28.01.2013 Views

indian medicinal plants as a source of therapeutic - BRT Publishers

indian medicinal plants as a source of therapeutic - BRT Publishers

indian medicinal plants as a source of therapeutic - BRT Publishers

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ABSTRACT<br />

REVIEW ARTICLE<br />

December 2012 Issue 1 Vol. 1<br />

INDIAN MEDICINAL PLANTS AS A SOURCE OF THERAPEUTIC AGENTS:<br />

A REVIEW<br />

Muniappan Ayyanar<br />

Post Graduate and Research Department <strong>of</strong> Botany,<br />

Pachaiyappa’s College, Chennai, Tamil Nadu, India<br />

E-mail: <strong>as</strong>mayyanar@yahoo.com<br />

Received 12 th October 2012, Published 31 December 2012<br />

India is one <strong>of</strong> the twelve mega-biodiversity countries <strong>of</strong> the world having rich vegetation with a<br />

wide variety <strong>of</strong> <strong>medicinal</strong> <strong>plants</strong> and a tradition <strong>of</strong> plant-b<strong>as</strong>ed knowledge distributed amongst a v<strong>as</strong>t<br />

number <strong>of</strong> ethnic groups. The use <strong>of</strong> ethnobotanical information in <strong>medicinal</strong> plant research h<strong>as</strong> gained<br />

considerable attention in segments <strong>of</strong> the scientific community and it h<strong>as</strong> become a topic <strong>of</strong> global<br />

importance making an impact on both world health and international trade. The importance <strong>of</strong><br />

<strong>medicinal</strong> <strong>plants</strong> in traditional healthcare practices providing clues to new are<strong>as</strong> <strong>of</strong> research. People<br />

living in villages and far-flung are<strong>as</strong> depend completely on forest re<strong>source</strong>s for maintaining their day-today<br />

needs like medicine, food, fuel and household articles. The use <strong>of</strong> traditional medicine remains<br />

widespread in developing countries while the use <strong>of</strong> complementary alternative medicine (CAM) is<br />

incre<strong>as</strong>ing rapidly. A common belief is that plant remedies are naturally superior to synthetic drugs and<br />

that they are not harmful to human beings. This knowledge is however, rapidly dwindling due to<br />

changes towards a more Western lifestyle, and the influence <strong>of</strong> modern tourism. It is expected that<br />

thousands <strong>of</strong> species <strong>of</strong> <strong>medicinal</strong> <strong>plants</strong> are facing threat to their existence in the wild and some <strong>of</strong><br />

them have become extinct. For meeting the future needs, cultivation <strong>of</strong> <strong>medicinal</strong> plant h<strong>as</strong> to be<br />

encouraged. There is still much we can learn from investigating herbals available abundantly in the<br />

forests particularly those which are less well known. This type <strong>of</strong> research needs a multidisciplinary<br />

approach and this includes expertise in the fields <strong>of</strong> ethnobotany, ethnopharmacology and<br />

phytochemistry. The present communication constitutes a review on the <strong>medicinal</strong> properties, major<br />

phytochemical constituents and pharmacological activities <strong>of</strong> some <strong>of</strong> the common <strong>medicinal</strong> <strong>plants</strong><br />

used in Indian traditional medicine.<br />

Keywords: Biological activity, Ethnopharmacology, Medicinal <strong>plants</strong>, Traditional medicine<br />

____________________________________<br />

Available online at www.brtpublishers.com<br />

1


Int. J Bioscience Res. December 2012 Issue 1 Vol. 1<br />

INTRODUCTION<br />

Herbal medicines are <strong>as</strong>sumed to be <strong>of</strong> great<br />

importance in the primary healthcare <strong>of</strong><br />

individuals and local communities in many<br />

developing countries (Ghosh 2003). Historians<br />

from all around the world have produced<br />

evidence to show that apparently all primitive<br />

people used herbs <strong>of</strong>ten in a sophisticated way<br />

(Gilani and Atta-ur-Rahman 2005). Medicinal<br />

components from <strong>plants</strong> play an important role<br />

in conventional Western medicine. The<br />

traditional medicine all over the world is<br />

nowadays revalued by an extensive study <strong>of</strong><br />

results <strong>of</strong> research on different plant species<br />

and their <strong>therapeutic</strong> principles (Scartezzini and<br />

Speroni 2000). Interest in <strong>medicinal</strong> <strong>plants</strong> h<strong>as</strong><br />

been fuelled by the rising costs <strong>of</strong> prescription<br />

drugs in the maintenance <strong>of</strong> personal health<br />

and well-being, and the bioprospecting <strong>of</strong> new<br />

plant-derived drugs (Hoareau and DaSilva<br />

1999).<br />

Infectious dise<strong>as</strong>es caused by bacteria,<br />

fungi, viruses and par<strong>as</strong>ites are still a major<br />

threat to public health, despite the tremendous<br />

progress in human medicine. Their impact is<br />

particularly large in developing countries due to<br />

the relative unavailability <strong>of</strong> medicines and the<br />

emergence <strong>of</strong> widespread drug resistance<br />

(Okeke et al., 2005). Historically, all <strong>medicinal</strong><br />

preparations were derived from <strong>plants</strong>,<br />

whether in the simple form <strong>of</strong> plant parts or in<br />

the more complex form <strong>of</strong> crude extracts,<br />

mixtures, etc. The v<strong>as</strong>t majority <strong>of</strong> people on<br />

this planet still rely on their traditional materia<br />

medica for their everyday healthcare needs.<br />

Folk medicines are gaining great importance <strong>as</strong><br />

information <strong>source</strong>s on traditional <strong>medicinal</strong><br />

<strong>plants</strong>. Many commercially proven drugs used<br />

in modern medicine were initially tried in crude<br />

form in traditional or folk healing practices, or<br />

for other purposes that suggested potentially<br />

useful biological activity.<br />

BIOLOGICAL ACTIVITY OF MEDICINAL PLANTS<br />

Medicinal <strong>plants</strong> are the important part <strong>of</strong><br />

indigenous pharmaceutical systems. According<br />

to the World Health Organization (WHO), about<br />

65–80% <strong>of</strong> the world’s population in developing<br />

countries, due to the poverty and lack <strong>of</strong> access<br />

to modern medicine, depend essentially on<br />

<strong>plants</strong> for their primary healthcare (Calixto<br />

2005). In recent years, use <strong>of</strong> ethnobotanical<br />

information in <strong>medicinal</strong> plant research h<strong>as</strong><br />

gained considerable attention in segments <strong>of</strong><br />

the scientific community (Heinrich 2000). Even<br />

today, in most <strong>of</strong> the rural are<strong>as</strong>, people are<br />

depending on local traditional healing systems<br />

for their primary health care. Since, traditional<br />

<strong>medicinal</strong> practice is the cheapest and safest<br />

method adopted in all countries <strong>of</strong> the world<br />

especially in developing countries.<br />

There are hundreds <strong>of</strong> drugs and<br />

biologically active compounds developed from<br />

the traditional <strong>medicinal</strong> <strong>plants</strong>, a few <strong>of</strong> which<br />

are mentioned here; the antisp<strong>as</strong>modic agent<br />

v<strong>as</strong>icin isolated from Justicia adhatoda,<br />

anticancer agents such <strong>as</strong> vincristine,<br />

vinbl<strong>as</strong>tine and D-tubocurarine isolated from<br />

Catharanthus roseus (Gurib-Fakim 2006),<br />

antibacterial agents isolated from Diospyros<br />

melanoxylon (Mallavadhani et al., 1998),<br />

antimalarial agent isolated from Sida acuta<br />

(Karou et al., 2006), steroid and lancamarone<br />

with cardiotonic properties, lantamine with<br />

antipyretic and antisp<strong>as</strong>modic properties from<br />

Lantana camara (Ghisalberti 2000),<br />

antimicrobial agents isolated from Acorus<br />

calamus (Chowdhury et al., 1993), antiviral,<br />

antibacterial and anti-inflammatory agents<br />

isolated from Urtica dioica (Harborne and<br />

Buxter 1993), anticancer agents isolated from<br />

Aloe vera, Allium sativum, Andrographis<br />

paniculata, Curcuma longa, Moringa oleifera,<br />

Phyllanthus amarus, Piper longum, Semecarpus<br />

anacardium, Tinospora cordifolia and<br />

Withanica somnifera (Balachandran and<br />

Govindarajan 2005), promising and potent<br />

antimalarial drug artemisinin isolated from<br />

Artemesia annua (Dhingra et al., 2000). A large<br />

2


Int. J Bioscience Res. December 2012 Issue 1 Vol. 1<br />

proportion <strong>of</strong> such drugs have been discovered<br />

with the aid <strong>of</strong> ethnobotanical knowledge <strong>of</strong><br />

the traditional uses <strong>of</strong> the plant.<br />

Indian Medicinal Plants<br />

Ayurveda (Indian Traditional Medicine)<br />

is perhaps, the most ancient <strong>of</strong> all <strong>medicinal</strong><br />

traditions is probably older that the traditional<br />

Chinese medicine. It is considered to be the<br />

origin <strong>of</strong> systemized medicine. It is actually a<br />

practical and holistic set <strong>of</strong> guidelines to<br />

maintain balance and harmony in the system.<br />

Ancient Hindu writings on medicine contain no<br />

references to foreign medicines where<strong>as</strong> Greek<br />

and Middle E<strong>as</strong>tern texts do refer to ide<strong>as</strong> and<br />

drugs <strong>of</strong> Indian origin. Ayurveda is derived from<br />

the Indian words Ayar (Life) and veda<br />

(Knowledge or Science) and hence means the<br />

Science <strong>of</strong> Life. Ayurveda is similar to Galenical<br />

Medicine in that it is b<strong>as</strong>ed on bodily humours<br />

(dos<strong>as</strong>) and the inner life force (prana) that is<br />

believed to maintain digestion and mental<br />

activity. The living and the non-living<br />

environment, including humans, is composed <strong>of</strong><br />

the elements earth (prithvi), water (jada), fire<br />

(tejac), air (vaju) and space (ak<strong>as</strong>a). Some <strong>of</strong> the<br />

important Ayurvedic <strong>medicinal</strong> <strong>plants</strong> used in<br />

Indian traditional medicine are Azadirachta<br />

indica, Centella <strong>as</strong>iatica, Cinnamomum<br />

camphora, Elettaria cardamomum, Rauvolfia<br />

serpentina, Santalum album, Terminalia<br />

chebula and Withania somnifera, etc. These<br />

<strong>plants</strong> are known to contain various active<br />

principles <strong>of</strong> <strong>therapeutic</strong> value and to possess<br />

biological activity against a number <strong>of</strong> dise<strong>as</strong>es.<br />

The Indian flora is extensively utilized <strong>as</strong><br />

a <strong>source</strong> <strong>of</strong> many drugs mentioned in the<br />

traditional systems <strong>of</strong> medicine. The traditional<br />

systems <strong>of</strong> medicine together with folklore<br />

systems continue to serve a large portion <strong>of</strong> the<br />

population, particularly in rural are<strong>as</strong>, in spite<br />

<strong>of</strong> the advent <strong>of</strong> the modern medicines. It is<br />

worthwhile to note that, about 80% <strong>of</strong> the<br />

human populations in India are still dependent<br />

on nature for remedies and this can be well<br />

understood from the fact that almost all<br />

systems <strong>of</strong> medicine are largely b<strong>as</strong>ed on drugs<br />

<strong>of</strong> plant origin (Singh et al., 2001). Primarily<br />

Janaki Ammal (1956) conceptualized the<br />

importance <strong>of</strong> ethnobotanical studies in India<br />

and initiated such studies. Jain (1964) extended<br />

these studies to the forefront through his<br />

pioneering research and publications. These<br />

studies not only formed the foundations <strong>of</strong><br />

modern ethnobotany but also triggered <strong>of</strong>f a<br />

number <strong>of</strong> ethnobiological studies and inspired<br />

a number <strong>of</strong> research workers from different<br />

parts <strong>of</strong> the country.<br />

There are many reports on the use <strong>of</strong><br />

<strong>plants</strong> in traditional healing by either tribal<br />

people or indigenous communities <strong>of</strong> India.<br />

During the l<strong>as</strong>t few decades there h<strong>as</strong> been an<br />

incre<strong>as</strong>ing interest in the study <strong>of</strong> <strong>medicinal</strong><br />

