26.01.2013 Views

Membrane Technology for Enzyme Separations - NBV

Membrane Technology for Enzyme Separations - NBV

Membrane Technology for Enzyme Separations - NBV

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Membrane</strong> <strong>Technology</strong> <strong>for</strong> <strong>Enzyme</strong> <strong>Separations</strong><br />

DSM<br />

<strong>Membrane</strong> <strong>Technology</strong><br />

<strong>for</strong> <strong>Enzyme</strong> <strong>Separations</strong><br />

A case on efficient downstream processing<br />

in enzymatic routes to cefalosporins<br />

Emile van de Sandt and Marijn Rijkers


<strong>Membrane</strong> <strong>Technology</strong> <strong>for</strong> <strong>Enzyme</strong> <strong>Separations</strong><br />

Contents<br />

• Introduction<br />

DSM<br />

– DSM<br />

– The process<br />

• The problem<br />

• First results<br />

• Process options<br />

• Process design<br />

• Project realization<br />

• Outlook


DSM: Company Profile 2009<br />

<strong>Membrane</strong> <strong>Technology</strong> <strong>for</strong> <strong>Enzyme</strong> <strong>Separations</strong><br />

Life Sciences & Materials Sciences Company<br />

Global top 30 Chemical Industry<br />

DSM<br />

Net sales 2008: €9.3 billion<br />

Net profit 2008: €577 million<br />

23,591 employees<br />

of which in R&D: approx. 2,200<br />

of which in the Netherlands: approx. 7,200<br />

>200 locations on 5 continents<br />

No 1 or 2 in Dow Jones Sustainability Index<br />

in 2004 to 2008<br />

Strong technological toolbox:<br />

Integrated use of biotechnology, biocatalysis,<br />

organic chemistry, chemical and polymer<br />

technology, material sciences


DSM: Ability to change<br />

100 years of successful trans<strong>for</strong>mations<br />

<strong>Membrane</strong> <strong>Technology</strong> <strong>for</strong> <strong>Enzyme</strong> <strong>Separations</strong><br />

Evolution<br />

DSM<br />

Coal<br />

Fertilizers<br />

Petrochemicals<br />

Life Science Products<br />

Per<strong>for</strong>mance Materials<br />

1902 1930 1950 1970 1990 2000 2010<br />

Classical Biotechnology<br />

Bioterials / Biologics<br />

sustainability<br />

Technological competences<br />

Mechanical engineering<br />

Chemical engineering<br />

Polymer technology<br />

Material science<br />

Fine chemicals<br />

Modern Biotechnology


<strong>Membrane</strong> <strong>Technology</strong> <strong>for</strong> <strong>Enzyme</strong> <strong>Separations</strong><br />

DSM Antibiotics Supply Chain<br />

DSM<br />

Glucose<br />

Side chain<br />

Glucose<br />

Side chain<br />

Glucose<br />

enzymatic<br />

conversions<br />

fermentation<br />

Raw materials<br />

Pen G 6-APA<br />

7-ADCA<br />

Intermediates<br />

Amoxicillin<br />

Ampicillin<br />

(di)Cloxacillin<br />

Flucloxallin<br />

Cephalexin<br />

Cefadroxil<br />

Cephradine<br />

Clavulanic acid<br />

Nystatine<br />

Enzyms<br />

Bulk-actives<br />

Penicillins<br />

Cephalosporins<br />

Other<br />

Formulation Retail


<strong>Membrane</strong> <strong>Technology</strong> <strong>for</strong> <strong>Enzyme</strong> <strong>Separations</strong><br />

Innovation: Non-Natural Compound<br />

Metabolic Engineering, Biocatalysis, Bioprocessing<br />

DSM<br />

13 chemical steps<br />

replaced by: by<br />

1 fermentation +<br />

2 enzymatic steps<br />

65% less energy and<br />

50% lower cost<br />

Life Cycle Analysis<br />

Area use<br />

Resource<br />

consumption<br />

and materials<br />

Energy<br />

consumption<br />

1,00<br />

0,50<br />

0,00<br />

Risk<br />

potential<br />

Emissions<br />

Toxicity<br />

potential


<strong>Membrane</strong> <strong>Technology</strong> <strong>for</strong> <strong>Enzyme</strong> <strong>Separations</strong><br />

