27.01.2013 Views

Optical Projection Tomography (OPT) - Biomedicum Imaging Unit ...

Optical Projection Tomography (OPT) - Biomedicum Imaging Unit ...

Optical Projection Tomography (OPT) - Biomedicum Imaging Unit ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Optical</strong> <strong>Projection</strong> <strong>Tomography</strong><br />

(<strong>OPT</strong>)<br />

Jim Swoger<br />

Sharpe Lab<br />

Systems Biology Programme<br />

Centre for Genomic Regulation (CRG)<br />

Barcelona, Spain<br />

03/12/2008


Outline<br />

� Motivation<br />

� <strong>OPT</strong>: How It Works<br />

� Depth of Focus Issues<br />

� Image Processing<br />

� Resolution<br />

� Applications, Fixed: - transmission / fluorescence<br />

- disease studies<br />

- mouse limb development<br />

� Applications, Live: - plant<br />

- mouse eye<br />

- mouse limb development<br />

� Conclusions


Motivation


10 �m<br />

100 �m 1mm 1cm 10 cm<br />

CONFOCAL MRI<br />

CELLS TISSUES<br />

Motivation<br />

?<br />

<strong>OPT</strong><br />

ORGANS,<br />

EMBRYOS<br />

ORGANISMS<br />

SPIM, ultramicroscopy, serial sectioning …<br />

Multi-photon, OCT, SHG, structured illum… X-ray CT, ultrasound, …


- E.g. DIC does not relate directly<br />

to physical properties of sample<br />

- “depth info” isn’t real<br />

Motivation<br />

QUALITATIVE vs. QUANTITATIVE imaging<br />

- E.g. fluorescence <strong>OPT</strong>: brightness corresponds<br />

to dye concentration<br />

- Distances/positions can be measured in 3D<br />

projections<br />

slices


SIMPLE<br />

Motivation<br />

Modeling vertebrate limb development<br />

36 hours<br />

PATTERNING<br />

MORPHOGENESIS<br />

DIFFERENTIATION<br />

MECHANICS<br />

COMPLEX


<strong>OPT</strong>: How It Works


<strong>OPT</strong>: How it Works<br />

<strong>Projection</strong> tomography - an X-ray CT scanner<br />

source<br />

detector<br />

Scan Reconstruction<br />

(back-projection)


<strong>OPT</strong>: How it Works<br />

Transmission: Fluorescence: wide-field illum.<br />

“back-projection”<br />

3D RECONSTRUCTION


<strong>OPT</strong>: How it Works<br />

“back-projection”<br />

3D RECONSTRUCTION


<strong>OPT</strong>: How it Works<br />

Same done for<br />

every section<br />

“back-projection”<br />

3D RECONSTRUCTION


<strong>OPT</strong>: How it Works<br />

“back-projection”<br />

3D RECONSTRUCTION


Depth of Focus Issues


Depth of Focus Issues<br />

numerical aperture: NA = n sin�<br />

depth of focus: �z ~ NA -2<br />

lateral resolution: �r ~ NA -1<br />

high low NA<br />

�r<br />

�r<br />

�z �z<br />

Decrease NA:<br />

� �r Depth of Focus (good)<br />

� �z Lateral Resolution<br />

(bad)<br />

�<br />


Depth of Focus Issues<br />

numerical aperture: NA = n sin�<br />

depth of focus: �z ~ NA -2<br />

lateral resolution: �r ~ NA -1<br />

Reconstruction:<br />

Decrease NA:<br />

� �r Depth of Focus (good)<br />

� �z Lateral Resolution<br />

(bad)<br />

3D resolution limited by �r<br />

sample size limited by �z


Depth of Focus Issues<br />

High NA Low NA<br />

projections of reconstructions


Image Processing


Pre-Reconstruction Processing<br />

Image Processing for 3D Reconstructions - Details<br />

1) Correction for photo-bleaching during scanning<br />

2) Determination of rotation axis position & orientation<br />

3) Combination of anti-parallel projections<br />

4) Filtered back-projection<br />

?<br />

0°<br />

180°<br />

+ � �


Reconstruction Algorithms<br />

“Simple” Back-<strong>Projection</strong><br />

1. Distribute each projection back<br />

thru sample space,<br />

with the appropriate orientation<br />

2. Sum these back-projections


Reconstruction Algorithms<br />

z<br />

“Simple” Back-<strong>Projection</strong> – Real Data<br />

r<br />

P(r,z,�)


