29.01.2013 Views

Biosynthesis of estragole and methyl-eugenol in sweet basil ...

Biosynthesis of estragole and methyl-eugenol in sweet basil ...

Biosynthesis of estragole and methyl-eugenol in sweet basil ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Plant Science 160 (2000) 27–35<br />

<strong>Biosynthesis</strong> <strong>of</strong> <strong>estragole</strong> <strong>and</strong> <strong>methyl</strong>-<strong>eugenol</strong> <strong>in</strong> <strong>sweet</strong> <strong>basil</strong><br />

(Ocimum <strong>basil</strong>icum L). Developmental <strong>and</strong> chemotypic association<br />

<strong>of</strong> allylphenol O-<strong>methyl</strong>transferase activities<br />

Efraim Lew<strong>in</strong>sohn a, *, Iris Ziv-Raz a,b , Nativ Dudai a , Yaacov Tadmor a ,<br />

Elena Lastochk<strong>in</strong> a , Olga Larkov a , David Chaimovitsh a , Uzi Ravid a , Eli Putievsky a ,<br />

Eran Pichersky c , Yuval Shoham b<br />

Abstract<br />

a Newe Ya’ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay 30095, Israel<br />

b Department <strong>of</strong> Food Eng<strong>in</strong>eer<strong>in</strong>g <strong>and</strong> Biotechnology, Technion-Israel Institute <strong>of</strong> Technology, Haifa 32000, Israel<br />

c Department <strong>of</strong> Biology, Uni�ersity <strong>of</strong> Michigan, Ann Arbor, MI 48109-1048, USA<br />

Received 19 May 2000; received <strong>in</strong> revised form 28 July 2000; accepted 31 July 2000<br />

Sweet <strong>basil</strong> (Ocimum <strong>basil</strong>icum L., Lamiaceae) is a common herb, used for cul<strong>in</strong>ary <strong>and</strong> medic<strong>in</strong>al purposes. The essential oils<br />

<strong>of</strong> different <strong>sweet</strong> <strong>basil</strong> chemotypes conta<strong>in</strong> various proportions <strong>of</strong> the allyl phenol derivatives <strong>estragole</strong> (<strong>methyl</strong> chavicol), <strong>eugenol</strong>,<br />

<strong>and</strong> <strong>methyl</strong> <strong>eugenol</strong>, as well as the monoterpene alcohol l<strong>in</strong>alool. To monitor the developmental regulation <strong>of</strong> <strong>estragole</strong><br />

biosynthesis <strong>in</strong> <strong>sweet</strong> <strong>basil</strong>, an enzymatic assay for S-adenosyl-L-methion<strong>in</strong>e (SAM):chavicol O-<strong>methyl</strong>transferase activity was<br />

developed. Young leaves display high levels <strong>of</strong> chavicol O-<strong>methyl</strong>transferase activity, but the activity was negligible <strong>in</strong> older leaves,<br />

<strong>in</strong>dicat<strong>in</strong>g that the O-<strong>methyl</strong>ation <strong>of</strong> chavicol primarily occurs early dur<strong>in</strong>g leaf development. The O-<strong>methyl</strong>transferase activities<br />

detected <strong>in</strong> different <strong>sweet</strong> <strong>basil</strong> genotypes differed <strong>in</strong> their substrate specificities towards the <strong>methyl</strong> acceptor substrate. In the<br />

high-<strong>estragole</strong>-conta<strong>in</strong><strong>in</strong>g chemotype R3, the O-<strong>methyl</strong>transferase activity was highly specific for chavicol, while <strong>eugenol</strong> was<br />

virtually not O-<strong>methyl</strong>ated. In contrast, chemotype 147/97, that conta<strong>in</strong>s equal levels <strong>of</strong> <strong>estragole</strong> <strong>and</strong> <strong>methyl</strong> <strong>eugenol</strong>, displayed<br />

O-<strong>methyl</strong>transferase activities that accepted both chavicol <strong>and</strong> <strong>eugenol</strong> as substrates, generat<strong>in</strong>g <strong>estragole</strong> <strong>and</strong> <strong>methyl</strong> <strong>eugenol</strong>,<br />

respectively. Chemotype SW that conta<strong>in</strong>s high levels <strong>of</strong> <strong>eugenol</strong>, but lacks both <strong>estragole</strong> <strong>and</strong> <strong>methyl</strong> <strong>eugenol</strong>, had apparently no<br />

allylphenol dependent O-<strong>methyl</strong>transferase activities. These results <strong>in</strong>dicate the presence <strong>of</strong> at least two types <strong>of</strong> allylphenol-specific<br />

O-<strong>methyl</strong>transferase activities <strong>in</strong> <strong>sweet</strong> <strong>basil</strong> chemotypes, one highly specific for chavicol; <strong>and</strong> a different one that can accept<br />

<strong>eugenol</strong> as a substrate. The relative availability <strong>and</strong> substrate specificities <strong>of</strong> these O-<strong>methyl</strong>transferase activities biochemically<br />

rationalizes the variation <strong>in</strong> the composition <strong>of</strong> the essential oils <strong>of</strong> these chemotypes. © 2000 Elsevier Science Irel<strong>and</strong> Ltd. All<br />

rights reserved.<br />

Keywords: Ocimum <strong>basil</strong>icum L.; Lamiaceae; Sweet <strong>basil</strong>; Essential oils; Estragole; Methyl <strong>eugenol</strong>; O-<strong>methyl</strong>transferase<br />

1. Introduction<br />

The genus Ocimum <strong>in</strong>cludes about a dozen species<br />

<strong>and</strong> subspecies, native to the tropical <strong>and</strong><br />

sub-tropical regions <strong>of</strong> the world. Sweet <strong>basil</strong><br />

(Ocimum <strong>basil</strong>icum L., Lamiaceae) is an important<br />

* Correspond<strong>in</strong>g author. Tel.: +972-4-9539552; fax: +972-4-<br />

9836936.<br />

E-mail address: twefraim@netvision.net.il (E. Lew<strong>in</strong>sohn).<br />

0168-9452/00/$ - see front matter © 2000 Elsevier Science Irel<strong>and</strong> Ltd. All rights reserved.<br />

PII: S0168-9452(00)00357-5<br />

www.elsevier.com/locate/plantsci<br />

medic<strong>in</strong>al plant <strong>and</strong> cul<strong>in</strong>ary herb [1]. Sweet <strong>basil</strong><br />

is widely cultivated for the production <strong>of</strong> essential<br />

oils, <strong>and</strong> is also marketed as an herb, either fresh,<br />

dried, or frozen [1]. The essential oil <strong>of</strong> <strong>sweet</strong> <strong>basil</strong><br />

possesses antifungal, <strong>in</strong>sect-repell<strong>in</strong>g <strong>and</strong> toxic activities<br />

[2–4]. Despite the wide use <strong>and</strong> the importance<br />

<strong>of</strong> <strong>sweet</strong> <strong>basil</strong> <strong>and</strong> its essential oils, little is<br />

known about the biosynthesis <strong>and</strong> developmental<br />

regulation <strong>of</strong> the compounds responsible for the<br />

flavor quality <strong>of</strong> the fresh <strong>and</strong> dried herbs <strong>and</strong> that<br />

constitute its essential oil.


28<br />

Many members <strong>of</strong> the Lamiaceae such as Mentha,<br />

Sal�ia, Origanum, <strong>and</strong> Thyme spp., are also<br />

cultivated to be used as herbs <strong>and</strong> as a source <strong>of</strong><br />

essential oils. The essential oils <strong>of</strong> these species<br />

<strong>and</strong> <strong>of</strong> many other species <strong>of</strong> the Lamiaceae are<br />

mostly composed <strong>of</strong> mono- <strong>and</strong> sesquiterpenes [5].<br />

Similarly, many species <strong>of</strong> the genus Ocimum,<br />

conta<strong>in</strong> essential oils based primarily on monoterpene<br />

derivatives such as camphor, limonene, thymol,<br />

citral, geraniol <strong>and</strong> l<strong>in</strong>alool [5–8].<br />

Interest<strong>in</strong>gly, other members <strong>of</strong> the genus, <strong>in</strong>clud<strong>in</strong>g<br />

<strong>sweet</strong> <strong>basil</strong> (O. <strong>basil</strong>icum L.), conta<strong>in</strong> an essential<br />

oil based primarily on high proportions <strong>of</strong><br />

phenolic derivatives, such as <strong>eugenol</strong>, <strong>methyl</strong><br />

chavicol (<strong>estragole</strong>) <strong>and</strong> <strong>methyl</strong> c<strong>in</strong>namate, <strong>of</strong>ten<br />

comb<strong>in</strong>ed with various proportions <strong>of</strong> l<strong>in</strong>alool, a<br />

monoterpenol [5,6,9–11]. The allylphenolic derivative<br />

<strong>eugenol</strong> (Fig. 1) has a sharp spicy odor rem<strong>in</strong>iscent<br />