DSM<br />

Cefalexin Green Alternative (CEGA)<br />

O<br />

H NH 2<br />

Enzymatic production process <strong>for</strong> Cefalexin<br />

Start-up Start up: : 1997 in Barcelona<br />

NH 2<br />

+<br />

H 2N<br />

O<br />

H H<br />

N<br />

S<br />

CO 2<br />

Pen-G-acylase<br />

H 2 O<br />

O<br />

H NH2<br />

Phenylglycine amide 7-ADCA ADCA Cefalexin<br />

H<br />

N<br />

O<br />

H H<br />

N<br />

S<br />

CO 2


<strong>Membrane</strong> <strong>Technology</strong> <strong>for</strong> <strong>Enzyme</strong> <strong>Separations</strong><br />

Conversion<br />

(Immobilized<br />

enzyme)<br />

DSM<br />

Starting<br />

Materials<br />

Enzymatic Cefalexin Process Blockscheme<br />

Solution<br />

Product<br />

isolation Recovery<br />

Product Recycle<br />

materials<br />

Liquid<br />

Purge


<strong>Membrane</strong> <strong>Technology</strong> <strong>for</strong> <strong>Enzyme</strong> <strong>Separations</strong><br />

DSM<br />

Specification<br />

R&D<br />

Design / Construction<br />

engineering<br />

contruction<br />

Start-up<br />

FDA-approval<br />

Pre-production<br />

Market Testing<br />

Project planning (beginning 1996)<br />

1996<br />

1997


<strong>Membrane</strong> <strong>Technology</strong> <strong>for</strong> <strong>Enzyme</strong> <strong>Separations</strong><br />

DSM<br />

Description of problem<br />

Product out of specification.<br />

Dissolution test: Visual observation of turbidity<br />

Poor control of protein content in reactor effluent<br />

NOTE:<br />

TM<br />

Assemblase is still “in development”<br />

Fast and robust solution required<br />

Minimum interference with project targets and plans<br />

Characterize proteins: Mw = 10.000 to 100.000<br />

Develop technical solution: Choose Ultra Filtration


<strong>Membrane</strong> <strong>Technology</strong> <strong>for</strong> <strong>Enzyme</strong> <strong>Separations</strong><br />

Conversion<br />

(Immobilized<br />

enzyme)<br />

DSM<br />

Starting<br />

Materials<br />

Enzymatic Cefalexin Process Blockscheme<br />

UF<br />

Unit<br />

Waste<br />

Concentrate<br />

Product<br />

isolation Recovery<br />

Product Recycle<br />

materials<br />

Liquid<br />

Purge


<strong>Membrane</strong> <strong>Technology</strong> <strong>for</strong> <strong>Enzyme</strong> <strong>Separations</strong><br />

DSM<br />

Ultra Filtration<br />

Starting points<br />

Full batch operation, batch size 4000 liter<br />

Temperature 5°C<br />

Retain Molecules with Mw > 20.000<br />

Requirements<br />

Losses to sewage < 0,3 % of feed<br />

Effluent to recovery < 1,0 % of feed<br />

Extra residence time < 75 minutes<br />

Available washing liquid = 400 liter (minimize dilution)<br />

Time available <strong>for</strong> washing / cleaning: 90 minutes<br />

Water consumption <strong>for</strong> washing / cleaning < 1500 liter/batch<br />

Construction<br />

Sanitary design (no dead volumes, no cross-contamination, etc.)<br />

Installation space 8x9x2,5 m (skid preferred)<br />

Noise level: < 75 dB<br />

Control<br />

Normal operation is with local PLC control


<strong>Membrane</strong> <strong>Technology</strong> <strong>for</strong> <strong>Enzyme</strong> <strong>Separations</strong><br />

DSM<br />

First experiments<br />

1<br />

2<br />

3<br />

Feed: Effluent of reactor containing (immobilized) enzyme<br />

Equipment: Tubular membrane, area about 0,01 m 2 , cut-off 9 kD,<br />

PolyEtherSulphon membrane (PCI). Cross flow velocity: 0.25 m/s.<br />

Conditions: 3 bar, 5 °C. Concentration factor about 2.<br />

Repeat with same feed.<br />

Same equipment.<br />

Conditions: 6 bar, 5 °C. Concentration factor about 4.<br />

Repeat with feed containing (much) more proteins (worst case).<br />

Tubular membrane, area about 0,01 m 2 , cut-off 8 kD,<br />

PolySulphone membrane (PCI). Cross flow velocity: 0,25 m/s.<br />

Conditions: 6 bar, 5 °C. Concentration factor between 4 and 5.