Reconstruction Algorithms<br />

z = z o<br />

z<br />

“Simple” Back-<strong>Projection</strong> – Real Data<br />

r<br />

�<br />

P(r,z,�) r P(r,�,z=zo ) x I(x,y,z=zo )<br />

y


Reconstruction Algorithms<br />

The Fourier Transform:<br />

The Fourier <strong>Projection</strong>/Slice Relationship:<br />

A projection in physical space transforms to a slice in Fourier space.


Reconstruction Algorithms<br />

Physical Space: <strong>Projection</strong>s Fourier Space: Slices<br />

y<br />

Low-density sampling of high frequencies<br />

x<br />

v<br />

High-density sampling of low frequencies<br />

Reconstruction emphasizes low frequencies � low resolution!<br />

u


Reconstruction Algorithms<br />

Filtered Back-projection<br />

z = z o<br />

z<br />

r<br />

�<br />

P(r,z,�) r P(r,�,z=zo ) x I(x,y,z=zo )<br />

Back-projection<br />

y


Resolution & Sample Characteristics


Resolution: <strong>Optical</strong> Clearing of Samples<br />

uncleared transmission cleared, enhanced contrast<br />

- optically, clearing is good.


Resolution Example: Mouse Embryo<br />

3.7 mm<br />

reconstructed <strong>OPT</strong><br />

Mouse embryo<br />

Dehydrated, cleared in BABB<br />

Neurofilament: Alexa 488


Resolution Example: Mouse Embryo<br />

3.7 mm<br />

reconstructed <strong>OPT</strong> reconstructed <strong>OPT</strong>, cropped & zoomed<br />

