29.01.2013 Views

Pericellular-acting proteases in human 1 trimester decidua.

Pericellular-acting proteases in human 1 trimester decidua.

Pericellular-acting proteases in human 1 trimester decidua.

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Pericellular</strong>-<strong>act<strong>in</strong>g</strong> <strong>proteases</strong> <strong>in</strong> <strong>human</strong> 1 st <strong>trimester</strong> <strong>decidua</strong>.<br />

Margreet Plaisier 1,2) , Pieter Koolwijk 2,3) , Florian Willems 4) , Frans M. Helmerhorst 1) , Victor W.M.<br />

van H<strong>in</strong>sbergh 3)<br />

Mol. Hum. Reprod. Advance Access published January 5, 2008<br />

1) Department of Gynaecology, section Reproductive Medic<strong>in</strong>e, Leiden University Medical Centre,<br />

P.O. box 9600, 2300 RC, Leiden, The Netherlands. 2) Department Biomedical Research, Gaubius<br />

Laboratory TNO-QoL, Zernikedreef 9, 2333 CK, Leiden, The Netherlands. 3) Department of<br />

Physiology, Institute for Cardiovascular Research, VU Medical Centre, van der Boeckhorststraat 7,<br />

1081 BT, Amsterdam, The Netherlands. 4) STIMEZO Plus Cl<strong>in</strong>ic, van Bevern<strong>in</strong>ckstraat 134, 2582 VL,<br />

The Haque, The Netherlands<br />

Key Words: <strong>decidua</strong>/ first-<strong>trimester</strong>/ matrix metalloprote<strong>in</strong>ases/ trophoblast/ uNK cells<br />

Send all correspondence to: Prof F.M. Helmerhorst, M.D./ M. Plaisier, M.D.<br />

Department of Gynaecology, section Reproductive Medic<strong>in</strong>e<br />

Leiden University Medical Centre<br />

P.O. box 9600, 2300 RC, Leiden, The Netherlands<br />

Fax number +31-71-5248181<br />

Email: M.Plaisier@lumc.nl or F.M.Helmerhorst@lumc.nl<br />

© The Author 2007. Published by Oxford University Press on behalf of the European Society<br />

of Human Reproduction and Embryology. All rights reserved.<br />

For Permissions, please email: journals.permissions@oxfordjournals.org<br />

1<br />

Downloaded from<br />

http://molehr.oxfordjournals.org/ by guest on January 27, 2013


Abstract<br />

Proteolysis is essential for <strong>decidua</strong>l development dur<strong>in</strong>g embryonic implantation, but little is known<br />

regard<strong>in</strong>g the expression and functions of membrane-type matrix metalloprote<strong>in</strong>ases (MT-MMPs) and<br />

urok<strong>in</strong>ase-type plasm<strong>in</strong>ogen activator (UPA) and its receptor uPAR <strong>in</strong> <strong>decidua</strong>. Therefore, their<br />

prote<strong>in</strong> and mRNA levels were analysed <strong>in</strong> three 1 st <strong>trimester</strong> <strong>decidua</strong>l tissues, <strong>decidua</strong>l secretory<br />

endometrium (DSE), <strong>decidua</strong> parietalis (DP) and basalis (DB).<br />

Decidua was obta<strong>in</strong>ed dur<strong>in</strong>g 1 st <strong>trimester</strong> pregnancy term<strong>in</strong>ation. uPA, uPAR, and MT1/2/3/5-MMP<br />

expression were studied by RT-PCR and immunohistochemistry, and CD56-positive uNK cells and<br />

CD68-positive macrophages were quantified <strong>in</strong> serial sections.<br />

The mRNAs and antigens of all <strong>proteases</strong> and uPAR were detectable <strong>in</strong> the <strong>decidua</strong>l tissues and<br />

extravillous trophoblasts (EVT). mRNA levels of all <strong>proteases</strong> and uPAR, except MT5-MMP, were<br />

elevated <strong>in</strong> both DB and DP compared to DSE, be<strong>in</strong>g significant for MT1-MMP and uPAR <strong>in</strong> DP.<br />

MT2- and MT3-MMP mRNAs <strong>in</strong> DB were 24- and 10-fold higher than <strong>in</strong> DSE, and 19- and 7-fold<br />

<strong>in</strong>creased compared to DP. At the prote<strong>in</strong> level uPA and uPAR were particularly elevated <strong>in</strong> DB, while<br />

pro-angiogenic MT1- and MT3-MMPs were elevated <strong>in</strong> both DB and DP compared to DSE. MT2-<br />

MMP was prom<strong>in</strong>ently present <strong>in</strong> all conditions. The number of uNK cells was <strong>in</strong>creased <strong>in</strong> DB and<br />

DP versus DSE, while a comparable <strong>in</strong>crease <strong>in</strong> macrophages did not reach statistical significance.<br />

These data are consistent with a differential regulation of pericellular <strong>proteases</strong> <strong>in</strong> <strong>decidua</strong> by<br />

pregnancy-<strong>in</strong>duced hormones, immune cells and EVT.<br />

2<br />

Downloaded from<br />

http://molehr.oxfordjournals.org/ by guest on January 27, 2013


Introduction<br />

Proteolysis is essential for <strong>decidua</strong>l remodell<strong>in</strong>g and vascularisation dur<strong>in</strong>g the <strong>in</strong>ception of pregnancy.<br />

Disturbances <strong>in</strong> <strong>decidua</strong>l development may play a role <strong>in</strong> the pathogenesis of miscarriages and pre-<br />

eclampsia (Solberg et al., 2003; Zygmunt et al., 2003; Vailhe et al., 1999; Vuorela et al., 2000).<br />

Endometrial adaptation to fertilisation starts dur<strong>in</strong>g the receptive secretory phase of the menstrual<br />

cycle and cont<strong>in</strong>ues throughout the 1 st <strong>trimester</strong>. This adaptation <strong>in</strong>cludes <strong>decidua</strong>lisation, tissue<br />

remodell<strong>in</strong>g, angiogenesis, and immune cell <strong>in</strong>vasion. The <strong>in</strong>vasion of immune cells is enormous: from<br />

8% of total stromal cells dur<strong>in</strong>g the menstrual cycle up to 30% dur<strong>in</strong>g the 1 st <strong>trimester</strong>. Approximately<br />

70 % of these leucocytes are uter<strong>in</strong>e natural killer (uNK) cells and 10% are macrophages (Bulmer et<br />

al., 1991).<br />

Decidual remodell<strong>in</strong>g, cell <strong>in</strong>vasion as well as angiogenesis are facilitated by proteolysis.<br />

Trophoblasts, uNK cells and endothelial cells require proteolytic activity to degrade their extracellular<br />

matrix (ECM) prote<strong>in</strong>s and to migrate (Al Atrash et al., 2001;Pepper 2001; Heymans et al., 1999;<br />

Stetler-Stevenson 1999; Salamonsen 1999). These cells are able to generate proteolytic activity by<br />

either produc<strong>in</strong>g <strong>proteases</strong> or us<strong>in</strong>g <strong>proteases</strong> on neighbour<strong>in</strong>g cells and/or ECM (Albertsson et al.,<br />

2000; Kim et al., 2000; van den Heuvel et al., 2005; Koolwijk et al., 2001; Salamonsen 1999). Key<br />

regulators of proteolysis belong to the family of matrix metalloprote<strong>in</strong>ases (MMPs), <strong>in</strong> particular to the<br />

subgroup of membrane-type matrix metalloprote<strong>in</strong>ases (MT-MMPs), and to the plasm<strong>in</strong>/plasm<strong>in</strong>ogen<br />

system (Reun<strong>in</strong>g et al., 2003; Alfano et al., 2005; K<strong>in</strong>dzelskii et al., 2004).<br />

The membrane-associated localisation of MT-MMPs makes them suited for pericellular proteolysis<br />

(Hotary et al., 2000; Seiki, Yana 2003; v H<strong>in</strong>sbergh et al., 2006; Egeblad, Werb 2002). We studied the<br />

transmembrane-spann<strong>in</strong>g MT-MMPs, MT1- (MMP-14), MT2- (MMP-15), MT3- (MMP-16) and<br />

MT5-MMP (MMP-24). Only these MT-MMPs have the proteolytic potential to <strong>in</strong>duce capillary tube<br />

formation, while the GPI-anchored MT4- and MT6-MMP were unable to do so (Hotary et al., 2000).<br />

MT-MMPs are <strong>in</strong>hibited by tissue <strong>in</strong>hibitors of matrix metalloprote<strong>in</strong>ases (TIMPs); TIMP-1 <strong>in</strong>hibits<br />

all MT-MMPs, except MT1-MMP, while TIMP-2 and -3 <strong>in</strong>hibit all MT-MMPs (Visse, Nagase 2003;<br />

Hernandez-Barrantes et al., 2002). MT1-MMP is also <strong>in</strong>hibited by TIMP-4 (Bigg et al., 2001).<br />

3<br />

Downloaded from<br />

http://molehr.oxfordjournals.org/ by guest on January 27, 2013


MT1-MMP is the best known MT-MMP, which degrades ECM components and promotes cell<br />

migration, angiogenesis and tumour metastasis (Seiki, Yana 2003; Visse, Nagase 2003; Sounni et al.,<br />

2002, Lafleur et al., 2002; Hiroaka et al., 1998; Galvez et al., 2001; Collen et al., 2003). MT2- and<br />

MT3-MMP are less well studied and are known to be <strong>in</strong>volved <strong>in</strong> cell migration and <strong>in</strong>vasion. MT1-,<br />

MT2- and MT3-MMP <strong>in</strong>duce angiogenesis <strong>in</strong> vitro and MT2- and MT3-MMP may even be potential<br />

regulators of endometrial angiogenesis <strong>in</strong> vivo (Hotary et al., 2000; Hotary et al., 2002; Lafleur et al .,<br />

2002; Hiroaka et al., 1998; Galvez et al., 2001; Collen et al., 2003; Plaisier et al., 2004; Plaisier et al.,<br />

2006). MT5-MMP is known for a gelat<strong>in</strong>olytic effect <strong>in</strong> the bra<strong>in</strong>, which <strong>in</strong>duces embryonic bra<strong>in</strong><br />

development and axonal growth (Llano et al., 1999; Pei 1999).<br />

With regard to MT-MMPs <strong>in</strong> <strong>decidua</strong>, only MT1- and MT2-MMP have been studied. MT1-<br />

and MT2-MMP RNA and prote<strong>in</strong> expression are described <strong>in</strong> <strong>decidua</strong>l extracts, stromal cells, and the<br />

extra-villous trophoblast (Bai et al., 2005; Bjorn et al., 2000; Hurska<strong>in</strong>en et al., 1998; Nakano et al.,<br />

2001; Nawrocki et al., 1996; Curry, Osteen 2003). MT-MMPs are assumed to regulate trophoblast<br />

<strong>in</strong>vasion dur<strong>in</strong>g implantation (Salamonsen 1999). Whether migration of other cell types, e.g. immune<br />

and endothelial cells, is also regulated by MT-MMPs rema<strong>in</strong>s to be seen.<br />