<strong>Membrane</strong> <strong>Technology</strong> <strong>for</strong> <strong>Enzyme</strong> <strong>Separations</strong><br />

DSM<br />

Results<br />

Product on spec. !<br />

Flux = const * Δ P<br />

High protein: fouling of membrane<br />

Low crossflow and<br />

fouling → lower flux<br />

20 liter/m 2 /h attainable (lab.)<br />

2. ES209, 6 bar, 5°C, CF=4<br />

1. ES209, 3 bar, 5°C, CF=2 3. PU608, 6 bar, 5°C, CF=4-5


<strong>Membrane</strong> <strong>Technology</strong> <strong>for</strong> <strong>Enzyme</strong> <strong>Separations</strong><br />

DSM<br />

Process choices<br />

Batch versus continuous (“feed and bleed”): Choose Batch because of:<br />

Fit with (batch) process.<br />

Possibility <strong>for</strong> frequent cleaning (low risk).<br />

Constant flow versus constant pressure: Choose constant feed flow<br />

because of simpler design (no control valves).


<strong>Membrane</strong> <strong>Technology</strong> <strong>for</strong> <strong>Enzyme</strong> <strong>Separations</strong><br />

DSM<br />

Process choices (continued)<br />

1 versus 2 hours operation time: Choose 1 hour operation time.<br />

Criterion<br />

Investment (area)<br />

Yield (hold-up)<br />

Installation space<br />

Cleaning fluid<br />

Energy consumption<br />

Flexibility<br />

1 hour<br />

+ Dfl 80000<br />

higher ?<br />

+ 6 m 2<br />

+ 50%<br />

+ 3 kW<br />

higher<br />

2 hours<br />

-<br />

-<br />

-<br />

-<br />

-<br />

-


<strong>Membrane</strong> <strong>Technology</strong> <strong>for</strong> <strong>Enzyme</strong> <strong>Separations</strong><br />

DSM<br />

<strong>Membrane</strong> types<br />

A. Tubular, typical “specific area”is 65 m2/m3<br />

Drainage is possible, washing is difficult<br />

B. Spiral wound, typical “specific area”is 2000 m2/m3<br />

Drainage and washing is possible<br />

Lab test: Filtration over a 20 kD membrane:<br />

Obtain a permeate from which final product was isolated<br />

with a protein content below detection limit.<br />

Per<strong>for</strong>mance in turbidity test was good.<br />

Product met specification.<br />

Pilot tests:<br />

Tubular and spiral wound membranes:<br />

On spec product obtained.<br />

No technical problems.


<strong>Membrane</strong> <strong>Technology</strong> <strong>for</strong> <strong>Enzyme</strong> <strong>Separations</strong><br />

DSM


<strong>Membrane</strong> <strong>Technology</strong> <strong>for</strong> <strong>Enzyme</strong> <strong>Separations</strong><br />

DSM<br />

Process choices (continued)<br />

Tubular versus spiral wound membranes: Not clear !<br />

Criterion<br />

Hold-up / conc. fact.<br />

Drainability<br />

Wash with small vol.<br />

Fouling<br />

Investment<br />

Variable cost<br />

Experience<br />

Tubular<br />

Much more !<br />

65 m 2 /m 3<br />

Good<br />

Difficult<br />

Lowest chance<br />

More expensive<br />

Little more<br />

Available within<br />

DSM<br />

Spiral wound<br />

Compact<br />

2000 m 2 /m 3<br />

Good<br />

Good<br />

Risk<br />

Less expensive<br />

-<br />

Not within DSM


<strong>Membrane</strong> <strong>Technology</strong> <strong>for</strong> <strong>Enzyme</strong> <strong>Separations</strong><br />

DSM<br />

Pilot tests (part of 2 nd CEGA pre-production)<br />

PCI<br />

Tubular membranes, same type as in lab tests.<br />

Area 15,6 m 2 : Same scale as pre-production.<br />

Attained fluxes: About 20 liter/m 2 /h.<br />

Achieved concentration factor: 8-14 (not enough).<br />

Amafilter “alternative”<br />

Spiral wound membranes.<br />

Area 1,6 m 2 : Side stream. However: Suitable to process<br />

concentrate stream <strong>for</strong> PCI-unit (worst case).<br />

Attained fluxes: About 13 liter/m 2 /h.<br />

Achieved concentration factor: Up to 65 (enough).


