffee Break<br />

Chair: Gervais Chapuis, EPFL<br />

10:50 3 From Laue's discovery and the Braggs' key to the<br />

world of atoms to service crystallography<br />

Dieter Schwarzenbach, EPFL (p)<br />

11:30 Award Ceremony<br />

11:50 SPS General Assembly<br />

12:30 Lunch<br />

13:30 Topical Sessions<br />

18:30 Postersession and Apéro<br />

20:15 Grillparty<br />

Thursday, 21.06.2012, HPH G 1<br />

Time ID Public lecture<br />

Chair: Martin Pohl, Uni Genève<br />

19:00 11 Space-borne Cosmic Ray Detectors<br />

Samuel C. C. Ting, CERN & MIT (p)<br />

20:15 END<br />

Friday, 22.06.2012, HPH G 1<br />

Time ID Plenary SeSSion ii<br />

Chair: NN<br />

09:00 4 Nanomechanical Resonators - coherent control of<br />

nanomechanical motion<br />

Jörg Peter Kotthaus, LMU München (p)<br />

09:40 5 Charge, Spin And Structural Dynamics of molecu<strong>la</strong>r<br />

systems: ultrafast optical and X-ray studies<br />

Majed Chergui, EPFL (p)<br />

10:20 Coffee Break<br />

11:00 Topical Sessions<br />

12:00 Postersession (continued), Lunchbuffet<br />

13:30 Topical Sessions<br />

Le programme final complet sera distribué aux participants<br />

au stand du secrétariat <strong>de</strong> <strong>la</strong> conférence et sera publié sur<br />

le site <strong>de</strong> <strong>la</strong> SSP.<br />

Indication:<br />

- seul le nom <strong>de</strong> l’auteur présentant <strong>la</strong> contribution a été<br />

indiqué.<br />

- <strong>la</strong> session poster a lieu le jeudo <strong>de</strong> 18.30 à env. 20.00<br />

(avec apéro) ainsi que le vendredi <strong>de</strong> 12:00 à 13:30<br />

(avec buffet <strong>de</strong> midi)<br />

- (p) = orateur <strong>de</strong> <strong>la</strong> session plénière, (i) = orateur invité<br />

Friday, 22.06.2012, HPH G 2<br />

Time ID Public tutorial of nccr MuSt and eth faSt<br />

Chair: Ursu<strong>la</strong> Keller, ETH Zürich<br />

12:15 12 Ultrafast Biology<br />

Gebhard F. X. Schertler, ETH Zürich & PSI Villigen (p)<br />

13:00 END<br />

Special: Careers for Physicists<br />

This session is organised in conjunction<br />

with the Physikalische Gesellschaft Zürich (PGZ).<br />

Thursday, 21.06.2012, HPH G 2<br />

Time ID careerS for PhySiciStS<br />

Chair: Kai Hencken, ABB Ba<strong>de</strong>n<br />

13:30 31 Sensirion: High-Tech Sensors from the Zürichsee<br />

Marc von Waldkirch (i)<br />

14:00 32 Physicists in research administration<br />

Florian Weissbach (i)<br />

14:30 33 Theoretical Physics in Industrial Corporate Research<br />

Thomas Christen (i)<br />

15:00 34 Mesa Imaging: Seeing the world in three dimensions<br />

Thierry Oggier (i)<br />

15:30 END, Coffee Break<br />

18:30 Postersession and Apéro<br />

Special: Teacher's Afternoon:<br />

"Nanophysik am Gymnasium"<br />

Friday, 22.06.2012, HCI D 2<br />

Time ID "nanoPhySik aM gyMnaSiuM"<br />

Chair: Tibor Gyalog, Uni Basel<br />

14:30 41 Nano 4 schools - Erfahrungsbericht über 9 Jahre<br />

Nano für Schulen<br />

Martin Von<strong>la</strong>nthen (i)<br />

14:50 42 Der Nanotruck in Deutsch<strong>la</strong>nd – Eine Erfolgsstory<br />

Andreas Jungbluth (i)<br />

15:10 43 Swiss nano Cube - P<strong>la</strong>ttform für Wissen & Bildung<br />

zu Nanotechnologien<br />

Robert Rekece (i)<br />

15:30 Coffee Break


SPG Mitteilungen Nr. 37<br />

Time ID Chair: Tibor Gyalog, Uni Basel<br />

16:00 44 Graetzelzellen für die Schule<br />

Thilo G<strong>la</strong>tzel (i)<br />

16:20 45 Nanomedizin – Eine Debatte über Technologiefolgen<br />

Meret Hornstein (i)<br />

16:40 46 Nano-Experimentier-Systeme für die Schule<br />

Andreas Vater<strong>la</strong>us (i)<br />

17:00 47 War Benjamin Franklin <strong>de</strong>r erste Nanophysiker?<br />

Danilo Pescia<br />

17:20 END<br />

Special:<br />

A. 100 Years of Diffraction: Historical highlights and a<br />

look into the next 100 years<br />

This session is organised by the Swiss Society for Crystallography (SGK).<br />

Part I is jointly organised with the SPS History of Physics section.<br />

Thursday, 21.06.2012, HCI J 6<br />

Time ID i. 100 yearS of diffraction<br />

Chair: Jan Lacki, Uni Genève<br />

Anthony Lin<strong>de</strong>n, Uni Zürich<br />

11:50 SGK General Assembly<br />

12:30 Lunch<br />

13:30 51 The two Braggs<br />

A. Michael G<strong>la</strong>zer (i)<br />

14:00 52 Max von Laue: the physicist and the upright man<br />

Jost Lemmerich (i)<br />

14:30 53 The origins and <strong>de</strong>velopment of macromolecu<strong>la</strong>r<br />

crystallography<br />

Larry Falvello (i)<br />

15:00 54 Johannes Martin Bijvoet (1892-1980) and absolute<br />

structure<br />

Ton Spek (i)<br />

15:30 Coffee Break<br />

ii. the next 100 yearS<br />

Chair: Michael Wörle, ETH Zürich<br />

16:00 61 Novel structural studies with an X-ray Free Electron<br />

Laser<br />

Bruce Patterson (i)<br />

16:25 62 Investigating disor<strong>de</strong>r as a matter of routine - the<br />

next steps<br />

Thomas Weber (i)<br />

16:50 63 The Materials Science Beamline upgra<strong>de</strong><br />

Philip Willmott (i)<br />

17:15 64 High Resolution X-Ray Diffraction applications for<br />

microsystems<br />

Antonia Neels<br />

17:30 65 Pow<strong>de</strong>r Charge Flipping – input parameter optimization<br />

and solution evaluation<br />

Dubravka Šišak<br />

17:45 66 Intercluster compounds for nanosized materials<br />

Fabienne Gschwind<br />

18:00 67 News from the spal<strong>la</strong>tion neutron source SINQ: Diffraction<br />

Jürg Schefer<br />

18:15 68 Density functional calcu<strong>la</strong>tions of polysynthetic<br />

Brazil twinning in alpha-quartz<br />

Hans Grimmer<br />

18:30 Poster prize and closing remarks<br />

18:35 END, Postersession and Apéro<br />

20:15 Grillparty<br />

16<br />

ID 100 yearS of diffraction PoSter<br />

71 A moment in time: 100 years of X-Ray diffraction versus 100<br />

days of PHOTON 100 CMOS <strong>de</strong>tector<br />

Eric Hovestreydt<br />

72 Ab-initio crystal structure prediction. Metal borohydri<strong>de</strong>s<br />

Riccarda Caputo<br />

73 Pressure modu<strong>la</strong>ted proton-phonon coupling and its<br />

relevance to ceramic fuel cell proton conductors<br />

Qianli Chen<br />

74 Mixed-metal precursors for mixed-metal oxi<strong>de</strong>s<br />

C<strong>la</strong>ire-Lise Chanez<br />

75 New penta-coordinate iron(III) aryloxi<strong>de</strong> as initiators for<br />

ring-opening polymerization<br />

Yvens Chérémond<br />

76 Light-induced low-spin structure of the bistable [Fe(bbtr) ] 3<br />

(BF ) compound<br />

4 2<br />

Laure Guenee<br />

77 Magnetic ground state and 2D behavior in the pseudo-<br />

Kagomè <strong>la</strong>yered system Cu Bi(SeO ) O Br<br />

3 3 2 2<br />

Oksana Zaharko<br />

78 XRD investigations on PZT <strong>la</strong>yers for actuator systems<br />

Olha Sereda<br />

79 Novel trimetallic borohydri<strong>de</strong>s<br />

Pascal Schouwink<br />

80 TIPSI hybrid spectrometer at the European Spal<strong>la</strong>tion<br />

Neutron Source ESS: Probing multiple length scales in one<br />

instrument<br />

Nadir Aliouane<br />

81 Neutron diffraction and Oxygen Isotope Back Exchange<br />

studies in La Sr CuO (x = 0, 0.05, 0.15) crystals as a<br />

2-x x 4±�<br />

function of temperature<br />

Ravi Sura<br />

82 Our fascination with crystals and crystallography – a 7500<br />

year timeline<br />

Rangana Warshamanage<br />

B. History of Physics<br />

Thursday, 21.06.2012, HCI D 2<br />

Time ID hiStory of PhySicS<br />

Chair: NN<br />

14:30 91 The method of Victor F. Hess, or how the residual<br />

leaking away of electric charge, a tenacious ‘shelf<br />

warmer‘, opened up new fascinating fields of physical<br />

knowledge<br />

Peter Schuster (i)<br />

15:00 92 From thun<strong>de</strong>rstorms to cosmic rays: Albert Gockel’s<br />

investigations in atmospheric physics<br />

Jan Lacki<br />

15:30 Coffee Break<br />

Chair: NN<br />

16:00 93 The origins and fate of technical physics in<br />

Lausanne: the creation of the Ecole Spéciale.<br />

Régis Catinaud<br />

16:30 94 Who discovered the Proca equation ? Lanczos, Proca,<br />

<strong>de</strong> Broglie and the <strong>de</strong>velopment of re<strong>la</strong>tivistic<br />

quantum theory in the 30’<br />

Adrien Vi<strong>la</strong>-Valls


17:00 95 Density-functional-theory strategy to solve approximately<br />

a quantum many-body problem: main<br />

i<strong>de</strong>as over the <strong>la</strong>st 50 years and their reflection in<br />

terminology<br />

Tomasz Wesolowski<br />

17:30 96 Political Decisions with <strong>de</strong>ep Scientific Consequences<br />

Araceli Sanchez Vare<strong>la</strong><br />

18:00 97 A key to success for an instrument maker: Col<strong>la</strong>boration<br />

with a scientist. The case of Haag-Streit (established<br />

1858) and Heinrich Wild (1833-1902).<br />

Jean-François Lou<strong>de</strong><br />

18:30 END, Postersession and Apéro<br />

20:15 Grillparty<br />

1 Magnetism at Interfaces<br />

Thursday, 21.06.2012, HCI J 7<br />

Time ID MoleculeS and cluSter<br />

Chair: Armin Kleibert, PSI Villigen<br />

13:30 101 Magnetic exchange coupling at the metal-organic<br />

molecule/substrate interface: Insights from firstprinciples<br />

calcu<strong>la</strong>tions<br />

Peter Oppeneer (i)<br />

14:00 102 Investigating the interp<strong>la</strong>y of geometry and magnetism<br />

in spin shuttle molecules on surfaces<br />

Thomas Greber (i)<br />

14:30 103 Novel magnetochemical effects induced by axial<br />

ligands in on-surface p<strong>la</strong>nar molecu<strong>la</strong>r spin systems<br />

Christian Wäckerlin<br />

14:45 104 Magnetism of Fe nanocluster super<strong>la</strong>ttices on<br />

Al O /NiAl (111)<br />

2 3<br />

Luca Gragnaniello<br />

15:00 105 Towards spintronics with Erbium single-ion molecu<strong>la</strong>r<br />

magnets<br />

Jan Dreiser<br />

15:15 106 High anisotropies for bimetallic Co-core Fe-shell<br />

is<strong>la</strong>nds on Au(11,12,12)<br />

Sergio V<strong>la</strong>ic<br />

15:30 Coffee Break<br />

16:00 111<br />

Magnetic and ultrafaSt interfaceS<br />

Chair: Cinthia Piamonteze, PSI Villigen<br />

Superconductivity, magneto-transport and electronic<br />

structure of the interfacial LaAlO /SrTiO 3 3<br />

electron gas<br />

Jean-Marc Triscone (i)<br />

16:30 112 Interfacial magnetic couplings at LaSrMnO inter-<br />

3<br />

faces<br />

Carlos Vaz<br />

16:45 113 The Nature of Magnetic Or<strong>de</strong>ring in Magnetically<br />

Doped Topological Insu<strong>la</strong>tor Bi Fe Se - From Bulk<br />

2-x x 3<br />

to Surface<br />

Zaher Salman<br />

17:00 114 Strain-driven magnetization in epitaxial multiferroic<br />

composite heterostructures mapped with x-rays<br />

and neutrons<br />

Rajesh Chope<strong>de</strong>kar<br />

17:15 115 Altering STO/vacuum interface electronic states<br />

<strong>de</strong>positing po<strong>la</strong>r LAO epitaxial film: Angle Resolved<br />

Photoemission Spectroscopy study<br />

Mi<strong>la</strong>n Radovic<br />

17<br />

Communications <strong>de</strong> <strong>la</strong> SSP No. 37<br />

17:30 116 Search for spontaneous magnetism below the surface<br />

of (110)-oriented YBCO superconducting films<br />

using LE-μSR<br />

Hassan Saadaoui<br />

17:45 117 Ultrafast Enhancement of Ferromagnetism via Photoexcited<br />

Carriers in EuO<br />

Masakazu Matsubara<br />

18:00 118 Coherent control of femtosecond magnetization<br />

dynamics by a strong THz pulse<br />

Christoph Hauri<br />

18:15 119 Ultrafast magnetism seen by time and spin resolved<br />

photoemission at FLASH<br />

Andreas Fognini<br />

18:30 Postersession and Apéro<br />

20:15 Grillparty<br />

Friday, 22.06.2012, HCI J 7<br />

Time ID nanowireS and nanoParticleS<br />

Chair: Carlos Vaz, PSI Villigen<br />

11:00 121 Static and dynamic properties of Single-Chain Magnets<br />

with broad domain walls<br />

Alessandro Vindigni<br />

11:15 122 Thermal fluctuations and domain walls in ultra-thin<br />

magnetic nanowires<br />

Thomas Michaelis<br />

11:30 123 Searching for magnetic structural excitations at the<br />

nano-scale<br />

Peter Derlet<br />

11:45 124 Domain Walls in Structured Ferromagnetic Nanowires<br />

Vahe Tshitoyan<br />

12:00 125 Temperature-<strong>de</strong>pen<strong>de</strong>nt magnetization of individual<br />

iron nanoparticles studied with X-ray Photoemission<br />

electron microscopy<br />

Ana Ba<strong>la</strong>n<br />

12:15 END, Postersession (continued), Lunchbuffet<br />

ID MagnetiSM at interfaceS PoSter<br />

131 Use of a Landau-Heisenberg Hamiltonian in mo<strong>de</strong>lling the<br />

FeRh System<br />

Peter Derlet<br />

132 Magnetization dynamics of GdFeCo nanostructures revealed<br />

with PEEM<br />

Souliman el Moussaoui<br />

133 Coupled vortex pairs in magnetic multi<strong>la</strong>yer elements<br />

Christoph Quitmann<br />

134 Ground state or<strong>de</strong>ring of artificial spin ice<br />

A<strong>la</strong>n Farhan<br />

135 Domain pattern breakup in mesoscopic structures studied<br />

with x-ray microscopy<br />

Stephanie Stevenson<br />

136 Ultrafast <strong>la</strong>ser induced spin reorientation in the Co/SmFeO3 heterostructure<br />

Armin Kleibert<br />

137 Studying the interfacial magnetism of LaNiO /LaMnO su-<br />

3 3<br />

per<strong>la</strong>ttices with x-ray magnetic circu<strong>la</strong>r dichroism<br />

Cinthia Piamonteze<br />

138 Size-<strong>de</strong>pen<strong>de</strong>nt magnetic properties of individual iron nanoparticles<br />

studied at room temperature<br />

Ana Ba<strong>la</strong>n<br />

139 Luminescence-based scanning x-ray transmission microscopy<br />

Carlos Vaz


SPG Mitteilungen Nr. 37<br />

140 Enhancement of spin fluctuations of TbPc single molecule<br />

2<br />

magnets in thin films<br />

Andrea Hofmann<br />

141 Electric field control of magnetism in epitaxial Pd thin films<br />

Jakoba Heidler<br />

142 Radiation-induced elemental magnetic changes in Fe-Cr alloys<br />

using XMCD technique<br />

Andi Idhil<br />

143 Impurity Band Responsible for Ferromagnetism in Magnetic<br />

Semiconductor (Ga,Mn)As<br />

Masaki Kobayashi<br />

144 Digging up Bulk Band Dispersion behind Passivation Layer<br />

Masaki Kobayashi<br />

145 Three-Dimensional Fermi Surface of Iron-Pnicti<strong>de</strong> Superconductor<br />

BKFA<br />

Masaki Kobayashi<br />

2 Applied Physics<br />

+<br />

Atomic Physics and Quantum Optics<br />

note:<br />

the atoMic PhySicS and QuantuM oPticS SeSSion<br />

containS only PoSter PreSentationS.<br />

Friday, 22.06.2012, HCI J 6<br />

Time ID aPPlied PhySicS i<br />

Chair: Ivo Furno, CRPP-EPFL<br />

11:00 201 Vector Spherical Harmonics for active magnetic<br />

field compensation<br />

Grzegorz Wyszynski<br />

11:15 202 Handling wi<strong>de</strong> dynamic PMT signals with high precision<br />

in ground-based gamma-ray <strong>de</strong>tectors<br />

Arno Gado<strong>la</strong><br />

11:30 203 A new internal field mapping <strong>de</strong>vice for the nEDM<br />

experiment<br />

Dieter Ries<br />

11:45 204 High brilliance electron beam extraction from metallic<br />

microstructured photocatho<strong>de</strong><br />

Ardana Fernando<br />

12:00 Postersession (continued), Lunchbuffet<br />

aPPlied PhySicS ii<br />

Chair: NN<br />

13:30 211 Cocaine Detection in Saliva with Attenuated Total<br />

Reflection (ATR) Spectroscopy<br />

Kerstin Hans<br />

13:45 212 Sensitive <strong>de</strong>tection of cocaine in a liquid solvent<br />

with a quantum casca<strong>de</strong> <strong>la</strong>ser<br />

Michele Gianel<strong>la</strong><br />

14:00 213 Mid-infrared fiber-coupled photoacoustic sensor<br />

for the <strong>de</strong>tection of glucose in biological samples<br />

Jonas Kottmann<br />

14:15 214 Tracking of Murine Cardiac Stem Cells by Harmonic<br />

Nanoparticles<br />

Thibaud Magouroux<br />

14:30 215 Analysis of Human Tone-Burst-Evoked Otoacoustic<br />

Emissions<br />

Reinhart Frosch<br />

14:45 216 High power SESAM mo<strong>de</strong>locked thin disk <strong>la</strong>sers:<br />

access to sub-100 fs pulses and first CEO beat frequency<br />

<strong>de</strong>tection<br />

Cinia Schriber<br />

18<br />

15:00 217 Enhancing the Performance of Solid State Organic<br />

So<strong>la</strong>r Cells by Self-assembled Mono<strong>la</strong>yer Technique<br />

Ali Kemal Havare<br />

15:15 218 Wave Propagation in E<strong>la</strong>stic and Thermoe<strong>la</strong>stic Materials<br />

Mario Leindl<br />

15:30 Coffee Break<br />

aPPlied PhySicS iii<br />

Chair: NN<br />

16:00 221 Highly efficient Cu(In,Ga)Se so<strong>la</strong>r cells grown on<br />

2<br />

flexible polymer films<br />

Adrian Chirilă (i)<br />

16:30 222 Dynamic nuclear po<strong>la</strong>rization at mo<strong>de</strong>rate magnetic<br />

fields and temperature using photo-excited<br />

triplet states of aromatic molecules<br />

Tim Rolf Eichhorn<br />

16:45 223 Dynamical study of electron pump based on selfassembled<br />

quantum dots<br />

Giancarlo Cerulo<br />

17:00 224 DAST/SiO multi<strong>la</strong>yer structure for efficient genera-<br />

2<br />

tion of 6 THz single-cycle pulses via casca<strong>de</strong>d optical<br />

rectification<br />

Andrey Stepanov<br />

17:15 225 Laser induced magnetization reversal in GdFeCo<br />

nanostructures<br />

Michele Buzzi<br />

17:30 226 Electrochemical <strong>de</strong>position of photoconductive silicon<br />

based films using organic solvents<br />

Agata Krywko-Cendrowska<br />

17:45 END<br />

ID aPPlied PhySicS PoSter<br />

241 Optical position feedback and closed loop control for electrostatically<br />

driven MOEMS mirrors<br />

Andreas Tortschanoff<br />

242 Structural and piezoelectric investigation of BaTiO thin 3<br />

films on Si<br />

Marilyne Sousa<br />

243 Strain effects on the properties of III-V MOSFETs<br />

Pirmin Weigele<br />

244 Physical properties of ZnSe/SnO /g<strong>la</strong>ss films: Annealing (Ar<br />

2<br />

atmosphere) temperature effects<br />

Hulya Metin<br />

245 Structural and Electrical properties of Inkjet Printed CdS<br />

Thin Films<br />

Hulya Metin<br />

246 Characterization of Inkjet Printed CdTe Thin Film<br />

Hulya Metin<br />

247 Electrical Properties and Crystallographic Properties of Ternary<br />

Ho O and Eu O Doped Bi O Polymorphs<br />

2 3 2 3 2 3<br />

Hulya Metin<br />

248 Electrical Properties And Crystallographic Characterisation<br />

of (Bi O ) (Ho O ) and (Tm O ) System<br />

2 3 1-x-y 2 3 x 2 3 y<br />

Hulya Metin<br />

249 Surface morphology and Thermoluminescence of CBD<br />

grown ZnSe Films<br />

Selma Erat<br />

250 Scattered light fluorescence microscopy in three dimensions<br />

Giulia Ghielmetti<br />

251 Sensitivity of RADFETs with various gate oxi<strong>de</strong> thicknesses<br />

Goran Ristic


ID atoMic PhySicS and QuantuM oPticS PoSter<br />

281 Spectral properties of mid-infrared quantum casca<strong>de</strong> <strong>la</strong>sers<br />

Lionel Tombez<br />

282 Simple approximate re<strong>la</strong>tion between <strong>la</strong>ser frequency noise<br />

and linewidth: experimental validation<br />

Niko<strong>la</strong> Bucalovic<br />

283 External cavity tuning of broadband QCLs at 3.3 μm and 8 μm<br />

Sabine Riedi<br />

284 Ground state Hanle effect based on atomic alignment:<br />

theory and experiment.<br />

Evelina Breschi<br />

285 Study of phase gradients in the Swiss continuous atomic<br />

fountain frequency standard<br />

Laurent Devenoges<br />

286 Femtosecond gigahertz dio<strong>de</strong>-pumped solid-state <strong>la</strong>ser for<br />

frequency comb generation<br />

Alexan<strong>de</strong>r Klenner<br />

287 Ultrafast optically pumped VECSELs and MIXSELs<br />

Mario Mangold<br />

288 Mid-IR Broadband Quantum Casca<strong>de</strong> Laser Frequency-<br />

Comb<br />

Andreas Hugi<br />

289 Single-cycle high-power THz pulses above 1 MV/cm<br />

Carlo Vicario<br />

3 Nuclear, Particle- and Astrophysics<br />

Thursday, 21.06.2012, HCI J 3<br />

Time ID taSk i: neutrinoS, aStroParticle PhySicS<br />

Chair: Martin Pohl, Uni Genève<br />

13:30 301 Sterile neutrinos: dark matter, baryogenesis, magnetic<br />

fields and more...<br />

Oleg Ruchayskiy<br />

13:45 302 Dark Matter search with the XENON100 experiment<br />

Marc Schumann<br />

14:00 303 The Argon Dark Matter Experiment<br />

Lukas Epprecht<br />

14:15 304 Measurements of the low-energy response of liquid<br />

xenon<br />

Aaron Mana<strong>la</strong>ysay<br />

14:30 305 Towards a <strong>la</strong>rge un<strong>de</strong>rground liquid argon observatory<br />

for neutrino physics and proton <strong>de</strong>cay<br />

Alessandro Curioni<br />

14:45 306 On Flight Performances of the AMS-02 Detector<br />

and Preliminary Results on the Proton and Helium<br />

Energy Spectrum<br />

Pierre Saoute<br />

15:00 307 POLAR: a Gamma-Ray Burst Po<strong>la</strong>rimeter in Space<br />

Silvio Orsi<br />

15:15 308 The FACT telescope - overview and status<br />

Patrick Vogler<br />

15:30 Coffee Break<br />

taSk ii: PSi PhySicS i and lhc PhySicS i<br />

Chair: K<strong>la</strong>us Kirch, ETH Zürich<br />

16:00 311 New and final results of the MuCap experiment<br />

C<strong>la</strong>u<strong>de</strong> Petitjean<br />

16:30 312 + Measurement of the Positive Pion Lifetime, t , with<br />

p<br />

the FAST Detector at the Paul Scherrer Institute<br />

Gaetano Barone<br />

19<br />

Communications <strong>de</strong> <strong>la</strong> SSP No. 37<br />

16:45 313 Muonium emission into vacuum from mesoporous<br />

thin films at cryogenic temperatures<br />

Kim Siang Khaw<br />

17:00 314 Qualification procedures of the CMS digital readout<br />

chip for the Pixel Upgra<strong>de</strong> Phase I<br />

Philipp Eller<br />

17:15 315 Search for the Higgs boson in the diphoton <strong>de</strong>cay<br />

channel at CMS<br />

Marco Peruzzi<br />

17:30 316 Measurements of the electron and muon inclusive<br />

cross-sections in proton-proton collisions at �s =<br />

7 TeV with the ATLAS <strong>de</strong>tector<br />

Maria Clemencia Mora Herrera<br />

17:45 317 HammerCloud: distributed computing monitoring<br />

for ATLAS and LHC experiments<br />

Gianfranco Sciacca<br />

18:00 318 Search for supersymmetry in hadronic final states<br />

with MT2 with the CMS <strong>de</strong>tector<br />

Hannsjörg Weber<br />

18:15 319 Angu<strong>la</strong>r corre<strong>la</strong>tion between B-hadrons produced<br />

in association with a Z boson at the CMS experiment<br />

Carlotta Favaro<br />

18:30 Postersession and Apéro<br />

20:15 Grillparty<br />

Friday, 22.06.2012, HCI J 3<br />

Time ID taSk iii: lhc PhySicS ii<br />

Chair: T. Montaruli<br />

11:00 321 Search for the Standard Mo<strong>de</strong>l Higgs Boson <strong>de</strong>caying<br />

to Bottom Quarks<br />

Pierluigi Bortignon<br />

11:15 322 New Optical receiver modules for the insertable B-<br />

Layer at the ATLAS project.<br />

Basil Schnei<strong>de</strong>r<br />

11:30 323 Improvements in the search for a Higgs boson <strong>de</strong>caying<br />

into bottom quarks<br />

Philipp Eller<br />

11:45 324 B-baryon studies at the CMS Experiment<br />

Mirena Ivova<br />

12:00 Postersession (continued), Lunchbuffet<br />

taSk iV: lhc PhySicS iii<br />

Chair: Antonio Ereditato, Uni Bern<br />

13:30 331 Search for Supersymmetry in Events with a Z Boson,<br />

Jets and Missing Energy<br />

Marco - Andrea Buchmann<br />

13:45 332 Searches for the 4th Generation top-like Quark<br />

Snezana Nektarijevi<br />

14:00 333 Top analysis from the bottom: Jet performance issues<br />

in top quark measurements by the ATLAS experiment<br />

at the LHC.<br />

Caterina Doglioni<br />

14:15 334 Jet angu<strong>la</strong>r resolution<br />

Francesco Guescini<br />

14:30 335 Measurement of the Zero-Crossing Point of the forward<br />

- backward Asymmetry of B0 " K* 0 μ + μ- Marco Tresch<br />

14:45 336 Measurement of lifetime difference D� in the <strong>de</strong>cay<br />

s<br />

B " (J/�)� " (μ s + μ- ) K + K- Barbara Mil<strong>la</strong>n Mejias<br />

15:00 337 A data driven QCD-multijet background estimate<br />

for top physics with the ATLAS <strong>de</strong>tector<br />

Kilian Rosbach<br />

15:15 338 New searches for magnetic monopoles<br />

Philippe Mermod


SPG Mitteilungen Nr. 37<br />

15:30 Coffee Break<br />

taSk V: lhc PhySicS iV and PSi PhySicS ii<br />

Chair: Giuseppe Iacobucci, Uni Genève<br />

16:00 341 Search for a neutron electric dipole moment at PSI<br />

Jochen Krempel<br />

16:15 342 Systematic effects in the nEDM experiment at PSI<br />

Johannes Zenner<br />

16:30 343 Improvements of the Hg cohabiting magnetometer<br />

for the nEDM experiment at PSI<br />

Martin Fertl<br />

16:45 344 Results of the active compensation of the magnetic<br />

field surrounding the nEDM apparatus at PSI<br />

Beatrice Franke<br />

17:00 345 Simultaneous Heavy F<strong>la</strong>vor and Top (SHyFT) Cross<br />

Section Measurement<br />

Lukas Bäni<br />

17:15 346 Radiation hard studies of diamond strip trackers<br />

Felix Bachmair<br />

17:30 347 Search for the Rare Decays B0 s " μ+ μ- and<br />

B0 " μ + μ- at LHCb<br />

Christian Elsasser<br />

17:45 348 Search for (Higgs-like) bosons <strong>de</strong>caying into longlived<br />

exotic particles<br />

Julien Rouvinet<br />

18:00 349 Tagged time-<strong>de</strong>pen<strong>de</strong>nt angu<strong>la</strong>r analysis of<br />