The plasm<strong>in</strong>ogen activator (PA) system is based on the protease plasm<strong>in</strong>, which cleaves most ECM<br />

components. The circulat<strong>in</strong>g prote<strong>in</strong> plasm<strong>in</strong>ogen is converted <strong>in</strong>to the active protease plasm<strong>in</strong> by<br />

either tissue-type plasm<strong>in</strong>ogen activator (tPA) or urok<strong>in</strong>ase-type plasm<strong>in</strong>ogen activator (uPA). tPA is<br />

ma<strong>in</strong>ly <strong>in</strong>volved <strong>in</strong> clot dissolution, whereas uPA mediates pericellular proteolysis dur<strong>in</strong>g cell<br />

migration, tissue remodell<strong>in</strong>g and angiogenesis (van H<strong>in</strong>sbergh et al., 2006). uPA b<strong>in</strong>ds a specific cell-<br />

surface receptor, uPAR, which restricts the uPA-activity to the cell environment and enables activation<br />

of plasm<strong>in</strong> directly on the cell surface. The activity of uPA is regulated by at least two specific ser<strong>in</strong>e<br />

prote<strong>in</strong>ase <strong>in</strong>hibitors, plasm<strong>in</strong>ogen activator <strong>in</strong>hibitor type-1 and -2 (PAI-1/2) (Spengers, Kluft 1987).<br />

The role of uPA mediated plasm<strong>in</strong>ogen activation <strong>in</strong> cell migration has been studied for a<br />

variety of cells and for endothelial cells, leucocytes, and trophoblasts <strong>in</strong> particular (Heymans et al.,<br />

1999; Reun<strong>in</strong>g et al., 2003; Pepper 2001; Blasi et al., 1987; Hu et al., 1999; Salamonsen et al., 2003).<br />

Both uPA and uPAR expression has been detected <strong>in</strong> the <strong>in</strong>vasive trophoblast cells, which <strong>in</strong>dicates a<br />

4<br />

Downloaded from<br />

http://molehr.oxfordjournals.org/ by guest on January 27, 2013


ole for uPA and uPAR <strong>in</strong> trophoblast <strong>in</strong>vasion (Hofmann et al.,1994; Hu et al., 1999; Multhaupt et<br />

al.,1994; Pierleoni et al., 1998; Salamonsen et al., 1999).<br />

Little <strong>in</strong>formation is available regard<strong>in</strong>g the expression of MT-MMPs and uPA/uPAR <strong>in</strong> the various<br />

<strong>decidua</strong>l tissues and cell types. Moreover, their regulation and <strong>in</strong>volvement <strong>in</strong> <strong>decidua</strong>l remodell<strong>in</strong>g,<br />

vascularisation, and immune cell and trophoblast <strong>in</strong>vasion is not well established.<br />

Endometrial adaptation to pregnancy is <strong>in</strong>duced by pregnancy-<strong>in</strong>duced hormones, i.e. hCG,<br />

oestradiol and progesterone, immune cells, and the extra-villous trophoblasts (EVT). The differential<br />

presence of these factors results <strong>in</strong> the generation of various 1 st <strong>trimester</strong> <strong>decidua</strong>l tissues. Decidual<br />

secretory endometrium (DSE) is only pre-<strong>decidua</strong>lised and will develop <strong>in</strong>to <strong>decidua</strong> parietalis (DP)<br />

under <strong>in</strong>fluence of pregnancy-<strong>in</strong>duced hormones. Decidua basalis (DB) will arise <strong>in</strong> the additional<br />

presence of the EVT. The present study analyses the expression of MT-MMPs and uPA/uPAR at<br />

mRNA and prote<strong>in</strong> level <strong>in</strong> <strong>decidua</strong>l secretory endometrium (DSE), <strong>decidua</strong> parietalis (DP) and<br />

<strong>decidua</strong> basalis (DB). These parameters will be compared between tissues with<strong>in</strong> subjects. In this way,<br />

MT-MMP and uPA/uPAR expression <strong>in</strong> various <strong>decidua</strong>l cell types and <strong>decidua</strong>l tissues can be<br />

determ<strong>in</strong>ed. As the <strong>in</strong>flux and activity of immune cells, <strong>in</strong> particular uNK cells and macrophages, may<br />

<strong>in</strong>fluence that production of <strong>proteases</strong>, we also compared the accumulation of these cells <strong>in</strong> the same<br />

<strong>decidua</strong>l tissues. These data may shed light on the functions of the studied <strong>proteases</strong> <strong>in</strong> <strong>human</strong> <strong>decidua</strong><br />

and might generate new hypotheses regard<strong>in</strong>g the <strong>in</strong>ception of <strong>human</strong> pregnancy.<br />

5<br />

Downloaded from<br />

http://molehr.oxfordjournals.org/ by guest on January 27, 2013


Materials and Methods<br />

Study group<br />

Decidua samples were obta<strong>in</strong>ed from women (n=32) with a viable <strong>in</strong>trauter<strong>in</strong>e gravidity, undergo<strong>in</strong>g a<br />

legal voluntary abortion. The study was approved by the Institutional Review Board, the ethics<br />

committee, of the Leiden University Medical Centre and <strong>in</strong>formed consent was provided by all study<br />

subjects. Foetal cardiac activity and gestational age were confirmed by ultrasound. Women with<br />

symptoms of a missed abortion, such as vag<strong>in</strong>al bleed<strong>in</strong>g, and women with underly<strong>in</strong>g pathologies<br />

were excluded. Inconsistency between the ultrasound-determ<strong>in</strong>ed gestational age and the known last<br />

day of menstruation also led to exclusion.<br />

Two groups were formed based on a gestational age (GA) of 8-9 weeks. This cut<br />

off was chosen s<strong>in</strong>ce after 8-9 weeks GA the <strong>in</strong>tervillous space is gradually filled with maternal blood,<br />

caus<strong>in</strong>g the oxygen level and the oxidative stress to rise and thereby stimulat<strong>in</strong>g placental<br />

differentiation and vascularisation (Burton et al., 1999). This process is thought to be largely<br />

completed at 12 weeks gestation. The early group (n=25) has a mean GA of 45.3 days (6 +3 weeks) and<br />

the late group (n=8) has a mean GA of 90.1 days (12 +6 weeks). Maternal age and number of previous<br />

pregnancies and miscarriages did not differ significantly between the two groups. Patient<br />

characteristics of the study groups are given <strong>in</strong> Table I.<br />

Tissue Samples<br />

Decidua samples were obta<strong>in</strong>ed from the aspirated tissue (vacuum aspiration), fixed <strong>in</strong> formaldehyde<br />

overnight and embedded <strong>in</strong> paraff<strong>in</strong>. Hematoxyl<strong>in</strong> Phlox<strong>in</strong> Safrane (HPS) and anti-cytokerat<strong>in</strong> sta<strong>in</strong><strong>in</strong>g<br />

were performed. Hematoxyl<strong>in</strong> (50 g potassium alum<strong>in</strong>iumsulfate, 1 gr haematox, 500 mg citricacid, 25<br />

g chloralhydrate, 200 mg NaJO3 <strong>in</strong> 1000 ml aqua dest,) sta<strong>in</strong>s nuclei and calcium blue. Phlox<strong>in</strong> (0.25 g<br />

phlox<strong>in</strong> <strong>in</strong> 100 ml aquadest) sta<strong>in</strong>s erythrocytes, cytoplasm, fibr<strong>in</strong> and muscle red. Safrane (3 g safrane<br />

<strong>in</strong> 1000 ml 100% alcohol) sta<strong>in</strong>s calcium free bone, cartilage and collagen yellow. The HPS sta<strong>in</strong><strong>in</strong>g<br />

was used to differentiate between <strong>decidua</strong> and <strong>decidua</strong>l secretory endometrium (DSE), which<br />

microscopically resembles secretory endometrium. Decidua basalis (DB) and <strong>decidua</strong> parietalis (DP)<br />

were differentiated by the presence or absence of extra-villous trophoblasts us<strong>in</strong>g an anti-cytokerat<strong>in</strong><br />

sta<strong>in</strong><strong>in</strong>g (see section immunohistochemistry, Figure 5).<br />

6<br />

Downloaded from<br />

http://molehr.oxfordjournals.org/ by guest on January 27, 2013


DSE, DP and DB were obta<strong>in</strong>ed from the same curettement and therefore orig<strong>in</strong>ate from the same<br />

depth and area of the uter<strong>in</strong>e wall. Only subjects with at least two complete sets of DSE, DB and DP<br />

were <strong>in</strong>cluded. Serial sections of the paraff<strong>in</strong> embedded tissue samples were used for all experiments<br />

and all parameters were compared between tissues with<strong>in</strong> subjects.<br />

RNA isolation and cDNA synthesis<br />

RNA was extracted from paraff<strong>in</strong> embedded tissue samples (Plaisier et al., 2007; Specht et al., 2001).<br />

Several samples per patient were used and these samples conta<strong>in</strong>ed a proportionate amount of cells<br />

and cell types. In short, 5 µm sections were mounted on RNase-free glass slides. The first and last<br />

sections were used to verify the presence of the tissues of <strong>in</strong>terest. The other sections were<br />

deparaff<strong>in</strong>ised and the tissues of <strong>in</strong>terest, DSE, DP or DB (without villous tissue), were macro-<br />

dissected and dissolved <strong>in</strong> 190 µl lysis buffer (Tris 20 mM pH 7.4, EDTA 1 mM pH 8.0, 2% SDS) and<br />

10 µl prote<strong>in</strong>ase K (20 mg/ml prote<strong>in</strong>ase K, Life-Technologies Gibco BRL, Gaithersburg) for 18 hours<br />

at 60°C. Subsequently, 400 µl Solution D (4 M guanidium isothiocyanate, 0.75 M sodium citrate, 10%<br />

sarkosyl and 2-mercapto-ethanol) was added and RNA was isolated (Chomczynski, Sacchi 1987).<br />

RNA quantity and quality were analysed <strong>in</strong> a spectrophotometer (Nanodrop ND-1000). Reverse<br />

transcription was performed with 1 μg total RNA, random primers and cDNA synthesis kit accord<strong>in</strong>g<br />

to the manufacturer’s protocol and the obta<strong>in</strong>ed 32 µl cDNA was diluted 1:3 (Ready-to-go You-Prime<br />

first strand beads, Amersham Biosciences, Buck<strong>in</strong>ghamshire, UK).<br />

Real-time RT-PCR<br />

The mRNA levels were semi-quantified accord<strong>in</strong>g to the Taqman real-time PCR method us<strong>in</strong>g<br />

validated primer and probe (FAM/TAMRA double-labelled) sets for MT1-, MT2-, MT3-, and MT5-<br />

MMP, uPA and uPAR. Glycerlylaldehyde-3-phosphate dehydrogenase (GAPDH, primers/VIC-<br />

labelled probe) was used as an endogenous reference gene (all primer/probe sets purchased from<br />

Applied Biosystems, Foster City, CA USA). Other genes, β-act<strong>in</strong>, β2-microglobul<strong>in</strong> and cyclophil<strong>in</strong>,<br />

were also used as reference genes and showed comparable results (data not shown).<br />