<strong>of</strong> cloves, <strong>and</strong> is used as a dental analgesic<br />

<strong>and</strong> dis<strong>in</strong>fectant [12]. Eugenol is a major component<br />

<strong>of</strong> the essential oil <strong>of</strong> cloves (Eugenia<br />

caryophyllus=Syzygium aromaticum, Myrtaceae),<br />

<strong>and</strong> c<strong>in</strong>namon leaf (C<strong>in</strong>namomum zeylanicum,<br />

Lauraceae) [12]. Methyl chavicol, also known as<br />

<strong>estragole</strong> (Fig. 1), is used <strong>in</strong> the perfume <strong>in</strong>dustry<br />

<strong>and</strong> has an odor resembl<strong>in</strong>g that <strong>of</strong> fennel <strong>and</strong><br />

anise. Interest<strong>in</strong>gly, <strong>estragole</strong> is also a key component<br />

<strong>of</strong> the essential oils <strong>of</strong> aromatic plants belong<strong>in</strong>g<br />

to different families, such as aniseed<br />

(Pimp<strong>in</strong>ella anisum L., Apiaceae), star anise (Illicium<br />

�erum Hook. f., Magnoliaceae), bitter fennel<br />

(Foeniculum �ulgare �ar �ulgare, Apiaceae), <strong>and</strong><br />

tarragon (Artemisia dracunculus L., Asteraceae)<br />

[12–14].<br />

Information on the biosynthetic pathways to<br />

<strong>eugenol</strong> <strong>and</strong> <strong>methyl</strong> chavicol is limited. Pulse-chase<br />

radiotracer experiments have <strong>in</strong>dicated that both<br />

allyl phenolic derivatives are formed from pheny-<br />

Fig. 1. SAM:allylphenol O-<strong>methyl</strong>transferase activities from<br />

O. <strong>basil</strong>icum. A <strong>methyl</strong> group from SAM is transferred to the<br />

p-hydroxyl group <strong>of</strong> either chavicol or <strong>eugenol</strong> to generate<br />

either <strong>methyl</strong> chavicol (<strong>estragole</strong>) or <strong>methyl</strong> <strong>eugenol</strong>, respectively,<br />

<strong>and</strong> S-adenosyl homocyste<strong>in</strong>e (SAH).<br />

E. Lew<strong>in</strong>sohn et al. / Plant Science 160 (2000) 27–35<br />

lalan<strong>in</strong>e <strong>and</strong> c<strong>in</strong>namic acid <strong>in</strong> several plants <strong>in</strong>clud<strong>in</strong>g<br />

<strong>sweet</strong> <strong>basil</strong> [15–18]. High levels <strong>of</strong><br />

phenylalan<strong>in</strong>e ammonia-lyase activity, a key early<br />

enzyme <strong>in</strong> this pathway, have been detected <strong>in</strong><br />

<strong>sweet</strong> <strong>basil</strong> leaves, <strong>and</strong> the enzyme has been<br />

purified <strong>and</strong> characterized from many sources<br />

[19–21], <strong>in</strong>clud<strong>in</strong>g <strong>basil</strong> [22]. We hypothesized that<br />

the last biosynthetic step <strong>in</strong>volved <strong>in</strong> the formation<br />

<strong>of</strong> <strong>estragole</strong>, is catalyzed by an S-adenosyl-L-methion<strong>in</strong>e<br />

(SAM) dependent O-<strong>methyl</strong>transferase<br />

activity, able to substitute chavicol <strong>in</strong> the para-hydroxy<br />

position to give rise to <strong>estragole</strong> (Fig. 1).<br />

Methyltransferases are ubiquitous enzymes that<br />

catalyze the transfer <strong>of</strong> a <strong>methyl</strong> group from SAM<br />

to an acceptor substrate, generat<strong>in</strong>g either O-, N-,<br />

S- <strong>and</strong> C-<strong>methyl</strong> derivatives <strong>and</strong> S-adenosyl-homocyste<strong>in</strong>e<br />

(Fig. 1) [23,24]. Although <strong>methyl</strong>transferases<br />

are <strong>in</strong>volved <strong>in</strong> the formation <strong>of</strong> many<br />

natural products, they normally display strict specificities<br />

towards their acceptor substrate, <strong>and</strong> to<br />

the position <strong>of</strong> the <strong>methyl</strong>ation <strong>of</strong> the substrate<br />

[23,24]. O-<strong>methyl</strong>transferases are <strong>in</strong>volved <strong>in</strong> the<br />

<strong>methyl</strong>ation <strong>of</strong> caffeic acid to generate ferulic acid,<br />

a central precursor <strong>of</strong> lign<strong>in</strong> <strong>and</strong> possibly <strong>eugenol</strong>.<br />

Some <strong>of</strong> the genes that code for these enzymes<br />

have been isolated from several plants [24–26],<br />

<strong>and</strong> also from <strong>sweet</strong> <strong>basil</strong> [27]. A <strong>methyl</strong>transferase<br />

activity that converts t-anol, (the 1-propenyl<br />

analog <strong>of</strong> chavicol), to generate t-anethole has<br />

been reported <strong>in</strong> cultures <strong>of</strong> Pimp<strong>in</strong>ella anisum<br />

(Apiaceae) [28]. Similarly, an enzyme activity that<br />

catalyzes the para-O-<strong>methyl</strong>ation <strong>of</strong> t-iso<strong>eugenol</strong>,<br />

(the 1-propenyl analog <strong>of</strong> <strong>eugenol</strong>), form<strong>in</strong>g<br />

<strong>methyl</strong> iso<strong>eugenol</strong> has been detected <strong>and</strong> purified<br />

from Clarkia breweri flowers, (Onagraceae)<br />

[29,30]. The correspond<strong>in</strong>g gene has been isolated<br />

<strong>and</strong> expressed <strong>in</strong> Escherichia coli. Interest<strong>in</strong>gly, the<br />

enzyme from C. breweri also accepts <strong>eugenol</strong> as<br />

substrate, at slightly lower rates, to generate<br />

<strong>methyl</strong> <strong>eugenol</strong> [29].<br />

Most <strong>of</strong> the common cultivated members <strong>of</strong> the<br />

Lamiaceae accumulate essential oils rich <strong>in</strong> terpenoid<br />

compounds [5]. Although many studies<br />

have been conducted to monitor the developmental<br />

regulation <strong>of</strong> the biosynthesis <strong>of</strong> these terpenoid<br />

essential oil components [31–34],<br />

non-terpenoid components have received much<br />

less attention. One <strong>of</strong> the major components <strong>of</strong> the<br />

essential oil <strong>of</strong> <strong>sweet</strong> <strong>basil</strong> is <strong>estragole</strong>, a non-terpenoid<br />

allylphenol derivative. It was thus <strong>of</strong> <strong>in</strong>terest<br />

to assess the possible developmental regulation


<strong>of</strong> <strong>estragole</strong> biosynthesis <strong>in</strong> <strong>sweet</strong> <strong>basil</strong>. We have<br />

previously shown that dur<strong>in</strong>g the development <strong>of</strong><br />

a <strong>sweet</strong> <strong>basil</strong> leaf, there is a net accumulation <strong>of</strong><br />

essential oil <strong>and</strong> <strong>of</strong> <strong>estragole</strong>, both per leaf, <strong>and</strong> on<br />

a leaf weight basis [11]. Here<strong>in</strong> we provide evidence<br />

that <strong>in</strong> <strong>sweet</strong> <strong>basil</strong> leaves, chavicol <strong>and</strong><br />

<strong>eugenol</strong> can be enzymatically O-<strong>methyl</strong>ated, to<br />

generate <strong>methyl</strong> chavicol <strong>and</strong> <strong>methyl</strong> <strong>eugenol</strong>, respectively,<br />

by SAM dependent O-<strong>methyl</strong>transferase<br />

activities (Fig. 1). These activities are active<br />

primarily <strong>in</strong> young leaf tissues <strong>and</strong> their substrate<br />

specificity varies chemotypically, partially expla<strong>in</strong><strong>in</strong>g<br />

the differences <strong>in</strong> the chemical compositions<br />

observed among varieties.<br />

2. Material <strong>and</strong> methods<br />

2.1. Plant material<br />

Seeds <strong>of</strong> the different chemotypes [10] were<br />

derived from carefully selfed O. <strong>basil</strong>icum L. plants<br />

grown at the Newe Ya’ar Research Center, Israel.<br />

Five seeds were germ<strong>in</strong>ated <strong>in</strong> 4 cm-deep cells <strong>in</strong><br />

trays conta<strong>in</strong><strong>in</strong>g equal volumes <strong>of</strong><br />

peat:vermiculite:perlite, <strong>and</strong> watered <strong>and</strong> fertilized<br />

daily with 0.2% (w/v) NPK (5:3:8). After emergence,<br />

only one seedl<strong>in</strong>g per cell was left <strong>and</strong><br />

grown until the shoot tips were discernible (about<br />

10 days after germ<strong>in</strong>ation) <strong>and</strong> used for the experiments.<br />