~ 12 µm isotropic resolution<br />

1.0 mm


Resolution Example: Single-Cell <strong>Imaging</strong><br />

Fauver et al, Opt. Express 13, pp. 4210-4223 (2005)<br />

sub-micron resolution<br />

- Isolated lung fibroblast nucleus<br />

- hematoxylin staining,<br />

(transmission)<br />

- thick section of 3D<br />

reconstruction<br />

- pseudo-colour visualization


Resolution Example: Live Mouse Tissue<br />

400 µm<br />

Reconstructions of fluorescence (implanted beads)<br />

& transmission of an embryonic mouse limb<br />

2<br />

fluorescence transmission overlay<br />

1<br />

3 4<br />

6<br />

5<br />

max-projections<br />

slices


Resolution Example: Live Mouse Tissue<br />

bead 1<br />

bead 3<br />

Bead # Volume [µm^3] bead Mean 2Radius<br />

[µm] Mean Intensity [a.u.] Max Intensity [a.u.]<br />

1 3957 9.81 0.684 34.89<br />

2 44579 22.00 0.643 8.3<br />

3<br />

4<br />

1469<br />

2246<br />

7.05<br />

8.12<br />

normalized 1.532<br />

1.614<br />

225.89<br />

153.02<br />

5 2279 8.16 1.921 275.26<br />

6 1862 7.63 2.529 304.73<br />

anisotropic, context-dependent resolution


Applications: Fixed Sample <strong>Imaging</strong>


Transmission: Whole-mount In Situ<br />

raw <strong>OPT</strong> projection reconstructed slices<br />

<strong>OPT</strong> scan of Sox9 expression (RNA in-situ hybridisation)<br />

E11.5, WT mouse


Transmission: Whole-mount In Situ<br />

<strong>OPT</strong> vs. serial sectioning<br />

raw <strong>OPT</strong><br />

projection<br />

Science 296 pp. 541-545 (2002)<br />

serial section reconstructed<br />

<strong>OPT</strong> section<br />

reconstructed <strong>OPT</strong> section<br />

serial section


Fluorescence: Mouse Embryo<br />

E10.5 mouse embryo<br />

Multi-Channel Fluorescence <strong>OPT</strong><br />

Raw <strong>Projection</strong>s Reconstruction<br />

Red: autofluorescence<br />

Blue: HNF3�, Alexa 488<br />

Green: neurofilament, Cy3<br />

antibody labelling


Fluorescence: Mouse Embryo<br />

E10.5 mouse embryo<br />

Multi-Channel Fluorescence <strong>OPT</strong><br />

Raw <strong>Projection</strong>s Reconstruction<br />

3D Rendering


Arabidopsis Silque, heart-stage embryos<br />

520 µm<br />

Reconstructions from autofluorescence (TXR channel) <strong>OPT</strong> scans<br />

Lee et al, The Plant Cell, 18, pp. 2145-2156 (2006)


Mouse Models of Diabetes<br />

Adult mouse pancreas<br />

White – autofluor.<br />

(GFP filter set)<br />

Red – Islets of Langerhans<br />

(TxR filter set)<br />

Nature Methods 4 pp. 31-33 (2007)


Mouse Models of Diabetes<br />

Normal<br />

Diabetic<br />

Nature Methods 4 pp. 31-33 (2007)


Mouse Models of Immune Response<br />

Lymph nodes: important part of the immune system<br />

lymphocytes introduced to antigens<br />

can become inflamed during infection<br />

mouse peripheral lymph node,<br />

whole-mount staining<br />

White – autofluor.<br />

Green – B-cell follicles, Alexa 488<br />

conjugated anti-B220<br />

www.tki.unibe.ch/stein.htm


Gene Expression Patterning in Mouse<br />

Limb Development<br />

Newman & Frisch (1979)<br />

mid E12<br />

late E12<br />

early E13<br />

Digit patterning during mammalian limb development<br />

Cleared in BABB<br />

Whole-mount in situ for<br />

Sox9 expression


Resolution: <strong>Optical</strong> Clearing of Samples<br />

uncleared transmission cleared, enhanced contrast


Applications: Live Sample <strong>Imaging</strong>


Live <strong>OPT</strong>: Arabidopsis Development<br />

4 hours<br />

100 µm<br />

9<br />

24<br />

49<br />

Reconstructions from transmission <strong>OPT</strong> scans<br />

Lee et al, The Plant Cell, 18, pp. 2145-2156 (2006)<br />

72<br />

High magnification slices, @ 30 hours


The Bioptonics <strong>OPT</strong> System<br />

More <strong>OPT</strong> info: U.K. Medical Research Council:<br />

www.bioptonics.com


Live Mammalian <strong>OPT</strong>: Hardware<br />

Live <strong>OPT</strong> machine:<br />

- Built inside a climate-controlled chamber<br />

- All alignment & sample manipulation (x, y, z, roll, pitch, yaw) controls<br />

are external


Live Mammalian <strong>OPT</strong>: Hardware<br />

XY translation stage<br />

magnet<br />

concave surface<br />

oil


Live <strong>OPT</strong>: Mouse Lens Induction<br />

Mouse embryo, E9.5<br />

Pax6-GFP in ectoderm, prospective retina, forebrain<br />

Raw <strong>OPT</strong> projections<br />

Prospective retina bulges inward due to growth of lens<br />

Reconstructed slice, t = 0<br />

t = +6 hours


Applications: Mouse Limb Development


Goals<br />

Quantitative modeling of mammalian organ development<br />

Specifically, can we understand the processes that turn Ainto<br />

B<br />

i.e. Mouse limb development (E10.75 � E12.25)<br />

A B<br />

36 hours<br />

To construct a 4D finite-element model<br />

we require quantitative data on:<br />

1) gene expression patterning 2) morphology 3) local tissue motion


Quantifying Gene Expression &<br />

Morphology<br />

Dynamic gene expression patterns in 4D?...<br />

Boot et al, Nat. Methods, 5, pp. 609-612 (2008)


Quantifying Gene Expression &<br />

Morphology<br />

t 0 (E11.5)<br />

Scleraxis-GFP transgenic mouse line<br />

Ronen Schweitzer<br />

Oregon, USA<br />

Dynamic gene expression patterns in 4D?...<br />

Boot et al, Nat. Methods, 5, pp. 609-612 (2008)