RT-PCR reactions for target gene/GAPDH pairs were performed <strong>in</strong> 12.5 µl reactions,<br />

conta<strong>in</strong><strong>in</strong>g 2.5 µl cDNA solution, us<strong>in</strong>g mastermix (RT-QP2X-03, Eurogentec, Maastricht, The<br />

7<br />

Downloaded from<br />

http://molehr.oxfordjournals.org/ by guest on January 27, 2013


Netherlands), DNAse free water and the above described primer/probe sets. Reactions were performed<br />

<strong>in</strong> duplicate and expressed <strong>in</strong> cycle times (Ct). A standard curve for each primer/probe pair was created<br />

by determ<strong>in</strong><strong>in</strong>g Ct values of various concentrations of total RNA (range 125 – 0.016 ng/µl). Then Ct<br />

values of the samples were quantified <strong>in</strong>to ng/µl. The RNA levels <strong>in</strong> DSE were set at 100% to<br />

compare DSE with DP and DB and the RNA levels of DP were set at 100% to compare DP with DB.<br />

Water and negative-RT samples, obta<strong>in</strong>ed by the omission of the reverse transcriptase enzyme <strong>in</strong> the<br />

cDNA reaction, were used as negative controls.<br />

Immunohistochemistry<br />

Serial sections were deparaff<strong>in</strong>ised, endogenous peroxidase was quenched with 3% H2O2/methanol<br />

and aspecific b<strong>in</strong>d<strong>in</strong>g was reduced by <strong>in</strong>cubation with 5% bov<strong>in</strong>e serum album<strong>in</strong>. Antigen retrieval <strong>in</strong><br />

a tryps<strong>in</strong> solution was used for detection of MT2- and MT5-MMP (Plaisier et al., 2006). Heat retrieval<br />

<strong>in</strong> citrate buffer (pH 6.0) was used for detection of CD56 and CD68.<br />

The follow<strong>in</strong>g first antibodies were used: broad spectrum polyclonal rabbit anti-cytokerat<strong>in</strong><br />

(1:2000, Z0622,DAKO,Glostrup Denmark), monoclonal mouse anti-CD56 (IgG1, 1:50, MONX 10844,<br />

clone 1B6, Monosan, Uden, the Netherlands), monoclonal mouse anti-CD68 (IgG1,1:200,M0814,<br />

DAKO,GlostrupDenmark), monoclonal mouse anti-MT2-MMP (IgG1, 1:250, 162-22G5, Oncogene<br />

Research Products, San Diego, USA), monoclonal mouse anti-MT3-MMP (IgG1, 1:300, 117-10C6,<br />

Oncogene Research Products, San Diego, USA), polyclonal rabbit anti-MT5-MMP (1:200, M6684,<br />

Sigma-Aldrich, USA), monoclonal mouse anti-uPA (IgG1, 1:50, 3689, American Diagnostica Inc,<br />

Greenwich, USA). Polyclonal rabbit anti-MT1-MMP (1:1000) and anti-uPAR (1:400) antibodies were<br />

produced and characterized as previously described (Collen et al., 2003; Plaisier et al., 2004; van<br />

Boheemen et al., 1995; Koolwijk et al., 1996). The follow<strong>in</strong>g secondary antibodies were used:<br />

biot<strong>in</strong>ylated horse anti-mouse antibody (1:300, BA-2000, Vector, Burl<strong>in</strong>game, USA), biot<strong>in</strong>ylated<br />

donkey anti-rabbit antibody (1:300, RPN1004, Amersham Biosciences, Buck<strong>in</strong>ghamshire, UK).<br />

Primary antibodies were applied overnight at 4°C followed by one hour <strong>in</strong>cubation with<br />

biot<strong>in</strong>ylated secondary antibody. Antibody b<strong>in</strong>d<strong>in</strong>g was visualised us<strong>in</strong>g StreptABComplex/horse-<br />

radish peroxidase (HRP), a streptavid<strong>in</strong> complexed with biot<strong>in</strong>ylated peroxidase (K0377,<br />

DakoCytomation, Glostrup, Denmark) and NovaRED substrate (SK-4800, Vector, Burl<strong>in</strong>game,<br />

8<br />

Downloaded from<br />

http://molehr.oxfordjournals.org/ by guest on January 27, 2013


USA) accord<strong>in</strong>g to the manufacturer’s protocol. Only CD56 immunohistochemistry was sta<strong>in</strong>ed with<br />

DAB (diam<strong>in</strong>obenzid<strong>in</strong>). All <strong>in</strong>cubations were performed <strong>in</strong> 1% bov<strong>in</strong>e serum album<strong>in</strong> <strong>in</strong> PBS.<br />

Sections were countersta<strong>in</strong>ed with Mayer’s haematoxyl<strong>in</strong>. Specificity of the<br />

immunohistochemical reaction was verified by the omission of the first antibody as well as us<strong>in</strong>g non-<br />

immune mouse IgG1, concentration adjusted to primary IgG1 concentration (range 0.3 - 20 µg/ml), and<br />

rabbit serum <strong>in</strong>stead of first antibody. To evaluate the sta<strong>in</strong><strong>in</strong>g patterns <strong>in</strong> extra-villous trophoblast,<br />

cytokerat<strong>in</strong> and target prote<strong>in</strong> sta<strong>in</strong><strong>in</strong>g were performed on serial sections of 3 μm.<br />

Evaluation of Immunohistochemical sta<strong>in</strong><strong>in</strong>g<br />

Immunosta<strong>in</strong><strong>in</strong>g of CD56+ and CD68+ cells was evaluated by count<strong>in</strong>g, the number of positive cells<br />

and the number of stromal cells <strong>in</strong> a 16 µm 2 grid (10 fields per tissue per patient). In this way, the<br />

mean percentage of positive cells per stromal cells and per µm 2 could be determ<strong>in</strong>ed.<br />

To limit the possible bias of subjectivity dur<strong>in</strong>g the evaluation of the immunosta<strong>in</strong><strong>in</strong>gs, we<br />

have chosen to evaluate the immunosta<strong>in</strong><strong>in</strong>g of the <strong>proteases</strong> and uPAR by calculat<strong>in</strong>g a sta<strong>in</strong><strong>in</strong>g <strong>in</strong>dex<br />

(SI): proportion of sta<strong>in</strong>ed cells x sta<strong>in</strong><strong>in</strong>g <strong>in</strong>tensity (Plaisier et al., 2006; Plaisier et al., 2007; Nap et<br />

al. 2004). The proportion of sta<strong>in</strong>ed cells was expressed as 0, 1, 2 or 3, which marks positive sta<strong>in</strong><strong>in</strong>g<br />

signal <strong>in</strong> 0%, 50% of the cells of a particular cell type. The <strong>in</strong>tensity of sta<strong>in</strong><strong>in</strong>g<br />

was expressed as 1, 2 or 3 (weak, moderate or strong, respectively). The m<strong>in</strong>imum score was 0 and the<br />

maximum score 9. The average score of two <strong>in</strong>dependent observers was used to calculate the mean and<br />

total sta<strong>in</strong><strong>in</strong>g <strong>in</strong>dex (Mean and Total SI).<br />

The Mean SI represents the prote<strong>in</strong> level per studied cell type. The Total SI represents the total<br />

prote<strong>in</strong> sta<strong>in</strong><strong>in</strong>g per tissue and was calculated as the sum of the Mean SI of endothelial cells (EC), peri-<br />

vascular smooth muscle cells (PSMC), glandular epithelium (GE) and stromal cells (SC) <strong>in</strong> DSE and<br />

DP samples. The Mean SI of EVT was also <strong>in</strong>cluded <strong>in</strong> the Total SI of DB samples.<br />

9<br />

Downloaded from<br />

http://molehr.oxfordjournals.org/ by guest on January 27, 2013


Statistical analysis<br />

All parameters were compared between DSE and DP, between DSE and DB and between DP and DB<br />

with<strong>in</strong> subjects. A general l<strong>in</strong>ear model for repeated measurements, repeated measures ANOVA, was<br />

performed to analyse the double paired data with<strong>in</strong> subjects of early 1 st <strong>trimester</strong> <strong>decidua</strong> as well as to<br />

compare data between the early and late 1 st <strong>trimester</strong> group (SPSS 11.5). Sphericity was corrected<br />

us<strong>in</strong>g the Greenhouse-Geisser correction. Where appropriate we used Friedman's test for non-<br />

parametric <strong>in</strong>vestigations of correlated observations. The statistical analyses used are described <strong>in</strong><br />

legends and table footnotes. P-values of < 0.05 were considered significant.<br />

10<br />

Downloaded from<br />

http://molehr.oxfordjournals.org/ by guest on January 27, 2013


Results<br />

mRNA levels of <strong>proteases</strong> <strong>in</strong> early 1 st <strong>trimester</strong> <strong>decidua</strong>.<br />

The mRNA levels of uPA, uPAR and the transmembrane spann<strong>in</strong>g MT-MMPs were evaluated at the<br />

mRNA level. All these genes were expressed by the three <strong>decidua</strong>l tissues (Table II).<br />

First, the amounts of specific mRNAs <strong>in</strong> <strong>decidua</strong>l parietalis (DP) were compared to those <strong>in</strong><br />

<strong>decidua</strong> secretory endometrium (DSE, 100%). mRNA levels of uPAR and all <strong>proteases</strong>, except MT5-<br />

MMP, were elevated <strong>in</strong> DP, but only MT1-MMP (171%, p


Analysis of the prote<strong>in</strong> sta<strong>in</strong><strong>in</strong>g <strong>in</strong> the various cell types showed that the mean sta<strong>in</strong><strong>in</strong>g <strong>in</strong>dices were<br />

most abundant <strong>in</strong> glandular epithelial cells, followed by perivascular smooth muscle and stromal cells<br />

(Table III, Figure 1). Endothelium displayed weak sta<strong>in</strong><strong>in</strong>g for all prote<strong>in</strong>s, except MT5-MMP. MT5-<br />

MMP was not detectable (Figure 2). Significant differences were not found between the three <strong>decidua</strong>l<br />

tissues with regard to endothelial prote<strong>in</strong> levels. However, it should be noted that MT3-MMP was<br />

present <strong>in</strong> the endothelium of DSE, but largely reduced <strong>in</strong> DP and undetectable <strong>in</strong> those cells of DB.<br />

The same pattern was also displayed by endothelial MT2-MMP and by the sta<strong>in</strong><strong>in</strong>g of MT2- and MT3-<br />

MMP <strong>in</strong> smooth muscle cells (Table III, Figure 1 and 2).<br />

All <strong>proteases</strong> studied were present <strong>in</strong> extra-villous trophoblasts, although MT5-MMP sta<strong>in</strong>ed<br />

only dimly. Furthermore, all <strong>proteases</strong> were detectable <strong>in</strong> villous trophoblasts; uPAR, MT1-, MT2-,<br />

MT3- and MT5-MMP were moderately expressed <strong>in</strong> both syncytiotrophoblasts as cytotrophoblasts.<br />