To generate young plants, the seedl<strong>in</strong>gs<br />

were transferred to 1 l pots conta<strong>in</strong><strong>in</strong>g a mixture<br />

<strong>of</strong> roughly equal volumes <strong>of</strong> volcanic tuff, vermiculite<br />

<strong>and</strong> peat. The plants were watered daily <strong>and</strong><br />

fertilized twice a week with 0.2% (w/v) NPK<br />

(5:3:8) until four leaf pairs were discernible. Mature<br />

plants were obta<strong>in</strong><strong>in</strong>g by transferr<strong>in</strong>g the<br />

young seedl<strong>in</strong>gs directly from the trays <strong>in</strong>to 1×<br />

1.2×0.24 m conta<strong>in</strong>ers conta<strong>in</strong><strong>in</strong>g volcanic tuff<br />

(0.8 mm). The plants (24 plants per m 2 ) were<br />

dip-watered daily <strong>and</strong> fertilized as described <strong>in</strong><br />

[35]. In all cases, plants were grown <strong>in</strong> greenhouses<br />

<strong>and</strong> maximal temperatures did not exceed 35–<br />

40°C.<br />

2.2. Chemicals <strong>and</strong> radiochemicals<br />

Chavicol was a k<strong>in</strong>d gift <strong>of</strong> International Flavors<br />

<strong>and</strong> Fragrances Inc., Bridgewater, NJ, USA.<br />

Eugenol was from Roth Chemical Co. Estragole<br />

was from Terpene Products, Jacksonville, FL,<br />

E. Lew<strong>in</strong>sohn et al. / Plant Science 160 (2000) 27–35 29<br />

USA, <strong>and</strong> <strong>methyl</strong> <strong>eugenol</strong> was from Fluka. Sadenosyl-L-methion<strong>in</strong>e<br />

was from Sigma Chemical<br />

Co. S-adenosyl-L-<strong>methyl</strong> 3 H-methion<strong>in</strong>e (s.a. 15<br />

Ci/mmol) <strong>and</strong> S-adenosyl-L-<strong>methyl</strong> 14 C-methion<strong>in</strong>e<br />

(s.a. 55 mCi/mmol) were from Amersham.<br />

2.3. Enzyme extraction<br />

Cell-free extracts were prepared as follows, fresh<br />

plant leaves (1–2 g) were weighed; frozen <strong>in</strong> liquid<br />

nitrogen; <strong>and</strong> placed <strong>in</strong> a chilled mortar. The<br />

leaves were then ground with a pestle <strong>in</strong> the presence<br />

<strong>of</strong> liquid nitrogen, �0.6 g s<strong>and</strong> <strong>and</strong> �0.1 g<br />

polyv<strong>in</strong>ylpolypyrrolidone (PVPP) to adsorb phenolic<br />

materials. Ice cold extraction buffer (100<br />

mM MOPS [pH 6.5], 10% glycerol [v/v], 6.6 mM<br />

dithiothreitol, 1% [w/v] polyv<strong>in</strong>ylpyrrolidone<br />

[PVP-10, molecular weight 10 kDa], 5 mM<br />

Na 2S 2O 5) was added (five volumes to fresh weight<br />

tissue), <strong>and</strong> the f<strong>in</strong>e powder was further extracted<br />

for �30 s. The slurry was centrifuged twice at<br />

20 000×g, for 10 m<strong>in</strong> at 4°C, <strong>and</strong> the supernatant,<br />

(crude extract) was used <strong>in</strong> the enzymatic<br />

assays. The crude extracts (1 ml) were further<br />

desalted us<strong>in</strong>g Sephadex G-25 columns (1×3 cm)<br />

<strong>and</strong> eluted with 1.2 ml <strong>of</strong> buffer A (50 mM<br />

HEPES [pH 7.5], 5% [v/v] glycerol, 3.3 mM<br />

dithiothreitol).<br />

2.4. Enzyme assays<br />

Assays were preformed by mix<strong>in</strong>g, 40 �l <strong>of</strong>the<br />

crude or Sephadex-G25 purified extract (about 20<br />

�g prote<strong>in</strong>); 40 �l buffer A; 5 �M chavicol or other<br />

acceptor substrate (from a 0.1 mM solution <strong>in</strong><br />

0.5% ethanol), 25 �M S-[<strong>methyl</strong>- 3 H]-adenosyl-Lmethion<strong>in</strong>e<br />

(6 Ci/mol <strong>in</strong> a total volume <strong>of</strong> 100 �l).<br />

The assays were <strong>in</strong>cubated at 21°C for 1.5 h, <strong>and</strong><br />

then 1 ml hexane was added to each tube, vigorously<br />

vortexed <strong>and</strong> spun for 13 s at 20 000×g to<br />

separate the phases. The upper hexane layers conta<strong>in</strong><strong>in</strong>g<br />

the radioactive labeled enzyme products,<br />

were transferred to sc<strong>in</strong>tillation tubes conta<strong>in</strong><strong>in</strong>g 3<br />

ml sc<strong>in</strong>tillation fluid [4 g/l 2,5-diphenyloxazol<br />

(PPO) <strong>and</strong> 0.05 g/l 2,2�-p-phenylen-bis (5-phenyloxazol)<br />

(POPOP) <strong>in</strong> toluene]. The radioactivity<br />

was quantified us<strong>in</strong>g a Packard Tri-carb liquid<br />

sc<strong>in</strong>tillation counter. To confirm the identity <strong>of</strong> the<br />

biosynthetic products, similar <strong>in</strong>cubations were<br />

performed, except that 14 C-labeled SAM (at the<br />

same specific activity) was used. In this case the


30<br />

Table 1<br />

Developmental dependence <strong>of</strong> SAM:chavicol O-<strong>methyl</strong>transferase<br />

activity <strong>in</strong> <strong>sweet</strong> <strong>basil</strong> chemotype R3 a<br />

Plant analyzed Tissue Chavicol<br />

analyzed O-<strong>methyl</strong>transferase<br />

activity (pkat/g FW)<br />

Young seedl<strong>in</strong>gs<br />

(first leaf-pair<br />

visible)<br />

Shoot tips 1465�359<br />

Cotyledons 98�31<br />

Shoots 155�19<br />

Roots 7�16<br />

Young plant (four<br />

leaf-pairs)<br />

Shoot tips 8432�902<br />

First pair <strong>of</strong><br />

leaves<br />

3923�887<br />

Second pair <strong>of</strong><br />

leaves<br />

738�113<br />

Third pair <strong>of</strong><br />

leaves<br />

71�56<br />

Mature plant Develop<strong>in</strong>g 1212�220<br />

(bloom<strong>in</strong>g stage)<br />

leaves<br />

Fully<br />

developed<br />

leaves<br />

63�18<br />

Shoots<br />

15�12<br />

Inflorescences 135�72<br />

Petals 43�23<br />

a Enzyme activity was determ<strong>in</strong>ed from Sephadex G-25<br />

purified cell-free extracts derived from fresh tissues. Means<br />

<strong>and</strong> S.E. <strong>of</strong> three <strong>in</strong>dependent determ<strong>in</strong>ations are shown.<br />

hexane layer was evaporated to a volume <strong>of</strong> 20 �l<br />

us<strong>in</strong>g a gentle stream <strong>of</strong> N 2, <strong>and</strong> analyzed by th<strong>in</strong><br />

layer chromatography (TLC) autoradiography us<strong>in</strong>g<br />

Silica gel 60 F 254 plates developed with chlor<strong>of</strong>orm.<br />

Spots were visualized by ultra voilet (UV)<br />

light <strong>and</strong> radioactive spots detected by autoradiography<br />

on Kodak X-OMAT paper. The identity <strong>of</strong><br />

the compounds was verified by comparison <strong>of</strong><br />

their R f with those <strong>of</strong> authentic st<strong>and</strong>ards (0.65 for<br />