B0 " J/� � <strong>de</strong>cays at LHCb<br />

s<br />

Frédéric Dupertuis<br />

18:15 350 b-baryon results at LHCb<br />

Raphael Märki<br />

18:30 END<br />

ID nuclear, Particle- and aStroPhySicS PoSter<br />

361 LOFT - the Large Observatory for X-ray Timing<br />

Enrico Bozzo<br />

362 The search for neutrinoless double beta <strong>de</strong>cay with the<br />

GERDA experiment<br />

Giovanni Benato<br />

363 Search for Physics Beyond the Standard Mo<strong>de</strong>l in Events<br />

with equally charged Leptons<br />

Marc Dünser<br />

364 Performance validation of the CMS digital readout chip with<br />

x-rays for the Phase I Pixel Upgra<strong>de</strong><br />

Marco Rossini<br />

365 Longitudinal spatial compression of a slow muon beam<br />

Yu Bao<br />

366 Optical cesium magnetometers for the PSI neutron electric<br />

dipole moment experiment<br />

Malgorzata Kasprzak<br />

367 Search for Supersymmetry in multilepton final states<br />

Tobias Kruker<br />

368 Measurement of Pion and Kaon production cross sections<br />

with NA61/SHINE for T2K<br />

Silvestro di Luise<br />

369 Parametric r-process studies in supernova shocks<br />

Marius Eichler<br />

370 Die Grundzüge <strong>de</strong>r Weltpotentialtheorie<br />

Peter Wolff<br />

371 Das Lehrp<strong>la</strong>kat zur Weltpotentialtheorie (WPT)<br />

Peter Wolff<br />

20<br />

4 Theoretical Physics<br />

Thursday, 21.06.2012, HCI J 4<br />

Time ID theoretical PhySicS i<br />

Chair: G. M. Graf, ETH Zürich<br />

13:30 401 Electron waiting time distributions in electrical conductors<br />

Markus Büttiker (i)<br />

14:00<br />

14:30<br />

402 Gravitational wave <strong>de</strong>tection from space<br />

Philippe Jetzer (i)<br />

15:30 Coffee Break<br />

theoretical PhySicS ii<br />

Chair: G. M. Graf, ETH Zürich<br />

16:00 403 A new algorithm to compute one-loop scattering<br />

amplitu<strong>de</strong>s<br />

Fabio Cascioli<br />

16:15 404 Application of the Symbol Formalism to the Computation<br />

of Scattering Amplitu<strong>de</strong>s in Quantum Field<br />

Theory<br />

Erich Weihs<br />

16:30 405 Polycrystalline Shape Memory Alloys: Constitutive<br />

Mo<strong>de</strong>lling by the BSM (Block-Spin-Method)<br />

Eduard Oberaigner<br />

16:45 406 One-dimensional fermionic systems beyond Luttinger<br />

liquid theory<br />

Thomas Schmidt<br />

17:00 407 Stability of topological quantum computing<br />

17:15<br />

17:30<br />

408<br />

schemes to bit-flip and measurement errors<br />

Ruben S. Andrist<br />

Euclid and the quest for the Dark Energy<br />

Martin Kunz<br />

18:30 Postersession and Apéro<br />

20:15 Grillparty<br />

Friday, 22.06.2012, HCI J 4<br />

Time ID theoretical PhySicS iii<br />

Chair: G. M. Graf, ETH Zürich<br />

11:00 411 The quantum marginal problem<br />

Matthias Christandl (i)<br />

11:30 412 What can we learn from the cosmological matter<br />

distribution?<br />

Ruth Durrer (i)<br />

12:00 Postersession (continued), Lunchbuffet<br />

theoretical PhySicS iV<br />

Chair: G. M. Graf, ETH Zürich<br />

13:30 413 Cavity optomechanics in the single-photon strongcoupling<br />

regime<br />

Andreas Nunnenkamp (i)<br />

14:00 414 Controlling electronic interactions by light<br />

Philipp Werner (i)<br />

14:30<br />

15:00<br />

415 Hybridization of wave functions in one-dimensional<br />

An<strong>de</strong>rson localization<br />

Dmitri Ivanov (i)<br />

15:30 Coffee Break<br />

theoretical PhySicS V<br />

Chair: G. M. Graf, ETH Zürich<br />

16:00 416 Dynamics of the rotated Dicke mo<strong>de</strong>l<br />

Michael Tomka


16:15 417 Bethe Ansatz and Ordinary Differential Equation<br />

Correspon<strong>de</strong>nce for Degenerate Gaudin Mo<strong>de</strong>ls<br />

Omar El Araby<br />

16:30 418 Eigenvector statistics in a perturbed weaklyconfined<br />

random matrix ensemble<br />

Matous Ringel<br />

16:45 419 Symbolic Computation in Lagrangian Mechanics<br />

Mario Leindl<br />

17:00 END<br />

5 NCCR MaNEP<br />

Thursday, 21.06.2012, HPH G 1<br />

Time ID ManeP i<br />

Chair: Dirk van <strong>de</strong>r Marel, Uni Genève<br />

13:30 501 Competition between charge or<strong>de</strong>r and superconductivity<br />

in YBa Cu O 2 3 y<br />

Marc-Henri Julien (i)<br />

14:00 502 Scanning Tunneling Spectroscopy on YBa Cu O 2 3 7−�<br />

revisited<br />

Jens Bruér<br />

14:15 503 Magnetic-field tuned anisotropy in superconducting<br />

Rb Fe Se x 2−y 2<br />

Saskia Bosma<br />

14:30 504 Universal scaling col<strong>la</strong>pse of the dynamic re<strong>la</strong>xation<br />

rate in un<strong>de</strong>rdoped high T cuprates<br />

c<br />

Seyed Iman Mirzaei<br />

14:45 505 Structural and Magnetic Properties of the Parent<br />

Compound T’-La CuO of Electron-Doped Cuprates<br />

2 4<br />

Gwendolyne Pascua<br />

15:00 506 Field effect experiments on cuprates and re<strong>la</strong>ted<br />

materials<br />

Guy Dubuis<br />

15:15 507 Prospects for improving the superconducting properties<br />

of MgB and Nb Sn wires<br />

2 3<br />

Carmine Senatore<br />

15:30 Coffee Break<br />

ManeP ii<br />

Chair: Christoph Renner, Uni Genève<br />

16:00 511 From surface to interface physics: High-energy<br />

photoemission spectroscopy of oxi<strong>de</strong> heterostructures<br />

Ralph C<strong>la</strong>essen (i)<br />

16:30 512 Theory of High-Temperature Multiferroicity in CuO<br />

Naemi Leo<br />

16:45 513 Radio-frequency spectroscopy of a weakly attractive<br />

Fermi gas<br />

Christophe Berthod<br />

17:00 514 Multiscaling analysis of ferroelectric domain wall<br />

roughness<br />

Jill Guyonnet<br />

17:15 515 Fermi Surface Depen<strong>de</strong>nce of the Charge Transport<br />

and Thermoelectric Effect in Two-Dimensonal Metals<br />

Jonathan M. Buhmann<br />

17:30 516 Magnetotransport properties of LaAlO /SrTiO in-<br />

3 3<br />

terfaces<br />

Alexandre Fête<br />

17:45 517 Exchange Bias in LaNiO -based heterostructures<br />

3<br />

Pavlo Zubko<br />

18:00 518 Corre<strong>la</strong>ted transition metal oxi<strong>de</strong>s for thermoelectrics<br />

Sascha Populoh<br />

21<br />

Communications <strong>de</strong> <strong>la</strong> SSP No. 37<br />

18:15 519 Tunable conductivity threshold at po<strong>la</strong>r oxi<strong>de</strong> interfaces:<br />

implications for un<strong>de</strong>rstanding its origin<br />

Mathil<strong>de</strong> L. Reinle-Schmitt<br />

18:30 Postersession and Apéro<br />

20:15 Grillparty<br />

Friday, 22.06.2012, HPH G 1<br />

Time ID ManeP iii<br />

Chair: Alberto Morpurgo, Uni Genève<br />

11:00 521 Magnetop<strong>la</strong>smons and Faraday rotation in graphene<br />

A. B. Kuzmenko (i)<br />

11:30 522 Engineering Dirac points with ultracold fermions in<br />

a tunable optical <strong>la</strong>ttice<br />

Daniel Greif<br />

11:45 523 Transport through graphene on SrTiO3 Nuno Couto<br />

12:00 Postersession (continued), Lunchbuffet<br />

ManeP iV<br />

Chair: Frédéric Mi<strong>la</strong>, EPFL<br />

13:30 531 Studying the physics of disor<strong>de</strong>red bosons with disor<strong>de</strong>red<br />

magnetic insu<strong>la</strong>tors<br />

Tommaso Roscil<strong>de</strong> (i)<br />

14:00 532 Observation of a quantum critical point in the heavy<br />

fermion antiferromagnet CeRhSi3 Niko<strong>la</strong> Egetenmeyer<br />

14:15 533 Antiferromagnetic spin-S chains with exactly dimerized<br />

ground states<br />

Frédéric Michaud<br />

14:30 534 Diagrammatic Monte Carlo for the Hubbard mo<strong>de</strong>l<br />

Jan Gukelberger<br />

14:45 535 Static and dynamic properties of a strong-leg spin<br />

<strong>la</strong>d<strong>de</strong>r<br />

David Schmidiger<br />

15:00 536 Zero field splitting in the two-dimensional quantum<br />

spin liquid PHCC<br />

Maximilian Goldmann<br />

15:15 537 Controlled flux penetration in p<strong>la</strong>telet superconductors<br />

Ro<strong>la</strong>nd Wil<strong>la</strong><br />

15:30 Coffee Break<br />

ManeP V<br />

Chair: Andrey Zhelu<strong>de</strong>v, ETH Zürich<br />

16:00 541 Spin-Orbital Separation in a Cuprate Spin Chain<br />

and Studies of Fe-based Superconductors with<br />

Resonant Ine<strong>la</strong>stic X-ray Scattering<br />

Thorsten Schmitt (i)<br />

16:30 542 Mapping of electron-hole excitations in a charge<br />

<strong>de</strong>nsity wave system with Resonant Ine<strong>la</strong>stic X-ray<br />

Scattering<br />

C<strong>la</strong>u<strong>de</strong> Monney<br />

16:45 543 Magnetism and orbital physics of the Mott insu<strong>la</strong>tor<br />

LuVO3 Markos Skou<strong>la</strong>tos<br />

17:00 544 Imprinting magnetic information in manganites with<br />

X-rays<br />

Marios Garganourakis<br />

17:15 END<br />

ID ManeP PoSter<br />

5001 Soft x-ray photoemission measurements on LaAlO /SrTiO 3 3<br />

and (LaAlO ) (SrTiO ) /SrTiO heterostructures<br />

3 x 3 1−x 3<br />

C<strong>la</strong>udia Cancellieri


SPG Mitteilungen Nr. 37<br />

5002 Bond disor<strong>de</strong>r in Cu(quinoxaline)X 2 , X = Cl, Br<br />

Wolfram E. A. Lorenz<br />

5003 Asymmetric Josephson effect at the interface of non-centrosymmetric<br />

superconductors<br />

Ludwig K<strong>la</strong>m<br />

5004 Electron-hole instability in TiSe2 Gael Monney<br />

5005 μSR investigation of magnetism and magnetoelectric coupling<br />

in Cu OSeO 2 3<br />

Alean<strong>de</strong>r Maisuradze<br />

5006 Multiscaling analysis of intrinsic domain walls in epitaxial<br />

BiFeO thin films<br />

3<br />

Benedikt Ziegler<br />

5007 Phase diagram of epitaxial BiFeO -LaFeO Super<strong>la</strong>ttices<br />

3 3<br />

Gijsbert Rispens<br />

5008 Multiplet calcu<strong>la</strong>tions and X-ray spectra simu<strong>la</strong>tions in low<br />

symmetry compounds.<br />

Anne-Christine Uldry<br />

5009 Field driven or<strong>de</strong>ring in a frustrated spin <strong>la</strong>d<strong>de</strong>r with bond<br />

randomness<br />

Erik Wulf<br />

5010 Thermoelectric effect in one-dimensional metallic systems<br />

- a mo<strong>de</strong>l study on the impact of disor<strong>de</strong>r and phonons<br />

Daniel Müller<br />

5011 Graphene on Ruthenium: Four hills<br />

Irakli Kalichava<br />

5012 Nanoscale PFM imaging of intrinsic domains in PbTiO ul- 3<br />

trathin films.<br />

Céline Lichtensteiger<br />

5013 Pressure <strong>de</strong>pen<strong>de</strong>nce of optical exitations in tetragonal<br />

Sr VO 2 4<br />

Michael Tran<br />

5014 Doping and temperature <strong>de</strong>pen<strong>de</strong>nce of STS spectra in<br />

Bi Sr Ca Cu O 2 2 1 2 8+�<br />

Thomas B. Amundsen<br />

5015 Scanning tunnelling microscopy/spectroscopy study of<br />

La Ca MnO thin films<br />

2/3 1/3 3<br />

Zoran Ristic<br />

5016 First direct observation of the Van Hove Singu<strong>la</strong>rity in the<br />

tunnelling spectra of cuprates<br />

Alexandre Piriou<br />

5017 Effect of bond disor<strong>de</strong>r on weakly-coupled spin-1/2 antiferromagnetic<br />

Heisenberg chains<br />

Matthias The<strong>de</strong><br />

5018 CVD graphene: effects of the environment and annealing<br />

on its doping level and the charge carriers mobility<br />

Christophe Caillier<br />

5019 Nearest-neighbor spin corre<strong>la</strong>tions and doublon production<br />

rate by <strong>la</strong>ttice modu<strong>la</strong>tion for spin-1/2 fermionic atoms<br />

Akiyuki Tokuno<br />

5020 New experimental setup for thermal conductivity measurements:<br />

stability against quench in industrial Nb Sn wires<br />

3<br />

fabricated by various techniques<br />

Marco Bonura<br />

5021 Temperature and time scaling of the peak-effect vortex<br />

configuration in FeTe Se 0.7 0.3<br />

Marco Bonura<br />

5022 Physical properties of TiSe crystals grown by vapour<br />

2<br />

transport technique.<br />

Alberto Ubaldini<br />

5023 Bulk insu<strong>la</strong>ting states in the Bi (Se Te ) solid solution.<br />

2 1−x x 3<br />

Alberto Ubaldini<br />

5024 Optical properties of Bi Te Se<br />

2 2<br />

Ana Akrap<br />

5025 Interactions between carbon nanotubes and epitaxial<br />

Pb(Zr Ti )O thin films<br />

0.2 0.8 3<br />

Cédric B<strong>la</strong>ser<br />

22<br />

5026 Humidity Sensing Properties of Different Bismuth Phosphate<br />

Types<br />

Min Sheng<br />

5027 Optical Measurements of Neodymium and Samarium Nicke<strong>la</strong>tes<br />

Julien Ruppen<br />

5028 Structural study of LaNiO heterostructures at the metal-<br />

3<br />

insu<strong>la</strong>tor transition<br />

Steven J. Leake<br />

5029 Effect of phase separation and vacancy or<strong>de</strong>r on the superconducting<br />

and magnetic properties of Rb Fe Se x 2−y 2<br />

Steven Weyeneth<br />

5030 The effect of nitrogen incorporation on the thermoelectric<br />

properties of EuTiO and EuTi Nb O 3 0.98 0.02 3<br />

Leyre Sagarna<br />

5031 Semic<strong>la</strong>ssical theory of the 1/2 magnetization p<strong>la</strong>teau of<br />

the J -J mo<strong>de</strong>l on the square <strong>la</strong>ttice<br />

1 2<br />

Tommaso Coletta<br />

5032 Infrared Spectroscopy on Gated Tri-<strong>la</strong>yer Graphene<br />

Nico<strong>la</strong>s Ubrig<br />

5033 Hysteresis in the temperature <strong>de</strong>pen<strong>de</strong>nt electronic structure<br />

of NdNiO : A photoemission study<br />

3<br />

Zuzana Vydrová<br />

5034 Mixed crystals from the quantum magnets Ba Cr O and<br />

3 2 8<br />

Sr Cr O 3 2 8<br />

Henrik Grundmann<br />

5035 Influence of different synthesis methods on thermoelectric<br />

properties of Ti Zr Hf NiSn half-Heusler compound<br />

0.33 0.33 0.33<br />

with emphasis on thermal conductivity measurements<br />

Krzysztof Ga<strong>la</strong>zka<br />

5036 Self-consistent structure of a domain wall in Sr RuO 2 4<br />

Adrien Bouhon<br />

5037 Realization of a thermal LC-circuit<br />

O<strong>la</strong>f Bossen<br />

5038 Competition between columnar and p<strong>la</strong>quette or<strong>de</strong>r in the<br />

fully frustrated transverse field Ising mo<strong>de</strong>l on the square<br />

<strong>la</strong>ttice.<br />

Sandro Wenzel<br />

5039 Hybridization gap and anisotropic far-infrared optical conductivity<br />

of URu Si 2 2<br />

Julien Levallois<br />

5040 The influence of <strong>de</strong>fects in the quasi-2D CDW compound<br />

1T-TiSe2 Clément Didiot<br />

5041 A Thermoelectric Study on the Electron Gas at the LaAlO / 3<br />

SrTiO Interface<br />

3<br />

Danfeng Li<br />

5042 Disor<strong>de</strong>r in a quasi-two-dimensional quantum spin liquid<br />

Dan Hüvonen<br />

5043 Resonant ine<strong>la</strong>stic x-ray scattering on a quasi-one-dimensional<br />

multiferroic cuprate: probing the local magnetic corre<strong>la</strong>tions<br />

C<strong>la</strong>u<strong>de</strong> Monney<br />

5044 Critical current of Nb Sn wires un<strong>de</strong>r quasi-hydrostatic ra-<br />

3<br />

dial pressure<br />

Giorgio Mondonico<br />

5045 Phase diagram of the EuFe As system with respect to<br />

2 2<br />

chemical and hydrostatic pressure<br />

Zurab Guguchia<br />

5046 On Electronic Properties and Superconductivity of Strained<br />

High T Films<br />

c<br />

Nathaniel Wooding<br />

5047 Effects of bond disor<strong>de</strong>r in the quantum spin <strong>la</strong>d<strong>de</strong>r<br />

(C H N) CuBr Cl 5 12 2 4(1-x) 4x<br />

Simon Ward


5048 Nanoscale studies of electrical conduction in ferroelectric<br />

domain walls with insu<strong>la</strong>tor coated carbon nanotube tips<br />

Yuliya Lisunova<br />

5049 Influence of the Internal Po<strong>la</strong>rizability on the Charge Transport<br />

Properties in N-Type Organic Single Crystal Field-Effect<br />

Transistors<br />

Niko<strong>la</strong>s Min<strong>de</strong>r<br />

5050 Control of the magnetic volume fraction in Co-doped TiO2 films via oxygen vacancies<br />

Hassan Saadaoui<br />

5051 Structural and electrical properties of BaTiO thin-film ca-<br />

3<br />

pacitors<br />

Stephanie Fernan<strong>de</strong>z-Pena<br />

5052 One-dimensional nanolines and single atom chains on<br />

Si(001)<br />

François Bianco<br />

5053 Frustration and disor<strong>de</strong>r in a 1D spin <strong>la</strong>d<strong>de</strong>r at high magnetic<br />

fields<br />

Toni Shiroka<br />

5054 Tuning superconductivity and magnetism in Fe Se Te y 1−x x<br />

Markus Ben<strong>de</strong>le<br />

5055 Superconductivity Driven Imba<strong>la</strong>nce of the Magnetic Domain<br />

Popu<strong>la</strong>tion in CeCoIn5 Simon Gerber<br />

5056 Ultrafast X-Ray Nanowire Single-Photon Detectors and<br />

Their Energy-Depen<strong>de</strong>nt Response<br />

Kevin In<strong>de</strong>rbitzin<br />

5057 Magnetic phase transitions in PbB B’ O (B = Fe, and<br />

x 1−x 3<br />

B’ = Nb, Ta)<br />

Shravani Chil<strong>la</strong>l<br />

5058 Differences in Chiral Expression: Racemic and Enantiopure<br />

Heptahelicenes on Various Metal Surfaces<br />

Johannes Seibel<br />

5059 The Luttinger liquid theory of molyb<strong>de</strong>num purple bronze<br />

Piotr Chudzinski<br />

5060 Temperature-Depen<strong>de</strong>nce of Detection Efficiency in NbN<br />

and TaN SNSPD<br />

Andreas Engel<br />

5061 Electronic Properties of Single-Crystal Organic Charge-<br />

Transfer Interfaces probed using Schottky-Gated Heterostructures<br />

Ignacio Gutierrez Lezama<br />

5062 Crossover from Coulomb blocka<strong>de</strong> to quantum-Hall effect<br />

in suspen<strong>de</strong>d graphene nanoribbon<br />

DongKeun Ki<br />

5063 Doping <strong>de</strong>pen<strong>de</strong>nce of the pseudogap phase in La-based<br />

cuprates<br />

Christian Matt<br />

5064 Soft-X-Ray ARPES: From Three-Dimensional Materials to<br />

Heterostructures<br />

V<strong>la</strong>dimir N. Strocov<br />

5065 Conduction at domain walls in insu<strong>la</strong>ting Pb(Zr Ti )O 0.2 0.8 3<br />

Iaros<strong>la</strong>v Gaponenko<br />

5066 Fluctuations of one-dimensional interface in the directed<br />

polymer formu<strong>la</strong>tion: role of a finite interface width<br />

Elisabeth Agoritsas<br />

5067 Local study of the electronic and structural properties of<br />

colloidal semiconductor nanocrystals<br />

Maria Longobardi<br />

5068 Pressure <strong>de</strong>pen<strong>de</strong>nce of the penetration <strong>de</strong>pth in CeCoIn5 studied by muon spin rotation<br />

Ludovic Howald<br />

5069 Hexagonal InMnO - An Outsi<strong>de</strong>r Among The Family Of Mul-<br />

3<br />

tiferroic Hexagonal Manganites<br />

Martin Lilienblum<br />

23<br />

6 NCCR Nano<br />

i. nanoMechanicS<br />

Thursday, 21.06.2012, HCI G 3<br />

Communications <strong>de</strong> <strong>la</strong> SSP No. 37<br />

Time ID nanoMechanicS<br />

Chair: Martino Poggio, Uni Basel<br />

13:30 601 Coherent coupling of light and mechanical motion<br />

Ewold Verhagen (i)<br />

14:00 602 Stable "ring-like" Ag clusters on Si(111)-(7×7): voltage<br />

<strong>de</strong>pen<strong>de</strong>ncy study of the scanning tunneling<br />

microscopy apparent topography<br />

Nico<strong>la</strong>s Mariotti<br />

14:15 603 Detection of cantilever thermal motion and feedback<br />

cooling using a quantum point contact<br />

Michele Montinaro<br />

14:30 604 Entering the nonlinear regime with mechanical resonators<br />

ma<strong>de</strong> from nanotubes and graphene<br />

Alexan<strong>de</strong>r Eichler (i)<br />

15:00 605 The Lateral Resolution of the near-tip scanning<br />

electron microscopy.<br />

Danilo Pescia<br />

15:15 606 Prospects and challenges for atomic force microscopy<br />

in molecu<strong>la</strong>r structure recognition<br />

Bruno Schuler<br />

15:30 Coffee Break<br />

16:00 607 Non-contact friction measurements by means of<br />

Atomic Force Microscopy (AFM) operated in pendulum<br />

geometry<br />

Marcin Kisiel (i)<br />

16:30 608 NanoXAS - Combining Scanning Probe and X-Ray<br />

Microscopy for Nanoanalytics<br />

Nico<strong>la</strong>s Pilet<br />

16:45 END<br />

18:30 Postersession and Apéro<br />

20:15 Grillparty<br />

ii. nanoPhotonicS & Varia<br />

Thursday, 21.06.2012, HCI G 7<br />

Time ID nanoPhotonicS i<br />

Chair: Olivier Martin, EPFL<br />

13:30 621 Towards time-resolved 3D imaging and probing<br />

with Photonic Force Microspectroscopy<br />

Sylvia Jeney (i)<br />

14:00 622 Study of the Optical Transport within P<strong>la</strong>smonic<br />

Nano- and Sub Nano-metric Junctions<br />

Banafsheh Abasahl<br />

14:15 623 Nanoscale Chemical Analysis by Tip-Enhanced Raman<br />

Spectroscopy: Recent Developments and Applications<br />

Thomas Schmid (i)<br />

14:45 624 Gold Photoluminescence in Nanoscale Antennas<br />

Toni Fröhlich<br />

15:00 625 3-Dimensional Computational Nano-Optics - With a<br />

Focus on Fabricated Structures<br />

Benedikt Oswald (i)<br />

15:30 Coffee Break<br />

16:00 631<br />

VariouS nanotoPicS<br />

Chair: NN<br />

Imaging the charge distribution within a single molecule<br />

Fabian Mohn (i)


SPG Mitteilungen Nr. 37<br />

16:30 632 Chemical sensing with silicon nanowire field-effect<br />

transistors<br />

Ralph Stoop<br />

16:45 633 Combining SFM & ToF-SIMS: a new route to access<br />

chemical information at the nanoscale<br />

Laetitia Bernard<br />

17:00 634 Progress in electron beam generation for Near<br />

Field-Emission Scanning Electron Microscopy<br />

Danilo Andrea Zanin<br />

17:15 635 New Developments in Near Field-Emission Scanning<br />

Electron Microscopy<br />

Lorenzo G. De Pietro<br />

17:30 636 Electrostatic characterization of Near Field-Emission<br />

Scanning Electron Microscopy<br />

Hugo Cabrera<br />

17:45 637 Resonances arising from hydrodynamic memory -<br />

The Color of Brownian motion<br />

Matthias Grimm<br />

18:00<br />

18:15<br />

638 Graphane formation and patterning by pure hydrogen<br />

low temperature p<strong>la</strong>sma exposure<br />

Baran Eren<br />

18:30 Postersession and Apéro<br />

Friday, 22.06.2012, HCI G 7<br />

Time ID nanoPhotonicS ii<br />

Chair: Olivier Martin, EPFL<br />

13:30 641 P<strong>la</strong>smonic Promises: Single Molecule Sensing,<br />

Electrochemistry, Nanowire Electronics, Strain Visualization,<br />

and Interferometry<br />

Janos Vörös (i)<br />

14:00 642 Periodic nanogap arrays for surface enhanced<br />

spectroscopy: mo<strong>de</strong>ling and performance<br />

Thomas Siegfried<br />

14:15 643 Targeting cells with gold nanoparticles<br />

Sara Peters (i)<br />

14:45 644 Electron emission from optically excited metallic<br />

nanotips<br />

Anna Mustonen<br />

15:00 645 Organic LEDs<br />

Beat Ruhstaller (i)<br />

15:30 END, Coffee Break<br />

iii. nanobioPhySicS<br />

Friday, 22.06.2012, HCI J 7<br />

Time ID nanoPbioPhySicS<br />

Chair: Georg Fantner, EPFL<br />

13:30 661 Nanophotonics and Nanoelectronics Tools for<br />

Single Molecule Biophysics<br />

Aleksandra Ra<strong>de</strong>novic (i)<br />

14:00 662 Investigating Skin Cancer with Nanomechanical<br />

Biosensors<br />

François Huber<br />

14:15 663 Optimization of DNA hybridization efficiency by pHdriven<br />

nanomechanical bending<br />

Jiayun Zhang<br />

14:30 664 Study of DNA re<strong>la</strong>xation on mica using AFM with<br />

further automatic tracing<br />

Andrey Mikhaylov<br />

14:45 665 Direct Visualization of Lipid Membrane Dynamics<br />

Using High-Speed Atomic Force Microscopy (HS-<br />

AFM)<br />

Jonathan D. Adams<br />

24<br />

15:00 666 Microfabricated Membrane Surface Stress Sensors<br />

for Medical Breath Testing<br />

Hans Peter Lang<br />

15:15 END<br />

15:30 Coffee Break<br />

ID nano PoSter<br />

671 Optomechanical Coupling of Ultracold Atoms and a Membrane<br />

Oscil<strong>la</strong>tor<br />

Maria Korppi<br />

672 Friction anisotropy investigations: Measurements on the anisotropic<br />

surface of an organic <strong>la</strong>yer compound crystal<br />

Gregor Fessler<br />

673 Near Field-Emission Scanning Electron Microscopy<br />

Peter Thalmann<br />

674 Electron Beam Properties of Large Double Gate Field Emitter<br />

Arrays with an Optimized Collimation Gate Electro<strong>de</strong> Geometry<br />

Patrick Helfenstein<br />

675 Fabrication and characterization of tunable p<strong>la</strong>smonic nanostructures<br />

for biosensing<br />

Olivier Schol<strong>de</strong>r<br />

676 Study of biomolecu<strong>la</strong>r interactions using photonic crystal<br />

surface waves (PC SW) optical sensor.<br />

Tatyana Karakouz<br />

7 NCCR MUST<br />

Friday, 22.06.2012, HPH G 2<br />

Time ID MuSt i<br />

Chair: Lukas Gallmann, ETH Zürich<br />

11:00 701 Probing electronic valence shell dynamics in molecules<br />

Hans Jakob Wörner (i)<br />

11:30 702 Electron ionization times measured with the attoclock<br />

Robert Boge<br />

11:45 703 Attosecond Time-Gated Absorption and Emission<br />

Jens Herrmann<br />

12:00 Postersession (continued), Lunchbuffet<br />

Public Tutorial see p. 15<br />

MuSt ii<br />

Chair: Thomas Feurer, Uni Bern<br />

13:30 711 Optimal Dynamic Discrimination of Free Amino Acids<br />

and Small Pepti<strong>de</strong>s<br />

Jean-Pierre Wolf<br />

13:45 712 Dynamic probe concept for studying aggregation<br />

of organic dye molecules at liquid/liquid interfaces<br />

by femtosecond second harmonic generation technique<br />

Marina Fedoseeva<br />

14:00 713 Breaking Down the Problem to Un<strong>de</strong>rstand the<br />

Photophysics of Conjugated Polymers<br />

Natalie Banerji<br />

14:15 714 Investigation of low frequency vibrations using dispersed<br />

femtosecond – DFWM<br />

Gregor Knopp<br />

14:30 715 Multidimensional IR spectroscopy of water<br />

Peter Hamm (i)


15:00 716 Measuring nonadiabaticity of molecu<strong>la</strong>r quantum<br />

dynamics with quantum fi<strong>de</strong>lity and with its efficient<br />

semic<strong>la</strong>ssical approximation<br />

Tomáš Zimmerman<br />

15:15 717 Perturbative Treatment of the Up-Conversion Detection<br />

of Pulse-shaped Entangled Photons and<br />

Applications<br />

Christof Bernhard<br />

15:30 Coffee Break<br />

MuSt iii<br />

Chair: Jürg Osterwal<strong>de</strong>r, Uni Zürich<br />

16:00 721 High-harmonic generation from oriented OCS molecules<br />

Peter Kraus<br />

16:15 722 A double-si<strong>de</strong>d time-resolved VMI setup with high<br />

temporal resolution<br />

Yuzhu Liu<br />

16:30 723 Femtosecond dynamics of atomic structure in solids<br />

Steve L. Johnson (i)<br />

Chair: Paul Beaud, PSI Villigen<br />

17:00 724 Femtosecond Transient Diffuse Reflectance for<br />

Dye-Sensitized So<strong>la</strong>r Cells<br />

Elham Ghadir<br />

17:15 725 p-Conjugated Donor-Acceptor Systems as Metal-<br />

Free Sensitizers for Dye-Sensitized So<strong>la</strong>r Cell Applications<br />

Mateusz Wielopolski<br />

17:30 726 Probing interfacial electron transfer dynamics in<br />

the attosecond time domain<br />

Luca Castiglioni<br />

17:45 727 Atomic motion of a coherent phonon observed in a<br />

charge and orbitally or<strong>de</strong>red manganite<br />

Andrin Caviezel<br />

18:00 728 Electron dynamics in a quasi-1-dimensional topological<br />

metal: Bi(114)<br />

Matthias Hengsberger<br />

18:15 729 Laser induced coherent structural dynamics of the<br />

Heusler alloy Ni MnGa<br />

2<br />

Simon O Mariager<br />

18:30 730 Non-retar<strong>de</strong>d pairing interaction in a high-T cu- c<br />

prate from coherent charge fluctuation spectroscopy<br />

Fabrizio Carbone (i)<br />

19:00 END<br />

ID MuSt PoSter<br />

741 Direct High Harmonics Pulse Shaping in the XUV<br />

Jean-Pierre Wolf<br />

742 High-Power Mid-infrared Femtosecond Laser Source Based<br />

On Parametric Transfer<br />

C. Heese<br />

743 Stereochemistry of C4 dicarboxylic acids on Cu(110)<br />

Chrysanthi Karageorgaki<br />

744 Beating the efficiency of both quantum and c<strong>la</strong>ssical simu<strong>la</strong>tions<br />

with semic<strong>la</strong>ssics<br />

Cesare Mollica<br />

745 Confocal fs-CARS measurement of nano-particles in epidirection<br />

Gregor Knopp<br />

746 Probing the longitudinal momentum spread of the electron<br />

wave packet at the exit point<br />

Alexandra Landsman<br />

747 Accelerating the calcu<strong>la</strong>tion of time-resolved electronic<br />

spectra with the cellu<strong>la</strong>r <strong>de</strong>phasing representation<br />