The amount of uPA prote<strong>in</strong> was weak <strong>in</strong> cytotrophoblasts, while it was abundantly present <strong>in</strong><br />

syncytiotrophoblasts (Table III, Figure 3).<br />

Proteases <strong>in</strong> early versus late 1 st <strong>trimester</strong> <strong>decidua</strong>.<br />

The mRNA levels of <strong>proteases</strong> <strong>in</strong> late 1 st <strong>trimester</strong> <strong>decidua</strong> were compared to those <strong>in</strong> early 1 st<br />

<strong>trimester</strong> <strong>decidua</strong> (100%, Table IV). The levels of MT1-MMP (206%, p


endothelial cells at the two time po<strong>in</strong>ts, while MT5-MMP was absent <strong>in</strong> these cells <strong>in</strong> both conditions<br />

(Table III).<br />

Analysis of uNK cells (CD56 +) and macrophages (CD68 +).<br />

The presence of CD56 and CD68 antigens was determ<strong>in</strong>ed <strong>in</strong> DSE, DP and DB of both the early and<br />

late 1 st <strong>trimester</strong> group and expressed as the percentage positive cells per total number of stromal cells.<br />

The CD56 sta<strong>in</strong><strong>in</strong>g showed <strong>in</strong>homogeneous sta<strong>in</strong><strong>in</strong>g, ma<strong>in</strong>ly localised around vessels and<br />

glands, which was corrected for by analys<strong>in</strong>g various samples per patient. The number of CD56+<br />

(uNK) cells <strong>in</strong> DP and DB was comparable, 18 ± 6% and 21 ± 4% respectively, of the total number of<br />

stromal cells. Both DP and DB showed a significantly larger number of CD56+ cells then DSE (9 ±<br />

2%, p


Discussion<br />

The present study demonstrates that the mRNA and prote<strong>in</strong> content of the pericellular-<strong>act<strong>in</strong>g</strong> MT-<br />

MMPs and uPA/uPAR varied between <strong>decidua</strong>l secretory endometrium (DSE), <strong>decidua</strong> basalis (DB)<br />

and <strong>decidua</strong> parietalis (DP). Furthermore, the percentage of CD56-positive cells was two-fold lower <strong>in</strong><br />

DSE than <strong>in</strong> DB and DP. A comparable <strong>in</strong>crease <strong>in</strong> macrophages did not reach statistical significance.<br />

It is likely that the differential expression of these <strong>proteases</strong> is ma<strong>in</strong>ly due to the different effects of<br />

pregnancy-<strong>in</strong>duced hormones (hCG, oestradiol and progesterone), the extra-villous trophoblast and/or<br />

immune cells on the three <strong>decidua</strong>l tissues. Our study suggests that uPAR and MT1-MMP are<br />

enhanced by pregnancy-<strong>in</strong>duced hormones, and possibly uNK cells, and uPA, MT2-, MT3-MMPs by<br />

EVT. In addition, MT5-MMP appears reduced by the EVT. F<strong>in</strong>ally, we show differences <strong>in</strong> protease<br />

content and presence of immune cells as gestation progresses.<br />

Decidual tissues and their contributors<br />

Endometrial adaptation to pregnancy is <strong>in</strong>duced by pregnancy-<strong>in</strong>duced hormones, i.e. hCG, oestradiol<br />

and progesterone, immune cells, and the extra-villous trophoblasts (EVT). Pregnancy-<strong>in</strong>duced<br />

hormones are <strong>in</strong>volved <strong>in</strong> the development of <strong>decidua</strong> parietalis (DP) from the <strong>decidua</strong>l secretory<br />

endometrium (DSE), while the additional presence of the EVT <strong>in</strong>duces the generation of the <strong>decidua</strong><br />

basalis (DB). This may imply that differences <strong>in</strong> protease content between DB and DP are due to<br />

<strong>in</strong>teractions of the <strong>decidua</strong>l tissue with the trophoblast. However, NK cells have also been suggested to<br />

vary between term DB and DP (S<strong>in</strong>dram-Truijllo et al., 2003). As these uNK cells are known to<br />

produce many chemok<strong>in</strong>es and angiogenic growth factors (Hanna et al., 2006;Li et al., 2000; Lash et<br />

al., 2006), the uNK cells may also be able to <strong>in</strong>fluence the production of <strong>proteases</strong> <strong>in</strong> DB and DP.<br />

Other <strong>in</strong>vestigators were unable to detect differences <strong>in</strong> uNK numbers <strong>in</strong> DP and DB (Khong 1987;<br />

Haller et al., 1998; Bulmer,Lash 2005). Indeed, <strong>in</strong> our study we also found similar amounts of uNK<br />

cells <strong>in</strong> DB and DP be<strong>in</strong>g 18% and 21%, respectively. This excludes an <strong>in</strong>volvement of the number of<br />

uNK on the difference between DB and DP, but possible differences <strong>in</strong> the functional properties of the<br />

uNK cells <strong>in</strong> DB and DP cannot yet be excluded.<br />

14<br />

Downloaded from<br />

http://molehr.oxfordjournals.org/ by guest on January 27, 2013


The percentage contribution of uNK cells and macrophages to the immune cell and overall stromal cell<br />

populations were comparable with those reported by other <strong>in</strong>vestigators (Tuckerman et al., 2007;<br />

Quenby et al., 1999; Bulmer et al., 1991). Interest<strong>in</strong>gly, the amounts of uNK cells were twofold higher<br />

<strong>in</strong> DB and DP than <strong>in</strong> DSE (9%). A comparable <strong>in</strong>crease <strong>in</strong> macrophages did not reach statistical<br />

significance (range 1.0-2.2% of total stromal cells). To our knowledge the difference between DSE<br />

and DB/DP has not been systematically <strong>in</strong>vestigated before.<br />

The forego<strong>in</strong>g <strong>in</strong>formation is summarized <strong>in</strong> Figure 5, which presents a model that describes<br />

the <strong>in</strong>fluences of uNK cells, extra-villous trophoblast and pregnancy-<strong>in</strong>duced hormones on DSE, DP<br />

and DB. This model enables us to discuss changes that occur <strong>in</strong>dependently of trophoblast <strong>in</strong>vasion,<br />

and those that are ma<strong>in</strong>ly <strong>in</strong>duced by pregnancy-<strong>in</strong>duced hormones and/or uNK cells, from changes<br />

<strong>in</strong>fluenced by the <strong>in</strong>vasive extra-villous trophoblast (Plaisier et al., 2007). The effects of uNK cells<br />

require further functional studies.<br />

<strong>Pericellular</strong> <strong>proteases</strong> <strong>in</strong> early 1 st <strong>trimester</strong> <strong>decidua</strong>.<br />

MT1-MMP mRNA and prote<strong>in</strong> expression were significantly <strong>in</strong>duced <strong>in</strong> <strong>decidua</strong> basalis and parietalis<br />

(DB and DP) as compared to <strong>decidua</strong>l secretory endometrium (DSE), but no differences were found<br />

between DB and DP. This suggests that <strong>decidua</strong>l MT1-MMP expression is <strong>in</strong>duced rather by<br />

pregnancy-<strong>in</strong>duced hormones and/or uNK cells then by <strong>in</strong>vasive trophoblasts (EVT). This confirms an<br />

earlier study which showed that <strong>in</strong>vasive trophoblasts are not required for the <strong>in</strong>duction of MT1-MMP<br />

(Nakano et al., 2001). Furthermore, the apparent <strong>in</strong>duction of MT1-MMP <strong>in</strong> DP and DB might be<br />

expla<strong>in</strong>ed by the <strong>in</strong>flux of NK cells <strong>in</strong> those tissues, as NK cells are known to conta<strong>in</strong> MT1-MMP<br />

(Albertsson et al., 2000). MT1-MMP may also play a role <strong>in</strong> uNK cell migration.<br />

Although the regulation of MT1-MMP expression seems unaffected by the EVT, MT1-MMP<br />

is expressed by the EVT. This suggests a role <strong>in</strong> trophoblast <strong>in</strong>vasion, which <strong>in</strong>deed has been reported<br />

previously (Hurska<strong>in</strong>en et al., 1998; Nawrocki et al., 1996; Tanaka et al., 1998). F<strong>in</strong>ally, the fact that<br />

MT1-MMP is <strong>in</strong>duced <strong>in</strong> various cell types of <strong>decidua</strong> parietalis and basalis also po<strong>in</strong>ts to a role <strong>in</strong><br />

<strong>decidua</strong>l remodell<strong>in</strong>g and/or vascularisation.<br />

MT2-MMP and MT3-MMP mRNA levels were <strong>in</strong>creased and MT5-MMP mRNA levels<br />

were reduced <strong>in</strong> DB compared to both DSE and DP. This suggests that these mRNA levels are ma<strong>in</strong>ly<br />

15<br />

Downloaded from<br />

http://molehr.oxfordjournals.org/ by guest on January 27, 2013


<strong>in</strong>fluenced by the presence of the EVT. Together with their antigens be<strong>in</strong>g present <strong>in</strong> <strong>in</strong>vasive<br />

trophoblasts, this suggests a role <strong>in</strong> trophoblast <strong>in</strong>vasion. However, no significant differences were<br />

detected <strong>in</strong> the overall presence of MT2-, MT3- and MT5-MMP prote<strong>in</strong>s between the three types of<br />

<strong>decidua</strong>. MT2-MMP and MT3-MMP prote<strong>in</strong> levels were reduced <strong>in</strong> endothelium and perivascular<br />

smooth muscle cells of DP and DB as compared to DSE. Endothelial prote<strong>in</strong> expression of the other<br />

<strong>proteases</strong> showed no differences between the tissues. Interest<strong>in</strong>gly, we recently determ<strong>in</strong>ed the<br />

vascularisation pattern <strong>in</strong> serial sections of the same specimens, which showed highly enhanced<br />

vascularisation at the implantation site. Comparison of these data with the endothelial expression of<br />

MT2- and MT3-MMPs shows that the amounts of these endothelial MT-MMPs correlated well with<br />

the number of vascular structures/mm 2 and correlate <strong>in</strong>versely with the lum<strong>in</strong>al surface of these<br />

vascular structures (Plaisier et al., 2007). Furthermore, experiments with endometrial endothelial cells<br />

<strong>in</strong> vitro <strong>in</strong>dicated that MT2- and MT3-MMP are potential candidates for regulation of endometrial<br />

angiogenesis (Plaisier et al., 2006; Plaisier et al., 2007). These data lead us to hypothesize that MT2-<br />

MMP and MT3-MMP play a role <strong>in</strong> vascular adaptation to pregnancy at the implantation site.<br />

UPA and uPAR were detected <strong>in</strong> the various <strong>decidua</strong>l cell types. In contrast to cycl<strong>in</strong>g secretory<br />

endometrium, <strong>in</strong> which endothelial and stromal cells conta<strong>in</strong>ed uPA antigen and glandular epithelium<br />

did not (Koolwijk et al., 2000), glandular epithelial cells are positive for uPA antigen <strong>in</strong> 1 st <strong>trimester</strong><br />

tissues together with the endothelium and part of the stromal cells. The expression of uPAR largely<br />

follows the pattern of uPA and is clearly present <strong>in</strong> endothelial cells. The presence of uPAR <strong>in</strong> EVT is<br />

confirmed by previous studies and suggests a role <strong>in</strong> trophoblast <strong>in</strong>vasion (Pierleoni et al., 1998,<br />