<strong>estragole</strong>, 0.57 for <strong>methyl</strong> <strong>eugenol</strong>). Prote<strong>in</strong> was<br />

assayed by the method <strong>of</strong> Bradford [36] us<strong>in</strong>g the<br />

Bio-Rad prote<strong>in</strong> reagent (Bio-Rad), <strong>and</strong> bov<strong>in</strong>e<br />

serum album<strong>in</strong> (Sigma) as st<strong>and</strong>ard.<br />

3. Results <strong>and</strong> discussion<br />

3.1. O-<strong>methyl</strong>ation <strong>of</strong> allylphenols by O. <strong>basil</strong>icum<br />

cell-free-extracts<br />

Incubation <strong>of</strong> <strong>sweet</strong> <strong>basil</strong> cell-free extracts with<br />

14 C- or 3 H-labeled SAM <strong>and</strong> chavicol, resulted <strong>in</strong><br />

E. Lew<strong>in</strong>sohn et al. / Plant Science 160 (2000) 27–35<br />

the accumulation <strong>of</strong> a hexane-soluble radiolabeled<br />

products, absent when the cell-free extracts were<br />

previously boiled for 5 m<strong>in</strong>. This suggested that a<br />

<strong>methyl</strong>transferase enzymatic activity is <strong>in</strong>volved <strong>in</strong><br />

the conversions. Omission <strong>of</strong> chavicol resulted <strong>in</strong> a<br />

lower but still significant rate (�60%) <strong>of</strong> formation<br />

<strong>of</strong> hexane-soluble radioactive products, possibly<br />

due to endogenous substrates. To remove any<br />

endogenous substrates <strong>and</strong> other low molecular<br />

weight compounds that <strong>in</strong>terfered with the assays,<br />

the cell-free extracts were partially purified by<br />

Sephadex G-25 chromatography. Complete assays,<br />

conta<strong>in</strong><strong>in</strong>g SAM <strong>and</strong> chavicol, but utiliz<strong>in</strong>g Sephadex<br />

G-25 partially-purified-enzyme displayed<br />

30–50% higher enzymatic activity levels as compared<br />

with crude extracts, probably due to the<br />

removal <strong>of</strong> <strong>in</strong>hibitors. The omission <strong>of</strong> chavicol<br />

from the assays resulted <strong>in</strong> virtually no formation<br />

<strong>of</strong> hexane-soluble radioactive products dur<strong>in</strong>g the<br />

enzymatic assays. To confirm the identity <strong>of</strong> the<br />

radiolabeled compounds formed, the hexane extracts<br />

were evaporated <strong>and</strong> analyzed by TLC-autoradiography.<br />

Only one radioactive substance<br />

orig<strong>in</strong>at<strong>in</strong>g <strong>in</strong> chavicol <strong>and</strong> 14 C-SAM fed Sephadex<br />

G-25 extracts was detected <strong>and</strong> its R f co<strong>in</strong>cided<br />

with that <strong>of</strong> authentic <strong>estragole</strong> (not shown).<br />

These results <strong>in</strong>dicate that a methytransferase activity,<br />

present <strong>in</strong> <strong>sweet</strong> <strong>basil</strong> leaves is able to<br />

O-<strong>methyl</strong>ate chavicol <strong>and</strong> release <strong>estragole</strong> (Fig.<br />

1).<br />

3.2. De�elopmental regulation <strong>of</strong> the<br />

SAM:cha�icol O-<strong>methyl</strong>transferase acti�ity<br />

Different plant tissues were analyzed to identify<br />

the sites potentially active <strong>in</strong> <strong>estragole</strong> biosynthesis.<br />

Five-day-old seedl<strong>in</strong>gs already conta<strong>in</strong>ed substantial<br />

levels <strong>of</strong> chavicol-dependent<br />

O-<strong>methyl</strong>transferase activity (Table 1). At this<br />

stage <strong>of</strong> development the cotyledons are still turgid<br />

<strong>and</strong> active, <strong>and</strong> the shoot tips conta<strong>in</strong> discernible<br />

leaf primordia <strong>of</strong> only a few mm length. Practically<br />

all activity found resided <strong>in</strong> the leaf primordia.<br />

The cotyledons <strong>and</strong> shoots displayed lower<br />

levels <strong>of</strong> activity (about 8–10% by fresh weight) to<br />

that displayed by leaf primordia (Table 1). The<br />

roots were practically devoid <strong>of</strong> activity. Essentially,<br />

a similar pattern was obta<strong>in</strong>ed when tissues<br />

derived from seedl<strong>in</strong>gs at a four leaf-pair stage<br />

(about 10 cm height) were exam<strong>in</strong>ed. The shoot<br />

tips had the highest activity levels, <strong>and</strong> young


leaves (0.2–0.7 mm length) had substantial (�<br />

45% as compared with shoot tips on a fresh weight<br />

basis) <strong>estragole</strong> biosynthetic potential. Activity<br />

levels decreased gradually with leaf development,<br />

reach<strong>in</strong>g almost undetectable levels <strong>of</strong> activity <strong>in</strong><br />

fully-developed leaves (Table 1). In mature flower<strong>in</strong>g<br />

plants, the highest levels <strong>of</strong> activity was found<br />

<strong>in</strong> the young leaves from side branches, while<br />

<strong>in</strong>florescences, but not the petals, displayed some<br />

SAM dependent chavicol O-<strong>methyl</strong>transferase activity.<br />

As previously observed <strong>in</strong> younger plants,<br />

shoots <strong>and</strong> mature leaves displayed only m<strong>in</strong>ute<br />

levels <strong>of</strong> activity. These f<strong>in</strong>d<strong>in</strong>gs further <strong>in</strong>dicate<br />

that young develop<strong>in</strong>g tissues are the primary sites<br />

<strong>of</strong> <strong>methyl</strong> chavicol biosynthesis. The levels <strong>of</strong> <strong>estragole</strong>–biosynthetic<br />

activity correlate well with<br />

the presence <strong>and</strong> density <strong>of</strong> gl<strong>and</strong>ular trichomes<br />

present on the tissues [11]. It has been shown that<br />

<strong>in</strong> other members <strong>of</strong> the Lamiaceae, monoterpenebased<br />

essential oils are biosynthesized by gl<strong>and</strong>ular<br />

trichomes, <strong>and</strong> it could be that <strong>estragole</strong> is<br />

biosynthesized <strong>in</strong> a similar regulatory fashion although<br />

allylphenols are derived from the shikimic<br />

acid pathway, a dist<strong>in</strong>ct biosynthetic pathway [37].<br />

In all cases, the highest activity per fresh weight<br />

was found <strong>in</strong> young tissues <strong>of</strong> the plant exam<strong>in</strong>ed.<br />

Some plant O-<strong>methyl</strong>transferases are developmentally<br />

regulated [26], while others are <strong>in</strong>duced<br />

by fungal elicitors <strong>and</strong> dur<strong>in</strong>g processes related to<br />

plant defense responses [38–41]. In a similar fashion<br />

to the <strong>sweet</strong> <strong>basil</strong> chavicol O-<strong>methyl</strong>transferase<br />

activity described here, an<br />

N-<strong>methyl</strong>transferase activity <strong>in</strong>volved <strong>in</strong> caffe<strong>in</strong>e<br />

biosynthesis was also particularly active <strong>in</strong> young<br />

emerg<strong>in</strong>g leaves <strong>of</strong> C<strong>of</strong>fea arabica [42].<br />

3.3. Extraction <strong>and</strong> properties <strong>of</strong> the<br />

SAM:cha�icol O-<strong>methyl</strong>transferase acti�ity from<br />

<strong>sweet</strong> <strong>basil</strong><br />

Extraction <strong>of</strong> the enzyme without PVPP or PVP<br />

resulted <strong>in</strong> an <strong>in</strong>tense brown<strong>in</strong>g <strong>and</strong> formation <strong>of</strong><br />

precipitates, accompanied by losses <strong>in</strong> the enzymatic<br />

activity <strong>and</strong> soluble prote<strong>in</strong>. After partial<br />

purification by Sephadex G-25 chromatography,<br />

the enzyme was more stable, <strong>and</strong> could be kept for<br />

more than 3 months at −20°C without apparent<br />

loss <strong>of</strong> activity.<br />

The activity levels l<strong>in</strong>early <strong>in</strong>creased with <strong>in</strong>cubation<br />

time <strong>and</strong> were l<strong>in</strong>early dependent on<br />

prote<strong>in</strong> concentration up to 25 �g prote<strong>in</strong>. A<br />