<strong>plants</strong> and their traditional use in different<br />

parts <strong>of</strong> India (Savithramma et al., 2007;<br />

Pattanaik et al., 2008; Kosalge and Fursule<br />

2009; Namsa et al., 2009; Upadhyay et al.,<br />

2010). In our ethnobotanical survey among the<br />

Kani tribals and Paliyar tribal people in Western<br />

Ghats <strong>of</strong> Tamil Nadu, the traditional healers<br />

noticed that, most <strong>of</strong> the <strong>medicinal</strong> <strong>plants</strong><br />

found in their environs are used frequently for<br />

the treatment <strong>of</strong> various dise<strong>as</strong>es and most <strong>of</strong><br />

the tribal people have a general knowledge <strong>of</strong><br />

<strong>medicinal</strong> <strong>plants</strong> which are used for first aid<br />

remedies to treat cough, cold, fever, headache,<br />

poisonous bites and some other simple<br />

ailments (Ayyanar 2008; Ignacimuthu et al.,<br />

2006; 2008; Ayyanar and Ignacimuthu 2005a, b,<br />

2009, 2010, 2011).<br />

The <strong>plants</strong> listed in table 1 are the<br />

commonly used <strong>medicinal</strong> <strong>plants</strong> in India which<br />

are known to contain various active principles<br />

<strong>of</strong> <strong>therapeutic</strong> value and to possess biological<br />

activity against a number <strong>of</strong> dise<strong>as</strong>es with their<br />

respective <strong>medicinal</strong> properties. However, from<br />

this small percentage, innumerable<br />

<strong>therapeutic</strong>ally indispensable compounds have<br />

been isolated such <strong>as</strong> alkaloids, various<br />

glycosides, steroids, vitamins, flavonoids and a<br />

large range <strong>of</strong> antibiotics. It is evident that<br />

<strong>therapeutic</strong>ally interesting and important drugs<br />

can be developed from plant <strong>source</strong>s that are<br />

3


Int. J Bioscience Res. December 2012 Issue 1 Vol. 1<br />

used in traditional systems <strong>of</strong> medicines. The<br />

curative properties <strong>of</strong> drugs are due to the<br />

presence <strong>of</strong> complex chemical substances <strong>of</strong><br />

varied composition in one or more parts <strong>of</strong><br />

these <strong>plants</strong>. These plant metabolites in one,<br />

according to their composition, are grouped <strong>as</strong><br />

alkaloids, glycosides, corticosteroids, essential<br />

oils, etc.<br />

Antidiabetic activity<br />

Hundreds <strong>of</strong> <strong>plants</strong> have been tested for<br />

their anti-diabetic potential and for most <strong>of</strong><br />

them b<strong>as</strong>ed on the ethnobotanical claims<br />

(Gurib-Fakim 2006). In traditional medicine,<br />

diabetes mellitus is treated with diet, physical<br />

exercise and <strong>medicinal</strong> <strong>plants</strong> and more than<br />

1200 <strong>plants</strong> are used around the world in the<br />

empirical control <strong>of</strong> Diabetes mellitus, most <strong>of</strong><br />

them have not been pharmacologically and<br />

chemically investigated (Alarcon-aguilar et al.,<br />

2002). The use <strong>of</strong> herbs in the management <strong>of</strong><br />

diabetes mellitus h<strong>as</strong> been prevalent in Indian<br />

society from a long time and there are several<br />

<strong>medicinal</strong> <strong>plants</strong> have reported to possess<br />

potential hypoglycemic activity in Indian system<br />

<strong>of</strong> medicines (Mukherjee et al., 2006). Drugs<br />

have been derived either directly or indirectly<br />

from <strong>plants</strong>. Some plant products act by<br />

lowering the level <strong>of</strong> glucose in the blood while<br />

others act by inhibiting glucose absorption from<br />

the gut and hence prevent the surge in blood<br />

glucose that can occur immediately after a<br />

meal (Gurib-Fakim 2006).<br />

Mukherjee et al. (2006) provided a<br />

comprehensive review on <strong>plants</strong> having potent<br />

hypoglycemic activity (65 antidiabetic plant<br />

species) from India. For these <strong>plants</strong> the<br />

phytomolecules including flavonoids, alkaloids,<br />

glycosides, saponins, glycolipids, dietary fibres,<br />

polysaccharides, peptidoglycans,<br />

carbohydrates, amino acids and others<br />

obtained from various plant <strong>source</strong>s have been<br />

reported <strong>as</strong> potent hypoglycemic agents. More<br />

than 100 <strong>medicinal</strong> <strong>plants</strong> are mentioned in the<br />

Indian system <strong>of</strong> medicines including folk<br />

medicines for the management <strong>of</strong> diabetes,<br />

which are effective either separately or in<br />

combinations (Kar et al., 2003). In India, the<br />

<strong>plants</strong> such <strong>as</strong> Coccinia indica, Eugenia<br />

jambolana, Gymnema sylvestre, Momordica<br />

charantia and Tigonella foenum-graecum are<br />

widely used for the treatment <strong>of</strong> diabetes in<br />

traditional <strong>as</strong> well <strong>as</strong> modern medicine.<br />

Anticancer activity<br />

Cancer is a growing public problem<br />

whose estimated worldwide new incidence is<br />

about 6 million c<strong>as</strong>es per year and it is the<br />

second major cause <strong>of</strong> deaths after<br />

cardiov<strong>as</strong>cular dise<strong>as</strong>es and the dise<strong>as</strong>e is<br />

characterized by unregulated proliferation <strong>of</strong><br />

cells (Sriv<strong>as</strong>tava et al., 2005). The use <strong>of</strong> natural<br />

products <strong>as</strong> anticancer agents h<strong>as</strong> a long history<br />

that began with folk medicine and through the<br />

years h<strong>as</strong> been incorporated into traditional<br />

and allopathic medicine (Costa-Lotufo et al.,<br />

2005). The search for <strong>source</strong>s <strong>of</strong> new<br />

biologically active compounds is important for<br />

the discovery <strong>of</strong> new drugs relative to the<br />

treatment <strong>of</strong> cancer and blood coagulation<br />

(Goun et al., 2002). Early examples <strong>of</strong><br />

anticancer agents developed from higher <strong>plants</strong><br />

are the antileukemic alkaloids vinbl<strong>as</strong>tine and<br />

vincristine, which were both obtained from the<br />

plant catharanthus roseus. Since the early<br />

1950s, the identification and development <strong>of</strong><br />

new lead compounds for anticancer<br />

chemotherapy h<strong>as</strong> been partially driven by<br />

broad plant screening programs (Voss et al.,<br />

2006).<br />

Several plant-derived compounds are<br />

currently successfully employed in cancer<br />

treatment and the plant derived anti cancer<br />

agents are vincristine, vinbl<strong>as</strong>tine, paclitaxel,<br />

docetaxel, irinotecan, flavopiridol, bruceantin,<br />

thalicarpin, topotecan and acronyciline (Rocha<br />

et al., 2001). Balachandran and Govindarajan<br />

(2005) scientifically proven the anti-cancerous<br />

properties <strong>of</strong> seven <strong>medicinal</strong> <strong>plants</strong> used for<br />

the treatment <strong>of</strong> various cancers. They also<br />

provide a list <strong>of</strong> commonly used anticancer<br />

<strong>plants</strong>, scientifically proven anticancer <strong>plants</strong><br />

used in ayurvedic medicine, <strong>therapeutic</strong><br />

enhancement potential <strong>of</strong> ayurvedic used in<br />

4


Int. J Bioscience Res. December 2012 Issue 1 Vol. 1<br />

cancer chemotherapy, pharmacological pr<strong>of</strong>ile<br />

<strong>of</strong> ayurvedic anticancer <strong>plants</strong> and a cl<strong>as</strong>sical<br />

treatment protocol for various tumors in<br />

ayurvedic medicine. Multidisciplinary scientific<br />

investigations are making best efforts to<br />

combat this dise<strong>as</strong>e, but the sure-shot, perfect<br />

cure is yet to be brought into world medicine.<br />

Antiviral activity<br />

Virus infection is a common worldwide<br />

problem. During the l<strong>as</strong>t few years efforts were<br />

made to incre<strong>as</strong>e the number <strong>of</strong> substances<br />

with antiviral activity and a few substances are<br />

known which provide an effective treatment <strong>of</strong><br />

viral infections in vivo (Glatthaar-Saalmuller<br />

2001). Antiviral research using plant extracts<br />

h<strong>as</strong> gained momentum since 1950 and some <strong>of</strong><br />

the traditionally used <strong>medicinal</strong> <strong>plants</strong> have<br />

proved against some pathogenic viruses<br />

(Bal<strong>as</strong>ubramanian et al., 2006). G<strong>as</strong>tric<br />

hyperacidity and ulcer are very common<br />

causes, by which human suffering today. It is an<br />

imbalance between damaging factors within<br />

the lumen and protective mechanisms within<br />

the g<strong>as</strong>tro duodenal mucosa. Most <strong>of</strong> the<br />

available drugs are thought to act on the<br />

<strong>of</strong>fensive factors which neutralize acid<br />

secretion like antacids, H2 receptor blockers<br />

like ranitidine, famotidine, anticholinergics like<br />

irenzepin, telezipine, proton pump blockers like<br />

omeprazole, lansoprazole, etc. which interfere<br />

with acid secretion (Rao et al., 2004).<br />

Bal<strong>as</strong>ubramanian et al. (2006) proved that the<br />

<strong>plants</strong> such <strong>as</strong> Aegle marmelos, Lantana<br />

camara, Momordica charantia and Phyllanthus<br />

amarus showed significant antiviral activity<br />

against white spot syndrome virus in shrimp.<br />

Vimalanathan et al. (2009) reported that<br />

most <strong>of</strong> the tested <strong>medicinal</strong> plant extracts<br />

showed antiviral activity to a certain degree,<br />

although some <strong>of</strong> these activities were weak<br />

and specific for only one or two viruses.<br />

However, the <strong>plants</strong> such <strong>as</strong> C<strong>as</strong>sia alata,<br />

Clerodendron inerme, Clitoria ternatea,<br />

Evolvulus alsinoides, Gymnema sylvestre,<br />

Leuc<strong>as</strong> <strong>as</strong>pera, Pergularia daemia and Vitex<br />

trifolia and showed impressive activity (in less<br />

than 1 μg/mL) against several viruses, and<br />

Caesalpinia bonduc, Durio zibethinus, Garcinia<br />

mangostana, Oldenlandia corymbosa,<br />

Spermacoce hispida and Trichodesma indicum<br />

showed moderate antiviral activity against<br />

more than one virus.<br />

Antiinflammatory activity<br />

Inflammation is body’s way <strong>of</strong> dealing<br />

with infections and tissue damage, but there is<br />

a fine balance between the beneficial effects <strong>of</strong><br />

inflammation c<strong>as</strong>cades and their potential for<br />

long-term tissue destruction (Simmons 2006).<br />

Studies have been continuing on antiinflammatory<br />

drugs to treat inflammatory<br />

dise<strong>as</strong>es. Different approaches used to analyze<br />

the antiinflammatory potential <strong>of</strong> <strong>plants</strong> and<br />

plant derived compounds in the p<strong>as</strong>t years. In<br />

spite <strong>of</strong> the discovery <strong>of</strong> several newer agents,<br />

the search for better antiinflammatory drugs<br />

continues because they have many known side<br />

effects and none <strong>of</strong> them is apt for prolonged<br />

use (Rampr<strong>as</strong>ath et al., 2004). Plant drugs with<br />

anti-inflammatory and antioxidant activity can<br />

bring relief to conditions like haemorrhoids,<br />

varicose veins and other conditions that involve<br />

a better flow <strong>of</strong> blood. The antiinflammatory<br />

activities are <strong>of</strong>ten attributed to the presence<br />

<strong>of</strong> saponins while the antioxidant activity<br />

attributed to the presence <strong>of</strong> flavonoids and<br />

other molecules having antioxidant activities<br />

(Gurib-Fakim 2006).<br />

Over the p<strong>as</strong>t 20 years there h<strong>as</strong> been a<br />

significant incre<strong>as</strong>e in knowledge about<br />

immunology, both in terms <strong>of</strong> molecular targets<br />

and molecular mechanisms. Plant drugs with<br />

antiinflammatory activity can bring relief to<br />

conditions like hemorrhoids, varicose veins and<br />

other conditions that involve a better flow <strong>of</strong><br />

blood. Indian <strong>medicinal</strong> <strong>plants</strong> are a rich <strong>source</strong><br />

