29.01.2013 Views

National Institute for Laser, Plasma, and Radiation Physics ... - IESL

National Institute for Laser, Plasma, and Radiation Physics ... - IESL

National Institute for Laser, Plasma, and Radiation Physics ... - IESL

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Răzvan DABU<br />

Aurel STRATAN<br />

Constantin FENIC<br />

Cătălin LUCULESCU<br />

Constantin UNGUREANU<br />

Laurenţiu RUSEN<br />

Liviu NEAGU<br />

Marian ZAMFIRESCU<br />

Constantin BLANARU<br />

Alex<strong>and</strong>ru POPA<br />

<strong>National</strong> <strong>Institute</strong> <strong>for</strong><br />

<strong>Laser</strong>, <strong>Plasma</strong>, <strong>and</strong> <strong>Radiation</strong> <strong>Physics</strong><br />

ATOMISTILOR 409, PO Box MG-36, 077125<br />

Bucharest, Romania<br />

TEL /FAX : +4021-4575066; 4574467<br />

1


<strong>National</strong> <strong>Institute</strong> <strong>for</strong> <strong>Laser</strong>s, <strong>Plasma</strong> <strong>and</strong> <strong>Radiation</strong> <strong>Physics</strong><br />

Bucharest, Romania<br />

Main role of NILPRP in the LASERACT project:<br />

-To develop the laser system with the specially required<br />

characteristics <strong>for</strong> the specific measuring techniques:<br />

shearography <strong>and</strong> holographic interferometry in digital<br />

version.<br />

-To provide expertise in custom laser devices.<br />

2


NILPRP activity in the workpackages (till MID-TERM REVIEW)<br />

Work description:<br />

W.P.1.1. Implementation of techniques.<br />

1.1.4. Definition of the operational parameters of the system.<br />

Deliverables:<br />

D2. Parameters of suitable laser-sensor design.<br />

Milestones:<br />

M1. Successful implementation of diagnostic procedure.<br />

3


WP 2.1. Laboratory prototype instrumentation<br />

Work description:<br />

Deliverables:<br />

Milestones:<br />

2.1.1 Laboratory prototype laser.<br />

2.1.2. Laboratory prototype multitask sensor.<br />

2.1.3. Laboratory prototype software.<br />

D9. Report of fundamental studies of system operation<br />

D10. Specification report on multitask recording with sensor/laser/ software laboratory<br />

prototype.<br />

D11.Technology implementation<br />

M3. Successful operation of the laboratory prototype.<br />

M4. Successful operation of the laboratory prototype to generate diagnostic in<strong>for</strong>mation<br />

M5. MID-TERM REVIEW<br />

-Successful development of a laser diagnostic technique<br />

-Successful implementation of a laboratory prototype.<br />

-Committed interest <strong>and</strong> strategic plans of partnership<br />

4


NILPRP participation in the technical meetings:<br />

1. Kick –off meeting, Iraklion, 27-30 March 2003.<br />

2. Technical Meeting, Ancona, 4-6 June 2003.<br />

3. Technical/review Meeting, Bucharest, 12-16 January 2004.<br />

4. Common experiments of shearography with BIAS, Bremen,<br />

30 June-6 July 2004.<br />

5. Common experiments (digital holography) with FORTH-<strong>IESL</strong><br />

<strong>and</strong> ProOptica), Iraklion, 26 July-1 August 2004.<br />

5


Required parameters of the laser source.<br />

<strong>Laser</strong> specifications according to the project proposal:<br />

1. <strong>Laser</strong> wavelength: 532 nm.<br />

2. <strong>Laser</strong> pulse duration: 2mJ.<br />

≥<br />

4. <strong>Laser</strong> pulse repetition rate: 1Hz.<br />

5. Coherence length: > 1m.<br />

6


Output beam parameters of the laser system presented in the<br />

technical/review Meeting Bucharest, January 2004, <strong>and</strong> used <strong>for</strong> common<br />

experiments in Bremen, June-July, <strong>and</strong> Iraklion, July 2004.<br />

1. <strong>Laser</strong> wavelength – 532 nm.<br />

2. <strong>Laser</strong> pulse duration - 8 nsec.<br />

3. Pulse energy - 2.3mJ.<br />

4. <strong>Laser</strong> pulse repetition rate - 0.5 – 5Hz , adjustable.<br />

5. Coherence length >1m.<br />

7


<strong>Laser</strong> system setup<br />

Fig.1.M 4 –M 5 , high reflecting mirrors at 1064 nm wavelength; YAG, Nd:YAG rod amplifier; Beam exp<strong>and</strong>er x 2.4; µ-<strong>Laser</strong>:<br />

ultra-compact diode pumped Q-switched microalser,1064 nm wavelength, 10 ns pulsewidth, 50µJ pulse energy,<br />

0-2 kHz adjustable pulse repetition rate, external trigger, coherence length >2m; KTP, doubling crystal 4 x 4 x 10 mm;<br />