<strong>Membrane</strong> <strong>Technology</strong> <strong>for</strong> <strong>Enzyme</strong> <strong>Separations</strong><br />

DSM<br />

Result of pilot test (Amafilter)


<strong>Membrane</strong> <strong>Technology</strong> <strong>for</strong> <strong>Enzyme</strong> <strong>Separations</strong><br />

DSM<br />

Options <strong>for</strong> full scale unit<br />

Always start with maximum membrane area.<br />

Reduce the area <strong>for</strong> maximum concentration factor.<br />

Max. time: 75’, Max. amount of washing water: 400 liter/batch.<br />

<strong>Membrane</strong> area’s according to quotations.<br />

Criterion<br />

<strong>Membrane</strong> area (m 2 )<br />

Washing water (liter)<br />

Required flux (l/m 2 /h)<br />

Loss to recovery (%)<br />

Loss to sewage (%)<br />

Tubular<br />

(13 stages)<br />

203<br />

200<br />

26<br />

2,1<br />

0,12<br />

Spiral<br />

(4 stages)<br />

230<br />

160<br />

17<br />

0,7<br />

0,22<br />

Spiral<br />

(3 stages)<br />

288<br />

200<br />

16<br />

0,6<br />

0,28<br />

Choose spiral wound membrane Ultra Filtration Unit


<strong>Membrane</strong> <strong>Technology</strong> <strong>for</strong> <strong>Enzyme</strong> <strong>Separations</strong><br />

DSM<br />

Process design<br />

A. Size of housings: Choose standard size of 4”, 4 meters long<br />

B. Number of housings: 4<br />

C. Columns and pumps must be “drainable”: install on slope<br />

D. Pump requirements:<br />

= sufficient cross flow velocity<br />

= minimum heat input<br />

= different speeds (4 speeds + reverse (<strong>for</strong> water intake))<br />

= accurate (prefer positive displacement)<br />

= sanitary design<br />

Choose screw pumps type Mono<br />

E. Heat exchange:<br />

Requirements: Max. process temperature: 10 °C. Cool<br />

to 5°C in 15 minutes. Heating to 50 °C must be possible<br />

Secondary heating circuit (safety)<br />

Minimum volume (use booster pumps on utility side)<br />

Choose plate heat exchangers


<strong>Membrane</strong> <strong>Technology</strong> <strong>for</strong> <strong>Enzyme</strong> <strong>Separations</strong><br />

DSM<br />

Design results<br />

Install four UF-units which can be operated individually<br />

Operations: Filling, filtration, draining, washing, rinsing, cleaning<br />

Prepare dedicated program to operate the UF-unit<br />

Number of washing steps<br />

To recovery (% from feed)<br />

Losses in purge (%)<br />

Calculated efficiencies<br />

Target 1 2 3<br />


<strong>Membrane</strong> <strong>Technology</strong> <strong>for</strong> <strong>Enzyme</strong> <strong>Separations</strong><br />

DSM<br />

Construction<br />

Factory Acceptance Test (FAT)<br />

At workshop supplier<br />

Is the hardware installed (Installation Qualification, IQ)<br />

Does it work (with water) ? Test pumps, controls,<br />

alarms, valves (Operation Qualification, OQ)<br />

Site Acceptance Test (SAT)<br />

In plant<br />

Does the integrated unit meet the targets ?<br />

Waterbatches + number of production batches<br />

= Process guarantees (yield + capacity)<br />

= Pressure tests<br />

= Alarms<br />

= Noise<br />

= Protocols, training


<strong>Membrane</strong> <strong>Technology</strong> <strong>for</strong> <strong>Enzyme</strong> <strong>Separations</strong><br />