Floridon et al., 1999).<br />

Interest<strong>in</strong>gly, the expression of uPA mRNA and antigen showed different patterns. The mRNA<br />

levels suggest a stimulatory <strong>in</strong>fluence of pregnancy-<strong>in</strong>duced hormones and/or uNK cells, as well as an<br />

<strong>in</strong>hibit<strong>in</strong>g <strong>in</strong>fluence of the EVT. This latter observation may be expla<strong>in</strong>ed by the downregulation of<br />

uPA mRNA by hCG, an important product of trophoblasts (Salamonsen 1999; Yagel et al., 1993).<br />

However, uPA was <strong>in</strong>creased at the prote<strong>in</strong> level <strong>in</strong> all cell types <strong>in</strong> DB compared to DP and DSE. The<br />

presence of uPA is not only determ<strong>in</strong>ed by the ability of the cells to produce uPA, but also by their<br />

content of uPAR, which b<strong>in</strong>ds and <strong>in</strong>ternalises uPA <strong>in</strong> complex with its <strong>in</strong>hibitor PAI-1 (Blasi,<br />

16<br />

Downloaded from<br />

http://molehr.oxfordjournals.org/ by guest on January 27, 2013


Carmeliet 2002; Kroon et al., 1989). Furthermore, uPA and uPAR are present <strong>in</strong> a part of the stromal<br />

cells that probably <strong>in</strong>clude the uNK and other leukocytes. This is <strong>in</strong> concert with the notion that the<br />

uPA/uPAR system is used, probably together with MT-MMPs, by leukocytes for their <strong>in</strong>vasion <strong>in</strong>to<br />

tissues (Albertsson et al., 2000; Al Atrash et al., 2001). Moreover, the <strong>in</strong>crease <strong>in</strong> uNK cells may thus<br />

contribute to the <strong>in</strong>creased uPA antigens observed <strong>in</strong> DB as compared to DSE.<br />

Early versus late 1 st <strong>trimester</strong> pregnancies<br />

The expression of uPA and uPAR mRNA and prote<strong>in</strong>s showed no differences between early and late<br />

<strong>trimester</strong> <strong>decidua</strong>, <strong>in</strong>dicat<strong>in</strong>g that the uPA/uPAR system rema<strong>in</strong>s under a constant regulation as<br />

gestation progresses. No data are available <strong>in</strong> literature regard<strong>in</strong>g uPA/uPAR dur<strong>in</strong>g these time po<strong>in</strong>ts.<br />

In contrast, the differential mRNA expression of the matrix metalloprote<strong>in</strong>ases suggests that these<br />

<strong>proteases</strong> are regulated over time. The overall amounts of MT1-, MT2- and MT3-MMP were reduced<br />

<strong>in</strong> all <strong>decidua</strong>l tissues <strong>in</strong> late compared to early 1 st <strong>trimester</strong> pregnancy.<br />

Furthermore, the MT1- MT2- and MT3-MMP antigen expression <strong>in</strong> endothelium and<br />

perivascular smooth muscle cells was also reduced <strong>in</strong> all types of <strong>decidua</strong> of late 1 st <strong>trimester</strong><br />

pregnancy. We recently determ<strong>in</strong>ed the vascularisation pattern <strong>in</strong> serial sections of the same early and<br />

late 1 st <strong>trimester</strong> <strong>decidua</strong> samples and this showed that vascularisation is regulated as gestation<br />

progresses. The endothelial expression of MT1-, MT2- and MT3-MMPs correlated well with the<br />

differences <strong>in</strong> vascularisation between early and late 1 st <strong>trimester</strong> <strong>decidua</strong> (Plaisier et al., 2007). These<br />

data aga<strong>in</strong> po<strong>in</strong>t to a role for these MT-MMPs <strong>in</strong> determ<strong>in</strong><strong>in</strong>g the degree and pattern of<br />

neovascularisation as gestation progresses.<br />

Conclusion<br />

Decidual adaptation is important <strong>in</strong> the development of a healthy pregnancy. We showed that the<br />

expression of various pericellular-<strong>act<strong>in</strong>g</strong> <strong>proteases</strong> varied between <strong>decidua</strong>l secretory endometrium<br />

(DSE), <strong>decidua</strong> basalis (DB) and <strong>decidua</strong> parietalis (DP). Furthermore, uNK cells (CD56+) and<br />

macrophages (CD68+) were present <strong>in</strong> all <strong>decidua</strong>l tissues and only the percentage of uNK cells<br />

differed between the tissues. The differential presence of several <strong>proteases</strong> enabled hypothesis<strong>in</strong>g<br />

17<br />

Downloaded from<br />

http://molehr.oxfordjournals.org/ by guest on January 27, 2013


about their regulation, i.e. by pregnancy-<strong>in</strong>duced hormones, the EVT and/or immune cells, as well as<br />

their functions, e.g. <strong>in</strong> immune cell <strong>in</strong>filtration, trophoblast <strong>in</strong>vasion and /or vascularisation (Figure 5).<br />

uPAR and MT1-MMP expression appeared regulated by pregnancy-<strong>in</strong>duced hormones and/or<br />

uNK cells, whereas the presence of uPA, MT2-, MT3-, and MT5-MMP appeared regulated by the<br />

extra-villous trophoblast. All <strong>proteases</strong> were expressed by the EVT and might be <strong>in</strong>volved <strong>in</strong><br />

trophoblast <strong>in</strong>vasion. MT2- and MT3-MMP are known candidates <strong>in</strong> regulat<strong>in</strong>g angiogenesis and<br />

together with their differential expression this suggests that they may not only support <strong>decidua</strong>l<br />

remodell<strong>in</strong>g and trophoblast <strong>in</strong>vasion but also, partially, account for the vascular changes at the<br />

implantation site. F<strong>in</strong>ally, we show differences <strong>in</strong> protease expression as gestation progresses. A better<br />

understand<strong>in</strong>g of <strong>decidua</strong>lisation may contribute to new <strong>in</strong>sights <strong>in</strong> currently non-explicable<br />

pathological events associated with pregnancy, such as miscarriages and pre-eclampsia.<br />

18<br />

Downloaded from<br />

http://molehr.oxfordjournals.org/ by guest on January 27, 2013


Acknowledgements<br />

We would like to thank mw M. de Vries and prof. dr. J.W.M. Niessen for their help regard<strong>in</strong>g immune<br />

cell immunohistochemistry.<br />

19<br />

Downloaded from<br />

http://molehr.oxfordjournals.org/ by guest on January 27, 2013


Figure Legends<br />

Figure 1. Prote<strong>in</strong> levels of <strong>proteases</strong> <strong>in</strong> early 1 st <strong>trimester</strong> <strong>decidua</strong>.<br />

The prote<strong>in</strong> level of <strong>proteases</strong> was determ<strong>in</strong>ed <strong>in</strong> DSE, DP and DB. A. MT1-MMP antigen was<br />

detectable <strong>in</strong> epithelial (open arrow), endothelium (closed arrow) and stromal cells (closed arrowhead)<br />

of DSE. B. MT2-MMP antigen <strong>in</strong> epithelium (open arrow), stromal cells (closed arrowhead) and<br />

pericytes (open arrowhead) of DB. C. Epithelial (open arrow) and stromal (closed arrowhead) MT3-<br />

MMP antigen <strong>in</strong> DB. Pericytes not present <strong>in</strong> this field. D. MT5-MMP antigen <strong>in</strong> epithelium (open<br />

arrow), and only dimly <strong>in</strong> stromal cells (closed arrowheads) of DP. E. uPA antigen <strong>in</strong> epithelium (open<br />

arrow), stromal cells (closed arrowhead) and endothelium (closed arrows) <strong>in</strong> DB. Pericytes not present<br />

<strong>in</strong> this field. F. Epithelial (open arrow), endothelial (closed arrows) and stromal cells (closed<br />

arrowheads) uPAR prote<strong>in</strong> <strong>in</strong> DB A-D,F Bar = 100 μm, E. Bar = 50 μm.<br />

Figure 2. Prote<strong>in</strong> levels of <strong>proteases</strong> <strong>in</strong> endothelium of early 1 st <strong>trimester</strong> <strong>decidua</strong>.<br />

A. Presence of protease antigens <strong>in</strong> endothelium (EC) was expressed as the mean sta<strong>in</strong><strong>in</strong>g <strong>in</strong>dex ±<br />

SEM and B-F show examples of endothelial protease expression. B. Endothelial (arrows) and stromal<br />

(arrowheads) MT1-MMP was detectable <strong>in</strong> DB. C. MT2-MMP was detected <strong>in</strong> endothelium (arrows)<br />

of DB. D. Endothelial MT3-MMP antigen (arrows) <strong>in</strong> DSE. E. uPA antigen <strong>in</strong> endothelium (closed<br />

arrows), epithelium (open arrow) and stromal cells (arrowhead) <strong>in</strong> DB F. uPAR <strong>in</strong> DB was detected <strong>in</strong><br />

endothelial cells (arrows) and stromal cells (arrowheads). B-F. Bar = 50 μm.<br />

Figure 3. Prote<strong>in</strong> levels of <strong>proteases</strong> <strong>in</strong> villous and extra-villous trophoblasts (EVT) of early 1 st<br />

<strong>trimester</strong> <strong>decidua</strong>.<br />

The presence of protease antigens <strong>in</strong> villous and extra villous trophoblasts <strong>in</strong> <strong>decidua</strong> basalis (DB) was<br />

studied <strong>in</strong> serial sections sta<strong>in</strong>ed aga<strong>in</strong>st cytokerat<strong>in</strong> and the target prote<strong>in</strong>. A. Immunosta<strong>in</strong><strong>in</strong>g <strong>in</strong><br />

syncytio- and cytotrophoblasts (synCTB and CTB) was expressed as the mean sta<strong>in</strong><strong>in</strong>g <strong>in</strong>dex ± SEM.<br />

B. and C. uPAR and cytokerat<strong>in</strong> antigens <strong>in</strong> EVT (closed arrows) and epithelium (open arrows) <strong>in</strong><br />

serial sections. D. uPA antigens <strong>in</strong> syncytiotrophoblast (open arrow) and not <strong>in</strong> cytotrophoblast (closed<br />

arrow). B-D. Bar = 50 um.<br />

20<br />

Downloaded from<br />

http://molehr.oxfordjournals.org/ by guest on January 27, 2013


Figure 4. CD56- and CD68- positive cells <strong>in</strong> early and late 1 st <strong>trimester</strong> <strong>decidua</strong>.<br />

A. CD56-positive cells <strong>in</strong> <strong>decidua</strong>, expressed as the mean number of positive cells per total number of<br />

stromal cells (mean ± SD) B. CD68-positive cells <strong>in</strong> <strong>decidua</strong>, expressed as the mean number of<br />

positive cells per total number of stromal cells (mean ± SD). C. CD56 antigen <strong>in</strong> <strong>decidua</strong> basalis, bar =<br />