E. Lew<strong>in</strong>sohn et al. / Plant Science 160 (2000) 27–35 31<br />

broad temperature optimum around 20°C was<br />

found for activity. More than 50% <strong>of</strong> the activity<br />

was reta<strong>in</strong>ed when assays were performed at either<br />

42 or 17°C. A heat treatment <strong>of</strong> the enzyme<br />

preparation for 5 m<strong>in</strong> at 100°C resulted <strong>in</strong> a<br />

complete loss <strong>of</strong> activity, probably due to prote<strong>in</strong><br />

denaturation.<br />

Several buffers were tested (at 100 mM), <strong>in</strong>clud<strong>in</strong>g<br />

sodium citrate, potassium phosphate, MOPS,<br />

HEPES, Tris, <strong>and</strong> sodium carbonate, for allow<strong>in</strong>g<br />

optimal <strong>methyl</strong>transferase activity. A narrow pH<br />

optimum was found at 7.5, atta<strong>in</strong>ed either when<br />

HEPES or potassium phosphate were used. Practically,<br />

regardless <strong>of</strong> the buffer employed, at pH<br />

values above 8.0 or below 7.0, activity sharply<br />

decreased, loos<strong>in</strong>g all activity at pH values below<br />

6.0 or above 9.0, similar to the optimum pH range<br />

<strong>of</strong> many plant <strong>methyl</strong>transferases [42,43].<br />

Some <strong>methyl</strong>transferases require the presence <strong>of</strong><br />

metal c<strong>of</strong>actors for activity, while activities from<br />

other sources do not require the presence <strong>of</strong> metal<br />

c<strong>of</strong>actors for activity [44]. To test whether the<br />

chavicol-O-<strong>methyl</strong>transferase from <strong>sweet</strong> <strong>basil</strong> requires<br />

any metal c<strong>of</strong>actor for activity, 1 or 10 mM<br />

<strong>of</strong> either CaCl 2, MgCl 2, MnCl 2, CoCl 2, ZnSO 4,or<br />

FeSO 4 were added to the assays. All the additions<br />

at 1 mM caused dim<strong>in</strong>ution <strong>of</strong> the activity by<br />

50–80%, as compared with controls without any<br />

further addition. Moreover the <strong>in</strong>clusion <strong>of</strong> 10<br />

mM CoCl 2, ZnSO 4, or FeSO 4 <strong>in</strong> the assays resulted<br />

<strong>in</strong> a complete loss <strong>of</strong> the enzymatic activity.<br />

This <strong>in</strong>dicated that the chavicol dependent O<strong>methyl</strong>transferase<br />

activity from <strong>sweet</strong> <strong>basil</strong> apparently<br />

does not require a metal c<strong>of</strong>actor to be<br />

active.<br />

A constant 25 �M SAM level was used to<br />

calculate an apparent K m for chavicol <strong>of</strong> 3.0 �M<br />

utiliz<strong>in</strong>g both L<strong>in</strong>eweaver–Burk <strong>and</strong> Eadie–H<strong>of</strong>stee<br />

equations. Conversely, keep<strong>in</strong>g a constant 5<br />

�M <strong>of</strong> the acceptor substrate chavicol, a K m for<br />

SAM was found to be 10 �M. This is whith<strong>in</strong> the<br />

ranges <strong>of</strong> K m’s obta<strong>in</strong>ed for substrates <strong>of</strong> O<strong>methyl</strong>transferases<br />

from other sources [44].<br />

The experiments described were performed on a<br />

<strong>sweet</strong> <strong>basil</strong> chemotype (R3) that conta<strong>in</strong>s a high<br />

(56%) level <strong>of</strong> <strong>estragole</strong> [10]. Although this chemotype<br />

also conta<strong>in</strong>s high levels <strong>of</strong> the monoterpene<br />

l<strong>in</strong>alool (30%), <strong>and</strong> lower levels <strong>of</strong> other mono<strong>and</strong><br />

sesquiterpenes, it completely lacks both<br />

<strong>eugenol</strong> <strong>and</strong> <strong>methyl</strong> <strong>eugenol</strong> [10]. It was therefore<br />

<strong>of</strong> <strong>in</strong>terest to study the substrate specificity <strong>of</strong> the


32<br />

chavicol O-<strong>methyl</strong>transferase activity <strong>in</strong> this<br />

chemotype. Although <strong>eugenol</strong> differs from chavicol<br />

only <strong>in</strong> the addition <strong>of</strong> a m-methoxy group<br />

(Fig. 1), the enzyme from the <strong>estragole</strong>-rich<br />

chemotype R3 was almost completely <strong>in</strong>active<br />

when <strong>eugenol</strong> was <strong>of</strong>fered as a substrate <strong>in</strong> lieu <strong>of</strong><br />

chavicol (Fig. 2). It could be that the additional<br />

methoxy group <strong>in</strong> <strong>eugenol</strong> causes a substantial<br />

steric disturbance <strong>in</strong> the active site <strong>of</strong> the enzyme,<br />

render<strong>in</strong>g <strong>eugenol</strong> as an <strong>in</strong>efficient substrate for<br />

<strong>methyl</strong>ation. We also found that this enzyme had<br />

a narrow substrate specificity towards the acceptor<br />

substrate, be<strong>in</strong>g active only towards p-hydroxylated,<br />

but further unsubstituted phenols, such as<br />

p-propyl phenol, p-ethyl phenol, <strong>and</strong> p-cresol at<br />

�50% slower O-<strong>methyl</strong>ation rates, as compared<br />

with the rate for chavicol, <strong>and</strong> completely <strong>in</strong>active<br />

towards p-phenyl phenol, o-allylphenol <strong>and</strong> phenol.<br />

This <strong>in</strong>dicates that only discrete alkyl additions<br />

together with the availability <strong>of</strong> a p-hydroxyl<br />

group, are crucial for the O-<strong>methyl</strong>at<strong>in</strong>g ability <strong>of</strong><br />

this enzyme.<br />

Fig. 2. L<strong>in</strong>kage between the essential oil composition <strong>and</strong> the<br />

specificity <strong>and</strong> levels <strong>of</strong> SAM:dependent O-<strong>methyl</strong>transferase<br />

activity <strong>in</strong> <strong>sweet</strong> <strong>basil</strong> chemotypes. Top panels, essential oil<br />

composition <strong>of</strong> the different chemotypes data from reference<br />

[10], l<strong>in</strong>alool (L, white bars), <strong>estragole</strong> (Es, black bars),<br />

<strong>methyl</strong> <strong>eugenol</strong> (ME, light gray) <strong>and</strong> <strong>eugenol</strong> (Eu, dark grey).<br />

Bottom panels, SAM:allylphenol O-<strong>methyl</strong>transferase activities.<br />

Substrate used, chavicol (Ch, black bars); substrate,<br />

<strong>eugenol</strong> (Eu, gray bars). The products formed are <strong>estragole</strong><br />

(=<strong>methyl</strong>-chavicol) <strong>and</strong> <strong>methyl</strong> <strong>eugenol</strong>, respectively (Fig. 1).<br />

Means <strong>and</strong> S.E. <strong>of</strong> three <strong>in</strong>dependent determ<strong>in</strong>ations are<br />

shown.<br />

E. Lew<strong>in</strong>sohn et al. / Plant Science 160 (2000) 27–35<br />

Interest<strong>in</strong>g substrate specificities have been reported<br />

<strong>in</strong> O-<strong>methyl</strong>transferases act<strong>in</strong>g on phenolic<br />

derivatives from other sources. The t-anol O<strong>methyl</strong>transferase<br />

from Pimp<strong>in</strong>ella anisum accepted<br />

the 3� methoxylated derivative <strong>eugenol</strong> at<br />

almost the same rate as the non-3� methoxylated<br />

1-propenyl analog t-anol, but chavicol <strong>and</strong> dihydroanol<br />

(both non-3� methoxylated) were O<strong>methyl</strong>ated<br />

at ca. 50% <strong>of</strong> the rate <strong>of</strong> t-anol [28].<br />

The iso<strong>eugenol</strong> O-<strong>methyl</strong>transferase from C. breweri,<br />

was able to <strong>methyl</strong>ate <strong>eugenol</strong> at about 70%<br />

the rate found for the 1-propenyl analog<br />

iso<strong>eugenol</strong> [29]. Interest<strong>in</strong>gly, changes <strong>in</strong> only a<br />

few am<strong>in</strong>o acids can dramatically modify the substrate<br />

specificities <strong>of</strong> O-<strong>methyl</strong>transferases <strong>of</strong> C.<br />

breweri [45].<br />

3.4. Association between O-<strong>methyl</strong>transferase<br />

acti�ity le�els, their substrate specificities <strong>and</strong> the<br />

essential oil composition <strong>of</strong> <strong>sweet</strong> <strong>basil</strong> chemotypes<br />