M 6 – 7 , dichroic mirrors HR @ 532 nm, HT @ 1064 nm; α, return-angle of the amplifier path; D, dumper; *, front-panel connector;<br />

**, rear-panel connector; ATT, optical attenuators <strong>and</strong> green filter; PA, photocell preamplifier.<br />

8


A<br />

B<br />

Fig. 2.The intensity beam<br />

profile of the microlaser<br />

beam measured at the<br />

amplifier input<br />

Fig. 3. Temporal beam<br />

profile<br />

A: sample profile;<br />

B: averaged profile<br />

9


Fig. 4. Energy bar-graph of the microlaser output pulses.<br />

St<strong>and</strong>ard deviation ~ 0.71 %.<br />

10


Fig. 5. Histogram of the microlaser pulse energy.<br />

11


Fig.6. Energy bar-graph of the microlaser pulses measured at the non-pumped amplifier<br />

output. St<strong>and</strong>ard deviation ~ 2.7%.<br />

12


Fig.7. Histogram of the microlaser pulses measured at the non-pumped amplifier<br />

output.<br />

13


Fig.8.Bar-graph of the laser pulse energy at the amplifier output (23 J pump-<br />

energy) (a 3-dB- atenuation be<strong>for</strong>e energy detector). St<strong>and</strong>ard deviation ~ 3.7 %.<br />

- Pump energy restricted to 23 J in order to avoid parasitic feedback effects between<br />

the microlaser resonator <strong>and</strong> two pass amplifier (due to the lack of the optical<br />

isolation between microlaser <strong>and</strong> amplifier)<br />

14


Fig.9. Histogram of the pulse energy at the amplifier output (1064nm) (a 3-dBattenuation<br />

be<strong>for</strong>e energy detector).<br />

15


Fig.10. The bar-graph of the green pulse (532nm) energy.<br />

St<strong>and</strong>ard deviation ~ 25.1%.<br />

16


Fig.11. Histogram of the green pulse energy.<br />

17


Fig.12. Temporal profile of the green laser pulses.<br />

18


Fig.13. Near-field intensity profile (3D) of the green output pulse.<br />

19


Coherence length of the green laser<br />

We measured the coherence length of the green laser pulses using a Michelson interferometer set-up shown.<br />

As coherence length, we considered the path length difference <strong>for</strong> which fringe visibility V in<br />

the Michelson interferometer is reduced to ½:<br />

where I max , I min are related to the intensity of the interference fringe pattern.<br />

V>0.5 <strong>for</strong> path length difference of 176 cm<br />

max min ≥<br />

Fig. 14. Experimental set-up <strong>for</strong> coherence length evaluation<br />

µL, microlaser; M1, flat mirrors, HR @ 1064nm; KTP, doubling crystal, 4x4x10 mm;<br />

A, attenuator; M2-4, dichroic mirrors, HR @ 532 nm, HT @ 1064 nm ; BS,<br />

beam splitter (50,50) 532 nm; CCD, beam analyser camera.<br />

V<br />

=<br />

I<br />

I<br />

max<br />

− I<br />

+ I<br />

min<br />

0.<br />

5<br />

20


Fig.15. Interference fringe patterns acquired in 14-176 cm range of<br />

the path length difference.<br />

21


Drawbacks of the pulsed laser system used <strong>for</strong> common experiments in Bremen<br />

(July 2004) <strong>and</strong> Iraklion (July 2004):<br />

- Large fluctuations of the green output pulse energy (<strong>for</strong> both shearography<br />

<strong>and</strong> digital holography experiment).<br />

- Too small pulse energy <strong>for</strong> shearography experiments.<br />

- Under these conditions, software compensation of the pulse energy is required<br />

<strong>for</strong> both shearography <strong>and</strong> digital holography measurements.<br />

Targets:<br />

1. To increase the green pulse energy.<br />

2. To improve the stability of the green pulse energy.<br />

22


1. Reasons of small pulse energy:<br />

- Lack of optical isolation between microlaser <strong>and</strong> amplifier.<br />

Solution :<br />

- Faraday optical isolator between microlaser <strong>and</strong> amplifier.<br />

2. Reasons of green pulse energy fluctuations:<br />

- Intrinsic power instability of the microlaser output pulses, amplified during<br />

SHG process.<br />

- Diffraction effects that modulate the transverse intensity profile of the<br />

fundamental beam during the amplification process.<br />

- Parasitic feedback between the microlaser resonator, the amplifier stage <strong>and</strong><br />

KTP frequency doubler crystal.<br />

- The main cause:<br />

Intrinsic fluctuations of the polarization state of the microlaser.<br />

SOLUTION:<br />

- Saturation of the amplifier stage.<br />

23


Experimental set-up <strong>for</strong> measuring the fluctuation of the Polarization<br />

state of the microlaser.<br />

µ <strong>Laser</strong><br />

Glan Polarizer<br />

Energymeter<br />

24


Fig.16. Energy bar-graph of the microlaser output pulses without Glan polarizer.<br />