100 μm. Blow up shows CD56+ cells (arrows) surround<strong>in</strong>g a vessel and gland, bar = 50 μm D. CD68-<br />

positive cell (arrow) <strong>in</strong> <strong>decidua</strong> parietalis, bar = 50 μm. E. Negative control, bar = 100 μm.<br />

* p


Table I. Characteristics of the study subjects.<br />

Early 1 st <strong>trimester</strong> group<br />

(n=25)<br />

Mean ± SD<br />

Late 1 st <strong>trimester</strong> group<br />

(n=8)<br />

Mean ± SD<br />

Maternal Age (years) a 29.4 ± 6.9 29.6 ± 14.4<br />

Gestational age (days) a 45.3 ± 7.8 90.1 ± 12.6<br />

Number of previous pregnancies a 1.3 ± 0.3 1.6 ± 0.5<br />

Number of previous miscarriages a 0.2 ± 0.1 0.4 ± 0.3<br />

a p>0.05.<br />

22<br />

Downloaded from<br />

http://molehr.oxfordjournals.org/ by guest on January 27, 2013


Table II. Differential mRNA levels <strong>in</strong> early 1 st <strong>trimester</strong> pregnancies (percentage ± SD) a .<br />

DSE b DP DB DP c DB<br />

MT1-MMP 100 ± 14 % 171 ± 29 %* 198 ± 52 %* 100 % 155 ± 44 %<br />

MT2-MMP 100 ± 33 % 308 ± 119 % 2329 ± 428<br />

%**<br />

100 % 1929 ± 316<br />

MT3-MMP 100 ± 30 % 150 ± 32 % 1023 ± 288 %** 100 % 768 ± 119 %**<br />

MT5-MMP 100 ± 12 % 70 ± 8 % 16 ± 2 %** 100 % 25 ± 3 %*<br />

uPA 100 ± 20 % 232 ± 74 % 125 ± 31 % 100 % 62 ± 16 %*<br />

uPAR 100 ± 13 % 185 ± 22 %** 208 ± 27 %** 100 % 128 ± 19 %<br />

a mRNA levels were determ<strong>in</strong>ed by RT-PCR <strong>in</strong> DSE, DP and DB of early 1 st <strong>trimester</strong> (n=25) and<br />

compared with<strong>in</strong> subjects. Mean cycle time (Ct) per gene: GAPDH 25-26, MT1-MMP 27, MT2-MMP<br />

30, MT3-MMP 30, MT5-MMP 29, uPA 31, uPAR 30. Cycle times were converted <strong>in</strong>to ng/µl us<strong>in</strong>g a<br />

standard curve of total RNA and values were corrected for RNA <strong>in</strong>put by calculat<strong>in</strong>g the ratio (ng/µl<br />

(target gene))/ (ng/µl (GAPDH)) The ‘repeated measures ANOVA’ was performed to analyse the<br />

data.<br />

b The mRNA levels of DSE was set at 100% to compare mRNA levels <strong>in</strong> DSE with those <strong>in</strong> DP and<br />

DB. Fold <strong>in</strong>duction was calculated as the ratio (DP)/(DSE) and (DB)/(DSE).<br />

c The mRNA expression of DP was set at 100% to compare DP with DB. Fold <strong>in</strong>duction was calculated<br />

as the ratio (DB)/(DP).<br />

* p < 0.05, ** p < 0.01.<br />

%**<br />

23<br />

Downloaded from<br />

http://molehr.oxfordjournals.org/ by guest on January 27, 2013


Table III. 1 st <strong>trimester</strong> prote<strong>in</strong> levels <strong>in</strong> early versus late 1 st <strong>trimester</strong> pregnancies a .<br />

early<br />

1 st<br />

a Specific antigens of pericellular <strong>act<strong>in</strong>g</strong> <strong>proteases</strong> <strong>in</strong> <strong>decidua</strong>l secretory endometrium DSE, <strong>decidua</strong>s<br />

parietalisDP and <strong>decidua</strong>s basalis DB were determ<strong>in</strong>ed by immunohistochemistry, scored per cell type<br />

and compared with<strong>in</strong> subjects. Friedman test, a non-parametrical test for paired samples, and the<br />

Wilcoxon test were used for statistical analysis.<br />

bc The sta<strong>in</strong><strong>in</strong>g was expressed as mean sta<strong>in</strong><strong>in</strong>g <strong>in</strong>dices per cell type and as the total sta<strong>in</strong><strong>in</strong>g <strong>in</strong>dices<br />

(total SI), which is the sum of the mean sta<strong>in</strong><strong>in</strong>g <strong>in</strong>dices of endothelial cells (EC), peri-vascular smooth<br />

muscle cells (PSMC), glandular epithelium (GE), stromal cells (SC) and extra-villous trophoblasts<br />

(EVT) per <strong>decidua</strong>l tissue.<br />

EC b PSMC b GE b SC b EVT b Total SI c<br />

late<br />

1 st<br />

early<br />

1 st<br />

late<br />

1 st<br />

early<br />

1 st<br />

MT1 DSE 0.6 0.0* 1.8 0.3 4.0 2.0 0.6 0.2 NP NP 7.0 # 2.5*<br />

DP 0.7 0.0* 2.2 0.3 4.8 2.5 1.5 0.2 NP NP 9.2 3.0*<br />

DB 0.6 0.0* 1.7 1.0 3.7 3.0 1.7 1.2 1.1 0.5 8.8 5.7<br />

MT2 DSE 1.3 0.5 3.4 0.7 4.2 3.5 1.1 0.0 NP NP 10.0 4.7*<br />

DP 1.0 0.3* 3.7 1.5 4.3 2.7 1.8 0.5 NP NP 10.8 5.0*<br />

DB 0.7 0.4 2.3 1.0 3.7 3.8 1.7 2.2 1.0 1.3 9.4 8.7<br />

MT3 DSE 0.5 0.0 2.2 0.7 4.8 1.0 0.3 0.0 NP NP 7.8 1.7*<br />

DP 0.1 0.0 2.4 0.7 4.9 1.0 1.5 0.0 NP NP 8.9 1.7*<br />

DB 0.0 0.0 1.6 1.0 5.2 1.0 1.7 0.0 1.2 0.0 8.8 2.0*<br />

MT5 DSE 0.0 0.0 0.3 0.0 1.7 2.0 0.2 0.2 NP NP 2.2 2.2<br />

DP 0.0 0.0 0.3 0.0 1.6 2.2 0.2 0.5 NP NP 2.1 2.7<br />

DB 0.0 0.0 0.2 0.0 1.5 1.8 0.3 0.3 0.1 0.3 2.1 2.4<br />

uPA DSE 0.2 0.1 1.8 2.0 4.4 3.9 1.8 1.5 NP NP 8.2 7.5<br />

DP 0.3 0.3 1.8 1.7 4.4 4.1 2.4 2.6 NP NP 8.9 8.7<br />

DB 0.4 0.5 2.1 2.0 5.4 5.3 4.7 5.5 1.3 1.1 13.9 $<br />

14.4<br />

uPAR DSE 0.3 0.5 0.9 1.8 5.6 3.8 1.8 1.5 NP NP 8.6 7.6<br />

DP 0.2 0.0 0.7 1.7 5.5 4.3 1.6 1.7 NP NP 8.0 7.7<br />

DB 0.4 0.8 0.7 2.2 5.4 5.0 2.7 2.5 0.9 1.2 10.1 11.7<br />

NP = not present. # p


Table IV. mRNA levels <strong>in</strong> late 1 st <strong>trimester</strong> pregnancies compared to early 1 st<br />

<strong>trimester</strong> pregnancies (100%). a<br />

Late 1 st<br />

DSE b<br />

Late 1 st<br />

DP b<br />

Late 1 st<br />

DB b<br />

MT1-MMP 206 %** 215 %** 150 %<br />

MT2-MMP 1047 %** 80 %<br />

110 %<br />

MT3-MMP 38 %* 23 %* 92 %<br />

MT5-MMP 111 % 98 % 107 %<br />

uPA 131 % 205 % 168 %<br />

uPAR 160 % 207 %** 137 %<br />

a mRNA levels was determ<strong>in</strong>ed by RT-PCR <strong>in</strong> DSE, DP and DB of early and late 1 st <strong>trimester</strong> (n=25<br />

and n=8 respectively) and compared with<strong>in</strong> subjects. The ‘repeated measures ANOVA’ was<br />

performed to analyse the data.<br />

b The mRNA levels <strong>in</strong> DSE, DP and DB of early 1 st <strong>trimester</strong> <strong>decidua</strong> were set at 100% to compare<br />

with mRNA levels <strong>in</strong> DSE, DP and DB of late 1 st <strong>trimester</strong> <strong>decidua</strong>.<br />

**p


References<br />

Al-Atrash G, Kitson RP, Xue Y, Mazar AP, Kim MH, Goldfarb RH (2001) uPA and uPAR contribute to NK cell<br />

<strong>in</strong>vasion through the extracellular matrix. Anticancer Res. 21, 1697-1704.<br />

Albertsson P, Kim MH, Jonges LE, Kitson RP, Kuppen PJ, Johansson BR, Nannmark U, Goldfarb RH (2000)<br />

Matrix metalloprote<strong>in</strong>ases of <strong>human</strong> NK cells. In Vivo 14 , 269-276.<br />

Alfano D, Franco P, Vocca I, Gambi N, Pisa V, Manc<strong>in</strong>i A, Caputi M, Carriero MV, Iaccar<strong>in</strong>o I, Stoppelli MP<br />

(2005) The urok<strong>in</strong>ase plasm<strong>in</strong>ogen activator and its receptor: role <strong>in</strong> cell growth and apoptosis. Thromb Haemost<br />

93, 205-211.<br />

Bai SX, Wang YL, Q<strong>in</strong> L, Xiao ZJ, Herva R, Piao YS (2005) Dynamic expression of matrix metalloprote<strong>in</strong>ases<br />

(MMP-2, -9 and -14) and the tissue <strong>in</strong>hibitors of MMPs (TIMP-1, -2 and -3) at the implantation site dur<strong>in</strong>g tubal<br />

pregnancy. Reproduction 129, 103-113.<br />

Bigg HF, Morrison CJ, Butler GS, Bogoyevitch MA, Wang Z, Soloway PD, Overall CM (2001) Tissue <strong>in</strong>hibitor<br />

of metalloprote<strong>in</strong>ases-4 <strong>in</strong>hibits but does not support the activation of gelat<strong>in</strong>ase A via efficient <strong>in</strong>hibition of<br />

membrane type 1-matrix metalloprote<strong>in</strong>ase. Cancer Res 61, 3610-3618.<br />

Bjorn SF, Hastrup N, Larsen JF, Lund LR, Pyke C (2000) Messenger RNA for Membrane-type 2 matrix<br />

metalloprote<strong>in</strong>ase, MT2-MMP, is expressed <strong>in</strong> <strong>human</strong> placenta of first <strong>trimester</strong>. Placenta 21, 170-176.<br />