Miros<strong>la</strong>v Šulc<br />

25<br />

Communications <strong>de</strong> <strong>la</strong> SSP No. 37<br />

748 Towards femtosecond dynamics in multiferroics<br />

Teresa Kubacka<br />

749 Photon echo measurements using a frequency doubled cavity<br />

dumped femtosecond oscil<strong>la</strong>tor<br />

Vesna Markovic<br />

750 A Combined NIR Transient-Absorption Optical Pump-THz<br />

Probe Spectroscopy Study on Charge Carrier Generation<br />

Dynamics in Solid State Dye Sensitized So<strong>la</strong>r Cells<br />

Jan Brauer<br />

751 Investigation of chemical surface treatment on the charge<br />

carrier dynamics in solid-state Dye-Sensitized So<strong>la</strong>r Cells<br />

Arianna Marchioro<br />

752 Photoinduced Processes of Small Molecule Organic Photovoltaics<br />

Jelissa De Jongh<br />

753 Photoelectron Diffraction on SnPc/Ag(111)<br />

Michael Greif<br />

754 Effects of the finite length of the pump <strong>la</strong>ser pulse in nonadiabatic<br />

quantum dynamics simu<strong>la</strong>tions of ultrafast timeresolved<br />

spectroscopy<br />

Aurélien Patoz<br />

755 Accelerating calcu<strong>la</strong>tions of ultrafast time-resolved electronic<br />

spectra with various high or<strong>de</strong>r split-operator algorithms<br />

Marius Wehrle<br />

756 High-harmonic spectroscopy of isoelectronic molecules:<br />

electronic structure and multielectron effects<br />

Alisa Rupenyan-Vasileva<br />

757 Actively Stabilized Attosecond Interferometer<br />

Martin Huppert<br />

758 Ultrafast time-resolved photoelectron spectroscopy of solvated<br />

systems<br />

Inga Jordan<br />

759 Versatile velocity-map-imaging spectrometer for strongfield<br />

and attosecond experiments<br />

Samuel Walt<br />

760 Versatile Non Collinear Four-Wave Mixing Set-Up Fully<br />

Based on Femtosecond Pulse Shaping for Coherent Electronic<br />

Spectroscopy<br />

Franziska Frei<br />

761 Field Enhancement in THz nano-structures<br />

Fabian Brunner<br />

762 Femtosecond surface second harmonic generation microscopy<br />

to probe adsorbed <strong>la</strong>yers at interfaces<br />

Delphine Schaming<br />

763 Time resolved surface second harmonic generation and<br />

electron transfer reactions at liquid-liquid interfaces<br />

Astrid O<strong>la</strong>ya<br />

8 NCCR QSIT<br />

Friday, 22.06.2012, HCI G 3<br />

Time ID QSit i<br />

Chair: Richard Waburton, Uni Basel<br />

11:00 801 Torque Magnetometry of Individual Ni Nanotubes<br />

Dennis P. Weber<br />

11:15 802 Characterization of nano-scale electrical contacts<br />

using dynamical Coulomb blocka<strong>de</strong><br />

Konrad H. Müller<br />

11:30 803 Scanning gate experiments on graphene nanoribbons<br />

Niko<strong>la</strong> Pascher


SPG Mitteilungen Nr. 37<br />

11:45 804 All Electrical Control and Slowing of Microwaves<br />

using Circuit Nano-electromechanics<br />

Xiaoqing Zhou<br />

12:00 Postersession (continued), Lunchbuffet<br />

QSit ii<br />

Chair: K<strong>la</strong>us Ensslin, ETH Zürich<br />

13:30 811 Graphene Quantum Dots<br />

Johannes Güttinger (i)<br />

14:00 812 Rectification of thermal fluctuations in a chaotic<br />

cavity heat engine<br />

Björn Sothmann<br />

14:15 813 Fiber-cavity spectroscopy of quantum wells and<br />

charge-controlled quantum dots<br />

Javier Miguel-Sanchez<br />

14:30 814 Supplying cluster states for one-way quantum<br />

computing<br />

Daniel Becker<br />

14:45 815 Multilevel transport in a three-terminal graphene<br />

quantum dot<br />

Pauline Simonet<br />

15:00 816 Quantum Hall effect in Graphene with superconducting<br />

electro<strong>de</strong>s<br />

Peter Rickhaus<br />

15:15 817 Quantum Metrology with a Scanning Probe Atom<br />

Interferometer<br />

Caspar Ockeloen<br />

15:30 Coffee Break<br />

QSit iii<br />

Chair: Matthias Christandl, ETH Zürich<br />

16:00 821 Dark state spectroscopy of a single hole spin<br />

Julien Houel (i)<br />

16:30 822 Exploring cavity-mediated long-range interactions<br />

in a dilute quantum gas<br />

Renate Landig<br />

16:45 823 Density functional theory for static and dynamic<br />

properties of atomic quantum gases<br />

Lei Wang<br />

17:00 824 Quantum state tomography of 1000 bosons:<br />

reduced <strong>de</strong>nsity matrices<br />

Michael Walter<br />

17:15 825 Ultrastrong Coupling of the Cyclotron Transition of<br />

a 2D Electron Gas to a THz Metamaterial<br />

Curdin Maissen<br />

17:30 END<br />

ID QSit PoSter<br />

841 Electronic transport in ultra-clean carbon nanotube quantum<br />

dots<br />

Stefan Nau<br />

842 Quantum dots in the quantum Hall regime<br />

Stephan Baer<br />

843 Progress toward nanoscale magnetic resonance with a<br />

"magnet-on-cantilever" force microscope<br />

Phani Peddibhot<strong>la</strong><br />

844 Tunnel barriers for spin injection into graphene<br />

Matthias Bräuninger<br />

845 A hybrid on-chip opto-nanomechanical transducer for ultrasensitive<br />

force measurements<br />

Emanuel Gavartin<br />

846 Probing charge noise in a semiconductor with <strong>la</strong>ser spectroscopy<br />

on a single quantum dot<br />

Andreas Kuhlmann<br />

847 Geometric phase gates for trapped molecu<strong>la</strong>r ions<br />

Matthias Germann<br />

26<br />

848 Cold collisions in an ion - atom hybrid trap<br />

Felix Hall<br />

849 Design and <strong>de</strong>velopment of a surface electro<strong>de</strong> ion trap for<br />

sympathetically cooled molecu<strong>la</strong>r ions<br />

Arezoo Mokhberi<br />

850 Density Matrix Renormalization Group for Optical Lattices<br />

Michele Dolfi<br />

851 In search of operational quantities for characterizing <strong>la</strong>rge<br />

quantum systems<br />

Normand Beaudry<br />

852 On the Optimality of Work Extraction in Small Thermodynamical<br />

Systems<br />

Philippe Faist<br />

9 Earth, Atmosphere and Environmental Physics<br />

Thursday, 21.06.2012, HCI D 8<br />

Time ID i: atMoSPhere and geohySicS<br />

Chair: Stéphane Goyette, Uni Genève<br />

13:45 901 Ionising radiation in the Environment<br />

Christophe Murith (i)<br />

14:15 902 Influence of Ga<strong>la</strong>ctic Cosmic Rays on the atmospheric<br />

composition and temperature<br />

Marco Calisto<br />

14:30 903 Laser-induced aerosol generation in air<br />

Massimo Petrarca<br />

14:45 904 Wind gusts parametrization methods for winter<br />

storms in Switzer<strong>la</strong>nd with the Canadian Regional<br />

Climate Mo<strong>de</strong>l<br />

Charles-Antoine Kuszli<br />

15:00 905 A Study of Interface Effects Between Porous and<br />

Double Porous Media<br />

Eduard Oberaigner<br />

15:15 906 Fiber bundle mo<strong>de</strong>ls for granu<strong>la</strong>r shearing and<br />

acoustic emissions during <strong>la</strong>ndsli<strong>de</strong> initiation<br />

Denis Cohen<br />

15:30 Coffee Break<br />

ii: reSourceS (geology, MaterialS, biofuelS,<br />

energy & lca)<br />

Chair: Antoine Pochelon, EPFL-CRPP<br />

16:00 911 Deep structure of the Swiss P<strong>la</strong>teau from seismicwave<br />

sounding: a new 3D seismic mo<strong>de</strong>l of the<br />

Swiss Mo<strong>la</strong>sse Basin<br />

François Marillier (i)<br />

16:30 912 Scarce metals - Applications, supply risks and<br />

need for action<br />

Patrick A. Wäger (i)<br />

17:00 913 Roundtable on Sustainable Biofuels: Ensuring Biofuels<br />

Deliver on their Promises<br />

Sebastien Haye (i)<br />

17:30 914 Energy resources, energy choices and life cycle<br />

assessment<br />

Andrew Simons (i)<br />

18:00 END<br />

18:30 Postersession and Apéro<br />

20:15 Grillparty


Agilent Technologies, CH-4052 Basel<br />

www.agilent.com<br />

attocube systems AG, DE-80539 München<br />

www.attocube.com<br />

Bruker AXS GmbH, DE-76187 Karlsruhe<br />

www.bruker.com<br />

DECTRIS Ltd, CH-5400 Ba<strong>de</strong>n<br />

www.<strong>de</strong>ctris.com<br />

Dyneos AG, CH-8307 Effretikon<br />

www.dyneos.ch<br />

EPL-IOP, UK-Bristol<br />

www.iop.org<br />

GMP SA, CH-1020 Renens<br />

www.gmp.ch<br />

Hi<strong>de</strong>n Analytical Ltd., UK-Warrington, WA5 7UN<br />

www.hi<strong>de</strong>nanalytical.com<br />

HORIBA Jobin Yvon GmbH, DE-64625 Bensheim<br />

www.horiba.com/<strong>de</strong>/scientific<br />

Hositrad Deutsch<strong>la</strong>nd Vacuum Technology,<br />

DE-93047 Regensburg<br />

www.hositrad.com<br />

MaTecK GmbH, DE-52428 Jülich<br />

www.mateck.<strong>de</strong><br />

Patenschaft für Maturaarbeiten<br />

Die Aka<strong>de</strong>mie <strong>de</strong>r Naturwissenschaften Schweiz (SCNAT)<br />

sucht ExpertInnen, die an 4 Halbtagen im Jahr Maturaarbeiten<br />

von Mittelschülern in allen naturwissenschaftlichen<br />

Fächern (Biologie, Chemie, Geowissenschaften, Informatik,<br />

Mathematik, Physik) betreuen wollen.<br />

Hauptziel <strong>de</strong>r Initiative «Patenschaft für Maturaarbeiten» ist<br />

es, die Begeisterung für naturwissenschaftliche Berufe zu<br />

wecken und <strong>de</strong>n GymnasiastInnen einen Blick in die Berufswelt<br />

zu ermöglichen. Dieses Angebot bietet <strong>de</strong>n SchülerInnen<br />

die einmalige Möglichkeit, mit Wissenschaftern von<br />

Hochschulen o<strong>de</strong>r aus <strong>de</strong>r Industrie in Kontakt zu treten,<br />

spezifische Messgeräte zu benutzen und Forschungsluft zu<br />

schnuppern. Die Jugendlichen investieren viel in diese Arbeiten<br />

(ungefähr 1 Halbtag/Woche während eines Jahres)<br />

und lernen gleichzeitig die verschie<strong>de</strong>nen Karrieremöglichkeiten<br />

in <strong>de</strong>n Naturwissenschaften kennen.<br />

Im 2011 hat die SCNAT beschlossen, angelehnt an die<br />

Patenschaften ein neues Angebot im Bereich Nachwuchsför<strong>de</strong>rung<br />

zu entwickeln. Wir haben festgestellt, dass die<br />

Schulen regelmässig ReferentInnen suchen, die aus ihren<br />

Forschungsgebieten berichten möchten. Es soll <strong>de</strong>shalb<br />

eine Liste mit ExpertInnen geführt wer<strong>de</strong>n, die bereit sind,<br />

ihre Arbeit SchülerInnen <strong>de</strong>r Sekundarstufe II (15 – 18 Jahre<br />

alt) vorzustellen.<br />

Weitere Informationen: www.maturitywork.scnat.ch<br />

Aussteller - Exposants<br />

Kurz<strong>mitteilungen</strong><br />

27<br />

Meili-Kryotech, CH-7433 Donat<br />

www.kryotech.ch<br />

NanoScan AG, CH-8600 Dübendorf<br />

www.nanoscan.ch<br />

Communications <strong>de</strong> <strong>la</strong> SSP No. 37<br />

Oxford Cryosystems Ltd, UK-Long Hanborough, OX29 8LN<br />

www.oxcryo.com<br />

Schäfer-Tec AG, CH-3422 Kirchberg BE<br />

www.schaefer-tec.com<br />

SENTECH GmbH, DE-82152 Krailing<br />

www.sentech-sales.<strong>de</strong><br />

Stoe & Cie GmbH, DE-64295 Darmstadt<br />

www.stoe.com<br />

Swiss Vaccum Technologies S.A., CH-2022 Bevaix<br />

www.swissvacuum.com<br />

TECO René Koch, CH-1807 Blonay<br />

www.teco-rene-koch.com<br />

VG Scienta, UK-Hastings, East Sussex, TN38 9NN<br />

www.vgscienta.com<br />

VACOM GmbH, DE-07749 Jena<br />

www.vacom.<strong>de</strong><br />

Zurich Instruments, CH-8005 Zürich<br />

www.zhinst.com<br />

Ernennung von SATW-Mitglie<strong>de</strong>rn<br />

Die <strong>Schweizerische</strong> Aka<strong>de</strong>mie <strong>de</strong>r Technischen Wissenschaften<br />

(SATW) hat an ihrer Mitglie<strong>de</strong>rversammlung am<br />

26. April 2012 folgen<strong>de</strong> SPG Mitglie<strong>de</strong>r zu or<strong>de</strong>ntlichen<br />

Einzelmitglie<strong>de</strong>rn ernannt:<br />

Dr. Rolf Allenspach, Dr. Pierangelo Gröning und Dr. Thomas<br />

von Waldkirch.<br />

Der SPG-Vorstand freut sich über die ehrenvolle Ernennung<br />

und beglückwünscht die Kollegen aufs herzlichste.<br />

Joint EPS-SIF International School on Energy<br />

New Strategies for Energy Generation, Conversion and<br />

Storage<br />

30 July - 4 August 2012, Vil<strong>la</strong> Monastero, Varenna (Lake<br />

Como)<br />

Directors: L. Cifarelli (Università di Bologna), F. Wagner<br />

(Max-P<strong>la</strong>nck-Institut für P<strong>la</strong>smaphysik, Greifswald), D. S.<br />

Wiersma (LENS, Firenze)<br />

Contact person: M. Burresi - burresi@lens.unifi.it<br />

More information:<br />

http://en.sif.it/activities/energy_school/2012


SPG Mitteilungen Nr. 37<br />

Progress in Physics (28)<br />

In <strong>de</strong>r Reihe "Progress in Physics" berichten Physikerinnen und Physiker über ihre Aktivitäten an schweizerischen Hochschulen<br />

und Industrien. Je<strong>de</strong>s SPG - Vorstandsmitglied kommt zyklisch an die Reihe, einen Artikel zu acquirieren. Mit<br />

dieser Vorgangsweise wird zwar für eine gewisse thematische Breite gesorgt, aber eine Sichtung <strong>de</strong>r bisherigen Beiträge<br />

zeigt, dass aus <strong>de</strong>r Industrie bis<strong>la</strong>ng wenig kam. Das heisst aber nicht, dass die Industrie an Forschungsergebnissen nicht<br />

interessiert sei, aber sie müssen eine erste Umsetzbarkeit erkennen <strong>la</strong>ssen. Wie man Innovation und Realisierung näher<br />

zusammenbringt, ist Anliegen <strong>de</strong>s SATW-Forums, über <strong>de</strong>ssen jüngste Veranstaltung im November 2011 im folgen<strong>de</strong>n<br />

berichtet wird.<br />

In <strong>de</strong>r 2010 gestarteten Reihe <strong>de</strong>s "SATW Forums" sollen<br />

neue Erkenntnisse über ein aktuelles Technologiethema im<br />

kleinen Kreis von Experten besprochen wer<strong>de</strong>n. Die jeweils<br />

behan<strong>de</strong>lte Technologie sollte im Ansatz neuartig, jedoch<br />

physikalisch im Labor verifiziert sein, und sie sollte noch<br />

einer industriellen Umsetzung harren, aber bereits ein attraktives<br />

Marktpotential für Produkte erkennen <strong>la</strong>ssen.<br />

Von - zumin<strong>de</strong>st in dieser Phase - min<strong>de</strong>rer Be<strong>de</strong>utung ist,<br />

wenn <strong>de</strong>r Weg von <strong>de</strong>r Laborverifizierung zum industriellen<br />

Produkt bis<strong>la</strong>ng noch als zu risikoreich eingeschätzt wird,<br />

da sich gera<strong>de</strong> dies durchaus als Wettbewerbsvorteil für<br />

die hiesigen Hochschulen und Industrien erweisen könnte.<br />

Die Diskussion im Forumskreis soll primär zeigen, ob auf<br />

Seiten von Hochschule und Industrie nicht nur fachliche<br />

Kompetenz, son<strong>de</strong>rn auch ein gemeinsames Interesse an<br />

einer Weiterentwicklung <strong>de</strong>r Technologie zur Produktreife<br />

gegeben ist, und wie die Chancen einer solchen Realisierung<br />

beurteilt wer<strong>de</strong>n? Letzten En<strong>de</strong>s soll ausgelotet wer<strong>de</strong>n,<br />

ob durch eine gemeinsame Aktion Grund<strong>la</strong>gen gelegt<br />

wer<strong>de</strong>n können, um neue, hochwertige Arbeitsplätze in <strong>de</strong>r<br />

Schweiz mittel- bis <strong>la</strong>ngfristig zu schaffen.<br />

Bei <strong>de</strong>r Auswahl <strong>de</strong>r Themen sollte <strong>de</strong>shalb darauf geachtet<br />

wer<strong>de</strong>n, dass die Technologie trotz ihrer Neuartigkeit auf einer<br />

gewissen Tradition in <strong>de</strong>r Schweiz wie Miniaturisierung,<br />

Höchstpräzision, Umweltverträglichkeit aufbauen kann, um<br />

politische Akzeptanz und Verständnis in <strong>de</strong>r Öffentlichkeit<br />

zu fin<strong>de</strong>n. Zu<strong>de</strong>m erscheint sinnvoll, dass die Themen im<br />

evolutionären Sinne eine Weiterführung früherer Aktivitäten<br />

wie zum Beispiel eine Umsetzung <strong>de</strong>r Nanotechnik sind.<br />

SATW Forum "Advanced Optoceramics"<br />

Im Abbe-Diagramm liegen links unten die Gläser mit<br />

nie<strong>de</strong>rer Brechzahl und schwacher Dispersion, rechts<br />

oben die hochbrechen<strong>de</strong>n, aber lei<strong>de</strong>r auch mit starker<br />

Dispersion versehenen Gläser. Für <strong>de</strong>n Optik<strong>de</strong>sign<br />

i<strong>de</strong>al wären Gläser in <strong>de</strong>r Gegend <strong>de</strong>s Bil<strong>de</strong>s von Ernst<br />

Abbe. Nur beginnen die Gläser nahe einer magischen Linie<br />

auszukristallisieren, was sie technisch unbrauchbar<br />

macht. Anstatt nun gegen die Kristallisierung vergeblich<br />

anzukämpfen, macht es mehr Sinn, gleich auf Keramiken<br />

zu setzen und diese in ihren optischen Eigenschaften<br />

gleichwertig zu Gläsern zu machen. Die B<strong>la</strong>sen im Diagramm<br />

zeigen Bereiche von Optokeramiken, wo in guter<br />

optischer Qualität bereits Prototypen vorliegen, und die<br />

sich in ihrer Transmission, in <strong>de</strong>n Teildispersionen, etc.<br />

voneinan<strong>de</strong>r unterschei<strong>de</strong>n.<br />

Bernhard Braunecker und Rolf Hügli (SATW)<br />

28<br />

Über sie wur<strong>de</strong>n in <strong>de</strong>r Schweiz in <strong>de</strong>n vorangegangenen<br />

Jahren sowohl auf aka<strong>de</strong>mischer wie industrieller Seite genügend<br />

neue Erkenntnisse prinzipieller Natur gewonnen,<br />

um die bereits angesprochenen Risiken bei einer Weiterführung<br />

zu minimieren.<br />

Die Forumsreihe fokussiert sich somit auf drei Kernanliegen<br />

<strong>de</strong>r SATW, nämlich <strong>de</strong>r Früherkennung von Technologien,<br />

<strong>de</strong>r Netzwerkbildung und <strong>de</strong>r Gewinnung optimaler Akzeptanz<br />

<strong>de</strong>r Technologie durch die Öffentlichkeit, was im Wesentlichen<br />

durch eine frühzeitige Auseinan<strong>de</strong>rsetzung mit<br />

ethischen Grundsätzen geschieht.<br />

Optokeramiken<br />

Als Thema <strong>de</strong>s zweiten Forums wur<strong>de</strong> Advanced Optoceramics<br />

gewählt. Optokeramiken gehören zur K<strong>la</strong>sse <strong>de</strong>r<br />

oxidisch-mineralischen Werkstoffe, die ein breites Applikation<strong>ssp</strong>ektrum<br />

von Hochspannungsiso<strong>la</strong>toren bis zu Medizina<strong>la</strong>nwendungen<br />

ab<strong>de</strong>cken. 1987 erhielten J. G. Bednorz<br />

und K. A. Müller vom IBM Forschungszentrum in Rüschlikon<br />

<strong>de</strong>n Nobelpreis für ihre Pionierarbeiten an auf Oxidkeramik<br />

basieren<strong>de</strong>n Hochtemperatur-Supraleitern. In <strong>de</strong>r Schweiz<br />

wer<strong>de</strong>n Keramiken schwerpunktsmässig bei <strong>de</strong>r EMPA, an<br />

bei<strong>de</strong>n ETHs, aber auch in <strong>de</strong>r Industrie behan<strong>de</strong>lt.<br />

Generell zeichnen sich diese Werkstoffe dadurch aus, dass<br />

sich durch gezielte Dotierung <strong>de</strong>r Keramikmatrix mit Fremdpartikeln<br />

die mechanischen, elektrischen, thermischen und<br />

optischen Eigenschaften verän<strong>de</strong>rn <strong>la</strong>ssen. Das geschieht<br />

über einen mehrstufigen und die Nanotechnik einbeziehen<strong>de</strong>n<br />

Herstellprozess. Man zermahlt die Werkstoffe zu


Nanopulver, dotiert und kommt über geeignete Press- und<br />

Sinterprozesse zurück zu makroskopisch handhabbaren<br />

Proben. Da die Dopingrate beim heterogenen Nanopulver-<br />

Konvolut <strong>de</strong>utlich grösser sein kann als beim Einkristall,<br />

sind höhere Effizienzen bei bestimmten Materialeigenschaften<br />

zu erwarten.<br />

Da jedoch das Thema "Keramik" in seiner vollen Breite eine<br />

Forumsveranstaltung überfor<strong>de</strong>rn wür<strong>de</strong>, wur<strong>de</strong> das Thema<br />

auf die Untermenge <strong>de</strong>r optischen Keramiken beschränkt.<br />

Diese, nicht zu verwechseln mit G<strong>la</strong>skeramiken, zeigen<br />

eine hohe optische Transparenz, sind also rein äusserlich<br />

von hochwertigen optischen G<strong>la</strong>sscheiben nicht zu unterschei<strong>de</strong>n.<br />

Sie zeigen aber neben <strong>de</strong>n für Keramiken typisch<br />

guten mechanischen und thermischen Eigenschaften auch<br />

weitere, für <strong>de</strong>n Bau von Optikinstrumenten interessante<br />

optische Werte. Erwähnenswert sind hohe Brechzahlen,<br />

aussergewöhnliches Dispersionsverhalten und vor allem<br />

eine nutzbare Transmission vom visuellen bis in <strong>de</strong>n 5-6<br />

μm Spektralbereich, während Gläser nur bis etwa 2 μm<br />

eingesetzt wer<strong>de</strong>n können. Gera<strong>de</strong> für medizinische Anwendungen<br />

mit <strong>de</strong>m Erbium<strong>la</strong>ser bei 3 μm sind somit neue<br />

Möglichkeiten <strong>de</strong>nkbar.<br />

Teilnehmerkreis und Symposiumsab<strong>la</strong>uf<br />

Die Veranstaltung wur<strong>de</strong> am 24. November 2011 zusammen<br />

mit <strong>de</strong>r EMPA an ihrem Standort in Dübendorf durchgeführt.<br />

Die Organisatoren waren J. G. Bednorz / IBM, B.<br />

Braunecker / SATW, P. Gröning & T. Graule / EMPA und H.<br />

P. Herzig / EPFL. Die 30 Teilnehmer kamen von Ceramet,<br />

EMPA, EPFL, ETHZ, Fisba, IBM, Lasag, Leica Geosystems,<br />

Lonza, Metoxit, Micos, RUAG Space, Schott Forschungszentrum<br />

Mainz, Schott Schweiz, Silitec, Swissoptic, Swiss-<br />

LaserNet, Trumpf und Uni Bern. Das Symposium war zweiteilig<br />

geglie<strong>de</strong>rt. Nach sechs einführen<strong>de</strong>n Kurzreferaten<br />

wur<strong>de</strong> in <strong>de</strong>r Teilnehmerrun<strong>de</strong> diskutiert, welche Auswirkungen<br />

die Ergebnisse für die Schweiz haben könnten?<br />

Thematische Strukturierung<br />

Die Referate wur<strong>de</strong>n in drei Blöcken präsentiert. Im ersten<br />

Teil berichtete E. Pawlowski / Schott über <strong>de</strong>n neuesten<br />

Stand <strong>de</strong>r Herstellung von Schott-Opto-Ceramic Prototypen<br />

SOC. Anschliessend B. Reiss / Swissoptic über Ergebnisse<br />

bei <strong>de</strong>r Oberflächenbearbeitung verschie<strong>de</strong>ner<br />

SOC - Proben mit mo<strong>de</strong>rnen CNC-Maschinen und schliesslich<br />

B. Braunecker (früherer Entwicklungsleiter - Optik bei<br />

Leica Geosystems), welche neuen Optiksysteme <strong>de</strong>nkbar<br />

wären, wenn es die Materialien kommerziell gäbe. Im zweiten<br />

Teil erläuterte T. Graule / EMPA die hohen Ansprüche<br />

und die komplexen Abläufe bei <strong>de</strong>r Materialherstellung,<br />

während A. Studart / ETHZ über neueste Forschungsergebnisse<br />

mit multifunktionalen Keramiken berichtete. Im dritten<br />

Teil referierte J. G. Bednorz über eine neue und Aufsehen<br />

erregen<strong>de</strong> Metho<strong>de</strong> aus Japan, bei <strong>de</strong>r das zu dotieren<strong>de</strong><br />

Keramikmaterial dünne Polymerfolien sind, die interessante<br />

optische Eigenschaften zeigen, aber vermutlich auch für<br />

an<strong>de</strong>re Anwendungen im So<strong>la</strong>rbereich o<strong>de</strong>r für Batterien<br />

geeignet sein könnten.<br />

Fazit<br />

Die Veranstaltung zeigte, dass <strong>de</strong>r vorgestellte Prozessansatz,<br />

<strong>de</strong>r höhere Dopingraten <strong>de</strong>s zu Nanopulver verarbeiteten<br />

Trägermaterials mit "intelligenten" Fremdatomen wie<br />

Seltenen Er<strong>de</strong>n ermöglicht, nicht nur zu verbesserten ak-<br />

29<br />

Communications <strong>de</strong> <strong>la</strong> SSP No. 37<br />

Abstracts <strong>de</strong>r Referate<br />

Fabrication & characterisation of transparent ceramics for<br />

novel applications, E. Pawlowski, Schott AG<br />

About 20 years ago the first <strong>de</strong>velopment of transparent ceramic<br />

started, finally achieving poly-crystalline ceramic materials<br />

for <strong>la</strong>ser and optical applications. It was <strong>de</strong>monstrated,<br />

that ceramic materials could overcome the main technical problem<br />

of light scattering. The established nano-pow<strong>de</strong>r vacuum<br />

sintering process at SCHOTT shows good potential for mass<br />

fabrication of multi-composite ceramic materials with different<br />

dopant concentrations. In comparison to conventional transparent<br />

materials optoceramics offer further benefits, which lead to<br />

a multiplicity of new applications like optical, <strong>la</strong>ser, solid state<br />

lighting or scintil<strong>la</strong>tion. Apart from better mechanical properties<br />

and special optical properties, higher rare-earth doping levels<br />

than single crystals can be achieved, which lead to a higher<br />

conversion efficiency combined with small temperature and<br />

concentration quenching effects. In our talk we will discuss the<br />

fabrication process, the realized materials and the different applications<br />

of optoceramics.<br />

CNC machined optics, B. Reiss, Swissoptic AG<br />

Swissoptic as a leading manufacturer of advanced optical components<br />

and systems will report about the surface treatment<br />

of g<strong>la</strong>ss and ceramic optics with mo<strong>de</strong>rn CNC machines and<br />

other <strong>de</strong>terministic technologies. One exciting example is the<br />

production of monolithic components, i.e. multifunctional components<br />

out of one piece of g<strong>la</strong>ss.<br />

OC materials for lens <strong>de</strong>sign, B. Braunecker, SATW<br />

Based on the preliminary optical data of various prototypes of<br />

Schott Optoceramics (<strong>la</strong>rge refractive in<strong>de</strong>x, <strong>la</strong>rge anomalous<br />

dispersion, speckle free transmission, etc.), their impact on the<br />

<strong>de</strong>sign of optical systems for imaging, projection, medicine,<br />

space, etc. will be discussed.<br />

The challenge of failure free nanopow<strong>de</strong>r processing,<br />

T. Graule, EMPA<br />

Aggregate free synthesis and agglomerate free processing of<br />

nanopow<strong>de</strong>rs is achieved by advanced pow<strong>de</strong>r synthesis as<br />

well as colloidal processing techniques. The main issue is to<br />

overcome Van <strong>de</strong>r Waals attraction forces by surface treatment<br />

and high energy dispersion techniques. Different approaches to<br />

solve the problem of aggregation and especially agglomeration<br />

are <strong>de</strong>monstrated.<br />

Magnetic control of non-spherical ceramic particles in fluid<br />

suspensions, André R. Studart, Complex Materials, Department<br />

of Materials, ETH Zürich<br />

We present a method to <strong>de</strong>liberately control the orientation of<br />

non-spherical nonmagnetic ceramic particles in fluid suspensions<br />

using magnetic fields as low as 1 milliTes<strong>la</strong>. To achieve<br />

magnetic response, the non-spherical particles are coated with<br />

minor contents of magnetic nanoparticles (


SPG Mitteilungen Nr. 37<br />

tiven (Laser-) und passiven (Linsen-) Optiksystemen führt,<br />

son<strong>de</strong>rn auch zu höheren Effizienzen bei Röntgen<strong>de</strong>tektoren<br />

und LED-Lichtquellen. Die erfor<strong>de</strong>rlichen technischen<br />

Herstell- & Bearbeitungsprozesse sind zweifelsohne noch<br />

herausfor<strong>de</strong>rnd, aber mit <strong>de</strong>m in <strong>de</strong>r Schweiz vorhan<strong>de</strong>nen<br />