DSM


<strong>Membrane</strong> <strong>Technology</strong> <strong>for</strong> <strong>Enzyme</strong> <strong>Separations</strong><br />

DSM


<strong>Membrane</strong> <strong>Technology</strong> <strong>for</strong> <strong>Enzyme</strong> <strong>Separations</strong><br />

DSM


<strong>Membrane</strong> <strong>Technology</strong> <strong>for</strong> <strong>Enzyme</strong> <strong>Separations</strong><br />

DSM


<strong>Membrane</strong> <strong>Technology</strong> <strong>for</strong> <strong>Enzyme</strong> <strong>Separations</strong><br />

DSM


<strong>Membrane</strong> <strong>Technology</strong> <strong>for</strong> <strong>Enzyme</strong> <strong>Separations</strong><br />

DSM


<strong>Membrane</strong> <strong>Technology</strong> <strong>for</strong> <strong>Enzyme</strong> <strong>Separations</strong><br />

DSM<br />

Specification<br />

R&D<br />

Design / Construction<br />

engineering<br />

contruction<br />

Start-up<br />

FDA-approval<br />

Pre-production<br />

Market Testing<br />

Project realisation (1997)<br />

1996<br />

1997


<strong>Membrane</strong> <strong>Technology</strong> <strong>for</strong> <strong>Enzyme</strong> <strong>Separations</strong><br />

DSM<br />

Contributors....<br />

DAI R&D team (Geleen / Spain) (Will v.d. Tweel, Eric Roos c.s.)<br />

<strong>Membrane</strong> specialists (Veerle Cauwenberg, Paul Vergossen)<br />

Amafilter (Manufacturer; Jan Gosker, André Wortel, Klaas Doedens)<br />

DAI Chemferm maintenance (Antoni Serra c.s.)<br />

DAI Production (Jordi Savall c.s.)<br />

CEGA project (& start-up) team (Kees v. Helden c.s.)<br />

MdE (Detailed engineering; M. de Morales c.s.)<br />

DAI services (Purchasing, engineering, acceptance tests...;<br />

Ben Voorn, Frits Leemker, Jerry Esmeijer, Ben Jansen + others)


<strong>Membrane</strong> <strong>Technology</strong> <strong>for</strong> <strong>Enzyme</strong> <strong>Separations</strong><br />

AreaPlant<br />

=<br />

Area<br />

DSM<br />

Lab<br />

Volume<br />

Volume<br />

Plant<br />

Lab<br />

Area<br />

Investment a0<br />

a1<br />

* + =<br />

Relevant scale-up <strong>for</strong>mula’s<br />

=<br />

Volume<br />

Flux * Time<br />

α<br />

β<br />

* f ( imp.<br />

time)<br />

* f ( process)<br />

* f ( manuf<br />

Area<br />

Investment<br />

Area<br />

.)<br />

Variable cost<br />

γ


<strong>Membrane</strong> <strong>Technology</strong> <strong>for</strong> <strong>Enzyme</strong> <strong>Separations</strong><br />

DSM<br />

Good options:<br />

Further scale-up<br />

Install fifth unit (up to 25% more capacity)<br />

Increase pressure and optimize circulation.<br />

Install membranes with higher cut-off.


<strong>Membrane</strong> <strong>Technology</strong> <strong>for</strong> <strong>Enzyme</strong> <strong>Separations</strong><br />

DSM<br />

Good options:<br />

Further scale-up<br />

Install fifth unit (up to 25% more capacity)<br />

Increase pressure and optimize circulation.<br />

Install membranes with higher cut-off.<br />

Better option:<br />

Make process continuous.


<strong>Membrane</strong> <strong>Technology</strong> <strong>for</strong> <strong>Enzyme</strong> <strong>Separations</strong><br />

DSM<br />

Good options:<br />

Further scale-up<br />

Install fifth unit (up to 25% more capacity)<br />

Increase pressure and optimize circulation.<br />

Install membranes with higher cut-off.<br />

Better option:<br />

Make process continuous.<br />

Best option:<br />

No protein release anymore (skip UF)


<strong>Membrane</strong> <strong>Technology</strong> <strong>for</strong> <strong>Enzyme</strong> <strong>Separations</strong><br />

DSM<br />

Thank you !

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!