Blasi F, Vassalli JD, Dano K (1987) Urok<strong>in</strong>ase plasm<strong>in</strong>ogen activator: pro-enzyme, receptor and <strong>in</strong>hibitors. J<br />

Cell Biol 104, 801-804.<br />

Blasi F, Carmeliet P (2002) uPAR: a versatile signall<strong>in</strong>g orchestrator. Nat Rev Mol Cell Biol 3, 932-943.<br />

Bulmer JN, Morrison L, Longfellow M, Ritson A, Pace D (1991) Granulated lymphocytes <strong>in</strong> <strong>human</strong><br />

endometrium: histochemical and immunohistochemical studies. Hum Reprod 6, 791-798.<br />

Bulmer JN, Lash GE (2005) Human uter<strong>in</strong>e natural killer cells: a reappraisal. Mol Immunol 42, 511-521.<br />

26<br />

Downloaded from<br />

http://molehr.oxfordjournals.org/ by guest on January 27, 2013


Burton GJ, Jauniaux E, Watson AL (1999) Maternal arterial connections to the placental <strong>in</strong>tervillous space<br />

dur<strong>in</strong>g the first <strong>trimester</strong> of <strong>human</strong> pregnancy: the Boyd collection revisited. Am J Obstet Gynecol 181, 718-724.<br />

Collen A, Hanemaaijer R, Lupu F, Quax PH, van Lent N, Grimbergen J, Peters E, Koolwijk P, van H<strong>in</strong>sbergh<br />

VW (2003) Membrane-type matrix metalloprote<strong>in</strong>ase-mediated angiogenesis <strong>in</strong> a fibr<strong>in</strong>-collagen matrix. Blood<br />

101, 1810-1817.<br />

Chomczynski P, Sacchi N (1987) S<strong>in</strong>gle-step method of RNA isolation by acid guanid<strong>in</strong>ium thiocyanate-phenol-<br />

chloroform extraction. Anal Biochem 162, 156-159.<br />

Curry TE Jr, Osteen KG (2003) The matrix metalloprote<strong>in</strong>ase system: changes, regulation, and impact<br />

throughout the ovarian and uter<strong>in</strong>e reproductive cycle. Endocr Rev 24, 428-465.<br />

Egeblad M, Werb Z (2002) New functions for the matrix metalloprote<strong>in</strong>ases <strong>in</strong> cancer progression. Nat Rev<br />

Cancer 2, 161-174.<br />

Floridon C, Nielsen O, Holund B, Sunde L, Westergaard JG, Thomsen SG, Teisner B (1999) Localization and<br />

significance of uPA and its receptor <strong>in</strong> placental tissue from <strong>in</strong>trauter<strong>in</strong>e, ectopic and molar pregnancies. Placenta<br />

20, 711-721.<br />

Galvez BG, Matias-Roman S, Albar JP, Sanchez-Madrid F, Arroyo AG (2001) Membrane type 1-matrix<br />

metalloprote<strong>in</strong>ase is activated dur<strong>in</strong>g migration of <strong>human</strong> endothelial cells and modulates endothelial motility<br />

and matrix remodel<strong>in</strong>g. J Biol Chem 276, 37491-37500.<br />

Haller H, Tedesco F, Rukav<strong>in</strong>a D, Radillo O, Gudelj L, Beer AE (1995) Decidual-trophoblast <strong>in</strong>teractions:<br />

<strong>decidua</strong>l lymphoid cell populations <strong>in</strong> basaland parietal <strong>decidua</strong>. J Reprod Immunol 28, 165-171.<br />

Hernandez-Barrantes S, Bernardo M, Toth M, Fridman R (2002) Regulation of membrane type-matrix<br />

metalloprote<strong>in</strong>ases. Sem<strong>in</strong> Cancer Biol 12, 131-138.<br />

27<br />

Downloaded from<br />

http://molehr.oxfordjournals.org/ by guest on January 27, 2013


Heymans S, Luttun A, Nuyens D, Theilmeier G, Creemers E, Moons L, Dyspers<strong>in</strong> GD, Cleutjens JP, Shipley M,<br />

Angellilo A et al. (1999) Inhibition of plasm<strong>in</strong>ogen activators or matrix metalloprote<strong>in</strong>ases prevents cardiac<br />

rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat Med 5, 1135-1142.<br />

Hiraoka N, Allen E, Apel IJ, Gyetko MR, Weiss SJ (1998) Matrix metalloprote<strong>in</strong>ases regulate neovascularisation<br />

by <strong>act<strong>in</strong>g</strong> as pericellular fibr<strong>in</strong>olys<strong>in</strong>s. Cell 95, 365-377.<br />

Hofmann GE, Glatste<strong>in</strong> I, Schatz F, Heller D, Deligdisch L (1994) Immunohistochemical localization of<br />

urok<strong>in</strong>ase-type plasm<strong>in</strong>ogen activator and the plasm<strong>in</strong>ogen activator <strong>in</strong>hibitors 1 and 2 <strong>in</strong> early <strong>human</strong><br />

implantation sites. Am J Obstet Gynecol 170, 671-676.<br />

Hotary K, Allen E, Punturieri A, Yana I, Weiss SJ (2000) Regulation of cell <strong>in</strong>vasion and morphogenesis <strong>in</strong> a<br />

three-dimensional type I collagen matrix by membrane-type matrix metalloprote<strong>in</strong>ases 1, 2, and 3. J Cell Biol<br />

149, 1309-1323.<br />

Hotary KB, Yana I, Sabeh F, Li XY, Holmbeck K, Birkedal-Hansen H, Allen ED, Hiraoka N, Weiss SJ (2002)<br />

Matrix metalloprote<strong>in</strong>ases (MMPs) regulate fibr<strong>in</strong>-<strong>in</strong>vasive activity via MT1-MMP-dependent and -<strong>in</strong>dependent<br />

processes. J Exp Med 195, 295-308.<br />

Hu ZY, Liu YX, Liu K, Byrne S, Ny T, Feng Q, Ockleford CD (1999) Expression of tissue type and urok<strong>in</strong>ase<br />

type plasm<strong>in</strong>ogen activators as well as plasm<strong>in</strong>ogen activator <strong>in</strong>hibitor type-1 and type-2 <strong>in</strong> <strong>human</strong> and rhesus<br />

monkey placenta. J Anat 194, 183-195.<br />

Hurska<strong>in</strong>en T, Seiki M, Apte SS, Syrjakallio-Ylitalo M, Sorsa T, Oikar<strong>in</strong>en A, Autio-Harma<strong>in</strong>en H (1998)<br />

Production of Membrane-type matrix metalloprote<strong>in</strong>ase 1 (MT-MMP1) <strong>in</strong> early <strong>human</strong> placenta: a possible role<br />

<strong>in</strong> placental implantation. J of Histochemistry and Cytochemistry 46, 221-229.<br />

Khong TY (1987) Immunohistologic study of the leukocytic <strong>in</strong>filtrate <strong>in</strong> maternal uter<strong>in</strong>e tissues <strong>in</strong> normal and<br />

preeclamptic pregnancies at term. Am J Reprod Immunol Microbiol. 15, 1-8.<br />

28<br />

Downloaded from<br />

http://molehr.oxfordjournals.org/ by guest on January 27, 2013


Kim MH, Kitson RP, Albertsson P, Nannmark U, Basse PH, Kuppen PJ, Hokland ME, Goldfarb RH (2000)<br />

Secreted and membrane-associated matrix metalloprote<strong>in</strong>ases of IL-2-activated NK cells and their <strong>in</strong>hibitors. J.<br />

Immunol 164, 5883-5889.<br />

K<strong>in</strong>dzelskii AL, Amhad I, Keller D, Zhou MJ, Haugland RP, Garni-Wagner BA, Gyetko MR, Todd RF, Petty<br />

HR (2004) <strong>Pericellular</strong> proteolysis by leukocytes and tumor cells on substrates: focal activation and the role of<br />

urok<strong>in</strong>ase-type plasm<strong>in</strong>ogen activator. Histochem Cell Biol 121, 299-310.<br />

Koolwijk P, van Erck MG, de Vree WJ, Vermeer MA, Weich HA, Hanemaaijer R, Van H<strong>in</strong>sbergh VWM (1996)<br />

Cooperative effect of TNFalpha, bFGF, and VEGF on the formation of tubular structures of <strong>human</strong><br />

microvascular endothelial cells <strong>in</strong> a fibr<strong>in</strong> matrix. Role of urok<strong>in</strong>ase activity. J Cell Biol 132, 1177-1188.<br />

Koolwijk P, Kapiteijn K, Molenaar B, van Spronsen E, Helmerhorst FM, van H<strong>in</strong>sbergh VW (2001) Enhanced<br />

angiogenic capacity and urok<strong>in</strong>ase-type plasm<strong>in</strong>ogen activator expression by endothelial cells isolated from<br />

<strong>human</strong> endometrium. J Cl<strong>in</strong> Endocr<strong>in</strong>ol Metab 86, 3359-3367.<br />

Kroon ME, Koolwijk P, van Goor H, Weidle UH, Collen A, van der Pluijm G, van H<strong>in</strong>sbergh V (1999) Role and<br />

localisation of urok<strong>in</strong>ase receptor <strong>in</strong> the formation of new microvascular structures <strong>in</strong> fibr<strong>in</strong> matrices. Am J<br />

Pathol 154, 1731-1742.<br />

Lafleur MA, Handsley MM, Knauper V, Murphy G, Edwards DR (2002) Endothelial tubulogenesis with<strong>in</strong> fibr<strong>in</strong><br />

gels specifically requires the activity of membrane-type-matrix metalloprote<strong>in</strong>ases (MT-MMPs). J Cell Sci 115,<br />

3427-3438.<br />

Li XF, Charnock-Jones DS, Zhang E, Hiby S, Malik S, Day K, Licence D, Bowen JM, Gardner L, K<strong>in</strong>g A, Loke<br />

YW, Smith SK (2001) Angiogenic growth factor messenger ribonucleic acids <strong>in</strong> uter<strong>in</strong>e natural killer cells. J<br />

Cl<strong>in</strong> Endocr<strong>in</strong>ol Metab. 86, 1823-1834.<br />

Llano E, Pendas AM, Freije JP, Nakano A, Knauper V, Murphy G, Lopez-Ot<strong>in</strong> C (1999) Identification and<br />

characterization of <strong>human</strong> MT5-MMP, a new membrane-bound activator of progelat<strong>in</strong>ase a overexpressed <strong>in</strong><br />

bra<strong>in</strong> tumors. Cancer Res 59, 2570-2576.<br />

29<br />

Downloaded from<br />

http://molehr.oxfordjournals.org/ by guest on January 27, 2013


Multhaupt HA, Mazar A, C<strong>in</strong>es DB, Warhol MJ, McCrae KR (1994) Expression of urok<strong>in</strong>ase receptors by<br />

<strong>human</strong> trophoblast. A histochemical and ultra-structural analysis. Lab Invest 71, 392-400.<br />