Wissen bei EMPA und <strong>de</strong>n teilnehmen<strong>de</strong>n Firmen durchaus<br />

machbar.<br />

Die an <strong>de</strong>n ETHs betriebene Forschung an multifunktionalen<br />

Werkstoffen ist höchst aktuell, da durch geeignete<br />

Behandlungsmassnahmen Keramiken nicht nur wie Halbleiter<br />

in ihren photonischen Eigenschaften eingestellt wer<strong>de</strong>n<br />

können, son<strong>de</strong>rn zusätzlich noch in <strong>de</strong>n mechanischthermischen<br />

Parametern. Schliesslich wies die von J. G.<br />

Bednorz aufgezeigte Metho<strong>de</strong> <strong>de</strong>r Massenproduktion dotierter<br />

Polymere auf eine kostengünstige Mannigfaltigkeit<br />

an Anwendungen hin.<br />

Progress in Physics (29)<br />

Un<strong>de</strong>rstanding exchange bias in thin films<br />

Miguel A. Marioni, Sara Romer, Hans J. Hug 1<br />

Empa, Swiss Fe<strong>de</strong>ral Institute for Materials Testing and Research, CH-8600 Dübendorf<br />

1 Also at: Institute of Physics, Universität Basel, CH-4056 Basel<br />

Every computer hard-drive and<br />

many magnetic sensors contain<br />

a thin-film <strong>de</strong>vice using the GMR<br />

or TMR effect. In it, the resistance<br />

from a stack of thin films is ma<strong>de</strong><br />

to <strong>de</strong>pend on the re<strong>la</strong>tive orientation<br />

of different magnetic <strong>la</strong>yers’<br />

magnetization, of which one serves<br />

as a reference and retains its direction.<br />

Fixing the magnetization is accomplished<br />

with exchange-bias.<br />

Not surprisingly, the effect has received<br />

much attention throughout<br />

the history of magnetic recording<br />

and sensor <strong>de</strong>sign. Perhaps it is a<br />

surprise, then, that so much remains<br />

unknown about exchange-bias after<br />

half a century since its discovery.<br />

M shift<br />

M(H)<br />

Principles of the exchange bias effect<br />

Exchange-biasing manifests macroscopically as a <strong>la</strong>teral<br />

shift of size H of the hysteresis loop (Fig. 1 (a); occasion-<br />

ex<br />

ally there is an accompanying vertical shift M as well.). It<br />

shift<br />

occurs if a sample with at least one ferromagnet (F) / antiferromagnet<br />

(AF) bi<strong>la</strong>yer (e.g. in Fig. 1 (b)) is cooled through<br />

the Néel temperature (T ) of the antiferromagnet. It is gen-<br />

N<br />

erally believed that (local) magnetization of the ferromagnet<br />

(F) <strong>la</strong>yer (locally) generates pinned uncompensated spins<br />

(pUCS) in the AF <strong>la</strong>yer that are coupled to the F <strong>la</strong>yer. An<br />

obstacle to un<strong>de</strong>rstanding the exchange bias effect is that<br />

only a subset of the UCS (those pinned, and coupled to<br />

the ferromagnet) are responsible for it [1]. The experimental<br />

method and preparation may affect these subsets in<br />

H ex<br />

(a)<br />

Figure 1: (a) Schematic hysteresis loop of an exchange-biased thin magnetic film. (b) Thin film<br />

multi<strong>la</strong>yer structure with perpendicu<strong>la</strong>r magnetization used for MFM studies of exchange bias.<br />

(c) High resolution TEM image of the film structure of (b), highlighting the CoO <strong>la</strong>yer (b<strong>la</strong>ck<br />

arrow) and one grain boundary (white arrow).<br />

30<br />

Die Veranstaltung wur<strong>de</strong> von <strong>de</strong>n Teilnehmern mehrheitlich<br />

mit "sehr gut" beurteilt und scheint somit einem Bedürfnis<br />

entsprochen zu haben. Während die Industrievertreter die<br />

Informationen über die Technologiefortschritte begrüssten,<br />

bekamen die Hochschulvertreter in <strong>de</strong>r Diskussionsrun<strong>de</strong><br />

wertvolle Hinweise über mögliche Anwendungsgebiete. Es<br />

zeigte sich, dass verschie<strong>de</strong>ne Firmen sich bi<strong>la</strong>teral über<br />

ihre Intentionen und Fortschritte austauschen wollen, und<br />

es wur<strong>de</strong> von nahezu allen Teilnehmern <strong>de</strong>r Wunsch nach<br />

einer Diskussionsp<strong>la</strong>ttform und einer Folgeveranstaltung<br />

geäussert.<br />

H<br />

AF<br />

F<br />

(b)<br />

Pt<br />

CoO<br />

Pt<br />

Si<br />

×20<br />

2 nm<br />

distinct ways and an interpretation of UCS measurements<br />

must take this into account.<br />

Experimental Methods to measure uncompensated<br />

pinned spins<br />

Reflectometry experiments using po<strong>la</strong>rized neutrons or<br />

circu<strong>la</strong>rly po<strong>la</strong>rized X-rays as probes have been used to<br />

access UCS sub-systems and to map out their thickness<br />

distribution. Both methods fit proposed mo<strong>de</strong>l <strong>de</strong>scriptions<br />

of these distributions to the experimental data. Neutronbased<br />

techniques can unambiguously <strong>de</strong>termine the re<strong>la</strong>tive<br />

orientation of the UCS of the various sub-systems and<br />

the F-spins. To accomplish this X-ray-based experiments<br />

require, in addition, specifying magneto-optical constants<br />

of the atomic species carrying the spin in the AF. Recent<br />

(c)


esults have also stressed the influence on XMLD (X-ray<br />

Magnetic Linear Dichroism) signals of the orientation of AF<br />

spins re<strong>la</strong>tive to the crystallographic axes.<br />

Reflectometry techniques cannot, however, reveal the<br />

<strong>la</strong>teral distribution of UCS. This very important aspect of<br />

exchange bias characterizations is accessible with other<br />

(complementary) techniques. Among these, photoemission<br />

electron microscopy (PEEM) with circu<strong>la</strong>r and/or linearly<br />

po<strong>la</strong>rized X-rays has revealed a corre<strong>la</strong>tion between AF domains<br />

and F-domains, the formation of new chemical phases<br />

at the AF/F interface with magnetic moments parallel to<br />

those of the F, and induced ferromagnetic moments at the<br />

AF/F interface. But PEEM microscopes have to-date not<br />

attained <strong>la</strong>teral resolutions on the length scale of grainssizes<br />

of typical polycrystalline AF materials, important for<br />

applications. Note that PEEM experiments require the applied<br />

magnetic field to be zero or near-zero, and accordingly<br />

cannot distinguish pinned from non-pinned UCS of<br />

the AF directly. In fact, only a small part of the net moment<br />

induced locally by the F in the AF consists of pinned UCS,<br />

which are difficult to iso<strong>la</strong>te from the rest with present-day<br />

PEEM sensitivities.<br />

In contrast to XMCD-PEEM, XMCD (X-ray Magnetic Circu<strong>la</strong>r<br />

Dichroism) holography is a lens-less imaging method<br />

and hence allows the application of arbitrary magnetic<br />

fields. Recently, element-selective soft x-ray holography<br />

and spectroscopy measurements have been used to study<br />

the evolution of domains in ferromagnetic multi<strong>la</strong>yer of<br />

[Pt(1.8nm)Co(0.6nm)] ×8 on a Mn 80 Ir 20 (5nm) antiferromagnetic<br />

<strong>la</strong>yer [2]. Element-specific magnetometry revealed uncompensated<br />

AF magnetic moments on the Mn and allowed to<br />

estimate that about 10% of these moments are pinned and<br />

thus are relevant for the exchange bias effect. However, no<br />

magnetic contrast could be observed at the Mn L 3 edge, so<br />

the imaging of the pattern of uncompensated and pinned<br />

uncompensated Mn moments was not achieved.<br />

A different technique to gain access to the UCS of a system<br />

is magnetic force microscopy (MFM). Operated in vacuum,<br />

MFM typically measures shifts in the resonance frequency<br />

of a cantilever outfitted with a magnetic tip. These are<br />

proportional to the magnetic field gradients to which the<br />

tip is exposed. Therefore an MFM investigation of sample<br />

properties requires a sample with suitable domains generating<br />

stray field [3]. In a rough approximation, the MFM<br />

(a)<br />

(b)<br />

H = 0<br />

200 mT<br />

300 mT<br />

46 Hz contrast ntrast<br />

35 Hz contrast ontrast<br />

4.4 Hz contrast<br />

Figure 2: High resolution MFM images of the sample of Figure 1 (b) and (c) obtained at<br />

constant average tip-sample distance of 13.0±0.5 nm. (a) Large contrast obtained in<br />

zero applied fields. (b) In a field of 200 mT the bright domains retract. (c) The ferromagnetic<br />

<strong>la</strong>yer is saturated at 300 mT. A weak and grainy contrast is retained. This contrast<br />

remains unaltered in fields of at least 7 T. A white arrow across Figs. (a) – (c) indicates a<br />

particu<strong>la</strong>r spot of the film where the retracting bright domain leaves a dark mark in the<br />

area it covered at zero field.<br />

(c)<br />

31<br />

Communications <strong>de</strong> <strong>la</strong> SSP No. 37<br />

contrast arising from the stray field of a domain pattern in a<br />

ferromagnetic thin film with perpendicu<strong>la</strong>r magnetization is<br />

proportional to the z-component of the magnetic moment<br />

areal <strong>de</strong>nsity [2]. This allows a first estimate of the contrast<br />

expected for a domain pattern of pinned uncompensated<br />

spins imprinted by a corresponding pattern of ferromagnetic<br />

domains. In our recent work [2] the MFM contrast<br />

measured above an up/down domain pattern in a CoPt ferromagnetic<br />

multi<strong>la</strong>yer was 46 Hz (Fig. 2 (a)). From the mag-<br />

netization of the CoPt-multi<strong>la</strong>yer and its thickness a total<br />

magnetic moment areal <strong>de</strong>nsity of mF z /A= MCoPt t = 622<br />

CoPt<br />

kA/m × 22 nm = 1.37 · 10 -2 Am 2 /m 2 is found. Likewise an<br />

areal moment <strong>de</strong>nsity of 4.48 · 10 -4 Am 2 /m 2 , corresponding<br />

to a fully uncompensated CoO AF, would thus generate a<br />

frequency shift of 1.5 Hz. Our MFM can easily <strong>de</strong>tect ±0.05<br />

Hz in a reasonable measurement bandwidth of 100 Hz, corresponding<br />

to a scan speed of about 1s/line in a 256 pixel<br />

line. This means that the corresponding ±1.49 · 10 -5 Am 2 /m 2<br />

are <strong>de</strong>tectable, and hence also about ±3% of a fully uncompensated<br />

mono<strong>la</strong>yer.<br />

Assessing the number of pinned uncompensated spins<br />

by MFM<br />

Not only can MFM image fractions of uncompensated AF<br />

spins but it can also be used in applied homogeneous<br />

fields. These do not generate a force on the magnetic tip<br />

and thus do not give rise to MFM contrast. One can therefore<br />

study the evolution of the F-domain pattern in external<br />

fields as shown Fig. 2 (a) and (b) (In prior work up to 7 T<br />

were applied [4]).<br />

MFM however <strong>la</strong>cks the element-specificity of XMCD<br />

methods, so it cannot distinguish directly between different<br />

sources of the stray field, i.e. generated by different atomic<br />

species. The contrast observed in the data shown in Fig. 2<br />

(a) and (b) arises predominantly from the stray fields emanating<br />

from the up/down domain pattern of the F-<strong>la</strong>yer and<br />

a small contribution from the imprinted local uncompensated<br />

AF moments. However, magnetic stray fields generated<br />

the F-<strong>la</strong>yer roughness, as well as by local variations of its<br />

thickness or saturation magnetization, could also generate<br />

a small MFM contrast. Topography-induced variations of<br />

the van <strong>de</strong>r Waals force occurring when the tip of the MFM<br />

scans in a p<strong>la</strong>ne parallel to the average slope of the sample<br />

provi<strong>de</strong> yet another contribution to the measured contrast.<br />

Mo<strong>de</strong>ling shows that from these <strong>la</strong>st contributions to contrast<br />

only the van <strong>de</strong>r Waals force-mediated<br />

topography contribution is relevant.<br />

It leads to the grainy appearance of the<br />

F-domain contrast (Fig. 2 (a)).<br />

If the F-<strong>la</strong>yer is saturated by applying a<br />

sufficiently strong external field, it does<br />

no longer generate an MFM contrast.<br />

One can easily un<strong>de</strong>rstand this by noting<br />

that the stray fields generated by the<br />

magnetic poles of the top and bottom<br />

surface compensate. In this situation<br />

the only remaining source of contrast is<br />

the pattern of pinned uncompensated<br />

AF moments. Note that if the other contrast<br />

contributions cannot be neglected,<br />

the difference of two consecutive MFM<br />

measurements performed in positive


SPG Mitteilungen Nr. 37<br />

and negative saturation fields will solely contain the contrast<br />

contribution of the pinned UCS moments [4].<br />

Quantitative MFM on exchange-biased systems<br />

It is now possible to ascertain the exact re<strong>la</strong>tion between<br />

pinned uncompensated spins and exchange bias by looking<br />

at the evolution of ferromagnetic domains over the un<strong>de</strong>r<strong>la</strong>ying<br />

pattern of pinned uncompensated spins [5]. For<br />

example a film of Pt(2nm)/CoO(1nm)/Co(0.6nm)/ [Pt(0.7nm)<br />

Co(0.4nm)] /Pt(20nm)/Si (Fig. 1 (b) and (c)) can be seen<br />

x20<br />

(a) (c)<br />

AF UCS<br />

un<strong>de</strong>r<br />

blue F domains<br />

F<br />

-100% pin UCS<br />

100%<br />

Project F-domain<br />

contours (white)<br />

onto AF UCS<br />

(b)<br />

AF<br />

0 mT applied �eld<br />

Increase applied �eld<br />

200 mT applied �eld<br />

Figure 3: Quantitative analysis of the MFM measurements of the<br />

multi<strong>la</strong>yer of Figures 1 – 2. (a) Stack of MFM measurements for<br />

zero applied field following the buildup of the magnetic multi<strong>la</strong>yer.<br />

The top surface is the MFM measurement of F domains’ contrast.<br />

Un<strong>de</strong>rneath is the interface with the AF, comprising a distribution<br />

of UCS, aligning antiparallel to the F-orientation. Because the<br />

UCS relevant for exchange bias are the pinned ones, they can be<br />

<strong>de</strong>termined from the MFM measurement of a saturated ferromagnet<br />

(Figure 2 (c)) and the tip-transfer function [7], as indicated<br />

32<br />

as the ferromagnetic domains evolve, Fig. 2. Dark areas<br />

correspond to parallel tip and sample magnetization; i.e.<br />

there is an attractive force and negative frequency shift.<br />

Conversely, bright areas correspond to the antiparallel orientation<br />

and positive frequency shift. F-domains are clearly<br />

visible in Figs. 2 (a) and (b), generating a contrast of several<br />

tens of Hz. As expected, the area of the bright domains<br />

(magnetization opposite to the applied field) diminishes as<br />

fields are applied parallel to the dark domain magnetization,<br />

as e.g. Fig. 2(b) for 200 mT. Consistent with the saturation<br />

ave. pin UCS (% AF ML)<br />

(d)<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

AF UCS<br />

un<strong>de</strong>r<br />

yellow F domains<br />

0 100 200 300<br />

H (mT)<br />

in the scale bar in the Figure. White contours are inclu<strong>de</strong>d in this<br />

<strong>la</strong>yer to highlight the position of F-domains. (b) Results for 200 mT<br />

following the format of (a). (c) Pinned UCS <strong>de</strong>nsity disaggregated<br />

from either F-domain, at 0 and 200 mT applied fields. The average<br />

(negative) magnitu<strong>de</strong> of pinned UCS is <strong>la</strong>rger un<strong>de</strong>r the retracted<br />

yellow F-domains than their zero field counterparts. (d) Graph showing<br />

the corre<strong>la</strong>tion between pinned UCS <strong>de</strong>nsity un<strong>de</strong>r a domain<br />

and the applied field.


of the ferromagnet the bright domains have disappeared<br />

at 300 mT, Fig. 2 (c). At this and <strong>la</strong>rger fields (up to 7 T) the<br />

MFM data reveals a rather irregu<strong>la</strong>r pattern with contrast of<br />

only 4.4 Hz. Cooling the F/AF system with the F in different<br />

initial domain states reveals that the shape of the patterns<br />

observed after saturation are governed by the structure of<br />

the initial F-domains.<br />

In the same way that the saturated F does not produce a<br />

stray field, the uncompensated AF spins which rotate with<br />

the F-domains will not be imaged at saturation. The main<br />

contrast is thus due to pinned UCS [6]. Using the response<br />

function of the MFM tip according to quantitative MFM<br />

methods [6] one can obtain the areal moment of pinned<br />

uncompensated spins (more specifically the z-component<br />

of the areal moment of the pinned UCS projected onto a<br />

virtual F/AF interfacial p<strong>la</strong>ne) from the Df pattern (Fig. 2 (c)).<br />

The result can be seen in Fig. 3 (a). At the AF-F interface a<br />

strikingly inhomogeneous distribution of the pinned UCS<br />

is revealed. TEM images of the films (Fig. 1(c)) show columnar<br />

grains in the film with sizes of the or<strong>de</strong>r of 10 nm,<br />

p<strong>la</strong>cing the observed pinned UCS variations on the same<br />

length scale. This pinned UCS distribution also represents<br />

an inhomogeneous distribution of ‘‘pinning’’ centers for<br />

F-domain motion, leading to the commonly observed EBinduced<br />

increase in coercivity.<br />

Figures 3 (a) and (b) also show the F-domain contours<br />

(white lines) at different fields over<strong>la</strong>id to the pinned uncompensated<br />

AF moment pattern that biases them. From them<br />

we see that the pinned UCS in the area initially covered by<br />

bright F domains (Fig. 1) is predominantly negative [blue<br />

in Figs. 3 (a) and (b)], whereas the area initially covered by<br />

dark F domains (Fig. 1) is predominantly positive [yellow<br />

in Figs. 3 (a) and (b)]. This local antiparallel alignment between<br />

the F magnetization and the pinned UCS suggests<br />

antiferromagnetic coupling across the F/AF interface and is<br />

consistent with earlier work [2,6,7]. Because the local alignment<br />

is antiparallel to the local cooling field, it can only be<br />

the result of exchange coupling.<br />

Notice the existence of iso<strong>la</strong>ted regions of pinned UCS that<br />

do not follow the above trend. They are oriented parallel to<br />

the (initial) adjacent F-magnetization, and seem to be circumscribed<br />

to areas of the size of single grains of the film<br />

(cf. Fig. 1 (c)).<br />

More insight can be gained from a quantitative evaluation<br />

of the data just discussed.<br />

One can compute the average pinned UCS <strong>de</strong>nsity (data<br />

from Figs. 3 (a) and (b) for the areas un<strong>de</strong>r the F-domains,<br />

i.e. <strong>de</strong>limited by the white contours of the figures, as shown<br />

in Figs. 3 (c). Un<strong>de</strong>r the initial yellow and blue F-domains<br />

the average pinned UCS <strong>de</strong>nsity is ±21.8% of a fully uncompensated<br />

mono<strong>la</strong>yer of AF spins. As a magnetic field is<br />

applied parallel to the blue F-domains, they expand at the<br />

expense of the yellow F-domains. Over the area covered<br />

by the retracted yellow F-domains the average pinned UCS<br />

is more negative than before the field was applied. Figure 3<br />

(d) shows the average <strong>de</strong>nsities of UCS un<strong>de</strong>r each domain<br />

type as a function of the applied field. A roughly proportional<br />

re<strong>la</strong>tion between the applied field and the average<br />

pinned UCS <strong>de</strong>nsity un<strong>de</strong>r the surviving yellow F-domains<br />

is apparent.<br />

33<br />

Communications <strong>de</strong> <strong>la</strong> SSP No. 37<br />

In Figure 3 (c) small regions can be seen with parallel pinned<br />

UCS-F domain alignment at zero field (red arrows). The retracting<br />

F-domains avoid these regions as they reconfigure<br />

in response to the applied field.<br />

In other words, at least in the CoO (and MnIr as shown in<br />

[2]) Co/Pt perpendicu<strong>la</strong>r system pinned UCSs coupling antiparallel<br />

to the F magnetization stabilize its orientation, i.e.<br />

they are biasing, whereas pinned UCSs oriented parallel to<br />

the F magnetization have the opposite effect, i.e. they are<br />

anti-biasing.<br />

These results are a direct observation of the stabilizing effect<br />

of (antiparallel) pinned UCS on F domains, and show<br />

that a higher pinned UCS <strong>de</strong>nsity leads to a stronger F domain<br />

pinning, i.e. a higher EB effect.<br />

Concluding remarks<br />

The <strong>de</strong>nsity of pinned UCS found by MFM agrees well with<br />

work on polycrystalline Py/CoO samples estimating the<br />

pinned UCS at about 10% of a 1.1 mono<strong>la</strong>yer-thick <strong>la</strong>yer<br />

of interfacial Co2+ spins. A <strong>de</strong>creasing magnetic moment of<br />

the FM <strong>la</strong>yer near the interface may exp<strong>la</strong>in the somewhat<br />

smaller <strong>de</strong>nsity of pinned UCS observed there. But the high<br />

<strong>de</strong>nsity of pinned UCS requires that the average coupling<br />

strength between the pinned UCS and F-spins be much<br />

smaller than previously expected, in or<strong>de</strong>r to exp<strong>la</strong>in the<br />

rather small exchange bias field.<br />

Without an exhaustive theoretical analysis of the pinned<br />

UCS coupling strength and possible variations thereof, we<br />

point out that the interface between the AF and the F very<br />

likely differs from a chemically sharp interface across which<br />

the system goes from F to AF, on account of interdiffusion<br />

and interface reconstruction. A simi<strong>la</strong>r reconstruction ought<br />

to be expected in the CoO/Co interfaces discussed here<br />

and may lead to a structurally and chemically disor<strong>de</strong>red<br />

interfacial phase, exp<strong>la</strong>ining the higher <strong>de</strong>nsity of pinned<br />

UCS and their weaker coupling to the F-spins. Furthermore<br />

frustration, as found in spin g<strong>la</strong>ss systems, may also lead to<br />

weak or indirect coupling between AF UCS and the F-<strong>la</strong>yer.<br />

Yet a weak coupling may be a necessary condition for the<br />

UCS AF moments to remain pinned to the AF-<strong>la</strong>ttice rather<br />

than rotate with the F-moments.<br />

Exchange coupling between different AF grains across their<br />

grain boundaries could lead to frustration of the magnetic<br />

orientation over grain-size areas, giving rise to the observed<br />

anti-biasing effect. Further work to address this issue is un<strong>de</strong>r<br />

way.<br />

[1] I. Schmid, et al. Europhys. Lett. 81, 17001 (2008).<br />

[2] C. Tieg et al. Appl. Phys. Lett. 96, 072503, (2010).<br />

[3] N. R. Joshi, et al. Appl. Phys. Lett. 98, 082502 (2011).<br />

[4] P. Kappenberger, I. Schmid & H. Hug., Adv. Eng. Mater. 7, 332<br />

(2005).<br />

[5] I. Schmid, et al. Phys. Rev. Lett. 105, 197201 (2010)<br />

[6] P. J. A. van Schen<strong>de</strong>l, H. J. Hug, B. Stiefel, S. Martin & H.-J.<br />

Güntherodt. J. Appl. Phys. 88, 435 (2000).<br />

[7] P. Kappenberger, et al. Phys. Rev. Lett. 91, 267202 (2003).


SPG Mitteilungen Nr. 37<br />

Last November, the Faculty of Science of the University of<br />

Fribourg awar<strong>de</strong>d the doctor honoris causa to Martin Gutzwiller,<br />

with a threefold motivation: His outstanding contributions<br />

to theoretical physics, his active interest for science<br />

in general and his re<strong>la</strong>tions to Fribourg. Reason enough for<br />

emphasizing the eminent role Gutzwiller p<strong>la</strong>yed during the<br />

<strong>la</strong>st half century, especially in the two still very active research<br />

areas of quantum chaos and corre<strong>la</strong>ted electrons, as<br />

<strong>de</strong>scribed in some <strong>de</strong>tail below. Special thanks to Michael<br />

Berry for his profound analysis of Gutzwiller’s pioneering<br />

work in "quantum chaology".<br />

Martin Gutzwiller was born<br />

1925 in Basel. His father<br />

was an internationally known<br />

professor of <strong>la</strong>w, from 1921<br />

to 1926 at the University of<br />

Fribourg, from 1926 to 1936<br />

at the University of Hei<strong>de</strong>lberg<br />

and then, after having<br />

escaped with his family<br />

from Germany because of<br />

the harassment by the nazis,<br />

again in Fribourg from 1937<br />

to 1956. Martin passed his<br />

first school years in Hei<strong>de</strong>lberg.<br />

Back to Switzer<strong>la</strong>nd,<br />

Martin Gutzwiller ca. 1951/52<br />

he received his further education<br />

in Trogen and at the<br />

Collège Saint Michel in Fribourg, where he passed the final<br />

two years of gymnasium. In 1944 he started studying physics<br />

at the University of Fribourg, but then he enrolled at the<br />

ETH in Zürich, where he received the diploma in 1949. His<br />

diploma work on the magnetic moment of nucleons with<br />

vector-meson coupling, supervised by Wolfgang Pauli, undoubtedly<br />

had a strong impact on his view of physics. 45<br />

years <strong>la</strong>ter, in a letter to Physics Today (August 1994), he<br />

The legacy of Martin Gutzwiller<br />

34<br />

admits having received “a marvelous education in early<br />

field theory”, but at the same time having been frustrated<br />

because the problem posed by Pauli could not be handled<br />

in a satisfactory way. Thus he pleads for coming back to<br />

"down-to-earth physics", instead of "chasing an elusive<br />

goal on the basis of abstract mo<strong>de</strong>ls".<br />

After having received his diploma, Martin Gutzwiller worked<br />

during one year as an engineer in microwave transmission<br />

at Brown Boveri in Ba<strong>de</strong>n. In 1951 he moved to the US,<br />

where he spent most of the time since. At the University<br />

of Kansas he ma<strong>de</strong> his Ph. D. studies un<strong>de</strong>r the guidance<br />

of Max Dres<strong>de</strong>n, on "Quantum Theory of Fields in Curved<br />

Space". From 1953 to 1960 he worked on geophysics in a<br />

<strong>la</strong>boratory of Shell in Houston, Texas. A position at the IBM<br />

Zurich Research Laboratory, then still in Adliswil, brought<br />

him back to Switzer<strong>la</strong>nd for three years, but subsequently<br />

he settled <strong>de</strong>finitely down in New York. He remained a researcher<br />

at IBM, from 1963 to 1970 at the Watson Laboratory<br />

and from 1970 to 1993 in Yorktown Heights. He was at<br />

the same time Adjunct Professor in Metallurgy at the Columbia<br />

University. After his retirement from IBM he became<br />

an Adjunct Professor at the Yale University.<br />

Martin Gutzwiller has published about 40 papers, most of<br />

them alone. He received prestigious prizes, such as the<br />

Dannie Heinemann prize of the American Physical Society<br />

(1993) or the Max-P<strong>la</strong>nck Medal of the German Physical<br />

Society (2003). His international recognition is also well<br />

documented by four issues of Foundations of Physics<br />

(2000/2001), published at the occasion of his 75 th birthday.<br />

It is worth mentioning that his research activities were<br />

broa<strong>de</strong>r than quantum chaos and corre<strong>la</strong>ted electrons, they<br />

inclu<strong>de</strong>d such diverse topics as dislocations in solids, the<br />

quantum Toda <strong>la</strong>ttice and the ephemeri<strong>de</strong>s of the moon.<br />

Dionys Baeriswyl, Uni Fribourg<br />

Martin Gutzwiller and his periodic orbits<br />

Michael Berry, H H Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, UK<br />

In the 1970s, physicists were ma<strong>de</strong> aware, <strong>la</strong>rgely through<br />

the efforts of the <strong>la</strong>te Joseph Ford, that c<strong>la</strong>ssical hamiltonian<br />

mechanics was enjoying a quiet revolution. The traditional<br />

emphasis had been on exactly solvable mo<strong>de</strong>ls, with<br />

as many conserved quantities as <strong>de</strong>grees of freedom, in<br />

which the motion was integrable and predictable. Examples<br />

are the Kepler ellipses of p<strong>la</strong>netary motion, and the simple<br />

pendulum: 'as regu<strong>la</strong>r as clockwork'. The new research,<br />

incorporating Russian analytical mechanics and computer<br />

simu<strong>la</strong>tions inspired by statistical mechanics, revealed that<br />

most (technically, 'almost all') dynamical systems behave<br />

very differently. There are few conserved quantities, and<br />

motion, in part or all of the phase space, is nonseparable<br />

and unpredictable, that is, unstable: initially neighbouring<br />

orbits diverge exponentially. This is c<strong>la</strong>ssical chaos.<br />

It was quickly realised that this c<strong>la</strong>ssical behaviour must<br />

have implications for quantum physics, especially semic<strong>la</strong>ssical<br />

physics, e.g. for the arrangement of high-lying<br />

energy levels and the morphology of eigenfunctions. The<br />

study of these implications became what is now called<br />

quantum chaos (though I prefer the term quantum chaology).<br />

This is an area of research in which Martin Gutzwiller<br />

ma<strong>de</strong> a seminal contribution, <strong>de</strong>scribed in the following,<br />

which I have adapted from a speech honouring his 70th<br />

birthday. Since a substantial part of my own scientific life<br />

has been <strong>de</strong>voted to the <strong>de</strong>velopment and application to<br />

Martin's i<strong>de</strong>as, I won’t attempt to be <strong>de</strong>tached.<br />

Martin published the <strong>la</strong>st of his series of four papers [1-4]<br />

on periodic orbits exactly forty years ago. I encountered<br />

them at that time, while Kate Mount and I were writing our<br />

review of semic<strong>la</strong>ssical mechanics. That was prehistoric<br />

semic<strong>la</strong>ssical mechanics: before catastrophe theory <strong>de</strong>mystified<br />

caustics, before asymptotics beyond all or<strong>de</strong>rs<br />

lifted divergent series to new levels of precision, and above<br />

all before we knew about c<strong>la</strong>ssical chaos.