<strong>of</strong> substances claimed to induce paraimmunity,<br />

non-specific immunomodulation <strong>of</strong><br />

essentially granulocytes, macrophages, natural<br />

killer cells and complement functions.<br />

Antioxidant activity<br />

5


Int. J Bioscience Res. December 2012 Issue 1 Vol. 1<br />

Antioxidants help organisms deal with<br />

oxidative stress, caused by free radical damage.<br />

Free radicals are chemical species, which<br />

contains one or more unpaired electrons due to<br />

which they are highly unstable and cause<br />

damage to other molecules by extracting<br />

electrons from them in order to attain stability<br />

(Ali et al., 2008). Interestingly the body posses<br />

defence mechanisms against free radicalinduced<br />

oxidative stress, which involve<br />

preventive mechanisms, repair mechanisms,<br />

physical defenses and antioxidant defenses.<br />

Among different families <strong>of</strong> antioxidants,<br />

flavanoids and tannins are most recurring<br />

followed by phenolics, <strong>as</strong>corbic acid and<br />

alkaloids. Plant-derived antioxidants such <strong>as</strong><br />

tannins, lignans, stilbenes, coumarins,<br />

quinones, xanthones, phenolic acids, flavones,<br />

flavonols, catechins, anthocyanins and<br />

proanthocyanins could delay or prevent the<br />

onset <strong>of</strong> degenerative dise<strong>as</strong>es because <strong>of</strong> their<br />

redox properties, which allow them to act <strong>as</strong><br />

hydrogen donors, reducing agents, hydroxyl<br />

radicals or superoxide radical scavengers<br />

(Marwah et al., 2006).<br />

Enzymatic antioxidant defenses include<br />

superoxide dismut<strong>as</strong>e (SOD), glutathione<br />

peroxid<strong>as</strong>e (GPx), catal<strong>as</strong>e (CAT) etc. Nonenzymatic<br />

antioxidants are <strong>as</strong>corbic acid<br />

(vitamin C), a-tocopherol (vitamin E),<br />

glutathione (GSH), carotenoids, flavonoids, etc.<br />

All these act by one or more <strong>of</strong> the mechanisms<br />

like reducing activity, free radical-scavenging,<br />

potential complexing <strong>of</strong> pro-oxidant metals and<br />

quenching <strong>of</strong> singlet oxygen. The oxidative<br />

stress, defined <strong>as</strong> ‘‘the imbalance between<br />

oxidants and antioxidants in favor <strong>of</strong> the<br />

oxidants potentially leading to damage’’ h<strong>as</strong><br />

been suggested to be the cause <strong>of</strong> aging and<br />

various dise<strong>as</strong>e in humans (Katalinic et al.,<br />

2006). Many <strong>plants</strong> have been identified <strong>as</strong><br />

having potential antioxidant activities and it is<br />

<strong>of</strong> interest to investigate the antioxidant<br />

properties <strong>of</strong> herbal infusions especially those<br />

traditionally used in folk medicine.<br />

Many Indian <strong>medicinal</strong> <strong>plants</strong> have been<br />

investigated for their beneficial use <strong>as</strong><br />

antioxidants or <strong>source</strong> <strong>of</strong> antioxidants using<br />

presently available experimental techniques.<br />

Scartezzini and Speroni (2000) reported that<br />

Curcuma longa, Magnifera indica, Momordica<br />

charantia, Phyllanthus emblica, Santalum<br />

album, Swertia chirata and Withania somnifera<br />

have possess rich antioxidant activity and used<br />

in Indian traditional medicine. Govindarajan et<br />

al. (2003) declared that Acorus calamus, Aloe<br />

vera, Andrographis paniculata, Asparagus<br />

racemosus, Azadirachta indica, Bacopa<br />

monnieri, Desmodium gangeticum, Glycyrrhiza<br />

glabra, Picrorhiza kurroa, Psoralea corylifolia,<br />

Semecarpus anacardium, Terminalia chebula<br />

and Tinospora cordifolia were reported to hold<br />

significant antioxidant activity. The most<br />

common use <strong>of</strong> these <strong>plants</strong> w<strong>as</strong> found to be in<br />

cardiov<strong>as</strong>cular dise<strong>as</strong>es especially in the<br />

treatment <strong>of</strong> diabetes. Other major<br />

applications <strong>of</strong> these <strong>plants</strong> were in the form <strong>of</strong><br />

a neuroprotective, anticancer, antitumor,<br />

antistress, dermal wound healing,<br />

cardiov<strong>as</strong>cular protection, antidiarrhoea and<br />

anticholesterol activity (Ali et al., 2008).<br />

Antimycobacterial activity<br />

Historically tuberculosis (TB) is one <strong>of</strong><br />

the oldest and most perv<strong>as</strong>ive dise<strong>as</strong>es in<br />

history and TB is caused by Mycobacterium<br />

tuberculosis (MTB), and to a lesser degree M.<br />

bovis and M. africanum, and continues to be a<br />

major dise<strong>as</strong>e <strong>of</strong> global importance infecting at<br />

le<strong>as</strong>t one third or two billion <strong>of</strong> the world’s<br />

population. It is a highly infective airborne and<br />

chronic bacterial dise<strong>as</strong>e usually infecting the<br />

lungs, although other organs are sometimes<br />

involved (Okunade et al., 2004). The plant<br />

kingdom is undoubtedly a valuable <strong>source</strong> for<br />

new anti-tuberculosis agents and provide the<br />

findings from an extensive literature search <strong>of</strong><br />

all <strong>plants</strong> that have been <strong>as</strong>sessed for<br />

antimycobacterial/ antitubercular activity over<br />

the p<strong>as</strong>t 20-30 years (Newton et al., 2000).<br />

Respiratory disorders such <strong>as</strong> colds, <strong>as</strong>thma and<br />

bronchitis have and can be treated by<br />

6


Int. J Bioscience Res. December 2012 Issue 1 Vol. 1<br />

phytotherapy. For such ailments leading to<br />

infections, the recourse to antibiotics is<br />

inevitable. However, throughout the duration<br />

or the cold and flu-bouts, decongestants,<br />

broncholytics and expectorants, demulcents<br />

are helpul in providing relief.<br />

According to Ayurvedic concepts,<br />

suppression <strong>of</strong> the urgings <strong>of</strong> stools and urine,<br />

excessive f<strong>as</strong>ting, excessive virility, irregular<br />

meals at irregular hours and similar other<br />

practices which lead to a w<strong>as</strong>te <strong>of</strong> the<br />

ingredients <strong>of</strong> the body, produce phthisis or<br />

consumption i.e. tuberculosis. A considerable<br />

number <strong>of</strong> plant species have been mentioned<br />

in Ayurveda for the treatment <strong>of</strong> TB, leprosy<br />

and related disorders. Gautam et al. (2007)<br />

reviewed that, 255 species were found to be<br />

antimycobacterial activity in preliminary in vitro<br />

screening and most <strong>of</strong> these species do find<br />

mention in traditional systems <strong>of</strong> medicine. Of<br />

the 255 species, 149 plant species that showed<br />

positive correlations with ethno<strong>medicinal</strong> uses,<br />

were reported to be used for<br />

TB/phthisis/consumption/leprosy and TB<br />

related dise<strong>as</strong>es like pulmonary affections,<br />

bronchitis, <strong>as</strong>thma, cough, whooping cough and<br />

infectious dise<strong>as</strong>es <strong>of</strong> chest.<br />

Antimicrobial activity<br />

The systematic screening <strong>of</strong> living<br />

organisms with the purpose <strong>of</strong> discovering new<br />

bioactive compounds is a routine activity in<br />

many laboratories devoted to biomedical<br />

research (Salvat et al., 2004). Many efforts have<br />

been made to discover new antimicrobial<br />

compounds from various kinds <strong>of</strong> <strong>source</strong>s such<br />

<strong>as</strong> micro-organisms, animals, and <strong>plants</strong>. Since<br />

their discovery, antimicrobial drugs have<br />

proved remarkably effective for the control <strong>of</strong><br />

bacterial infections. However, it w<strong>as</strong> soon<br />

evident that bacterial pathogens were unlikely<br />

to surrender unconditionally, because some<br />

pathogens rapidly become resistant to many <strong>of</strong><br />

the first discovered effective drugs (Barbour et<br />

al., 2004). The development <strong>of</strong> drug resistance<br />

in human pathogens against commonly used<br />

antibiotics h<strong>as</strong> necessitated a search for new<br />

antimicrobial substances from other <strong>source</strong>s<br />

including <strong>plants</strong>. Plants used for traditional<br />

medicine contain a wide range <strong>of</strong> substances<br />

that can be used to treat chronic <strong>as</strong> well <strong>as</strong><br />

infectious dise<strong>as</strong>es (Erdogrul 2002). Examples<br />

<strong>of</strong> some microorganisms that gained resistance<br />

to antimicrobials are: Bacillus subtilis, Candida<br />

albicans, Escherichia coli, Enterococcus faecalis,<br />

Ervinia sp., Proteus vulgaris, Pseudomon<strong>as</strong><br />

aeruginosa, Shigella dysenteriae, Salmonella<br />

enteritidis, Salmonella typhi, Staphylococcus<br />

aureus, Staphylococcus epidermidis and<br />

Streptococcus faecalis.<br />

In the present scenario, the emergence<br />

<strong>of</strong> multiple drug resistance to human<br />

pathogenic organisms h<strong>as</strong> necessitated a search<br />

for new antimicrobial substances from other<br />

<strong>source</strong>s including <strong>plants</strong> and to overcome the<br />

problem <strong>of</strong> antibiotic resistance, <strong>medicinal</strong><br />

<strong>plants</strong> have been extensively studied <strong>as</strong><br />

alternative treatments for dise<strong>as</strong>es (Kumar et<br />

al., 2007). Some <strong>of</strong> the ailments treated with<br />

these <strong>plants</strong> include topical, respiratory,<br />

reproductive and g<strong>as</strong>trointestinal infections<br />

caused by fungi. In the c<strong>as</strong>e <strong>of</strong> temperate<br />

country, it is expected that the <strong>plants</strong> used in<br />

the treatment <strong>of</strong> conditions possibly involving<br />

microbial pathogens, such <strong>as</strong> burns, cuts,<br />

infections, mouth conditions, and diarrhea,<br />

would contain greater antimicrobial activities.<br />

In India scientific community is searching for<br />

alternative new antibiotics for the l<strong>as</strong>t few<br />

decades to treat various dise<strong>as</strong>es including<br />

dise<strong>as</strong>es caused by microbes. Antibacterial and<br />

antifungal activities were reported for various<br />

commonly used Indian <strong>medicinal</strong> <strong>plants</strong> on the<br />

b<strong>as</strong>is <strong>of</strong> traditional medicine are Acorus<br />

calamus, Allium sativum, Azadirachta indica,<br />

Camellia sisensis, Citrus sisensis, Lantana<br />

camara, Ocimum sanctum, Nigella sativa,<br />

Plumbago zeylanica, Punica granatum, Psidium<br />

guajava, Terminalia bellirica and Zizyphus<br />

jujuba etc.<br />

Antimalarial activity<br />

Malaria is caused by a single celled<br />

protozoan par<strong>as</strong>ites called Pl<strong>as</strong>modium and<br />

7


Int. J Bioscience Res. December 2012 Issue 1 Vol. 1<br />

transmitted to man through the anopheles<br />

mosquito. It is one <strong>of</strong> the major fatal dise<strong>as</strong>es in<br />

the world, especially in the tropics and is<br />

endemic in some 102 countries with more than<br />

half <strong>of</strong> the world population at risk and the<br />

control <strong>of</strong> malaria is complex because <strong>of</strong> the<br />

appearance <strong>of</strong> drug resistant strains <strong>of</strong><br />

Pl<strong>as</strong>modium and with the discovering that man<br />

may become infested with species <strong>of</strong> simian<br />

(monkey) malaria. The use <strong>of</strong> plant-derived<br />

drugs for the treatment <strong>of</strong> malaria h<strong>as</strong> a long<br />

and successful tradition. For example, quinine<br />

isolated from Cinchona <strong>of</strong>ficinalis and<br />

quinghaosu from Artemisia annua represent<br />

the potential value <strong>of</strong> investigating traditionally<br />

used antimalarial <strong>plants</strong> for developing<br />

pharmaceutical antimalarial drugs (Srisilam and<br />

Veersham 2003). The declining efficacy <strong>of</strong><br />

cl<strong>as</strong>sical medication in relation to rapid<br />

extension <strong>of</strong> Pl<strong>as</strong>modium falciparum<br />

chloroquine-resistant strains h<strong>as</strong> led to a need<br />

for new and efficient antimalarial drugs (Sanon<br />

et al., 2003).<br />

Malaria is one <strong>of</strong> the major causes <strong>of</strong><br />

morbidity and mortality in the developing<br />

countries like India and h<strong>as</strong> a great impact on<br />

the socio-economic development <strong>of</strong> the<br />

individual households in various ways.<br />

Repellents have an important place in<br />

protecting man from the bites <strong>of</strong> insect’s pests<br />

and mosquitoes (Kalyan<strong>as</strong>undaram 1991;<br />

Sukumar et al., 1991) and smoke produced by<br />

the burning <strong>of</strong> some herbs such <strong>as</strong> Artemisia<br />