Quantifying Gene Expression &<br />

Morphology<br />

t 0 (E11.5)<br />

Scleraxis-GFP transgenic mouse line<br />

Ronen Schweitzer<br />

Oregon, USA<br />

t 0 + 19 hours<br />

Dynamic gene expression patterns in 4D?... .<br />

Boot et al, Nat. Methods, 5, pp. 609-612 (2008)


Quantifying Gene Expression &<br />

Morphology<br />

E16.5 mouse embryo: scans through <strong>OPT</strong> reconstructions<br />

transmission fluorescence overlay


Tracking Ectodermal Motion<br />

Can only track shape changes<br />

Cannot track tissue movements<br />

Require Landmarks<br />

the model we want to make<br />

the data we have (morphology)


Tracking Ectodermal Motion<br />

Fluorescent beads attached to limb surface<br />

Boot et al, Nat. Methods, 5, pp. 609-612 (2008)<br />

raw <strong>OPT</strong> projections<br />

1 time-point; multiple views


Tracking Ectodermal Motion<br />

Fluorescent beads attached to limb surface<br />

Boot et al, Nat. Methods, 5, pp. 609-612 (2008)<br />

raw <strong>OPT</strong> projections<br />

time-series; single view


Tracking Ectodermal Motion<br />

<strong>OPT</strong> reconstructions<br />

vectors connecting time-points<br />

Boot et al, Nat. Methods, 5, pp. 609-612 (2008)<br />

raw <strong>OPT</strong> projections<br />

time-series; single view


Tracking Ectodermal Motion<br />

<strong>OPT</strong> reconstructions<br />

vectors connecting time-points<br />

Boot et al, Nat. Methods, 5, pp. 609-612 (2008)<br />

Overlay multiple experiments


Tracking Ectodermal Motion<br />

Analyze: “vortices” are apparent<br />

Interpolate for uniform coverage:<br />

Green: “original” bead vectors<br />

Red: Interpolated<br />

Boot et al, Nat. Methods, 5, pp. 609-612 (2008)<br />

Overlay multiple experiments


Tracking Volumetric Growth<br />

Tamoxifen-inducible Cre-Lox EYFP stochastic clonal labelling<br />

Arques et al, Development, 134, pp. 3713-3722 (2007)


Tracking Volumetric Growth<br />

reconstuction, 1st clone tracking<br />

time-point reconstuction, time-series


Quantitative Modeling<br />

Mesh for a Finite Element model<br />

of a limb bud<br />

Color encodes proliferation rate<br />

(blue high; red low)<br />

For the model we need:<br />

Gene Expression: what genes are<br />

expressed in what regions<br />

Morphology: the limb shape<br />

Tissue Motion: node movements<br />

between iterations<br />

Q: Given morphologies at t 1 & t 2 , what tissue motions are consistent with this?<br />

Q: Can proliferation rates alone account for measured morphology?


Conclusions


Acknowledgements<br />

Sharpe Lab<br />

Jean-François Colas – limb bud culturing<br />

Laura Quintana – fixed <strong>OPT</strong><br />

Sahdia Raja – Sox9 imaging, proliferation data<br />

Henrik Westerberg – visualization, post-processing<br />

Bernd Böhm – finite element modelling<br />

Centre for Genomic Regulation, Barcelona, Spain<br />

Marit Boot – limb development<br />

Human Genetics <strong>Unit</strong>, Medical Research Council<br />

Edinburgh, U.K.<br />

Miguel Torres & Juan José Sanz – live <strong>OPT</strong> development<br />

CNB, CSIC, Madrid, Spain – Cre-Lox EYFP mouse<br />

Ronen Schweitzer – Scx-GFP mice<br />

Shriners Hospital for Children, Portland, U.S.A.<br />

Ulf Ahlgren – pancreatic collaborations<br />

Umeå U., Sweden<br />

Jens Stein – lymphatic collaborations<br />

U. Bern, Switzerland

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!