Nakano M, Hara T, Hayama T, Obara M, Yoshizato K, Ohama K (2001) Membrane-type 1 matrix<br />

metalloprote<strong>in</strong>ase is <strong>in</strong>duced <strong>in</strong> <strong>decidua</strong>l stroma without direct <strong>in</strong>vasión of trophoblast. Mol Hum Reprod 7, 271-<br />

277.<br />

Nap AW, Dunselman GA, de Goeij AF, Evers JL, Groothuis PG (2004) Inhibit<strong>in</strong>g MMP activity prevents the<br />

development of endometriosis <strong>in</strong> the chicken chorioallantoic membrane model. Hum Reprod 19, 2180-2187.<br />

Nawrocki B, Polette M, Marchand V, Maquoi E, Beorchia A, Tournier JM, Foidart JM, Birembaut P (1996)<br />

Membrane-type Matrix metalloprote<strong>in</strong>ase-1 expression at the site of <strong>human</strong> placentation. Placenta 17, 565-572.<br />

Pei D (1999) Identification and characterization of the fifth membrane-type matrix metalloprote<strong>in</strong>ase MT5-<br />

MMP. J Biol Chem 274, 8925-8932.<br />

Pepper MS (2001) Role of matrix metalloprote<strong>in</strong>ase and plasm<strong>in</strong>ogen activator-plasm<strong>in</strong> systems <strong>in</strong> angiogenesis.<br />

Arterioscl Thromb Vasc Biol 21, 1104-1117.<br />

Pierleoni C, Samuelsen GB, Graem N, Ronne E, Nielsen BS, Kaufmann P, Castellucci M (1998)<br />

Immunohistochemical identification of the receptor for uPA associated with fibr<strong>in</strong> deposition <strong>in</strong> normal and<br />

ectopic <strong>human</strong> placenta. Placenta 19, 501-508.<br />

Plaisier M, Kapiteijn K, Koolwijk P, Fijten C, Hanemaaijer R, Grimbergen JM, Mulder-Stapel A, Quax PH,<br />

Helmerhorst FM, van H<strong>in</strong>sbergh VW (2004) Involvement of Membrane-Type Matrix Metalloprote<strong>in</strong>ases (MT-<br />

MMPs) <strong>in</strong> Capillary Tube Formation by Human Endometrial Microvascular Endothelial Cells: Role of MT3-<br />

MMP. J Cl<strong>in</strong> Endocr<strong>in</strong>ol Metab 89, 5828-5836.<br />

Plaisier M, Koolwijk P, Hanemaaijer R, Verwey A, Weiden RM, Risse KJ, Jungerius C, Helmerhorst M,<br />

H<strong>in</strong>sbergh VW (2006) Membrane-type matrix metalloprote<strong>in</strong>ases and vascularisation <strong>in</strong> <strong>human</strong> endometrium<br />

dur<strong>in</strong>g the menstrual cycle. Mol Hum Reprod 12, 11-18.<br />

30<br />

Downloaded from<br />

http://molehr.oxfordjournals.org/ by guest on January 27, 2013


Plaisier M, Rodrigues S, Willems F, Koolwijk P, van H<strong>in</strong>sbergh VW, Helmerhorst FM (2007) Different degree<br />

of vascularisation and its relation to the expression of VEGF, PlGF, angiopoiet<strong>in</strong>s and their receptors <strong>in</strong> 1 st<br />

<strong>trimester</strong> <strong>decidua</strong>. Fert Ster, 88, 176-187.<br />

Quenby S, Bates M, Doig T, Brewster J, Lewis-Jones DI, Johnson PM, V<strong>in</strong>ce G (1999) Pre-implantation<br />

endometrial leukocytes <strong>in</strong> women with recurrent miscarriage. Hum. Reprod. 14, 2386-2391.<br />

Reun<strong>in</strong>g U, Sperl S, Kopitz C, Kessler H, Kruger A, Schmitt M, Magdolen V (2003) Urok<strong>in</strong>ase-type<br />

plasm<strong>in</strong>ogen activator (uPA) and its receptor (uPAR): development of antagonists of uPA/uPAR <strong>in</strong>teraction and<br />

their effects <strong>in</strong> vitro and <strong>in</strong> vivo. Curr Pharm Des 9, 1529-1543.<br />

Salamonsen LA. (1999) Role of <strong>proteases</strong> <strong>in</strong> implantation. Reviews of Reproduction 4, 11-22.<br />

Salamonsen LA, Dimitriadis E, Jones RL, Nie G (2003) Complex regulation of <strong>decidua</strong>lisation: a role for<br />

cytok<strong>in</strong>es and <strong>proteases</strong>- a review. Placenta 24, S 76-85.<br />

Seiki M, Yana I (2003) Roles of pericellular proteolysis by membrane type-1 matrix metalloprote<strong>in</strong>ase <strong>in</strong> cancer<br />

<strong>in</strong>vasion and angiogenesis. Cancer Sci 94, 569-574.<br />

S<strong>in</strong>dram-Trujillo AP, Scherjon SA, van Hulst-van Miert PP, van Schip JJ, Kanhai HH, Roelen DL, Claas FH.<br />

(2003) Differential distribution of NK cells <strong>in</strong> <strong>decidua</strong> basalis compared with <strong>decidua</strong> parietalis after un-<br />

complicated <strong>human</strong> term pregnancy. Hum Immunol 64, 921-929.<br />

Sounni NE, Devy L, Hajitou A, Frankenne F, Munaut C, Gilles C, Deroanne C, Thompson EW, Foidart JM,<br />

Noel A (2002) MT1-MMP expression promotes tumor growth and angiogenesis through an up-regulation of<br />

vascular endothelial growth factor expression. FASEB J 16, 555-564.<br />

Solberg H, R<strong>in</strong>kenberger J, Danø K, Werb Z, Lund LR (2003) A functional overlap of plasm<strong>in</strong>ogen and MMPs<br />

regulates vascularization dur<strong>in</strong>g placental development. Development. 130, 4439-4450.<br />

Specht K, Richter T, Muller U, Walch A, Werner M, Hofler H (2001) Quantitative gene expression analysis <strong>in</strong><br />

microdissected archival formal<strong>in</strong>-fixed and paraff<strong>in</strong>-embedded tumor tissue. Am J Pathol 158, 419-429.<br />

31<br />

Downloaded from<br />

http://molehr.oxfordjournals.org/ by guest on January 27, 2013


Spengers ED, Kluft C (1987) Plasm<strong>in</strong>ogen activator <strong>in</strong>hibitors. Blood 69, 381-387.<br />

Stetler-Stevenson W (1999) Matrix metalloprote<strong>in</strong>ases <strong>in</strong> angiogenesis: a mov<strong>in</strong>g target for therapeutic<br />

<strong>in</strong>tervention. J Cl<strong>in</strong> Invest 103, 1237-1241.<br />

Tanaka SS, Togooka Y, Sato H, Seiki M, Tojo H, Tachi C (1998) Expression and localisation of membrane type<br />

matrix metalloprote<strong>in</strong>ase-1 (MT1-MMP) <strong>in</strong> trophoblast cells of cultured mouse blastocysts and ectoplacental<br />

cones. Placenta 19, 41-48.<br />

Tuckerman E, Laird SM, Prakash A, Li TC (2007) Prognostic value of the measurement of uter<strong>in</strong>e natural killer<br />

cells <strong>in</strong> the endometrium of women with recurrent miscarriage. Hum Reprod 22, 2208-2213.<br />

Vailhe B, Dietl J, Kapp M, Toth B, Arck P (1999) Increased blood vessel density <strong>in</strong> <strong>decidua</strong> parietalis is<br />

associated with spontaneous <strong>human</strong> first <strong>trimester</strong> abortion. Hum Reprod 14, 1628-1634.<br />

Van Boheemen PA, Van den Hoogen CM, Koolwijk P (1995) Comparison of the <strong>in</strong>hibition of urok<strong>in</strong>ase-type<br />

plasm<strong>in</strong>ogen activator (u-PA) activity by monoclonal antibodies specific for u-PA as assesed by different assays.<br />

Fibr<strong>in</strong>olysis 9, 343-349.<br />

van den Heuvel MJ, Chantakru S, Xuemei X, Evans SS, Tekpetey F, Mote PA, Clarke CL, Croy BA (2005)<br />

Traffick<strong>in</strong>g of circulat<strong>in</strong>g pro-NK cells to the <strong>decidua</strong>liz<strong>in</strong>g uterus: regulatory mechanisms <strong>in</strong> the mouse and<br />

<strong>human</strong>. Immunol Invest 34, 273-293.<br />

Van H<strong>in</strong>sbergh VWM, Engelse MA, Quax PHA (2006) <strong>Pericellular</strong> <strong>proteases</strong> <strong>in</strong> angiogenesis and<br />

vasculogenesis. Arterioscl Thromb Vasc Biol 26, 716-728.<br />

Visse R, Nagase H (2003) Matrix metalloprote<strong>in</strong>ases and tissue <strong>in</strong>hibitors of metalloprote<strong>in</strong>ases: structure,<br />

function, and biochemistry. Circ Res 92, 827-839.<br />

Vuorela P, Carpen O, Tulppala M, Halmesmaki E (2000) VEGF, its receptors and the tie receptors <strong>in</strong> recurrent<br />

miscarriage. Mol Hum Reprod 6, 276-282.<br />

32<br />

Downloaded from<br />

http://molehr.oxfordjournals.org/ by guest on January 27, 2013


Werb Z (1997) ECM and cell surface proteolysis: regulat<strong>in</strong>g cellular ecology. Cell 91:439-442.<br />

Yagel S, Geva TE, Solomon H, Shimonovitz S, Reich R, F<strong>in</strong>ci-Yeheskel Z, Mayer M, Milwidsky A (1993) High<br />

levels of <strong>human</strong> chorionic gonadotrop<strong>in</strong> retard first <strong>trimester</strong> trophoblast <strong>in</strong>vasion <strong>in</strong> vitro by decreas<strong>in</strong>g<br />

urok<strong>in</strong>ase plasm<strong>in</strong>ogen activator and collagenase activities. J Cl<strong>in</strong> Endocr<strong>in</strong>ol Metab 77, 1506-1511.<br />

Zygmunt M, Herr F, Munstedt K, Lang U, Liang OD (2003) Angiogenesis and vasculogenesis <strong>in</strong> pregnancy. Eur<br />

J Obstet Gynecol Reprod Biol 110, S10-S18.<br />

33<br />

Downloaded from<br />

http://molehr.oxfordjournals.org/ by guest on January 27, 2013


34<br />

Downloaded from<br />

http://molehr.oxfordjournals.org/ by guest on January 27, 2013


35<br />

Downloaded from<br />

http://molehr.oxfordjournals.org/ by guest on January 27, 2013


36<br />

Downloaded from<br />

http://molehr.oxfordjournals.org/ by guest on January 27, 2013


37<br />

Downloaded from<br />

http://molehr.oxfordjournals.org/ by guest on January 27, 2013


38<br />

Downloaded from<br />

http://molehr.oxfordjournals.org/ by guest on January 27, 2013

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!