and Azadirachta indica h<strong>as</strong> been used for the<br />

protection against mosquitoes and biting<br />

insects since ancient times. Planting <strong>of</strong> plant<br />

species like Azadirachta indica, Annona<br />

squamosa, Artemisia vulgaris, Cymbopogon<br />

citratus, Lantana camara, Ocimum sanctum<br />

and Vitex peduncularis nearby the houses or<br />

settlement are<strong>as</strong> is another traditional method<br />

<strong>of</strong> controlling mosquito borne malaria still in<br />

practice by the local community in northe<strong>as</strong>t<br />

India and polishing <strong>of</strong> house floor with leaf<br />

plant extracts obtained mainly from the species<br />

<strong>of</strong> Azadirachta, Artemisia, Lantana, Ocimum,<br />

and Cymbopogon is routinely done to drive<br />

away mosquitoes and other insect’s flies <strong>as</strong><br />

common tradition among the community<br />

members <strong>of</strong> rural tribal people (Namsa et al.,<br />

2011).<br />

Anti-HIV activity<br />

AIDS is a pandemic immunosuppresive<br />

dise<strong>as</strong>e which results in life-threatening<br />

opportunistic infections and malignancies.<br />

Much research effort h<strong>as</strong> focused on the<br />

prevention and therapy <strong>of</strong> this infection<br />

resulting in AIDS, and despite considerable<br />

progress being made; still no vaccine that<br />

prevents infection or therapy that cures the<br />

dise<strong>as</strong>e and eliminates all infectious particles is<br />

yet available. In addition to biotechnological<br />

techniques, molecular modelling, etc.,<br />

exploitation <strong>of</strong> natural re<strong>source</strong>s to find new<br />

lead compounds against HIV is still a valuable<br />

approach (Cos et al., 2008). A v<strong>as</strong>t number <strong>of</strong><br />

natural products from <strong>medicinal</strong> <strong>plants</strong> such <strong>as</strong><br />

terpenoids, coumarins, alkaloids, polyphenols,<br />

tannins and flavonoids have been shown to<br />

possess anti-HIV activity. Some <strong>of</strong> these natural<br />

products such <strong>as</strong> betulinic acid, calanolide A, (-)<br />

Epigallocatechin galloate, Glycyrrhizin,<br />

Andrographolide, Polycitone A and Geraniin<br />

were already entered clinical trials (Hupfeld and<br />

Efferth 2009).<br />

Sabde et al. (2011) reported that, <strong>of</strong> the<br />

92 extracts prepared from 23 Indian <strong>medicinal</strong><br />

<strong>plants</strong> tested for anti-HIV activity in a human<br />

CD4+ T-cell line, CEM-GFP cells infected with<br />

HIV-1NL4.3, the results showed 9 extracts <strong>of</strong> 8<br />

different <strong>plants</strong> significantly reduced viral<br />

production in CEM-GFP cells infected with HIV-<br />

1NL4.3. Anuya et al. (2010) reported that<br />

Tinospora cordifolia, Avicennia <strong>of</strong>ficinalis,<br />

Rhizophora mucaranata and Ocimum sanctum<br />

showed anti-HIV potential and inhibiting the<br />

virus by two different mechanisms such <strong>as</strong><br />

interference with the gp 120/CD4 interaction<br />

and inhibition <strong>of</strong> reverse transcript<strong>as</strong>e (RT).<br />

Mohanraj et al. (2010) reported that, the leaf<br />

crude extract <strong>of</strong> Calotropis procera w<strong>as</strong> showed<br />

activity against HIV virus.<br />

8


Int. J Bioscience Res. December 2012 Issue 1 Vol. 1<br />

Indian Medicinal Plants in Trade<br />

The industrial demand for the <strong>medicinal</strong><br />

plant re<strong>source</strong>s h<strong>as</strong> been on the rise due to the<br />

worldwide buoyancy in the herbal sector<br />

engaged in production <strong>of</strong> herbal health care<br />

formulations; herbal b<strong>as</strong>ed cosmetic products<br />

and herbal nutritional supplements. In India,<br />

nearly 9,500 registered herbal industries and a<br />

multitude <strong>of</strong> unregistered cottage-level herbal<br />

units depend upon the continuous supply <strong>of</strong><br />

<strong>medicinal</strong> <strong>plants</strong> for manufacture <strong>of</strong> herbal<br />

medical formulations b<strong>as</strong>ed on Indian Systems<br />

<strong>of</strong> Medicine. In addition to the industrial<br />

consumption, significant quantities <strong>of</strong> <strong>medicinal</strong><br />

plant re<strong>source</strong>s are consumed in the country<br />

under its traditional health care practices at the<br />

household level by traditional healers and by<br />

practitioners <strong>of</strong> Indian Systems <strong>of</strong> Medicine.<br />

Although there are around 8000<br />

<strong>medicinal</strong> plant species used by different<br />

communities in India across different<br />

ecosystems, only around 10 % <strong>of</strong> them are in<br />

active trade. More than 1200 raw drug entities<br />

originating from more than 880 plant species<br />

have been recorded in active trade in India. The<br />

medical system wise representation (Ayurveda,<br />

Siddha, Unani, Tibetan, Folk, Homeopathy and<br />

Modern) <strong>of</strong> these 880 species <strong>of</strong> Indian<br />

<strong>medicinal</strong> <strong>plants</strong> is another interesting point to<br />

note. Majority <strong>of</strong> these <strong>plants</strong> (82%) are used in<br />

Ayurveda system <strong>of</strong> medicine while the lowest<br />

share (7%) is by modern system; similarly<br />

Siddha accounts for 58%, Unani for 53%,<br />

Homeopathy for 16% and Tibetan medice for<br />

25% (Begum and Ved 2004).<br />

Around 90% <strong>of</strong> the <strong>medicinal</strong> <strong>plants</strong><br />

used by the Indian Pharmacies today are<br />

collected from the wild/natural <strong>source</strong>s. Less<br />

than 20 species <strong>of</strong> <strong>plants</strong> are under commercial<br />

cultivation and many <strong>of</strong> these have their uses<br />

for other purposes like perfumary/<br />

condiments/ spices. Apart from requirement <strong>of</strong><br />

<strong>medicinal</strong> <strong>plants</strong> for internal consumption, India<br />

is one <strong>of</strong> the major exporters <strong>of</strong> crude drugs<br />

mainly to the six developed countries, viz. USA,<br />

Germany, France, Switzerland, UK and Japan<br />

who share between them 75 - 80% <strong>of</strong> the total<br />

export <strong>of</strong> crude drugs from India. The principal<br />

herbal drugs that have been finding a good<br />

market in foreign countries are Abrus<br />

precatorius, Aconitum heterophyllum, Acorus<br />

calamus, Adhatoda zeylanica, Aegle marmelos,<br />

Aloe vera, Alpinia calcarata, Ammi majus,<br />

Andrographis paniculata, Asparagus<br />

racemosus, Atropa belladona, Bacopa monnieri,<br />

Cinchona <strong>of</strong>ficinalis, C<strong>as</strong>sia angustifolis, C<strong>as</strong>sia<br />

tora, Chrysanthemum cinerariifolium, Curculigo<br />

orchioides, Dioscorea sps., Digitalis purpurea,<br />

Ephedra gerardiana, Hyoscyamus niger,<br />

Kaempferia galanga, Picrorhiza kurroa,<br />

Plantago ovata, Podophyllum hexandrum,<br />

Rauwolfia serpentina, Saraca <strong>as</strong>oca,<br />

Nardostachys jatamansi, Terminalia chebula,<br />

Terminalia bellirica, Tribulus terrestris,<br />

Tylophora indica, Withania somnifera, etc.<br />

CONCLUDING REMARKS<br />

Research on <strong>medicinal</strong> <strong>plants</strong> and the<br />

search for plant-derived drugs require a<br />

multidisciplinary approach with integrated<br />

projects, financial and technical support, and a<br />

very carefully planned strategy. Renewed<br />

interest in traditional pharmacopoei<strong>as</strong> h<strong>as</strong><br />

meant that researchers are concerned not only<br />

with determining the scientific rationale for the<br />

plant’s usage, but also with the discovery <strong>of</strong><br />

novel compounds <strong>of</strong> pharmaceutical value<br />

(Fennell et al., 2004). Instead <strong>of</strong> trying to<br />

identify the active components <strong>of</strong> herbs<br />

through m<strong>as</strong>sive collection <strong>of</strong> <strong>plants</strong> from<br />

natural <strong>source</strong>s, it is better to start<br />

investigating the efficacy <strong>of</strong> the natural product<br />

from the traditional use by patients in<br />

randomized clinical trials. There is still much we<br />

can learn from investigating herbals available<br />

abundantly in the forests particularly those<br />

which are less well known. This type <strong>of</strong><br />

research must be promoted <strong>as</strong> a means for<br />

developing countries to understand the<br />

potential use <strong>of</strong> their plant re<strong>source</strong>s, <strong>as</strong> well <strong>as</strong><br />

a means to better promote b<strong>as</strong>ic healthcare.<br />

9


Int. J Bioscience Res. December 2012 Issue 1 Vol. 1<br />

Botanical Name Medicinal Major phytochemical<br />

Pharmacological<br />

properties*<br />

constituents*<br />

properties**<br />

Abutilon indicum Diuretic, <strong>as</strong>tringent, Leaves and root contain Hepatoprotective and<br />

(L.) Sweet<br />

demulcent,<br />

expectorant,<br />

laxative,<br />

aphrodisiac,<br />

pulmonary and<br />

sedative<br />

<strong>as</strong>paragin<br />

hypoglycemic activity<br />

Acacia nilotica (L.) Astringent,<br />

Tannins and phonolic Antimicrobial and<br />

Willd. ex Del. sp<strong>as</strong>molytic, compounds, (+)-catechin antimalarial activity<br />

hypoglycaemic, galloyl esters, (+)-catechindemulcent,<br />

soothing agent,<br />

hypoglycaemic and<br />

antifungal<br />

5-gallate<br />

Acalypha indica L. Expectorant, Alkaloids acalypus and Antioxidant, wound healing,<br />

anthelmintic, acalyphine, cyanogenetic antifertility and antibacterial<br />

emetic, hypnotic,<br />

anodyne and<br />

cathartic<br />

glucoside, triacetanamine activity<br />

Achyranthes Alternative, Alkalines Contraceptive, spermicidal,<br />

<strong>as</strong>pera L.<br />

antiperiodic,<br />

cancer chemopreventive,<br />

<strong>as</strong>tringent, diuretic<br />

hypoglycaemic<br />

and purgative<br />

antiinflammatory and<br />

arthritic activity<br />

Justicia adhatoda Alternative, V<strong>as</strong>icine, adhatodic acid, 1- Hepatoprotective and<br />

L.<br />

antisp<strong>as</strong>modic, pegamine, synthetic 1- antituberculosis activity<br />