St<strong>and</strong>ard deviation ~ 4.3%.<br />

25


Fig.17. Energy bar-graph of the microlaser output pulses after Glan polarizer.<br />

26


Experimental setup <strong>for</strong> comparative measuring SHG pulse energy of a passively<br />

Q-switched microlaser <strong>and</strong> single-longitudinal mode acousto-optically<br />

Q-switched Crystalaser microlaser.<br />

L<br />

µ <strong>Laser</strong> KTP F Photocell<br />

Fig .18. Experimental setup <strong>for</strong> comparative study.<br />

L - plane convex lens, f = 100 mm<br />

KTP – 4x4x10 mm frequency doubler crystal<br />

F – filter (cut 1064nm)<br />

27


Comparative SHG pulse energy.<br />

Fig.19.A – Passively Cr:YAG Q-switched Nd:YAG microlaser.<br />

A<br />

28


Comparative SHG pulse energy.<br />

Fig.20. B –Single longitudinal mode, acoustoptically Q-switched Nd:YAG microlaser<br />

(Crystalaser).<br />

B<br />

29


<strong>Laser</strong> head set-up including Faraday Rotator<br />

Fig.21. Experimental setup including Faraday Rotator.<br />

M1 – M 5 , high reflecting mirrors at 1064 nm wavelength; YAG, Nd:YAG rod amplifier;<br />

KTP, doubling crystal; M 6 – 7 , dichroic mirrors HR @ 532 nm, HT @ 1064 nm;<br />

α, return-angle of the amplifier path; DL, divergent lens; PA, photocell preamplifier.<br />

30


Fig.22. Bar-graph of the microlaser pulse energy after Faraday Rotator.<br />

St<strong>and</strong>ard deviation ~ 23.6%.<br />

31


Fig.23. Average 1064 nm amplified pulse energy versus pump energy<br />

of the amplifier flash-lamp.<br />

32


Fig.24. Bar-graph of the amplified 1064 nm pulses <strong>for</strong> pulsed pump energy of 21 J,<br />

(10 dB attenuation be<strong>for</strong>e energy detector). St<strong>and</strong>ard deviation ~ 6.2 %.<br />

33


Fig.25. Bar-graph of the amplified 1064 nm pulses <strong>for</strong> pulsed pump energy of 25 J,<br />

(10 dB attenuation be<strong>for</strong>e energy detector). St<strong>and</strong>ard deviation ~ 4.4 %.<br />

34


Fig.26. Bar-graph of the amplified 1064 nm pulses <strong>for</strong> pulsed pump energy of 30 J,<br />

(10 dB attenuation be<strong>for</strong>e energy detector). St<strong>and</strong>ard deviation ~ 1.9 %.<br />

35


Fig.27. Bar-graph of the amplified 532 nm pulses <strong>for</strong> pulsed pump energy of 25 J,<br />

(Divergent lens was used).<br />

- Average energy (532 nm pulses) – 7.82 mJ<br />

- Std.Dev - 420µJ, ~ 5.4%.<br />

36


Fig.28. Histogram of the green pulses (532nm) <strong>for</strong> 25J pulsed pump<br />

energy. (Divergent lens was used). St<strong>and</strong>ard deviation ~ 5.4%.<br />

37


Fig.29. Bar-graph of the amplified 532 nm pulses <strong>for</strong> pulsed pump energy of 30 J,<br />

(Divergent lens was used).<br />

- Average energy (532 nm pulses) – 8.84 mJ<br />

- Std.Dev – 415 µJ, ~ 4.7%.<br />

38


Fig. 30. Histogram of the green pulses (532nm) <strong>for</strong> 30J pulsed pump<br />

energy (divergent lens was used). St<strong>and</strong>ard deviation ~ 4.7%.<br />

39


Fig.31. The output intensity beam profile of the 532 nm beam.<br />

40


Conclusions:<br />

Output parameter of the actual system:<br />

1. Wavelength: 532 nm<br />

2. Max. pulse energy: 9 mJ<br />

3. St<strong>and</strong>ard deviation: < 5 %<br />

4. Pulse duration : 8 nsec<br />

5. Repetition rate: Adjustable, max. 5Hz<br />

6. Coherence length : > 1.7 m<br />

Mode of operation:<br />

Green pulse energy adjustable by:<br />

- Pump energy (25-30J);<br />

- Optical attenuators at 532 nm (glass attenuators; λ/2 waveplate @ 532 nm<br />

<strong>and</strong> Glan polarizer);<br />

- <strong>Laser</strong> intensity modulator (crossed polarizers <strong>and</strong> electrooptical modulator)<br />

with transversal electric field, applied voltage controlled by computer.<br />

41

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!