Of Martin's series of papers, the most influential was the<br />

<strong>la</strong>st one [4], containing the celebrated 'Gutzwiller trace formu<strong>la</strong>'.<br />

That was a tricky calcu<strong>la</strong>tion, based on the Van Vleck<br />

formu<strong>la</strong> for the semic<strong>la</strong>ssical propagator, giving the <strong>de</strong>nsity<br />

of quantum states (actually the trace of the resolvent operator)<br />

as a sum over c<strong>la</strong>ssical periodic orbits. In particu<strong>la</strong>r,<br />

Martin calcu<strong>la</strong>ted the contribution from an individual unstable<br />

periodic orbit. Nowadays we can see this as one of the<br />

'atomic concepts' of quantum chaology, but in those days<br />

chaos was not appreciated. But he emphasized the essential<br />

novelty of his calcu<strong>la</strong>tion in a simi<strong>la</strong>r way: it applies even<br />

when the c<strong>la</strong>ssical dynamics is nonseparable. I'm rather<br />

proud of what we wrote at the beginning of 1972, as the<br />

<strong>la</strong>st sentence of our review:<br />

"Finally, the difficulties raised by Gutzwiller's (1971) theory<br />

of quantization, which is perhaps the most exciting recent<br />

<strong>de</strong>velopment in semic<strong>la</strong>ssical mechanics, should be studied<br />

<strong>de</strong>eply in or<strong>de</strong>r to provi<strong>de</strong> insight into the properties of<br />

quantum states in those systems, previously almost intractable,<br />

where no separation of variables is possible."<br />

The trace formu<strong>la</strong> could be approximated by taking just one<br />

periodic orbit and its repetitions. This led to an approximate<br />

'quantization formu<strong>la</strong>' that gave good results when<br />

applied to the lowest states of an electron in a semiconductor,<br />

whose mass <strong>de</strong>pen<strong>de</strong>d on direction. I am referring<br />

to the birth of Martin's treatment of the anisotropic Kepler<br />

problem [5].<br />

For a few years, his calcu<strong>la</strong>tion was wi<strong>de</strong>ly misinterpreted<br />

(among the ignorant it is misinterpreted even today) as implying<br />

a re<strong>la</strong>tion between the individual energy levels and<br />

individual periodic orbits of chaotic systems. One might<br />

call this the 'De Broglie interpretation' of the trace formu<strong>la</strong>:<br />

that there is a level at each energy for which the action of<br />

a periodic orbit is a multiple of P<strong>la</strong>nck. This is nonsense:<br />

the simplest calcu<strong>la</strong>tion shows that the number of levels is<br />

hopelessly overestimated – in a billiard, for example, there<br />

is an 'infra-red catastrophe', that is, the prediction of levels<br />

at arbitrarily low energies.<br />

Martin's papers quickly inspired others. In 1974, Jacques<br />

Chazarain showed that the trace formu<strong>la</strong> could be operated<br />

'in reverse', so that a sum over energy levels generated a<br />

function whose singu<strong>la</strong>rities were the actions of periodic<br />

orbits. This was exact, not semic<strong>la</strong>ssical, and led (often<br />

unacknowledged) to what <strong>la</strong>ter came to be called 'inverse<br />

quantum chaology' and 'quantum recurrence spectroscopy'.<br />

In 1975 Michael Tabor and I generalized some of the<br />

results in the first of Martin's semic<strong>la</strong>ssical papers [1] to<br />

get the general trace formu<strong>la</strong> for integrable systems, where<br />

the periodic orbits are not iso<strong>la</strong>ted but fill tori. In nuclear<br />

physics, simi<strong>la</strong>r formu<strong>la</strong>s had been obtained by Strutinsky<br />

in the context of the shell mo<strong>de</strong>l. Tabor and I used our result<br />

to show that the level statistics in integrable systems are<br />

Poissonian - more about that <strong>la</strong>ter. William Miller and André<br />

Voros resolved a puzzle about the application of the trace<br />

formu<strong>la</strong> for a stable orbit: by properly quantizing transverse<br />

to the orbit, they restored the missing quantum numbers;<br />

then Martin's single-orbit quantization rule makes sense,<br />

as the 'thin-torus' limit of Bohr-Sommerfeld quantization.<br />

Probably Martin didn't realize that his formu<strong>la</strong> was so<br />

fashionable at that time that it induced a certain hysteria.<br />

Michael Tabor and I were quietly finishing the work I just<br />

35<br />

Communications <strong>de</strong> <strong>la</strong> SSP No. 37<br />

<strong>de</strong>scribed when we learned that William Miller wanted to<br />

visit us in Bristol, to talk about his new work on periodic<br />

orbits. We convinced ourselves that this must be the same<br />

as ours, and <strong>la</strong>boured day and night (up a <strong>la</strong>d<strong>de</strong>r, actually,<br />

because Michael was helping me paint my new house) to<br />

get our paper written and submitted before he arrived. We<br />

were foolish to panic, because William's work was completely<br />

different.<br />

An awkward feature of stable orbits, recognized clearly by<br />

Martin in those early days, was that focusing occurs along<br />

them, leading for certain repetition numbers and stability indices<br />

to divergences of the contributions he calcu<strong>la</strong>ted, associated<br />

with bifurcations. That awkwardness was removed<br />

in 1985 by Alfredo Ozorio <strong>de</strong> Almeida and John Hannay,<br />

who applied i<strong>de</strong>as from catastrophe theory that had come<br />

into semic<strong>la</strong>ssical mechanics in the 1970s. Their <strong>de</strong>velopment<br />

of Martin's formu<strong>la</strong> became popu<strong>la</strong>r much <strong>la</strong>ter, when<br />

the features they predicted could be <strong>de</strong>tected numerically.<br />

In the early 1970s, Ian Percival ma<strong>de</strong> us aware of the<br />

amazing <strong>de</strong>velopments in c<strong>la</strong>ssical mechanics by Arnold<br />

and Sinai, before chaos became popu<strong>la</strong>r. Percival insisted<br />

that semic<strong>la</strong>ssical mechanics must take account of chaos.<br />

Later, we learned more about chaos from Joseph Ford. Of<br />

course Martin had paved the way with his trace formu<strong>la</strong> for<br />

unstable orbits.<br />

A persistent question was whether the formu<strong>la</strong> could generate<br />

asymptotically high levels for a chaotic system. My<br />

opinions fluctuated. In 1976 I thought it could not, arguing<br />

that long orbits - required to generate the high levels - were<br />

so unstable that the Van Vleck propagator would not be<br />

valid for them. Instead, I thought (using i<strong>de</strong>as <strong>de</strong>veloped by<br />

Balian and Bloch) that periodic orbits could at best <strong>de</strong>scribe<br />

spectra smoothed on scales that were <strong>la</strong>rge compared with<br />

the mean spacing – but still c<strong>la</strong>ssically small, so that some<br />

<strong>de</strong>tail beyond the Weyl rule was accessible, though still not<br />

individual levels. This question is still not settled <strong>de</strong>finitively,<br />

but my pessimistic opinion was changed by two <strong>de</strong>velopments.<br />

The first was energy level statistics. In the 1970s, following<br />

a suggestion from Ba<strong>la</strong>zs Gyorffy, I imported from nuclear<br />

physics the i<strong>de</strong>a that random matrices could be relevant in<br />

the quantum mechanics of chaos. The first application of<br />

this suggestion was not to chaotic systems at all, but to integrable<br />

systems, where it was shown – as I just mentioned<br />

– that the levels are not distributed according to randommatrix<br />

theory. That work inspired Al<strong>la</strong>n Kaufman and Steven<br />

McDonald to the first calcu<strong>la</strong>tion of level spacings for a<br />

chaotic system: the stadium. Then I did the same for Sinai's<br />

billiard. In those days we were fixated on the spacings distribution.<br />

My way of <strong>de</strong>riving level repulsion was a generalization<br />

of Wigner's: through the codimension of <strong>de</strong>generacies.<br />

This gave the same result as random-matrix theory for<br />

small spacings, and exp<strong>la</strong>ined the differences between the<br />

different ensembles, but gave no clue as to why randommatrix<br />

theory worked for all spacings, and why it was connected<br />

with c<strong>la</strong>ssical chaos.<br />

Then came Oriol Bohigas and Marie-Joya Giannoni and<br />

Charles Schmit. What they did, in the early 1980s, was<br />

simple but very important. They repeated the calcu<strong>la</strong>tions<br />

that Kaufman and McDonald and I had done, for the same


SPG Mitteilungen Nr. 37<br />

systems and using the same numerical methods, but instead<br />

of focusing on the one statistic of the level spacing<br />

they appreciated that the random-matrix analogy is much<br />

broa<strong>de</strong>r: it predicts all the spectral statistics, in particu<strong>la</strong>r<br />

long-range ones. They calcu<strong>la</strong>ted one of these: the spectral<br />

rigidity (equivalent to the number variance).<br />

Their observation was enormously influential. In particu<strong>la</strong>r,<br />

it was central to my construction in 1985 of the beginnings<br />

of the semic<strong>la</strong>ssical theory of spectral statistics from Martin's<br />

atoms: the periodic orbits. Another crucial ingredient in<br />

this was also a <strong>de</strong>velopment of periodic-orbit theory: the inspired<br />

realization by John Hannay and Alfredo Ozorio <strong>de</strong> Almeida<br />

that the Gutzwiller contributions of long orbits obey<br />

a sum rule whose origin is c<strong>la</strong>ssical and whose structure is<br />

universal - that is, in<strong>de</strong>pen<strong>de</strong>nt of <strong>de</strong>tails. Pure mathematicians<br />

(Margulis, Parry, Pollicott) had found simi<strong>la</strong>r rules -<br />

more general in that they applied to dissipative as well as<br />

hamiltonian systems, but also more restricted in that Hannay<br />

and Ozorio's theory applied also to integrable systems<br />

(where Tabor and I had found their particu<strong>la</strong>r result in 1977<br />

but failed to appreciate its general significance). Thus periodic<br />

orbits were able to reproduce key formu<strong>la</strong>s from random-matrix<br />

theory, and random-matrix universality found a<br />

natural exp<strong>la</strong>nation as the inheritance by quantum mechanics<br />

of the c<strong>la</strong>ssical universality of long orbits. There was<br />

more: the periodic orbit theory of spectral statistics showed<br />

clearly and simply why and how random-matrix theory must<br />

break down for corre<strong>la</strong>tions involving sufficiently many levels.<br />

There were misty mathematical aspects – now being<br />

c<strong>la</strong>rified – of those arguments, but the formu<strong>la</strong>s were not<br />

misty, and were the first step in convincing me that long<br />

orbits in Martin's trace formu<strong>la</strong> were meaningful.<br />

The second step sprang from the realization - increasingly<br />

urgent in the early 1980s - that the series of periodic orbits<br />

in the trace formu<strong>la</strong> does not converge. The cause was realized<br />

by Martin in 1971 [4]:<br />

"Even more serious is the fact that there is usually more<br />

than a countable number of orbits in a mechanical system,<br />

whereas the bound states of a Hamiltonian are countable."<br />

The failure of the trace formu<strong>la</strong> to converge was emphasized<br />

especially by André Voros, who pointed out that<br />

Quantum spectral <strong>de</strong>terminant (zeta function) for a particle confined<br />

between branches of a hyperbo<strong>la</strong>, calcu<strong>la</strong>ted exactly (dashed<br />

curve) and from a renormalized version [9,10] of Gutzwiller's<br />

sum over the unstable c<strong>la</strong>ssical periodic orbits (full curve); the<br />

energy levels are the zeros, indicated by stars. Reproduced from<br />

[10], with permission.<br />

36<br />

this <strong>de</strong>fect is shared by the formally exact counterpart of<br />

the formu<strong>la</strong> for billiards with constant negative curvature,<br />

namely the Selberg trace formu<strong>la</strong>. And <strong>la</strong>ter Frank Steiner<br />

taught us that trace formu<strong>la</strong>s can sometimes converge conditionally,<br />

in ways <strong>de</strong>pending <strong>de</strong>licately on the topology of<br />

the orbits (expressed as Maslov phases). Eventually these<br />

concerns about convergence led naturally to the study of<br />

zeta functions. The i<strong>de</strong>a there is to find a function where the<br />

energy levels are zeros, rather than steps or spikes as in the<br />

<strong>de</strong>nsity of states. The grandparent of all these objects is<br />

Riemann's zeta function of number theory. I learned its possible<br />

relevance to quantum chaology from Oriol Bohigas,<br />

and also from Martin's semic<strong>la</strong>ssical interpretation of the<br />

Fad<strong>de</strong>ev-Pavlov scattering billiard, where Riemann's zeta<br />

function gives the phase shifts [6, 7]. It is amazing that Martin<br />

had already realized the connection with zeta functions<br />

in his 1971 paper. He wrote:<br />

"This response function is remarkably simi<strong>la</strong>r to the socalled<br />

zeta functions which mathematicians have invented<br />

in or<strong>de</strong>r to survey and c<strong>la</strong>ssify the periodic orbits of abstract<br />

mechanical systems."<br />

(He cited Smale). And in 1982 Martin explicitly wrote a<br />

semic<strong>la</strong>ssical zeta function of the kind we consi<strong>de</strong>r today,<br />

and used it in conjunction with some tricks from statistical<br />

mechanics to sum the periodic orbits for the anisotropic<br />

Kepler system [7, 8].<br />

A crucial ingredient turned out to be the Riemann-Siegel<br />

formu<strong>la</strong>, that makes the sum over integers for the Riemann<br />

zeta function converge. I realized this in 1986, and <strong>la</strong>ter <strong>de</strong>veloped<br />

the i<strong>de</strong>a with Jon Keating [9]; we were helped by<br />

André Voros's precise <strong>de</strong>finitions of the regu<strong>la</strong>rized products<br />

in these zeta functions. The result was an adaptation<br />

of the trace formu<strong>la</strong> to give a convergent sum over periodic<br />

orbits, soon employed to good effect by Keating and Martin<br />

Sieber [10] (see the figure). A re<strong>la</strong>ted i<strong>de</strong>a was the invention<br />

of cycle expansions by Predrag Cvitanovic and Bruno Eckhardt;<br />

in these, essential use is ma<strong>de</strong> of symbolic dynamics<br />

to speed the convergence of the sum over orbits. This<br />

application of coding to semic<strong>la</strong>ssical mechanics was also<br />

originally Martin's i<strong>de</strong>a: he used it in the 1970s and early<br />

1980s to c<strong>la</strong>ssify and then estimate the sum over the orbits,<br />

again for the anisotropic Kepler problem [7, 8].<br />

The two applications of Martin's periodic-orbit i<strong>de</strong>as that I<br />

have just <strong>de</strong>scribed, to spectral statistics and to zeta functions,<br />

were combined by Eugene Bogomolny and Jonathan<br />

Keating. This <strong>de</strong>velopment, and more recent insights from<br />

Martin Sieber, Fritz Haake and Sebastian Müller, are taking<br />

the <strong>de</strong>rivation of random-matrix formu<strong>la</strong>s from quantum<br />

chaology to new levels of sophistication and refinement.<br />

In the mid-1980s, Eric Heller discovered that for some<br />

chaotic systems the wavefunctions of individual states are<br />

scarred by individual short periodic orbits, in ways that <strong>de</strong>pend<br />

on how unstable these are. From this came further<br />

extensions of Martin's i<strong>de</strong>as, to new sorts of spectral series<br />

of periodic orbits, not involving traces, and for Wigner functions<br />

as well as wavefunctions.<br />

In spite of all this progress, we are still unable to answer <strong>de</strong>finitively<br />

and rigorously the central question Martin posed in<br />

1971 [4]:<br />

"What is the re<strong>la</strong>tion between the periodic orbits in the c<strong>la</strong>s-


sical system and the energy levels of the corresponding<br />

quantum system?"<br />

Of course the trace formu<strong>la</strong> itself is one such re<strong>la</strong>tion, but I<br />

am sure that what Martin meant is: how can periodic orbits<br />

be used for effective calcu<strong>la</strong>tions of individual levels. For<br />

the lowest levels there is no problem, but – and again I<br />

quote from Martin’s 1971 paper -<br />

"the semic<strong>la</strong>ssical approach to quantum mechanics is supposed<br />

to be better the <strong>la</strong>rger the quantum number"<br />

and to reproduce the spectrum for high levels, using even<br />

the convergent versions of the trace formu<strong>la</strong> that are now<br />

avai<strong>la</strong>ble, requires an exponentially <strong>la</strong>rge number of periodic<br />

orbits. This is a gross <strong>de</strong>gree of redundancy unacceptable<br />

to anybody who appreciates the spectacu<strong>la</strong>r power<br />

of asymptotics elsewhere. Martin's old i<strong>de</strong>as continue to<br />

challenge us.<br />

A few years ago, I refereed an application for research funding<br />

for a German-British col<strong>la</strong>boration. This required me to<br />

comment on the applicants' "timetable for research" and<br />

their "list of <strong>de</strong>liverables". I wrote "In science there are no<br />

<strong>de</strong>liverables; researches are not potatoes". Martin Gutzwiller<br />

ignored these toxic fashions. What makes him so attractive<br />

as a scientist is that he refuses to follow any fashion;<br />

instead, he generates i<strong>de</strong>as that become the fashion.<br />

References<br />

[1] Gutzwiller, M. C.,1967, The Phase Integral Approximation in<br />

Momentum Space and the Bound States of an Atom J. Math.<br />

Phys. 8, 1979-2000<br />

[2] Gutzwiller, M. C.,1969, The Phase Integral Approximation in<br />

Momentum Space and the Bound States of an Atom II J. Math.<br />

Phys. 10, 1004-1020<br />

[3] Gutzwiller, M. C.,1970, The Energy Spectrum According to<br />

C<strong>la</strong>ssical Mechanics J. Math. Phys. 11, 1791-1806<br />

[4] Gutzwiller, M. C.,1971, Periodic orbits and c<strong>la</strong>ssical quantization<br />

conditions J. Math. Phys. 12, 343-358<br />

[5] Gutzwiller, M. C.,1973, The Anistropic Kepler Problem in Two<br />

Dimensions J. Math. Phys. 14, 139-152<br />

[6] Gutzwiller, M. C.,1983, Stochastic behavior in quantum scattering<br />

Physica D 7, 341-355<br />

Martin Gutzwiller and his wave function<br />

37<br />

Communications <strong>de</strong> <strong>la</strong> SSP No. 37<br />

[7] Gutzwiller, M. C.,1982, The Quantization of a C<strong>la</strong>ssically Ergodic<br />

System Physica D 5, 183-207<br />

[8] Gutzwiller, M. C.,1977, Bernoulli Sequences and Trajectories in<br />

the Anisotropic Kepler Problem J. Math. Phys. 18, 806-823<br />

[9] Berry, M. V. & Keating, J. P.,1992, A new approximation for<br />

zeta(1/2 +it) and quantum spectral <strong>de</strong>terminants Proc. Roy. Soc.<br />

Lond. A437, 151-173<br />

[10] Keating, J. P. & Sieber, M.,1994, Calcu<strong>la</strong>tion of spectral <strong>de</strong>terminants<br />

Proc. Roy. Soc. Lond. A447, 413-437<br />

Dionys Baeriswyl, Département <strong>de</strong> physique, Université <strong>de</strong> Fribourg, 1700 Fribourg<br />

Werner Weber, Fakultät Physik, Universität Dortmund, DE-44221 Dortmund<br />

Gutzwiller's work on corre<strong>la</strong>ted electrons is mostly concentrated<br />

in three papers, written in the time span 1962<br />

to 1964 [1, 2, 3]. A short fourth paper was published a few<br />

years <strong>la</strong>ter [4]. In essence, Gutzwiller introduced a variational<br />

ansatz, where charge fluctuations are reduced as compared<br />

to Hartree-Fock theory, thus quantifying Van Vleck's<br />

qualitative i<strong>de</strong>a of minimum po<strong>la</strong>rity [5].<br />

Historically, electronic corre<strong>la</strong>tions were first studied for the<br />

homogeneous electron gas, much less for electrons in narrow<br />

bands such as d-electrons in transition metals. A noticeable<br />

exception was An<strong>de</strong>rson's paper on the kinetic origin<br />

of antiferromagnetism in transition metal compounds,<br />

where a localized basis of Wannier functions was used [6].<br />

In the same spirit, Gutzwiller wrote down the Hamiltonian<br />

After graduating from<br />

Exeter and St Andrews,<br />

Michael Berry entered<br />

Bristol University, where<br />

he has been for consi<strong>de</strong>rably<br />

longer than he has<br />

not. He is a physicist, focusing<br />

on the physics of<br />

the mathematics…of the<br />

physics. Applications inclu<strong>de</strong><br />

the geometry of<br />

singu<strong>la</strong>rities (caustics on<br />

<strong>la</strong>rge scales, vortices on<br />

fine scales) in optics and<br />

other waves, the connection<br />

between c<strong>la</strong>ssical and quantum physics, and the<br />

physical asymptotics of divergent series. He <strong>de</strong>lights<br />

in finding the arcane in the mundane – abstract and<br />

subtle concepts in familiar or dramatic phenomena:<br />

- Singu<strong>la</strong>rities of smooth gradient maps in rainbows<br />

and tsunamis;<br />

- The Lap<strong>la</strong>ce operator in oriental magic mirrors;<br />

- Elliptic integrals in the po<strong>la</strong>rization pattern of the<br />

clear blue sky;<br />

- Geometry of twists and turns in quantum indistinguishability;<br />

- Matrix <strong>de</strong>generacies in overhead-projector transparencies;<br />

- Gauss sums in the light beyond a humble diffraction<br />

grating.<br />

/ /<br />

@ @<br />

H =- t ( c ivc<br />

jv + c jvc iv) + U n i - n i . ( 1)<br />

i, j<br />

where the first term <strong>de</strong>scribes electron hopping between<br />

@<br />

the neighboring sites of a <strong>la</strong>ttice (c iv<br />

and c iv are, respectively,<br />

creation and annihi<strong>la</strong>tion operators for electrons at<br />

site i with spin s) and the second term is the interaction,<br />

which acts only if two electrons meet on the same site<br />

(n i = c i c i<br />

@<br />

v v v). Quantum chemists had previously used a<br />

simi<strong>la</strong>r mo<strong>de</strong>l for p-electrons in conjugated polymers, but<br />

they had inclu<strong>de</strong>d the long-range part of the Coulomb interaction.<br />

Curiously, shortly after Gutzwiller's first paper on the<br />

subject, two publications appeared where the same Hamiltonian<br />

(1) is treated, but without reference to Gutzwiller's<br />

work, one by Hubbard [7], the other by Kanamori [8]. One<br />

i


SPG Mitteilungen Nr. 37<br />

has to conclu<strong>de</strong> that the three papers [1, 7, 8] were written<br />

completely in<strong>de</strong>pen<strong>de</strong>ntly and that the Hamiltonien (1), now<br />

universally referred to as Hubbard mo<strong>de</strong>l, was in the air,<br />

especially for investigating the problem of corre<strong>la</strong>ted electrons<br />

in transition metals.<br />

In contrast to Gutzwiller, who did not care too much about<br />

the justification of the mo<strong>de</strong>l, Hubbard estimated the different<br />

Coulomb matrix elements between localized d wave<br />

functions, and he also exp<strong>la</strong>ined how in transition metals<br />

with partly filled 3d shells and a partly filled 4s shell the selectrons<br />

can effectively screen the Coulomb interactions<br />

between d-electrons. The fact, pointed out by Gutzwiller<br />

[3], that the three authors, himself, Hubbard and Kanamori,<br />

obtained qualitatively different results, shows that, <strong>de</strong>spite<br />

of its formal simplicity, the mo<strong>de</strong>l was – and still is – very<br />

challenging.<br />

Gutzwiller's main contributions to the field of corre<strong>la</strong>ted<br />

electrons are his ansatz for the ground state of the Hubbard<br />

mo<strong>de</strong>l and his ingenious way of handling this wave function.<br />

He starts from the ground state W 0 of the hopping term,<br />

the filled Fermi sea. This would just yield the Hartree-Fock<br />

approximation, which treats neutral and "po<strong>la</strong>r" configurations<br />

on the same footing. Thus he adds a projector term,<br />

now called corre<strong>la</strong>tor, that reduces charge fluctuations. His<br />

ansatz reads<br />

%<br />

W = 61 - ^1 - hhn<br />

i - n i . @ W0<br />

( 2)<br />

or, written in a different way,<br />

i<br />

gD<br />

W = e W0<br />

( 3)<br />

- t<br />

where Dt = / n i - n i . is the number of doubly occupied sites<br />

i<br />

and g is re<strong>la</strong>ted to Gutzwiller’s parameter � by � = e -g .<br />

The problem of evaluating the ground state energy<br />

E6W@<br />

=<br />

W Ht<br />

W<br />

W W<br />

( 4)<br />

for this trial state still represents a formidable task. Exact<br />

results were only obtained in one dimension [9, 10]. For other<br />

dimensions, Variational Monte Carlo (VMC), pioneered<br />

for the Gutzwiller ansatz by Horsch and Kap<strong>la</strong>n [11], has<br />

been wi<strong>de</strong>ly used in recent years [12].<br />

Gutzwiller himself proposed an approximate way of evaluating<br />

Eq. (4) [3]. His procedure, known as "Gutzwiller approximation",<br />

involves two steps [13]. In a first step, the<br />

expectation value is factorized with respect to spin. In a<br />

second step, the remaining expectation values are assumed<br />

to be configuration-in<strong>de</strong>pen<strong>de</strong>nt. This leads to a<br />

purely combinatorial problem. In the limit of infinite dimensions,<br />

the Gutzwiller approximation represents the exact<br />

solution for the Gutzwiller ansatz, as shown by Metzner and<br />

Vollhardt [14, 10]. This interesting result marked the beginning<br />

of a new era in the theory of corre<strong>la</strong>ted electrons, that<br />

of the Dynamical Mean-Field Theory [15].<br />

The result of the Gutzwiller approximation can be represented<br />

in terms of a renormalized hopping, t " gt. For U " ∞,<br />

38<br />

g <strong>de</strong>pends on the electron <strong>de</strong>nsity n as g = (1 - n)/(1 - n/2).<br />

Therefore, when approaching half filling (n " 1), the electron<br />

motion is completely suppressed, and the system is<br />

a Mott insu<strong>la</strong>tor. Brinkman and Rice noticed that within the<br />

Gutzwiller approximation the jamming of electrons (for n =<br />

1) occurs at a <strong>la</strong>rge but finite value of U and is signaled by<br />

the vanishing of double occupancy [16]. They associated<br />

the critical point with the Mott metal-insu<strong>la</strong>tor transition.<br />

However, a closer scrutiny shows that this conclusion is<br />

an artifact of the Gutzwiller approximation. In<strong>de</strong>ed, for an<br />

exact treatment of the Gutzwiller ansatz (and finite <strong>la</strong>ttice<br />

dimensions) double occupancy remains finite for all finite<br />

values of U. Moreover, the Gutzwiller ansatz itself is of limited<br />

validity for <strong>la</strong>rge values of U, as seen clearly by comparing<br />

it with the exact solution in one dimension.<br />

Nevertheless, a Mott transition does occur for the Hubbard<br />

mo<strong>de</strong>l, but in the sense of a topological transition from a<br />

phase with finite Dru<strong>de</strong> weight for small values of U to one<br />

with vanishing Dru<strong>de</strong> weight at <strong>la</strong>rge U, in agreement with<br />

Kohn’s distinction between metals and insu<strong>la</strong>tors [17]. To<br />

show this in a variational framework 1 , we have used a pair<br />

of trial ground states [18], the Gutzwiller wave function W<br />

together with the "inverted" ansatz<br />

-hTt<br />

Wl = e W3<br />

( 5)<br />

where Tt @ @<br />

= / ( c ivc<br />

jv + c jvc jv)<br />

is the hopping operator, W3<br />

i, j<br />

is the ground state for U " ∞ and h is a variational param-<br />

eter. One readily shows that W has a finite Dru<strong>de</strong> weight<br />

and lower energy for small U, while the Dru<strong>de</strong> weight vanishes<br />

for Wl , which is preferred for <strong>la</strong>rge U. A metal-insu<strong>la</strong>tor<br />

transition occurs for a value of U of the or<strong>de</strong>r of the<br />

band width, in good agreement with Quantum Monte Carlo<br />

results.<br />

So far, we have assumed the Gutzwiller ansatz to be "adiabatically"<br />

linked to the filled Fermi sea W 0 , which is the<br />

main reason for the metallic character of W . However, if<br />

we allow for a broken symmetry within W 0 , we may find a<br />

competing ground state with qualitatively different properties.<br />

For instance, allowing for different magnetic moments<br />

on the two sub<strong>la</strong>ttices of a bi-partite <strong>la</strong>ttice, one can obtain<br />

an antiferromagnetic insu<strong>la</strong>tor already below the Mott transition,<br />

i.e., before electrons are essentially localized. This is<br />

in<strong>de</strong>ed found for the square <strong>la</strong>ttice (n = 1), where the Mott<br />

transition is rep<strong>la</strong>ced by a smooth crossover from a band<br />

(or "S<strong>la</strong>ter" [19]) insu<strong>la</strong>tor with small alternating magnetic<br />

moments at small U to a (Heisenberg) antiferromagnetic<br />

insu<strong>la</strong>tor with fully <strong>de</strong>veloped local moments at <strong>la</strong>rge U.<br />

Interestingly, this is not the case for the honeycomb <strong>la</strong>ttice,<br />

where antiferromagnetism sets in essentially together<br />

with the Mott transition [20], although the <strong>de</strong>tailed behavior<br />

close to the transition appears to be more complicated –<br />

and quite intriguing [21].<br />

As a second example of a broken symmetry we mention<br />

bond alternation in conjugated polymers, or, more precisely,<br />

the fate of the Peierls instability in the presence of Coulomb<br />

interaction. Eric Jeckelmann, during his Ph.D. thesis,<br />

1 From this point on, we will concentrate mostly on our own work, with<br />

apologies to other authors.


studied the one-dimensional Peierls-Hubbard mo<strong>de</strong>l where<br />

the bond length <strong>de</strong>pen<strong>de</strong>nce of the hopping amplitu<strong>de</strong> t<br />

provi<strong>de</strong>s a coupling between the electrons and the <strong>la</strong>ttice<br />

[22]. He used the Gutzwiller ansatz but ad<strong>de</strong>d both the<br />

electronic gap and the <strong>la</strong>ttice dimerization as variational<br />

parameters. The result for the dimerization D, as a function<br />

of U and for fixed electron-<strong>la</strong>ttice couplings �, is shown in<br />

Fig. 1. In contrast to Unrestricted Hartree-Fock, where the<br />

Peierls insu<strong>la</strong>tor is rapidly rep<strong>la</strong>ced by a spin-<strong>de</strong>nsity wave<br />

(a S<strong>la</strong>ter insu<strong>la</strong>tor), the dimerization is found to remain finite<br />

for all values of U. It even increases initially, as discovered<br />

long before this work [23], and exhibits a maximum for U<br />

≈ 4t, where a crossover to spin-Peierls behavior occurs.<br />

These variational results are in good agreement with subsequent<br />

calcu<strong>la</strong>tions using the Density Matrix Renormalization<br />

Group.<br />

Δ / ( 2 t )<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

0<br />

2<br />

U / t<br />

Figure 1: Dimerization in the Hubbard-Peierls mo<strong>de</strong>l. Circles:<br />

VMC, full lines: analytical small U expansion, broken lines: Unrestricted<br />

Hartree-Fock.<br />

As a third example we discuss results of the Ph. D. thesis of<br />

David Eichenberger [24], who studied the Hubbard mo<strong>de</strong>l<br />

on a square <strong>la</strong>ttice, using the modified Gutzwiller ansatz<br />

t t<br />

hT gD<br />

W = e e W0<br />

( 6)<br />

- -<br />

The additional factor e hT - t<br />

leads to a substantial improvement<br />

of the ground state energy and provi<strong>de</strong>s a kinetic exchange.<br />