diuretic,<br />

expectorant,<br />

pegamine<br />

Allium cepa L. Antiseptic,<br />

Acrid volatile oil,<br />

Antidiabetic, antimicrobial<br />

aphrodisiac, albuminoids, soluble and antileishmanial activity<br />

diuretic, demulcent, carbohydrates and sugar,<br />

emmanogogue, catechol and<br />

expectorant,<br />

rubefacient and<br />

stimulant<br />

protocatechuic acids<br />

Aloe vera (L.) Anthelmintic, Aloin, isobarbaloin, Anticancer, anti-<br />

Burm.f.<br />

antiseptic, cathartic, emodin, gum, resin, inflammatory, antidiabetic<br />

emmanogogue, chrysophanic acid, urinic and wound healing activity<br />

purgative,<br />

acid, oxid<strong>as</strong>e, catal<strong>as</strong>e and<br />

refrigerant,<br />

stomachic, tonic<br />

sugars<br />

Alternanthera Cholagogue, Protein and iron Antioxidant and<br />

sessilis (L.) R.Br. ex galactogogue,<br />

antimolluscicidal activity<br />

DC.<br />

febrifuge<br />

Anacardium Alternative, Cardol, anacardic acid, Free radical scavenging,<br />

10


Int. J Bioscience Res. December 2012 Issue 1 Vol. 1<br />

occidentale L. <strong>as</strong>tringent,<br />

demulcent,<br />

purgative,<br />

rubefacient<br />

Areca catechu L. Aromatic,<br />

anthelmintic,<br />

aphrodisiac,<br />

<strong>as</strong>tringent,<br />

stimulant, taenifuge<br />

Azadirachta indica<br />

A. Juss.<br />

Bambusa bambos<br />

Voss<br />

Capsicum<br />

frutescens L.<br />

Cardiospermum<br />

halicacabum L.<br />

Astringent,<br />

antiperiodic,<br />

antiseptic,<br />

anthelmintic,<br />

discutient,<br />

demulcent,<br />

emmanogogue,<br />

emollient,<br />

insecticide,<br />

purgative,<br />

refrigerant,<br />

stimulant,<br />

stomachic, tonic<br />

and vermifuge<br />

Anthelmintic,<br />

antisp<strong>as</strong>modic,<br />

aphrodisiac,<br />

<strong>as</strong>tringent,<br />

refrigerant,<br />

febrifuge, stimulant<br />

and tonic<br />

Irritant, pungent,<br />

stimulant,<br />

stomachic and tonic<br />

Alternative,<br />

diaphoretic,<br />

diuretic, emetic,<br />

emmenagogue,<br />

laxative,<br />

rubefacient and<br />

stomachic<br />

Carica papaya L. Anthelmintic,<br />

alternative,<br />

digestive, diuretic,<br />

anacardein antioxidant, antirotovirus and<br />

antimicrobial activity<br />

Choline, isoguvocine,<br />

catechu, �-catechin,<br />

tannin, gallic acid,<br />

alkaloids, arecoline,<br />

arecaine, guvacine,<br />

arecaidine,guvacoline,<br />

guvacine,<br />

Margosine, margosic acid,<br />

margosopicrin, glycerides<br />

<strong>of</strong> fatty acids, butyric acid,<br />

valeric acid, neutral resins<br />

and acid resins, nimbin,<br />

nimbidin, nimbinin,<br />

nimbisterin, bakayanin<br />

Silicic acid, peroxides <strong>of</strong><br />

iron, cholin, betain,<br />

nucle<strong>as</strong>e, ure<strong>as</strong>e,<br />

proteolytic, emulsifying<br />

and di<strong>as</strong>tatic enzymes,<br />

cyanogenetic glucoside,<br />

benzoic acid, reducing<br />

sugar, resins and<br />

cyanogenetic glucoside<br />

Capsaicin, fatty acid, fixed<br />

oil, resin, solanine, volatile<br />

alkaloids,volatile oil, oleo-<br />

resin capsicin<br />

Antioxidant, hypoglycemic<br />

and active-oxygen scavenging<br />

activity<br />

Antipl<strong>as</strong>modial, anticancer,<br />

antioxidant, antisecretory and<br />

antiulcer activity<br />

Antifertility, antiinflammatory<br />

and antiulcer<br />

activity<br />

Antimicrobial and antivenom<br />

activity<br />

Essential oil and saponin Antiulcer, antimalarial,<br />

antiinflammatory activity<br />

Papain or papayotin,<br />

chymopapain, carpaine,<br />

caricin, carposide, citric,<br />

Antifertility activity<br />

Antioxidant activity and<br />

contraceptive<br />

11


Int. J Bioscience Res. December 2012 Issue 1 Vol. 1<br />

Carissa carand<strong>as</strong><br />

L.<br />

Senna alata (L.)<br />

Roxb.<br />

Senna auriculata<br />

(L.) Roxb.<br />

Centella <strong>as</strong>iatica<br />

(L.) Urban<br />

Cissus<br />

quadrangularis L.<br />

Citrus aurantifolia<br />

(Christm.) Swingle<br />

ecbolic,<br />

Emmenagogue,<br />

laxative,<br />

rubefacient<br />

Antiscorbutic,<br />

anthelmintic,<br />

<strong>as</strong>tringent,<br />

refrigerant and<br />

stomachic<br />

Antipar<strong>as</strong>itic,<br />

<strong>as</strong>tringent,<br />

purgative<br />

Alternative,<br />

anthelmintic,<br />

attenuant,<br />

<strong>as</strong>tringent,<br />

refrigerant, tonic<br />

Alternative, tonic,<br />

adaptogen, central<br />

nervous system<br />

relaxant, peripheral<br />

v<strong>as</strong>odilator,<br />

sedative, antibiotic,<br />

detoxifier, bloodpurifier,<br />

laxative,<br />

diuretic and<br />

emmenagogue.<br />

Alternative,<br />

digestive and<br />

stomachic<br />

Antiscorbutic,<br />

antiseptic,<br />

appetizer,<br />

refrigerant and<br />

stomachic<br />

Cleome viscosa L. Acrid, anthelmintic,<br />

Antipar<strong>as</strong>itic,<br />

antiseptic,<br />

carminative,<br />

irritant, rubefacient,<br />

sudorific and<br />

vesicant<br />

Clitoria ternatea L. Cathartic,<br />

demulcent, diuretic,<br />

laxative and<br />

purgative<br />

tartaric, malic, palmitic,<br />

crystalline, papayic and<br />

carica-fat acids, dextrin<br />

and resin<br />

Alkaloids, salicylic acid Histamine rele<strong>as</strong>ing activity<br />

and cardio tonic<br />

Chrysophanic acid,<br />

galactomannan, mineral<br />

elements, glycosides and<br />

carbohydrates<br />

Tannins, di-(2-ethyl) hexyl<br />

phthalate<br />

Vallarine, <strong>as</strong>iaticoside and<br />

oxy-<strong>as</strong>iaticoside, essential<br />

oil, fatty oil, sitosterol,<br />

tannin, pectic acid,<strong>as</strong>corbic<br />

acid, alkaline hydrocotyline<br />

and resins<br />

Carotene, calcium oxalate,<br />

<strong>as</strong>corbic acid<br />

Citric acid, citrol,<br />

limonene, linalool, linalyl<br />

acetate, cymene,<br />

petitgrain oil, coumatins,<br />

iso-pimpinellin, bergapten,<br />

citropten, xanthyletin,<br />

glucocapparin and<br />

glucocleomin, diterpene<br />

lactone, cleomoscosin A,<br />

cleomiscosin D, a minor<br />

coumarino-lignan and<br />

Kaempferide 3-glucuronide<br />

Tannin, resin, fixed oil,<br />

tannic acid and starch<br />

Antimicrobial, analgesic and<br />

hyperglycemic activity<br />

Nephroprotective,<br />

antibacaterial, antioxidant<br />

and free radical scavenging<br />

and antihyperglycemic<br />

activity<br />

Anticancer , antiulcer and<br />

antioxidant activity<br />

Analgesic, anti-inflammatory,<br />

venotonic and antiulcer<br />

activity<br />

Antiviral, antibacterial and<br />

anticancer activity<br />

Antimicrobial, antipyretic,<br />

analgesic and antidiarrheal<br />

activity<br />

Antimicrobial,<br />

antiinflammatory, analgesic<br />

and antipyretic activity<br />

12


Int. J Bioscience Res. December 2012 Issue 1 Vol. 1<br />

Coccinia grandis<br />

(L.) Voigt<br />

Alternative,<br />

antisp<strong>as</strong>modic,<br />

cathartic,<br />

expectorant<br />

Datura metel L. Anodyne,<br />

antiseptic,<br />

antisp<strong>as</strong>modic,<br />

digestive, emetic,<br />

intoxicant and<br />

narcotic<br />

Eclipta prostrate L. Antiseptic,<br />

deobstruent,<br />

Elettaria<br />

cardamomum (L.)<br />

Maton<br />

emetic and tonic<br />

Aromatic, diuretic,<br />

carminative,<br />

stimulant and<br />

stomachic<br />

Euphorbia hirta L. Anthelmintic,<br />

antisp<strong>as</strong>modic,<br />

demulcent and<br />

antipar<strong>as</strong>itic<br />

Evolvulus<br />

alsinoides L.<br />

Ficus bengalensis<br />

L.<br />

Alternative,<br />

anthelmintic,<br />

antiphlogistic,<br />

febrifuge and tonic<br />

and vermifuge<br />

Astringent,<br />

refrigerant, diuretic<br />

and tonic<br />

Ficus religiosa L. Alternative,<br />

<strong>as</strong>tringent,<br />

refrigerant, laxative,<br />

refrigerant and<br />

Gymnema<br />

sylvestre (Retz.)<br />

R.Br. ex Schultes<br />

Hemidesmus<br />

indicus (L.) R.Br.<br />

purgative<br />

Astringent, diuretic,<br />

antiperiodic,<br />

emetic, refrigerant,<br />

stomachic and tonic<br />

Alternative,<br />

demulcent,<br />

Glucokenin, alkaloid, fatty<br />

acid, amyl<strong>as</strong>e, starch,<br />

sugar, gum, enzymes and<br />

hormones<br />

Alkaloids hyoscyamine,<br />

hyoscine, daturine,<br />

mucilage, albumin, resins,<br />

proteids, malic acids,<br />

scopolamine, atropine and<br />

vitamin C<br />

Antioxidant, antidiabetic and<br />

hyperglycemic activity<br />

Antimicrobial and<br />

hypoglycemic activity<br />

Alkaline ecliptine, nicotine Antihyperlipidemic,<br />

antivenom and antimicrobial<br />

Fixed, essential and<br />

volatile oil, terpinyl<br />

acetate, free terpineol,<br />

terpinene, sabinene,<br />

limonene, ligneous fibre<br />

Alkaloid, essential oil, linositol<br />

and alkaline<br />

xanthorhamnin,<br />

caoutchouc, resin, tannins,<br />

sugar, mucilage, calcium<br />

oxalate, carbohydrates,<br />

albuminoids, gallic acid,<br />

quercitin and a phenol<br />

Neutral fat, alkaloid,<br />

organic acid and saline<br />

substances<br />

Tannin, wax, caoutchouc,<br />

oils, albuminoids,<br />

carbohydrates and fibre<br />

activity<br />

G<strong>as</strong>tro protective, DPPH<br />

radical-scavenging and antiinflammatory<br />

activity<br />

Antimicrobial and<br />

antimalarial activity<br />

Adaptogenic, anti-amnesic,<br />

antioxidant and antharthritic<br />

activity<br />

Antioxidant and<br />

antidiarrhoeal activity<br />

Tannin, wax, caoutchouc Anti-tumor activity<br />

Acetylcholinester<strong>as</strong>e<br />

inhibitory activity<br />

Gymnemic acid, resins,<br />

tannins, pararapin,<br />

glucose, inositol,<br />

anthraquinone,<br />

carbohydrates, tartaric<br />

acid, calcium salts and<br />

crystalline concretions<br />

Coumarin, volatile oil,<br />

hemidesmine, smil<strong>as</strong>peric,<br />

Antimicrobial and<br />

antidiabetic activity<br />

Antinociceptive, antioxidant,<br />

antithrombotic, antiulcer and<br />

13


Int. J Bioscience Res. December 2012 Issue 1 Vol. 1<br />

Hibiscus ros<strong>as</strong>inensis<br />

L.<br />

Hygrophila schulli<br />

(Hamilt.)<br />

M.R.Almeida &<br />

S.M. Almeida<br />

Jatropha<br />

gossypifolia L.<br />

diaphoretic,<br />

diuretic, sudorific<br />

and tonic<br />

Anodyne,<br />

aphrodisiac,<br />

demulcent,<br />

emollient,<br />

emmanagogue and<br />

refrigerant<br />

Diuretic,<br />

sp<strong>as</strong>molytic and<br />

hypotensive<br />

Emetic,<br />

emmenagogue,<br />

purgative<br />

Jatropha curc<strong>as</strong> L. Acro-narcotic,<br />

antiseptic,<br />

<strong>as</strong>tringent,<br />

depurative,<br />

lactagogue,<br />

purgative and<br />

Kalanchoe pinnata<br />

(Lam.) Pers.<br />

stomachic<br />

Antiseptic,<br />

<strong>as</strong>tringent and<br />

styptic<br />

Lantana camara L. Antiseptic,<br />

diaphoretic and<br />

carminative<br />

Lawsonia inermis<br />

L.<br />

Leuc<strong>as</strong> apsera<br />

(Willd.) Link.<br />

Mangifera indica<br />

L.<br />

Alternative,<br />

<strong>as</strong>tringent,<br />

deodorant,<br />

detergent, soporific,<br />

refrigerant and<br />

sedative<br />

Diaphoretic,<br />

emmenagogue,<br />

expectorant,<br />