Many <strong>sweet</strong> <strong>basil</strong> chemotypes differ <strong>in</strong> their<br />

allylphenol content <strong>and</strong> composition, <strong>and</strong> provide<br />

a unique experimental system to study the biochemical<br />

regulation <strong>of</strong> allyphenol biosynthesis.<br />

Chemotype 145 lacks l<strong>in</strong>alool, <strong>and</strong> conta<strong>in</strong>s an<br />

essential oil that is largely constituted (91%) by<br />

<strong>methyl</strong> chavicol [10]. As expected, the presence <strong>of</strong><br />

l<strong>in</strong>alool did not have a pronounced effect on the<br />

<strong>methyl</strong> chavicol biosynthetic capability, as evidenced<br />

by the similar levels <strong>of</strong> chavicol specific<br />

O-<strong>methyl</strong>transferase activity found <strong>in</strong> this chemotype.<br />

In a similar fashion to the O-<strong>methyl</strong>transferase<br />

activity displayed by chemotype R3, the<br />

activity extracted from chemotype 145 does not<br />

accept <strong>eugenol</strong> as a substrate (Fig. 2).<br />

A different composition <strong>of</strong> allylphenol derivatives<br />

is found <strong>in</strong> chemotype 147/97, rich both <strong>in</strong><br />

<strong>methyl</strong> chavicol <strong>and</strong> <strong>in</strong> <strong>methyl</strong> <strong>eugenol</strong> [10]. It<br />

would be difficult to conceive that O-<strong>methyl</strong>transferases<br />

with a strict substrate specificity for chavicol,<br />

<strong>and</strong> unable to accept <strong>eugenol</strong> as a substrate<br />

(such as those found <strong>in</strong> chemotypes R3 or 145)<br />

could mediate the formation <strong>of</strong> <strong>methyl</strong> <strong>eugenol</strong> <strong>in</strong><br />

chemotype 147/97. Therefore, we postulated that<br />

chemotype 147/97 possessed dist<strong>in</strong>ct O-<strong>methyl</strong>transferase<br />

activities, able to accept either chavicol<br />

or <strong>eugenol</strong> as acceptor substrates. The substrate<br />

specificity <strong>of</strong> the O-<strong>methyl</strong>transferase activity obta<strong>in</strong>ed<br />

from chemotype 147/97 is clearly different<br />

<strong>and</strong> less strict, as compared with the one displayed


y the activity obta<strong>in</strong>ed from chemotype R3. The<br />

results are shown <strong>in</strong> Fig. 2. The O-<strong>methyl</strong>transferase<br />

activity extracted from chemotype 147/97<br />

readily accepts <strong>eugenol</strong> as a substrate, even at a<br />

higher rate than chavicol (Fig. 2). The identity <strong>of</strong><br />

the products formed was confirmed to be <strong>methyl</strong><br />

<strong>eugenol</strong> (or <strong>estragole</strong>, respectively), by radio-TLC<br />

(not shown). The substrate specificity <strong>of</strong> the O<strong>methyl</strong>transferase<br />

activity(ies) extracted from<br />

chemotype 147/97 provides a good biochemical<br />

rationalization for the presence <strong>of</strong> both <strong>estragole</strong><br />

<strong>and</strong> <strong>methyl</strong> <strong>eugenol</strong> <strong>in</strong> the essential oil <strong>of</strong> this<br />

chemotype. It is possible that the O-<strong>methyl</strong>transferase<br />

activity extracted from chemotype 147/97<br />

resides <strong>in</strong> one enzyme with a broad substrate<br />

specificity, accept<strong>in</strong>g either <strong>eugenol</strong> or chavicol as<br />

substrates. Nevertheless, it is also possible that<br />

chemotype 147/97 possesses more than one O<strong>methyl</strong>transferase<br />

activity, each with strict substrate<br />

specificities for the <strong>methyl</strong> acceptors.<br />

F<strong>in</strong>ally, the <strong>sweet</strong> <strong>basil</strong> chemotype SW was exam<strong>in</strong>ed<br />

for the presence <strong>of</strong> chavicol or <strong>eugenol</strong>specific<br />

O-<strong>methyl</strong>transferase activities. This<br />

chemotype accumulates high levels <strong>of</strong> l<strong>in</strong>alool <strong>and</strong><br />

<strong>eugenol</strong>, but completely lacks the p-methoxylated<br />

allylphenols <strong>methyl</strong> chavicol or <strong>methyl</strong> <strong>eugenol</strong><br />

[10]. As expected, this chemotype lacked chavicol<br />

<strong>and</strong> <strong>eugenol</strong> dependant O-<strong>methyl</strong>transferase activities<br />

(Fig. 2). These observations provide a biochemical<br />

rationalization for the lack <strong>of</strong><br />

p-methoxylated allylphenols <strong>in</strong> this chemotype. Interest<strong>in</strong>gly,<br />

similar correlations between the levels<br />

<strong>of</strong> iso<strong>eugenol</strong> <strong>methyl</strong>transferase (IEMT) activity<br />

were found <strong>in</strong> flowers <strong>of</strong> C. breweri l<strong>in</strong>es that emit<br />

<strong>methyl</strong> iso<strong>eugenol</strong> versus l<strong>in</strong>es that do not emit it,<br />

<strong>and</strong> the regulation was apparently at a pre-translational<br />

step <strong>of</strong> the IEMT <strong>in</strong>volved [29].<br />

Although, we cannot exclude the possibility that<br />

the p-<strong>methyl</strong>ation <strong>of</strong> allylphenol derivatives takes<br />

place before the allyl cha<strong>in</strong> is biosynthesized, our<br />

results <strong>in</strong>dicate that p-<strong>methyl</strong>ation takes place after<br />

the formation <strong>of</strong> the allylic cha<strong>in</strong>. Moreover,<br />

our f<strong>in</strong>d<strong>in</strong>gs suggest that the chemical composition<br />

<strong>of</strong> the essential oil <strong>in</strong> <strong>sweet</strong> <strong>basil</strong> chemotypes is (at<br />

least partially) dictated by the levels <strong>and</strong> substrate<br />

specificities <strong>of</strong> the O-<strong>methyl</strong>transferases present.<br />

The bulk <strong>of</strong> the allylphenol-specific O-<strong>methyl</strong>transferase<br />

activity seems to be restricted to young<br />

develop<strong>in</strong>g tissues. At present, it is unknown<br />

whether only one enzymatic activity with a broad<br />

substrate specificity is able to transfer <strong>methyl</strong><br />

E. Lew<strong>in</strong>sohn et al. / Plant Science 160 (2000) 27–35 33<br />

groups to either <strong>eugenol</strong> or chavicol, or whether<br />

two or more separable enzymatic activities are<br />

<strong>in</strong>volved <strong>in</strong> these biochemical conversions. Crosses<br />

between the different chemotypes will enable us to<br />

learn more about the genetics <strong>of</strong> chemotype determ<strong>in</strong>ation<br />

<strong>in</strong> <strong>sweet</strong> <strong>basil</strong>. Additionally, <strong>in</strong>formation<br />

obta<strong>in</strong>ed through purification <strong>and</strong> biochemical<br />

characterization <strong>of</strong> the <strong>sweet</strong> <strong>basil</strong> enzymes, as well<br />

as the isolation <strong>and</strong> analysis <strong>of</strong> their respective<br />

genes will help us to better underst<strong>and</strong> the process<br />

<strong>of</strong> accumulation <strong>of</strong> allylphenolic derivatives <strong>in</strong><br />

<strong>sweet</strong> <strong>basil</strong> chemotypes.<br />

Acknowledgements<br />

We thank Ronald Fenn <strong>and</strong> Dr William L.<br />

Schreiber for the chavicol. This work was supported<br />

by a grant number 255-0495 from the Chief<br />

Scientist <strong>of</strong> the M<strong>in</strong>istry <strong>of</strong> Agriculture <strong>of</strong> the<br />

State <strong>of</strong> Israel <strong>and</strong> The US–Israel B<strong>in</strong>ational Agricultural<br />

Research <strong>and</strong> Development grant IS-2709-<br />

96. Additional support was provided by the Otto<br />

Meyerh<strong>of</strong> Center for Biotechnology established by<br />

the M<strong>in</strong>erva Foundation, Federal Republic <strong>of</strong><br />

Germany. Contribution from the ARO, The Volcani<br />

Center, Bet Dagan 50250, Israel, No. 101-<br />

2000.<br />

References<br />

[1] E. Putievsky, B. Galambosi, Production systems <strong>of</strong><br />

<strong>sweet</strong> <strong>basil</strong>, <strong>in</strong>: R. Hiltunen, Y. Holm (Eds.), Basil. The<br />