We were particu<strong>la</strong>rly interested in the possibility<br />

of a superconducting ground state with d-wave symmetry,<br />

taken into account in the reference state W 0 . Fig. 2 shows<br />

the VMC result for the superconducting or<strong>de</strong>r parameter<br />

for the Hubbard mo<strong>de</strong>l on an 8×8 square <strong>la</strong>ttice with both<br />

nearest (t) and next-nearest neighbor hoppings (t') and a<br />

realistic Hubbard parameter U = 8t. Our results agree very<br />

well with other studies using completely different methods.<br />

We turn now to the problem of itinerant ferromagnetism,<br />

which has been the main motivation for Gutzwiller (and<br />

for Hubbard and Kanamori as well) to study the Hamiltonian<br />

(1). The most simple trial state is the ground state of<br />

an effective single-particle mo<strong>de</strong>l where the bands for up<br />

and down spins are shifted re<strong>la</strong>tive to each other. The "exchange<br />

splitting" is then <strong>de</strong>termined by minimizing the total<br />

energy. This leads to the Stoner criterion, according to<br />

4<br />

λ = 0.2<br />

λ = 0.1<br />

6<br />

8<br />

39<br />

Communications <strong>de</strong> <strong>la</strong> SSP No. 37<br />

Figure 2: Superconducting or<strong>de</strong>r parameter as a function of doping<br />

for the Hubbard mo<strong>de</strong>l on the square <strong>la</strong>ttice.<br />

which ferromagnetism occurs if U�(e F ) > 1, where �(e F ) is the<br />

<strong>de</strong>nsity of states per spin at the Fermi energy. Already in<br />

1953 Van Vleck argued that the Stoner theory could not be<br />

the whole story, but that electronic corre<strong>la</strong>tions had to be<br />

taken into account. Gutzwiller’s scheme is well suited for<br />

doing that. The results obtained in this way still leave space<br />

for ferromagnetism, but the stability region in parameter<br />

space is strongly reduced as compared to that of Stoner’s<br />

theory [25]. In fact, the necessary U values are so <strong>la</strong>rge that<br />

one has to conclu<strong>de</strong> that the single-orbital Hubbard mo<strong>de</strong>l<br />

is not a<strong>de</strong>quate for <strong>de</strong>scribing the ferromagnetism of transition<br />

metals.<br />

There is another more fundamental reason why the singleband<br />

Hubbard mo<strong>de</strong>l cannot be taken too seriously for<br />

<strong>de</strong>scribing transition metals. These materials are characterized<br />

by narrow partly filled 3d-bands located within a<br />

broad s-band and over<strong>la</strong>pping with even broa<strong>de</strong>r p bands,<br />

and therefore it is far from obvious how a one-band mo<strong>de</strong>l<br />

should be able to <strong>de</strong>scribe their magnetic properties. This<br />

problem must have been clear to Gutzwiller, who used the<br />

smart title "Corre<strong>la</strong>tion of Electrons in a Narrow s Band" for<br />

one of his papers [3]. Notwithstanding this loophole, a realistic<br />

mo<strong>de</strong>l should add uncorre<strong>la</strong>ted electrons representing<br />

the s-band to the corre<strong>la</strong>ted electrons of the d-band. The<br />

Periodic An<strong>de</strong>rson Mo<strong>de</strong>l is a first step in this direction, it<br />

admits two orbitals at each site, one of which is localized<br />

and corre<strong>la</strong>ted through an on-site interaction, the other is<br />

<strong>de</strong>localized and uncorre<strong>la</strong>ted. The two bands are hybridized.<br />

Using a generalized Gutzwiller ansatz together with a<br />

corresponding Gutzwiller approximation, one finds not only<br />

the usual renormalization of the corre<strong>la</strong>ted band by a factor<br />

g, but also a renormalization of the hybridization by √g [26,<br />

27].<br />

The next step is to treat two or more corre<strong>la</strong>ted orbitals at<br />

a site. Here, Jörg Bünemann in his Ph.D. thesis has contributed<br />

a great <strong>de</strong>al to generalize the Gutzwiller formalism<br />

[28]. The generalization leads to an enormous expansion of<br />

the Gutzwiller wave function, as many additional corre<strong>la</strong>tors<br />

have to be introduced. The relevant local multi-electron<br />

configurations can be represented by the eigenstates of an<br />

atomic Hamiltonian, which reproduces the atomic multiplet<br />

spectrum of the partly filled 3d shell. This extension also


SPG Mitteilungen Nr. 37<br />

leads to a rapid increase of the number of variational parameters<br />

in the Gutzwiller wave function. If the number of<br />

different orbitals is N (N can be as <strong>la</strong>rge as 5 for an open<br />

d shell), the number of in<strong>de</strong>pen<strong>de</strong>nt variational parameters<br />

can reach 2 2N - 2N - 1, which may be of the or<strong>de</strong>r of 1000<br />

[28]. The variational parameters represent the occupancies<br />

of all possible multiplet states. At the first instance,<br />

the atomic multiplet spectrum is governed by three S<strong>la</strong>ter-<br />

Condon or Racah integrals, when spherical symmetry is assumed<br />

for the atoms. Yet, the site symmetry in a crystal is<br />

lower than spherical. Incorporation of the correct site symmetry<br />

results in many further modifications and extensions<br />

of the method.<br />

The multi-band Gutzwiller method allows the investigation<br />

of 3d transition metals and compounds on a quantitative<br />

basis. An ab initio single-particle Hamiltonian can be constructed<br />

using Density-Functional Theory (DFT). The simplest<br />

way to incorporate DFT results is to extract a tightbinding<br />

mo<strong>de</strong>l by fitting the hopping amplitu<strong>de</strong>s to the DFT<br />

bands, but more e<strong>la</strong>borate methods are avai<strong>la</strong>ble, such as<br />

down-folding the DFT bands to a reduced Wannier basis<br />

[29]. We have carried out various studies on magnetic 3d<br />

elements and on compounds of 3d elements. One paper<br />

<strong>de</strong>alt with the Fermi surface of ferromagnetic Ni. DFT predicts<br />

a hole ellipsoid around the X point of the Brillouin<br />

zone, which is missing in the data. The multi-band Gutzwiller<br />

method was based on a one-particle Hamiltonian <strong>de</strong>rived<br />

from paramagnetic DFT bands for Ni including wi<strong>de</strong><br />

4s and 4p bands.<br />

Using typical interaction parameters for Ni, our calcu<strong>la</strong>tions<br />

reproduced the observed Fermi surface topology [30].<br />

Another paper <strong>de</strong>alt with the magnetic anisotropy in ferromagnetic<br />

Ni [31]. Here again, pure DFT results did not yield<br />

the correct answers, while the Gutzwiller method gave very<br />

good agreement with experiment. In all cases, the renormalization<br />

parameters g have been found to be of the or<strong>de</strong>r<br />

of 0.7, indicating mo<strong>de</strong>rately strong corre<strong>la</strong>tion effects.<br />

Finally we mention the issue of metallic anti-ferromagnetism<br />

in iron pnicti<strong>de</strong>s, a new c<strong>la</strong>ss of high-temperature superconductors.<br />

Our calcu<strong>la</strong>tions were based on down-fol<strong>de</strong>d<br />

DFT bands. The results indicate also in this case mo<strong>de</strong>rately<br />

strong corre<strong>la</strong>tions. The atomic magnetic moments were<br />

found to agree well with experiment, in contrast to the DFT<br />

results and also to mo<strong>de</strong>l calcu<strong>la</strong>tions [32].<br />

The examples mentioned above <strong>de</strong>monstrate that Gutzwiller's<br />

simple ansatz evolved into a powerful tool for <strong>de</strong>aling<br />

with corre<strong>la</strong>ted electron systems. The method has recently<br />

also been applied successfully to cold bosonic atoms in an<br />

optical <strong>la</strong>ttice. At the age of 50, Gutzwiller’s wave function<br />

in its extensions remains competitive for <strong>de</strong>scribing corre<strong>la</strong>ted<br />

states of matter.<br />

References<br />

[1] M. C. Gutzwiller, Phys. Rev. Lett. 10, 169 (1963).<br />

[2] M. C. Gutzwiller, Phys. Rev. 134, A923 (1964).<br />

[3] M. C. Gutzwiller, Phys. Rev. 137, A1726 (1965).<br />

[4] K. A. Chao and M. C. Gutzwiller, J. Appl. Phys. 42, 1420 (1971).<br />

[5] J. H. van Vleck, Rev. Mod. Phys. 25, 220 (1953).<br />

40<br />

[6] P. W. An<strong>de</strong>rson, Phys. Rev. 115, 2 (1959).<br />

[7] J. Hubbard, Proc. Roy. Soc. A276, 238 (1963).<br />

[8] J. Kanamori, Prog. Theor. Phys. 30, 275 (1963).<br />

[9] W. Metzner and D. Vollhardt, Phys. Rev. Lett. 59, 121 (1987); F.<br />

Gebhard and D. Vollhardt, Phys. Rev. Lett. 59, 1472 (1987).<br />

[10] For a review see F. Gebhard, The Mott Metal-Insu<strong>la</strong>tor Transition:<br />

Mo<strong>de</strong>ls and Methods, Springer 1997.<br />

[11] P. Horsch and T. A. Kap<strong>la</strong>n, J. Phys. C 16, L1203 (1983).<br />

[12] For a recent review of the method for the fully projected Gutzwiller<br />

wave function (g " ∞) see B. E<strong>de</strong>gger, V. N. Muthukumar and<br />

C. Gros, Adv. Phys. 56, 927 (2007).<br />

[13] For a clear presentation see P. Ful<strong>de</strong>, Electron Corre<strong>la</strong>tions<br />

in Molecules and Solids, Springer Series in Solid-State Sciences<br />

100 (1990).<br />

[14] W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989).<br />

[15] For an early review see A. Georges, G. Kotliar, W. Krauth and<br />

M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).<br />

[16] W. Brinkman and T. M. Rice, Phys. Rev. B 2, 4302 (1970).<br />

[17] W. Kohn, Phys. Rev. 133, A171 (1964).<br />

[18] L. M. Martelo, M. Dzierzawa and D. Baeriswyl, Z. Phys. B 103,<br />

335 (1997).<br />

[19] J. C. S<strong>la</strong>ter, Phys. Rev. 82, 538 (1951).<br />

[20] M. Dzierzawa, D. Baeriswyl and L. M. Martelo, Helv. Phys.<br />

Acta 70, 124 (1997); for a review see D. Baeriswyl, Found. Phys.<br />

30, 2033 (2000).<br />

[21] Z. Y. Meng, T. C. Lang, S. Wessel, F. F. Assaad and A. Muramatsu,<br />

Nature 464, 847 (2010).<br />

[22] E. Jeckelmann, Ph D. thesis, University of Fribourg (1995); E.<br />

Jeckelmann and D. Baeriswyl, Synth. Met. 65, 211 (1994).<br />

[23] P. Horsch, Phys. Rev. B 24, 7351 (1981); D. Baeriswyl and K.<br />

Maki, Phys. Rev. B 31, 6633 (1985).<br />

[24] D. Eichenberger, Ph. D. thesis, University of Fribourg (2008);<br />

D. Baeriswyl, D. Eichenberger and M. Menteshashvili, New J.<br />

Phys. 11, 075010 (2009).<br />

[25] P. Fazekas, Electron Corre<strong>la</strong>tion and Magnetism, World Scientific<br />

1999.<br />

[26] T. M. Rice and K. Ueda, Phys. Rev. Lett. 55, 995 (1985).<br />

[27] C. M. Varma, W. Weber and L. J. Randall, Phys. Rev. B 33,<br />

1015 (1986).<br />

[28] J. Bünemann, Ph. D. thesis, University of Dortmund (1998);<br />

J. Bünemann, W. Weber and F. Gebhard, Phys. Rev. B 57, 6896<br />

(1998).<br />

[29] For a recent review see O. K. An<strong>de</strong>rsen and L. Boeri, Ann.<br />

Phys. (Berlin) 523, 8 (2011).<br />

[30] J. Bünemann et al., Europhys. Lett. 61, 667 (2003).<br />

[31] J. Bünemann, F. Gebhard, T. Ohm, S. Weiser and W. Weber,<br />

Phys. Rev. Lett. 101, 236404 (2008).<br />

[32] T. Schickling et al., Phys. Rev. Lett. 108, 036406 (2012).<br />

Werner Weber received his PhD from the TU Munich<br />

in 1972. He worked first at a variety of research institutions,<br />

at the MPI for Solid State Research in Stuttgart,<br />

at the Research Center in Karlsruhe (now K.I.T.), at<br />

Bell Laboratories, Murray Hill. He then became a faculty<br />

member at the TU Dortmund, where he retired in<br />

2010. His research area is theoretical solid state physics,<br />

with main emphasis on materials science theory.<br />

He assumed many duties in university self-administration,<br />

even presently. In the spirit of Martin Gutzwiller,<br />

he recently changed his field of interest to activities in<br />

climate research, including applications.


Physik und Gesellschaft<br />

"Lead-User-Workshops" für effizientes<br />

Innovations- & Produktvariantenmanagement<br />

Industriephysiker in Managementfunktion<br />

Physiker sind in <strong>de</strong>r Industrie nicht nur in Forschung und<br />

Entwicklung tätig, son<strong>de</strong>rn auch als Produktmanager. In<br />

dieser Funktion müssen sie sich um drei Fragen kümmern:<br />

a) wie leistungsstark und erprobt sind die <strong>de</strong>m Produkt und<br />

<strong>de</strong>m Herstellprozess zugrun<strong>de</strong> liegen<strong>de</strong>n Technologien, b)<br />

wie gut <strong>de</strong>ckt das Produkt heutige und zukünftige Kun<strong>de</strong>nanwendungen<br />

ab und c) wie wird es sich am Markt behaupten?<br />

Um <strong>de</strong>n wirtschaftlichen Erfolg <strong>de</strong>s Produkts zu<br />

sichern, müssen alle drei Fragen kohärent, also im Kontext<br />

positiv beantwortet sein. Die Abhängigkeit <strong>de</strong>r Fragestellungen<br />

voneinan<strong>de</strong>r spiegelt sich zum Beispiel bei <strong>de</strong>r Festlegung<br />

<strong>de</strong>s Produktkonzepts wi<strong>de</strong>r: einerseits möchte man<br />

ein entsprechend grosses Angebot an Produktvarianten,<br />

um ein möglichst breites Kun<strong>de</strong>nspektrum abzu<strong>de</strong>cken;<br />

an<strong>de</strong>rseits erfor<strong>de</strong>rn die für <strong>de</strong>n Markterfolg zu minimieren<strong>de</strong>n<br />

Herstell- und Vertriebskosten die Beschränkung auf<br />

nur wenige Varianten. Selbst wenn man <strong>de</strong>n Wi<strong>de</strong>rspruch<br />

dadurch löst, dass man die Produkte baukastenmässig aus<br />

Modulen aufbaut, bleibt <strong>de</strong>nnoch die Frage b) zu beantworten,<br />

ob sich damit auch alle gewünschten Kun<strong>de</strong>napplikationen<br />

erfüllen <strong>la</strong>ssen?<br />

Man sieht, dass die drei Fragestellungen ein profun<strong>de</strong>s<br />

Verständnis <strong>de</strong>r technisch-kommerziellen Abhängigkeiten<br />

erfor<strong>de</strong>rn, beson<strong>de</strong>rs, wenn neue Technologien ins Spiel<br />

ge<strong>la</strong>ngen. Während die Marktaspekte von Marketingleuten<br />

abge<strong>de</strong>ckt wer<strong>de</strong>n können, muss die Schnittstelle <strong>de</strong>r Applikationen<br />

gemeinsam von Marketing und F&E bearbeitet<br />

wer<strong>de</strong>n. Sollte sich das angesprochene Modu<strong>la</strong>rkonzept<br />

dann als geeignet und machbar erweisen, ist es Aufgabe<br />

<strong>de</strong>r F&E - Wissenschaftler, die Funktionalität und die Struktur<br />

<strong>de</strong>r Module festzulegen. Nur wie lässt sich in diesem<br />

iterativen und mit vielen Fragezeichen versehenen Prozess<br />

mehr Gewissheit über das richtige Vorgehen gewinnen?<br />

Ein sehr leistungsstarkes Werkzeug dazu sind sogenannte<br />

Lead-User-Workshops, wo man als Produkthersteller mit<br />

Repräsentanten wichtiger Kun<strong>de</strong>n gemeinsam herauszufin<strong>de</strong>n<br />

versucht, welche neuen Anwendungen durch <strong>de</strong>n Einsatz<br />

kommen<strong>de</strong>r Technologien <strong>de</strong>nkbar wären, und welche<br />

Produktvarianten dazu infrage kämen? Der Meinungsaustausch<br />

geschieht im gegenseitigen Interesse, da danach<br />

bei<strong>de</strong> Seiten die Folgen anstehen<strong>de</strong>r Entschei<strong>de</strong> besser<br />

einzuschätzen vermögen. Bevor im Folgen<strong>de</strong>n auf die Gestaltung<br />

eines solchen Workshops eingegangen wird, sei<br />

am Beispiel <strong>de</strong>r Optikindustrie illustriert, dass Veranstaltungen<br />

dieser Art zur Bildung von auch in Krisensituationen<br />

be<strong>la</strong>stbaren Interessengemeinschaften (Communities) führen<br />

können.<br />

Bernhard Braunecker und Richard Wenk<br />

41<br />

Communications <strong>de</strong> <strong>la</strong> SSP No. 37<br />

Alpha-Beziehungen von Physikern zwischen Firmen<br />

Unter diesem Begriff sei verstan<strong>de</strong>n, wenn die Geschäftsbeziehung<br />

zweier Firmen über das übliche Kun<strong>de</strong>n/Lieferantenverhältnis<br />

hinausgeht, wenn also bei<strong>de</strong>r Primärinteressen<br />

strategisch in die gleiche Richtung zielen. Als<br />

k<strong>la</strong>ssisches Beispiel gilt das in <strong>de</strong>r Optikindustrie enge<br />

Verhältnis zu <strong>de</strong>n G<strong>la</strong>sherstellern, <strong>de</strong>ren beste Lieferqualität<br />

gera<strong>de</strong> gut genug ist für hochwertige Optiksysteme.<br />

Beson<strong>de</strong>rs wichtig war und ist <strong>de</strong>r Kontakt zwischen <strong>de</strong>n<br />

Optikentwicklern im <strong>de</strong>utschsprachigen Raum und <strong>de</strong>n<br />

G<strong>la</strong>sexperten von Schott in Mainz, um die hohen Qualitätsansprüche<br />

ans G<strong>la</strong>s, aber auch die Komplexität <strong>de</strong>r G<strong>la</strong>sproduktion<br />

jeweils <strong>de</strong>r an<strong>de</strong>ren Seite verständlich zu machen.<br />

Dazu organisiert Schott seit Jahrzehnten regelmässig<br />

sogenannte "Designer"-Treffen, zu <strong>de</strong>nen die gesamte Optikindustrie<br />

ihre Wissenschaftler schickt, um Probleme und<br />

Anregungen zu artikulieren.<br />

Als Folge dieser Treffen bil<strong>de</strong>te sich unter <strong>de</strong>n Optikentwicklern<br />

eine Gemeinschaft über Firmengrenzen hinaus<br />

und bei vielen Kollegen zusätzlich auch ein enges Verhältnis<br />

zu <strong>de</strong>n G<strong>la</strong>sproduktionsleuten, das sich zur Lösung von<br />

Problemfällen in <strong>de</strong>r täglichen Praxis als vorteilhaft erweist.<br />

Als vor einigen Jahren japanische G<strong>la</strong>sherstellern überraschend<br />

"bleifreie" Gläser am Markt <strong>la</strong>ncierten, konnte<br />

Schott unter Mithilfe <strong>de</strong>r Experten aller grosser Optikfirmen<br />

im <strong>de</strong>utschsprachigen Raum rasch und gezielt auf die neue<br />

Situation reagieren. Diese "Alpha-Beziehungen" sind daher<br />

für bei<strong>de</strong> Seiten ein wirksames Mittel <strong>de</strong>r Risikominimierung<br />

(risk mitigation), sowohl in technischen Be<strong>la</strong>ngen, wie<br />

in <strong>de</strong>r strategischen Ausrichtung.<br />

Konzept eines "Lead-User-Workshops"<br />

Im Folgen<strong>de</strong>n wird die Vorgehensweise beschrieben, wie<br />

vor einigen Jahren bei Leica Geosystems in Heerbrugg ein<br />

Lead-User-Workshop zum anstehen<strong>de</strong>n Thema <strong>de</strong>r Digitalisierung<br />

von Vermessungsgeräten organisiert wur<strong>de</strong>. Dazu<br />

wur<strong>de</strong>n 15 Experten aus aller Welt aus <strong>de</strong>n Bereichen <strong>de</strong>r<br />

amtlichen Lan<strong>de</strong>svermessung, <strong>de</strong>r Industrie, <strong>de</strong>m Bauwesen<br />

und <strong>de</strong>r Denkmalpflege (cultural heritage) einge<strong>la</strong><strong>de</strong>n.<br />

Das Ziel war, internes Technologie-Knowhow mit <strong>de</strong>m Applikations-Knowhow<br />

<strong>de</strong>r externen Experten zu kombinieren.<br />

Im Vorfeld <strong>de</strong>s WS wur<strong>de</strong>n verschie<strong>de</strong>ne, für Leica interessante<br />

Applikationsfel<strong>de</strong>r (total 6) <strong>de</strong>finiert, die dann am<br />

WS vorgestellt und bearbeitet wer<strong>de</strong>n sollten. Dabei sollten<br />

die externen Experten nach Kenntnis <strong>de</strong>r neuen Technologieansätze<br />

sich nicht nur mit <strong>de</strong>n möglichen Folgen für<br />

ihr eigenes Arbeitsgebiet auseinan<strong>de</strong>rsetzen, son<strong>de</strong>rn auch<br />

mit <strong>de</strong>m ihrer Kollegen. Das sollte wichtige Argumente für<br />

die erwähnte Modu<strong>la</strong>risierung liefern.


SPG Mitteilungen Nr. 37<br />

Auswahl <strong>de</strong>r externen Teilnehmer<br />

Die Auswahl <strong>de</strong>r Experten ist die wichtigste Aufgabe, die<br />

von <strong>de</strong>n Marketing- und Vertriebsleuten, gemeinsam mit<br />

<strong>de</strong>n Aus<strong>la</strong>ndsvertretern, vorgenommen wer<strong>de</strong>n muss. Als<br />

Kriterien gelten, dass zu <strong>de</strong>n Personen ein <strong>la</strong>ngjähriges<br />

Vertrauensverhältnis besteht, dass sie als Entscheidungsträger<br />

mit technischem Hintergrund noch Kenntnis <strong>de</strong>r Abläufe<br />

in <strong>de</strong>r täglichen Praxis haben, und dass sie offen für<br />

Neues sind.<br />

• In unserem Falle waren die Experten in folgen<strong>de</strong>n Organisationen<br />

tätig:<br />

a) Fünf Ingenieurbüros und KMUs mit Fokus auf Architektur,<br />

Katastervermessung, Hoch-/Tiefbau, Tunnelbau,<br />

b) fünf Institutionen (Universitäten, Behör<strong>de</strong>n, Ämter für<br />

Denkmalpflege), und c) fünf "Big p<strong>la</strong>yers" (Shell Oil, British<br />

Rail, CERN & US-Freeway companies).<br />

• Sie kamen aus vier Regionen, logarithmisch gewichtet:<br />

Figur 1: Teilnehmer eines Lead User Workshops<br />

bei Leica Geosystems<br />

42<br />

a) Schweiz, b) Deutsch<strong>la</strong>nd / Österreich, c) Europa, d)<br />

USA,<br />

• Und sie <strong>de</strong>ckten folgen<strong>de</strong> Applikationsfel<strong>de</strong>r ab:<br />

a) Traditionelle Märkte, b) Nischenmärkte mit Wachstumspotential,<br />

c) Neue Märkte.<br />

Gruppeneinteilung<br />

Es wur<strong>de</strong>n drei Arbeitsgruppen mit jeweils fünf externen<br />

Experten gebil<strong>de</strong>t, wobei in je<strong>de</strong>r Gruppe alle vier Regionen<br />

vertreten waren. Je<strong>de</strong>r Gruppe wird zugeteilt ein Mo<strong>de</strong>rator,<br />

sowie ein Produktmanager aus Marketing und ein<br />

technischer Berater aus F&E, die nur bei Klärungsbedarf<br />

eingreifen sollten.<br />

Ab<strong>la</strong>uf <strong>de</strong>r Veranstaltung<br />

Die Teilnehmer in <strong>de</strong>n 3 Gruppen mussten jeweils zwei <strong>de</strong>r<br />

Applikationsfel<strong>de</strong>r wie folgt bearbeiten:<br />

Schritt 1: Erarbeiten von speziellen Messabläufen (User<br />

Workflow) in <strong>de</strong>n <strong>de</strong>finierten Applikationsfel<strong>de</strong>rn.<br />

Schritt 2: I<strong>de</strong>ntifizieren von Problemen und <strong>de</strong>ren Lösung,<br />

um <strong>de</strong>n Messab<strong>la</strong>uf wesentlich zu vereinfachen und zu verkürzen.<br />

Schritt 3: I<strong>de</strong>ntifizieren von Kun<strong>de</strong>nanfor<strong>de</strong>rungen für zukünftige<br />

Messsysteme.<br />

Schritt 4: Erarbeiten von Konzeptvorschlägen für zukünftige<br />

Messsysteme.<br />

Der Workshop (Figur 1) wur<strong>de</strong> dreiteilig angelegt:<br />

• Im Teil 1 schil<strong>de</strong>rte je<strong>de</strong>r Teilnehmer typische Abläufe<br />

seiner täglichen Arbeit und verwies auf Probleme und<br />

Verbesserungswünsche (Schritte 1 & 2). Damit gewann<br />

je<strong>de</strong>s Gruppenmitglied Kenntnis über die Tätigkeiten<br />

<strong>de</strong>r An<strong>de</strong>ren. Nach <strong>de</strong>r Gruppenarbeit präsentierte <strong>de</strong>r<br />

Mo<strong>de</strong>rator im Plenum vor allen Teilnehmern erste Gemeinsamkeiten<br />

in <strong>de</strong>r noch sehr heterogenen Analyse<br />

und skizzierte erste Verbesserungswünsche.<br />

• Im Teil 2 informierte <strong>de</strong>r F&E-Leiter <strong>de</strong>r ein<strong>la</strong><strong>de</strong>n<strong>de</strong>n<br />

Firma, welche neuen Technologien in nächster Zeit zu<br />

erwarten sind. Dieser Schritt ist <strong>de</strong>r psychologisch wichtige<br />

Icebreaker, <strong>de</strong>r im geschil<strong>de</strong>rten Fall auch zu einer<br />

spürbaren Solidarisierung <strong>de</strong>r Experten untereinan<strong>de</strong>r<br />

und mit <strong>de</strong>m Veranstalter führte.<br />

• Im Teil 3 wur<strong>de</strong>n in neuer Zusammensetzung <strong>de</strong>r Gruppen<br />

die Konzeptvorschläge für zukünftige Messsysteme<br />

(Schritte 3 & 4) diskutiert, nun allerdings im Wissen kommen<strong>de</strong>r<br />

Technologiemöglichkeiten. Da die Grundaufgaben<br />

aller Teilnehmer meist ähnlicher Natur waren, war<br />

die Diskussion in allen Gruppen <strong>de</strong>utlich einheitlicher als<br />

am ersten Tag. Die darauf vorbereiteten Mo<strong>de</strong>ratoren<br />

lenkten <strong>de</strong>shalb die Diskussion in Richtung allgemein<br />

einsetzbarer Hardware- und Softwaremodule. Nach<br />

erneuter Präsentation <strong>de</strong>r Gruppenarbeiten im Plenum<br />

gab <strong>de</strong>r Vertreter <strong>de</strong>s Veranstalters dann eine erste Zusammenfassung<br />

<strong>de</strong>r Erkenntnisse (Wrap up).<br />

Ergebnis, Auswertung, weitere Schritte<br />

Nach Ab<strong>la</strong>uf <strong>de</strong>s WS wur<strong>de</strong>n die gesammelten Kun<strong>de</strong>nanregungen<br />

für verschie<strong>de</strong>ne Applikationen in <strong>de</strong>n pre<strong>de</strong>finierten<br />

Anwendungsfel<strong>de</strong>rn in drei Bereiche unterteilt:<br />

generelle Anwen<strong>de</strong>r-, Technologie- und Produktanfor<strong>de</strong>rungen.<br />

In je<strong>de</strong>m Bereich wur<strong>de</strong>n die Empfehlungen dann<br />

konsolidiert, also möglichst vereinheitlicht über alle Anwen-


dungsfel<strong>de</strong>r hinweg. So konnte man bei <strong>de</strong>n generellen Anwen<strong>de</strong>ranfor<strong>de</strong>rungen<br />

vier Untergruppen bil<strong>de</strong>n, für Genauigkeitssteigerungen,<br />

höhere Effizienz <strong>de</strong>s Messsystems,<br />

geringere Störanfälligkeit und mehr Bedienerfreundlichkeit;<br />

im Bereich <strong>de</strong>r Technologie gab es neun Untergruppen wie<br />

Empfehlungen für Echtzeit-Systeme und vereinheitlichtes<br />

Datenformat und im Bereich <strong>de</strong>r Produktanfor<strong>de</strong>rungen<br />

sieben Untergruppen, wie z.B. für handhaltbare statt stativmontierte<br />

Instrumente, Multisensor Systeme, etc.<br />

Aus diesen Anfor<strong>de</strong>rungskatalogen wur<strong>de</strong>n dann Funktionen<br />

für die verschie<strong>de</strong>nen Produktgruppen abgeleitet.<br />

Grundsätzlich wur<strong>de</strong> dabei unterschie<strong>de</strong>n zwischen Produktverbesserungen,<br />

also Optionen für die unmittelbare<br />

Zukunft, Innovationen, die interne F&E Anstrengungen<br />

benötigen, und Visionen, also Konzepte für zukünftige Systeme,<br />

die eine Grund<strong>la</strong>genentwicklung mit Hochschulpartnern<br />

bedingen. Daraus wur<strong>de</strong>n dann konkrete Produkti<strong>de</strong>en<br />

abgeleitet, woraus letztendlich für die verschie<strong>de</strong>nen<br />

Produktkategorien 17 Produktvorschläge resultierten.<br />

Diese Produkti<strong>de</strong>en flossen dann bei <strong>de</strong>n entsprechen<strong>de</strong>n<br />

Divisionen in <strong>de</strong>ren Roadmap-Prozess ein, wur<strong>de</strong>n von<br />

<strong>de</strong>n Produkt- und Technologiespezialisten dort hinterfragt,<br />

und es wur<strong>de</strong>n realistische Produktentwicklungen<br />

<strong>de</strong>finiert. Einige dieser I<strong>de</strong>en konnten noch in bereits <strong>la</strong>ufen<strong>de</strong><br />

Produktentwicklungen eingebracht wer<strong>de</strong>n, an<strong>de</strong>re<br />

wur<strong>de</strong>n verworfen aus Grün<strong>de</strong>n <strong>de</strong>r Machbarkeit o<strong>de</strong>r<br />

weil <strong>de</strong>r Bedarf aus Kun<strong>de</strong>nsicht noch nicht gegeben war,<br />

wie<strong>de</strong>r an<strong>de</strong>re wur<strong>de</strong>n zurückgestellt, beziehungsweise als<br />