insecticide, laxative<br />

and stimulant<br />

Anthelmintic,<br />

antiscorbutic,<br />

<strong>as</strong>tringent,<br />

essentialoil, saponin, resin,<br />

tennins, 2-hydroxy-4methoxy<br />

benzaldehyde,<br />

sterols<br />

Aliphatic ethers, fatty acid<br />

methyl ethers, Ethyl β-Larabinopyranoside<br />

Phytosterol, semi-drying<br />

oil, mucilage, di<strong>as</strong>t<strong>as</strong>e,<br />

lip<strong>as</strong>e, prote<strong>as</strong>e and<br />

alkaloids<br />

Flavonoids, lignan, gadain,<br />

pyridinium oxid<strong>as</strong>es, oleic<br />

and linoleic acids,<br />

arylnaphthalene lignan,<br />

gossypifan, jatrodien,<br />

diterpene,<br />

Ricin, curcin, c<strong>as</strong>eine, fixed<br />

oil, inorganic matters,<br />

jatrophic acid, sugar and<br />

starch<br />

Organic acid, tartar,<br />

tartaric acid, calcium<br />

oxalate<br />

Essential oil containing<br />

camarene, isocamarene,<br />

micranene, lantanine,<br />

lantadene<br />

Hanno-tannic acid, tannin,<br />

olive green resin, fragrant<br />

oil and glucoside<br />

Essential oil, glycosides<br />

and alkaloid<br />

Tartaric, citric, gallic malic<br />

and acids, tannin, fat,<br />

sugar, gum, starch, anti-<br />

antidiabetic activity<br />

Hypoglycemic activity and<br />

hair growth potential<br />

Hepatoprotective and<br />

antioxidant activity<br />

Antimicrobial activity<br />

Anti-inflammatory, antiviral,<br />

wound healing activity,<br />

coagulant and anticoagulant<br />

Hepatoprotective and<br />

antileishmanial activity<br />

Antimicrobial and antitumor<br />

activity<br />

Antipar<strong>as</strong>itic, antibacterial<br />

and tTuberculostatic activity<br />

Antimicrobial activity<br />

Antiulcer, antioxidant and<br />

antiamoebic activity<br />

14


Int. J Bioscience Res. December 2012 Issue 1 Vol. 1<br />

diaphoretic,<br />

diuretic, laxative,<br />

refrigerant,<br />

stomachic and tonic<br />

Melia azedarach L. Anthelmintic,<br />

antilithic,<br />

<strong>as</strong>tringent,<br />

cathartic, diuretic,<br />

emetic,<br />

emmenagogue,<br />

narcotic, resolvent<br />

Michelia<br />

champaca L.<br />

and stomachic<br />

Alternative,<br />

antiperiodic,<br />

<strong>as</strong>tringent,<br />

carminative,<br />

demulcent, diuretic,<br />

deobstruent,<br />

emmenagogue,<br />

febrifuge,<br />

purgative,<br />

stomachic, tonic<br />

and vermifuge<br />

Mimosa pudica L. Alternative,<br />

aphrodisiac,<br />

antiseptic, bloodpurifier,<br />

carminative<br />

Mimusops elengi<br />

L.<br />

Momordica dioca<br />

Roxb. ex Willd.<br />

Morinda<br />

pubescens J.E.<br />

Smith<br />

Moringa<br />

pterygosperma<br />

Gaertn.<br />

and resolvent<br />

Astringent,<br />

febrifuge,<br />

purgative, stimulant<br />

and tonic<br />

Antiseptic,<br />

<strong>as</strong>tringent, sedative<br />

and stimulant<br />

Astringent,<br />

cathartic,<br />

emmenagogue and<br />

febrifuge<br />

Abortifacient,<br />

antiseptic,<br />

antisp<strong>as</strong>modic,<br />

antilithic, diuretic,<br />

emmenagogue,<br />

expectorant,<br />

purgative,<br />

stimulant,<br />

stomachic, tonic<br />

scorbutic Vitamin C<br />

Alkaline azaridine, resin,<br />

tannin, meliotannic acid,<br />

benzoic acid, bakayanin,<br />

sterol, margosine<br />

Volatile essential and fixed<br />

oil, resin, tannin, mucilage,<br />

starch and sugar<br />

Alkaline mimosine,<br />

colchicines, tubulin, 5deoxyflavonol<br />

Saponin, tannin, volatile<br />

oil, fatty oil, starch, sugar,<br />

caoutchouc<br />

Pregnancy interceptive,<br />

antimalarial, antiviral and<br />

antimicrobial activity<br />

Antimicrobial activity and<br />

antiinfective<br />

Anticonvulsant,<br />

hyperglycemic and antivenom<br />

activity<br />

Antiulcer activity<br />

Alkaloids Hypoglycemic, antidiabetic,<br />

anticancer and<br />

antihyperglycemic activity<br />

Morindin and crystalline Antimicrobial activity<br />

Alkaloids moringine and<br />

moringinine, resins,<br />

organic acids, Moringa oil,<br />

behenic, myristic,<br />

palmatic, oleic, stearic and<br />

lignoceric acids<br />

Antioxidant, anticancer,<br />

antifungal and<br />

hypolipidaemic activity<br />

15


Int. J Bioscience Res. December 2012 Issue 1 Vol. 1<br />

Murraya koneigii<br />

(L.) Spreng.<br />

Ocimum<br />

americanum L.<br />

Ocimum<br />

tenuiflorum L.<br />

Opuntia stricta<br />

Haw.<br />

Pandanus<br />

odoratissimus L.f.<br />

Phyllanthus<br />

amarus Schum. &<br />

Thonn.<br />

Phyllanthus<br />

emblica L.<br />

and vermifuge,<br />

vesicant<br />

Purgative,<br />

stomachic and tonic<br />

Aromatic,<br />

anthelmintic,<br />

aphrodisiac,<br />

carminative,<br />

diaphoretic,<br />

demulcent, diuretic,<br />

febrifuge and<br />

stimulant<br />

Aromatic, anticatarrhal,<br />

antiperiodic,<br />

demulcent,<br />

expectorant,<br />

febrifuge and<br />

stomachic<br />

Cholagogue,<br />

expectorant and<br />

refrigerant<br />

Antisp<strong>as</strong>modic,<br />

diaphoretic,<br />

antiseptic and<br />

stimulant<br />

Astringent,<br />

refrigerant,<br />

deobstruent,<br />

diuretic and<br />

stomachic<br />

Astringent,<br />

carminative,<br />

diuretic, laxative,<br />

refrigerant and<br />

stomachic<br />

Physalis minima L. Alternative,<br />

diuretic, laxative<br />

Koenigin, essential and<br />

volatile oils, glucosides<br />

Essential oil contain<br />

Camphor, citronellel. lcitronellic<br />

acid, eugenol,<br />

borneol, citral, methylheptenone,<br />

linalool,<br />

dipentene, terpinelone,<br />

crithmene, lomonene,<br />

sabinene, camphene,<br />

caryophyllene and<br />

methylheptenone<br />

B<strong>as</strong>il -camphor, terpenes<br />

and mucilage, eugenol,<br />

carvacrol, caryophyllene<br />

Fatty acid, malate <strong>of</strong><br />

manganese, citric acid,<br />

resins, sugars, wax,<br />

carbohydrates,<br />

albuminoids, and water<br />

Methyl ester, benzyl<br />

benzoate, benzyl<br />

salicylate, benzyl acetate,<br />

benzyl alcohol, geraniol,<br />

linalool, linalyl acetate,<br />

bromostyrene, guaiacol,<br />

phenylethyl alcohol and<br />

aldehydes<br />

Phyllanthin, quinine and<br />

hypophyllanthin<br />

Rich vitamin C, essential oil<br />

and fixed oil, phosphatides<br />

and tannins<br />

Physalin B, epoxyphysalin<br />

B and physalin D,<br />

Hypoglycemic,<br />

antihyperglycemic,<br />

antifungal, antioxidant and<br />

radical scavenging activity<br />

Antidiabetic, antibacterial<br />

and antifungal activity<br />

Antiproliferative, antioxidant<br />

and antisecretory activity<br />

Analgesic and antiinflammatory<br />

activity<br />

Antioxidative activity<br />

Antidiabetic,<br />

antiinflammatory,<br />

antiallodynic and<br />

chemoprotective activity<br />

Anticancer activity<br />

Cholinester<strong>as</strong>e and<br />

anticancer activity<br />

16


Int. J Bioscience Res. December 2012 Issue 1 Vol. 1<br />

Piper betle L. Antiseptic,<br />

aromatic,<br />

aphrodisiac,<br />

<strong>as</strong>tringent,<br />

and tonic withaminimin, ergostanetype<br />

steroid, 5,6,7trimethoxyflavone,<br />

digestive, stomachic<br />

Piper nigrum L. Antiperiodic,<br />

antipyretic,<br />

carminative,<br />

resolvent,<br />

rubefacient and<br />

Pongamia pinnata<br />

(L.) Pierre<br />

rubefacient<br />

Antiseptic,<br />

antipar<strong>as</strong>itic,<br />

<strong>as</strong>tringent,<br />

cholagogue,<br />

febrifuge,<br />

expectorant,<br />

stimulant and tonic<br />

Psidium guajava L. Astringent,<br />

antiseptic, febrifuge<br />

and luxative<br />

Punica granatum<br />

L.<br />

Anthelmintic,<br />

<strong>as</strong>tringent,<br />

refrigerant,<br />

stomachic and<br />

taenifuge<br />

Santalum album L. Astringent,<br />

refrigerant,<br />

disinfectant,<br />

diuretic,<br />

expectorant,<br />

sedative and<br />

Sesamum indicum<br />

L.<br />

stimulant<br />

Demulcent, diuretic,<br />

emollient,<br />

emmenagogue,<br />

laxative and<br />

lactagogue<br />

Solanum nigrum L. Alternative,<br />

anodyne, diuretic,<br />

diaphoretic,<br />

phygrine<br />

Essential volatile oil<br />

containing betel-phenol,<br />

starch, sugar, tannins,<br />

terpene, sesqueterpene,<br />

chavicol<br />

Piperine, piperidine,<br />

piperitine, balsamic,<br />

chavicin, essential volatile<br />

oil, starch, lignin and<br />

insoluble water<br />

Pongamol (Pogamia oil),<br />

karanjin, glabrin, alkaloid,<br />

resin, mucilage, sugar,<br />

acetyl, benzoyl derivatives,<br />

myristic, palmitic, stearic,<br />

arachidic, lignoceric,<br />

dihydroxy stearic, lino<br />

lenic, linolic and oleic acids<br />

Tannins, resins, calcium<br />

oxalate, volatile oil, tannic<br />

acid, eugenol, phosphoric,<br />

oxalic and malic acids<br />

Essential oil eugenol,<br />

tannins, punico-tannic<br />

acid, mannite, sugar,<br />

pectin, pelletierine,<br />

isopelletierine<br />

A-santanol, B-santanol,<br />

isovaleric aldehyde,<br />

santanone, santalone,<br />

esters and free acids,<br />

resins, tannic acid,<br />

Fixed oils containing, solid<br />

fats, stearin, palmitin and<br />

myristin, proteids,<br />

carbohydrates, sesamin<br />

and a phenol compound<br />

sesamol<br />

Solanine, saponine,<br />

compound <strong>of</strong> sugar and<br />

solanidine<br />

Antidiabetic, antioxidant,<br />

antibacterial and antifungal<br />

activity<br />

Antioxidant, anticancer,<br />

antibacterial activity and<br />

antimutagenic<br />

Antihyperglycemic,<br />

antilipidperoxidative, anti<br />

inflammatory and<br />

antipl<strong>as</strong>modial activity<br />

Antidiabetic activity<br />

Antidiabetic, antiinflammatory,<br />

anticancer and<br />

antibacterial activity<br />

Antitumor and antioxidant<br />

activity<br />

Antioxidative and antioxidant<br />

activity<br />

Antioxidant, antiulcer and<br />

antitumor activity<br />

17


Int. J Bioscience Res. December 2012 Issue 1 Vol. 1<br />

Solanum<br />

trilobatum L.<br />

Sphaeranthus<br />

indicus L.<br />

Strychnos nuxvomica<br />

L.<br />

Syzygium cumini<br />

(L.) Skeels<br />

Tamarindus indica<br />

L.<br />

Tephrosia<br />

purpurea (L.) Pers.<br />

Terminalia arjuna<br />

(Roxb.) W. & A.<br />

Terminalia<br />

chebula (L.) Pers.<br />

expectorant and<br />

sedative<br />

Alternative,<br />

<strong>as</strong>tringent,<br />

carminative,<br />

diuretic,<br />

expectorant,<br />

febrifuge, laxative<br />

Alternative,<br />

anthelmintic,<br />

demulcent,<br />

emollient,<br />

refrigerant,<br />

stimulant,<br />

stomachic and tonic<br />

Aphrodisiac,<br />

anodyne, cardiac,<br />

emetic, purgative,<br />

stimulant,<br />

stomachic<br />

Astringent,<br />

carminative,<br />

diuretic and<br />

stomachic<br />

Astringent,<br />

antibilous,<br />

antiscorbutic,<br />

refrigerant,<br />

carminative,<br />

digestive, laxative<br />

and tonic<br />

Anthelmintic,<br />

cholagogue,<br />

deobstruent,<br />

diuretic, febrifuge,<br />

laxative and tonic<br />

Astringent, cardiac,<br />

deobstruent,<br />

febrifuge, stimulant<br />

and lithontriptic<br />

Alternative,<br />

antibilious,<br />

<strong>as</strong>tringent,<br />

purgative, laxative,<br />

stomachic and tonic<br />

Solancarpine, solanine S,<br />