Genus Ocimum, Harwood Academic Publishers, 1999,<br />

pp. 39–65.<br />

[2] R. Reuveni, A. Fleischer, E. Putievsky, Fungistatic activity<br />

<strong>of</strong> essential oils from Ocimum <strong>basil</strong>icum chemotypes,<br />

Phytopath. Z. 110 (1984) 20–22.<br />

[3] S. Dube, P.D. Upadhyay, S.C. Tripathi, Antifungal,<br />

physicochemical, <strong>and</strong> <strong>in</strong>sect repell<strong>in</strong>g activity <strong>of</strong> the essential<br />

oil <strong>of</strong> Ocimum <strong>basil</strong>icum, Can. J. Bot. 67 (1989)<br />

2085–2087.<br />

[4] R.A. Werner, Toxicity <strong>and</strong> repellency <strong>of</strong> 4-allylanisole<br />

<strong>and</strong> monoterpenes from white spruce <strong>and</strong> tamarack to<br />

the spruce beetle <strong>and</strong> Eastern larch beetle (Coleoptera:<br />

Scolytidae), Environ. Entomol. 24 (1995) 372–379.<br />

[5] B.M. Lawrence, Labiatae oils — mother nature’s chemical<br />

factory, <strong>in</strong>: Essential Oils, Allured Publish<strong>in</strong>g, Carol<br />

Stream, IL, 1993, pp. 188–206.<br />

[6] J.E. Simon, J. Qu<strong>in</strong>n, R.G. Murray, Basil: a source <strong>of</strong><br />

essential oils, <strong>in</strong>: Advances <strong>in</strong> New Crops, Timber Press,<br />

Portl<strong>and</strong>, OR, 1990, pp. 484–489.<br />

[7] D.J. Charles, J.E. Simon, A new geraniol chemotype <strong>of</strong><br />

Ocimum gratissimum L, J. Ess. Oil Res. 4 (1992) 231–<br />

234.


34<br />

[8] A.P. Mart<strong>in</strong>s, L.R. Salgueiro, R. Vila, F. Tomi, S.<br />

Cañigueral, J. Casanova, A. Proenca da Cunha, T.<br />

Adzet, Composition <strong>of</strong> the essential oils <strong>of</strong> Ocimum<br />

canum, O. gratissimum <strong>and</strong> O. m<strong>in</strong>imum, Planta Med. 65<br />

(1999) 187–189.<br />

[9] Z. Fleisher, A. Fleisher, Volatiles <strong>of</strong> Ocimum <strong>basil</strong>icum<br />

traditionally grown <strong>in</strong> Israel. Aromatic plants <strong>of</strong> the<br />

Holy L<strong>and</strong> <strong>and</strong> S<strong>in</strong>ai Part VIII, J. Ess. Oil Res. 4 (1992)<br />

97–99.<br />

[10] R.J. Grayer, G.C. Kite, F.J. Goldstone, S.E. Bryan, A.<br />

Paton, E. Putievsky, Infraspecific taxonomy <strong>and</strong> essential<br />

oil chemotypes <strong>in</strong> <strong>sweet</strong> <strong>basil</strong> Ocimum <strong>basil</strong>icum,<br />

Phytochemistry 43 (1996) 1033–1039.<br />

[11] E. Werker, E. Putievsky, U. Ravid, N. Dudai, I. Katzir,<br />

Gl<strong>and</strong>ular hairs <strong>and</strong> essential oil <strong>in</strong> develop<strong>in</strong>g leaves <strong>of</strong><br />

Ocimum <strong>basil</strong>icum L. (Lamiaceae), Ann. Bot. 71 (1993)<br />

43–50.<br />

[12] G. Samuelsson, Drugs <strong>of</strong> natural orig<strong>in</strong>, <strong>in</strong>: A Textbook<br />

<strong>of</strong> Pharmacognosy, Swedish Pharmaceutical Press,<br />

Stockholm, 1991, p. 320.<br />

[13] O. Barazani, A. Fait, Y. Cohen, S. Dim<strong>in</strong>shte<strong>in</strong>, U.<br />

Ravid, E. Putievsky, E. Lew<strong>in</strong>sohn, J. Friedman, Chemical<br />

variation among <strong>in</strong>digenous populations <strong>of</strong> Foeniculum<br />

�ulgare var. �ulgare <strong>in</strong> Israel, Planta Med. 65 (1999)<br />

486–489.<br />

[14] E. Werker, E. Putievsky, U. Ravid, N. Dudai, I. Katzir,<br />

Gl<strong>and</strong>ular hairs, secretory cavities <strong>and</strong> the essential oil <strong>in</strong><br />

leaves <strong>of</strong> tarragon (Artemisia dracunculus L), J. Herbs<br />

Spices Medic<strong>in</strong>al Plants 2 (1994) 19–32.<br />

[15] P. Manitto, P. Gramatica, D. Monti, <strong>Biosynthesis</strong> <strong>of</strong><br />

phenylpropanoid compounds. Part II. Incorporation <strong>of</strong><br />

specifically labelled c<strong>in</strong>namic acids <strong>in</strong>to <strong>eugenol</strong>, J.<br />

Chem. Soc. Perk<strong>in</strong> I (1975) 1548–1551.<br />

[16] P. Manitto, D. Monti, P. Gramatica, <strong>Biosynthesis</strong> <strong>of</strong><br />

phenylpropanoid compounds. Part I. <strong>Biosynthesis</strong> <strong>of</strong><br />

<strong>eugenol</strong> <strong>in</strong> Ocimum <strong>basil</strong>icum, J. Chem. Soc. Perk<strong>in</strong> I<br />

(1974) 1727–1731.<br />

[17] U.M. Senanayake, R.B.H. Wills, T.H. Lee, <strong>Biosynthesis</strong><br />

<strong>of</strong> <strong>eugenol</strong> <strong>and</strong> c<strong>in</strong>namic aldehyde <strong>in</strong> C<strong>in</strong>namomum zeylanicum,<br />

Phytochemistry 16 (1977) 2032–2033.<br />

[18] R. Tressl, F. Drawert, Biogenesis <strong>of</strong> banana volatiles, J.<br />

Agric. Food Chem. 21 (1973) 560–565.<br />

[19] A. da Cunha, Purification, characterization <strong>and</strong> <strong>in</strong>duction<br />

<strong>of</strong> L-phenylalan<strong>in</strong>e ammonia- lyase <strong>in</strong> Phaseolus<br />

�ulgaris, Eur. J. Biochem. 178 (1988) 243–248.<br />

[20] Y. Tanaka, I. Uritani, Purification <strong>and</strong> properties <strong>of</strong><br />

phenylalan<strong>in</strong>e ammonia-lyase <strong>in</strong> cut-<strong>in</strong>jured <strong>sweet</strong><br />

potato, J. Biochem. (Tokyo) 81 (1977) 963–970.<br />

[21] S. Zimmermann, K. Hahlbrock, Light-<strong>in</strong>duced changes<br />

<strong>of</strong> enzyme activities <strong>in</strong> parsley cell suspension cultures.<br />

Purification <strong>and</strong> some properties <strong>of</strong> phenylalan<strong>in</strong>e ammonia-lyase<br />

(E.C.4.3.1.5), Arch. Biochem. Biophys. 166<br />

(1975) 54–62.<br />

[22] Z. Hao, D.J. Charles, Y. Liangli, J.E. Simon, Purification<br />

<strong>and</strong> characterization <strong>of</strong> a phenylalan<strong>in</strong>e ammonialyase<br />

from Ocimum <strong>basil</strong>icum, Phytochemistry 43 (1996)<br />

735–739.<br />

[23] M. Luckner, Secondary metabolism <strong>in</strong> microorganisms,<br />

<strong>in</strong>: Plants <strong>and</strong> Animals, third ed., Spr<strong>in</strong>ger, Berl<strong>in</strong>, 1990,<br />

pp. 94–95.<br />

[24] R.K. Ibrahim, A. Bruneau, B. Bantignies, Plant O<strong>methyl</strong>transferases:<br />

molecular analysis, common signa-<br />

E. Lew<strong>in</strong>sohn et al. / Plant Science 160 (2000) 27–35<br />

ture <strong>and</strong> classification, Plant Mol. Biol. 36 (1998) 1–10.<br />

[25] H. Meng, W.H. Campbell, Substrate pr<strong>of</strong>iles <strong>and</strong> expression<br />

<strong>of</strong> caffeoyl coenzyme A <strong>and</strong> caffeic acid O-<strong>methyl</strong>transferases<br />