Kandidaten für externe Entwicklungen mit Hochschulen<br />

vorgesehen. Dabei wur<strong>de</strong> verstärktes Augenwerk auf eine<br />

mögliche Modu<strong>la</strong>risierung gerichtet, also auf die Mehrfachverwendung<br />

von Grundmodulen (Principal Components) in<br />

verschie<strong>de</strong>nen Instrumenten und Dienstleistungen.<br />

Optimales Konzept <strong>de</strong>s Variantenmanagements<br />

Die gewonnenen Erkenntnisse aus einem Lead-User-Workshop<br />

fliessen in die Auslegung zukünftiger Instrumente ein.<br />

History of Physics (4)<br />

43<br />

Communications <strong>de</strong> <strong>la</strong> SSP No. 37<br />

Wie einleitend ange<strong>de</strong>utet, soll ein breites Angebot an Produktvarianten<br />

möglichst viele Kun<strong>de</strong>napplikationen ab<strong>de</strong>cken,<br />

<strong>de</strong>mzufolge sich aus Logistik- und Kostengrün<strong>de</strong>n<br />

ein modu<strong>la</strong>r hierarchischer Aufbau (Figur 2) empfiehlt: Teure<br />

Basismodule wie Optik, Mechanik und Elektronik wer<strong>de</strong>n<br />

standardisiert, also konstruktiv vereinheitlicht, während die<br />

Produktdifferenzierung möglichst weit ans En<strong>de</strong> <strong>de</strong>r Wertschöpfungskette<br />

geschoben wird, im I<strong>de</strong>alfall sogar in reine<br />

Softwaremodule. Im Gegensatz zu früher kann <strong>de</strong>shalb<br />

auch die kostengünstigste Variante die beste Hardware<br />

enthalten, wenn es sich wegen <strong>de</strong>r grösseren Stückzahl<br />

und <strong>de</strong>r Fertigungsautomatisierung lohnt. Die eigentliche<br />

Kernfrage <strong>la</strong>utet <strong>de</strong>shalb, mittels welcher Modulfunktionen<br />

kann Redundanz reduziert und die angestrebte Vollständigkeit<br />

<strong>de</strong>s Applikation<strong>ssp</strong>ektrum realisiert wer<strong>de</strong>n? Bei <strong>de</strong>r<br />

Beantwortung dieser Frage helfen die wichtigen Erkenntnisse<br />

aus <strong>de</strong>m Lead User Workshop.<br />

Figur 2: Produktvarianten P1…P5: Die Hardwarep<strong>la</strong>ttformen Optik<br />

& Mechanik sind konzeptionell zu vereinheitlichen und an einem<br />

Standort vol<strong>la</strong>utomatisch herzustellen. Der Einbau <strong>de</strong>r "intermediate"<br />

Module von Elektronik & Sensorik kann weltweit an mehreren<br />

Standorten durchgeführt wer<strong>de</strong>n, während die applikation<strong>ssp</strong>ezifischen<br />

Software-Module im I<strong>de</strong>alfall vom Kun<strong>de</strong>n selber freigeschaltet<br />

wer<strong>de</strong>n können.<br />

Richard Wenk ist CTO und Vizepräsi<strong>de</strong>nt bei Hexagon<br />

Geosystems, zu <strong>de</strong>r auch Leica Geosystems in Heerbrugg<br />

gehört.<br />

From Static to Expanding Mo<strong>de</strong>ls of the Universe<br />

At the end of some historical remarks in the article on the<br />

2011 Nobel Prize [1], it was announced that the author<br />

would indicate in a historical essay the interesting early history<br />

of cosmology. One of the reasons is that this is not<br />

even well-known among cosmologists, and is often distorted.<br />

In the words of the <strong>la</strong>te Allen Sandage: "In 1929, Edwin<br />

Hubble published a paper that corre<strong>la</strong>ted redshifts of ga<strong>la</strong>xies<br />

with distances he had estimated from calibration of their<br />

absolute magnitu<strong>de</strong>s previously ma<strong>de</strong> in 1926. Writers of<br />

both popu<strong>la</strong>r accounts and technical textbooks have often<br />

<strong>de</strong>scribed this as the discovery of the expanding universe.<br />

This is not so." [2]<br />

Norbert Straumann, Uni Zürich<br />

Einstein's static mo<strong>de</strong>l of the universe<br />

On 8 February 1917, in the middle of the most terrible time<br />

during the First World War, Einstein gave a talk in the Preussian<br />

Aca<strong>de</strong>my of Sciences on an application of his general<br />

re<strong>la</strong>tivity on the universe as a whole. One week before the<br />

German military lea<strong>de</strong>rship had <strong>de</strong>c<strong>la</strong>red in the same city<br />

the unconstrained submarine war. Einstein’s first paper on<br />

cosmology [3] marks in many ways the beginning of mo<strong>de</strong>rn<br />

cosmology.<br />

Perhaps the main reason why Einstein turned so soon after<br />

the completion of general re<strong>la</strong>tivity to cosmology had<br />

much to do with Machian i<strong>de</strong>as on the origin of inertia,


SPG Mitteilungen Nr. 37<br />

which p<strong>la</strong>yed in those years an important role in Einstein’s<br />

thinking. His intention was to eliminate all vestiges of absolute<br />

space. He was, in particu<strong>la</strong>r, convinced that iso<strong>la</strong>ted<br />

masses cannot impose a structure on space at infinity. Einstein<br />

was actually thinking about the problem regarding the<br />

choice of boundary conditions at infinity already in spring<br />

1916. In a letter to Michele Besso from 14 May 1916 he<br />

also mentions the possibility of the world being finite. A few<br />

months <strong>la</strong>ter he expan<strong>de</strong>d on this in letters to Willem <strong>de</strong><br />

Sitter. It is along these lines that he postu<strong>la</strong>ted a Universe<br />

that is spatially finite and closed, a Universe in which no<br />

boundary conditions are nee<strong>de</strong>d 1 . He then believed that<br />

this was the only way to satisfy what he <strong>la</strong>ter [5] named<br />

Mach’s principle, in the sense that the metric field should<br />

be <strong>de</strong>termined uniquely by the energy-momentum tensor.<br />

In addition, Einstein assumed that the Universe was static.<br />

This was not unreasonable at the time, because the re<strong>la</strong>tive<br />

velocities of the stars as<br />

observed were small. (Recall<br />

that astronomers only<br />

learned <strong>la</strong>ter that spiral nebu<strong>la</strong>e<br />

are in<strong>de</strong>pen<strong>de</strong>nt star<br />

systems outsi<strong>de</strong> the Milky<br />

Way. This was <strong>de</strong>finitely<br />

established when in 1924<br />

Hubble found that there<br />

were Cepheid variables in<br />

Andromeda and also in other<br />

nearby ga<strong>la</strong>xies. Einstein<br />

compares the observed<br />

small peculiar velocities of<br />

Edwin Hubble<br />

stars with the speed of light.)<br />

These two assumptions<br />

were, however, not compatible with Einstein’s original field<br />

equations. For this reason, Einstein ad<strong>de</strong>d the famous Lterm,<br />

which is compatible with the principles of general<br />

re<strong>la</strong>tivity. The cosmological term is, in four dimensions, the<br />

only possible complication of the field equations if no higher<br />

than second or<strong>de</strong>r <strong>de</strong>rivatives of the metric are allowed<br />

(Lovelock theorem). This remarkable uniqueness is one of<br />

the most attractive features of general re<strong>la</strong>tivity. (In higher<br />

dimensions additional terms satisfying this requirement are<br />

allowed.)<br />

For the static Einstein universe the field equations with the<br />

cosmological term imply the two re<strong>la</strong>tions<br />

1 2<br />

4rGt<br />

= = K ,<br />

a<br />

where � is the mass <strong>de</strong>nsity of the dust filled universe (zero<br />

pressure) and a is the radius of curvature. For L = 0 the<br />

<strong>de</strong>nsity � would have to vanish. (We remark, in passing, that<br />

the Einstein universe is the only static dust solution; one<br />

does not have to assume isotropy or homogeneity.) Einstein<br />

was very pleased by this direct connection between<br />

the mass <strong>de</strong>nsity and geometry, because he thought that<br />

this was in accord with Mach's philosophy.<br />

Einstein conclu<strong>de</strong>s with the following sentences:<br />

"In or<strong>de</strong>r to arrive at this consistent view, we admittedly had<br />

to introduce an extension of the field equations of gravitation<br />

which is not justified by our actual knowledge of grav-<br />

1 The spatial geometry in Einstein's mo<strong>de</strong>l is that of a three-sphere, i.e.,<br />

the surface of a sphere in four-dimensional Eucli<strong>de</strong>an space. This is a<br />

prototype of a highly symmetric compact manifold without boundary.<br />

44<br />

itation. It has to be emphasized, however, that a positive<br />

curvature of space is given by our results, even if the supplementary<br />

term is not introduced. That term is necessary<br />

only for the purpose of making possible a quasi-static distribution<br />

of matter, as required by the fact of the small velocities<br />

of the stars."<br />

To <strong>de</strong> Sitter he emphasized in a letter on 12 March 1917,<br />

that his cosmological mo<strong>de</strong>l was inten<strong>de</strong>d primarily to settle<br />

the question "whether the basic i<strong>de</strong>a of re<strong>la</strong>tivity can be<br />

followed through its completion, or whether it leads to contradictions".<br />

And he adds whether the mo<strong>de</strong>l corresponds<br />

to reality was another matter.<br />

Only <strong>la</strong>ter Einstein came to realize that Mach's philosophy<br />

is predicated on an antiquated ontology that seeks to reduce<br />

the metric field to an epiphenomenon of matter. It<br />

became increasingly clear to him that the metric field has<br />

an in<strong>de</strong>pen<strong>de</strong>nt existence, and his enthusiasm for what he<br />

called Mach's principle <strong>la</strong>ter <strong>de</strong>creased. In a letter to F. Pirani<br />

he wrote in 1954: "As a matter of fact, one should no<br />

longer speak of Mach's principle at all." GR still preserves<br />

some remnant of Newton’s absolute space and time.<br />

De Sitter mo<strong>de</strong>l<br />

Surprisingly to Einstein, <strong>de</strong> Sitter discovered in the same<br />

year, 1917, a completely different static cosmological mo<strong>de</strong>l<br />

which also incorporated the cosmological constant, but<br />

was anti-Machian, because it contained no matter [6]. For<br />

this reason, Einstein tried to discard it on various grounds<br />

(more on this below). The original form of the metric was:<br />

2<br />

g (<br />

r 2 2<br />

) dt<br />

dr<br />

2 2 2<br />

=-81 - B + sin<br />

R 1 - (<br />

r + r ^dj + j d{<br />

h .<br />

2<br />

)<br />

R<br />

Here, the spatial part is the standard metric of a threesphere<br />

of radius R, with R = (3/L) 1/2 . The mo<strong>de</strong>l had one<br />

very interesting property: For light sources moving along<br />

static world lines there is a gravitational redshift, which<br />

became known as the <strong>de</strong> Sitter effect. This was thought<br />

to have some bearing on the redshift results obtained by<br />

Slipher. Because the fundamental (static) worldlines in this<br />

mo<strong>de</strong>l are not geo<strong>de</strong>sic, a freely-falling object released by<br />

any static observer will be seen by him to accelerate away,<br />

generating also local velocity (Doppler) redshifts corresponding<br />

to peculiar velocities. In the second edition of his<br />

book [7], published in 1924, Eddington writes about this:<br />

"<strong>de</strong> Sitter's theory gives a double exp<strong>la</strong>nation for this motion<br />

of recession; first there is a general ten<strong>de</strong>ncy to scatter<br />

(...); second there is a general disp<strong>la</strong>cement of spectral<br />

lines to the red in distant objects owing to the slowing down<br />

of atomic vibrations (...), which would erroneously be interpreted<br />

as a motion of recession."<br />

I do not want to enter into all the confusion over the <strong>de</strong> Sitter<br />

universe. One source of this was the apparent singu<strong>la</strong>rity at<br />

r = R = (3/L) 1/2 . This was at first thoroughly misun<strong>de</strong>rstood<br />

even by Einstein and Weyl. ("The Einstein-<strong>de</strong> Sitter-Weyl-<br />

Klein Debate" is now published in Vol. 8 of the Collected<br />

Papers [4].) At the end, Einstein had to acknowledge that<br />

<strong>de</strong> Sitter's solution is fully regu<strong>la</strong>r and matter-free and thus<br />

in<strong>de</strong>ed a counter example to Mach's principle. But he still<br />

discar<strong>de</strong>d the solution as physically irrelevant because it<br />

is not globally static. This is clearly expressed in a letter


from Weyl to Klein, after he had discussed the issue during<br />

a visit of Einstein in Zürich [8]. An important discussion of<br />

the redshift of ga<strong>la</strong>xies in <strong>de</strong> Sitter's mo<strong>de</strong>l by H. Weyl in<br />

1923 should be mentioned. Weyl introduced an expanding<br />

version 2 of the <strong>de</strong> Sitter mo<strong>de</strong>l [9]. For small distances his<br />

result reduced to what <strong>la</strong>ter became known as the Hubble<br />

<strong>la</strong>w. In<strong>de</strong>pen<strong>de</strong>ntly of Weyl, Cornelius Lanczos introduced<br />

in 1922 also a non-stationary interpretation of <strong>de</strong> Sitter's<br />

solution in the form of a Friedmann spacetime with a positive<br />

spatial curvature [10]. In a second paper he also <strong>de</strong>rived<br />

the redshift for the non-stationary interpretation [11].<br />

From static to expanding world mo<strong>de</strong>ls<br />

Until about 1930 almost<br />

everybody believed that the<br />

Universe was static, in spite<br />

of the two fundamental papers<br />

by Friedmann [12] in<br />

1922 and 1924 and Lemaître's<br />

in<strong>de</strong>pen<strong>de</strong>nt work [13]<br />

in 1927. These path breaking<br />

papers were in fact<br />

<strong>la</strong>rgely ignored. The history<br />

of this early period has - as<br />

is often the case - been distorted<br />

by some wi<strong>de</strong>ly read<br />

Alexan<strong>de</strong>r Friedmann documents. Einstein too<br />

accepted the i<strong>de</strong>a of an expanding<br />

Universe only much <strong>la</strong>ter. After the first paper of<br />

Friedmann, he published a brief note c<strong>la</strong>iming an error in<br />

Friedmann's work; when it was pointed out to him that it<br />

was his error, Einstein published a retraction of his comment,<br />

with a sentence that luckily was <strong>de</strong>leted before publication:<br />

"[Friedmann's paper] while mathematically correct<br />

is of no physical significance". In comments to Lemaître<br />

during the Solvay meeting in 1927, Einstein again rejected<br />

the expanding universe solutions as physically unacceptable.<br />

According to Lemaître, Einstein was telling him: "Vos<br />

calculs sont corrects, mais votre physique est abominable".<br />

It appears astonishing that Einstein - after having studied<br />

carefully Friedmann's papers - did not realize that his static<br />

mo<strong>de</strong>l is unstable, and hence that the Universe has to be<br />

expanding or contracting. On the other hand, I found in the<br />

archive of the ETH many years ago a postcard of Einstein<br />

to Weyl from 1923, re<strong>la</strong>ted to Weyl's reinterpretation of <strong>de</strong><br />

Sitter's solution, with the following interesting sentence: "If<br />

there is no quasi-static world, then away with the cosmological<br />

term".<br />

It also is not well-known that Hubble interpreted in 1929<br />

the redshifts of radiation emitted by distant 'nebu<strong>la</strong>e' in the<br />

framework of the <strong>de</strong> Sitter mo<strong>de</strong>l, as had been suggested<br />

by Eddington.<br />

Lemaître discovers the expanding universe<br />

We repeat what we said in [1] about Lemaître's key role<br />

in the founding period of cosmology. He was the first person<br />

who seriously proposed an expanding universe as a<br />

mo<strong>de</strong>l of the real universe. He <strong>de</strong>rived in his crucial paper of<br />

1927 the general redshift formu<strong>la</strong>, and showed that it leads<br />

2 The <strong>de</strong> Sitter mo<strong>de</strong>l has many different interpretations, <strong>de</strong>pending on<br />

the choice of the velocity field for the subdominant matter flow.<br />

45<br />

Communications <strong>de</strong> <strong>la</strong> SSP No. 37<br />

for small distances to a linear re<strong>la</strong>tion, known as Hubble's<br />

<strong>la</strong>w. He also estimated the Hubble constant H 0 based on<br />

Slipher's redshift data for about 40 nebu<strong>la</strong>e, and Hubble's<br />

1925 distance <strong>de</strong>termination to Andromeda, as well as the<br />

the magnitu<strong>de</strong>s of nebu<strong>la</strong>e published by him in 1926. Two<br />

years before Hubble he found a value only somewhat higher<br />

than the one Hubble obtained in 1929. (Actually, Lemaître<br />

gave two values for H 0 .) But this seminal work was almost<br />

completely ignored. The general attitu<strong>de</strong> is well illustrated<br />

by the following remark of Eddington at a Royal Society<br />

meeting in January, 1930: "One puzzling question is why<br />

there should be only two solutions. I suppose the trouble is<br />

that people look for static solutions."<br />

Lemaître, who had been for a short time a post-doctoral<br />

stu<strong>de</strong>nt of Eddington, read this remark in a report on the<br />

meeting published in Observatory, and wrote to Eddington<br />

pointing out his 1927 paper. Eddington had seen that paper,<br />

but had completely forgotten about it. But now he was<br />

greatly impressed and recommen<strong>de</strong>d Lemaître's work in a<br />

letter to Nature. He also arranged for a trans<strong>la</strong>tion which<br />

appeared in MNRAS [13]. Eddington also "pointed out that<br />

it was immediately <strong>de</strong>ducible from his [Lemaître's] formu<strong>la</strong>e<br />

that Einstein's world is unstable, so that an expanding or a<br />

contracting universe is an inevitable result of Einstein's <strong>la</strong>w<br />

of gravitation."<br />

Lemaître's successful exp<strong>la</strong>nation of Hubble's improved<br />

data, carefully analysed by <strong>de</strong> Sitter in a series of papers,<br />

finally changed the viewpoint of the majority of workers in<br />

the field. At this point, after a stay with Eddington, and a visit<br />

to the Mount Wilson Observatory, Einstein rejected the cosmological<br />

term as superfluous and no longer justified [14].<br />

At the end of the paper in which he published his new view,<br />

Letter from Lemaître to Eddington


SPG Mitteilungen Nr. 37<br />

Albert Einstein and Georges Lemaître<br />

Einstein adds some remarks about the age problem which<br />

was quite severe without the L-term, since Hubble's value<br />

of the Hubble parameter was then about seven times too<br />

<strong>la</strong>rge. Einstein is, however, not very worried and suggests<br />

two ways out. First he says that the matter distribution is<br />

in reality inhomogeneous and that the approximate treatment<br />

may be illusionary. Then he adds that in astronomy<br />

one should be cautious with <strong>la</strong>rge extrapo<strong>la</strong>tions in time.<br />

After the L-force was rejected by its inventor, other cosmologists,<br />

such as Eddington and Lemaître, retained it. One<br />

major reason was that it solved the problem of the age of<br />

the Universe when the Hubble time scale was thought to<br />

be only 2 billion years (corresponding to the value H 0 ~ 500<br />

km s -1 Mpc -1 of the Hubble constant). This was even shorter<br />

than the age of the Earth. In addition, Eddington and others<br />

overestimated the age of stars and stel<strong>la</strong>r systems.<br />

For this reason, the L-term was employed again and a<br />

mo<strong>de</strong>l was revived which Lemaître had singled out from the<br />

many solutions of the Friedmann-Lemaître equations 3 . This<br />

so-called Lemaître hesitation universe is closed and has a<br />

repulsive L-force (L > 0), which is slightly greater than the<br />

value chosen by Einstein. It begins with a big bang and<br />

has the following two stages of expansion. In the first the<br />

3 I recall that Friedmann inclu<strong>de</strong>d the L-term in his basic equations. I find<br />

it remarkable that for the negatively curved solutions he pointed out that<br />

these may be open or compact (but not simply connected).<br />

46<br />

L-force is not important, the expansion is <strong>de</strong>celerated due<br />

to gravity and slowly approaches the radius of the Einstein<br />

universe. At about the same time, the repulsion becomes<br />

stronger than gravity and a second stage of expansion begins<br />

which eventually inf<strong>la</strong>tes. In this way a positive L was<br />

employed to reconcile the expansion of the Universe with<br />

the age of stars.<br />

Lemaître was also the first who associated in 1933 the<br />

cosmological constant with vacuum energy. Actually, Pauli<br />

ma<strong>de</strong> before the advent of the new quantum mechanics<br />

some simple, but profound remarks on this issue [15].<br />

To a minority of cosmologists who had read the French<br />

original of Lemaître's 1927 paper, it was known that a few<br />

paragraphs were <strong>de</strong>leted in the trans<strong>la</strong>tion, notably the one<br />

in which Lemaître assessed the evi<strong>de</strong>nce for linearity of the<br />

distance-velocity re<strong>la</strong>tion and estimated the expansion rate.<br />

Fortunately, the origin of this curious fact has very recently<br />

been completely cleared up [16]. It was Lemaître himself<br />

who trans<strong>la</strong>ted his original paper. The correspon<strong>de</strong>nce of<br />

him with the editor of MNRAS, quoted in [16], shows that<br />

Lemaître was not very interested in establishing priority. He<br />

saw no point in repeating in 1931 his findings four years<br />

earlier, since the quality of the observational data had in the<br />

meantime been improved. This is one of the reasons that<br />

Hubble was elevated to the discoverer of the expanding<br />

universe.<br />

For much more on all this I refer again to the recent excellent<br />

book [17] of our Swiss colleagues Harry Nussbaumer<br />

and Lydia Bieri.<br />

References<br />

[1] N. Straumann, The 2011 Nobel Prize in Physics, SPG Mitteilungen,<br />

Nr. 36, Januar 2012.<br />

[2] A. Sandage, Preface to [17].<br />

[3] A. Einstein, Sitzungsber. Preuss. Akad. Wiss. phys.-math. K<strong>la</strong>sse<br />

VI, 142 (1917). See also: [4], Vol. 6, p. 540, Doc. 43.<br />

[4] A. Einstein, The Collected Papers of Albert Einstein, Vols. 1-12,<br />

Princeton University Press, 1987–. See also: [http://www. einstein.<br />

caltech.edu/].<br />

[5] A. Einstein, On the Foundations of the General Theory of Re<strong>la</strong>tivity.<br />

Ref. [4], Vol. 7, Doc. 4.<br />

[6] W. <strong>de</strong> Sitter, Proc. Acad. Sci., 19, 1217 (1917); and 20, 229<br />

(1917).<br />

[7] A. S. Eddington, The Mathematical Theory of Re<strong>la</strong>tivity. Chelsea<br />

Publishing Company (1924). Third (unaltered) Edition (1975).<br />

See especially Sect.70.<br />

[8] Letter from Hermann Weyl to Felix Klein, 7 February 1919; see<br />

also Ref. [5], Vol. 8, Part B, Doc. 567.<br />

[9] H. Weyl, Phys. Zeits. 24, 230, (1923); Phil. Mag. 9, 923 (1930).<br />

[10] C. Lanczos, Phys. Zeits. 23, 539 (1922).<br />

[11] C. Lanczos, Zeits. f. Physik 17, 168 (1923).<br />

[12] A. Friedmann, Z.Phys. 10, 377 (1922); 21, 326 (1924).<br />

[13] G. Lemaître, L’univers en expansion. Ann. Soc. Sci. <strong>de</strong> Bruxelles<br />

47, 49 (1927). Trans<strong>la</strong>ted in MNRAS 91, 483 (1931).<br />

[14] A. Einstein, S. B. Preuss. Akad. Wiss. (1931), 235.<br />

[15] N. Straumann, Wolfgang Pauli and Mo<strong>de</strong>rn Physics, Space<br />

Science Reviews 148, 25 (2009).<br />

[16] M. Livio, Nature 479, 208-211 (2011).<br />

[17] H. Nussbaumer and L. Bieri, Discovering the Expanding Universe,<br />

Cambridge University Press (2009).


Über <strong>de</strong>n Einfluss <strong>de</strong>s Lichtes auf <strong>de</strong>n Menschen<br />

47<br />

Communications <strong>de</strong> <strong>la</strong> SSP No. 37<br />

Mit <strong>de</strong>n bei<strong>de</strong>n folgen<strong>de</strong>n Artikeln dringen wir in das Gebiet <strong>de</strong>r Biophysik ein. Was liegt näher im Jahrhun<strong>de</strong>rt <strong>de</strong>s Photons,<br />

als <strong>de</strong>n Einfluss <strong>de</strong>s Lichtes auf das menschliche Verhalten zu beschreiben? Vieles, was bis<strong>la</strong>ng nur empirisch erfasst<br />

wer<strong>de</strong>n konnte, kann heutzutage als Abfolge physikalisch/chemischer Zeitprozesse quantitativ erklärt und mo<strong>de</strong>lliert wer<strong>de</strong>n.<br />

Für die Beleuchtungsindustrie öffnet sich ein riesiges Aktionsfeld, um die Wirkung <strong>de</strong>s Lichtes auf das Wohlbefin<strong>de</strong>n<br />

<strong>de</strong>s Menschen technisch umzusetzen.<br />

Nicht-visuelle Lichtwirkungen beim Menschen<br />

Christian Cajochen, Zentrum für Chronobiologie, Universität Basel<br />

Ohne sichtbares Licht ist bewusstes Sehen für <strong>de</strong>n Menschen<br />

unmöglich. Einfallen<strong>de</strong>s Licht wird in <strong>de</strong>n Augen gesammelt<br />

und weiterverarbeitet, damit ein Abbild <strong>de</strong>r Umgebungswelt<br />

in unserem Gehirn entsteht. Die Netzhaut im<br />

Auge wan<strong>de</strong>lt die eintreffen<strong>de</strong>n Lichtimpulse in Nervensignale<br />

um und leitet sie über <strong>de</strong>n Sehnerv ans Gehirn weiter.<br />

Neben <strong>de</strong>n Hirngebieten, die verantwortlich fürs Sehen<br />

sind, trifft die Lichtinformation auch auf Hirnregionen, die<br />

eine wichtige Rolle für die Regulierung circadianer (circa<br />

diem = ungefähr ein Tag) Rhythmen und <strong>de</strong>r Verarbeitung<br />

von Gedächtnisinhalten und Emotionen spielen. Licht spielt<br />

somit eine zentrale "nicht-visuelle" Rolle, die zur Zeit intensiv<br />

auf <strong>de</strong>m Gebiet <strong>de</strong>r Chronobiologie, <strong>de</strong>r Sch<strong>la</strong>fforschung,<br />

<strong>de</strong>r Kognitionsforschung, aber zunehmend auch<br />

von Lichtp<strong>la</strong>nern und Architekten erforscht wird.<br />

Licht- mehr als nur fürs Sehen<br />

Lichtwirkungen, die nicht unmittelbar mit <strong>de</strong>m Sehen zusammenhängen,<br />

wer<strong>de</strong>n als sogenannte nicht-visuelle<br />

Lichtwirkungen bezeichnet, welche folgend zusammengefasst<br />

sind.<br />

Abbildung 1. Die Eichung <strong>de</strong>r inneren Uhr durch Licht. Die endogene Circadianrhythmik wird<br />

in <strong>de</strong>n suprachiasmatischen Kernen (SCN), einem Hirngebiet im vor<strong>de</strong>ren Hypotha<strong>la</strong>mus, generiert.<br />

Das Signal wird über <strong>de</strong>n paraventrikulären Nukleus (PVN), über das superiore Zervikalganglion<br />

im Rückenmark (SCG) zur Pinealis, <strong>de</strong>m Ort <strong>de</strong>r Me<strong>la</strong>toninproduktion weitergeleitet.<br />

Die Sekretion <strong>de</strong>s Hormons Me<strong>la</strong>tonin ist tagesrhythmisch unter <strong>de</strong>r Kontrolle <strong>de</strong>r SCN.<br />

Falls Dauerlicht o<strong>de</strong>r Dauerdunkelheit aufs Auge fällt, ist <strong>de</strong>r Tagesgang <strong>de</strong>s Me<strong>la</strong>tonins nicht<br />

synchronisiert und läuft „frei“, gemäss <strong>de</strong>r endogenen Circadianperiodik, die von 24 Stun<strong>de</strong>n<br />

abweicht (oberes Beispiel). In diesem Beispiel verzögert sich die Me<strong>la</strong>toninproduktion<br />

je<strong>de</strong>n Tag um ca. 0.8 Stun<strong>de</strong>n, weil die endogene Tagesperiodik 24.8 Stun<strong>de</strong>n beträgt. Falls<br />

<strong>de</strong>r periodische Licht-Dunkelwechsel, <strong>de</strong>r durch die Erdrotation genau 24 Stun<strong>de</strong>n beträgt,<br />

wahrgenommen wird, wird dieses Signal vom Auge, über die Netzhaut, via <strong>de</strong>n retinohypotha<strong>la</strong>mischen<br />

Trakt (RHT) direkt zu <strong>de</strong>n SCN weitergeleitet. Dieser Licht-Dunkelwechsel wirkt<br />

als Zeitgeber, das heisst die Endogenperiodik wird auf die Exogenperiodik <strong>de</strong>s 24-Stun<strong>de</strong>n<br />

Lichtdunkelwechsel abgeglichen, man spricht von circadianem „Entrainment“.<br />

1. Licht eicht die innere Uhr.<br />

Die Tagesrhythmik (Circadianrhythmik) ist eine Spontanrhythmik,<br />

die eigentlich in je<strong>de</strong>r Körperzelle tickt, aber von<br />

einem reiskorngrossen Hirngebiet, das ca. 2 cm hinter<br />

<strong>de</strong>r Nasenwurzel liegt, kontrolliert wird. Dieses Hirngebiet<br />

liegt in <strong>de</strong>n sogenannten suprachiasmatischen Kernen<br />

und umfasst ungefähr 10 bis 20000 Nervenzellen, die als<br />

Schrittmacher fungieren, in<strong>de</strong>m sie eine endogene Spontanaktivität<br />

mit einer Rhythmik von 24 Stun<strong>de</strong>n generieren<br />

(Abbildung 1). Falls kein Licht vorhan<strong>de</strong>n ist, o<strong>de</strong>r Dauerlicht<br />

herrscht, misst man bei Menschen eine Spontanrhythmik,<br />

die im Durchschnitt etwas länger als 24 Stun<strong>de</strong>n, nämlich<br />

24.2 Stun<strong>de</strong>n beträgt. Die Perio<strong>de</strong>nlänge ist individuell<br />

verschie<strong>de</strong>n und zum Teil genetisch <strong>de</strong>terminiert. So haben<br />

Frühtypen (Lerchen) eher kürzere als 24 Stun<strong>de</strong>n Perio<strong>de</strong>nlängen,<br />

während Abendtypen (Eulen) eher <strong>la</strong>ngsamer ><br />

24.8 Stun<strong>de</strong>n ticken. Leben Menschen unter Dauerdunkelheit<br />

(z.B. Sehbehin<strong>de</strong>rte) o<strong>de</strong>r Dauerlicht, <strong>la</strong>ufen die Tagesrhythmen<br />

frei- gemäss <strong>de</strong>r endogenen Periodik (Abbildung<br />

1 oberes Beispiel). Das heisst, die Rhythmen sind nicht<br />

auf <strong>de</strong>n Tag-Nachtwechsel abgestimmt. Der immer wie<strong>de</strong>rkehren<strong>de</strong><br />