solidinine S, solacarpidin,<br />

carpesterol<br />

Sphaeranthine,<br />

eudesmanoids, is<strong>of</strong>lavone<br />

glycoside, eudesmanolide,<br />

sesquiterpenoids,<br />

sesquiterpene glycoside<br />

and sphaeranthanolide<br />

Strychnine,<br />

pseudostrychnine, brucine,<br />

vomicine, ig<strong>as</strong>urine,<br />

ig<strong>as</strong>uric and strychnic acid,<br />

loganine, proteids, starch,<br />

sugar and phosphates<br />

Jamboline, jambosine,<br />

resin, gallic acid, resin,<br />

tannin, ellagic acid,<br />

glucosides, essential oil,<br />

Tartaric acid, citric acid,<br />

malic and acetic, oxalic<br />

acids, pectin, albuminoids,<br />

carbohydrates<br />

Tephrosin, isotephrosin,<br />

rotenone, osyritin,<br />

deguelin, quercetin,<br />

querritrin, glucoside rutin<br />

Arjunine, arjunetin,<br />

lactone, tannin, essential<br />

oils, reducing sugars,<br />

glucotannic acid,<br />

pyrocaechol and<br />

phytosterol<br />

Chebulinic acid, resin,<br />

anthraquinone, tannic<br />

acid, gallic acid, mucilage,<br />

Antimicrobial activity<br />

Wound healing, immune<br />

stimulating and antimicrobial<br />

activity<br />

Analgesic, antiinflammatory<br />

and antidiarrhoeal activity<br />

Antiinflammatory,<br />

antidiabetic and antioxidant<br />

activity<br />

Hypolipidemic, antioxidant<br />

and antidiabetic activity<br />

Wound healing and<br />

immunomodulatory activity<br />

Cardio protective,<br />

antiatherogenic and<br />

antibacterial activity<br />

Chemomodulatory,<br />

antioxidant, antidiabetic and<br />

antibacterial activity<br />

18


Int. J Bioscience Res. December 2012 Issue 1 Vol. 1<br />

Thespesia<br />

populnea (L.)<br />

Soland ex Correa<br />

Trianthema<br />

portulac<strong>as</strong>trum L.<br />

Tribulus terrestris<br />

L.<br />

Tridax<br />

procumbens L.<br />

Alternative,<br />

<strong>as</strong>tringent,<br />

constipative,<br />

demulcent,<br />

pjlegmatic,<br />

stimulant<br />

Abortifacient,<br />

cathartic, diuretic<br />

Aphrodisiac,<br />

demulcent, diuretic,<br />

laxative, refrigerant<br />

and tonic<br />

Stypic, antiseptic,<br />

antidiarrhoel,<br />

antidysenteric and<br />

haemorrhage<br />

Vitex negundo L. Alternative,<br />

antipar<strong>as</strong>itic,<br />

aromatic,<br />

<strong>as</strong>tringent,<br />

discutient,<br />

emmenagogue,<br />

expectorant,<br />

febrifuge, tonic and<br />

Wedelia chinensis<br />

(Osbeck) Merr.<br />

Zizyphus<br />

mauritiana Lam.<br />

vermifuge<br />

Alternative,<br />

cholagogue,<br />

deobstruent<br />

Astringent, blood<br />

purifier,<br />

expectorant and<br />

stomachic<br />

Populnin, populnetin,<br />

herbacetin, phosphoric<br />

acids and resins<br />

Saponin, alkaline<br />

punarnavine, ecdysterone<br />

Alkaloid, resin, fat and<br />

mineral matter<br />

Procumbenetin,<br />

dotriacontanol, βamyrone,12dehydrolupen-3-one,βamyrin,<br />

lupeol, fucosterol,<br />

9-oxoheptadecane, 10oxononadecane<br />

and<br />

sitosterol<br />

Essential oil, organic, malic<br />

acid, alkaloids and resin,<br />

iridoids, lignan, ecdysones,<br />

iridoid glucoside, Acetyl<br />

oleanolic acid, sitosterol,<br />

isomeric flavanones and<br />

furanoeremophilane<br />

Alkaloid ecliptine, kauren<br />

doterpenes<br />

Zizyphic acid, saponine,<br />

sapogenin, jujubogenin,<br />

jujubosides A and B,<br />

Acylated flavone-Cglycosides,<br />

cyclopeptide<br />

alkaloids, frangufoline,<br />

mucilage and sugar<br />

Antioxidant, wound healing,<br />

antinociceptive and<br />

antiinflammatory activity<br />

Hepatoprotective and<br />

antifungal activity<br />

Antioxidant and aphrodi<strong>as</strong>ic<br />

activity<br />

Immunomodulatory and<br />

hepatoprotective activity<br />

Antioxidant, antiinflammatory,<br />

analgesic and<br />

antibacterial activity<br />

Hepatoprotective,<br />

antibacterial and<br />

antiosteoporotic activity<br />

Antioxidant and<br />

anticholinester<strong>as</strong>e activity<br />

*Nadkarni (1976); R<strong>as</strong>togi and Mehrotra (1990 –1994); Khare, 2007; **www.sciencedirect.com,<br />

Ayyanar and Ignacimuthu (2005, 2008a, b, 2009, 2010, 2011)<br />

19


Int. J Bioscience Res. December 2012 Issue 1 Vol. 1<br />

REFERENCES<br />

Alarcon-Aguilar, FJ, Roman-Ramos, R, Flores-Saenz, JL & Aguirre-Garcia F 2002, Investigation on the<br />

hypoglycaemic effects <strong>of</strong> extracts <strong>of</strong> four Mexican <strong>medicinal</strong> <strong>plants</strong> in normal and alloxandiabetic<br />

mice, Phytotherapy Research 16, 383 – 386.<br />

Ali, SS, K<strong>as</strong>oju, N, Luthra, A, Singh, A, Sharanab<strong>as</strong>ava, H, Sahu, S & Bora, U 2008, Indian <strong>medicinal</strong><br />

herbs <strong>as</strong> <strong>source</strong>s <strong>of</strong> antioxidants, Food Research International, 41, 1–15.<br />

Anuya A, Ramakrishna Y & Deshmukh R 2010, Invitro testing <strong>of</strong> anti HIV activity <strong>of</strong> some <strong>medicinal</strong><br />

<strong>plants</strong>, Indian Journal <strong>of</strong> Natural Products and Re<strong>source</strong>s, 1, 193-199.<br />

Ayyanar, M & Ignacimuthu S 2010, Diversity, Conservation status and Medicinal <strong>plants</strong> <strong>of</strong> the family<br />

Euphorbiaceae in Ag<strong>as</strong>thiyamalai hills <strong>of</strong> Tamil Nadu (Tirunelveli hills), Southern India, Journal<br />

<strong>of</strong> Experimental Sciences, 1, 12-16.<br />

Ayyanar, M 2008, Ethnobotanical Wealth <strong>of</strong> Kani tribe in Tirunelveli hills, Dissertation, University <strong>of</strong><br />

Madr<strong>as</strong>, Chennai, India.<br />

Ayyanar, M & Ignacimuthu, S 2011, Ethnobotanical survey <strong>of</strong> <strong>medicinal</strong> <strong>plants</strong> commonly used by<br />

Kani tribals in Tirunelveli hills <strong>of</strong> Western Ghats, India, Journal <strong>of</strong> Ethnopharmacology, 134, 851<br />

– 864.<br />

Ayyanar, M & Ignacimuthu, S 2005a, Traditional Knowledge <strong>of</strong> Kani tribals in Kouthalai <strong>of</strong> Tirunelveli<br />

hills, Tamil Nadu, India, Journal <strong>of</strong> Ethnopharmacology, 102, 246 - 255.<br />

Ayyanar, M & Ignacimuthu, S 2005b, Ethno<strong>medicinal</strong> <strong>plants</strong> used by the tribals <strong>of</strong> Tirunelveli hills to<br />

treat poisonous bites and skin dise<strong>as</strong>es, Indian Journal <strong>of</strong> Traditional Knowledge 4, 229 – 236.<br />

Ayyanar, M & Ignacimuthu, S 2008a, Pharmacological actions <strong>of</strong> C<strong>as</strong>sia auriculata and Cissus<br />

quadrangularis, a short review, Journal <strong>of</strong> Pharmacology and Toxicology, 3, 213 – 221,<br />

Ayyanar, M & Ignacimuthu, S 2008b, Medicinal uses and Pharmacological actions <strong>of</strong> five commonly<br />

used Indian <strong>medicinal</strong> <strong>plants</strong>, a mini-review, Iranian Journal <strong>of</strong> Pharmacology and Therapeutics<br />

8, 107-114.<br />

Ayyanar, M & Ignacimuthu, S 2009, Herbal medicines for wound healing, Ethnobotanical and<br />

Scientific evidence from south Indian traditional medicine, International Journal <strong>of</strong> Natural<br />

Products in Applied research, 2, 29 - 42.<br />

Balachandran, P & Govindarajan, R 2005, Cancer – an ayurvedic perspective, Pharmacological<br />

research, 51, 19 – 30.<br />

Bal<strong>as</strong>ubramanian, G, Sarathi, M, Rajeshkumar, S & Sahul Hameed, AS 2007, Screening the antiviral<br />

activity <strong>of</strong> Indian <strong>medicinal</strong> <strong>plants</strong> against white spot syndrome virus in shrimp, Aquaculture,<br />

263, 15-19.<br />

Barbour, EK, Al Sharif, M, Sagherian, VK, Habre, AL, Talhouk, RS & Talhouk, AN 2004, Screening <strong>of</strong><br />

selected indigenous <strong>plants</strong> <strong>of</strong> Lebanon for antimicrobial activity, Journal <strong>of</strong><br />

Ethnopharmacology, 93, 1 – 7.<br />

Begum, N & Ved, DK 2004, Indian <strong>medicinal</strong> <strong>plants</strong> <strong>of</strong> conservation concern, Newsletter on ENVIS<br />

node on Indian Medicinal Plants, 1, 1-6.<br />

Calixto, JB 2005, Twenty five years <strong>of</strong> research on <strong>medicinal</strong> <strong>plants</strong> in Latin America, a personal<br />

review, Journal <strong>of</strong> Ethnopharmacology, 100, 131 - 134.<br />

Chowdhury, AK, Ara, T, Muhammed, FH & Ahmed, M 1993, A new phenyl propane derivative from<br />

Acorus calamus, Pharmazie 48, 786–787.<br />

20


Int. J Bioscience Res. December 2012 Issue 1 Vol. 1<br />

Cos, P, Maes, L, Vlietinck, A & Pieters L, 2008, Plant-Derived Leading Compounds for Chemotherapy<br />

<strong>of</strong> Human Immunodefiency Virus (HIV) Infection – An Update (1998 –2007), Planta Medica 74,<br />

1323–1337.<br />

Costa-Lotufo, LV, H<strong>as</strong>san Khan, MT, Ather, A, Wilke, DV, Jimenez, PC, Pessoa, C, Amaral de Moraes,<br />

ME & Odorico de Moraes, M 2005, Studies <strong>of</strong> the anticancer potential <strong>of</strong> <strong>plants</strong> used in<br />

Bangladeshi folk medicine, Journal <strong>of</strong> Ethnopharmacology, 99, 21 – 30.<br />

Dhingra, V, Vishweshwar Rao, K & Lakshmi ar<strong>as</strong>u, M 2000, Current status <strong>of</strong> artemisinin and its<br />

derivatives <strong>as</strong> antimalarial drugs, Life Sciences, 66, 279 – 300.<br />

Erdogrul OT 2002, Antibacterial activities <strong>of</strong> some <strong>plants</strong> extracts used in folk medicine,<br />

Pharmaceutical Biology, 40, 269 – 273,<br />

Fennell, CWKL, Lindsey, L J, McGaw, SG, Sparg, GI, Stafford, EE, Elgor<strong>as</strong>hi, O, Grace, M & and van<br />

Staden, J 2004, Assessing African <strong>medicinal</strong> <strong>plants</strong> for efficacy and safety, pharmacological<br />

screening and toxicology, Journal <strong>of</strong> Ethnopharmacology, 94,205-17.<br />

Gautam, R, Saklani, A & Jachak, SM 2007, Indian <strong>medicinal</strong> <strong>plants</strong> <strong>as</strong> a <strong>source</strong> <strong>of</strong> antimycobacterial<br />

agents, Journal <strong>of</strong> Ethnopharmacology, 110, 200–234.<br />

Ghisalberti, EL 2000, Lantana camara L (Verbenaceae), Fitoterapia, 71, 467-86.<br />

Ghosh, A 2003, Herbal folk remedies <strong>of</strong> Bankura & Medinipur districts, West Bengal (India), Indian<br />

Journal <strong>of</strong> Traditional Knowledge, 2, 393 – 396<br />

Gilani, AH & Atta-ur-Rahman 2005, Trends in Ethnopharmacology, Journal <strong>of</strong> Ethnopharmacology,<br />

100, 43 – 49.<br />

Glatthaar-Saalmuller, B, Sacher, F & Esperester, A 2001, Antiviral activity <strong>of</strong> an extract derived from<br />

roots <strong>of</strong> Eleutherococcus senticosus, Antiviral Research, 50, 223–228.<br />

Goun, EA, Petrichenko, VM, Solodnikov, SU, Suhinina, TV, Martin, A, Cunningham, G, Nguyen, C &<br />

Miles, H 2002, Anticancer and antithrombin activity <strong>of</strong> Russian <strong>plants</strong>, Journal <strong>of</strong><br />

Ethnopharmacology, 81, 337 -/342<br />

Govindarajan, R, R<strong>as</strong>togi, S, Vijayakumar, M, Rawat, AKS, Shirwaikar, A & Mehrotra, S 2003, Studies<br />

on the antioxidant activities <strong>of</strong> Desmodium gangeticum, Biological and Pharmaceutical<br />