<strong>in</strong> secondary xylem <strong>of</strong> aspen dur<strong>in</strong>g seasonal<br />

development, Plant Mol. Biol. 38 (1998) 513–520.<br />

[26] K. Inoue, V.J.H. Sewalt, G.M. Ballance, W. Ni, C.<br />

Stürzer, R.A. Dixon, Developmental expression <strong>and</strong><br />

substrate specificities <strong>of</strong> alfalfa caffeic acid acid 3-O<strong>methyl</strong>transferase<br />

<strong>and</strong> caffeoyl coenzye A 3-O-<strong>methyl</strong>transferase<br />

<strong>in</strong> relation to lignification, Plant Physiol. 117<br />

(1998) 761–770.<br />

[27] J. Wang, N. Dudareva, C.M. Kish, J.E. Simon, E.<br />

Lew<strong>in</strong>sohn, E. Pichersky, Nucleotide sequences <strong>of</strong> two<br />

cDNAs encod<strong>in</strong>g caffeic acid O-<strong>methyl</strong>transferases (accession<br />

nos. AF154917 <strong>and</strong> AF154918) from <strong>sweet</strong> <strong>basil</strong>,<br />

Plant Physiol. 120 (1999) 1205.<br />

[28] B. Kemmerer, J. Reichl<strong>in</strong>g, S-Adenosyl-L-methion<strong>in</strong>e:anol-O-<strong>methyl</strong>transferase<br />

activity <strong>in</strong> organ cultures<br />

<strong>of</strong> Pimp<strong>in</strong>ella anisum, Phytochemistry 42 (1996) 397–<br />

403.<br />

[29] J. Wang, N. Dudareva, S. Bhakta, R.A. Raguso, E.<br />

Pichersky, Floral scent production <strong>in</strong> Clarkia breweri<br />

(Onagraceae). II Localization <strong>and</strong> developmental modulation<br />

<strong>of</strong> the enzyme S-adenosyl-L-methion<strong>in</strong>e:(iso)<strong>eugenol</strong><br />

O-<strong>methyl</strong>transferase <strong>and</strong><br />

phenylpropanoid emission, Plant Physiol. 114 (1997)<br />

213–221.<br />

[30] J. Wang, E. Pichersky, Characterization <strong>of</strong> S-adenosyl-<br />

L-methion<strong>in</strong>e:(iso)<strong>eugenol</strong> O-<strong>methyl</strong>transferase <strong>in</strong>volved<br />

<strong>in</strong> floral scent production <strong>in</strong> Clarkia breweri, Arch.<br />

Biochem. Biophys. 349 (1998) 153–160.<br />

[31] R. Croteau, M. Felton, F. Karp, R. Kjonaas, Relationship<br />

<strong>of</strong> camphor biosynthesis to leaf development <strong>in</strong> sage<br />

(Sal�ia <strong>of</strong>fic<strong>in</strong>alis), Plant Physiol. 67 (1981) 820–824.<br />

[32] J. Gershenzon, Metabolic costs <strong>of</strong> terpenoid accumulation<br />

<strong>in</strong> higher plants, J. Chem. Ecol. 20 (1994) 1281–<br />

1328.<br />

[33] J. Rohl<strong>of</strong>f, Monoterpene composition <strong>of</strong> essential oil<br />

from pepperm<strong>in</strong>t (Mentha x piperita L.) with regard to<br />

leaf position us<strong>in</strong>g solid-phase microextraction <strong>and</strong> gas<br />

chromatography/mass spectrometry analysis, J. Agric.<br />

Food Chem. 47 (1999) 3782–3786.<br />

[34] J. Gershenzon, M.E. McConkey, R.B. Croteau, Regulation<br />

<strong>of</strong> monoterpene accumulation <strong>in</strong> leaves <strong>of</strong> pepperm<strong>in</strong>t,<br />

Plant Physiol. 122 (2000) 205–213.<br />

[35] N. Dudai, E. Lew<strong>in</strong>sohn, O. Larkov, I. Katzir, U.<br />

Ravid, D. Chaimovitsh, D. Sa’adi, E. Putievsky, Dynamics<br />

<strong>of</strong> yield components <strong>and</strong> essential oil production<br />

<strong>in</strong> a commercial hybrid sage (Sal�ia <strong>of</strong>fic<strong>in</strong>alis x Sal�ia<br />

fruticosa cv. Newe Ya’ar No. 4), J. Agric. Food Chem.<br />

47 (1999) 4341–4345.<br />

[36] M.M. Bradford, A rapid <strong>and</strong> sensitive method for the<br />

quantitation <strong>of</strong> microgram quantities <strong>of</strong> prote<strong>in</strong> utiliz<strong>in</strong>g<br />

the pr<strong>in</strong>ciple <strong>of</strong> prote<strong>in</strong>-dye b<strong>in</strong>d<strong>in</strong>g, Anal. Biochem. 72<br />

(1976) 248–254.<br />

[37] R.K. Croteau, Orig<strong>in</strong> <strong>of</strong> natural odorants, <strong>in</strong>: P.M.<br />

Muller, D. Lamparsky (Eds.), Perfumes Art, Science <strong>and</strong><br />

Technology, Elsevier, London, 1991, pp. 101–126.<br />

[38] A.E. Pakusch, R.E. Kneusel, U. Matern, S-adenosyl-Lmethion<strong>in</strong>e:t-caffeoyl-coenzyme<br />

A 3-O-<strong>methyl</strong>transferase<br />

from elicitor-treated parsley cell suspension<br />

cultures, Arch. Biochem. Biophys. 271 (1989) 488–494.


[39] M. Ichimura, T. Furuno, T. Takahashi, R.A. Dixon,<br />

S.I. Ayabe, Enzymic O-<strong>methyl</strong>ation <strong>of</strong> isoliquiritigen<strong>in</strong><br />

<strong>and</strong> licodione <strong>in</strong> alfalfa <strong>and</strong> licorice cultures, Phytochemistry<br />

44 (1997) 991–995.<br />

[40] B. Dumas, M. Legr<strong>and</strong>, P. Ge<strong>of</strong>froy, B. Fritig, Purification<br />

<strong>of</strong> tobacco O-<strong>methyl</strong>transferases by aff<strong>in</strong>ity<br />

chromatography <strong>and</strong> estimation <strong>of</strong> the rate <strong>of</strong> synthesis<br />

<strong>of</strong> the enzymes dur<strong>in</strong>g hypersensitive reaction to virus<br />

<strong>in</strong>fection, Planta 176 (1988) 36–41.<br />

[41] R. Rakwal, M. Hasegawa, O. Kodama, A <strong>methyl</strong>transferase<br />

for synthesis <strong>of</strong> the flavanone phytoalex<strong>in</strong><br />

sakuranet<strong>in</strong> <strong>in</strong> rice leaves, Biochem. Biophys. Res.<br />

Commun. 222 (1996) 732–735.<br />

[42] S.S.M. Waldhauser, J.A. Kretschmar, T.W. Baumann,<br />

N-<strong>methyl</strong>transferase activities <strong>in</strong> caffe<strong>in</strong>e biosynthesis:<br />

E. Lew<strong>in</strong>sohn et al. / Plant Science 160 (2000) 27–35 35<br />

.<br />

biochemical characterization <strong>and</strong> time course dur<strong>in</strong>g<br />

leaf development <strong>of</strong> C<strong>of</strong>fea arabica, Phytochemistry 44<br />

(1997) 853–859.<br />

[43] H. Wengenmayer, J. Ebel, H. Grisebach, Purification<br />

<strong>and</strong> properties <strong>of</strong> a S-adenosylmethion<strong>in</strong>e is<strong>of</strong>lavone<br />

4�-O-<strong>methyl</strong>transferase from cell suspension cultures <strong>of</strong><br />

Cicer ariet<strong>in</strong>um L, Eur. J. Biochem. 50 (1974) 135–143.<br />

[44] D. Strack, H.P. Mock, Hydroxyc<strong>in</strong>namic acids <strong>and</strong><br />

lign<strong>in</strong>s, <strong>in</strong>: P.J. Lea (Ed.), Methods <strong>in</strong> Plant Biochemistry.<br />

Enzymes <strong>of</strong> Secondary Metabolism, vol. 9, Academic<br />

Press, London, 1993, pp. 45–97.<br />

[45] J. Wang, E. Pichersky, Identification <strong>of</strong> specific<br />

residues <strong>in</strong>volved <strong>in</strong> substrate discrim<strong>in</strong>ation <strong>in</strong> two<br />

plant O-<strong>methyl</strong>transferases, Arch. Biochem. Biophys.<br />

368 (1999) 172–180.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!