Licht-Dunkelwechsel, <strong>de</strong>m wir normalerweise<br />

täglich ausgesetzt sind, gleicht diese Spontanrhythmik<br />

auf die exakte 24-Stun<strong>de</strong>n Periodik<br />

<strong>de</strong>r Erdrotation ab (Abbildung 1 unteres<br />

Beispiel). Licht wirkt <strong>de</strong>shalb<br />

als Zeitgeber. Zuwenig Licht für einige<br />

Zeit, o<strong>de</strong>r Licht zur falschen<br />

Zeit (z.B. bei <strong>de</strong>r Schichtarbeit),<br />

bringt die innere Uhr aus <strong>de</strong>m Lot<br />

mit <strong>de</strong>m natürlichen 24-Stun<strong>de</strong>n-<br />

Licht-Dunkelwechsel, was zu circadianen<br />

Sch<strong>la</strong>fstörungen führt. Das<br />

geschieht sehr oft bei Leuten mit<br />

Sehbehin<strong>de</strong>rungen, bei Schichtarbeitern<br />

o<strong>de</strong>r wenn man nach <strong>de</strong>m<br />

Überfliegen von mehreren Zeitzo-<br />

nen mit einem "Jet<strong>la</strong>g" zu kämpfen<br />

hat. Folgen einer dauern<strong>de</strong>n circadianen<br />

Desynchronisation sind neben<br />

Sch<strong>la</strong>fstörungen auch gastrointestinale<br />

Beschwer<strong>de</strong>n, Depressionen<br />

und kardiovaskuläre Störungen. Dosis<br />

Wirkungsstudien haben ergeben,<br />

dass beim Menschen Lichtstärken<br />

ab ca. 100 lux wirksam sind für die<br />

Eichung <strong>de</strong>r inneren Uhr (Abbildung<br />

2). Mit Morgenlicht verschiebt man<br />

die innere Uhr nach vorne, also in<br />

eine östliche Zeitzone, während


SPG Mitteilungen Nr. 37<br />

Abbildung 2. Dosis-Wirkungsbeziehung<br />

zwischen <strong>de</strong>r Beleuchtungsstärke<br />

und <strong>de</strong>r phasenverschieben<strong>de</strong>n<br />

Wirkung<br />

von Licht nach Zeitzer 1999.<br />

Je<strong>de</strong>s Quadrat symbolisiert eine<br />

Versuchsperson, die während<br />

6.5 Stun<strong>de</strong>n mit je einer unterschiedlichen<br />

Lichtstärke (2-<br />

10000 lux) bestrahlt wur<strong>de</strong>.<br />

Licht am Abend die innere Uhr zurückverschiebt in eine<br />

westliche Zeitzone. Mit einem einzigen Lichtpuls von 10000<br />

lux für 3 Stun<strong>de</strong>n kann man die Circadianrhythmik bis zu 2<br />

Stun<strong>de</strong>n vor- bzw. nachverschieben.<br />

2. Licht macht wach.<br />

Eine tagaktive Spezies wie <strong>de</strong>r Mensch empfin<strong>de</strong>t das<br />

Licht als "Wachstimulus". Im Gegensatz dazu wirkt Licht<br />

bei nachtaktiven Tieren sch<strong>la</strong>finduzierend. Ab etwa 100<br />

lux wirkt Licht bei jungen Menschen wachheitssteigernd.<br />

Das entspricht einer nicht allzu starken Raumbeleuchtung.<br />

Diese Helligkeit kann aber schon vor einem Computerbildschirm<br />

sitzend erreicht wer<strong>de</strong>n. Neben <strong>de</strong>r Lichtstärke<br />

spielt auch die Wellenlänge, also die farbliche Zusammensetzung<br />

<strong>de</strong>s Lichts, eine wichtige Rolle. So hat Licht<br />

mit hohen B<strong>la</strong>uanteilen eine stärkere wachheitssteigern<strong>de</strong><br />

Wirkung als Licht in an<strong>de</strong>ren Farben, weil spezielle Lichtrezeptoren<br />

in <strong>de</strong>r Netzhaut beson<strong>de</strong>rs bei B<strong>la</strong>ulicht aktiv<br />

wer<strong>de</strong>n, und so die nicht-visuellen Lichtwirkungen gezielt<br />

auf das Gehirn weitervermitteln. Es wird vermutet, dass die<br />

Rezeptoren für die nicht-visuellen Lichtwirkungen eng mit<br />

<strong>de</strong>n k<strong>la</strong>ssischen visuellen Rezeptoren, <strong>de</strong>n Stäbchen und<br />

Zäpfchen, kommunizieren. Je nach Lichtstärke und Dauer<br />

<strong>de</strong>s Lichtstimulus beteiligen sich Stäbchen, Zäpfchen<br />

o<strong>de</strong>r sogenannte "intrinsisch photosensitive Ganglienzellen<br />

in <strong>de</strong>r Netzhaut" unterschiedlich stark an <strong>de</strong>r Vermittlung<br />

nicht-visueller Lichtwirkungen.<br />

3. Licht macht helle.<br />

Neue Untersuchungen zeigen, dass Licht auch direkte<br />

Auswirkungen auf die kognitive Leistungsfähigkeit von<br />

Menschen hat. Wir konnten zum Beispiel feststellen, dass<br />

Versuchspersonen, die eine Lernaufgabe vor einem mit<br />

Leuchtdio<strong>de</strong>n (LED) mit vielen B<strong>la</strong>uanteilen bestückten<br />

Abbildung 3. Positive<br />

Wirkung von LED Computerbildschirmen<br />

auf<br />

höhere kognitive Funktionen<br />

im Vergleich zu<br />

nicht-LED Computerbildschirmen,<br />

die weniger<br />

B<strong>la</strong>uanteile im<br />

Lichtspektrum haben.<br />

48<br />

Computerbildschirm besser lösten, als wenn sie die gleiche<br />

Aufgabe vor einem "normalen" Computerbildschirm<br />

ohne LEDs <strong>de</strong>r gleichen Lichtstärke meistern mussten (Abbildung<br />

3). Neben <strong>de</strong>m Gedächtnis für <strong>de</strong>k<strong>la</strong>ratives Lernen<br />

wer<strong>de</strong>n auch sogenannt höhere kognitive Funktionen im<br />

Bereich <strong>de</strong>r Exekutivkontrolle und <strong>de</strong>r Daueraufmerksamkeit<br />

mit b<strong>la</strong>uangereichertem Licht im Vergleich zu Glüh<strong>la</strong>mpenlicht<br />

verbessert.<br />

4. Licht wirkt anti<strong>de</strong>pressiv.<br />

Die Lichttherapie ist das Mittel erster Wahl bei <strong>de</strong>r Behandlung<br />

von Winter<strong>de</strong>pressionen, und <strong>de</strong>ren Kosten wer<strong>de</strong>n<br />

schon seit über 20 Jahren von <strong>de</strong>n <strong>Schweizerische</strong>n Krankenkassen<br />

vergütet. Zu<strong>de</strong>m zeigen neue Studien, dass<br />

Licht auch bei an<strong>de</strong>ren psychiatrischen Erkrankungen anti<strong>de</strong>pressiv<br />

und gegen die häufige Tagesmüdigkeit wirkt.<br />

Hier ist <strong>de</strong>r Wirkungsmechanismus weitgehend unbekannt.<br />

Neuere Untersuchungen mit bildgeben<strong>de</strong>n Verfahren für die<br />

Hirnaktivitätsmessung zeigen, dass Licht direkt auf die sogenannten<br />

Man<strong>de</strong>lkerne wirkt. Das ist ein wichtiges Hirngebiet<br />

für die Verarbeitung von Gefühlen und Emotionen.<br />

Konsequenzen für das Licht am Arbeitsp<strong>la</strong>tz<br />

Am Arbeitsp<strong>la</strong>tz müssen die Lichtbedingungen vor allem<br />

bezüglich visuellem Komfort optimal abgestimmt wer<strong>de</strong>n.<br />

In letzter Zeit spielen aber auch die nicht-visuellen Lichtwirkungen<br />

zunehmend eine grössere Rolle. Aufgrund <strong>de</strong>r neuen<br />

Forschungsresultate wie Lichtqualität und Wohlbefin<strong>de</strong>n<br />

zusammenhängen, hat die Lampenindustrie ein neues Geschäftsfeld<br />

ent<strong>de</strong>ckt. So erhofft man sich positive Effekte<br />

auch von besserem Licht am Arbeitsp<strong>la</strong>tz. Ob diese Hoffnung<br />

berechtigt ist, haben Forscher <strong>de</strong>r Universität Surrey<br />

in einem Bürogebäu<strong>de</strong> in Eng<strong>la</strong>nd untersucht. Sie bestrahlten<br />

je ein Stockwerk zuerst vier Wochen mit weissem Licht<br />

und dann vier Wochen mit b<strong>la</strong>u angereichertem Licht o<strong>de</strong>r<br />

umgekehrt. Sowohl Aufmerksamkeit als auch Gemüts<strong>la</strong>ge,<br />

Leistung, Konzentration und Sehkomfort waren beim<br />

b<strong>la</strong>uweissen Licht signifikant verbessert. Auch konnten die<br />

Proban<strong>de</strong>n in <strong>de</strong>r Nacht besser sch<strong>la</strong>fen. Wichtige Lichtquellen<br />

im Büro sind nicht nur Lampen, son<strong>de</strong>rn auch die<br />

Bildschirme. Biologisch beson<strong>de</strong>rs aktiv sind Mo<strong>de</strong>lle <strong>de</strong>r<br />

neueren Generation mit LEDs, <strong>de</strong>nn sie emittieren stark<br />

im b<strong>la</strong>uen Wellenlängenbereich. Neben <strong>de</strong>r geistigen Leistungsfähigkeit<br />

wie oben erwähnt, wirken LED Bildschirme<br />

auch auf physiologische Messgrössen beim Menschen wie<br />

zum Beispiel die abendliche Produktion <strong>de</strong>s Dunkelhormons<br />

Me<strong>la</strong>tonin und die elektro-enzephalographisch gemessene<br />

Hirnaktivität (siehe 1).<br />

Neben <strong>de</strong>r Lichtgestaltung mit künstlichem Licht im Büro<br />

ist aber auch <strong>de</strong>r Einbezug von natürlichem Tageslicht sehr<br />

wichtig. Schon 1971 <strong>de</strong>finierte <strong>de</strong>r Biologe Stephen Boy<strong>de</strong>n<br />

das Bedürfnis nach Tageslicht als eine <strong>de</strong>r "well-being<br />

needs": als Voraussetzung für ein Leben ohne stressbedingte<br />

Krankheiten. Man weiss, dass Mitarbeiter, die wenig<br />

Tageslicht abbekommen, unzufrie<strong>de</strong>ner und gesundheitlich<br />

anfälliger wer<strong>de</strong>n (Berliner Ergonomic Instituts für Arbeits-<br />

und Sozialforschung). Darum arbeiten Physiker, Lichtp<strong>la</strong>ner,<br />

Architekten und Chronobiologen fieberhaft an ausgeklügelten<br />

Systemen und Gebäu<strong>de</strong>grundrissen, um das Tageslicht<br />

bis in hinterste Zimmerwinkel zu leiten. Eine i<strong>de</strong>ale Lösung<br />

wäre, eine biodynamische Lichtquelle am Arbeitsp<strong>la</strong>tz zu<br />

haben, die punkto Intensität und Wellenlänge (Farbe) <strong>de</strong>m


natürlichen Wechsel <strong>de</strong>s Tagelichts möglichst nahe kommt.<br />

Denn evolutionsgeschichtlich gesehen, wur<strong>de</strong> <strong>de</strong>r Mensch<br />

nicht fürs Büro konzipiert. Für uns wäre es normal, wenn<br />

wir tagsüber draussen im Hellen wären. Einen sehr innovativen<br />

Ansatz, dieses Dilemma zu entschärfen, kommt<br />

<strong>de</strong>rzeit vom Fraunhofer Institut, das eine dynamische Licht<strong>de</strong>cke<br />

mit Tausen<strong>de</strong>n kleiner LEDs entwickelt hat, welche<br />

<strong>de</strong>m Büroangestellten das Gefühl vermittelt, unter freiem<br />

Himmel zu arbeiten (http://www.fraunhofer.<strong>de</strong>/en/press/research-news/2012/january/sky-light-sky-bright.html).<br />

Erste<br />

Untersuchungen zeigen, dass ein solches Lichtszenario vor<br />

allem bei <strong>de</strong>r Verrichtung von kreativen Arbeiten am Computer<br />

auf grossen Ank<strong>la</strong>ng stösst.<br />

Neben dieser kreativen technischen Lösung <strong>de</strong>r Bürobeleuchtung<br />

versucht man eine nüchterne Vornorm zu erstellen,<br />

um die wichtige Begriffe zur cirkadianen, nicht-visuellen<br />

Wirkung von Licht auf <strong>de</strong>n Menschen zu klären (DIN<br />

V 5031-100). Das Ziel ist es, aufzeigen, wann und wie biologisch<br />

wirksame Beleuchtung einzusetzen ist, und wie viel<br />

wirksamer sie ist als normales Licht. Viele Forscher g<strong>la</strong>uben<br />

Communications <strong>de</strong> <strong>la</strong> SSP No. 37<br />

allerdings, dass es für eine solche Richtlinie noch zu früh<br />

ist. Es sind noch zu viele Fragen offen, und es mangelt an<br />

Studienergebnissen, um sich <strong>de</strong>rart festzulegen. Es ist aber<br />

sehr positiv, dass neben <strong>de</strong>n visuellen Aspekten nun vermehrt<br />

die Wirkungen <strong>de</strong>s Lichts auf die innere Uhr und <strong>de</strong>ren<br />

Regu<strong>la</strong>tion <strong>de</strong>s Sch<strong>la</strong>f-Wachrhythmus, <strong>de</strong>r kognitiven<br />

Leistung sowie <strong>de</strong>r Stimmung berücksichtigt wer<strong>de</strong>n, <strong>de</strong>nn<br />

Licht ist mehr als nur Helligkeit.<br />

Prof. sc. natw. Christian Cajochen leitet das Zentrum<br />

für Chronobiologie an <strong>de</strong>r Psychiatrischen Universitätsklinik<br />

in Basel. Seine Forschungsinteressen umfassen<br />

die circadiane und homöostatische Regu<strong>la</strong>tion<br />

<strong>de</strong>r Sch<strong>la</strong>f/Wachrhythmik beim Menschen, die nichtvisuelle<br />

Lichtwirkung in <strong>de</strong>r Chronobiologie, sowie<br />

circadiane Sch<strong>la</strong>f-Wachstörungen bei psychiatrischen<br />

Patienten.<br />

Lighting Application for Non-Visual Effects of Light<br />

Introduction<br />

The discovery of me<strong>la</strong>nopsin containing retinal ganglion<br />

cells with intrinsic photoreception (ipRGC) at the beginning<br />

of this millennium [1, 2, 3] evoked interest not only in the<br />

research community, but also in the lighting industry. Beneficial<br />

health effects of light have been discussed not only<br />

since evi<strong>de</strong>nce for the use of light in psychiatric disor<strong>de</strong>r<br />

therapy was achieved. One obvious drawback for broa<strong>de</strong>r<br />

application was always the need for additional energy, because<br />

clear effects with the typical light used for illumination<br />

purposes were <strong>de</strong>pen<strong>de</strong>nt on higher illumination levels.<br />

It now has turned out, that the lighting used in previous <strong>la</strong>boratory<br />

and application studies was not sufficiently adapted<br />

to the non-visual reception system and cofactors could<br />

have masked these effects consi<strong>de</strong>rably. Though there is<br />

still discussion about the optimal lighting for non-visual effects<br />

with minimum energy use, there is no doubt in the<br />

scientific community that appropriately timed stimu<strong>la</strong>tion of<br />

the ipRGC during the day and avoidance of stimu<strong>la</strong>tion in<br />

the night stabilizes our circadian system. This leads to a<br />

more efficient nocturnal sleep and better daytime activity<br />

and alertness levels. Alertness is also directly affected by<br />

input to the ipRGCs, resulting in acutely increased performance<br />

in <strong>la</strong>boratory testing and higher activity levels in corresponding<br />

nuclei of the brain [4]. This article will highlight<br />

how to transfer scientific results on non-visual effects - also<br />

called biological effects - of light into lighting application.<br />

Andreas Wojtysiak, Alfred Wacker and Dieter Lang, Osram AG<br />

sponse is the curve for nocturnal me<strong>la</strong>tonin suppression.<br />

Several mo<strong>de</strong>ls have been <strong>de</strong>veloped to <strong>de</strong>scribe this response<br />

with minor <strong>de</strong>viations when these were used to rate<br />

white light with respect to its circadian input. The mo<strong>de</strong>ls of<br />

Gall [5] and Rea [6] differ with respect to the effect of light<br />

in the green wavelength region, which might be of interest<br />

when comparing small waveband (colored) light sources.<br />

In total, it can clearly be stated, that blue spectral components<br />

in light act on the internal clock system by affecting<br />

circadian amplitu<strong>de</strong> and phase.<br />

Fig. 1: action spectrum c(�) for biological effects and visual sensitivity<br />

curve v(�) combined from different sources.<br />

Lighting Technology for non-visual effects<br />

The mo<strong>de</strong>l from Gall [5] was implemented in the German<br />

prestandard DIN V 5031-100:2009 [7], which contains<br />

Light Sources<br />

terms and <strong>de</strong>finitions for biological effects of light. Us-<br />

A number of studies on the ipRGC have shown that the<br />

action spectrum of their photopigment me<strong>la</strong>nopsin peaks<br />

in the blue spectrum around 480 nm. No nervous cell responses<br />

were elicited by yellow or red light. The best <strong>de</strong>scribed<br />

action spectrum for a more complex biological re-<br />

49<br />

ing the metrics <strong>de</strong>scribed there, it is possible to rate <strong>la</strong>mp<br />

spectra according to their biological efficiency in addition<br />

to light output for vision. A <strong>la</strong>mp spectrum with a higher socalled<br />

biological action factor (a ≥ 0,8) has a high frac-<br />

biol v<br />

tion of short wavelength spectrum, a high corre<strong>la</strong>ted color


SPG Mitteilungen Nr. 37<br />

temperature, and is generally more suitable to represent the<br />

active and day time part of the circadian day, especially in<br />

the morning hours. Cool white light sources including LEDs<br />

and fluorescent <strong>la</strong>mps may be used for this purpose. While<br />

stabilizing circadian rhythms when applied over the day,<br />

this spectrum is not suited for the regenerative and nocturnal<br />

phases, typically in the <strong>la</strong>te evening and night. Warm<br />

white <strong>la</strong>mps with low biological action factors (a biol v ≤ 0,4)<br />

have a lower influence on the ipRGCs and on the internal<br />

clock. These <strong>la</strong>mps are more suited when light for vision is<br />

nee<strong>de</strong>d, but an influence on the circadian phase or an alerting<br />

effect should be avoi<strong>de</strong>d. Halogen <strong>la</strong>mps, warm white<br />

LEDs or fluorescent <strong>la</strong>mps are suited to achieve this.<br />

To ba<strong>la</strong>nce best with visual and ecological needs, it seems<br />

advisable to use different CCT <strong>la</strong>mps or light sources with<br />

high energy efficiency over the day and use them as nee<strong>de</strong>d.<br />

This will result in higher instal<strong>la</strong>tion costs in the short<br />

term, but will be the most sustainable solution in the long<br />

run.<br />

Luminaires<br />

The biological photoreceptors are wi<strong>de</strong>ly distributed over<br />

the eye’s retina and more sensitive in the nasal and inferior<br />

region than in the upper part [8]. For biological effects it is<br />

essential to address many of these receptors, like the sky<br />

does in nature. Good effects indoors will be achieved with<br />

light coming from the upper field of view and covering a<br />

wi<strong>de</strong> solid angle, e. g. from the ceiling and the upper surfaces<br />

of walls. Consequently, biologically effective illumination<br />

requires p<strong>la</strong>nning and luminaires fitting to this concept,<br />

with a high proportion of indirect lighting or <strong>la</strong>minar <strong>de</strong>sign,<br />

thus leading to suitable vertical illumination levels. Up to<br />

now, no dose-response curve <strong>de</strong>scribing the re<strong>la</strong>tionship<br />

between lighting area and biological effect size has been<br />

established. In the meanwhile, the general recommendation<br />

for application must be to "maximize" the lighting area,<br />

while keeping luminance levels low in or<strong>de</strong>r to avoid g<strong>la</strong>re<br />

effects.<br />

Controls and Light Management Systems (LMS)<br />

Natural daylight is highly variable, especially in terms of illuminance<br />

levels but also in terms of color temperature. It<br />

Fig. 2: Lighting concept with pendant luminaires for day-time office<br />

workers including non-visual effects of light:<br />

Left: Day scenario with task lighting by warm white direct light and<br />

50<br />

is clear that the dynamics of daylight follows a rhythmic<br />

change in the course of day and night, and that this is a<br />

benchmark for good artificial lighting also. For day time application,<br />

changes in biological efficiency of applied lighting<br />

with positive impact on circadian rhythm stability, sleep/<br />

wake cycle, alertness and cognitive performance can be<br />

achieved with light management technology already avai<strong>la</strong>ble.<br />

The biological effectiveness in nature emanates from<br />

a combination of spectral composition and illuminance<br />

level, being in average at highest level around noon and at<br />

minimum in the night. Technically, this situation can be simu<strong>la</strong>ted<br />

by dimming the re<strong>la</strong>tive contribution of <strong>la</strong>mps with<br />

different light colors against each other in or<strong>de</strong>r to have a<br />

white light color but with different portions of blue spectral<br />

components appropriate to the respective daytime.<br />

Warm colors with only little biological effects can maintain<br />

good vision without strongly influencing circadian effects<br />

in the evening, while cooler colors with enriched blue content<br />

used over the day are providing good vision and higher<br />

biological effectiveness simultaneously. The evening and<br />

night scenario also allows to reduce the <strong>la</strong>minar light distribution<br />

and a change to spot-like illumination exclusively.<br />

This allows also substantial reductions in amount of energy<br />

nee<strong>de</strong>d for lighting, as only the visual tasks and emotional<br />

aspects have to be respected in these hours. Reductions<br />

in energy consumption may further be achieved by including<br />

sensors and intelligent controls, without <strong>de</strong>ductions in<br />

illumination quality.<br />

Lighting Application Studies<br />

Application studies (like the examples below) showed, that<br />

non-visual effects of light may be achieved with mo<strong>de</strong>rate<br />

effort in energy consumption by using mo<strong>de</strong>rn lighting systems<br />

and control. The general strategy is to differentiate<br />

lighting according to time of the day and needs.<br />

Better lighting in nursing homes improved the nocturnal<br />

sleep and daytime activity as well as psychological scores<br />

of el<strong>de</strong>rly persons in several studies [9, 10]. Old persons are<br />

especially <strong>de</strong>pen<strong>de</strong>nt on a lighting change because of their<br />

reduced transmission of the dioptric apparatus. The hazing<br />

and yellowing of the lenses with age reduces drastically the<br />

additional cool white light to the ceiling and upper wall to address<br />

ipRGC. Right: Evening and night scenario with warm white task<br />

lighting only.


short wavelength light arriving at the retina. This effect was<br />

counteracted by the lighting.<br />

A stronger synchronization by daytime office light and improvements<br />

in subjective performance in office workers<br />

have been achieved with fluorescent <strong>la</strong>mps of higher CCT<br />

than the typical 4000 K <strong>la</strong>mps used in this application [11,<br />

12]. For daytime indoor workers, this could be a first step<br />

to a better lighting but it is nee<strong>de</strong>d to say that this scenario<br />

might not be optimal for <strong>la</strong>te office hours.<br />

Comparable benefits have been shown in schools, leading<br />

to increased scho<strong>la</strong>r performance of the pupils and in<br />

hospital settings, where the recovery phase could be shortened.<br />

Conclusion<br />

Although scientific researchers still have numerous questions<br />

in this field, these first results of application of the new<br />

findings on non-visual effects of light open a very promising<br />

future for improvements in interior illumination. This is<br />

true for the professional lighting as well as for the lighting<br />

at home.<br />

References<br />

[1] Brainard, G. C., et al. (2001). "Action spectrum for me<strong>la</strong>tonin regu<strong>la</strong>tion<br />

in humans: evi<strong>de</strong>nce for a novel circadian photoreceptor." J Neurosci<br />

21(16): 6405-12.<br />

[2] Thapan, K., et al. (2001). "An action spectrum for me<strong>la</strong>tonin suppression:<br />

evi<strong>de</strong>nce for a novel non-rod, non-cone photoreceptor system in humans."<br />

J Physiol 535 (Pt 1): 261-7.<br />

[3] Berson, D. M., et al. (2002). "Phototransduction by retinal ganglion cells<br />

that set the circadian clock." Science 295(5557):1070-3.<br />

[4] Van<strong>de</strong>walle, G., P. Maquet, et al. (2009). "Light as a modu<strong>la</strong>tor of cognitive<br />

brain function." Trends Cogn Sci 13(10): 429-38.<br />

[5] Gall, D., Bieske, K. (2004). Definition and measurement of circadian<br />

radiometric quantities. CIE Symposium '04: Light and Health: non-visual<br />

effects, University of Performing Arts, Vienna, CIE.<br />

[6] Rea, M. S., et al. (2005). "A mo<strong>de</strong>l of photo¬transduction by the human<br />

circadian system." Brain Res Brain Res Rev 50(2): 213-28.<br />

[7] DIN V 5031-100:2009-06 Optical radiation physics and illuminating engineering<br />

- Part 100: Non-visual effects of ocu<strong>la</strong>r light on human beings<br />

- Quantities, symbols and action spectra<br />

[8] Glickman, G., et al. (2003). "Inferior retinal light exposure is more effective<br />

than superior retinal exposure in suppressing me<strong>la</strong>tonin in humans." J<br />

Biol Rhythms 18(1):71-9.<br />

[9] Van Someren, E. J., A. Kessler, et al. (1997). "Indirect bright light improves<br />

circadian rest-activity rhythm disturbances in <strong>de</strong>mented patients." Biol<br />

Psychiatry 41(9): 955-63.<br />

[10] Riemersma-van <strong>de</strong>r Lek, R. F., D. F. Swaab, et al. (2008). "Effect of<br />

bright light and me<strong>la</strong>tonin on cognitive and noncognitive function in el<strong>de</strong>rly<br />

resi<strong>de</strong>nts of group care facilities: a randomized controlled trial." JAMA<br />

299(22): 2642-55.<br />

[11] Vetter, C., M. Juda et al. (2011) “Blue-enriched office light competes<br />

with natural light as a zeitgeber”; Scand J Work Environ Health 37(5): 437-<br />

445<br />

[12] Vio<strong>la</strong>, A. U., L. M. James, et al. (2008). "Blue-enriched white light in<br />

the workp<strong>la</strong>ce improves self-reported alertness, performance and sleep<br />

quality." Scand J Work Environ Health 34(4): 297-306.<br />

51<br />

Jet Lag and Shift Work<br />

Communications <strong>de</strong> <strong>la</strong> SSP No. 37<br />

Natural light sets the internal clock, but humans often<br />

challenge this system with more or less voluntary<br />

changes in day/night behavior. Jet travel is such<br />

a challenge, shift work is another. The internal clock<br />

shifts about 1 hr per day in such scenarios. With timed<br />

biologically active light (as <strong>de</strong>scribed in the main text)<br />

and avoidance of light at other appropriate times, it<br />

appears possible to adapt to a new time zone much<br />

faster. Shifts of more than 3 hrs with one light episo<strong>de</strong><br />

have been achieved in <strong>la</strong>boratory settings [a]. But at<br />

present, there is no reliable and robust scientific base<br />

how to handle lighting for shift workers. Actual recommendations<br />

range from shortening the shift schedules<br />

in or<strong>de</strong>r to reduce frequent massive circadian disruption<br />

as stated by some ergonomics experts to shifting<br />

totally (also in the worker’s free times) to the new<br />

shift schedule as proposed by chronobiologists, with<br />

consi<strong>de</strong>rable consequences for social life of those affected<br />

[b].<br />

[a] Khalsa, S. B., M. E. Jewett, et al. (2003). "A phase response<br />

curve to single bright light pulses in human subjects." J Physiol 549<br />

(Pt 3): 945-52.<br />

[b] Roenneberg, T. (2009): "New approaches in investigating the<br />

consequences of shift-work". 3rd DIN Expert Panel Effect of Light<br />

on Human Beings, DIN. Berlin, Beuth Ver<strong>la</strong>g.<br />

Andreas Wojtysiak ist promovierter Biologe und nach<br />

Tätigkeiten am IMST in Kamp-Lintfort, in <strong>de</strong>r Medizinischen<br />

Fakultät <strong>de</strong>r privaten Universität Witten/Her<strong>de</strong>cke<br />

und bei BenQ Mobile in München seit 2008<br />

bei <strong>de</strong>r Osram AG München als Innovation Manager<br />

Light & Health beim Strategic Innovation Management<br />

(SIM) aktiv.<br />

Alfred Wacker (Dipl.-Ing.) war früher Leiter <strong>de</strong>s Marketings<br />

bei OSRAM und ist nun für seine Firma beratend<br />

und in internationalen Gremien und Komitees<br />

tätig, u. A. im "Lighting Technology Standards Committee<br />

NA 058-00-27 AA (FNL 27) 'Effects of light on<br />

human beings' at DIN", <strong>de</strong>m auch die Schweiz angehört.<br />

Dieter Lang (Dipl.-Phys.) forschte früher bei Osram<br />

an "ceramic metal hali<strong>de</strong> <strong>la</strong>mps" und ist seit <strong>de</strong>r Formierung<br />

<strong>de</strong>s Corporate Innovation Management Department<br />

im Jahr 2004 als Head Europe zuständig für<br />

Innovationen.


Warum selber<br />

bauen?<br />

Fokus auf das Wesentliche<br />

Sie wünschen sich mehr Zeit für Forschung? Sie<br />

wür<strong>de</strong>n Ihre Ergebnisse gern früher und häufiger<br />

publizieren? Unser Lock-In-Verstärker erspart<br />

Ihnen die Zeit, die Sie mit <strong>de</strong>m Entwickeln eigener<br />

Messschaltungen verbringen.<br />

Vereinfachter Laboraufbau<br />

Unser neuer UHFLI ist mit zwei unabhängigen Lock-<br />

In-Einheiten ausgestattet und dreimal schneller<br />

als je<strong>de</strong>r an<strong>de</strong>re kommerzielle Lock-In-Verstärker.<br />

Signalgenerator, Oszilloskop, Frequenzgangana-<br />

lysator und FFT-Spektrumanalysator sind im Gerät<br />

integriert. Das Ergebnis: weniger Kabel, mehr<br />

Zuverlässigkeit.<br />

www.zhinst.com<br />

600 MHz<br />

Lock-In Amplifier<br />

2 units<br />

100 dB dynamic<br />

reserve<br />

Technologieführer für Lock-In-Verstärker<br />

Zurich Instruments steht für unübertroffenes Knowhow<br />

auf <strong>de</strong>n Gebieten <strong>de</strong>r Quanten- und Nanophysik,<br />

Sensorik und Aktorik, Laserspektroskopie und<br />

Biotechnologie. Präzise und verlässliche Ergebnisse,<br />

die zeitnah veröffentlicht wer<strong>de</strong>n – das ist unser<br />

Ziel für Sie. Your Application. Measured.<br />

Zurich<br />

Instruments

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!