Bulletin, 26, 1424–1427.<br />

Gurib-Fakim, A 2006, Review – Medicinal <strong>plants</strong>, Traditions <strong>of</strong> Yesterday and drugs <strong>of</strong> tomorrow,<br />

Molecular Aspects <strong>of</strong> Medicine, 27, 1- 93.<br />

Harborne JB & Baxter H 1993, Phytochemical Dictionary, A Handbook <strong>of</strong> Bioactive Compounds from<br />

Plants, London, Taylor and Francis.<br />

Hoareau, L & DaSilva, EA 1999, Medicinal <strong>plants</strong>, a re-emerging health aid, Electric Journal <strong>of</strong><br />

Biotechnology 2, http,//www.ejb.org/content/vol2/issue2/full/2/<br />

Hupfeld, J & Efferth T 2009, .Drug Resistance <strong>of</strong> Human Immunodeficiency Virus and Overcoming it<br />

by Natural Products, In vivo 23, 1-6<br />

Ignacimuthu, S, Ayyanar, M & Sankar<strong>as</strong>ivaraman, K 2006, Ethnobotanical investigations among<br />

tribes in Madurai district <strong>of</strong> Tamil Nadu, India, Journal <strong>of</strong> Ethnobiology and Ethnomedicine, 11,<br />

http,//www.ethnobiomed.com/content/2/1/25,<br />

Ignacimuthu, S, Ayyanar, M & Sankar<strong>as</strong>ivaraman, K 2008, Ethno-botanical study <strong>of</strong> <strong>medicinal</strong> <strong>plants</strong><br />

used by Paliyar tribals in Theni district <strong>of</strong> Tamil Nadu, India, Fitoterapia, 79, 562 – 568.<br />

Jain, SK 1964, The role <strong>of</strong> botanist in folklore research, Folklore 5, 145-150.<br />

21


Int. J Bioscience Res. December 2012 Issue 1 Vol. 1<br />

Janaki Ammal, EK 1956, Introduction to the subsistence economy <strong>of</strong> India, William LT Jr (ed.) Man’s<br />

role in changing face <strong>of</strong> the earth, University <strong>of</strong> Chicago Press, Chicago, 324 – 335.<br />

Kalyan<strong>as</strong>undaram, M 1991, Chemical control <strong>of</strong> mosquito vectors, ICMR Bulletin, 21, 77 - 83.<br />

Kar, A, Choudhary, BK & Bandyopadhyay, NG 2003, Comparative evaluation <strong>of</strong> hypoglycaemic<br />

activity <strong>of</strong> some Indian <strong>medicinal</strong> <strong>plants</strong> in alloxan diabetic rats, Journal <strong>of</strong> Ethnopharmacology,<br />

84, 105–108.<br />

Karou, D, Savadogo, A, Canini, A, Yameogo, S, Montesano, C, Simpore, J, Colizzi, V & Traore, AS<br />

2006, Antibacterial activity <strong>of</strong> alkaloids from Sida acuta, African Journal <strong>of</strong> Biotechnology, 5,<br />

195 – 200.<br />

Katalinic, V, Milos, M, Kulisic, T & Jukic, M 2006, Screening <strong>of</strong> 70 <strong>medicinal</strong> <strong>plants</strong> for antioxidant<br />

capacity and total phenols, Food chemistry, 94, 550 – 557.<br />

Khare, CP 2007, Indian Medicinal Plants, An illustrated dictionary, Springer Science + Business<br />

Media, LLC, 233 Spring street, New York, NY10013, USA, p, 836.<br />

Kosalge, SB & Fursule, RA 2009, Investigation <strong>of</strong> ethno<strong>medicinal</strong> claims <strong>of</strong> some <strong>plants</strong> used by<br />

tribals <strong>of</strong> Satpuda Hills in India, Journal <strong>of</strong> Ethnopharmacology 121, 456 - 461,<br />

Kumar B, Vijayakumar M, Govindarajan R, Pushpangadan P 2007, Ethnopharmacological approaches<br />

to wound healing – Exploring <strong>medicinal</strong> <strong>plants</strong> <strong>of</strong> India, Journal <strong>of</strong> Ethnopharmacology 114,<br />

103-113.<br />

Mallavadhani, UV, Panda, AK & Rao, YR 1998, Pharmacology and chemotaxonomy <strong>of</strong> Diospyros,<br />

Phytochemistry, 49, 901 – 951.<br />

Marwah, RG, Fatope, MO, Al Mahrooqi, R, Varma, GB, Al Abadi, H & Al-Burtamani, SKS 2006,<br />

Antioxidant capacity <strong>of</strong> some edible and wound healing <strong>plants</strong> in Oman, Food Chemistry, 101,<br />

465 – 470.<br />

Mohanraj R, Rakshit J & Nobre M 2010, Anti HIV-1 and antimicrobial activity <strong>of</strong> the leaf extracts<br />

<strong>of</strong> Calotropis procera, International Journal <strong>of</strong> Green Pharmacy, 4, 242-246.<br />

Mukherjee, PK, Maiti, K, Mukherjee, K & Houghton, PJ 2006, Leads from Indian <strong>medicinal</strong> <strong>plants</strong><br />

with hypoglycemic activity, Journal <strong>of</strong> Ethnopharmacology, 106, 1-28.<br />

Nadkarni, AK 1976, Indian Materia Medica, vol, I, Popular Prak<strong>as</strong>han, Bombay, India<br />

Namsa, ND, Mandal, M & Tangjang, S 2011, Anti-malarial herbal remedies <strong>of</strong> northe<strong>as</strong>t India, Assam,<br />

An ethnobotanical survey, Journal <strong>of</strong> Ethnopharmacology, 133, 565 – 572.<br />

Namsa, ND, Tag, H, Mandal, M, Kalita, P & D<strong>as</strong>, AK, 2009, An ethnobotanical study <strong>of</strong> traditional<br />

anti-inflammatory <strong>plants</strong> used by the Lohit community <strong>of</strong> Arunachal Pradesh, India, Journal <strong>of</strong><br />

Ethnopharmacology, 125, 234 - 245,<br />

Newton, SM, Lau, C & Wright, CW, 2000, A review <strong>of</strong> antimycobacterial natural products,<br />

Phytotherapy Research, 14, 303–322.<br />

Okeke, IN, Laxmaninarayan, R, Bhutta, ZA, Duse, AG, Jenkins, P, O’Brien, TF, Pablos-Mendez, A &<br />

Klugman, KP 2005, Antimicrobial resistance in developing countries, Part 1, recent trends and<br />

current status, Lancet Infectious Dise<strong>as</strong>es 5, 481–493.<br />

Okunade, AL, Elvin-Lewis, MPF & Lewis, WH 2004, Natural antimycobacterial metabolites, current<br />

status, Phytochesmisty, 65, 1017 – 1032.<br />

Pattanaik, C, Reddy, CS & Murthy, MS 2008, An ethnobotanical survey <strong>of</strong> <strong>medicinal</strong> <strong>plants</strong> used by<br />

the Didayi tribe <strong>of</strong> Malkangiri district <strong>of</strong> Orissa, India, Fitoterapia 79, 67 - 71,<br />

22


Int. J Bioscience Res. December 2012 Issue 1 Vol. 1<br />

Rampr<strong>as</strong>ath, VR, Shanthi, P & Sachdanandam, P 2004, Anti-inflammatory effect <strong>of</strong> Semecarpus<br />

anacardium L, nut extract in acute and chronic inflammatory conditions, Biological and<br />

Pharmaceutical Bulletin, 27, 2028 – 2031.<br />

Rao, CV, Ojha, SK, Radhakrishnan, K, Govindarajan, R, R<strong>as</strong>togi, S, Mehrotra, S & Pushpangadan, P<br />

2004, Antiulcer activity <strong>of</strong> Utleria salicifolia rhizome extract, Journal <strong>of</strong> Ethnopharmacology,<br />

91, 243–249<br />

R<strong>as</strong>togi, RP & Mehrotra, BN 1990 –1994, Compendium <strong>of</strong> Indian Medicinal Plants, Vol, I–V, Central<br />

Drug Research Institute, Lucknow and National Institute <strong>of</strong> Science Communication, New Delhi,<br />

India.<br />

Rocha, AB, Lopes, RM & Schwartsmann, G 2001, Natural products in anticancer therapy, Current<br />

opinion in pharmacology, 1, 364 – 369.<br />

Sabde S, Bodiwala HS, Karm<strong>as</strong>e A, Deshpande PJ, Kaur A, Ahmed N, Chauthe SK, Brahmbhatt KG,<br />

Phadke RU, Mitra D, Bhutani KK & Singh IP 2011, Anti-HIV activity <strong>of</strong> Indian <strong>medicinal</strong> <strong>plants</strong>,<br />

Journal <strong>of</strong> Natural Medicine, 65,662–669.<br />

Salvat, A, Antonacci, RH, Fortunato, RH, Suarez, EY & Godoy, HM 2004, Antimicrobial activity in<br />

methanolic extracts <strong>of</strong> several plant species from northern Argentina, Phytomedicine, 11, 230<br />

– 234.<br />

Sanon, SE, Ollivier, N, Az<strong>as</strong>, V, Mahiou, M, G<strong>as</strong>quet, CT, Ouattara, I, Nebie, AS, Traore, F, Esposito, G,<br />

Balansard, P, Timon-David & Fumoux, F 2003, Ethnobotanical survey and in vitro<br />

antipl<strong>as</strong>modial activity <strong>of</strong> <strong>plants</strong> used in traditional medicine in Burkina F<strong>as</strong>o, Journal <strong>of</strong><br />

Ethnopharmacology, 86,143-147.<br />

Savithramma, N, Sulochana, C & Rao, KN 2007, Ethnobotanical survey <strong>of</strong> <strong>plants</strong> used to treat <strong>as</strong>thma<br />

in Andhra Pradesh, India, Journal <strong>of</strong> Ethnopharmacology, 113, 54 - 61,<br />

Scartezzini, P & Speroni, E 2000, Review <strong>of</strong> some <strong>plants</strong> <strong>of</strong> Indian traditional medicine with<br />

antioxidant activity, Journal <strong>of</strong> Ethnopharmacology, 71, 23–43.<br />

Simmons, D.L, 2006, What makes a good anti-inflammatory drug target? Drug Discovery Today 11,<br />

210 – 219.<br />

Singh, NP, Mudgal, V, Khanna, KK & Sriv<strong>as</strong>tava, SC 2001, Medicinal <strong>plants</strong>, In, Floristic diversity &<br />

Conservation strategies in India, Vol, IV – Angiosperms, Economic & Ethnobotany (Eds, Singh,<br />

NP & Singh, DK), Botanical Survey <strong>of</strong> India, Calcautta and Ministry <strong>of</strong> Environment and Forests,<br />

India, pp. 2269 - 2322.<br />

Srisilam, K & Veersham, C 2003, Antimalarials <strong>of</strong> plant origin, In, Nishan, I, Khanu, A, (Eds.), Role <strong>of</strong><br />

Biotechnology in Medicinal and Aromatic Plants, Vol, VII, pp. 17–47.<br />

Sriv<strong>as</strong>tava, V, Negi, AS, Kumar, JK, Gupta, MM & Khanuja, SPS 2005, Plant-b<strong>as</strong>ed anticancer<br />

molecules, A chemical and biological pr<strong>of</strong>ile <strong>of</strong> some important leads, Bioorganic and<br />

Medicinal Chemistry, 13, 5892 – 5908.<br />

Sukumar, K, Perich, HJ & Boobar, LR 1991, Botanical derivatives in mosquito control, a review,<br />

Journal <strong>of</strong> American Mosquito Control Association, 7, 210.<br />

Sullivan, K & Shealy, CN 1997, Complete Natural Home Remedies, (Element Books Ltd, Shaftesbury,<br />

UK), p. 3.<br />

Upadhyay, B, Parveen, Dhaker, AK & Kumar, A 2010, Ethno<strong>medicinal</strong> and ethnopharmaco-statistical<br />

studies <strong>of</strong> E<strong>as</strong>tern Raj<strong>as</strong>than, India, Journal <strong>of</strong> Ethnopharmacology, 129, 64 - 86.<br />

Vimalanathan, S, Ignacimuthu, S & Hudson, JB 2009, Medicinal <strong>plants</strong> <strong>of</strong> Tamil Nadu (Southern India)<br />

are a rich <strong>source</strong> <strong>of</strong> antiviral activities, Pharmaceutical Biology, 47, 422 – 429.<br />

23


Int. J Bioscience Res. December 2012 Issue 1 Vol. 1<br />

Voss, C, Eyol, E & Berger, MR 2006, Identification <strong>of</strong> potent anticancer activity in Ximenia americana<br />

aqueous extracts used by African traditional medicine, Toxicology and Applied Pharmacology,<br />

211, 177 – 187<br />

____________________________________<br />

Available online at www.brtpublishers.com<br />

*****<br />

24

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!